Barlow, Roger, Bungau, Adriana, Kolano, Anna, Adelmann, A., Alonso, J.R., Barletta, W.A., Calanna, A., Campo, D., Conrad, J.M., Calabretta, L., Méot, F., Owen, H.L. and Shaevitz, M.H. (2013) High Power Cyclotrons for the Neutrino Experiments DAEδALUS and IsoDAR. In: Proceedings of the 4th International Particle Accelerator Conference. IPAC 2013 . JACoW, Shanghai, China, pp. 446-448. ISBN 978-3-95450-122-9
Abstract

DAEδALUS (Decay At rest Experiment for δcp At a Laboratory for Underground Science) has been proposed to measure the value of the CP violating phase delta through the oscillation of low energy muon anti-neutrinos to electron antineutrinos. With a single large detector, three accelerators at different distances enable the oscillation to be measured with sufficient accuracy. We have proposed the superconducting multi-megawatt DAEδALUS Supercinducting Ring Cyclotron (DSRC) as the means of producing the 800 MeV 12 mA protons required, through the acceleration of H2+, ions with highly efficient stripping extraction. The DSRC comprises twin ion sources and injector cyclotrons, followed by a booster. The injector cyclotron can also be used for a separate experiment, IsoDAR (Isotope Decay At Rest) in which low energy protons produce Lithium 8, and thus a very pure electron antineutrino source which can be used to measure, or rule out, short range oscillation to a sterile neutrino. We describe recent developments in the designs of the injector and the booster, and the prospects for the two experiments.

Information
Library
Documents
[img]
bUNGAUHIGHmopfi071.pdf - Published Version
Available under License Creative Commons Attribution.

Download (652kB)
Statistics

Downloads

Downloads per month over past year

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email