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Abstract 

Biopharmaceutical production of protein for therapeutic use is an expanding practice for 

treatment of numerous diseases in medicine. However the full benefits of this technique 

have not yet been fully realised due to a number of barriers. The largest of these barriers 

is that of protein aggregation, where mis-folded protein monomers self associate to form 

non functional macromolecules; aggregates. Further understanding of protein 

aggregation may lead to an improvement in the effectiveness and availability of these 

therapeutic treatments. Here is presented work which utilises novel or under-used 

techniques to elucidate information on the structure of protein aggregates, their 

formation mechanisms and the kinetics and thermodynamics of their growth. 

Results presented in the chapter on aggregate nucleation indicate that the nucleation 

stage of aggregation in bovine serum albumin has a temperature dependant mechanism, 

which in the middle of the temperature range follow mechanisms for stable nuclei 

population postulated in the literature. However at the extremes of this range, it appears 

that the nucleation mechanisms deviate from this and that there may be clustering of 

highly reactive nuclei at high temperatures, and continual formation of aggregate nuclei 

at low temperatures. Possible explanations for this behaviour are discussed. 

Analysis presented on the growth of particulate aggregates show that the model of 

monomer addition to the aggregate nuclei appears to be a fitting description of the 

growth process, which is generic across proteins. Furthermore the detailed analysis from 

an ultra violet light scattering spectroscopy technique provides a numerical method for 

examining the efficiency of aggregate preventing additives, and also illustrates the 

mechanism by which the additives prevent aggregation through stabilising the native 

state. 
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Finally; results presented in the chapter on aggregation during refolding indicate the use 

of fluorescence anisotropy to monitor the molten globule state during refolding of 

proteins. Most strikingly, it is shown there is an obvious relationship between the 

mobility period of the protein and its propensity to aggregate. It is also shown that the 

presence of salt and urea can be utilised to moderate the presence of the molten globule 

state, and therefore the resultant aggregation. 
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Chapter 1 : Introduction 

Biopharmaceutical production of protein for therapeutic use is an expanding practice for 

treatment of numerous diseases in medicine. Such methods are common in the treatment 

of diabetes; where recombinant insulin is used for treatment. However the full benefits 

of this technique have not yet been fully realised in areas such as monoclonal antibody, 

and vaccine antigen production, as there are a number of barriers present to commercial 

production. The largest of these barriers is that of protein aggregation, where mis-folded 

protein monomers self associate to form non functional macromolecules; aggregates. 

The presence of these aggregates not only represents a loss of yield (and the cost and 

further processing in removing them), but their presence in therapeutics can trigger an 

immunogenetic response; producing anti-drug antibodies which break down the drug 

and render the treatment ineffective. Further understanding of protein aggregation may 

lead to an improvement in the effectiveness and availability of these therapeutic 

treatments. 

The current literature regarding protein aggregation describes a number of different 

aggregate morphologies and their structures; it also postulates multiple mechanisms for 

their creation and propagation. However, the literature on protein aggregation is not 

complete, and a number of areas merit further investigation including some structural 

aspects of proteins including kinetics and thermodynamics of the aggregation systems. 

This body of work utilises novel or under-used techniques to elucidate information on 

the structure of protein aggregates, their formation mechanisms and the kinetics and 

thermodynamics of their growth. The information provided by these techniques are 

compared and contrasted with more frequently used techniques in order to validate the 

conclusions made.  
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Separate chapters focus on the class of aggregate with a spherical morphology; the 

particulate aggregate, where two aspects of its formation are examined. The nucleation 

of particulate aggregates is examined using small angle neutron scattering to probe the 

system on a nanometer scale and to understand the mechanisms of its formation and its 

temperature dependant nature. Complementing this, a second chapter details the growth 

of these nuclei using ultra violet light scattering spectroscopy, which can be used to give 

numerical values regarding the kinetics and thermodynamics of the aggregate growth. 

Providing numerical values for aggregation, this technique can then be used to test the 

effectiveness of aggregate preventing additive and elucidate the mechanism through 

which prevention occurs. 

Work here also focuses on the mobility of proteins during refolding, using fluorescence 

anisotropy; a rarely utilised technique in relation to aggregation and attempts to 

understand what relationship may exist, if any between a proteins mobility and its 

propensity to aggregate. 

The following chapters detail the body of work which uses these techniques to 

contribute to the literature of protein aggregation and examines methods of reducing its 

occurrence. 
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Chapter 2 : Literature Review 
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2.1 Protein Structure 

There is a large amount of literature that covers the topic of protein structure [1, 2]. 

Proteins are responsible for the vast array of biological functions seen in all organisms. 

Functions range from large scale enzymatic action and breakdown of substrates, to 

delicate and complex environmental regulation. This range of actions is performed by 

molecules which consist of a very similar basic structure, but slight variances in this 

structure confer large differences in their function.   

Proteins are long polypeptide molecules that consist of a chain of multiple amino acids. 

This number of amino acids can vary between tens; in the case of peptides, to tens of 

thousands; the largest being the muscle protein Titin at over 34000 residues [3]. The 

amino acids themselves contain an identical backbone structure consisting of one amino 

and one carboxy terminal, linked by a carbon (Error! Reference source not found.). 

Error! Reference source not found.Attached to this carbon group is the side (R) 

group, which varies between different amino acids, to provide each with an individual 

structure. It is these amino acids, and the sequence in which they are combined, which 

determines the structure, and thus the function of the protein. 

 

Figure 2.1 A typical amino acid structure. R represents the functional group of the amino acid. 
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2.1.1 Primary Structure 

There are 21 amino acids present in eukaryotes. Each of these amino acids consists of a 

backbone structure which is identical to all amino acids, and the variable R group. The 

different R groups confer different properties to the amino acid. These properties 

include; hydrophobicity, hydrophilicity, the ability to pack tightly and disulphide bridge 

forming capability. The full list of amino acids are pictured (Table 2.1) are arranged into 

groups according to some of these properties. The primary structure of a protein 

corresponds to the order in which these amino acids are present. 

The amino acid chain is created by linkage of the individual amino acids through 

formation of a peptide bond between the amino and carboxy groups on neighbouring 

amino acids (Figure 2.2). This is a planar bond; due to the partial double bond 

properties, which allows for the variable R groups to protrude from the side of the 

amino acid, allowing them opportunity to interact with similar R groups at distant 

locales on the peptide chain. 
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Table 2.1:Amino acid structures grouped by properties. 

Hydrophobic: 

Alanine Glycine Isoleucine Leucine Methionine 

 

   

 

Phenylalanine Proline Tryptophan Valine  

 
 

  

 

 



28 

 

 

Hydrophilic 

Asparagine Cysteine Glutamine Serine Threonine 

 
   

 

 

Selenocysteine 

 

 Tyrosine 
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Negatively Charged Positively Charged 

Aspartic Acid Glutamic Acid Lysine Arginine Histidine 

 

   
 

 

Figure 2.2: Amino acid linkage. The peptide bond is highlighted in red. 
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2.1.2 Secondary Structure 

In addition to R group interactions, the protein chain also has possibility for hydrogen 

bonding. The two moieties either side of the peptide bond are capable of forming 

hydrogen bonds in both directions (Figure 2.3). Although these are relatively weak 

interactions, a large number of these non-covalent bonds can confer strength to the 

protein structure. Instances of such large scale hydrogen bonding frameworks are α-

helices and β-sheets, which are prime examples of protein secondary structures .The α-

helix is characterised by a protein chain completing a full 360 
o
 spiral every 3.6 amino 

acid residues (Figure 2.3). This is the most common helical structure and forms a right 

handed turn. Helices can range in size from under 10 residues to over 50. 

This structure commands a large degree of flexibility from the constituent amino acids, 

as the prerequisite backbone torsion angles between the neighbouring carbons are very 

specific, which only certain combinations of residues are capable of filling. Amino acids 

that are flexible such as glycine and alanine are often present in α-helices, where as 

proline would only ever be present at the terminus of the structure. Hydrogen bonding 

occurs between every 4
th

 amino acid, which are oriented so that the side R groups face 

outward, as inward pointing side groups would be unlikely due to steric hindrance. 

Across the length of the α-helix, there will be multiple side chain groups pointing out of 

the same side. This allows for a large scale area, or side, of the protein structure to have 

a property such as hydrophobicity if all corresponding residues carry the same 

characteristic. This then allows for the whole region of the helix itself to have this 

property, enabling it to fulfil structural duties on a larger scale such as embedding in a 

membrane.  
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A second most common example of the secondary structure of proteins is the β-sheet 

Figure 2.4, Figure 2.5).  This consists of a helix-like strand of amino acids, with two 

residues for every turn. This allows for the residues to hydrogen bond to a second 

section of the protein chain that is running parallel to it. This second chain is also 

capable of hydrogen bonding to a third, and this behaviour can continue, with 2 to over 

10 strands linked together in order to form a sheet like structure. There are two varieties 

of β-sheet, parallel and antiparallel; these names describe the orientations of the 

neighbouring strands; parallel sheets have identical atoms opposite each other (Figure 

2.4), whilst in the antiparallel strands, the atoms opposite each other are non identical 

(Figure 2.5). Due to the orientations of the bonds, the parallel β-sheets are also less 

stable than their antiparallel counterparts.  Similarly to the α-helices, there are some 

amino acids which are more commonly found in β-sheets than others. Prime examples 

of these amino acids in β-sheets include isoleucine, tyrosine and valine. 

Figure 2.3: The structure of the α-helix. Adapted from [1]. 

“R” Side group

“R” Side group

3.6Å per 

360O turn.

Hydrogen bonding 

between N and O
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Figure 2.4: Parallel β-sheet structure. Atoms are colour coded: Carbon – black, Nitrogen – blue, Oxygen – pink, 

Hydrogen - white. Adapted from [1]. 

 

Figure 2.5:Antiparallel β-sheet structure. Carbon – black, Nitrogen – blue, Oxygen – pink, Hydrogen- white. Adapted 

from [1] 

Although considered a sheet like structure, large β-sheets incorporate a right handed 

turn which is caused by the presence of the R group side groups. In order for these 

functional groups to achieve their most energetically favourable positions, the backbone 

must contort, resulting in the turn. This property allows them to form large β-barrel 

structures. An example of such a secondary structure feature can be seen in green 

Hydrogen bonding 

between N and O

“R” side groups

Hydrogen bonding 

between N and O

“R” Side groups
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fluorescent protein (Figure 2.6). Here the beta sheet structure forms a protective barrel 

which allows the chromophore within the cylinder to fluoresce. Similarly to α-helices, 

the protruding side groups on β-barrels can confer properties such as hydrophobicity to 

the structure. Such a property would enable the β-barrel to be anchored into a membrane 

in order to form a transmembrane pore, which is a common utilisation of the β-barrel. 

 

Figure 2.6: β-barrel structure of green fluorescent protein, protein data bank code: 1GFL [1]. 

These make up roughly 50 % of the total structure elements. Other elements include 310-

helix, π-helix and the β-turn. These structural elements perform different roles within 

the protein structure, but are in essence very similar chemically. It is the order in which 

these chemical groups are arranged which determine these varying structures, and it is 

these structures present within a protein that contributes to its function. 

  



34 

 

2.1.3 Tertiary and Quaternary Structure 

The tertiary structure represents the arrangements of the secondary structural elements 

in three dimensional space. These secondary structural elements may be brought 

together by hydrophobic nature of their respective surface residues, or long ranging 

disulphide bonds through distant cysteine residues. The interactions between the thiol 

moieties (Table 2.1) on the amino acid R groups can be long ranging. They are more 

prevalent in larger proteins, and are responsible for bringing structures from distant 

parts of a protein molecule closer together. An example of this is lysozyme (Figure 2.7) 

where both α-helices and β-sheets contain hydrophobic residues which congregate at the 

proteins core. In addition to this, there exists three disulphide bonds which bind the α-

helices to the outlying polypeptide chain. 

 

Figure 2.7: Structure of lysozyme from protein data bank code 2LYZ [1]. 

 

Quaternary structure is similar to tertiary in how the structural elements interact, but 

differs by the fact that quaternary structure is an interaction between separate 
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polypeptide chains to create the overall protein structure. This may be the assembly of a 

number of identical sub units to create a tetramer, or the association of separate protein 

subunits to create the overall globular protein. An example of such quaternary structure 

is bacteriorhodopsin, where 3 α-helical subunits associate to form the trans-membrane 

protein (Figure 2.8). The arrangement of the structure of the protein, which is primarily 

determined by the proteins amino acid sequence, enables it to perform its function as a 

protein pump which fuels ATP synthesis in bacteria. 

 

Figure 2.8: Structure of bacteriorhodopsin containing 3 subunits. Protein data bank code 1FBB [1] . 

.  
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2.2 Protein Folding 

The general processes and mechanisms behind protein folding are well understood [2, 

3]. As the previous section has shown, a protein’s structure depends on the primary 

sequence of amino acids present within the chains. As such the primary sequence is also 

responsible for the folding of the protein to achieve the final protein structure. 

Understanding of the topic of protein folding has wide ranging implications from 

understanding the nature of diseases to further improving therapeutic protein 

production. Many in vitro experiments have been conducted in order to better 

understand the folding mechanisms of individual protein types and to improve 

understanding of their general formation [4-6].  

2.2.1 Protein Folding in vivo 

For a protein to fold properly as it emerges from the ribosome it must form a native, 

functional state. This native state essentially requires all the backbone torsion angles of 

the residues within the protein chain to achieve their individual set values. If this were 

to occur by the protein randomly adopting different states until it reached the native 

state, the time for a protein to fold would be impossibly large, even given the most 

generous estimations for adopting one state. This is known as Levinthal’s paradox [7].  

The specificity for protein structure is held within the primary structure; the amino acid 

sequence. This folding is driven through conformational entropy, the presence of 

hydrophobic and charged residues force the collapse of the protein structure in order to 

exclude water and achieve more energetically favourable states. The native state of the 

protein has a lower free energy than the unfolded state, and this is achieved through 

burying the hydrophobic residues within the protein core, and presenting hydrophilic R 

groups to the surface [2]. 
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The hydrophobic driving force can be described in terms of entropy. The unfolded 

protein presents a large amount of hydrophobic residues to the surrounding water 

molecules. This does not allow opportunities for hydrogen bonding, and so the water 

molecules have a low degree of freedom; they are ordered and have low entropy. The 

folded protein presents only hydrophilic residues, these are polar and allow for 

hydrogen bonding to take place with the surrounding water molecules [8]. This enables 

the water to have a higher degree of freedom and thus higher entropy [9]. 

There also exists some opposing entropic forces to this folding, as the folded protein 

itself is more ordered than the unfolded protein. This leads to a negative change in 

entropy during folding. However, this entropy change is minute compared with the vast 

positive entropy change seen in from the exclusion of water from the proteins core, 

hence folding occurs [9]. 

In vivo, protein folding is assisted by molecules called chaperones [10]. Chaperones 

such as the hsp70 proteins are small molecules which bind to the unfolded hydrophobic 

areas of protein as it emerges from the ribosome [11].  This binding prevents regions of 

the protein from associating with themselves to form a non-native state before the full 

sequence of the peptide chain is produced. Additionally, the chaperone binds to, and 

releases, hydrophobic peptide regions which cause local unfolding of the protein, 

allowing it to overcome kinetic obstacles to achieve the native state. There also exist 

larger chaperones, known as hsp60-like proteins [12], which are larger and are used to 

facilitate the folding of mis-folded proteins by enveloping their entire structure. This 

prevents interactions with other proteins which may lead to aggregation, whilst also 

binding and releasing the protein until the natively folded structure is formed [13]. 
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The structural formation described here occurs on the millisecond time scale [14], and 

as a result the protein is in a near-native state [15]. Following this, the protein may 

undergo more time consuming modifications in order to reach its native state. An 

example of this involves the packing of side chains [16]; the near-native protein exists 

in a molten globule state, where secondary structure is formed, but full tertiary structure 

is not. The remaining exposed side chains pack into energetically favourable positions 

in order to complete the tertiary structure [17]. This process occurs over a larger 

timescale than the first folding stages and can take some seconds to complete folding. A 

further example of large time scale structural modifications is proline isomerisation. A 

small percentage of proline residues exist in a cis orientation, whereas the majority of 

the amino acids in the peptide chain exist in the trans form. In order to amend this for 

the protein to form its native state, geometric isomerisation is performed by an peptidyl-

prolyl-isomerase enzyme [18]. This is a process that occurs in the late stage of protein 

folding, much like the formation of disulphide bridges that finalises the native structure 

of the protein. These processes finalise the structure of the protein enabling its 

functionality. 

2.2.2 The Molten Globule State 

The general identifying features of the molten globule structure of a protein have been 

stated as follows: a moderately compact structure (much more so than the unfolded 

state, but less compact that the native), and mobile protein side chains in partially 

structured conformations [19]. The molten globule state of proteins proves difficult to 

characterise in its entirety, due to its changing structure and short existence period. 

There has been much research into the molten globule due to its important role in 

protein folding and the implications this holds for many research areas into protein 

structure and function [20]. The molten globule state can be identified as a statistically 



39 

 

sufficient number of the protein population which are in a stable state, as opposed to 

there being a large number of very unstable intermediates [21]. 

Elsewhere, from the researcher who coined the term, it is described as a compactness 

and presence of secondary structure, with no rigid tertiary structure and a little expanded 

in comparison to the native state [22]. The overall concept of the molten globule state is 

one whose secondary structure content varies little from the native state [23], but whose 

tertiary structure is fluid as the side chain positions are mobile [24]. 

In order to better illustrate the careful energy barriers which the molten globule state, 

and indeed the native state occupies, protein energy basin diagrams have been adopted. 

The energy basin illustrates protein folding in the form of a landscape, where instead of 

a small number of intermediates present between unfolded and native, there are a 

multitude of conformations that can be adopted in the path to the native state [25]. The 

energy basin diagrams show the double stage folding process and illustrate the energy 

required to overcome undesirable non-native states of the protein [26].   

Figure 2.9: The protein folding funnel. Based on [9]. 
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The initial hydrophobic collapse of the unfolded protein is represented by the smooth 

slope with a downward gradient. This is the first stage within Figure 2.9, where the 

intermediate states are more stable than the unfolded state. This has been proved in both 

acid unfolding experiments [27], and computer simulations [28]. The second stage 

represented is the molten globule state, with multiple metastable states that have energy 

barriers that must be overcome to reach the native, most energetically favourable state. 

In vivo this stage is assisted by chaperones. 

Without sufficient energy, the protein will remain trapped in one of these local minima 

in a misfolded, or non-native state. Within the cell, presence of these misfolded proteins 

can carry out alternate physiological actions than their intended function, such as 

cytochrome C; where a misfolded conformation of the protein is capable of causing 

apoptosis in the cell [29]. More serious implications of the presence of non-native 

proteins within the cell include the formation of amyloid fibrils, which are responsible 

for diseases such as Alzheimer’s, Parkinson’s and Creutzfeldt–Jakob disease (CJD). 

This form of protein aggregate has been shown to form from molten globule 

intermediates [30], even to the extent where there is a large change in the secondary 

structure content of a protein from the native state [31] and these proteins have been 

shown capable of inducing a change to the non-native state from neighbouring proteins, 

increasing the proliferation of the non-native population [32]. This illustrates the 

importance of work into the molten globule state and protein folding pathways, as 

research shows that the native state has competition from protein aggregates as the most 

thermodynamically favourable minima on the folding landscape [33, 34]. The topic of 

protein aggregation will be discussed in detail further in this chapter. 
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2.2.3 In vitro protein folding 

The vast majority of in vitro folding research focuses on recombinant proteins. 

Procedures for recombinant production of proteins focus on two areas: obtaining the 

highest yield of native protein structure and ensuring this sample is solely the native 

protein. In most cases the end product is the goal, rather than understanding the 

mechanisms that help achieve it. Recombinant protein produced from bacterial cells is 

in such a high concentration that it forms large aggregated masses, known as inclusion 

bodies [35].  These bodies are unfolded using high levels of denaturant and refolded by 

dilution or dialysis in order to achieve the native state [36]. Additives may be added to 

the refolding conditions in order to assist the protein in achieving the native state, such 

as metal ions around which the protein may fold. These conditions will differ depending 

on the protein. The refolded sample will not consist solely of the native state protein, 

and some aggregates will remain, therefore separation procedures such as ion exchange 

and size exclusion chromatography are required in order to achieve a sample of protein 

monomer [37]. Native structure determination can be performed by techniques such as 

circular dichroism, NMR and protein crystallography in order to determine that the 

native state of the protein has been formed [38, 39]. 
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2.2.4 Protein Folding Research 

Early protein folding research concentrated on some simple model systems. Proteins 

such as lysozyme and α-lactalbumin were often used in such experiments as they were 

able to be purified in large quantities for experimentation, and are simple α-helical 

proteins, which allowed the kinetics of their folding and secondary structure formation 

to be investigated with ease [40]. Many of the protein folding properties discussed 

previously in this chapter were elucidated from work on these proteins [41].  

Additionally the small size of the proteins allowed them to be studied without the need 

for multiple kinetics rates for separate domain folding [42]. These model systems have 

been used in more recent work for probing the molten globule state, in the case of 

lysozyme its molten globule state has been shown to have a low affinity for calcium 

metal ions [43] which may affect its propensity to aggregate. A further example of these 

well characterised model systems is β-lactoglobulin, with similar characteristics to 

lysozyme and α-lactalbumin, the timescale of hydrophobic collapse has been elucidated 

for this protein [44]. Here the authors show that it takes only 100ms for the protein to 

collapse to 1.1 times its native size, and similar times are assumed for the timescale of 

folding for other model proteins. Further work on protein folding kinetics has extended 

to the use of computer simulations to investigate what factors contribute to the timescale 

of protein folding, such as the impact of the sequence properties on the speed of protein 

folding [45]. The history and ease of use of these proteins make them ideal for further 

studies on generic properties in the protein folding process. 

In addition to assigning a timescale to the process of protein folding, much work has 

been performed to elucidate the mechanisms through which proteins fold and unfold. 

Examples include using both extreme temperature and pH in order to induce a molten 

globule like state from proteins in order to study the molten globule state [46]. The 
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rapid nature of the native folding process is too quick for the majority of characterising 

techniques, therefore techniques involving sub zero temperatures have been used to 

slow down the process of protein folding to better understand the mechanism by which 

β-lactoglobulin folds [47]. Complimentary to this, unfolding studies have been 

performed to sequentially break the bonds forming the structure of the native protein in 

the assumption that this action is the reverse of the mechanism of protein folding. 

Increasing concentrations of denaturant are added to the protein, and the binding 

energies of the protein backbone are elucidated [48] which covers a larger timescale 

than the folding process. This technique has also been used alongside size exclusion 

chromatography in order to quantify the sizes of protein molecules in multiple 

disordered molten globule states [49]. 

Most recent work in the area of protein folding has centred on the role protein folding 

plays in the formation of protein aggregate formation. It has been shown that the folding 

of lysozyme in a crowded environment results in the formation of lysozyme aggregates 

which lack the enzymatic activity of the native state [50]. Experimental methods have 

also been developed in order to monitor the extent of the aggregation during folding 

using fluorescent probes [51], and also into methods which can be used to reverse the 

aggregation process resulting from folding such as the use of denaturants and high 

pressure to return the protein to the native state [52], which has been shown possible for 

aggregates of a number of different proteins. A large focus of the work centres on 

prevention of formation of aggregates. If mild concentrations of denaturant are present 

within the refolding environment, the extent of aggregation is lower than if there is no 

denaturant present. This is thought to occur by stabilising the aggregation prone molten 

globule state by the denaturant [53]. Although fairly comprehensive, there is little in the 

literature which relates the mobility of the molten globule state to the likelihood of 
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aggregation, especially involving real time studies which are more informative on real 

life processes. 

A large amount of work on preventing aggregation involves studying the effect 

chaperones have on protein folding, as in the cell they are known to facilitate this 

process [54]. Work has been performed to look at the interactions between protein (α-

lactalbumin) and chaperone (GroEL) [55] and how they bind. Also investigating the 

effect of ATP dependence between a chaperone and protein [56], which shows how 

cycles of ATP binding are responsible for the facilitated folding of α-lactalbumin. 

Further to this, additional studies have monitored the states of the protein inside the 

chaperone, in order to understand the conformational changes that the protein undergoes 

whilst in contact with the chaperone [57], the chaperone appears to be responsible for 

binding to aggregation prone regions of the protein, and releasing them when the 

environment is suitable enough for them to fold into the stable native state in order to 

prevent aggregation [58]. Understanding the role chaperones play and their interactions 

with the various states of the protein can elucidate routes through which proteins 

interact to aggregate and therefore offer a route to prevention of aggregation. 

