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Optimal Passive Fault Tolerant Control of a

High Redundancy Actuator
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Abstract: The High Redundancy Actuator (HRA) project deals with the construction of
an actuator using many redundant actuation elements. If one element fails, this changes the
behaviour slightly, but the system still remains operation. A key challenge in this project is
to design a passive fault tolerant controller that maintains the required performance in the
presence of faults. This paper shows how to achieve this with structurally simple controllers, by
optimising the parameters using a genetic algorithm.

Keywords: high redundancy actuator, fault-tolerant control, passive fault tolerance, fault
accommodation, robust control, genetic algorithm, controller optimisation.

1. HIGH REDUNDANCY ACTUATION

High Redundancy Actuation (HRA) is a new approach to
fault tolerant actuation, where an actuator comprises of
a large number of actuation elements (see Fig. 1). Faults
in the individual elements can be accommodated without
resulting in a failure of the complete actuator system.

The concept of the High Redundancy Actuation (HRA)
is inspired by human musculature. A muscle is composed
of many individual muscle cells, each of which provides
only a minute contribution to the force and the travel
of the muscle. The aim of this project is to use the
same principle of co-operation with existing actuation
technology to provide intrinsic fault tolerance.

An important feature of the HRA is that the actuator
elements are connected both in parallel and in series. This
makes it possible to deal with the two main fault modes:
lock-up and loose elements. In case of a lock-up fault, the
available travel is slightly reduced, but the elements in
series can still move. If an element fails loose, this reduces
the maximum force, but the elements in parallel are still
active.

Controlling an HRA is a challenging problem, because
of the complexity of the system. The goal is to find a
controller that is no more complex than a typical PD or
PID type controller as used for a conventional actuator.
The controller needs to be robust enough to deal with

Fig. 1. Configuration of a High Redundancy Actuator

the change of system behaviour caused by faults. Previous
work is done by Chen and Jiang (2005) and by Dan and
G.Yang (2006) based upon using active fault tolerance
control schemes and passive fault tolerant controller design
is considered by Zhao and Jiang (1998). The method
proposed here is via passive fault tolerant control where,
the system becomes insensitive to faults by design of a
robust controller (Patton, 1997). Because no structured
approach is available to solve this problem, this paper
investigates a number of promising control structures.

For the optimisation of the controllers parameters, a
heuristics approach is used. For a good overview see Dreo
et al. (2006). Such optimisation methods are able to search
randomly in a predefined search space, aiming to find the
optimal controller parameters. Evolutionary algorithms
are one of the heuristic approaches that exists and imple-
mented in control engineering (Fleming and Purshouse,
2002). The Non-dominated Sorting Genetic Algorithms
II (NSGA-II) introduced by Deb et al. (2002) is used
here. A recent implementation is considered by Michail
et al. (2008) where it is part of the sensor optimisation
framework for a MAGLEV suspension.

Section 2 introduces the idea and the model of the HRA.
Section 3 presents the control structures that have been
used. Section 4 presents the control objectives and func-
tional boundaries as well as the genetic algorithm used to
solve the control problem. Simulation results are analysed
in Section 5 and the paper closes with the conclusion and
outlook in Section 6.

2. SIMPLIFIED MODEL OF THE HRA

The HRA considered here uses direct electromagnetic
actuation (voice coil principle). Other technologies are also
possible, but they may lead to a slightly more complex
model.



� � � � � � � � � � � � � � � � � � � � � � � � � � �	 � � � � � � � � 
 � � �  �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
 �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
 �� � � � � � � � 
 � � � � � � � � 
 � � � � � � � � 
 � � � � � � � 
 
	 � 	 �
Fig. 2. 4× 4 HRA Configuration� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �
Fig. 3. Four Actuation Elements in Series

Single Element

A single actuation element behaves like a spring-damper
combination

mẍ = ku− dẋ− rx (1)

where x is the position, m is the moving mass, k is the
input coefficient, d is the damping factor (accounting for
mechanical and electrical damping), r is the elasticity of
the spring, u is the electrical input, and x is the position
of the mass. For the state space model, the system state

x = (ẋ x)T

is used. The parameters for the model are given as

m = 1 kg k = 10 N/V
d = 10 Ns/m r = 1 N/m

Further details on the modelling of the actuator can be
found in Davies et al. (2008b).

HRA Model

Parallel elements can be modelled as a single actuator,
because the elements are linked together, representing
one moving mass. However, elements in series consist of
individually moving masses. So a 4 × 4 HRA (see Fig. 2)
can be modelled using four moving masses (see Fig. 3). As
shown in Steffen et al. (2008), it is possible to align the
dynamics of all masses by cancelling the additional poles
with input-decoupling zeros. Then the connecting masses
have no influence on the input-output behaviour, and only
the behaviour of the load mass remains. So equation (1)
still applies, if the parameters are adjusted accordingly:

mẍ = ku−
1

n
(dẋ− rx)

where n denotes the number of elements.

