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Abstract  

The creep deformation and failure of high Cr steel component and weld is a challenging problem for 

power generation industries. There is a lack of good understanding of the precise nature and role of 

cavitation on the creep deformation and rupture. Creep damage constitutive equation developed either 

specifically developed for this type of steel or borrowed from existing one have been used in research. 

This review demonstrates the current state of art and outlines the direction of future work.   
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1. Introduction 

 

Demands on the thermal efficiency and reduction of CO2 emissions for fossil plants lead to the 

development and applications of high chromium ferritic creep-resistant steels. The steel P91 strengthened 

by Nb and V addition is being widely used for temperature up to 873 K. The 9-12% Cr steel strengthened 

by replacing Mo with W, namely P92 and P122 are being now performed for application to boiler 

component of ultra-supercritical (USC) power plants operating at around 898 K. 

 

It is well known that the long term performance and creep rupture strength is below originally expected 

from simple extrapolation of short term creep data resulting in reductions in some of the values quoted as 

representing long term creep life [1-3]. For example, Ennis et al [1] found that the stresses of above 150 

MPa at 600
o
 C and above 110 MPa for 650

o
C, the Norton stress exponent n was found to be 16; below 

these stresses an n value was 6. Similarly, for the ASTM grade 92 steel crept at 550–650 °C for up to 63 

151 h, Lee et al found that [2] the stress exponent for rupture life to be decreased from 17 in short-term 

creep to 8 in long-term creep. 

 

There were several literature review and summary about the microstructural changes/evolutions and their 

effects on the creep strength. For example, Parker [3] summarized the following microstructure 

degradation effects appearing to be primarily responsible for the loss of long term creep strength: a. the 

formation of new phase which leads to dissolution of fine M2X and MX carbinitrides; b. recovery of the 

dislocation substructure (increase in subgrain size) and reduction in the overall dislocation density. This 

may be seen generally but is believed to initiate as the result of preferential recovery of microstructure in 

the vicinity of prior austenite grain boundaries, and c. the development of creep voids resulting in a 

significant loss of creep ductility. This will be discussed further in next section. 

 

The change of the stress exponent value n in Norton power law indicates a change of creep deformation 

mechanism and possible the creep damage mechanism [4-7]. General speaking, that the creep 

deformation under lower stress is of diffusional and the void nucleation is controlled by the maximum 

shear stress; which is in line with the general understanding reported by Miannay [4]. Specifically, Lee et 

al [1] summarized and reported for P92 steel as: 1) the steel shows ductile to brittle transition with 



increasing rupture life, and the breakdown accords with the onset of brittle intergranular fracture; 2) creep 

cavities are nucleated at coarse precipitates of Laves phase along grain boundaries. It is further articulated 

that these findings suggest the following story of the breakdown of creep strength. Laves phase 

precipitates and grows during creep exposure. Coarsening of Laves phase particles over a critical size 

triggers the cavity formation and the consequent brittle intergranular fracture. The brittle fracture causes 

the breakdown. The coarsening of Laves phase can be detected non-destructively by means of hardness 

testing of the steel exposed to elevated temperature without stress 

 

Furthermore, the applications of these high Cr steels have been further hampered due the early cracking in 

weldment, namely Type IV cracking. It occurs in the FG-HAZ or IC-HAZ of weldment [8-9]. Firstly [8], 

the susceptibility of Type IV cracking is due to weak creep region in HAZ due to thermal cycle, as well as 

mistach of the mechanical properties in weldment. Secondly [8], it has been that M23C6 precipitates and 

Laves phases form faster in the fine grain HAZ region in 9Cr martensitic type of steels compared with the 

other regions of the weldment. This metallurgical effect further increases the vulnerability of the type IV 

region. Since not only are matrix-strengthen elements such as Cr, Mo and W depleted but the Laves phase 

offers potential sites for the nucleation of creep voids. High density of creep voids are developed over the 

HAZ, with crack formation and final propagation occurring only very late in creep life, according to [8]. 