2.2.5 Techniques for Studying Protein Folding 

One of the most elementary techniques used to study the folding of proteins is 

tryptophan fluorescence. Tryptophan amino acid residues fluoresce under ultra violet 

light when they are exposed, such as when the protein is unfolded, but when the protein 

has collapsed and the tryptophan residues are buried and there is a significant difference 

in the fluorescence signal of the residue. These properties of tryptophan fluorescence 

have long been exploited as a method for determining the extent of protein folding [59]. 

Tryptophan fluorescence is also used extensively in the characterisation of protein 
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folding pathways, prime examples include α-lactalbumin and lysozme folding [60]. 

External effects on the extent of protein folding have also been probed using this 

technique, such as the effects of temperature and pH [46], or the effect of additives such 

as urea to the protein environment [53]. On its own, this technique is very qualitative 

and is often run to complement other techniques, such as those mentioned below [46]. 

Circular dichroism is a technique which allows determination of the secondary structure 

of a protein [40]. In terms of studying protein folding, research has attempted to study 

the sequences of secondary structure formation in specific proteins [61]. This technique 

however is not as capable at performing  real time dynamic experiments, and requires 

the stages of folding to be slowed down, such as step-wise unfolding processes [62], or 

alternatively performing the refolding experiments at sub zero temperatures [47]. 

Examples of the techniques used include secondary structure characterisation of β-

lactoglobulin [63] and cytochrome C [64], whilst more recently it has been used in 

conformational studies of recombinant therapeutic proteins [65]. Despite these 

restrictions, circular dichroism is an invaluable tool for understanding the state of 

protein secondary structure, and is often used in tandem with other techniques to verify 

the quality of the protein fold [60]. Additionally, synchrotron radiation circular 

dichroism is an improved technique which allows for further structural features to be 

characterised, and is capable of providing dynamic structural information [66]. 

A third commonly used method for monitoring protein folding is the use of 1-

anilinonaphthalene-8-sulfonic acid (ANS) in folding experiments. This chemical binds 

to available hydrophobic regions on a protein and fluoresces. As the protein collapses, 

the ANS becomes unbound, and the fluorescence is lost. These features have been 

exploited in order to monitor the hydrophobic collapse of protein folding systems [62]. 

This method is ideal for looking at dynamic folding of a protein, and has often been 
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used to elucidate the molten globule state [53]. In addition to its more common use, 

ANS has also been shown to be capable of binding to protein aggregates formed from 

folding experiments, to give an indication of the aggregate quantity being produced 

[51].  Whilst useful in characterising hydrophobic collapse, the absence of ANS 

fluorescence does not indicate the absence of folding, and requires complimentary 

techniques to provide a full picture of folding. 

In addition to these common techniques listed above, less orthodox methods have been 

used to complement these works. In order to better understand the contribution of 

different residues to a proteins fold, proteolysis experiments have been carried out 

where specific residues are cleaved from the protein, and the kinetics of the novel 

protein is then compared to that of the native [67]. Similar experiments have been 

undertaken where mutagenesis is used; selected residues within a protein are mutated 

and their contribution to the fold measured [68]. In addition, NMR has also been shown 

to be a capable tool for monitoring the structure of both the protein and its molten 

globule counterpart [46, 60]. Some techniques which are capable of monitoring protein 

monomer size have also been utilised to observe the hydrophobic collapse of the 

protein. Examples include small angle X-ray scattering [44], SDS page [61] and size 

exclusion chromatography has also been used for monitoring the unfolding states of 

proteins [49] where the timeframe of the collapse can be characterised by the protein 

hydration radius decreasing. Attempts have also been made at predicting protein folding 

kinetics and timescales through the use of computer simulations [45]. Finally, an 

emerging technique for monitoring the process of protein folding is single molecule 

Förster resonance energy transfer (FRET). As it is examining the fluorescence of just a 

single molecule, instead of the average of a whole population of protein folds, FRET 

promises to provide insight into exact timescales for protein folding processes [69], and 
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has been utilised to measure more complex systems such as interactions with 

chaperones [58]. Whilst the characterisation of protein folding offered by these 

techniques is vast, none characterise the extent of mobility in the molten globule state, 

or how this relates to the aggregation proneness of the protein molecule.  

2.2.6 Unfolding Methods 

Protein folding experiments in general require the protein to become unfolded in order 

to be able to emulate the folding process. Some of the most common methods include 

the use of denaturing additives which are added in a concentrated amount to unfold the 

protein and then diluted in order to initiate folding [48]. Acids have been known to be 

used to denature a protein [55]. The high charge present at low pH acts to destabilise 

any intra protein charge-charge interactions, as such the unfolded state becomes more 

stable at low pH than the native [70]. However this conformational behaviour is not 

present in all proteins [71], especially in those whose native environment is acidic. 

Denaturants most commonly used are urea [44], and guanidine hydrochloride [43]. High 

concentrations of these molecules perturb the protein structure through interaction with 

hydrogen bonding groups which results in a decrease of the proteins entropy and 

enthalpy [72]. Urea at high concentrations is capable of maintaining the unfolded 

protein through direct interaction with the polar residues within the protein and 

additionally through reducing the hydrophobic effect the surrounding water exerts on 

the protein residues [73]. Whilst these are efficient at unfolding the protein, by diluting 

the solution there will always remain a residual amount of denaturant in solution.  

In contrast to this, temperature has also been used to denature proteins either to study 

the strength of bonds [74], or in order to then initiate folding [46]. By providing the 

energy to overcome hydrogen bonding within the protein, a temperature jump to above 
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the protein’s melting temperature will result in complete unfolding of the protein where 

it may adopt multiple intermediate conformations in the pathway to the unfolded state 

[75]. However this method may also initiate aggregation, where inter-protein 

interactions will contribute to any energetic characteristics obtained from these studies. 

2.3 Protein Aggregation 

Protein aggregation occurs when a protein is subjected to unfavourable conditions 

(generally non-native), which cause structural deformation in the protein structure. This 

structural change can lead to the molecule being prone to self association, where it may 

interact with a similarly perturbed protein molecule to form an aggregate, generally 

resulting in loss of function of the two protein monomers [76]. The protein aggregate 

may then act as a nucleation site for aggregation, interacting with additional structurally 

perturbed monomers to form a larger aggregate. 

Protein aggregates are found in a number of shapes; fibrous protein aggregates are 

commonly seen in neurogenerative diseases such as Creutzfeld-Jakob and Alzheimer’s 

diseases [77]. Amorphous aggregates are a second class of aggregate which are most 

notably present in inclusion bodies in cells where a large concentration of non-natively 

folded protein occupies a small volume [78] and particulate aggregates which are 

spherical and have been formed in vitro through thermal aggregation in conditions near 

the isoelectric point of the protein [79]. 

As can be seen in the variety of structures aggregates may form, the study of protein 

aggregation carries importance in many areas [80]. Protein aggregates have been shown 

to be precursors to a number of neurodegenerative and prion diseases [81]; where 

understanding the formation of these aggregates may elucidate a route to treatment. 

Prevention of protein aggregate formation also plays a pivotal role in the production of 
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biopharmaceuticals, where proteins are produced in such quantities that they form 

aggregates in the inclusion bodies. These aggregates are non functional and therefore 

represent a loss in yield during production [82]. In addition, any presence of protein 

aggregates in therapeutics have been shown to cause immunogenicity, where the 

presence of the aggregate can cause the body to raise antibodies to the natively folded 

protein, nullifying any therapeutic effect [83]. 

2.3.1 Thermal Unfolding 

Temperature dependant unfolding of proteins occurs when a protein in its native state is 

subjected to a sufficient temperature increase to overcome the thermodynamic stability 

of the protein. This process is endothermic as energy input is necessary for overcoming 

barriers to unfolding such as disrupting salt bridges and breaking hydrogen bonds that 

maintain the proteins tertiary structure. As the temperature of the protein increases, it is 

seen that the strength of hydrogen bonds and hydrophobic interactions gradually 

decreases [21]. The strength of these bonds continues to weaken and after increased 

heating to above the melting temperature the protein is denatured. This causes a loss of 

function and tertiary structure, resulting from the protein becoming partially unfolded.  

The thermal unfolding of proteins has been seen to begin with the loss of tertiary 

structure dependent contacts [84], forming an intermediate, partially unfolded state, 

although not mentioned in the quoted paper, it bears resemblance to the molten globule 

state. The order of this unfolding may depend on unfolding temperature and the 

temperature at which simultaneous breakage of all structural bonds occurs; tΩ. [74]. In 

this paper, Cieplak et al. suggest from a molecular dynamic model, that below tΩ, 

protein unfolding occurs similar to the reverse order of folding, which appears to agree 

with the findings from Li et al. [84] above, where loss of tertiary structure is the first 
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step in thermal perturbation of the protein. Additionally, this seems consistent with the 

findings that the molten globule state is a prominent phase in protein folding [22]. 

Above tΩ however, the bond breakages within a protein are seen to occur at once, 

showing no preferential order of unfolding [74]. This more comprehensive denaturation 

would include removal of the large number of weak intermolecular interactions that are 

responsible for the secondary structure and hydrophobic packing. These bonds 

contribute to the stability of the protein when in its molten globule state, so therefore 

this state will not be present when unfolding occurs above tΩ. It would appear this 

characteristic is important, especially when considering refolding of the protein, as it is 

seen that protein denaturation can be reversible, but it depends on the types of the bonds 

which are broken [21], where peptide chain hydrolysis is an irreversible process. 

The thermal unfolding of a protein, including the strength of bonding during its 

unfolding transitions, can be characterised by measuring the change in specific heat 

capacity; ∆Cp [85]. The heat capacity indicates the amount of energy required to 

increase the temperature of on mole of the protein by one degree. Specifically in protein 

unfolding measurements; this indicates the amount of heat energy required to break the 

bonds within the protein. The larger this value, the more highly structured and stable the 

protein is likely to be. This value is seen to be a highly positive change during each 

stage of protein unfolding [21]. This is relative to the high number of bonds broken, 

including many of the weak secondary structure interactions that are an inherent feature 

of the structure of the proteins intermediate states. As the protein becomes unfolded, it 

exposes hydrophobic residues, which are responsible for the interactions leading protein 

aggregation [86] in addition to the higher flexibility in the backbone of the partly 

unfolded state.  
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A further method for characterising protein unfolding is through the calculation of the 

melting temperature; the temperature at which half of the protein within the sample has 

been unfolded.  A large melting temperature corresponds to a strong and highly stable 

conformation which is unlikely to unfold. Furthermore, multiple melting points can be 

extracted from this method, indicating the strengths of individual domains of the 

protein.  Papain was shown to have 2 transitions in melting temperature; this was 

interpreted to represent the two separate domains of papain melting to give the molten 

globule conformation [62]. Additionally, this can reveal the presence of any stable 

intermediates that are formed within the unfolding process through the presence of the 

multiple melting temperatures [86]. Both the heat capacity and the melting temperature 

are common properties of proteins measured commonly by differential scanning 

calorimetry [87]. However as previously noted, during protein heating aggregation may 

also occur, and separating the unfolding energies from the contribution from 

aggregation is not considered. 

2.3.2 Thermal Aggregation 

Protein aggregation is proposed to be a universal characteristic of polypeptide chains 

when the native interactions normally present in the protein are destabilised, leading to 

an increase in hydrophobic interactions occurring between protein molecules [88, 89]. It 

has been shown with bovine serum albumin that only a small change in tertiary 

structure is necessary before aggregation occurs [90]. The hydrophobic exposure from 

the loss in tertiary structure is responsible for the formation of aggregate nuclei, 

initiating aggregation [91]. These nuclei are capable of propagating aggregation by the 

conversion of additional perturbed protein monomers [92].  
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The aggregation stage consists of an exothermic irreversible process; which is 

dependent upon the initial rate of formation of aggregate nuclei to determine the 

kinetics of aggregation thereafter [93]. The aggregation process may not occur 

immediately after structural perturbation begins however [94].  

2.3.3 Aggregate Nucleation 

Aggregate nucleation takes place where the conformational change in a monomer 

results in the binding of a second or multiple monomers whose conformation also 

differs from that of the native state. It is the initiating step in the aggregation process, 

most relevantly shown in the thermal aggregation of α-chymotrypsin A [95] where it 

has been postulated that the presence of the non-native aggregate prone monomer may 

encourage conformational change within other native protein molecules as it provides a 

lower energy barrier for the conformational change to occur. This nuclei then acts as a 

seeding template from which further monomer addition is facilitated [96]. When a large 

number of nuclei are present throughout the sample, the aggregation process flourishes. 

An alternative method of action proposed is that there is already a low energy barrier 

between native monomer and the varying intermediate conformations. The rate of 

aggregate nuclei formation would be proportional to the concentration of monomer, and 

it is solely the collisions between intermediate molecules that drives aggregate 

formation [97]. In order for a nucleus to seed aggregation, it must remain stable for 

sufficient time for growth to occur from it. As growth is considered to be a slower 

process than the nucleation phase, the nuclei must remain for a substantial period of 

time. However in situations where very rapid growth occurs even the formation of 

reversible nuclei may seed the aggregation process [98]. 
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It has been suggested that the protein monomer in a partially folded conformation may 

be the most prone to form an aggregate nuclei; even more so than the completely 

unfolded protein [99]. The explanation is that the hydrophobic areas in a partially folded 

protein would be exposed, but still grouped, offering a more concentrated area for 

aggregate interaction. However in the unfolded state, the hydrophobic residues would 

be randomly oriented around the backbone [100]. Within this paper, denaturants are 

used to maintain the unfolded state of the protein. It must be noted that the increasing 

denaturant concentration will play some contributing role to the effects seen here, as the 

urea molecules will be present around hydrophobic areas of the unfolded protein. Here 

they compete with the monomers for interactions with the protein, probably leading to a 

decreased rate of aggregation over “pure” unfolded protein. 

Opportunities for these aggregate prone monomer species to appear arise when 

considering the protein folding pathway. As the protein occupies multiple states within 

the folding energy basin, one or more of these states may exist in equilibrium with a 

nucleation prone intermediate state. These nucleation prone states are often seen to 

contain a higher level of β-sheet than that which is found in the monomer [95]. In 

addition to this, there are also multiple routes which the folding may take to occupy one 

of these conformations [101]. These routes can be considered in terms of the protein 

energy basin, where changing the conditions within a system will also have an effect on 

the profile of the energy basin. In extreme cases this may make non native 

conformations of the protein the most energetically favourable, promoting aggregation. 

The nucleating monomer can be present in many forms; within the same type of 

monomer across multiple conformations [98, 102] and during folding where aggregates 

begin to form even before stable unfolding intermediates are present [103]. Furthermore 

it has been shown that aggregation can be prevented through the use of high pressure 
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during the unfolding stage, it is postulated by the author that this is because the high 

pressure physically prevents the unfolding process occurring at comparable 

temperatures [93]. 

The number of partially unfolded monomers required to create an aggregate nucleus can 

vary between systems. The formation of dimers has been shown to be sufficient to 

nucleate aggregation [104-106], but also oligomers [107] and larger nucleation sites 

formed from micelles in the case of amyloid β protein [108]. Furthermore the smallest 

stable aggregate nucleus of a short polypeptide chain has been shown to be in the 

multimer range [109] and in these circumstances, formation of any reversible aggregates 

is considered a pre-nucleation step. Here the trend seems to be that larger molecules 

require fewer numbers of monomer create a stable aggregate as they offer more protein-

protein interaction opportunities than smaller molecules, which therefore require a 

larger population. 

In the aggregation model which consists of both nucleation and growth phases [110], 

the nucleation stage is considered to be the rate limiting step within the system [102]. 

However, in the system of particulate aggregation investigated here, all nucleation sites 

are thought to form simultaneously [79], where only a process in the monomer addition 

stage can be the rate limiting factor in growth. 

Once nucleation has occurred, there are multiple ways in which aggregation might 

progress, depending on the concentration within system. There may be minimal growth 

whilst the aggregates remain in solution, there might be rapid growth to larger insoluble 

aggregate, or a formation of a gel phase may occur if the concentration is sufficiently 

high [98] [111]. 
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2.3.4 Aggregate Growth and Structure 

Protein aggregation can take a number of forms and is dependent upon the 

environmental conditions the proteins are subjected to during the aggregation process. 

The most commonly investigated of these is the amyloid fibril, but in addition to this 

there are also particulate and spherulite aggregates, which have been shown to be 

formed from proteins which also aggregate into amyloid fibrils [79, 112, 113]. These 

aggregation characteristics have been proven for multiple proteins whose structures and 

functions are unrelated, which leads to the assumption that these characteristics are 

properties of all proteins. 

Fibril formation is formed from highly charged protein molecules. These charged 

molecules provide long ranging repulsion, which only allows for further proteins to bind 

in a small number of arrangements. This type of aggregation particularly favours the 

formation of β-sheets and leads to a one dimensional formation of aggregate growth 

[113]. The formation of ordered aggregates of BSA was discovered when forming 

amyloid fibrils away from the isoelectric point [90].  The mechanism of aggregation in 

BSA was additionally shown to include the transformation of alpha helices to β-sheets 

during partial unfolding of the tertiary structure.  

Conversely to fibrils forming in conditions away from their isoelectric point, spherulites 

have been seen to form in a pH region closer to the isoelectric point of the protein. 

These protein structures are not well characterised; but they contain short runs of β-

sheet, forming fibrils which emanate from a central nucleus to give a shaped akin to a 

“maltese cross” as described in the paper [112]. Insulin is shown to form spherulites 

readily [114] whereas β-lactoglobulin only forms them infrequently, generally forming 

at the same time as amyloid fibrils, which possibly shows its dependence on the 
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isoelectric point of the environment for spherulite formation. [113, 115] Spherulites can 

consist of a core of collapsed fibrils in the nucleus. This is one possible explanation for 

how they are seen to occur alongside amyloid fibrils. However, for them to be seen to 

exist alongside fibrils, they must be present in an environment away from the protein’s 

isoelectric point, so it is possible that spherulite formation may be possible over a range 

of conditions. 

Near the isoelectric point, there is a significant barrier to “ordered” aggregation, and 

unlike in fibril formation, there is no long range charge repulsion present. This 

decreases the likelihood of structural rearrangements, and because the aggregation 

occurs in a random and non-specific way, the particulates formed are spherical. [113] 

Proteins that have been proven to form particulate aggregates had all previously been 

shown to form amyloid fibrils under different aggregation conditions. This difference in 

aggregation is completely independent of amino acid sequence, and is determined by 

the general state of the protein in its environment. [79] 

Particulate aggregation occurs around the isoelectric point, where there is a low overall 

amount of electrostatic interactions, therefore there are many arrangements in which 

aggregates can form, which leads to aggregation growth occurring randomly, causing 

the aggregates to be approximately spherical in shape. Particulates can have a size of 

around 250nm and contain some β-sheet content [113]. These particulates have a strong 

tendency to induce aggregation. After particulate aggregation, remaining monomeric 

protein within the solution becomes deposited between the particulates. This leads to the 

appearance of the particulates being connected [79]. 

Particulates, were found to have similar levels of secondary structure after heating when 

compared to the native state in various samples: BSA, Myoglobin, transthyretin; where 
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there was an increase in secondary structure content [79]. Here, aggregation of these 

samples proved that the proteins were not aggregating through disulphide bond 

formation as both myoglobin and transthyretin do not contain the cysteine residues 

required and the aggregation was more likely a result of partial unfolding of the proteins 

The rate of heating is shown to affect particulate aggregation size [79]. The higher the 

heating rate, the smaller the aggregation of the particle, these results led the authors to 

the conclusion that particulate nucleation is determined by the heating temperature, 

where a higher temperature results in more nucleation sites forming, the subsequent 

growth results in a smaller diameter of particle where remaining protein concentration is 

uniformly distributed around each of the particulate nuclei. [116] 

β-lactoglobulin subjected to an environment away from the protein’s isoelectric point 

was shown to form clear and fibrillar gels. Conversely, when the β-lactoglobulin protein 

was present in an environment near the protein’s isoelectric point, the gels formed after 

heating were shown to be opaque and consist of particulates [116, 117] Partial 

denaturation of the β-lactoglobulin occurs at its isoelectric point, this unfolding of the 

protein allows an area in which interactions between molecules can occur, and 

aggregation can be facilitated. This has been shown to be similar for other proteins 

which will at the least partially unfold.  

These aggregation interactions in protein particulates have been shown to interact 

through (sometimes non-native) β-sheet structures [118]. Current understanding 

indicates that this is the same interactions occurring in amyloid fibril formation, 

therefore work on the early stages (i.e. nucleation) of particulate formation may also be 

applicable to that of amyloid formation. In addition, the kinetics and thermodynamics of 

the particulate system are not well characterised in the literature, understanding these 
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factors would not only improve our understanding of the system, but provide numerical 

benchmarks from which aggregate preventing additives may be tested. 

2.3.5 Techniques for Measuring Protein Aggregation 

The following section introduces the main techniques used in the literature to study 

protein aggregates. Though not exhaustive, it covers the techniques used to extract the 

main properties of an aggregate system, namely; shape, structure, size and concentration 

of the aggregates. Examples of their use in the field are included, and the advantages 

and limitations of each are discussed. 

I. Size Exclusion Chromatography (SEC) 

SEC separates protein molecules and aggregates according to their hydrodynamic 

volume [119]. The column used to perform the separation is populated with porous 

silica particles. The protein aggregate sample is passed into the column and the larger 

aggregate particles are excluded from passing through the pores; passing around the 

edges of the beads instead. This results in larger aggregates being eluted from the 

column quicker than smaller aggregates, or monomers which pass through the pores in 

the beads as they travel through the column. The concentration  of the eluted protein can 

be analysed by a spectrophotometer and the size of the particles can be compared to 

elution times for standard particles of known size [120]. Gabrielson et al. showed that 

this technique could be successfully used to quantify the level of aggregation in 

antibody samples [121], whilst Grillo et al. showed how the SEC can be used to 

complement other techniques for biopharmaceutical proteins [122]. SEC however 

requires an extensive knowledge and experience with the technique in order to ensure 

the column has a suitable composition in order to separate the aggregate system, and 
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will generally involve diluting the aggregate sample which in turn may have some effect 

on the aggregation present within.  

II. Static Light Scattering (SLS) 

SLS measures the scattering intensity of light coming from the protein particles, which 

are illuminated by a single wavelength beam of light, and the scattered light is generally 

measured at multiple angles. The time averaged scattering of this data is deconvoluted 

to give information on the size, shape and concentration of the sample. This requires the 

sample to be of high enough concentration to produce sufficient scattering, whilst low 

enough to avoid multiple scattering. This technique can be utilised as the sample passes 

through a column or as a more static sample measurement from a cuvette, although the 

latter involves regular and thorough cleaning of the cell. In addition, for full analysis, 

multiple concentrations of the protein are required, which may cause error if the system 

is concentration dependent. This technique has been shown to be valuable in the 

detection of low levels of aggregate present in samples of immunoglobulin G [123] 

where SLS was used in conjunction with SEC. 

III. Dynamic Light Scattering (DLS) 

DLS is used in a similar manner to that of SLS, but the technique measures the 

fluctuations in the light intensity over time instead of a time averaged intensity across 

multiple angles (as is the case with SLS). These fluctuations are due to the random 

motion of the protein particles through the sample. This information can be 

deconvoluted to give information for a wide range of aggregate sizes and distributions 

[124]. One of the advantages of DLS is that there are no special sample requirements 

involved, and therefore it can be used on the direct sample which is especially useful in 

investigating the kinetics of aggregation. A prime example of the use of DLS is in a 
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study of β-lactoglobulin aggregates to form fibrils [125], where the technique is used 

alongside other scattering experiments to characterise the formation of the fibrils. As 

DLS requires a period of time over which to collect the data and ascertain the sample 

size, it is not suited to dynamic processes such as protein aggregation. Furthermore, 

complex data analysis and a highly refined setup are required in order to resolve 

separate but closely related size populations. 

IV. Analytical Ultracentrifugation 

This technique uses centrifugal force to separate aggregates based on size, and 

concentration through sedimentation equilibrium. This is then quantified using 

absorption or fluorescence spectroscopy. It requires a low amount of sample 

preparation, and therefore can be used to measure the protein aggregate sample directly 

[124]. This technique requires a detailed knowledge in order to separate the aggregates 

sufficiently, much like SEC. Additionally there requires some detailed analysis and 

complex separation issues that can arise from the aggregate solution [126]. 