For the example application, n = 4 and intermediate
masses of m1 = 0.2 kg are used, leading to the SISO
transfer function

G0(s) =
1

(s + 2.4)(s + 0.104)
(2)

for the nominal system (fault-free situation).
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Fig. 4. Lock-up faults

Behaviour with Faults

This paper only deals with lock-up faults, because they
have a more significant influence on the dynamics than
other fault modes. A lock-up of an element means that
the two masses it links move at the same speed, so they
can be modelled as one mass (Fig. 4). For example, a lock-
up of the second element leads to

GF2(s) = 10
s + 134.5

s + 134.1

s + 41.6

s + 41.1

1

(s + 3.3)(s + 0.103)
, (3)

and a double fault in elements 2 and 3 leads to the transfer
function

GF23(s) = 10
1

(s + 5)(s + 0.102)
. (4)

The main change in behaviour is the movement of the
faster pole from 2.4 to 3.3 or 5. Compared to this, all other
changes are of minor significance. While the simulation of
the results will use the full model, it is reasonable to use
a simplified model for the controller design.

Simplified Model with faults

In order to speed up the controller design problem, only
the following two characteristic transfer functions will
be used to represent fault cases. The first one is an
approximation of all cases with a single lock-up actuator
fault:

GFa(s) = 10
1

(s + 3.3)(s + 0.103)
. (5)

The deviation from the actual transfer functions is small,
and should be handled easily by any reasonably robust
controller. The second function represents a lock-up of two
elements:

GFb(s) = 10
1

(s + 5)(s + 0.102)
. (6)

3. CONTROL STRUCTURES

One of the main themes of this paper is to compare dif-
ferent control structures in how well they deal with faults
in the HRA. There are three different control strategies
compared as listed in Table 1.

Table 1. Control strategies used

Control Structure abbrev. Fig. Type Degrees
Of Freedom

Classical controller PID 5 SISO 1
P-I Phase advance PI-PA 6 SISO 2

State feedback SF 7 MIMO 1
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Fig. 6. PI Phase Advance Controller

Traditional PID

The first two structures are traditional PID controllers,
implemented as a PI controller with a phase advance com-
pensator. They both implement the controller behaviour

GPID(s) = kP

s + kI

s

s
kD

+ 1
s

pD
+ 1

, (7)

with four parameters: kP is the proportional gain, kD and
kI are the zeros of the phase advance compensator and
the integral branch, and pD is the realisation pole of the
compensator. First, a typical implementation as shown in
Fig. 5 is used here. To avoid wind up in the integrator, it
is stopped while the input is at the limit of 24V, but this
is not shown in the diagram.

PI with Feedback Phase Advance

A common variation of the PID controller is also tested.
The difference is that the phase advance compensator
is only applied to the feedback signal, but not to the
reference (see Fig. 6). This configuration is common in
mechanical systems, and it is known to deal better with
input limitations.

State Feedback

The third control structure includes the measurement of
the speed of the actuator in addition to the position. While
the speed could be found by calculation the derivative
of the position, measuring it directly is more accurate.
The speed measurement is added to the position error,
which replaces the phase advance compensator (see Fig. 7).
The resulting controller has two possible interpretations:
it is a PID controller with a real derivative, or it is a
state feedback controller with an error integral state. The
control law is:

u = kP

(

xref − x− kDẋ + kI

ˆ t

0

xref − x dt

)

. (8)

This structure has two significant advantages. Because no
phase advance compensator is used, this structure is much
less sensitive to measurement noise. So higher gains can
be used without excess noise levels in the control input.
The other advantage is that it has only three parameter,
which simplifies the optimisation process.
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Fig. 7. State Feedback Controller

The speed can be measured directly, or it can be inferred
from other measurements, such as the acceleration or the
induced voltage in the actuator coils. In any case it will
require an additional sensor, because a state observer
would not work well in the different fault cases.

4. OPTIMISATION OF CONTROLLER
PARAMETERS

Control Objectives

The control application considered here is position control,
and the goal is to reach the target position soon and
with very little overshoot. Consequently, two objectives
are considered: the settling time and the overshoot. Both
are defined in terms of a reference step response, where
the system moves from x(0) = 0 to xref = 0.1m.