With interrupted creep tests it was found that: the creep voids begin to form at the early state (at about 0.2 

of rupture lifetime) and the number of voids increases all the way up to about 0.7 of rupture lifetime [9]. 

After that it can be considered that the rate of void coalescence is higher than that of void formation. With 

the coalescence of creep voids, they grow into the crack, which is known as Type IV cracking. The area 

fraction of creep voids can be a good variable to predict the creep life since it always tends to increase 

during creep. They also suggested that the high level stress triaxial factor combined with the large 

equivalent creep strain in the fine grained HAZ accelerate the void formation in P91 steel weld joint 

during creep at elevated. Recently, Parker summarized [8] as: a. it is now widely accepted that in creep 

tests at relatively high stress and temperature the results of cross weld creep testing are not typical of long 

term damage in component welds; b. clearly then it is important to select test conditions and specimen 

geometries for laboratory test programs so as to produce failures where the damage mechanisms are 

relevant to long terms service, c. using these conditions it is apparent that failure occurs as a consequence 

of nucleation, growth and link up of creep voids. It appears that the damage is significantly greater within 

the volume of the specimen where relatively high constraint conditions are developed; and d) the Type IV 

life is significantly below that of the parent under the same conditions. It was also reported by Parker [8] 

that further work is in progress to examine Grade 91 welded samples which have been tested to different 

creep life fractions with advanced characterization techniques to establish further details of creep cavity 

nucleation and growth within the weld HAZ. 

 

For the safe design and operation, as well as for better design and develop new creep resistant steel itself, 

it is important to understand the creep damage evolution, particularly in terms of the detailed knowledge 

of nucleation, growth, and coalescence under different stress levels and stress states are needed. That is 

one of new research directions and it is understood that EPRI has undertaken [8] among others. 

 

On the other hand, creep damage models have been developed. It is the intention to develop a set of creep 

damage constitutive equations which are suitable for this type of steels and its welds for a wide range of 

stress levels. Preliminary literature review of the creep deformation mechanisms and creep damage 

mechanism has been conducted and reported [5-6]. This paper expands the literature review on the creep 

damage constitutive equations developed and/or used for high Cr steels [10] paying more attention to the 

cavity nucleation and growth. This paper contributes to knowledge and the method for the development of 

creep damage constitutive equations. 

 

2. Creep Cavitation 

 



Creep cavities are observed mostly at grain boundaries perpendicular to the applied stress. The first to 

observe that nucleation is often strain controlled was probably Needham et al, according to Magnusson 

[7] . This was also found by Dyson [11] for ferritic 2.25% Cr steel, austenitic 347 steel, and Ni-based 

Nimonic 80A. The continuous nucleation has also been confirmed for 12% Cr steels by Wu et al [12]. 

The significance of the creep cavity for damage is also supported by the long-term creep test of 12%Cr 

steel (up to 139,971 h) it revealed that creep cavities lined up along the former austenite grain boundary 

perpendicular to the direction of applied stress [13].  

 

There are two types of view on the cavity nucleation mechanisms, e.g. creep strain controlled or local 

stress controlled. Yin [14] proposed a creep controlled damage controlled by power law of creep strain 

recently. The influence of stress state on the formation and growth of cavity has been highlighted and 

investigated experimentally by Gaffard et al [15] via notched bar creep tests of P91 material. 

Furthermore, Gaffard et al proposed the nucleation rate is strain controlled also depends on the stress state 

and a frame work of multi-deformation and damage mechanisms, which differs from other stress 

controlled nucleation law developed in Chu and Needleman [16] or Herding and Kuhn [17], without 

giving further explanation and justification. On contrary, Magnusson [8] adopted a linear creep strain 

control nucleation and growth of cavity for analyzing the creep strain and damage under uniaxial creep 

condition.  