V. Field Flow Fractionation (FFF) 

FFF uses an external field (generally flow, electrical or magnetic) to separate protein 

aggregates under flow. Coupled with this is the simultaneous measurement of the mass, 

size and charge of the particles within the system, separating the particles due to the 

movement of solution components in different flow channels. FFF has a wide range of 

particle detection from between 1 nm to 100 μm [127] and can be utilised to give an 

excellent separation between particles. There are limited examples of its use in protein 

aggregation where it is only limited to the study of soluble aggregates, but it has been 

suggested that with increasing knowledge of how to extract data from this technique it 

is becoming more useful for analysis of aggregates [128]. 
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VI. Gel Electrophoresis 

Gel electrophoresis uses sodium dodecyl sulphate (SDS) as a denaturant to linearise the 

protein molecules. These molecules have an overall negative charge, as therefore 

migrate through a gel when a current is passed across it. The separation of the protein 

molecules is performed by molecular weight, with smaller proteins migrating further 

down the gel than the larger aggregates. The molecules are then stained by a visualising 

agent in order to quantify the amount of protein present, and their migration distance 

compared to that of a known standard. This is an often used and simple tool for both the 

measurement of size and quantity of protein aggregates, especially when separating 

large ranges of aggregate [129]. However the use of SDS results in only aggregates 

which are covalently linked to still be present within the gel, this may not elucidate the 

full extent of protein aggregation within the sample. This problem may be solved by the 

use of native-PAGE, but there is little evidence for it in the literature at present. 

VII. Microscopy 

Light microscopy may only be used on very large aggregates, where visual inspection 

of particle number and size can be ascertained from the sample by comparison with 

standard samples of known size. It is also possible to have computerised methods of 

particle counting utilising a flow setup for the aggregates [130]. In the sub visible range, 

both transmission and scanning electron microscopy have been used to evaluate 

aggregate size and shape to a very accurate degree. This requires a large amount of 

sample preparation in a vacuum and coating the samples with gold in order to get 

sufficient contrast to see the scanning image [120]. In addition to the lengthy setup 

requirements, microscopy generally deals with a small area of the sample, unlike most 

techniques which are an average representation of the sample as a whole. Despite this, 
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microscopy is often used for sizing of protein aggregates with many examples in the 

literature; Nielson et al. formed insulin fibrils and characterised the length and 

diameters using electron microscopy [131] and elsewhere the effect of bovine serum 

albumin on membrane fouling has been characterised using microscopy to examine the 

structural changes incurred [132]. 

VIII. Spectroscopy 

Fluorescence spectroscopy utilises fluorescent dyes which are natively fluorescent, and 

when bound to a protein aggregate, have a shift in the fluorescent light which they 

produce [133]. Dyes such as 1-anilinonaphthalene-8-sulfonic acid  bind to hydrophobic 

regions on the protein, and have been shown to bind preferentially to protein aggregates 

[134], where they interact through the available hydrophobic regions which are exposed 

on the aggregate. This fluorescence change can be monitored through the use of 

spectroscopy or fluorescence microscopy. A fitting example of spectroscopic dyes being 

used in protein aggregation is in the use of Nile red to monitor the thermal aggregation 

of β-galactosidase [135]. This technique also enables very low levels of quantification, 

however as it binds solely to hydrophobic patches within the protein, it is difficult to 

study aggregates formed through refolding studies as the probe will bind strongly to the 

unfolded protein. 

Additionally, intrinsic tryptophan fluorescence can be used as a measure of proteins 

tertiary structure before unfolding that leads to aggregation begins. This is covered in 

the protein folding section of this work. 

Circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) both make 

use of the chiral nature of the protein molecules to analyse the secondary structure of 

the aggregates. The differences in light absorbtion can be translated into a secondary 
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structure content for the protein. These techniques are powerfully accurate, where 

circular dichroism has been used in secondary structure quantification between differing 

self association states of human insulin [136] and FTIR has been utilised to analyse the 

secondary structure content in the aggregates of the same molecule [131]. Whilst these 

techniques are very useful in quantifying secondary structure, they are an average of the 

entire sample, so aggregates present in monomer solutions may need separating before 

successful analysis can be undertaken. 

IX. Ultra Violet Light Scattering Spectroscopy (UVLSS) 

UVLSS is a light scattering technique which utilises a range of wavelengths of ultra 

violet light in a spectrophotometer to calculate the scattering produced from the sample. 

The theory of the technique will be discussed in more detail in the following chapter. 

UVLSS allows the diameters of particles above 50 nm (depending on refractive index of 

the protein) to be measured. A proof of concept experiment has been run where this 

technique accurately sized polystyrene spheres of set diameters [137, 138]. This allows 

for in-situ time resolved dynamic measurements of protein aggregation and from this 

the calculation of monomer depletion and kinetics [139] and unlike some techniques, is 

non-destructive. This is an underused technique but is ideal for monitoring the 

aggregation of proteins on the larger length scales as it does not detect particles of the 

size scale of monomers, therefore data deconvolution is not necessary [140]. However 

this also means that detection of small aggregates or aggregate nuclei is not possible 

using this technique.  

X. Small Angle Scattering 

Small angle scattering utilises a beam of either neutrons or X-rays which is directed 

towards a sample and scattered onto a detector. This scattering gives information on 
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particle size shape, concentration and interactions [141]. This will be covered in more 

detail in the theory section. This technique offers a wide range of sample environments 

for studying many systems, including proteins [142]. Details from the system can be 

extracted by modelling the system and comparing the modelled profile to the 

experimental. This can give much more detailed information such as the flexibility or 

subunit arrangement of proteins within the system [143]. 

Information provided by the small angle scattering techniques have been used to study 

the quality of the protein fold, including estimation of secondary structure levels [144]. 

This has been used to monitor the effect of pH on the conformational state of bovine 

serum albumin and the resulting protein-protein interactions that take place [145]. 

Experiments on dynamic systems such as protein folding have been shown to yield 

accurate results when compared to complimentary techniques such as tryptophan 

fluorescence and circular dichroism, where the formation of the globular protein is 

monitored [146].  

There are further examples of how beamline small angle scattering can be used to take 

measurements on dynamic systems, owing to the short time period it takes for a single 

scattering pattern to be obtained. This was utilised using SAXS by M.Kataoka et al. to 

monitor the radius of gyration of cytochrome C over time to study the compactness of 

the protein as it passes through the molten globule state [147]. More relevantly this 

technique has also been used to monitor the dynamic aggregation of BSA after breakage 

of the disulphide bond [148]. In this early experiment however, the appearance of 

aggregation was sufficient, and a quantitative examination of the data was not 

undertaken. 
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Static samples of aggregates have additionally been monitored using this technique, 

such as aggregates of amyloid β-protein, where the number of molecules that form an 

aggregate, and their hydrodynamic radius were uncovered [149]. The aggregation of 

staphylococcal nuclease has been probed under small angle scattering, coupled with 

FTIR and circular dichroism to understand the transitions in structure that occur during 

aggregation [100]. More recently, the heat induced aggregation of β-lactoglobulin was 

studied in order to understand the nucleation phase of aggregation [150]. This allowed 

the initial nuclei shapes of tetramers and cyclic clusters to be elucidated.  

2.4 Proteins 

This section will cover the proteins utilised in these experiments and the relevant 

literature in the field of aggregation and refolding, depending on their use in 

experiments within this project. 

2.4.1 Bovine Serum Albumin 

 

Figure 2.10: Structure of BSA molecule. PDB code 3V03 [1]. 
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BSA is a 66kDa serum protein present in cows. Its structure has recently been solved 

(PDB code 3V03) [1], it consists of 583 amino acids and contains a largely helical α-

helical structure. Due to the ease of obtaining the protein from cow serum; and its 

relative low cost, BSA is used as a standard in many protein assays and also used in 

protein aggregation studies (Figure 2.10) 

When subjected to a temperature of 70 ºC or above, it is seen that there is a change in 

secondary structure content with an increase in the quantity of β-sheet structure whilst 

the quantity of α-helices decreases. Above 70 ºC the formation of β-sheets is 

irreversible [151]. The self association interactions occur through the non-native, more 

open domain I of neighbouring molecules. It is this initial structural change which is the 

initiating step for aggregation [152]. Additionally the amount of β-sheet content formed 

and the amount of aggregates increase as the protein environment is more distant from 

the isoelectric point [90]. This secondary structure formation may be altered by the 

presence of metal ions in the solution [153], however it does not affect the propensity of 

the molecules to aggregate. 

2.4.2 β-Lactoglobulin 

 

Figure 2.11: Crystal structure of β-lactoglobluin. PDB code 3NPO [1]. 
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β-lactoglobulin is an 18kDa protein which consists mostly of β-sheets (PDB code 

3NPO) [1]. It is present in the milk of cows, and as with BSA, due to the ease in 

isolating large quantities of the protein, it is often used in folding and aggregation 

studies, in addition to use as a standard in protein assays (Figure 2.11). 

The thermal aggregation of β-lactoglobulin is a rapid process, due to the high 

hydrophobic nature of the residues within the protein. The thermal unfolding of the 

molecule has been shown to be immediately followed by aggregation of the monomer 

[154]. In later studies it was elucidated that the lactoglobulin protein undergoes a slight 

structural arrangement before the aggregation is seen to occur [155]. This appears to 

agree with early work that suggests that the β-strands present in lactoglobulin are 

transformed to antiparallel β-sheeets before aggregation [156]. The monomers associate 

through a combination of hydrophobic and disulphide interactions. Additionally, the 

levels of secondary structure present within the aggregate molecules can also be 

dependent on concentration, with higher concentrations leading to a larger proportion of 

secondary structure remaining [157]. This appears to be a stability conferred by the 

presence of other native protein molecules. 

There has been some interest in the refolding of β-lactoglobulin as during folding, there 

is an α-helical intermediate present, before the formation of the native β-strand protein 

[158]. The transformation to native β structure occurs in the late stages of the folding, 

although there is a significant amount of β-sheet already present within the intermediate 

[159] . 
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2.4.3 Myoglobin 

 

Figure 2.12: Crystal structure of myoglobin. PDB code 1MBN [1]. 

Myoglobin is an 18kDa protein which consists of many α-helices. Myoglobin is 153 

residues in length and is an oxygen carrying protein which exists in the muscle, 

including the heart [1, 160] Figure 2.12. 

Early studies of myoglobin showed that there is a decrease in α-helical content when the 

protein is solubilised in water [161] therefore the molecule may be less stable than the 

native. More recent aggregation studies have identified the presence of an aggregation 

prone intermediate which retains the core structure of the myoglobin molecule, 

resembling the early folding intermediate [162]. Additionally, this paper showed that 

there is a formation of β-sheets when the protein tends to aggregate at it is in conditions 

away from the isoelectric point, which is comparable with studies seen on other proteins 

mentioned here. When the aggregates of myoglobin are formed at a low temperature (50 
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ºC), there is a large quantity of the native structure still present within the aggregate 

subunits, however the process is irreversible [163]. 

During refolding of myoglobin the protein has a tendency to form a non native dimer 

with exposed hydrophobic residues [164]. Secondary structure formation takes place in 

two stages which appear to form at different rates [165]. The initial stage is the 

formation of around 40 % of the secondary structure whereupon the remaining 

secondary and tertiary structure assemble around in the second stage. Here the molten 

globule state of myoglobin may exist [166].  Succeeding this, minor structural 

rearrangement results in the final native structure. 

2.4.4 Cytochrome C 

 

Figure 2.13: Cytochrome C crystal structure. PDB code 3CYT [1]. 

Cytochrome C is an electron carrying protein found in cells for production of ATP [1]. 

It is 24kDa in size and contains a secondary structure which consists solely of α-helices 
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(Figure 2.13). Folding of cytochrome C involves formation of the protein structure 

around the heme molecule, within 1 millisecond of initiating folding the structure of 

cytochrome C can be collapsed around the heme moiety [167]. The heme is not thought 

to determine the folding behaviour of cytochrome C, which is driven through protein-

protein interactions [168]. Rapid rearrangement of exposed side groups follows to 

achieve energetically favourable conformations. Whilst in this molten globule state 

cytochrome C has also been shown capable of dimerising [169], whilst partially folded 

states of cytochrome C are the most likely to be aggregate prone [167]  

2.4.5 Ribonuclease A 

 

Figure 2.14: Crystal structure of ribonuclease. PDB code 5RSA [1]. 

Ribonuclease A is one enzyme responsible for degrading RNA. It consists of 124 amino 

acids and is 13.8kDa in size. It consists of both α-helices and β-sheets and is a very 

stable molecule (Figure 2.14). Ribonuclease was one of the first proteins used in folding 

studies [170], where amino acid sequence was shown to determine the folded structure 
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of the protein. During folding ribonuclease forms a number of intermediates which 

utilises at least 2 disulphide bonds to retain proximity of separate sections of the amino 

acid chain to complete folding [171]. 

2.4.6 Summary 

The proteins used here for both aggregation and refolding experiments are model 

proteins in their respective fields. They represent a cross section of secondary structural 

contents, and isoelectric points. During experimentation this will allow for any 

contributing effect of starting structure, or properties, to be contrasted. In refolding 

experiments, proteins with a lack or (or minimal) disulphide bonds were favoured in 

order to achieve the most highly unfolded state possible, without using reductants and 

oxidants to moderate these bonds.  

Using this range of proteins, generic questions relating to aggregation could be asked, 

with the varied systems representing general trends of all proteins: 

a) How does particulate aggregate nucleation occur? Is it as simple as suggested 

from microscopy studies by Krebs et al.(2.3.4)? 

b) Does the model for particulate aggregate growth (2.3.4) agree with dynamic 

measurements of the model proteins aggregating? Is it possible to elucidate 

kinetic and thermodynamic values for this process? 

c) Does the mobility of a protein monomer affect its propensity to aggregate? How 

mobile must a protein be to form aggregates? 
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3.1 Introduction 

This chapter contains details of the experimental techniques carried out on this project 

coupled with a justification for their use and underpinning theory. The techniques 

included here are: fluorescence anisotropy, small angle neutron scattering and ultra 

violet light scattering spectroscopy. 

3.2 Fluorescence Anisotropy 

Fluorescence anisotropy uses polarised light to probe the rotational motion of protein 

fluorophore side groups. The protein is subjected to light polarised in the vertical plane, 

before the emission of horizontally polarised light from the protein is measured. This 

technique can be used to monitor whether fluorescent side chains are compact within 

the protein or exposed and mobile. Compaction of side chains is one of the latter stages 

in the protein folding process [1] therefore this technique will indicate the extent of 

mobility present in the latter stages of the structural arrangement. 

Fluorophores will only absorb light at specific wavelengths. In respect to protein 

fluorophores, there are two main residues; tryptophan and tyrosine. These two have 

separate peak absorbances at different wavelengths; the optimum for tyrosine is 276 nm, 

whilst for tryptophan it is 280 nm [2]. The overall range over which these absorb 

overlap, but selecting a wavelength greater than 276 nm will excite almost exclusively 

the tryptophan residues. This property is desirable as the tryptophan is a hydrophobic 

residue, therefore when the protein is in its folded state it will be buried inside the 

hydrophobic core of the protein and therefore is less mobile. An additional useful 

characteristic of probing for this residue is seen by the fact that tryptophan fluorescence 

is shifted by up to 20 nm when buried within the protein as compared to on the surface 

of a protein [3], which can be studied directly by fluorescence spectroscopy. 
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When the vertically polarised excitation light strikes the protein sample, only the 

fluorophores situated in the same plane as that of the light beam will absorb photons [4]. 

There is a significant period of time between the photon of light being absorbed by the 

fluorophore, and a photon being emitted at a larger wavelength. During this period of 

time, if there is movement within the protein fluorophore, it will alter the plane in which 

the emitted photon is released. If there is no movement within the side group, the 

photon will be emitted in the same plane in which it was excited, in this case the vertical 

plane.  

 

Figure 3.1: Planes of polarisation for beam excitation and emission detection within the fluoresence anisotropy setup 

The fluorescence anisotropy setup utilises two photomultipliers (Figure 3.1), a separate 

photomultiplier for detecting the individual planes: vertically, and horizontally polarised 

light [5]. This allows for detection of the light emitted in the same plane as the 

excitation beam, and light whose polarisation has been changed through mobility of the 

tryptophan residues. This is the basis of the fluorescence anisotropy theory used to 

study the structural aspects of the protein. The fluorescence anisotropy is calculated 

using Equation 3.1; 
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Equation 3.1: Defining fluorescence anisotropy   

Where the fluorescence anisotropy r is calculated from: Iv; the fluorescence intensity of 

the vertically polarised emission and IH ; the fluorescence intensity of the horizontally 

polarised emission. This ratio gives an anisotropy value, where higher values of r relate 

to a more stable fluorophore, and lower r values relate to fluorophores which are more 

mobile [6]. This can be read on the millisecond timescale, therefore hundreds of 

readings can be taken over the course of a second, and these measurements are taken for 

many minutes, which is ideal for both the rapid dynamic process and the slower 

structural rearrangements that are seen in protein folding. 

3.3 Small Angle Scattering 

There is a large amount of literature present on the theory and principles behind small 

angle scattering [7-10]. This section aims to cover an overview of the general theories 

can be applied within this work on proteins and protein aggregates. 

Neutrons are uncharged particles with a mass of 1.678×10
-24

g and a spin of ½. The 

uncharged nature of the neutron allows it to interact deep within the scattering matter, 

with the nuclei of atoms through the strong nuclear force [7].  The spin of the neutron 

allows it to be used to probe magnetic properties of the scattering structure, however 

this use in not covered within this body of work.  

Unlike X-rays which have energies of around 10keV, neutrons have energies of around 

10meV. This difference in properties means that when X-rays are scattered there is a 

minimal energy change, however inelastic scattering of neutrons delivers a measurable 
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change in energies. The use of the small angle techniques here covers only the elastic 

scattering from the particles. 

 The strength with which each atom scatters the neutron does not vary linearly with 

atomic number (Figure 3.2). The nucleus of an atom occupies only a fraction of the total 

atom volume, therefore the majority of neutrons may pass through without interaction. 

Therefore a large number of neutrons are required to produce significant measurable 

interaction with the matter. For this reason, large scale facilities are required to produce 

the flux of neutrons capable of creating measurable data sets within a satisfactory 

timescale. Thermal neutrons are used in small angle experiments and generally have a 

wavelength of between 1-6 Å. This length scale is of similar magnitude to the 

separation distance between atoms in matter, and so is ideal to probe detailed structure. 

 

 

Figure 3.2: Scattering length value against atomic number. Values include isotopes.[11] 

 Neutrons are produced either by nuclear fission in a reactor or spallation. Examples of 

both are methods of production at large scale sources are; the Instituit Laue-

Langevin,(ILL) in Grenoble, France as a source of neutrons provided by fission and 
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ISIS at the Rutherfod Appleton Laboratory, Oxfordshire, UK for neutrons produced by 

spallation. 

In a spallation facility, protons are extracted from a hydrogen plasma source and 

accelerated by a linear accelerator into a larger circuit of bending magnets. Here, the 

bending magnets accelerate the ions to 70 MeV before being directed towards a heavy 

metal target. The nuclei in the atoms of the heavy metal target can absorb protons which 

will result in each nuclei emitting a neutron. Neutrons emitted by the target are slowed 

by moderators in order to achieve a suitable wavelength i.e thermal neutrons with a 

wavelength around the size of 1 Å.  

Nuclear fission facilities work from the fission of a radioactive element such as uranium 

235. Within the nuclear reactor, the uranium undergoes radioactive decay releasing 

neutrons which propagate the further decay of the isotope. The fission process is 

mediated through the use of boron control rods which absorb neutrons to limit the 

propagation of the radioactive decay. As in spallation, the neutrons emitted from the 

reactor are slowed by moderators in order to obtain thermal neutrons of useable energy.  

Small angle scattering equipment is designed to treat the flow of photons or neutrons in 

order to maximise the flux at the sample whilst maintaining accuracy in the beam in 

order to correctly calculate the scattering angle, 2θ. This essentially involves removing 

any divergence from the beam by passing the beam through collimation and ensuring 

the desired wavelength and size of the beam is directed onto the sample (Figure 3.3).  

As small angle scattering probes length scales of matter in the range of above 10 Å, we 

can see using Braggs law [12] that the scattering from the beam will be present at a low 

angle near to the un-scattered beam (Equation 3.2). 
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Equation 3.2: Braggs law 

Where d represents the repetitive length scales within the structure. As the angles at 

which the scattering is detected are so low, it is imperative that there is no divergence 

from the beam; which would mask the scattering produced from the sample and 

therefore collimation is of great importance. This further shows why such high flux 

sources are required for these experiments as the accurate collimation reduces the 

intensity of the beam. 

The scattered beam which hits the detector is produced from the volume of the sample 

which is irradiated by the beam. The scattering is a result of variations in the “density” 

of the sample. As X-rays and neutrons are scattered from different components of the 

atom, these “density” attributes vary between SAXS and SANS techniques, allowing 

each to probe different features of the structure. The scattering length density is 

responsible for neutron scattering. 

 

 

 

 

In small angle scattering, some assumptions are applied to the scattering from the 

sample in order to extract information from the scattering pattern. The first is that the 

sample is of a low enough concentration that the scattered beam is the product of a 

single scattering interaction, and that none of the beam is scattered from multiple 

scattering points. The second is that there is neither a gain nor loss in the frequency in 

θ 

Detector Scattered beam Sample Collimated 

monochromatic beam 

 

Direct beam 

Figure 3.3: Overview of a scattering experiment. 
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the beam i.e the scattering is elastic, and that the incident beam suffers no distortion 

from the sample. 

Examining Figure 3.4, it can be seen that the scattered neutrons at wave vector ks 

originating from beam ki (of which the majority of neutrons pass through the scattering 

medium) land on the detector at solid angle dΩ. Figure 3.5 and Equation 3.3 illustrate 

how the scattering vector, q can be ascertained from this. Models of the neutron 

scattering are given as a function of q. 

 

Figure 3.4: The scattering geometry of a SANS experiment. A detector at solid angle dΩ counts the number of 

neutrons scattered. Adapted from [9]. 

 

Figure 3.5: Vector diagram for calculation of scattering vector [9]. 
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Figure 3.6: Equation for definition of q vector. 

The distribution of the scattering, as measured on the detector, is given in terms of the 

scattering vector q, which relates both the wavelength λ of the incident beam, and the 

scattering angle by Equation 3.3. 

  
  

 

    

 
 

Equation 3.3: Definition of the scattering vector 

The scattering intensity measured from the detector can be related by the sum of the 

scattering from individual particles which are a product of scattering length; the 

distribution of material within a particle, and the phase factor determined by the 

position of the particle in the sample. 

The instrument used in these experiments was D22 at the ILL. This is a small angle 

neutron scattering station which is designed for the study of biological macromolecules. 

Due to the large amount of flux (1.2×10
8
 n cm

-2
 s

-1 
at the sample) produced by the 

reactor and the 55x40 mm beam cross section, it is ideal for studying dynamic samples. 

The wavelength range it is available to select is between 4.5-40 Å. Detector distance can 

range from 1.4 m to 17.6 m, and the detector has an area of 102.4 cm by 98 cm, 

allowing for a large q scale to be obtained (4×10
-4

 Å
-1 

to 0.44 A
-1

). Pixels on the 

detector are 8x8 mm in size which allows for a high resolution in q vector to be studied.  
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Figure 3.7: Diagram of D22 instrument small angle neutron scattering beamline [13] 

The scattering from a solution; I(q), can be described in terms of both the form factor 

P(q); describing the shape of the particles, and the structure factor S(q); describing the 

scattering arising from the interactions between these particles (Equation 3.4) .  

 ( )   (  )    ( ) ( ) 

Equation 3.4: Model of the total scattering from a solution. 

Where Δρ is the difference in scattering length density between the protein and the 

surrounding medium (buffer) and υ is the volume of sample illuminated by the beam. In 

this study of protein aggregates, the concentrations were kept low enough so that the 

effect of structure factor was negligible (any scattering arising from this would be inside 

the beamstop) therefore S(q)=1. 