Unlike in typical optimisations, it is necessary to consider
not only the nominal (fault free) case, but also the be-
haviour of the system under faults. The two objective
functions are then defined as the average overshoot (Mp)
and the average settling time (ts) over these three cases:

Mp =
1

3
(Mp,f0 + Mp,f1 + Mp,f2) (9)

ts =
1

3
(ts,f0 + ts,f1 + ts,f2) (10)

The subscripts ·f0, ·f1 and ·f2 denote the case with no fault
and the cases with one fault and two faults respectively.

The only constraint assigned to the optimisation is that
the overshoot is less than 2%

Mp < 2% . (11)

Any excessive overshoot is added as a penalty to both
criteria.

Multi-Objective Constraint Optimisation

The evolutionary algorithm selected is based on the non-
dominated sorting of the individuals in the chromosome
based on the ranking and the crowding distance of the
individuals. A comparison between the different existing
algorithms is found in Zitzler et al. (2000). The results
show that the convergence of the NSGA algorithm (later
developed into NSGA-II) is good even in the presence of
local minima, and it is therefore suitable for the problem
under consideration.

The parameters used are critical for the optimisation
procedure. The parameters chosen here are shown on table
2. The crossover probability is generally selected to be



large in order to have a good mixing of genetic material.
The mutation probability is defined as 1/nv, where nv is
the number of variables (nvSF

= 3,nvP I−P A
= 4,nvP ID

=
4). For the simulated binary crossover parameter (SBX)
and the mutations parameter it was decided to use the
value of 20 for each since they provide good distribution
of solutions for the algorithm operations.

Table 2. NSGA-II Parameters

Parameter setting

Crossover probability 0.9
Mutation probability 1/nv

SBX parameter 20
Mutation parameter 20

Rigid bounds 1
Population 200
Generations 150

There is no systematic method to define those values as
they depend on the nature of the problem. Instead, these
values were selected after numerous trial runs. In addition,
the search space is limited to reasonable parameters based
on manual controller designs. To achieve the optimal
solutions within limits the penalty function approach is
used. For more details see Deb (2001).

Computational Time

The main problem with heuristic optimisation methods is
that they require the objective function to be evaluated
many times resulting in large computational effort (Hi-
dalgo and Fernandez, 2005). The exact number depends
on the specific problem, but it is in the order of 10000
times for the problem considered here. Each evaluation
requires a full simulation run of the system model, and
this is where most of the processing time is spent.

By keeping the model as simple as possible, each simu-
lation run can be kept to well under one second on a
standard PC. To further speed up the process, a trick
is used to achieve vectorisation. Because MATLAB is an
interpreted language, the overhead per operations can be
high, and vectorisation (the processing of several values at
a time) leads to significant performance gains by better
amortisation of this overhead.

In Simulink, the same result can be achieved by using
vector signals, where each element represents a signal for a
different controller. With just one simulation, it is possible
to generate the trajectories for a number of controllers at
the same time. While this restricts the numbers of blocks
and signals that can be used (see Fig. 8), it is quite feasible
for the simple system discussed here. With a suitable solver
and the correct amount of vectorisation (between 10 and
100 signals), it can lead to a performance gain of nearly a
factor of ten. This brings the time for a full optimisation
run down to less than a minute.

5. SIMULATION RESULTS

Pareto Front of Optimal Controllers

The results of the optimisation process are shown in Fig. 9.
Because the objective contains two criteria, there are many
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Fig. 8. Vectorised Controller Implementation
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Fig. 9. Pareto Optimal Solutions

solutions that are each Pareto-optimal because no other
solution can improve on both criteria. It follows logically
that the Pareto curve has to be falling.

Still, the results clearly show that the three control struc-
tures lead to different results. The state feedback controller
has the shortest settling time. The PI controller with
phase advance in the feedback comes next. It is only very
slightly slower for higher overshoot (> 0.5%), but it is
at a significant disadvantage for very low overshoot. The
classical PID controller is significantly inferior, so much so
that it cannot be recommended for this application.

Another interesting aspect of these optimal solutions is
that there are jumps in the settling time. This indicates
that the oscillation of the system violates the 1% settling
band, thus increasing the settling time significantly. This
effect can be seen in more detail in the simulation results
below. This effect would be unusual in the control of a sin-
gle spring damper system, but it does happen because the
controller has to deal with the plant under different fault
cases. So these jumps are a sign that the controller cannot
deal well with the resulting differences in behaviour.

Finally it is remarkable that the solution sets stop long
before the penalty applies for the hard limit at 2%
overshoot. There are a number of explanations for this.
The optimisation variable is the average over all three fault
cases, while the penalty applies per individual case, so the
average will be significantly below the threshold. Also the
settling band of only 1% penalises any higher overshoot.
The simulations will show that the optimal controllers
show nearly no oscillation in the system response.

