This study evaluates the potential application of micellar liquid chromatography (MLC) to predict skin permeation with a series of model compounds. MLC has previously been found to be useful in the prediction of partition coefficient values (logP) for pharmaceutical compounds, yet has not been incorporated in skin permeability models prior to this work. This article provides statistically supported data that this technique enhances the ability to predict the permeability of similar drugs through the skin (Kp). The replacement of a traditional physicochemical parameter, namely the octanol-water partition coefficient (logPow) with a chromatographically determined value (logPmw), results in a quantitative partition-permeability relationship that is robust to variation. MLC offers many benefits compared with the traditional techniques employed to obtain logP values.