This can be simplified for dilute solutions as the position of the scatterer within the 

sample can be anywhere and is unaffected by the position of other particles and in the 

dilute system the average scattered intensity is the sum of the averaged intensities by the 

scattered particles. For identical particles the scattering can be calculated solely as the 

form factor P(q) of the particles. 
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As the scattering produced on the detector is a result of all matter in the path of the 

beam, i.e the sample holder and the buffer, it is required to make background 

subtractions in order to analyse solely the scattering coming from the sample. This is 

simply performed by measuring the sample cuvette and buffer for the same period of 

time as the sample, and performing a subtraction of the resultant I versus q plots.  

Alternatively the intensity from background samples can be scaled to match the 

intensities of the sample plots at high q, where there is no contribution of scattering 

from the sample. 

The scattering length density ρ, of the protein is calculated from bi (Equation 3.5); the 

coherent scattering length of the individual atoms, which can be seen in Figure 3.2. 

  
∑      

 
 

Equation 3.5: Scattering length density calculation. 

Where i is the number of identical atoms, x the number of atoms, and v the molecular 

volume of the protein [14]. This can also be calculated experimentally by monitoring 

the scattering from a protein in solutions with different H2O:D2O ratios. These solutions 

would have a known scattering length density (SLD), therefore the SLD of the protein 

could be obtained. This scattering length is not dependant on the wavelength of the 

scattering neutrons. For the scattering length of electrons the scattering length bi can be 

substituted for scattering length of the number of electrons within the atom, therefore 

this value increases with increasing size of the atom. The scattering lengths of 

individual atoms for both neutrons and electrons are well documented [15].  

For the homogenous spheres of radius R, the form factor P(q) can be related to 

scattering vector by Equation 3.6. 
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Equation 3.6: Rayleigh scattering form factor for a sphere [16] 

 

Taking these known equations for the form factor of a sphere, a novel equation can be 

created for aggregates. In the case of the protein aggregate system, there are two 

populations of spheres; the large aggregates and the monomer. In order to model the 

form factor of this, the volume and concentration of the monomer have to be taken into 

account, and also these same values for the aggregate (these had to be expressed as a 

product of the two for fitting purposes, as neither value is known). 

 ( )  ((    [
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Equation 3.7: Form factor of two sphere populations 

Where Vm and Va are the volumes of monomer and aggregate respectively, Cm and Ca 

are the volume fractions of both the aggregate and the monomer and Rm and Ra the radii. 

The form factor of any homogenous particle can be estimated by assuming it to be made 

up of a number of small spherical particles. Using the form factor for a particle made up 

of spherical objects, which is averaged over all orientations in three dimensional space, 

the form factor can be expressed by the Guinier approximation (Equation 3.8): 

 ( )     [ 
     

 
] 

Equation 3.8: Guinier equation 

This is the Guinier approximation which gives a well defined measure of the object 

scattering [17]. This is defined in terms of the radius of gyration Rg, which describes the 

mean square mass distribution around its centre. The mean square radius of gyration 
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must be obtained from the scattering coming from low q (where q×Rg <1.3), as 

Equation 3.8 is an approximation of a Taylor series expansion where it is assumed q is 

very small (< 0.003 Å
-1

).  Furthermore, as the Guinier approximation is based on only 

the particle scattering, the sample must be sufficiently dilute as to not introduce inter 

particle scattering. 

 

Figure 3.8: Accuracy of the Guinier approximation for scattering from dilute homogenous spheres. Values depend on 

normalisation and length scales, separation between the two plots begins at approximately q×Rg =1.3. 

Additionally, for a sphere, the Rg can be related to the radius; R by Equation 3.9. 

   √
 

 
  

Equation 3.9: Relationship between radius of gyration for a sphere and physical radius. 
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Figure 3.9: Illustration of Kratky plots for protein in different conformations from folded to unfolded. Adapted from 

[18] 

Kratky plots offer a qualitative measure of the relative extent of folding or unfolding 

present within a protein sample (Figure 3.9). This is seen in the scattering as a small 

change and the small length scales and so is seen as a deviation in the scattering at the 

large q region. This change is small on the plot of I versus q, therefore using a Kratky 

plot of q
2
I versus q will exaggerate any deviations seen at the higher q value. For a 

folded protein, there is a well defined peak in the Kratky plot (Figure 3.9) As the extent 

of unfolding within the protein increases, this peak will become less prominent as the 

intensity at high q increases. An unfolded protein will show no peak on a Kratky plot 

[18]. The Kratky plot measures the degree to which a molecule is compact, therefore it 

may not be able to differentiate between native and non-native protein conformations if 

they are equally compact. 

The Porod law shows that for a sharp interface the intensity from scattering should 

decrease as q
-4

 for large q [8] (Equation 3.10), where S is the surface area of the matter 

and V the volume. 
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Equation 3.10: Porod Equation 

Equation 3.10 is limited to large q values, which can extend to infinity as the length 

scales from which the scattering occurs are uncorrelated to any other surface. This also 

holds for concentrated systems, as at large q it is only dealing with the surface of the 

particle. As the scattering intensity from a sphere is seen to decrease as q
-4

, as is a thin 

rod at q
-3

 and a thin disk at q
-2 

[7]. 

In irregular shapes, this value can be considered as a fractal dimension, where values in 

the range between 1 and 3, the larger the value the more compact the structure is. At 

lower q values  it is also possible to see evidence of surface fractals, where the 

scattering decrease is seen to occur at values between 2 and 3. A value of 2 represents a 

completely smooth surface, whereas a value of 3 would represent a totally rough, folded 

surface. 

3.4 Ultra Violet Light Scattering Spectroscopy (UVLSS) 

UVLSS is used to characterise the size of particles in the range of 50-1000 nm. Unlike 

either dynamic or static light scattering this technique utilises a range of wavelengths to 

determine the size of the particles. 

Ultraviolet light backscattering intensity versus wavelength follows a power law 

(Equation 3.11). 

     ( ) 

Equation 3.11: Relationship between back scattered intensity and particle diameter. 

Equation 3.11 illustrates the wavelength dependence of the scattering is relative to the 

size of the particle scattering. Is is the back scattered intensity, λ the wavelength and 
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β(d) is the scattering exponent which is a function of the diameter, d. The relationship 

between β and d is covered by Mie theory [19], which determines the scattering from a 

single population of particle sizes within the sample. This generally requires that the 

sample be thin and of low concentration in order to prevent multiple scattering from 

occurring. However in a system such as the dynamic aggregation of proteins as studied 

here, such conditions are not possible where concentrated systems are required to 

instigate the protein aggregate formation. It has been shown though, that single 

scattering events can be calculated from multiple forward scattering values at 

absorbance values below 4.3 [20]. Therefore by monitoring the forward scattering 

across a range of wavelengths, it is possible to elucidate the size of protein aggregates 

over a time period. 

In order to relate the experimentally obtained scattering exponent to a particle size, both 

the refractive index of the protein and of the solution is required. These values are 

wavelength dependent, and therefore refractive index value for the protein at each 

wavelength in the range is required. To calculate the refractive index for the protein, the 

Lorentz-Lorenz molar refraction [21] was used to sum the contributions to the refractive 

index from all residues and bonds within the molecule. 

Table 3.1 (overleaf) lists the values used to calculate the refractive index of the protein 

for a series of wavelengths. 
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Table 3.1: Refractive increments for the amino acids and bonds present in the protein 

Residue 
Refractive increments for wavelength /cm

3
 mol

-1
 

656.3 486.1 434.0 589.3 

Glycine 1.092 1.115 1.121 1.100 

Alanine 5.689 5.783 5.832 5.718 

Valine 14.883 15.119 15.254 14.954 

Leucine 19.480 19.787 19.965 19.572 

Isolecine 19.480 19.787 19.965 19.572 

Phenylalanine 29.593 30.343 30.788 29.825 

Proline 13.791 14.004 14.133 13.854 

Methionine 22.573 22.809 22.944 22.644 

Aspartic Acid 13.499 13.819 13.991 13.605 

Lysine 23.973 24.385 24.575 24.094 

Glutamic Acid 18.096 18.487 18.702 18.223 

Arginine 30.615 31.337 31.589 30.831 

Serine 7.211 7.311 7.369 7.243 

Asparagine 13.692 13.950 14.057 13.769 

Cysteine 13.379 13.473 13.522 13.408 

Threonine 11.808 11.979 12.080 11.861 

Glutamine 19.975 20.442 20.654 20.120 

Tryptophan 41.361 42.546 43.183 41.729 

Tyrosine 31.115 31.871 32.325 31.350 

Histidine 24.862 25.595 25.879 25.080 
Backbone 
groups 13.363 13.740 13.897 13.482 
N and C 
terminus 11.709 11.925 12.004 11.776 

Water 3.706 3.758 3.779 3.725 
 

The Lorentz-Lorenz molar refraction of the entire protein molecule RLL can then be 

calculated as the sum of the molar refraction from individual residues Ri. 

    ∑   

Equation 3.12: Lorentz-Lorenz summation 

The RLL value can then be related to the refractive index of the protein using the 

following equation. 
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Equation 3.13: Lorentz-Lorenz molar refraction equation. 

Where M is the molecular weight of the protein (g/mol) and r is the density of the 

molecule (g/cm
3
) and n is the refractive index. 

The density of the protein was calculated using structural information from the Protein 

Data Bank [22] 

  
  

   
 

Equation 3.14: Density equation for proteins 

Where An represents Avogadro’s number, Mw is the molecular weight of the protein and 

V is the volume calculated using VADAR [23]. VADAR is a web service which takes 

the structural information of the protein from the PDB and calculates the volume of the 

molecule based on the position and angles of the residues within the protein. Below are 

listed the values for the volumes of proteins using VADAR. 

Protein PDB Accession Number Volume Å3 

BSA 3V03 86654.65 

β-lactoglobulin 1CJ5 21017.68 

Horse heart myoglobin 1YMB 20876.5 
Table 3.2: Volumes of protein calculated in VADAR. 

The refractive index of each protein across a range of wavelengths was then determined. 

From this a plot of refractive index relative to wavelength can be made, and the Cauchy 

equation can be fitted to it [21]. The simplified form of the Cauchy equation shows: 

     
  

  
 

Equation 3.15: Cauchy equation 
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Equation 3.15 shows that a plot of n versus 1/λ
2
 would give a straight line whose 

equation can be used to calculate the value of the refractive index at each wavelength in 

the range. 

 

Figure 3.10 Wavelength dependence of refractive indices of candidate proteins. Β-lactoglobulin and BSA show 

barely any difference at each wavelength value, but a slight difference in best fit lines. Β-lactoglobulin best fit line is 

indicated by the dotted line. 

Values for the refractive indices of water were obtained from the International 

Association for the Properties of Water and Steam, with the data obtained for water at 

20 ºC [24]. Furthermore this paper illustrates that the refractive index of water barely 

changes with increasing temperature, which is applicable to the methods described here. 

This can also be assumed to be the case for the protein over the same temperature range 

[25]. 

The refractive indices of the protein and the solution could now be used to populate a 

programme to calculate the values for the Mie theory solution to light scattering for a 

range of sphere sizes. The programme used is an adapted version of the programme 

CALLBHMIE [26]. This programme takes the values of the refractive index of the 

1.65

1.67

1.69

1.71

2.00E-06 3.00E-06 4.00E-06 5.00E-06 6.00E-06

R
ef

ra
ct

iv
e

 In
d

ex
 

1/λ2 

BSA

Beta
Lactoglobulin

Myoglobin



101 

 

protein, the medium, the wavelengths and the size of the spheres in a text file, and 

calculates the extinction efficiency for each value. The wavelengths covered the range 

used in the UVLSS experiments, depending on which protein was used, and the sphere 

range covered a size of 10-1000 nm. The programme then populated a text output file 

with values for extinction efficiency for each combination of wavelength and sphere 

size. 

Extinction efficiency Qext, is related to the absorbance A by Equation 3.16, where ρ is 

the number of particles per unit volume and Ɩ is the sample pathlength with   being the 

sphere radius. 

  
         
  (  )

 

Equation 3.16: Extinction efficiency equation [27] 

Therefore, as the extinction efficiency is directly related to the absorbance, the 

theoretical scattering exponent can be obtained directly from the output of the 

CALLBHMIE programme. This allows for the theoretical sphere size to be related to 

the scattering exponent. 
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Figure 3.11: Theoretical diameter against scattering exponent for β-lactoglobulin. 

A sixth order polynomial is fit to this graph (Figure 3.11) which gives a large R
2
 value 

(>0.95) for each protein despite the deviation at low diameters. This has also shown 

good correlations with data obtained in the later sections. The fit within this plot is a 

sixth order polynomial which gives an equation to convert between sphere diameter and 

the scattering exponent β.  

This theory relies on some assumptions, those mentioned here are addressed and related 

to the literature to show that they are fair. Further included in this theory is that the 

calculation of the number of monomers in an aggregate does not take into account and 

hydration levels within the aggregate. This may be a limitation of the technique 

mentioned here, however this may be improved by using the hydration levels of 

aggregates created by SANS experiment 
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Chapter 4 : Methods and Materials 

4.1 Ultra Violet Light Scattering Spectroscopy 

Protein Solutions 

Protein samples for both absorbance measurements and refolding experiments were 

made up similarly, but in separate buffers depending on application. Lyophilized protein 

samples were purchased from Sigma-Aldrich Co. and weighed out using a Precisa 120A 

4 figure balance, and dissolved in the appropriate buffer. The protein samples and their 

supplier details are listed in Table 4.1. 

Table 4.1:Table of studied proteins with associated details 

Protein Details Sourced From Product Code 

Bovine Serum 

Albumin 
Fravtion V approx 99 % Sigma H3059-109 

Β-Lactoglobulin From Bovine Milk 90 % Sigma L3908 

Myoglobin From Equine Heart Sigma M1882 

 

Buffers 

For UVLSS protein aggregation experiments, a sodium phosphate based buffer, also 

containing sodium chloride, was made. The sodium phosphate buffer contains two 

elements; sodium phosphate monobasic (NaH2PO4), and sodium phosphate dibasic 

(Na2HPO4). These two elements have pH values of 5 and 10 respectively; therefore a 

combination of the two will result in a buffer of a pH between these values, depending 

on the proportions. Approximate volume values are given for the different pH buffers 

created. The purpose of the sodium chloride was to ensure that the protein aggregation 

occurred over a temperature range that could be performed within the experimental 

setup, as sufficient levels of  sodium chloride increases a proteins propensity to 
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aggregate. The advantage of this buffer is that multiple pH ranges can be probed whilst 

the surrounding environment remains constant across experiments. The following buffer 

was assembled: 

Table 4.2:Components of sodium phosphate buffer complete with sourcing details 

Buffer Components Details Sourced From Product Code 

Sodium 

Phosphate Buffer 

100 mM 

NaH2PO4 

Sodium 

Phosphate 

Monobasic 

Sigma S0751 

100 mM 

Na2HPO4 

Sodium 

Phosphate 

Dibasic 

Sigma S0876 

100 mM NaCl 
+80 %, reagent 

grade ≥ 98 % 
Sigma 310166 

 

Table 4.3:Approximate volumes of constituents for 1L sodium phosphate buffer. 

pH 
Volume 

NaH2PO4 
Volume 

Na2HPO4 

5.4 20 980 

5.8 80 920 

7.2 680 320 
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These reagents were dissolved in ultrapure water from the ELGA UHQ-PS Ultra pure 

water system, and the pH adjusted through the use of a SCHOTT probe to monitor the 

pH, adjusting the amount of each buffer component to obtain the desired pH. 

UVLSS procedures 

Absorbance spectra were obtained from the protein samples using a Shimadzu UV-1601 

spectrophotometer between 320 nm and 420 nm for bovine serum albumin and β-

lactoglobulin. Myoglobin, due to its red/brown colour absorbs light at these 

wavelengths, and therefore the aggregation was measured between 700-800 nm, which 

is still capable of monitoring aggregate growth. The protein samples were placed in a 

UV 10mm light path Hellma macro silica cuvette with a volume of 3.3 mL (Figure 4.1).  

The temperature of both the sample and the reference chamber was controlled through 

the use of a water heated temperature block, connected to a Grant GD150 5L water 

bath. These were connected using reinforced rubber tubing, and secured in place using 

jubilee clips around entry and exit nozzles. This set up allowed the protein sample to be 

heated from an initial 25 ˚C to approximately 95 ˚C. The temperature was monitored 

using a platinum HEL-705 RTD temperature sensor integrated into the rubber cuvette 

lid. This was calibrated so that it was sufficiently submerged in the sample to give an 

accurate temperature whilst not entering the window for UV absorbance measurement. 

This temperature sensor was then wired to a Pico PT100 data logger. Both this device 

and the spectrophotometer were connected to a PC that ran the Shimadzu UVProbe, 

Pico picolog PLW recorder, and Grant Labwise 1.0 water bath control software to 

enable data collection, and remote programming of the water bath temperature stages.  
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Figure 4.1:Sample setup for UVLSS inside a water bath controlled heating block. 

The spectra were recorded between 420 nm and 320 nm at a medium scan rate, an entire 

scan taking 13.3 seconds to complete. UV probe software allowed for 100 scans to be 

taken when performing isothermal runs, before requiring a reset to continue 

measurement. To accommodate this; the scan intervals were adjusted according to the 

temperature being measured, in order obtain sufficient spectra to properly characterise 

the aggregate growth. 

Between experimental runs, the protein sample and cuvette required meticulous 

cleaning to ensure no protein aggregate remained within the equipment. This was 

performed by rinsing with hot water, then soaking the equipment in hot detergent 

(Decon-90) this was then followed by rinsing with deionised water, and allowing the 

equipment to dry in ambient conditions. 

Protein concentration: After initial sample preparation, the Shimadzu 

spectrophotometer was used to measure the protein absorbance at a single wavelength at 

280 nm, to ensure the protein concentration was consistent between protein samples.  
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Temperature ramp: In order to ascertain the temperature range over which a protein 

aggregates, temperature ramp measurements were run. The Grant water bath control 

Labwise 1.0 was used to program a temperature ramp that would relate to a heating rate 

such as 0.1
 
˚C/min. The Pico data logging software picolog PLW recorder was used to 

monitor the temperature within the cell at set time intervals, identical to that of the scan 

intervals from the Shimadzu. UV probe was utilised to give an absorbance value at 320 

nm at set time intervals in “Kinetics” mode. These pieces of recording software were 

initiated simultaneously in order to relate the absorbance and temperature values. 

Isothermal spectra: Isothermal spectra were collected using the “Spectrum” mode on 

the UV probe software. This recorded the sample cells absorbance between 320 nm and 

420 nm at set time intervals.  The Pico data logger was set to measure the temperature 

within the cuvette at time intervals equal to that of the intervals on the 

spectrophotometer. Each run started at 25 ˚C and was ramped up to the desired 

temperature at the heating rate of 2 ˚C/min.  

4.2 Stopped Flow Refolding 

The following section details the methods used for measurements of fluorescence 

anisotropy, absorbance a hydrophobic probe fluorescence of protein refolding in a 

stopped flow system. 

Solutions 

In protein refolding experiments of proteins listed in Table 4.4, the proteins were 

unfolded in 8 M urea (reagent grade 98 %, Sigma s30498-448) made up with ultra pure 

water. 
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Table 4.4:Refolding protein information complete with sourcing details. 

Protein Details Source 
Product 

Code 
Cytochrome 

C 
From bovine heart heart ≥95 % based on molecular 

weight 
Sigma C2037 

β-
lactoglobulin 

From bovine milk ≥90% from PAGE Sigma L3908 

α-
lactalbumin 

From bovine milk type III, calcium depleted ≥85 % from 
PAGE 

Sigma L6010 

Ribonuclease 
A 

From bovine pancrease type 1-A 20-100 Kunitz 
units/mg 

Sigma R5503 

 

Each protein required an individual buffer to obtain a high standard of protein folding. 

The refolding buffer used in for each protein refolding experiment is listed in Table 4.5. 

Refolding buffers vary depending on the properties of the protein to be refolded. Most 

proteins require a favourable pH to aid refolding, additionally; some proteins require a 

salt concentration for to prevent aggregation. Cytochrome C aggregation assays are also 

performed with additional NaCl present within the buffer. In experiments where salt is 

present in the buffer this is stated. The constituents of each buffer are listed in Table 4.6, 

where the sodium phosphate buffer make up is identical to that stated in the UVLSS 

method section (Table 4.2). 

Table 4.5:Refolding proteins complete with buffer pH and components 

Protein pH Components 

Cytochrome C 10.6 100 mM Tris 

β-lactoglobulin 7.8 100 mM Tris, 10 mM NaCl 

α-lactalbumin 7.8 100 mM Tris, 1 0mM NaCl 

Ribonuclease A 7.8 100 mM NaPO4, 20 mM NaCl 
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Table 4.6: Buffer components and sourcing details. 

Components Details 
Sourced 

From 
Product 

Code 

Tris ACS Regenz Sigma 
S87203-

289 

NaH2PO4 
Sodium Phosphate 

Monobasic 
Sigma S0751 

Na2HPO4 Sodium Phosphate Dibasic Sigma S0876 

NaCl 
+80 %, reagent grade ≥ 98 

% 
Sigma 310166 

 

Anisotropy Procedures 

The stopped-flow fluorescence anisotropy measurements were taken using the Applied 

Photophysics SX-20 stopped flow fluorescence anisotropy instrument. This set up 

includes the power supply, bulb housing, beam width control, light polariser, sample 

cell, photomultipliers, stopped flow syringes, loading syringes, electronics unit, and PC. 

Drive syringes were installed into the device to give a desired refold ratio. Syringe sizes 

were 2.5 mL, 500 µL, 250 µL and 100 µL. This allowed for mixing ratios 1:25, 1:10, 

1:5 and 1:2.  The larger of these stopped flow syringes was loaded with the refolding 

buffer using a loading syringe, injected in from the top. The smaller was loaded with the 

protein sample in urea. 

The device was calibrated for the individual protein, its buffer, and the wavelength at 

which the anisotropy would be measured; 280 nm or 297 nm. 280 nm was used to 

measure the signal fluorescence especially as CytC contains a single tryptophan residue. 

This involved ensuring the voltage of the photomultipliers was sufficient enough to give 

an accurate reading for the protein sample, zeroing any offset signals produced when no 

chromophore is present, and accounting for the G factor; the difference in gain between 

the two detectors. 
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Data was collected through the PC using the Pro-Data software. This software was run 

in “Kinetics” mode, using the “Fluorescence Polarisation” option for taking 

measurements. The source of the drive syringe was also determined using this program; 

manually or internally using the gas pump, depending on application. When using an 

internal trigger, nitrogen gas at a pressure of 8 bar was used to power the exit syringe, 

whilst a pressure of 4 bar was used to drive the separate mixing syringes. 

Using the same stopped flow mixing setup, this equipment is also capable of measuring 

fluorescence and absorbance of the kinetics within the stopped flow cell. This is 

achieved by fitting an absorbance detector opposite the light source side of the cell, with 

a photomultiplier tube present at a right angle to the incoming light beam. Absorbance 

was measured using light emission at 320 nm. Fluorescence studies were carried out 

using the fluorescent probe ANS (40122-0050, Acros Organics, Fisher). ANS was 

present in solutions for fluorescence measurements in excess at 1×10
-5 

M. Fluorescent 

studies of the probe binding were carried out at 370 nm. 

In experiments where mixing ratios were altered, the initial protein concentration was 

also altered to scale in order that the final concentration of protein was maintained. This 

is especially important in the aggregation studies in order that intensities be comparable 

between runs. In order for the final concentration of 0.77 mg/mL (w/v) protein to be 

maintained, initial solutions of protein were prepared following  Table 4.7. 

 Table 4.7: Initial protein concentrations for each refold ratio. 

 

  

Refold Ratio Initial Protein Concentration (mg/mL) 

1 to 5 4.6 

1 to 10 8.46 

1 to 25 20 
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4.3 Small Angle Neutron Scattering 

The objective of this experiment was to use small angle neutron scattering to understand 

the formation and overall structure of spherical aggregates of bovine serum albumin 

(BSA). The following experiments were performed at the Instituit Laue-Langevin, 

Grenoble, France, on beamline D22; a small angle neutron scattering beamline.  

In order to characterise the aggregation process, two categories of experiments were 

run: static measurements (where pre-aggregated samples were placed in the beam for 

analysis) and dynamic measurements (using the temperature control feature on the 

sample rack to aggregate samples and analyse the aggregation process in real-time). 