 

It seems that there is not adequate and/or definite experimental data for validation. However, it is noted 

that, advanced/sophisticated techniques do come into use and some useful results have been produced. 

The first one is the application of microtomography to investigate the creep cavity damage where the size, 

shape and spatial distribution of voids can be obtained [18-19]; the second is interrupted creep testing [9] 

where, combined with FE analysis, the void density and size and their distribution can be investigated and 

the influence of stress states can be identified. 

 

The application of microtomography to E911 after long term creep 26,000 h at 575 °C under multi-axial 

stress state [18] the stress triaxiality has the highest correlation coefficient (≈0.98) with the volumetric 

void density, the Von Mises stress and maximum principal stress have similar correlation, but, smaller, 

coefficients, still large enough to indicate their influence on damage. Its application to copper [19] has 

provided four dimensional characteristics of creep cavity growth in copper. Its finding has been compared 

with creep damage models.  

 

3. Physically based Creep damage Mechanics 

 

3.1 Dyson framework 
The physically based continuum creep damage mechanics (CDM) was summarized and detailed in one of 

Dyson’s publication [11].  According to that the creep damages were grouped into broad categories of 

creep damage based on solely on the kinetics of damage evolution, and they are: strain-induced damage; 

thermal induced damage; and environmentally induced damage. For brevity, only the relevant damage 

mechanism, damage rate, and strain rate are included here: 

Strain-induced damage: creep-constrained cavity nucleation controlled:  

    ; ;              (1) 

Strain-induced damage: creep-constrained Cavity Growth Controlled: 

  ; ;            (2) 

Strain-induced: multiplication of Mobile Dislocation:  

;          (3) 



Thermally-induced: particle coarsening;    

;     (4) 

Thermally-induced: depletion of solid solution element: 

 ;    (5) 

 

This framework looks almost universal, and any need for the development of creep damage constitutive 

equations can be met combining the relevant elementary creep damage from the list.  

It is essentially a uniaxial version and the multi-axial version can be generalized though it is not 

straightforward as it looks. This will be discussed later. 

 

3.2 Specific Applications 

3.2.1. Yin et al [14] proposed an approach for creep damage modeling of P92 steel by including  

multiplication of mobile dislocation, depletion of solid solution element, and particle coarsening,  

equation 3, 4, 5 respectively, and replacing the strain induced damage by a new cavity damage kinetic 

equation: 

    (6) 

where A and B are temperature dependent material constants. The justification was not given fully in the 

original paper. Only this uniaxial version has been used to the middle and high stress level. This version 

has also been used for P91 steel. The creep damage is still essentially creep strain controlled. There is no 

multi-axial version proposed yet, except an attempt by Yang et al [20]. 

3.2.2 Chen et al [21] had essentially adopted Yin’s approach and developed a creep model for T/P91 

material under high stress level (130 to 200 MPa) at 600
o
C, existing literature have been used in the 

determining the values of material constants. Including the same elementary damage similarly to Yin’s 

approach 

3.2.3  Basirat et al [22] inserted them directly into the Orowan’s  equation. The temperature and stress 

level’s influence is realized by the dependence of two material constants. It is worthy comparing the 

similarity between this and Yin’s approach. 

 3.2.3 Semab et al [23] adopted the above Dyson’s framework and proposed a version of creep damage 

constitutive equation where a novel way to incorporated the strain-dependent coarsening of subgrains and 

network dislocations. 

3.2.4 Oruganti et al [24] aimed to build a comprehensive creep model using Dyson’s framework. The 

significant efforts were placed on identify the critical microstructural features that controlled creep and 

quantification of their effect and evolution with time and strain. In this approach, coarsening of 

carbonitrides and subgrain structure resulting from martensitic transformation were incorporated in the 

damage constitutive equations. 