Step Response by Fault Case

To test the ability of the designed controllers to deal
with faults, a number of more detailed simulations are



Table 3. Settling Time Results by Design Over-
shoot Mp

Mp Faults PID PI-PA State-FB

0.0 % f0 172ms 208ms 133ms

f1 358ms 212ms 146ms

f2 408ms 212ms 160ms

0.1 % f0 168ms 197ms 123ms

f1 345ms 207ms 135ms

f2 392ms 207ms 151ms

0.5 % f0 161ms 122ms 146ms

f1 314ms 130ms 126ms

f2 363ms 147ms 144ms

0.6 % f0 217ms 122ms 148ms

f1 305ms 130ms 127ms

f2 368ms 147ms 143ms
f0: fault-free, f1: one fault, f2: two faults

performed. Because of the high number of parameters,
only a small cross-section of the results can be presented
here. The results for an overshoot objective of 0.1% and
0.5% are chosen (see Table 5). While the amplification
may seem rather high, the range of the position states
(0.1m) is small compared to the range of inputs (24V),
and the measurement resolution is high, so the controllers
are quite reasonable. The detailed system model is used
for all verifications, leading to the simulations in Figs. 10
and 11.

The detailed models are different from the models used for
the controller design, so the response may differ slightly
from the one used for the evaluation function. Even if
the effect is small, it may make the difference between
an oscillation being within the settling band or not. This
explains why the results in the simulations may not match
exactly with the prediction of the evaluation function. A
tabular overview of the results is shown in Tables 3 and 4.

The simulations fully support the conclusions from the
Pareto sets (Fig. 9). The classical PID controller (Fig.
10(a)) does not deal well with the behavioural changes of
the system under different fault cases. This leads to a slow
settling especially in the fault cases. A more aggressive
tuning could improve this, but it would also result in a
higher overshoot in the nominal case, which is forbidden
by the constraints.

The PI controller with phase advance in the feedback path
is significantly better (Fig. 10(b)). It shows a fast initial
response, good settling behaviour, and consistency across
the different fault cases. The state feedback controller (Fig.
10(c)) improves again. The main difference is that the
system settles without any oscillation.

Similar result are found for the higher overshoot of 0.5% in
Fig. 11. The classical PID controller is still inferior to the
two improved controllers, but the difference between PI
with phase advance and state feedback is nearly invisible.

6. CONCLUSIONS AND FURTHER RESEARCH

The simulations show that all the designed controllers can
satisfy the requirements, despite their simple structure.
The PID controller has some difficulties in dealing with
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Fig. 10. Simulation results for Overshoot 0.1%.

Table 4. Overshoot Variation Due To Faults.

Mp Faults PID PI-PA State-FB

0.0 % f0 0% 0.002% 0.01%

f1 0% 0% 0%

f2 0% 0% 0%

0.1 % f0 0.19% 0.10% 0.34%

f1 0.07% 0.10 % 0%

f2 0% 0.08% 0%

0.5 % f0 0.66% 0.42% 0.34%

f1 0.95% 0.25% 0.23%

f2 1.06% 0.28% 0.17%

0.6 % f0 1.27% 0.99% 1.04%

f1 0.29% 0.40% 0.39%

f2 0.21% 0.39% 0.37%
f0: fault-free, f1: one fault, f2: two faults

faults, but this can be improved significantly by moving
the phase advance block into the feedback path.

The key to a good robustness of the controller is a high
gain. Together with a phase advance block, this could lead
to excessive noise in the control input, if the resolution
of the position sensor is not sufficient. The state feedback
controller solves this problem, by taking the speed into
account. While this does require an additional sensor,
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(c) State feedback with 0.5% overshoot

Fig. 11. Simulation results for Overshoot 0.5%.

Table 5. Optimal Controller Parameters

Mp Parameter PID PI-PA State-FB

0.1 % kP 202 927 4000

kI 0.02 0.03 0.0

kD 8.6 19.2 32.4

pD 47.0 77.4 -

0.5 % kP 203 927 3856

kI 0.05 0.06 0.04

kD 8.6 19.5 32.9

pD 46.8 77.3 -

it allows both faster reaction and a higher gain without
increased complexity in the controller.

All three controllers require only a few mathematical
operations, so they can easily be implemented even in
a very simple digital processor. More importantly, the
controller order is independent of the configuration of the
HRA. This means that even high orders such as 10 ×
10 HRA configuration (as in Davies et al. 2008a) are
feasible. In fact, the higher number of elements may even
simplify the control, because the effect of individual faults
is reduced.
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