Sample Creation 

Static samples were created prior to the experiment using a 2 mg/mL concentration of  

BSA ( sourced in Table 4.1) with 100mg of protein being measured into 50 mL of a 

buffer containing 100 mM Tris, 100 mM NaCl pH 7.4 (adjusted with HCl) buffer: 

Table 4.8:Component list of Tris buffer for static experiments 

200 mL H2O 

Tris  Stock 

Buffer 

Reagent Mass 

Tris(hydroxymethyl)aminomethane 2.4228g 

NaCl 1.1688g 

 

Samples were then incubated at set temperatures for specific times to allow the 

aggregation process to be completed: 
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Table 4.9:Temperatures and corresponding times for aggregation 

Temperature ( 
˚
C) Time (h:m) 

70 7:00 

72 3:30 

74 2:00 

76 1:30 

78 0:55 

After the designated duration, samples were then placed on ice, diluted by 75 % with 

D2O (375 µL aggregate sample combined with 1125 µL of D2O), and placed in 2 mm 

pathlength cells ready for insertion into the beamline. 

 

Figure 4.2:Scattering length density of buffer with varied H2O:D2O.[1]z 

D2O was added to the aggregate solution to ensure good contrast between the protein 

and the solution, whilst a high D2O concentration is also required to reduce incoherent 

scattering and ensure each sample could be scanned in an appropriate time. The 

scattering length density of BSA was calculated at 2.97×10
-6 

Å
-2

 which appears 

comparable with other calculations [2]. Using the data from Table 4.2 a D2O fraction of 

0.75 has a scattering length density of 4.62 ×10
-6 

Å
-2
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Dynamic samples were created using 2 mg/mL concentration of bovine serum albumin, 

starting with an initial stock solution of 20 mg/mL, created from 200 mg of BSA into 10 

mL solution of ultrapure H2O. This was then diluted into in a 100 mM Tris, 100 mM 

NaCl (sourced Table 4.4) , buffer made up in D2O,  pD7.4. This was diluted at a 1:9 

ratio, with 70 µl of protein sample to 630 µl of buffer to give a final concentration of 2 

mg/mL BSA in a 90 % D2O buffer solution with a scattering length density of 5.62 ×10
-

6  
Å

-2
. 

Table 4.10: Component list of Tris buffer for dynamic experiments 

50 mL D2O Tris Stock Buffer 

Reagent Mass 

Tris(hydroxymethyl)aminomethane 0.6050g 

NaCl 0.2922g 

 

This was put directly in quartz cells of 2 mm pathlength in preparation to be placed in 

the beam. 

Data Collection 

Data from static samples were collected at two separate camera lengths: 2 m (run for 10 

min per sample) and 11.2 m (run for 20 min per sample). The collimation for the 

samples was the same distance as the camera length.  

Dynamic samples were run at 3 camera lengths: 2 m, 4 m, and 11.2 m, with the 

collimation distance being identical to the camera length. Samples were run at 2 

temperatures; 75 ˚C and 80 ˚C. At each temperature and camera length, the data was 

divided into 1 min increments. At 80 ˚C, this was performed for 60 minutes, and at 75 

˚C for 120 minutes to allow adequate time for aggregation to occur. In addition to the 
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aforementioned temperatures, a final run of 70 ˚C was compiled with the detector 

distance set at 4 m. This was allowed to run overnight. 

Over 1100 spectra were collected in total. GRASP [3] was used for data handling, 

including calculation of the beam centre, background and transmission corrections and 

radial averaging. For the dynamic runs this was completed for each individual spectrum, 

rather than an average of the set in order to analyse minute by minute changes 

associated with the aggregation process. 

4.4 Rotor Gene Fluorescence 

The Qiagen Rotor-Gene Q is primarily a real time PCR machine capable of rapidly and 

accurately heating samples whilst monitoring the UV absorbance or fluorescence of the 

sample. This also enables the Rotor-Gene Q to be used to monitor the unfolding of a 

protein with the use of a fluorescent probe which binds to the unfolded protein and 

fluoresces. Here the hydrophobic probe used was 1-anilinonaphthalene-8-sulfonic acid. 

This technique was used to specifically examine the thermal stability of bovine serum 

albumin in a 90 % D2O solution. In order to achieve rapid and accurate heating, small 

volumes are required; therefore a PCR tube containing 100 μL of solution was used. In 

order to mimic the conditions of the dynamic SANS experiments, identical reagents 

were used to create a 90 % D2O solution. This was created using 90 μL D2O (Sigma), 5 

μL of 300 μg/mL ANS (Fisher) and 200 μg of BSA (Sigma) to create a 2 mg/mL final 

protein concentration. This procedure was run in triplicate with a 90 % D2O 15 μg/mL 

ANS containing no BSA used as the reference. The melt was carried out at 6 ºC/min 

between 35 ºC and 95 ºC, where the fluorescence was measured under the “Blue” 

channel which provides Excitation at 365 nm and detection at 460 nm, allowing the 

change in fluorescence of the probe to be detected. 
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4.5 Environment Scanning Electron Microscopy (ESEM) 

Protein aggregate samples were measured using a Quanta 250 SEM in ESEM mode, 

using a Peltier stage for sample control and gaseous secondary electron detector 

(GSED) for detection. Aggregate samples produced using the UVLSS procedures were 

extracted from the cuvette after cooling to room temperature. Aggregate samples were 

placed into 2 mL eppendorf tubes and centrifuged  at 14000 rpm for 60 s in an 

Eppendorf Minispin Plus  centrifuge. Superfluous liquid was drained from the sample, 

and replaced with ultrapure water, and the aggregates were resuspended, before 

centrifuging again at 14000 rpm for 60 s. This process was performed three times to 

remove any salt from the sample, and prevent formation of salt crystals during 

microscopy. The aggregate sample was then transferred to an aluminium stub for  

loading onto the Peltier stage. The sample was allowed to equilibriate for 30 minutes at 

5 ºC, before the pressure was reduced to 2.84 Torr and imaging performed at 15 kV. 
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Chapter 5 : Aggregate Nucleation 

5.1 Introduction 

This chapter details the treatment and analysis of data from small angle neutron 

scattering experiments carried out at D22 at the Insituit Laue-Langevin, Grenoble. The 

aim of these experiments was to characterise the formation and growth of particulate 

aggregates of bovine serum albumin on a nanometre scale, and elucidate nucleation 

kinetics from these findings. 

5.2 Experimental Overview 

Bovine serum albumin at a concentration of 2 mg/mL was subjected to a temperature 

increase and then held at that temperature for a period of time. This was performed at 

three temperatures; 70 ºC, 75 ºC and 80 ºC, and repeated with scattering data collected 

at three detector distances; 2 m, 4 m and 11.2 m, (except the 70 ºC experiment in which 

3 samples were simultaneously measured at 4 m), in order for the scattering intesity 

changes over the full q range to be analysed. 

 5.3 Data Treatment 

Raw data from these experiments was collected in the form of a two dimensional 

scattering pattern (Figure 5.1). Initially a mask was applied over the area of the beam 

stop to negate any bad data pixels registering intensity values on an area of detector 

which is behind the beam stop. A number of corrections were applied to the data to 

extract the two dimensional scattering produced by the protein alone. Factors that 

needed accounting for were: sample container scattering, buffer scattering, the 

transmissions of these elements (including the sample itself), and residual scattering 

produced from the surrounding environment. 
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Figure 5.1: Raw data scattering pattern obtained from BSA at 75 ºC at 4 m. A mask has been applied over the 

beamstop. 

In order to correct for the scattering from external sources (those other than the protein 

sample) scattering from the sample container containing solely buffer was collected, and 

for the environmental scattering, cadmium was placed in the beam in order to absorb the 

full forward transmission. These data sets were collected for each temperature run and 

at each detector distance and collection time was identical to the collection time of the 

corresponding data set.  

In order to background subtract the data sets, transmission values for both the sample 

(Ts) and background sample (Te) were also obtained [1].  Where Ts (Equation 5.1), and 

Te (Equation 5.2) can be calculated from counts of the neutron beam before and after the 

sample. 

   
                                                   

                                           
 

Equation 5.1: Equation for calculation of sample transmission. 
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Equation 5.2: Equation for calculation of empty cell transmission. 

The values of these transmissions and the background scattering intensities can then be 

used to obtain the corrected value for the scattering from the sample (Equation 5.3). 

           
 

    
(      )  

 

  
(       ) 

Equation 5.3: Calculation of corrected intensity from transmission and background scattering values. 

Where Icorrected is the corrected scattering from the sample, and Is, Icd and IBk the initial 

scattering from the sample, cadmium, and empty cell respectively. This process, applied 

through use of the programme GRASP [1], enabled the scattering pattern of the sample 

to be obtained (Figure 5.2). It can be seen that when compared with the raw data 

sample, the corrected data contains a flat background at the higher angles; illustrated by 

the blue on the scale, whilst the scattering from the sample is still prominent at the 

lower angles. 

 

Figure 5.2: Corrected scattering pattern for BSA at 75 ºC at 4 m. 
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In order to define the q range of the scattering pattern, first the beam centre was 

determined so that the central pixel could be used as to calculate the distance from the 

centre to each individual pixel. GRASP will determine the central pixel from the 

intensity of the beam profile (Figure 5.3). This central pixel value is also used as the 

base point from which the radial averaging of the scattering pattern is performed. 

 

Figure 5.3: Attenuated beam profile on 4 m detector. Note: this is a magnified view when compared to previous 

scattering figures. 

As the protein samples were isotropic, each scattering pattern could be radially 

averaged, and intensity versus scattering vector could be obtained. Radial averaging 

takes the intensity of each set of pixels at the same distance from the centre, and 

averages the pixels at every distance. The resultant plot is shown in Figure 5.4. The 

radial averaging does not include any pixels whose average would be calculated from 

pixels behind the beam stop or mask, as there are not sufficient pixels to give reliable 

statistics on the intensities so close to the beam stop (Figure 5.5). The resultant data was 

then exported as a .csv file where it could be manipulated in the data handling program; 

Mircosoft Excel.  
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Figure 5.4: Intensity versus scattering vector plot of BSA at 75 ºC at 4 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beamstop 

Detector area omitted from averaging 

Detector area where radial averaging takes place. 

Figure 5.5: Diagram to illustrate omitted detector area from radial averaging process. 
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The data in its current form, although individually corrected, was not normalised across 

the 3 detector distances, therefore the intensities were not comparable (Figure 5.6). 

 

Figure 5.6: Corrected scattering data for the first minute of BSA at 75 ºC at 3 detector distances. 

In order to make the three data sets combine into one comparable set of data, both the 4 

m and 11.2 m data were normalised using a scaling factor so that the intensities of the 

data at each scattering vector were of similar values. In order to perform this, the data 

was normalised to the 2 m data, as that had a sufficient flat background from which to 

start from (Figure 5.7). This normalisation was performed for both the 80 ºC and 75 ºC 

data sets, with each normalisation being performed across the entire time course of data. 

Points at which the intensities from different detectors overlap showed good agreement 

with where the errors on the data points began to increase (the error bars in Figure 5.6 

and Figure 5.7 have been omitted for clarity). Additionally, as the intensity of the 4 m 

and 11.2 m data were scaled, the same scaling was applied to the magnitude of the 

errors in order to maintain the proportions between data magnitude and error bar size. 

The data normalisation maintained its integrity throughout the time course of each 

experiment (Figure 5.8)  
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This completed the handling of the raw data, which was now in a format suitable for 

analysis. 

Figure 5.7:Normalised scattering data for the first minute of BSA at 75 ºC at the 3 detector distances. 

 

 

Figure 5.8: Normalised data of BSA at 75 ºC, after 228 minutes 
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5.4 Data Analysis – Native Protein 

An initial scattering plot of bovine serum albumin (Figure 5.9) before heating was 

produced from the data collected across the 3 detectors ranges complete with errors. The 

magnitude of error bars increases at the inner and outer limits of each data set, owing to 

the lower number of pixels contributing to the intensity value at the specific q value. 

Where the error bars are large the overlapping data set contains more reliable data, 

therefore the majority of the range retains good statistics. 

 

Figure 5.9: Log intensity against scattering vector  plot for native BSA. 

When both axes are placed on a logarithmic scale, the surface parameter of the native 

protein can be elucidated (Figure 5.10). This figure shows that as the gradient is seen as 

q
-4

 the protein can be seen as spherical, which is to be expected from a folded protein in 

0.00 0.05 0.10 0.15 0.20

0.1

1

10

I

Q/A
-1q 

/c
m

-1
 



127 

 

its native state such as bovine serum albumin is here. Some of the more erroneous data 

points have been omitted for clarity. 

 

Figure 5.10: Log-log plot of native BSA. 

The size of the particles was also estimated. The monomer was homogenous and in a 

dilute solution therefore the Guinier equation could be used to obtain a radius of 

gyration for the particle.  

      
(
    

 
)
 

Equation 5.4: Guinier equation. 

Equation 5.4 states the Guinier equation where r is given as the radius of gyration. This 

was applied to the scattering pattern of the BSA in solution (Figure 5.11). Equation 5.4 

was applied to the data only over the applicable Guinier region, where q×Rg > 1.3 [2]. 

The extracted radius of gyration value was 33.9 ±0.9 Å. This appears in agreement with 

other values obtained for the radius of gyration of BSA [3-5], where the value is 
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generally considered to be around 30 Å. The value obtained here appears to be 

marginally larger, which may be attributed to the destabilising effect that D2O may exert 

on the protein. This reported value can be stated with confidence however, as all native 

BSA samples reported near similar radius of gyration values. 

Figure 5.11: Guinier fit of native BSA. 

As the native structure of BSA is solved [6] (PDB code 3V03) it is possible to fit the 

theoretical solution scattering of the structure to the obtained scattering pattern. This can 

be performed using the programme CRYSON [7]. This programme takes the data input 

in the form of the PDS file and creates a spherically averaged scattering pattern which 

takes into account the hydration shell and extent of deuteration present in the sample. 

CRYSON attempts to minimise the difference in the chi-squared value between the 

predicted and experimental data to give values for the hydration levels and envelope 

size of the protein. This was performed for BSA, however: the PDB structure of BSA is 

in the dimeric form, and as the studied solution of BSA should be monomeric a PDB 
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file was created involving solely the monomer chain (this function is not available in 

CRYSON, but in the near identical father programme CRYSOL [8], available in the 

same ATSAS package). 

 

Figure 5.12: CRYSON fit of BSA crystal structure to obtained scattering data. Error points are identical to Figure 5.9, 

and omitted to show the quality of the fit. 

The fit of the BSA theoretical structure (red line) shows an excellent fit to the obtained 

scattering data in Figure 5.12. This agreement was reached assuming an 80 % 

deuteration of available surface exchange atoms, and produced values for the volume of 

BSA at 82666 Å
3
 and a radius of gyration of the envelope of 32 Å.  The deuteration 

appears in agreement with the proposed levels of deuteration from BSA molecules [9, 

10] whilst the radius of gyration is in good agreement with results from the Guinier plot 

(Figure 5.11). 

To assess the quality of the native protein fold, a Kratky plot was produced of the native 

BSA sample (Figure 5.13). The bell shape with a decrease to the baseline of this plot is 

a prime example of a Kratky plot of a globular folded protein sample [11].  

1.00E-03

1.00E-01

1.00E+01

0.00E+00 2.00E-01 4.00E-01

I /
cm

-1
 

q /Å-1 



130 

 

 

Figure 5.13: Kratky plot of native BSA. Error points are identical to Figure 5.9, and omitted to show the quality of the 

fit. 

These initial data treatments show that the 2 mg/mL bovine serum albumin in a 90 % 

D2O solution is in a monomeric form with a radius comparable to that seen in other 

experiments. It is in a natively folded, globular state, with 80 % of deuterated surface 

hydrogens. All results shown here are comparable with the literature. Thus the 

experiments carried out here can be considered to probe the behaviour of the native 

BSA protein molecule under heating. 

5.5 Data Analysis – Heat Increase 

Similar methods can be applied to the protein during the heating phase of the 

experiment to probe any structural changes that occur during the heating of the protein 

solution.  
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Figure 5.14: Intensity versus scattering vector plots of BSA at 25 ºC (closed diamonds) and after just reaching 80 ºC 

(open diamonds) taking 7 minutes. Error points are omitted to allow comparison. 

During the heating phase of the experiment, it can be seen that there is very little 

difference in the intensity plot of the native BSA sample when compared to that of the 

sample which has been heated (Figure 5.14). In this example the frame is taken as the 

one preceding aggregation detection. In this case there are only seven frames leading up 

to the aggregation, however the same can be seen to be true of both the experiments at 

70 ºC and 75 ºC where 25 frames are present, representative of 25 minutes (Figure 

5.15). Both 75 ºC and 70 ºC exhibit similar initiation times, however only the 75 ºC data 

is shown here as it is presented over a larger q range than the 70 ºC data. As can be seen 

in both figures, there is little change in the intensities at low q, therefore there are now 

larger structures appearing (i.e. aggregates) and there appears to be minimal difference 

in the scattering present at high q. 
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Figure 5.15: Intensity versus scattering vector plots of BSA at 25 ºC (closed diamonds) and after just reaching 75 ºC 

(open diamonds) after 25 minutes. Error points are omitted to allow comparison. 

The y axis of a Kratky plot factors the intensity by q
2
, which results in any small 

changes in the high q intensity to be amplified. This gives a good indication of any 

differences in the plots during the heating stage, and will also assess the quality of the 

protein fold during heating. The ramp up to 75 ºC heating is used as a prime example 

(Figure 5.17). In the initial stage at 25 ºC, the Kratky plot peaks and drops down to the 

baseline as was seen in the Kratky plot of the native protein (Figure 5.13). As the 

temperature rises to 45 ºC, there is still very little deviation from the baseline at the 

higher q values. At a temperature of 65 ºC, there is a significant increase in the baseline 

of the Kratky plot at high q. This is indicative of the protein being in the partially folded 

state and a loss of globular shape. This transition in the protein structure in the range 

leading up to 65 ºC appears to correspond to a melting temperature seen in a differential 

scanning calorimetry study of BSA [12] in which the melt range was seen to be between 
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56 ºC and 69 ºC. At this temperature the loss of intra protein interactions must be 

sufficient enough to change the overall form of the protein to a slight random coil-like 

structure [13]. 

The conditions for these experiments require the protein to be present in a 90 % D2O 

solution. In order to understand the effect this may have upon the unfolding 

characteristics of the BSA molecule, a fluorescence study was undertaken. The 

fluorescence probe 1-anilinonaphthalene-8-sulfonic acid was used to probe hydrophobic 

exposure on the protein during a heat ramp. This was performed for increasing 

concentrations of D2O in the buffer solution. 

 

Figure 5.16: Change in fluorescence over time of ANS with BSA in 90 % D2O solution. 

It was found that increasing concentrations of D2O in the sample buffer led to a slight 

decrease in the melting temperature of BSA. The melt temperature for BSA in 0 % D2O 

was calculated at 83.8 ºC whilst for BSA in 90 % D2O it is 78.4 ºC. These values also 

correlate with the figures given from calorimetry results [12]. Figure 5.16 illustrates the 

unfolding characteristics of BSA at 90 % D2O concentration, comparable to that of the 

SANS experiments detailed here. 
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Figure 5.17: Kratky plot of BSA heated up to 75 ºC, at 25 ºC (closed diamonds), 45 ºC (open diamonds), 65 

ºC(closed squares), 75 ºC (open squares). Error bats are omitted to show difference in the plots. 

The deviation from the baseline at high Q is seen to increase further as the protein in 

solution reaches 75 ºC. This indicates further unfolding of the protein structure. At this 

stage, the protein is still largely globular, as is evident in the remaining peak presence in 

the Kratky plot at 75 ºC. This however, is the total extent of the protein unfolding seen 

in the Kratky plot before aggregation takes place. Continued exposure of the protein to 

this temperature does not lead to any further unfolding to the BSA molecule, which 

would be illustrated in the Kratky plot as a continuing increase in the q
2
I intensity to 

high q resulting in no peak in the plot. This correlates well with the literature which 

indicates that complete unfolding of BSA may not occur until almost 90 ºC [14].  This 

data shows that only partial unfolding of the BSA molecule is required in order for 

aggregation to occur. This partial loss of tertiary structure is sufficient for the 

hydrophobic areas of protein which contribute to this loss of structure to cause binding 
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between protein monomers and initiate aggregation. This particulate aggregation 

behaviour appears concurrent with other amorphous aggregation of BSA within the 

literature, in terms of only perturbed tertiary structure being necessary for aggregate 

formation [15]. 

 

Figure 5.18: Guinier plot of BSA after 7 minutes of heating to 80 ºC 

Figure 5.18 illustrates the Guinier plot of the BSA before aggregation during heating to 

80 ºC. The plot shows that the radius of gyration of the monomer has increased slightly 

at 35.13 ±1.86 Å, so this increase can be taken with minimal certainty as it appears 

within the range of error in the monomer. Similar values are also seen in the additional 

experiments where the pre aggregation frames showed radius of gyration values of 

36.40 ±1.9 Å and 36.20 ±0.74 Å for the monomer at in the 75 ºC and 70 ºC runs 

respectively (Figure 5.19 and Figure 5.20).  
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Figure 5.19: Guinier plot of BSA after heating to 75 ºC for 25 minutes. 

 

Figure 5.20: Guinier plot of BSA after heating to 70 ºC for 24 minutes. Error bars are the size of the points. 
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These values for the radius of gyration in combination with the Kratky plots illustrate 

the partially folded swollen nature of the BSA intermediates which are present before 

aggregation occurs. These can be considered to be the aggregate prone intermediates 

which form the initial aggregate nuclei. 

5.6 Data Analysis – Aggregation 

After the increase in heat of the protein sample, protein aggregation can be seen to 

occur, characterised by an increase in intensity at low Q (Figure 5.21). This is indicative 

of larger structures becoming present in the illuminated sample volume, in this case; 

protein aggregates. 

 

Figure 5.21: Intensity plot of BSA at 80 ºC before (open diamonds), and 10 minutes into the aggregation process 

(closed diamonds) 
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The protein sample is held at an isothermal temperature for the remaining duration of 

the experiment. As this continues, the intensity at high Q is seen to increase with time 

(Figure 5.22). This is caused by the continual increase in size of the large structures 

within the sample. 

 

Figure 5.22: Progression of scattering intensity from BSA whilst heated at 80 ºC for  1 min(closed squares), 10 

min(open squares), 20 min (closed circles),30 min (open circles) 40 min (closed triagnles), 50 min (open triangles) 

From the log intensity plot of the initial BSA monomer (Figure 5.10), we can see how 

the monomer can be considered as a sphere, although this is an approximation of its 

perturbed globular form. As aggregation progresses, the structures within the sample 

maintain a spherical form (Figure 5.23), which is to be expected, as it is shown that 

aggregates formed at around this pH will form spherical aggregates [16, 17]. As the 

temperature is maintained, the structures formed no longer adhere to a q
-4

 decay, instead 

dropping off at a rate of ~q
-2.2

 indicative of a Gaussian chain. This can be caused by the 

clustering of particulate aggregates together in order to form these large chains [13]. 
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This is a feature only observed in the experiments performed at 80 ºC, in both the 75 ºC 

and 70 ºC experiments, the profile of the log intensity graphs remain similar to that of 

the native state (Figure 5.10). This suggests that during these runs the protein aggregates 

maintain their spherical form throughout the experiment and do not cluster into chains. 

Reasons why this may be the case will be considered further on in this chapter. 

 

Figure 5.23: Log Log plot of BSA 1 min, 10 mins and 30 mins into aggregation at 80 ºC, ordered through the depth 

of the graph. 

As previously noted, the BSA molecules can be considered to be spherical (Figure 

5.10). The scattering from dilute spheres of known scattering length density contrast, 

scattering volume and radius can be modelled using the Rayleigh equation [18]. For a 
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Equation 5.5: Rayleigh scattering from homogenous spheres. 

As this is a dilute system, S(q)=1, therefore the equation above describes the scattering 

from the BSA molecules completely, when considered as spheres. 

When Equation 5.5 is fitted to the monomer, a good fit is achieved (Figure 5.24).  The 

Rayleigh slope fits well at low q, where the majority of the high quality data lies. At 

higher q, the low resolution data deviates from the Rayleigh plot, which will be due to 

the low count time taken over this range, and some smearing effects. The radius 

reported from the Rayleigh plot of 36.5 Å does appear small in comparison to the radii 

of gyration achieved from Guinier plots of the same data, it does bear some agreement 

to other values for the radius of hydration presented in other papers on BSA [19], where 

the value was given as 33.9 ±2.7 Å.  

 

Figure 5.24: Fit of Rayleigh scattering from a homogenous sphere to scattering intensities from BSA monomer. 