 

3.3 Multi-axial Version 

This specific version of multi-axial creep damage constitutive equations was originally developed for low 

Cr alloy Perry and Hayhurst [25]. However, due to its popularity and been used by some researchers [26] 

to analyze the creep damage problem of this type of steel and weldment, it is included in this review. The 

multi-axial generalization is based on the isochronous surface concept via stress state coupling on damage 

evolution.  

 

 (7) 



   (8) 

    (9) 

   (10) 

where N=1, σ1>0 (tensile) and N=0, σ1<0 (compressive). A, B, h, H*, Kc, D and ν are material constants, 

where ν is related to tri-axial stress-state sensitivity of the material. The state variable H (0 < H < H*) 

represents the strain hardening occurring during primary creep. The H variable increases during the 

evolution of creep strain and reaches a maximum value of H* at the end of primary stage and remains 

unchanged during the tertiary creep. The state variable Φ (0<Φ<1) describes the evolution of spacing of 

the carbide precipitates. The last-state variable, ω2 (0<ω2<1/3), represents intergranular cavitation 

damage. The maximum value of ω2 (at failure) is related to the area fraction of cavitation damage at 

failures, which in a uniaxial case is approximately 1/3. 

 

3.4 Petry’s modification to Hayhurst approach [27] 

A one state variable version of creep damage constitutive equations (Hayhurst, [28] 1972) was slightly 

modified by Petry et al. and it is given as: 

   (11) 

  (12) 

  (13) 

Comparing to the initial formulation, the hardening variable H has been attached to a more complex 

kinetics, with a subdivision between H1 and H2 parts,  these two intermediary variables are respectively 

associated to the increasing and decreasing parts of the global hardening variable H.  

This set of creep damage constitutive equations has been used for the prediction of uniaxial creep bar of 

P91 and P92 with success. Of course, there was some compromise in determining due to lack of 

experimental data for notched bar test. 

 

3.5 Naumenko’s Formulation 

Within the phenomenological approach framework, a version of stress-range-dependent creep damage 

constitutive model was proposed ([29] Naumenko, 2009). The key features are: 

1. The hyperbolic sine law has been replaced by the sum of a linear and power-law stress functions: 

 
2. Damage evolution is controlled by stress not creep strain 

 



 
 

It claims that the definition of  offers the possibility of transition from the pure ductile to pure shear 

brittle damage mode. This kinetic equation for creep damage rate is consistent with experimental fact that 

voids and microcracks nucleate on grain boundaries which are perpendicular to the first principal 

direction of the stress tensor and the void formation may progress even under pure hydrostatic pressure. 

 

4. Multi Mechanisms Creep Failure Model 

 

This creep failure model was developed based on the concept of that both deformation and damage 

evolution under multiple viscoplastic mechanisms is used to present high temperature creep deformation 

and damage of a martensitic stainless steel in a wide range of load levels [15].  

  
Where the strain component is elastic strain, power-law creep strain, and diffusional creep strain tensor, 

respectively. The creep damage of each mechanism is explicitly defined using porous viscous material 

model:  

 

 
 

This model has been used for predicting Type Iv failure of P91 weldment and the result is in agreement 

with experimental observation. 

 

5. The Validation on Hayhurst Formulation [30] 

 

Although the set of creep damage constitutive equation described in 3.3 was popular, a critical review 

revealed its deficiency inherent from its generalisation method, namely: this method used lifetime (under 

plane stress condition) only and ignored creep deformation consistency [31-32].  

 
 Fig. 1 Isochronous rupture loci for Hayhurst formulation [30] 

 

http://www.sciencedirect.com/science/article/pii/S0029549303002838#gr1
http://www.sciencedirect.com/science/article/pii/S0029549303002838#gr1


 Fig. 2 Ratios of strain at failure of Hayhurst formulation [30] 

 

The critical validation on the Hayhurst formulation has revealed that [30]:  

1) A significant creep strength increase under plane strain condition when the tri-axiality is about the 

order of 1.5–2.8 as shown in Fig. 1. This increase is not realistic according to well-known creep 

strength theory. Thus, the previous formulation is unable to find a value for stress sensitivity that 

can satisfy the isochronous rupture loci under plane stress and plane strain conditions 

simultaneously. This deficiency was not revealed in previous constitutive equation development 

and/or validation. 