0.0 0.1 0.2 0.3

1E-3

0.01

0.1

1

10

I 
/ 
c
m

-1

Q (A
-1
)

R= 36.46R=36.5 Å 



141 

 

It has been shown from the scattering plots that both the monomer and the aggregates 

can be considered as spheres. By creating a model based on the Rayleigh scattering 

from spheres in Equation 5.5, values can be obtained for the radius of the aggregate at 

each time point, along with the relative ratio between scattering from spherical 

monomer, and scattering from spherical aggregates. For form factor amplitudes from 

monomers Fm(q) of radius Rm and aggregates Fa(q) of radius Ra: 

  ( )   
 [   (   )       (   )]

(   )
 

 

Equation 5.6: Amplitude for Rayleigh scattering from monomer. 
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Equation 5.7: Amplitude for Rayleigh scattering from aggregate. 

 

Where: 

 ( )     
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Equation 5.8: Scattering equation for dual population of monomer and aggregate spheres. 

Where: 

        

Equation 5.9: Calculation of volume fraction of aggregate. 

Where Vm is the volume fraction of the monomer, hence Va will return the volume 

fraction of the aggregate. I0 is a scaling factor, v the volume of the scattering bodies, and 

Δρ is the difference in scattering length densities before the protein and the solution. 
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As in Equation 5.5, there is considered to be no particle interactions as the number of 

particles is the same or decreasing as aggregation occurs. If this is found not to be true, 

then the difference between the modelled and collected data should yield a curve with 

resemblance to that of a structure factor, with S(q) tending towards 0 at low q. With the 

initial volume fraction and monomer radius known, it is possible to model the ratio 

between the Va and  values by subjecting them to the known limit (that of the initial 

monomer volume fraction) whilst allowing the aggregate radius to be free to fit to the 

scattering curve provided the aggregate radius was larger than that of the monomer. 

This was applied to each scattering plot run at the three experimental temperatures, with 

the resultant data being a product of fitting this model to over 300 scattering plots. 

 

Figure 5.25: Dual population sphere fit to 20 minute frame of BSA at 75 ºC. 

Figure 5.25 is an example of the model fit fit to the data, created using Equation 5.8. 

The model once again shows an excellent fit at the majority of the data, which is present 

at the low q scale and also with the high q data. There is also small evidence of the data 
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showing some fit to the minima within the model fit to the plot, albeit with the presence 

of data points with very high error in these regions. 

Complete fitting of the data set for each temperature run yields the values of both 

aggregate radius and monomer fraction over a time course. 

 

Figure 5.26: Aggregate radius growth of BSA over time when incubated at 80 ºC. 

Data is normalised so that the first time frame represents the first detection of aggregate. 

As the initial aggregate size detected is of the order of 90 Å, whilst the monomer only 

has a radius of ~30 Å, it is possible that aggregates may exist at a smaller size range 

than this, but they are either a) indistinguishable from the monomer in terms of the 

model or b) not stable enough to maintain the size population. 

Figure 5.26 illustrates the rapid growth in aggregate radius that occurs initially, 

followed by a much slower growth rate when the protein is around 600 Å in radius. This 

effect is mirrored in Figure 5.27 where the monomer is depleted rapidly until 1000s into 
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aggregation. From this stage the depletion of monomer is slowed and lies in good 

correspondence with the slow in growth rate of radius in Figure 5.26. 

 

 

Figure 5.27: Monomer fraction depletion over time of BSA at 80 ºC. 

A noticeable discrepancy is visible in Figure 5.27 over the initial time frames where 

there is some variation in monomer fraction that does not tend towards 0 as time 

decreases. This may be the result of a low amount of scattering coming from the 

aggregates at this stage due to their low size and concentration. As a result the model 

may have difficulties separating this scattering from the monomer, leading to a higher 

error in the points at the start of the experiment. When compared together (Figure 5.28) 

at these initial values will also show how some dependence exists between these two 

parameters within the model; however this only seems to exist in instances of low 

aggregate scattering. 
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Figure 5.28: Monomer fraction (closed squares) and aggregate size (open squares) progression over time for BSA 

incubated at 80 ºC. 

 

Figure 5.29: Monomer fraction (closed squares) and aggregate size (open squares) progression over time for BSA 

incubated at 75 ºC. 
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Figure 5.29 and Figure 5.30 illustrate similar characteristics of the aggregation of BSA 

at lower temperatures (75 ºC and 70 ºC respectively). Similar trends are present in these 

plots to those of 80 ºC; the emergence of monomer fraction appears at circa 0.85, whilst 

aggregate size emerges at 100 Å. There is an instance of aggregates emerging at 45 Å in 

Figure 5.29, however the errors related to this data are significantly large. This will be 

due to both the rapid growth change that may be occurring over the minute acquisition 

time for these data points and the low percentage of scatter produced from this small 

concentration of aggregates. 

 

Figure 5.30: Monomer fraction (closed squares) and aggregate size (open squares) progression over time for BSA 

incubated at 70 ºC. 
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seconds: Figure 5.30). All plots do show a consistent decline and tend towards zero, 

indicating that aggregation will continue until the entire monomer population is 

depleted. 

The aggregate radii are seen to form more quickly and result in larger sizes (800 Å at 80 

ºC over 100 Å at 70 ºC). This correlates with the monomer depletion plots, where slow 

linear monomer depletion in the latter stages is mirrored by slow rate linear growth. 

This may indicate that the aggregate population is stable, as the changes in rates appear 

proportional. 

Aggregate concentration Ca, assuming all aggregates are of identical spherical size can 

be calculated by Equation 5.10, from the monomer fraction Mf and number of 

monomers in each aggregate AN, where C0 is the initial monomer concentration of the 

BSA at 3.01×10
-5 

M. 

   
       

  
 

Equation 5.10: Calculation of aggregate concentration. 

The number of monomers in an aggregate is a ratio between the volume of the 

aggregate and the volume of a BSA molecule, where its radius; Rm is taken as 34.37 Å 

and aggregate radius Ra is derived from the data. 

   
  

 

  
  

Equation 5.11: Calculation of number of monomers in an aggregate. 
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Figure 5.31: Number of monomers in aggregates (closed squares) and aggregate concentration (open squares) for 

BSA at 80 ºC. Errors are of magnitude replicated in Fig 5.29. 

 

Figure 5.32: Number of monomers in aggregates (closed squares) and aggregate concentration (open squares) for 

BSA at 75 ºC. Errors are of magnitude replicated in Fig 5.30. 
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Figure 5.31 illustrates the aggregation behaviour of BSA at high temperature. Initially 

the aggregate concentration starts high (~1.4×10
-7 

M).  This is the first detectable 

aggregate concentration, therefore these aggregates are considered to have formed at 

sizes and concentrations which the model is unable to separate from the scattering 

produced from the monomers. The closed squares in Figure 5.31 indicate that the initial 

aggregates consist of 30 monomers before rapid growth in size, with an “S” shaped 

growth where the slower phase of aggregate growth is occurring at around 8000 

monomers in size and the aggregate concentration remaining stable at ~ 2.9×10
-9 

M. 

Figure 5.32 illustrates a similar trend to that seen in at 80 ºC, with the aggregate 

concentration decreasing whilst the size of aggregates increases. Both plots are less 

extreme than those seen at 80 ºC, where the resultant aggregates contain fewer 

monomers. 

 

Figure 5.33: Number of monomers in aggregates (closed squares) and aggregate concentration (open squares) for 

BSA at 70 ºC. Errors are of magnitude replicated in Fig 5.31. 
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Figure 5.33 illustrates the aggregation behaviour of BSA at 70 ºC. Here it can be seen 

that the number of monomers in an aggregate are present at a consistent size, 

representative of around 42 monomers in each aggregate. The concentration of 

aggregates shows an initial decrease (which may be within experimental error) before a 

rapid growth with an exponentially decreasing rate. The concentration of the aggregates 

maintains a steady increase through the latter stages of the experiment which it appears 

would continue past the final timeframe of the experiment. 

At the high temperatures, the decrease in aggregate concentration indicates that small 

aggregates may be combining together to form larger aggregates, which certainly 

appears possible as the monomer content in each aggregate at minimum doubles over 

each time frame. This appears a more robust argument for the aggregate concentration 

decrease over the unstable aggregates reverting to monomeric form, as at a monomer 

count of 30, the aggregate would be expected to be stable as it is much larger than other 

examples of stable aggregate [20, 21]. A similar mechanism can be applied to the 

aggregation behaviour at 75 ºC, as Figure 5.32 exhibits the same attributes as Figure 

5.31.  

This aggregation behaviour can be described in terms of the unfolding of the BSA 

molecule. Thermal unfolding of BSA begins at around 60 ºC and continues until 90 ºC 

[12], however the shift seen with the behaviour in 90 % D2O is shifted down by ~5 ºC 

(Figure 5.16). At 80 ºC the BSA monomer is structurally perturbed and a large fraction 

of the molecule has exposed hydrophobic regions which are highly “reactive” (capable 

of self association and). In order for protein molecules to associate, hydrophobic regions 

on the each colliding protein must interact. The results indicate that these “reactive” 

monomers interact with each other in a manner which maintains or increases the overall 

“reactive” surface area percentage of the small aggregate. As the concentration of free 



151 

 

monomer is solution is still large (Figure 5.28), it is the increased reactivity of the small 

aggregates which drives their self association until they decrease in concentration. 

These small aggregates have a much higher “reactivity” than the perturbed monomer, 

therefore collisions between small aggregates is the driving force in aggregate growth, 

characterised by the large aggregate growth change whilst there is little monomer 

depletion. Although this appears novel for particulate aggregates, the association of 

oligomers during a protein nucleation “burst phase” has been modelled in the formation 

of fibrils [22, 23].  

The resultant aggregates formed from the clustering of small aggregates are less 

“reactive” than the small aggregates. A separate explanation would be that the 

aggregates are at such a low concentration in relation to the concentration of monomer 

that they fail to interact. However, at an aggregate concentration of 6×10
-8 

M, there is a 

markedly different rate of aggregate growth at 80 ºC and 75 ºC (Figure 5.31, Figure 

5.32). At 80 ºC at a concentration of 6×10
-8 

M aggregates, proposed small aggregate 

clustering is occurring, whilst at 75 ºC, it is the proposed monomer addition. This 

indicates that the reactivity of the respective aggregates must differ. The emergence of 

the larger, less “reactive” aggregates results in monomer addition becomes the 

prevailing growth mechanism, which would be more thermodynamically favourable 

than new aggregate nuclei forming [24], where aggregate concentration is seen to be 

stable, and aggregate growth slow, due to the small impact on radius each subsequent 

monomer provides to the aggregate (Figure 5.31), and the low reactivity of the two 

particles (when compared to the small aggregates). A similar method is true for the 

experiment at 75 ºC, where the extent of monomer unfolding is less than that at 80 ºC, 

but still sufficient enough to increase the “reactivity” of the small aggregates, leading to 

aggregate self association as before. 



152 

 

At 70 ºC however (Figure 5.33) the extent of protein monomer unfolding is low. As a 

result, structurally perturbed monomers will still associate, however the “reactive” 

hydrophobic surface are of the aggregate may not increase. Therefore as the aggregate 

gets larger, the percentage of “reactive” surface area decreases. With growth this would 

decrease to such an extent that the aggregate becomes essentially non-reactive, as the 

chance of a “reactive” monomer colliding with the “reactive” surface area on the 

aggregate becomes miniscule. Therefore self association of “reactive” monomers is the 

sole method of aggregation when aggregates reach sufficient size, which results in both 

the size of aggregates remaining constant throughout the experiment, and the aggregate 

fraction increasing, with the rate relative to the monomer concentration. Both of these 

features can be seen in the plot in Figure 5.33.  

5.7 Data Analysis – Final Aggregate Structure 

Samples pre-aggregate at temperatures between 70 ºC to 78 ºC in 2 ºC increments were 

studied using SANS in order to determine the final overall structure of the aggregates. 

Additionally any trend between incubation temperature and structural features was 

investigated. 
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Figure 5.34: A log scattering plot of BSA aggregates formed at 78 ºC. Error bars are the size of the points. 

Figure 5.34 illustrates the analysis of the scattering plots in order to obtain a fractal 

parameter for the aggregates. The slope of – 2.3 indicates a mass fractal with irregular 

structure, possibly resembling that of a Gaussian chain, which would ideally give a 

value of -2. This represents the joined spherical aggregates clustered together in the 

form of the strand or aggregate network. Similar findings have been seen with the use of 

SEM [16].  

Figure 5.35 indicates the fractal parameters of the scans run on the 10 separate 

aggregate samples. It can be seen that there is little variation, or trend with temperature, 

in addition the repeat samples show good reliability in the samples. It can be assumed 

that there is no significant change in structure to the overall clustered aggregate, despite 

the effect temperature has on the size of the spherical aggregates [16] 
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Figure 5.35: Fractal parameters for BSA aggregated at varied temperatures. Each temperature value contains a repeat. 

 

5.8 Conclusion 

As this work complements work undertaken in following sections, the conclusions from 

this work are present within the conclusion section (Chapter 8), to prevent repetitive 

statements and allow cross-chapter discussion. 
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Chapter 6 : Aggregation Kinetics 

6.1 Introduction 

This chapter details experiments performed using ultra violet light scattering 

spectroscopy to elucidate the particulate aggregation kinetics on three protein structures; 

bovine serum albumin, lactoglobulin, and myoglobin. The change in aggregation rate 

across a temperature range is measured to extract the kinetics of each system, and the 

effect changes to the protein solution have on the aggregate growth kinetics is also 

studied. 

6.2 Experimental Overview 

 

Figure 6.1: Temperature profile recorded for a heat ramp up to an isothermal temperature of 67.5 ºC 

Protein in buffer solution at a concentration of 2 mg/mL was placed into a temperature 

controlled UV spectrophotometer, initially at 25 ºC. The sample was then heated up and 

held at the desired temperature (Figure 6.1). During both the heating rate and the 

isothermal hold, absorbance spectra were taken of the protein sample across a range of 

wavelengths. At the exact time a spectrum is taken a temperature probe registered the 

temperature within the protein sample to provide a data set which contains a spectra and 

temperature value for each time point in the aggregation process. This data collection is 

continued until the aggregation is complete, at which point the data logging process is 
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stopped. Further details on this procedure can be found within the methods and 

materials section. 

6.3 Data Analysis 

This section details the analysis process undertaken on each aggregation experiment to 

produce the data discussed further in this chapter.  One experiment is used as an 

example throughout to show the process and comparable features of each plot. 

In order to ascertain a suitable temperature range over which to perform the aggregation 

experiments, an initial experiment on a protein in solution was performed whereby the 

temperature was increased at a constant rate of 0.02 ºC/min from 25 ºC to 95 ºC. The 

absorbance of the protein was measured at a single wavelength; 320 nm. This 

experiment would yield information on at which temperature aggregation begins to be 

detectable using this experimental setup. An example is shown for myoglobin (Figure 

6.2).  

 

Figure 6.2: Temperature profile of β -lactoglobulin in 100 mM sodium phosphate, 100 mM NaCl pH 5.8. heated at 

0.02 ºC/min 
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At 63 ºC there is a detectable change in the absorbance. Beyond this value aggregation 

is prevalent, indicated by the continued increase in absorbance. This appears to agree 

well with ranges stated in other publications, however some attention must be paid to 

the role the solution effects have on the aggregation temperature [1, 2]. The value 

obtained here was then used as a starting reference for studies using this sample.  

 

Figure 6.3: Absorbance spectra of lactoglobulin in 100 mM sodium phosphate, 100 mM NaCl pH 5.8 heated to 68.1 

ºC. Time duration is depicted by increasing absorbance. 

 

Figure 6.3 illustrates spectra recorded for lactoglobulin whilst heating to 68.1 ºC. As the  

the protein is exposed to the high temperature over time, the absorbance increases. It 

can be seen that at the lower wavelengths (early aggregation), the increase in 

absorbance is larger than at the higher wavelengths (late aggregation). This wavelength 

dependent scattering will be used to extract information on the particle sizes within the 

protein sample. It can be seen initially that there is very little change in absorbance as 
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the protein solution is heated up until aggregation begins; characterised by the increase 

in absorbance across the spectrum. This increase is due to an increase in scattering; 

either due to more particles scattering the light, larger particles scattering the light, or a 

combination of the two. Towards the top of the scale the change in absorbance spectra 

abates; this indicates no change in scattering is occurring so the particles are no longer 

growing in size or number. Finally the drop in absorbance is representative of the 

aggregates coming out of solution and settling towards the bottom of the cell outside of 

the beam area, indicating an apparent drop in aggregate concentration. This stage is 

known as clustering of which there is no known model, therefore data collection stops 

once the absorbance peak is reached.  This therefore indicates an end to the aggregation 

process. 

 

Figure 6.4:Aborbance at 320 nm over time of lactoglobulin in 100 mM sodium phosphate, 100 mM NaCl pH 5.8. 

Temperature is indicated by the line. 
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Figure 6.4 illustrates the same experiment as Figure 6.3, shown from the absorbance at 

320 nm with time values associated with them. The initial flat period at the start of the 

graph relates to the heating up of the protein in solution at a constant heating rate from 

25 ºC.  The start of the absorbance increase corresponds well with the temperature 

reaching its maximum value. Whilst the temperature is held isothermally, aggregation 

proceeds, as indicated by the increasing absorbance, until it reaches its maximum. At 

this point the aggregation process is complete. After the maximum absorbance peak, the 

decrease in absorbance can be interpreted as the aggregates decreasing in size or 

number, or this could also  be caused by the particles clustering, causing localised 

concentration fluctuations, which would be seen as a decrease in absorbance [3]. 

In order to analyse the spectra collected from the aggregation experiments a correction 

needs to be applied to the raw data. The spectrophotometer does not take absorbance 

measurements at each wavelength at the same time, therefore each spectra needs 

correcting to the absorbance value of the sample at the time the first spectrum value was 

taken. In order to perform this correction, the time period for the spectrophotometer to 

take a single scan was recorded across the applicable wavelength range. 

Table 6.1:Time between first data point collection and selected wavelength collection point. 

Wavelength 
/nm 

Time from first collection point /s 

420 0 

400 2.66 

380 5.32 

360 7.98 

340 10.64 

320 13.3 

 

In order to correct the data so that all absorbance values in a spectrum correspond to the 

same time point, values from Table 6.1 were used to correct the raw spectrum data.  



162 

 

 

Figure 6.5: Calculation of corrected absorbance values 

     
(     )(       )

(     )
    

Equation 6.1: Equation for calculation of corrected absorbance. 

Figure 6.5 and Equation 6.1 illustrate the calculation for the corrected absorbance value 

of the second spectra CA2 at y nm. Where x is the time correction value taken from 

Table 6.1, A1 and A2 the absorbance values for the first and second spectra absorbance 

value at y respectively and T1 and T2 the time values for the first and second absorbance 

values at y. This is performed for all absorbance values across each wavelength of each 

spectra. As can be seen from Figure 6.6 which illustrates the full extent of the 

corrections, there is no difference between raw and corrected data at the large 

wavelengths as this is where the absorbance scan begins, however the discrepancy 

becomes larger as the wavelengths get shorter. It is worth noting that this correction 

method assumes a linear change in absorbance between each successive spectra, 
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therefore it is important to have a large number of spectra in an aggregation experiment 

in order to maintain the accuracy in the shape of the absorbance curve. 

 

Figure 6.6: Corrected absorbance spectrum of lactoglobulin in 100 mM sodium phosphate, 100 mM NaCl pH 5.8 

(dotted) compared with raw data values (black). 

The scattering exponent must be determined from these corrected spectra in order to 

determine the particle size. The wavelength dependent scattering follows a power law 

where: 

 ( )      

Equation 6.2 Equation for wavelength dependent absorbance. 

The absorbance A at wavelength λ is given by Equation 6.2 where α is a constant and β 

is the scattering exponent. This exponent can be calculated from the fit of Equation 6.2 

to each spectra or by obtaining a gradient from a plot of log A versus log λ, see Equation 

6.3. 
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   ( ( ))     ( )         ( ) 

Equation 6.3: Scattering exponent calculation in the terms of y=mx+c. 

This scattering exponent is calculated for each spectra obtained within the experiment to 

give a scattering exponent for each time value calculated. An example of such can be 

seen in Figure 6.7. 

 

Figure 6.7: Scattering exponent lactoglobulin in 100 mM sodium phosphate, 100 mM NaCl pH 5.8. at 67.1 ºC 

 Figure 6.7 shows how the scattering exponent has a meaningful value when the 

absorbance in the solution begins to rise. Before the drop in the scattering exponent, 

there is no absorbance or scattering, and so the exponent is zero. The scattering 

exponent begins to rise in conjunction with the rise in absorbance seen in Figure 6.4 and 

will even continue to rise despite the absorbance falling off after reaching a peak. This 

may indicate that there are larger structures present, despite the absorbance tailing off, 

indicating a decrease in concentration. This gives some support to the idea of clustering 
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occurring after the absorbance has reached its peak and particulate aggregate formation 

and growth has occurred. 

The theory section (Chapter 3.4) details how the scattering exponent can be converted in 

to a spherical protein diameter using the refractive indices of the protein and the 

medium. This procedure produces a sixth order polynomial function which allows the 

conversion of scattering exponent to diameter. 

 

Figure 6.8: Diameter versus time plot of lactoglobulin in 100 mM sodium phosphate, 100 mM NaCl pH 5.8. at 67.1 

ºC. Error bars are the size of the points. 

As can be seen in Figure 6.8, the plot shows very similar resemblance to that of Figure 

6.7, except the values of the y axis now represent the diameter values of the protein 

aggregate. It is also worth noting that before the diameter increase there are some 

missing points from the plot. This is a common feature during this part of the plot, 

where the scattering exponent value converts to a negative diameter value which is 

clearly nonsensical. This highlights a limitation within the experiment where the 

smallest sizes detected are around 50-100 nm based on the protein system and can be 

attributed to the constraints of using UV light to probe such small length scales and also 
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the rapid dynamic growth of the system at these time points at length scales below 50 

nm. 

The growth curve in Figure 6.8 grows exponentially before levelling out at a maximum 

diameter value. In order to determine the number of aggregates formed within the 

sample, this maximum diameter value must be accurately determined. This is performed 

by fitting an exponential function to the diameter growth data (Equation 6.4). Where the 

diameter; d at time; t is determined from the maximum diameter dm, a fitting parameter 

d0, and a time constant τ. 

 ( )        
    

Equation 6.4: Fitting function to determine final diameter value. 

 

Figure 6.9 Fit of Equation 6.4 to diameter values of in 100 mM sodium phosphate, 100 mM NaCl pH 5.8 at 67.1 ºC 
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When the fit of the function from Equation 6.4 is applied to the data in Figure 6.8 it can 

be seen that the equation fits very well to the data (Figure 6.9). To ensure a successful 

fit, the data towards the end of the incline was used over that at the start of the 

aggregation process as it leads to a more accurate determination of the final diameter 

than that data at the start of the run, as determined by R
2
 values. 

It is taken that the protein aggregates have reached their maximum size due to total 

depletion of the monomer, therefore all the protein is present within the aggregate. It is 

therefore possible to calculate the number of protein monomers that make up each 

aggregate Anm, assuming each aggregate is identical in size (this is a fair assumption as 

formation of particulate monomers have been seen to have a uniform size distribution 

[4] (Equation 6.5) ). 

     

 
  (

  
 )

 

  
 

Equation 6.5: Calculation of aggregate number for maximum particulate diameter. 

Where Vm is the volume of the protein molecule, calculated using the web program 

VADAR [5], which calculates the volume of a protein molecule from its 

crystallographic structure taken from the PDB [6].  

The maximum aggregate number Anm can then be used to calculate the concentration of 

aggregates Ca present within the sample (Equation 6.6), where Cm0 is the known initial 

concentration of the monomer: 

   
   

   
 

Equation 6.6: Calculation of aggregate concentration 
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With the value for the concentration of aggregates calculated, it is possible to calculate 

the value for the concentration of monomer present at each time value during the 

aggregation process. This is can be calculated from each diameter throughout the time 

course of the experiment. An equation similar to that of Equation 6.5 is used to 

calculated the aggregation number at each time point, An(t), from each diameter d 

(Equation 6.7). 

  ( )   

 
  (

 ( )
 )

 

  
 

Equation 6.7: Calculation of number of monomers in each protein aggregate at each time point. 

 

Figure 6.10: Aggregate number versus time for lactoglobulin in 100 mM sodium phosphate, 100 mM NaCl pH 5.8 at 

67.1 ºC. Error bars are the size of the points. 

Figure 6.10 shows the aggregate number produced for each diameter from Equation 6.7. 

The plot range has been edited to include only viable data, where data from negative 

diameters has been omitted, and also data beyond the peak; where clustering is thought 

to be occurring, has also been removed. Barring omissions and the y-axis scale Figure 

6.10 looks very similar to Figure 6.8, as it is a scaling factor which has been applied to 

the diameter plot. 
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The values generated in Equation 6.7 can be used to calculate the concentration of 

monomer at each respective time point; Cm(t). 

  ( )      (      ( )) 

Equation 6.8: Calculation of monomer concentration at each time point. 

Equation 6.8 is the final step in converting the diameter values into monomer content in 

solution. This allows for a plot of monomer concentration versus time to be produced. 

 

Figure 6.11: Concentration of monomer over time for lactoglobulin in 100 mM sodium phosphate, 100 mM NaCl pH 

5.8 at 67.1 ºC. Sections A,B, and C indicate different regions within the curve. Error bars are the size of the points. 

Figure 6.11 shows the concentration values produced from the example data using 

Equation 6.8. Section A of the data indicates the period of the experiment before 

aggregation. The plot does not show the actual value of the monomer concentration, in 

this case 1.09×10
-4 

M. This is because there is no input value for the diameter, as the 

size of the monomer is too small to be detected using this technique. Section B relates to 
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the formation of the protein aggregate population, where the ever increasing rate is only 

limited by the surface area of aggregates; which is increasing. Section C indicates the 

growth phase of the particulates, where the rate of monomer depletion is decreasing 

over time. Here the rate limiting factor is the concentration of available monomer, as 

this decreases; so does the rate.  

The process of aggregation is usually considered to be a second order reaction, as the 

rate depends on both the concentration of the monomer and the concentration of the 

aggregates. However, in this aggregation process the aggregate concentration is static 

once established (as verified by monodisperse particulate aggregate sizes under SEM 

[4]).  With this, the particulate aggregation process is a pseudo first order reaction and 

therefore can be modelled as such with Section C in Figure 6.11 being fit to a first order 

rate model for the depletion of monomer. This can be seen in Equation 6.9, where kob1 is 

the first order rate constant. 

       
(      ) 

Equation 6.9: First order rate equation for depletion of monomer. 

 

Figure 6.12 illustrates the fit of Equation 6.9 to the growth section of the example 

experiment, where a good fit is achieved. The first order rate constant; kob1 (s
-1

), 

incorporates all factors responsible for the rate of the reaction, including the 

concentration of aggregates. 
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Figure 6.12: Fit of Equation 6.9 (red line) to growth phase of lactoglobulin in 100 mM sodium phosphate, 100 mM 

NaCl pH 5.8 at 67.1 ºC. Error bars are the size of the points. 

     
    
  

 

Equation 6.10: Equation for second order reaction rate calculated from pseudo first order rate. 

Equation 6.10 illustrates how the observed second rate constant kob2 (dm
3
 mol

-1
 s

-1
) can 

be calculated from the observed first order rate and the aggregate concentration ; CA 

(mol dm
-3

). This second order rate relates the change in monomer concentration to the 

aggregate concentration and monomer concentration by Equation 6.11. 

   
  

          

Equation 6.11: Second order rate equation 

It is at this point that the model for particulate protein aggregation is presented, as seen 

in the following equations. 
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→        

  
←    

       
  
→    

        
  
→      

         
  
→      

Equation 6.12: Particulate protein aggregation pathway [3]. 

Equation 6.12 a illustrates the structural perturbation of the protein that occurs before 

aggregation. N represents the native state of the protein molecule which is in 

equilibrium with an aggregation prone conformation of the protein; an intermediate 

state; I. Both the forward and reverse reactions have rate constants associated with this 

initial process. Equation 6.12 b represents the nucleation of particulate aggregates where 

two aggregation prone intermediates combine to form the smallest possible aggregate; 

A2. This is governed by a separate rate constant; k3. Aggregate growth by intermediate 

monomer addition is shown in Equation 6.12 c where single intermediates add on to the 

aggregate to produce a larger aggregate. Again this has its own rate constant associated 

with it; k4. Once the monomer is depleted, additional aggregation can be seen to take 

place in the form of aggregate clustering highlighted in Equation 6.12 d. This leads to 

the clustered spherical morphology of aggregates seen under SEM [4] This was 

confirmed using ESEM to view aggregates produced from the UVLSS process (Figure 

6.13, which illustrates spherical cluster-like nature of the final aggregates. 
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Figure 6.13: ESEM image of BSA aggregates produced at 76 ºC at 2.84Torr. 

Step b is considered to be a rapid process [7] which occurs prior to step c dominating 

the aggregation. This formation of aggregates takes place only over one short time span, 

as can be seen by particulate aggregates all being of similar size [4]. Therefore this 

process is not occurring over the growth period, though it does contribute by producing 

the aggregate concentration, which after step b remains constant. Step c can be 

modelled using the current data ranges collected here as the rate of monomer 

consumption can be followed. Step d is observed within this experiment (Figure 6.4), 

but this data is hard to model due to the irregular shapes and sizes formed from this 

process. This data range is therefore omitted from the analysis. Therefore over the 

selected data range, there are 3 rate constants determining the overall rate of the 

process; k1, k2, and k3. 

In order to model the reaction rates occurring in this process, two rate limiting cases 

were considered; unfolding limited aggregation and association limited aggregation. 
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Unfolding limited aggregation would require step c to be of a much larger magnitude 

than step a, hence: 

             

Equation 6.13: Unfolding limited aggregation rates. 

Using Equation 6.13 and Equation 6.12 it can be seen that the formation of any 

intermediate is converted into particulate aggregates, and does not return to N. Any 

monomer present within the system can be assumed to be in the native state as any 

intermediate will be instantly consumed. Therefore the model is reduced to a first order 

rate equation: 

   
  

      

Equation 6.14: Rate equation for unfolding limited aggregation. 

Using Equation 6.14, the rate of monomer consumption would relate to the rate of 

native monomer unfolding to intermediate. 

Association limited aggregate would produce the reverse of Equation 6.13, where step a 

is more rapid than step c, therefore: 

            

Equation 6.15: Rates for association limited aggregation. 

Equation 6.15 illustrates that the monomer will be present as both native and 

intermediate states. Therefore in association limited aggregation an equilibrium exists 

between the native and the intermediate state: 

          

Equation 6.16: Association limited aggregation equilibrium. 
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The equilibrium constant; K, can be described as a ratio between the rates of both the 

forward and reverse reactions (Equation 6.17). 

  
  
  

 

Equation 6.17: Equilibrium constant equation. 

The total monomer within this system is the sum of both the concentrations of native 

and intermediate states (Equation 6.18). 

         

Equation 6.18: Calculation of total monomer. 

The previous three equations (Equation 6.16, Equation 6.17, Equation 6.18) can be 

combined to give the concentration of monomer in terms of the concentration of 

intermediate, and the equilibrium constant. 

   (   )
  
 

 

Equation 6.19: Calculation of monomer concentration from intermediate concentration and equilibrium constant. 

In the association limited aggregation kinetics the resultant model is a second order rate 

equation, which is dependent on the concentration of both aggregate, and intermediates 

(Equation 6.20). 

   
  

        

Equation 6.20: Second order rate equation for association limited aggregation. 

However, the concentration of the intermediate cannot be easily determined as the 

experimental results only produce information on the monomer as a whole (i.e native 

and intermediate). Therefore Equation 6.19 can be substituted into Equation 6.20 in 



176 

 

order to put the second order rate equation in terms of both monomer and aggregate 

concentrations (Equation 6.21). 

   
  

 
       

(   )
 

Equation 6.21: Second order rate equation for association limited aggregation in terms of aggregate and monomer 

concentration. 

By comparing Equation 6.11 and Equation 6.21 it is possible to relate the observed 

second order rate constant to the equilibrium constant and the association rate constant. 

  
    

(       )
 

Equation 6.22: Determination of  equilibrium constant from observed second order rate constant. 

In Equation 6.22 it is assumed that the association rate constant k4 is independent of 

temperature. This is a reasonable assumption given that the intermediate monomers are 

so highly reactive due to the large areas of unfavourable hydrophobic patches present on 

the surface of both the monomer and the aggregate [8]. This would result in the 

activation energy between monomer and aggregate being negligible. The relationship 

between the equilibrium constant and the absolute temperature; T, can be described by 

Equation 6.23. 

          

Equation 6.23: Calculation of standard free energy change. 

Where R is the gas constant and ΔG is the standard free energy change. This can then be 

utilised to determine the best fit value for k4 across a data range. The initial value for k4 

was chosen as a value above the largest value of kob2 so that the logarithmic term 

produced a real value and then iterated to find the largest R
2
 value for k4. From Figure 

6.14 it can be seen that the R
2
 fit value increases as k4 increases, but the rate of increase 
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decreases exponentially. In order to counter this, two straight lines were fitted to the 

extremes of the plot, and their intercept used to determine a k4 value at which there is 

minimal increase in R
2
 value with increasing k4. 

 

Figure 6.14: Determiniation of K4 value for lactoglobulin in 100 mM sodium phosphate, 100 mM NaCl pH 5.8. 

The k4 value obtained represents the frequency factor as the activation energy is 

assumed to be zero and therefore can be compared to literature values.  

The temperature sensitive portion of Equation 6.22; K can be described in terms of 

Equation 6.24: 

  ( )  
  

 
 
  

  
 

Equation 6.24: Calculation of equilibruim constant in terms of entropy and enthalpy. 

Where ΔS is the entropy change for the process (J mol
-1

 K
-1

) and ΔH is the enthalpy 

change for the process (J mol
-1

). The entropy value indicates the extent of order or 

disorder created by the aggregating protein on itself and the surrounding water 

molecules. The enthalpy values indicate the energy release or uptake from bonds 
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formed and broken. Fitting this equation to the temperature range of data yields values 

for both ΔS and ΔH, which can be compared to literature values. 

Finally it is possible to extract the fraction of protein present in the perturbed 

intermediate state; X, based on a rearrangement of Equation 6.19: 

  
  
  

  
 

(   )
 

Equation 6.25: Calculation of fraction of monomer in perturbed state. 

Equation 6.25 allows for the fraction of perturbed monomer to be plotted at each 

temperature value, and would yield results that can be comparable to the literature 

values for melting temperatures of the protein. These values will be compared later in 

the chapter. 
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6.4 Behaviour Across Protein Systems 

Krebs et al. [4] show how the formation of particulate aggregates is a generic form of 

aggregation that occurs across a number of protein systems. In order to confirm 

similarities in the kinetics of particulate formation, three proteins from the paper were 

studied; β-lactoglobulin, BSA and horse heart myoglobin. 

 

Figure 6.15: Aggregate diameter against time plot for lactoglobulin at 72.0 ºC (open squares) 70.2 ºC (closed squares) 

68.5 ºC (open diamonds) and 66.9 ºC (closed diamonds). Error bars are the size of the points. 

Diameter and concentration plots over time are the simplest plots that give some insight 

into the aggregation process occurring with these three separate proteins. Selected 

temperature aggregation runs for each protein are presented to illustrate the comparisons 

across the protein systems, and are representative of the whole data series. All data has 

been normalised to the time aggregation is first detected. 
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Figure 6.16: Concentration against time plot for lactoglobulin at 72.0 ºC (open diamonds) 70.2 ºC (closed diamonds) 

68.5 ºC (open squares) and 66.9 ºC (closed squares). Error bars are the size of the points. 

 

Figure 6.17: Diameter versus time plot for BSA at 72.6  ºC (closed diamonds) 70.2 ºC (open diamonds) 67.5 ºC 

(closed squares) 65.5 ºC (open squares). Error bars are the size of the points. 
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Figure 6.18: Concentration against time plot for BSA at 72.6 ºC (closed diamonds) 70.2 ºC (open diamonds) 67.5 ºC 

(closed squares) 65.5 ºC (open squares). Error bars are the size of the points. 

 

Figure 6.19: Diameter of myoglobin aggregates against time at 67.3 ºC (closed diamonds) 64.7 ºC (open diamonds)  

63.0 ºC (closed squares) 62.2 ºC (open squares). Error bars are the size of the points. 
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Figure 6.20: Concentration of myoglobin monomer over time at 67.3 ºC (black) 64.7 ºC (red) 63.0 ºC (green) 62.2 ºC 

(blue). Error bars are the size of the points. 

Figure 6.15 illustrates the growth of the β lactoglobulin aggregates. The smallest 

aggregate size which appears to be detected is around the size of 160 nm, however at 

the higher temperature of 72 ºC this value is larger, which is probably due to the rapid 

nature of the aggregation at this temperature. The higher temperatures exhibit 

characteristics of the growth phase of the particulate aggregates as the rate of growth 

decreases over time. At the lower temperature of 66.9 ºC initially there is some 

indication that the rate of aggregate growth is increasing; at this stage the limiting factor 

is not the monomer concentration (as in the growth in higher temperature plots seen 

within Figure 6.15), but the surface area of the aggregates. As more monomer combines 

to the aggregate the surface area increases and during the linear section of the plot a 

transition occurs in the limiting factor of the process, and the exponentially decreasing 

growth rate is observed. This effect is more prominent in the aggregate diameter plots of 
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BSA (Figure 6.17), where across there is some evidence of this transition across a range 

of temperatures. On the other hand, myoglobin (Figure 6.19) shows only the sign of 

monomer concentration being the rate limiting factor in aggregation, across all 

temperatures. 

The monomer concentration profiles of the proteins (Figure 6.16, Figure 6.18, Figure 

6.20) show the rate of monomer depletion increases with increasing temperatures.  

Concentration plots tend to be comparable with their counterpart diameter plot in terms 

of change in initial rate. All plots have an exponential curve and are tending towards a 

zero concentration of monomer. As this data is limited to the growth phase of the 

aggregates and data beyond points is considered to be part of the aggregate clustering 

process; the data indicates that clustering only commences when there is very little 

remaining monomer in solution. There appears to be an exception to this in Figure 6.18 

(open diamonds), but in general this appears to be generic across all the evaluated 

ranges. 

It is worth noting that the myoglobin plots display some deviation between points 

(Figure 6.19 and Figure 6.20). This is due to the wavelengths required to probe the 

structure of the myoglobin (as discussed in the methods section). As a result of the low 

scatter produced at these wavelengths, there is a significant size of deviation in the data; 

therefore a large number of data points were collected in order to gain an accurate 

representation of the myoglobin system. 

At each temperature, the aggregate diameter plots converge upon a final diameter size 

once the entirety of the monomer is consumed. These final diameters, fitted using 

Equation 6.4 were plotted against temperature to see if there was any correlation. 
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Figure 6.21: Final aggregate diameter of lactoglobulin aggregates 

 

Figure 6.22: Final aggregate diameter of bovine serum albumin aggregates. 
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Figure 6.23: Final aggregate diameter of myoglobin aggregates. 

 As the final aggregate diameter plots show (Figure 6.21, Figure 6.22, Figure 6.23) there 

appears to be no correlation between temperature and maximum diameter of the 

aggregate. These results appear to disagree with the findings from Krebs et al. [4] which 

show that at higher temperatures, smaller aggregates are formed as there are more 

nucleation sites over which the remaining intermediate monomer is spread. The results 

appear to show that the nucleation process is independent of temperature, and as 

aggregate concentration and final diameter size are proportional; temperature has no 

effect on either (Figure 6.24). Considering the model for particulate aggregation 

(Equation 6.12), this indicates that the initial nuclei are of similar sizes which could 

indicate that the extent of unfolding within the protein molecules are similar across this 

temperature range and that further unfolding does not occur. 

The maximum diameters of each protein vary; β-lactoglobulin has an average final 

diameter of around 670 nm, whilst BSA is 500 nm and myoglobin 900 nm. Here there 
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appears to be a trend between the size of the native protein monomer and its final 

aggregate diameter, as  myoglobin is the smallest of the three, whilst BSA is the largest 

[6]. 

 

Figure 6.24: Aggregate concentration against temperature for lactoglobulin (open diamonds) BSA (full squares) and 

myoglobin (full diamonds). Error bars are omitted for clarity, but still indicate no trend. 

In order to assess the viability of both the unfolding and association limited aggregation 

models, Arrhenius plots were applied to the extracted rate constants for each data range 

for the three proteins. The Arrhenius equation (Equation 6.26) relates the temperature 

dependence of the rate constant; K, by a frequency factor, or collision rate; A.  

     
  
   

Equation 6.26: Arrhenius equation. 

Arrhenius plots of lnK against 1/T would yield a gradient of –Ea/R and intercept ln(A), 

which would give the frequency factors for aggregation in the three systems. 
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Figure 6.25: Arrhenius plot for the unfolding limited aggregation model for lactoglobulin. 

 

Figure 6.26: Arrhenis plot for the unfolding limited aggregation model for BSA. 

 

Figure 6.27: Arrhenius plot for unfolding limited aggregation model in myoglobin 
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straight line, in which K is proportional to the absolute temperature. Respective R
2
 

values are 0.857, 0.831, and 0.752 indicating a reasonable level of fit across the 3 

proteins. However, the values produced for the frequency factor from these plots are: 

4.38×10
55 

s
-1

, 1.97×10
47 

s
-1

, and 1.37×10
28 

s
-1

. These values are significantly larger than 

any realistic values seen elsewhere in the literature, where first order small molecule 

reactions are at most in the region of 10
17 

s
-1

 [9].  

 

Figure 6.28: Arrhenius plot for the association limited aggregation model for lactoglobulin. 

 

Figure 6.29: Arrhenius plot for the association limited aggregation model for BSA 
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Figure 6.30: Arrhenius plot for the association limited aggregation model for myoglobin 

Arrhenius plots for the association limited aggregation of the proteins are illustrated 

above (Figure 6.28, Figure 6.29, Figure 6.30).  There appears to be a moderately 

increased fit to the straight line trend over the unfolding limited aggregation, with R
2
 

values reported at; 0.867, 0.873 and 0.9059 respectively. However the reported 

frequency factors of the second rate reaction are also unreasonably high: 1.31×10
57 

s
-1

, 

4.9×10
47 

s
-1

, and 9.3×10
58 

s
-1

. This illustrates the Arrhenius plot may not be the most 

valuable way of modelling this data in order to present meaningful values. 

The frequency factor for association; K4 can be obtained by varying its value to obtain 

the best fit for the equilibrium between native and intermediate (Figure 6.14, Equation 

6.22).  

Table 6.2:Reported K4 values for the three proteins. 

Protein K4 Value /dm
3
mol

-1
s

-1 

Β-Lactoglobulin 7.27×10
8 

BSA 5.60×10
7
 

Myoglobin 1.07×10
9
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Table 6.2 illustrates the change in K4 values for each protein. These values appear to 

give a much more sensible value for the collision rate for each protein. There also 

appears to be the trend that the smaller the protein, the more frequent the collisions. 

The fitted value of K4 allows the fraction of intermediate present at each temperature to 

be elucidated (Figure 6.31, Figure 6.32, Figure 6.33). These plots give an indication of 

the equilibrium shift at each temperature. 

 

 

Figure 6.31: Intermediate fraction against temperature for lactoglobulin. 
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Figure 6.32: Intermediate fraction against temperature for BSA. 

 

 

Figure 6.33: Intermediate fraction against temperature for myoglobin aggregates. 

The lines indicated on these plots are lines of best fit produced from the values for ΔH 

and ΔS of the unfolding process. The associated values are presented in Table 6.3. 
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Table 6.3: Calculation of Gibbs free energy data. 

 β-Lactoglobulin BSA Myoglobin 

ΔH / kJmol
-1

 492 ±28 709 ±55 514 ±50 

ΔS / Jmol
-1

K
-1 

1411 ±79 2075 ±162 1496 ±145 

T at ΔG =0 /K 348.8 342.1  343.7 

 

Table 6.3 shows the extracted information on the melting temperatures and stabilities 

and can be compared to literature values for the unfolding of each protein. 

The melting temperature of β-lactoglobulin produced from the unfolding model agrees 

well for quoted values of the unfolding temperature of the protein of 348.8 K [10]. 

Additionally the quoted value of 492 kJmol
-1

 shows some agreement with the reported 

value here, and the discrepancy may be explained by the difference in pH value between 

the two experiments; where the value reported here is obtained in more stable 

conditions [11]. 

The value presented here for the melting temperature of myoglobin shows good 

agreement with that seen in the literature [12]. Additionally the ΔH values show 

agreement with trends seen in studies of oxidated forms of myoglobin and 

microcalorimetric measurements performed on the sperm whale variant of the protein 

[13, 14]. 

The melting temperature for BSA of 342.1 K is marginally higher than the reported 

values from DSC studies [15, 16], but following the trend of increased stability at pH 

closer to the protein isoelectric point, this value shows good agreement. Additionally 

the ΔH values for unfolding bear good agreement, with reported values here being 
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marginally larger. This again can be attributed to the increased stability at this studied 

pH. 

Similarly to the ΔH values the entropy values are high for proteins of a larger size 

(Table 6.3). These positive entropy values indicate that during the unfolding the protein 

is tending towards disorder. This can be explained by the interaction of both polar and 

non-polar residues with the water molecules, where there are more non-polar residues 

imposing a disorder on the surrounding molecules than polar residues creating order. 

This appears acceptable as the majority of hydrophobic residues are buried in the 

protein fold, therefore there are more to be exposed when the protein unfolds. 

Additionally, the trend between size and entropy change can be attributed to more 

hydrophobic residues in the larger proteins disordering more water molecules than that 

of the small proteins. 

6.5 Effect of Tween on Aggregation 

The UVLSS technique can be used to assess the effect of additives on the aggregation 

rate of proteins. Tween 20 is an additive often used within protein buffers to increase 

the yield of native protein produced [17]. Tween 20 has also been shown to reduce the 

aggregation, however the mechanism for this is not clear [18, 19]. In these instances 

0.01 % Tween 20 w/v was included in the aggregation buffer and comparisons made to 

elucidate the effect and mechanism of Tween 20 on particulate aggregation. 
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Figure 6.34: Comparison of final diameters of aggregates in BSA and lactoglobulin both with and without Tween 20. 

Figure 6.34 compares the range of diameters produced in two protein systems with and 

without Tween. As has been previously shown, the final size of the aggregate does not 

appear to be determined by the temperature, therefore the diameters and their 

distributions can be represented by box plots. Figure 6.34 illustrates that both BSA and 

lactoglobulin aggregate sizes are not affected by the presence of Tween 20.  There 

appears to be a slightly larger distribution of sizes across the Tween data sets, but this 

distribution difference is mainly insignificant. It can be inferred from these plots that the 

interaction of Tween with these aggregates introduces no new levels or porosity into the 

aggregates, or indeed change the concentration of aggregates formed significantly. 

Therefore it seems Tween has little relevance in the nucleation stages of the aggregate 

formation. 
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Table 6.4: K4 Comparison between protein without additives and protein with Tween 20. 

Protein Native K4/ s
-1

 K4 +0.01 % Tween / s
-1

 

Β-Lactoglobulin 7.27×10
8 

1.24×10
8
 

Bovine Serum Albumin 5.6×10
8
 2.95×10

8
 

As can be seen in Table 6.4, the effect of Tween has some impact on the collision rate 

constant K4. Although this may be within error, this could be accounted for due to the 

interference from the Tween in some collisions, which may reduce the rate slightly. 

Tween has been shown to bind hydrophobic regions within the molten globule of a 

protein [18]. This indicates that the Tween 20-protein interactions compete with the 

protein-protein interactions to reduce the collision rate, as is shown by the decreased K4 

values in Table 6.4. 

 

Figure 6.35: Intermediate fraction against temperature of B-lactoglobulin without additive (closed diamonds) and 

with 0.01 %Tween (open diamonds) 

Figure 6.35 illustrates the effect that Tween has on the equilibrium between native and 

aggregation prone intermediate. It is clear that β-Lactoglobulin with Tween (open 

diamonds) causes a shift in the temperatures at which the intermediate is formed. The 
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shapes of the transition curves indicate that the shift in initial formation is only of the 

size of around 3 degrees. However for full transition of the entire sample from native to 

unfolded is of the order of 10 degrees. This illustrates that whilst the protein is natively 

folded, Tween 20 plays a small role in enhancing the unfolding of β-lactoglobulin, 

however as the transition occurs Tween appears to further enhance the unfolding of the 

protein. This increase in effect correlates with an increasing amount of hydrophobic 

structure available on the protein through which Tween may facilitate the unfolding 

[18]. 