2) The lifetime predicted under uni-axial tension and bi-axial equal tension is the same, which does 

not agree with the generally experimental observation.  

3) Furthermore, the ratios of strain at failure for the previous formulation shown in Fig. 2 are 

conjugated with the shape of isochronous rupture loci shown in Fig. 1 through the common stress 

sensitivity parameter ν. Thus, there is no freedom provided to produce strain at failure consistent 

with experimental observation. This further demonstrates its incapability to predict consistently 

with experiment. 

 

Furthermore, the Yin’s uniaxial version has been generalized into multi-axial version where the creep 

strain and stress in uniaxial damage rate equation are simply replaced by effective creep strain and Von-

Mises stress [20]. Firstly, it was found that the life time under plane stress situation is far longer than it is 

observed and/or expected, suffering the similar problem occurred in Hayhurst’s multi-axial formulation 

mentioned above. This indicated the need to fundamentally research on the multi-axial generalization 

method. Secondly, the calibrated equation (6) based on middle and high stress is not applicable to lower 

stress as the predicted creep curve is still showing high strain at failure. This reveals further supported that 

the result of the evolution of cavity damage is different between lower and high stress level, probably 

resulted from different nucleation and growth laws in the first place.   

 

6. Discussion 

1. The high Cr steels do suffer creep failure and the most significant contributor to its failure is due to the 

cavity nucleation, growth and coalesces. At this moment, there is a lack of precise understanding of them 

experimentally, particularly under different stress levels and states, for the developing and/or validating 

the nucleation and growth models. 

2. The high Cr steel components will work under lower stress regime where the creep deformation and the 

creep damage evolution rules may differ from that under the middle and high stress level. It was noted 

that the sum of linear and power-law creep rate equation and the multiple mechanisms approach offer 

http://www.sciencedirect.com/science/article/pii/S0029549303002838#gr2
http://www.sciencedirect.com/science/article/pii/S0029549303002838#gr2


apparent potential for a wider ranging of stress. The multiple deformation and damage mechanisms 

approach [15] offers theoretically advantage.  

3. Dyson’s framework is open and it is up to user to select to right elementary damage mechanisms to 

compose a suitable one. However, as it is primarily a uniaxial version, how to generalize it into multi-

axial version is not straight forward and prone to suffering the pitfall identified in Hayhurst’s approach.   

However, conceptually, it has been limited to strain induced damage. The stress controlled damage 

evolution kinetic rules and laws may be included in future. The need is even more evident when 

considering the generalization for multi-axial version. 

In fact, it is reported that the cavity is continually nucleated and grow and the nucleation and growth may 

be described differently depending on the level of stress and influenced by the stress sate. At this moment, 

only multiple creep failure models have clearly offered that capability. 

4. There is no sound multi-axial generalization method yet. The difficulty and complexity here roots at the 

coupling between creep damage and creep deformation, as well as the damage evolution itself, under the 

multi-axial states of stress. Furthermore, the hydrostatic stress do cause creep damage, but may not cause 

creep devitoric deformation. 

 

Future direction of research work is outlined as: 

1) To better understand precisely the nucleation, growth and rupture (both for parent material and welds) 

under different stress levels and states. 

In terms of nucleation , there are obvious tasks, e.g. the relationship between the formation and growth of 

Laves and the nucleation of cavity, and the influence of states of stress.  

This set of information is the foundation for validation of any kinetic models for nucleation, growth and 

coalescence. 

2) To validate or revise the creep cavity damage evolution model.  

3) To develop and apply the generalization method and to conduct vigorous validation. This point has 

been addressed before by Xu [30-32]. 
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