 

Figure 6.36: Intermediate fraction against temperature of BSA without additive (closed diamonds) and with 0.01 

%Tween (open diamonds) 

Figure 6.36 compares the effect of 0.01 % Tween on BSA. Despite the initial formation 

of the intermediate forming at the same temperature ~336 K, there appears to be little 

increase in this across the temperature scale until ~345 K, where the full sample of 

protein is present as intermediate fraction, which is at a similar temperature as that of 

the protein without additive. 
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As in Figure 6.35, the exposure of hydrophobic regions within the protein does appear 

to facilitate the binding of Tween to stimulate the unfolding, however it can be seen that 

BSA in Tween is infact more stable at the lower temperatures as illustrated by the curve. 

          

Equation 6.27:Calculation of Gibbs free energy 

Using Equation 6.27 the Gibbs free energy of the protein at room temperature can be 

calculated. This illustrates the stability of the proteins under conditions with and without 

Tween 20. Table 6.5 illustrates how at 25 ºC proteins in 0.01 % Tween clearly have a 

higher stability that the proteins without. The increase is seen as 2 to 3 fold larger in the 

ΔG values, and indicates why Tween 20 is a competent stabilising additive of the native 

state. 

Table 6.5: Comparative ΔG values of proteins with and without Tween at 25 ºC. 

Protein Native ΔG at 25 ºC /kJ ΔG in 0.01 % Tween /kJ 

BSA 91.5 ±7.14 348.3 ±32.7 

Lactoglobulin 78.7 ±4.4 147.2 ±14.2 

 

6.6 The Effect of Sodium Chloride Concentration  

Sodium chloride is a common additive in protein stabilising solutions [20]. Using the 

UVLSS technique it is possible to investigate the effect that varying concentrations of 

sodium chloride may have on the protein aggregation process. For this study β-

lactoglobulin was chosen as it is a well characterised system in protein aggregation, and 

from previous work within this chapter it can be seen that the formation of β-

lactoglobulin aggregates can be coherently studied by this technique. 
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Figure 6.37: Absorbance at 320 nm of β-lactoglobulin heated to 70.8ºC at pH 5.8 sodium phosphate buffer including 

150,100 mM and 50 mM sodium chloride concentrations. 

Figure 6.37 offers a primitive method for examining the effect of sodium chloride 

concentration on the aggregation of β-lactoglobulin. All three samples were recorded to 

have an average temperature of 70.8 ºC during the isothermal stage. At the highest of 

salt concentrations, the absorbance can be seen to increase at an earlier time than that of 

a lower salt concentration.  This indicates that aggregation is occurring earlier in the 

more concentrated salt environment, which may suggest the high salt concentration 

contributes to a destabilising effect to the native protein conformations. 

Figure 6.38 illustrates the range of final aggregate diameters produced by each 

experiment at the three salt concentrations. It can be seen that there is no substantial 

deviation in the final diameter of aggregates across the concentration range, similar to 

the results seen for the additive Tween (Figure 6.34). The sole trend within the box plots 

of Figure 6.38 is that the range increases in line with the salt concentration. This may be 

attributed to the speed at which the experiments take place at the higher salt 

concentration, therefore the degree of error in determining the final concentration may 

be larger. 
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Figure 6.38: Comparison of final aggregate diameters for b-lactoglobulin aggregates in 50 mM, 100 mM and 150 mM 

salt conditions. 

 

Figure 6.39: Intermediate fraction versus temperature for β-lactoglobulin at 50 mM (open diamonds), 100 mM (open 

squares) and 150 mM (closed squares) NaCl concentrations. Lines of best fit are applied to each. 
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Figure 6.39 shows the effect the concentration of NaCl has on the aggregation 

behaviour of β-lactoglobulin. Clearly higher concentrations have a destabilising effect 

on the native monomer, as the transition appears to be more rapid and at a lower 

temperature.  

Table 6.6: Values for lactoglobulin aggregation thermodynamics values. 

 

Lactoglobulin with NaCl concentration 

50 mM 100 mM 150 mM 

ΔH /kJ 462 ±49 492 ±28 788 ±72 

ΔS / kJK
-1

 1.3 ±0.14 1.4 ± 0.14 2.3 ±0.21 

Temperature at 

ΔG=0 /K 

355.2 348.8 347.3 

ΔG at 25 ºC 81 ±8.6 78.7 ±4.4 123 ±11.3 

 

Both values for ΔH and ΔG at 25 ºC indicate that salt plays a stabilising role in the 

protein structure (Table 6.6), where at higher salt concentrations, a much larger amount 

of energy is required to unfold the protein than at lower salt concentrations. However, 

this further results in the protein at higher salt concentration, resulting in an 8 ºC change 

in unfolding temperature over the 100 mM NaCl range. This appears to show a similar 

trend to that of the Tween 20 experiments (Table 6.5). The effect of salt on aggregation 

is also examined in the following section, therefore the overall effect of salt on 

aggregation will be discussed in the concluding chapter. However it is worth noting that 

an increase in salt concentration from 50 mM to 150 mM decreases the K4 value from 

2.9×10
9 

s
-1

 to 4.4×10
8 

s
-1

and therefore clearly plays a role in decreasing the number of 

successful collisions during the aggregation process. 
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Chapter 7 : Aggregate Formation in Refolding 

7.1 Introduction 

The presence of aggregates during protein refolding is a major issue. Aggregate 

formation results in lower yield of native proteins produced in the refolding process [1], 

and when present in therapeutic use, the presence of aggregates is capable of producing 

immunogenicity and loss of therapeutic function of the protein [2]. 

Whilst many items in the literature focus on monitoring the yield of native protein 

produced [3, 4], few analyse the formation of aggregates [5]. Work presented here aims 

to relate the presence of the molten globule state during refolding to the formation of 

aggregates of the small alpha helical protein cytochrome C. Furthermore, the effect of 

both sodium chloride concentration, and final denaturant concentration are investigated. 

This is performed using stopped flow anisotropy, absorbance, and the use of the 

fluorescent probe; ANS. 

7.2 Experimental Overview 

A stopped flow cell, capable of measuring absorbance, fluorescence and fluorescence 

anisotropy was used to measure the refolding of protein that occurred when solutions 

from two syringes were mixed. One syringe contained unfolded protein in a high 

concentration of denaturant, the other contained buffer. Upon mixing the denaturant is 

diluted and the protein refolds. The refolding conditions are altered either by changing 

the sizes of the syringes that feed the mixing chamber, therefore determining the final 

urea concentration, or changing the salt concentration present in the diluting buffer. The 

aforementioned experimental techniques are then used to probe the behaviour of the 

protein whilst folding over a 100 second time period. 
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7.3 Folding Characteristics 

 

Figure 7.1:  The fluorescence emission of ANS present with cytochrome C and 8 M urea during a 1:10 dilution with 

100 mM TRIS 0 mM NaCl pH 10.6 refold buffer. The dashed line indicates the initiation of mixing at 0 s. Before 0 s 

indicates the fluorescence of the ANS sample. 

Figure 7.1 illustrates the refolding of Cytochrome C in terms of hydrophobic exposure. 

ANS is present in one of the syringes with the Cytochrome C, maintained in the 

unfolded state with 8 M urea. The ANS molecules may bind to the exposed 

hydrophobic regions present on the protein and produce an increased fluorescence (over 

the unbound ANS molecules) when excited at 370 nm [6]. The fluorescence value of 

this sample alone is indicated by the values for time zero in Figure 7.1. However, upon 

initiating the stopped flow reaction, the fluorescence signal is instantly reduced to a 

lower fluorescence level. 

This finding indicates that the hydrophobic collapse of the protein occurs within the 

dead time of the instrument, where the presence of a much diluted concentration of urea 
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no longer presents a barrier to folding; the energetically favourable elimination of water 

and ANS from these regions is rapid. This appears consistent with current 

understanding where even large multidomain proteins accomplish hydrophobic collapse 

in the nanosecond timescale [7], and proteins such as cytochrome C begin structural 

formation of elements of secondary structure even within the deadtime of this 

experiment [8, 9]. The small fluctuations seen in the ANS fluorescence in Figure 7.1 is 

assigned to low level aggregation occurring, and will be discussed in detail later in this 

chapter. 

 

Figure 7.2: Fluorescence Anisotropy over time for Cytochrome C in 8 M Urea refolded at 1:25 ratio at 280 nm. 

Figure 7.2 illustrates the corresponding fluorescence anisotropy values collected for the 

folding experiments in Figure 7.1. Fluorescence anisotropy corresponds to the mobility 

of the fluorophores present within the protein [10], namely; phenylalanine, tyrosine and 

tryptophan. At 280 nm the majority of the fluorescence will appear from the tyrosine 

and tryptophan residues, with tryptophan fluorescence dominating the signal [11]. 
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In contrast to Figure 7.1, Figure 7.2 shows some change in the anisotropy signal during 

the folding process, indicating that there is some detectable structural change occurring 

throughout this time period. The change in anisotropy value from a lower to higher 

value is representative of the fluorophores within the protein becoming less mobile.  

During the first 10s this change in mobility is drastic, with an additional 20s of small 

change in mobility before the mobility of the fluorophores remains constant throughout 

the remainder of the experiment. 

From Figure 7.1 and Figure 7.2 it can be seen that the folding of Cytochrome C is not 

an instant process, and that although the hydrophobic collapse of the protein is clearly in 

the sub microsecond time span (which is a widely accepted result during protein folding 

[12] [13]), the structural rearrangement of at least the fluorescent residues occurs over a 

much greater time span. This may be indicative of the molten globule state of the 

protein; where the hydrophobic core of the protein structure is formed [14], but there is 

still some mobility in some outer residues as they adopt their energetically favourable 

conformations. This mobility may be representative of the unquenched Trp 59 residue 

which has been suggested to remain loosely packed until the late stages of cytochrome 

C folding [15]. 

This residue mobility measured by fluorescence anisotropy during refolding is not 

unique to cytochrome C, and is evident across a number of protein systems. 
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Figure 7.3: Anisotropy of refolding of proteins in 8M urea at a ratio of 1:10 at 280nm. From top to bottom 

:Ribonuclease A(100mM sodium phosphate buffer at pH 7.8),β-lactoglobulin(100mM TRIS at pH 7.8), α-

lactalbumin(100mM TRIS at pH 7.8) 

 

Figure 7.3 shows the anisotropy for refolding of different protein systems at 280 nm. 

All three figures show some agreement with the findings shown in Figure 7.2; that 

fluorophore mobility is present over a timescale of tens of seconds. These refolding 

timescales appear to vary somewhat across the systems, however the general form of the 

anisotropy plot is the same across proteins. This suggests that this is a ubiquitous stage 

in protein refolding. It may be worth noting that in both β-lactoglobulin and α-

lactalbumin folding, the proteins achieve a slightly over rigid formation, indicated by a 

minor crest in the anisotropy plots at 20s into the duration of the experiments before 

relaxing into the stable structure.  
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It may be further noted that these comparative proteins differ from cytochrome C in that 

they contain sulphide bridges, which will not be disrupted by the high concentrations of 

denaturants within the solution, therefore the starting state of the protein before mixing 

cannot be considered as totally unfolded protein. The presence of disulphide bridges 

should provide some template for folding and increase the chance of the protein 

adopting its native structure. This should have minimal bearing on the molten globule 

state of the proteins however, aside from curtailing the time period before it appears. 

Ribonuclease A (Figure 7.3) has been shown capable of undergoing both rapid and slow 

refolding to produce the native state [16]. Under these experimental conditions, it can be 

clearly seen that fluorophore mobility does not become stable until ~30s which may 

relate to the mobility of two tyrosine residues measured in the refolding of ribonuclease 

A by real time NMR [17]. 

β-lactoglobulin forms a compact globular structure which is marginally (10 %) larger 

than the native state within the first 100ms of refolding [18]. The data in Error! 

Reference source not found. suggests that under these conditions, the final structural 

compaction occurs over a much larger timescale (~30s). This appears concurrent with 

findings from elsewhere [19], that suggest that once the secondary structure has formed 

within the rapid time span, the protein maintains a molten globule like structure, which 

is what Error! Reference source not found. characterises. 

The molten globule state of α-lactalbumin appears to have a shorter existence (~20s) 

under these conditions than the other proteins (Figure 7.3). The existence of its molten 

globule state may have been lengthened by the absence of a metal cofactor which would 

aid the rate of refolding [20]. Taking this factor into account the molten appearance of 
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the molten globule state does appear to agree with related work on the refolding of α-

lactalbumin where tryptophan fluorescence was seen to be quenched after ~10s [21]. 

These figures clearly show that fluorophore mobility, or molten globule state, is present 

well after the hydrophobic collapse and secondary structure formation under these 

refolding conditions, and appears to be a common feature across proteins. 

7.4 Aggregation produced from folding 

 

Figure 7.4: Refolding of cytochrome C at a 1:10 ratio followed by fluorescence anisotropy at 280 nm (solid) and 

absorbance at 320 nm (dotted) line. 

The emergence of protein aggregates within the stopped flow sample can be measured 

by the absorbance of light at 320 nm [22]. This was undertaken alongside anisotropy 

and ANS probing of the refolding of cytochrome C (Figure 7.4). It can be seen that a 

small amount of aggregation takes place during the refolding process. At time 0, there is 

already a presence of aggregates, as can be noted by the small absorbance value at time 

0 in Figure 7.4. As the absorbance is baselined to the unfolded sample of cytochrome C, 

this represents a production of aggregates during the dead time of the instrument, during 
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the hydrophobic collapse of the protein structure. The absorbance graph then represents 

an increasing rate of aggregation; either in aggregate number or size, before this growth 

subdues exponentially.  

The high rate of growth appears to concur with the protein being still in a mobile state, 

however growth still occurs; albeit more slowly when the protein has adopted its rigid 

structure. Clearly whilst the protein is in the molten globule state it requires some side 

chain packing in order to stabilise it as might be expected [23], otherwise as Figure 7.4 

shows, it has a tendency to aggregate. Furthermore, this increase in aggregation 

continues whilst the protein is in its rigid form, indicating that the aggregates may be 

inducing the native protein into an aggregate prone conformation, a behaviour that has 

been observed in other protein aggregate systems [24]. 

 

Figure 7.5: Absorbance of cytochrome C at 320 nm during refolding at 1:10 ratio into 100 mM Tris buffer containing 

0 mM NaCl (full line) 250 mM NaCl (dashed line) and 500 mM NaCl (dotted line). 

One of the most common methods for reducing aggregation during refolding is to use 

NaCl concentrations [25]. As can be seen from Figure 7.5, increasing salt 
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concentrations does have this effect on cytochrome C. It can be seen that the initial 

formation of aggregates is lower by comparison of values at t=0 for refolding taking 

place at higher NaCl concentrations. This higher concentration appears to prevent the 

increase in aggregate formation for a substantial period of time, and results in smaller 

absorbance values seen over the 100s period investigated here. The presence of salt 

appears to prevent aggregation occurring whilst cytochrome C is in its most mobile 

state, however growth appears to accelerate whilst the protein is closer to its native state 

(Figure 7.6). This growth continues whilst the protein appears to hold its rigid structure, 

again indicating that the native protein is being induced to aggregate by existing 

aggregates. 

 

Figure 7.6: Absorbance at 320 nm (dashed line), and anisotropy at 280 nm (solid line) of Cytochrome C refolded at 

1:10 into Tris containing 250 mM NaCl. 

Additionally, the effect of final denaturant concentration on aggregation during 

refolding was investigated. This was achieved using different ratios of unfolded protein 

to refolding buffer. The effect of these ratios at a high concentration of NaCl is shown 

in Figure 7.7.  

0

0.03

0.06

0

0.05

0.1

0 50 100

A
n

is
o

tr
o

p
y 

at
 2

8
0

n
m

 

A
b

so
rb

an
ce

 a
t 

3
2

0
n

m
 

Time /s 



212 

 

Where the concentration of urea is high (i.e a 1:5 ratio), it can be seen that there is 

minimal increase in aggregation, and the rapid growth rate which is seen at any of the 

1:10 ratios (Figure 7.5) is not present. Here the high concentration of urea must be 

preventing protein-protein interactions which would increase aggregation.  

 

Figure 7.7: Absorbance at 320 nm of Cytochrome C refolded at 1:5 (solid line) , 1:10 (dotted line), 1:25 ( dashed 

line). 

 

Figure 7.8: Anisotropy at 280 nm of Cytochrome C in 8 M urea unfolded at 1:25 ratio (solid line) 1:10 ratio (dotted 

line) 1:5 ratio (open dots). 
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At the low concentrations of urea (i.e 1:25 ratio) the rapid growth section of the 

aggregates is even steeper than that seen at 1:10 ratio, with minimal lag phase after the 

hydrophobic collapse before a rapid increase in aggregates begins. It is worth noting 

from Figure 7.10 that the rapid increase also occurs during the timeframe where the 

protein is at its most mobile, and again the growth continues whilst the protein appears 

to be in the rigid native state. Figure 7.7 clearly shows that a higher step dilution of urea 

concentration results in increased levels of aggregation rather than just the levels of non 

native protein, and indicates that stepwise urea dilutions should indeed increase the 

yield from refolding [26, 27]. 

Fluorescence measurements performed on the refolding products of cytochrome C at the 

3 ratios indicate a difference in the quality of folding at each ratio. 

 

Figure 7.9:Fluorescence of cytochrome C with emission at 280 nm on native cytochrome C (solid line), and products 

of refolding at 1:5 (dotted line) 1:10 (short dotted line) and 1:25 (long dotted line). 

Figure 7.9 illustrates that the refold ratio plays a critical role in the outcome of the fold 

quality. At a low refold ratio, sufficient denaturant is still present to cause a large 

increase in fluorescence from excitation at 280 nm from cytochrome C in largely 

unfolded state, whilst at the high ratio of 1:25, there is a decreased signal, which can be 
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attributed from the presence of aggregates absorbing light over these wavelengths. 

(Figure 7.7), whilst at 1:10 the fold can be seen to be very similar to that of the native 

state. 

 

Figure 7.10:Absorbance at 320 nm (dashed line) and anisotropy at 280 nm (solid line) of cytochrome C refolded at 

1:25 in 100 mM Tris 500 mM NaCl conentration. 

The mobility of the protein in Figure 7.10 achieves a rigid state in a shorter time span 

than that of the protein when refolded at a 1:10 ratio. This is also the case for 1:5 

refolding of cytochrome C. Therefore this may be related to the remaining presence of 

urea within the solution. At low concentrations, the urea is rapidly eliminated from the 

structure, allowing the protein to achieve its rigid state rapidly, whilst at much higher 

concentrations of urea, the dilution may only cause a partial unbinding of urea, allowing 

it to adopt a second, partially unfolded state. This state however is clearly aggregation 

prone as can be seen in Figure 7.10. The effect of salt on the aggregation state of the 

protein will be discussed in the concluding chapter, as its effects have been probed in 

more than the work seen in this chapter, however the results seen here may be relate to  

the Hoffmeister effect.[28, 29] 
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Chapter 8 : Conclusions 

Results presented in the chapter on aggregate nucleation indicate that the nucleation 

stage of aggregation in bovine serum albumin has a temperature dependant mechanism. 

Whilst the range of temperatures examined here are above the reported melting point for 

BSA, it is apparent that the protein is not completely unfolded and therefore the extent 

of unfolding will vary with temperature, and appears to have a significant effect on the 

nucleation mechanism. The mid range temperature appears concurrent with mechanisms 

postulated in the literature for other proteins; that the nucleation is a rapid establishment 

of a stable concentration of aggregate. However at the extremes of this range, it appears 

that the mechanisms deviates from this and that there may be clustering of highly 

reactive nuclei at high temperatures (formed from highly unfolded monomer), and 

continual formation of aggregate nuclei at low temperatures (formed from minimally 

unfolded monomer). From this work it is clear that minimal unfolding within the BSA 

monomer is sufficient to cause aggregation to the extent that they form large clustered 

agglomerates. A continuation of this work to yield results across an entire temperature 

range may yield enough data to form a coherent model. 

Analysis presented on the growth of particulate aggregates show that the model of 

monomer addition to the aggregate nuclei appears to be a fitting description of the 

growth process. This differs from the model in the previous chapter in that during this 

growth period, there is a stable concentration of aggregates formed, therefore monomer-

aggregate interactions are more prevalent that monomer-monomer interactions. This 

model is not just suitable for BSA studied in the previous chapter, but appears to be a 

generic form of aggregate growth applicable to proteins with a range of structural 

features. The detailed analysis from the UVLSS technique provides thermodynamic 
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values which appear in agreement with comparable literature values, and that of other 

studies used within this document. There is some apparent discrepancy in the state of 

the BSA molecule when it is aggregation prone. Kratky plots indicate that the protein 

molecule is only partially unfolded for aggregation to occur whilst the UVLSS model 

indicates that the BSA molecule is unfolded at 80 ºC. The UVLSS studies however are 

purely an indication of when aggregation occurs; therefore what is referred to as the 

“unfolded” state is one that is sufficiently unfolded to initiate aggregation, which is not 

necessarily a completely unfolded molecule. Furthermore the technique provides a 

numerical method for examining the efficiency of aggregate preventing additives, and 

also illustrates the mechanism by which the additives prevent aggregation. A prime 

example of such is the ability of Tween 20 to reduce aggregation by reducing the 

collision constant between aggregate prone protein molecules. 

Results presented in the chapter on aggregation during refolding indicate the use of 

fluorescence anisotropy to monitor the molten globule state during refolding of proteins. 

The mobility of fluorescent side chain residues has been shown to be prevalent during 

the refolding stage, with the mobility in existence for up to 30s, with some variance 

between protein species. Most strikingly, there is an obvious relationship between the 

mobility period of the protein and its propensity to aggregate. However, this mobility is 

also a necessary step in order for the protein to achieve its native structure, therefore a 

trade-off exists between achievement of native protein structure and aggregate 

prevalence.  

Furthermore, this body of work has examined the role of salt using a number of these 

techniques, and whilst it appears that the charge shielding properties appear to stabilise 

the protein during hydrophobic collapse at low temperatures, at high concentrations and 

temperatures it exhibits a destabilising effect on the protein, and promotes aggregation. 
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This behaviour can be attributed to the Hofmeister effect, whose mechanism remains 

speculated upon in the literature. The sodium ions increase the solubility of the peptide 

residues; preventing aggregation. This may also reduce the number of successful 

collisions resulting in aggregation, as seen from the decreasing K4 value with increasing 

salt concentration in the UVLSS chapter. However, when presented with a folded 

protein, a sufficient concentration of sodium ions can cause the precipitation of 

hydrophobic groups, resulting in aggregation. This interaction with hydrophobic groups 

can explain the results seen from UVLSS data, where increasing salt concentration 

increases the rate of aggregation. This effect can appear counter-intuitive, and merits 

further investigation into the effects of salts on protein solubility. 

Overall, this work provides insights into the nature of protein aggregation: illustrating 

that nucleation mechanisms are more complex than current literature suggests, 

presenting a technique for examining protein aggregation kinetics and thermodynamics 

,presenting examples of analysis of aggregation preventing additives, and illustrating 

that the mobility of the protein has a direct correlation to its propensity to aggregate, 

whilst also highlighting areas of the research which merit further investigation. 
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Chapter 9 : Future Work 

Below are listed future experiments relating to each section of work, and how the 

knowledge of each area could be expanded: 

a) Aggregate nucleation using neutron scattering (Chapter 5) – Whilst the work 

here provides information on the nucleation of particulate aggregates, it fails to 

probe events on a single protein molecule size scale. Further experiments could 

be performed similar to those here, but at a lower temperature range, thus 

slowing down the nucleation, allowing for better statistics to be collected over 

the small time scales. As has been shown here, the behaviour of the nucleating 

monomers appears to change with temperature, therefore elucidating the 

mechanism of these higher temperature monomers may require a beamline with 

more flux or detector sensitivity than currently exists, and alternatively X-ray 

studies may be better suited. 

b) Aggregation preventing additives studies using UVLSS (Chapter 6) – The work 

in this section paves the way for studies to be performed on all manner of 

aggregation preventing additives to elucidate their effectiveness and method of 

action. A prime example would be to test the use of amino acids as aggregate 

preventing additives which are stated in the literature. 

c) Protein mobility and aggregation (Chapter 7) – In order to compliment the 

mobility work performed here, temperature studies could be performed using 

fluorescence anisotropy to assess the mobility of the protein during heating. In 

addition, single molecule studies such as FRET would provide much greater 

detail of exactly how this mobility is brought about. 


