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ABSTRACT 

Machinery condition monitoring techniques are carried out based on the knowledge of 

the characteristics of signals obtained from a machine or plant. These signals are often 

non-stationary signals whose frequency changes over time due to the time-varying 

natures of machine operations and fault effects. Conventional signal processing 

techniques are developed based on stationary signals and cannot reveal the time 

information of the frequency changes. The work undertaken in this research presents a 

generic study of non-stationary signal processing for machinery condition monitoring. 

Starting with examining the concept of non-stationary signals, it can be identified that 

most condition monitoring signals fall into two main categories: weak non-stationary 

signals, such as motor electrical current signal and strong non-stationary signal such as 

machinery vibration and acoustic signals.  

For developing techniques to process these two typical non-stationary signals, two 

experiments were carried out to obtain these them. Firstly, an induction motor drive 

system was set up based on a two-stage reciprocating compressor; the motor current 

signals were then acquired for compressor fault detection and diagnosis. Secondly, a 

set of vibration and acoustic measurement instrumentation was set up based on a diesel 

engine test system. The engine vibration and acoustic signals were collected for further 

analysis for engine combustion condition monitoring. The engine was fuelled by 

different biofuels during data collection allowing a new and efficient method of 

verifying different sustainable fuels to be developed based non-intrusive vibro-acoustic 

measurements in conjunction with non-stationary signal analysis methods.  

A time domain based method, dynamic time warping, was validated and improved for 

analysing the motor current signal to detect and classify the common faults of 

reciprocating compressors. Based on the limitations of classical dynamic time warping, 

a phase estimation and compensation approach is developed to reduce the singularity 

effect of classical dynamic time warping in order to obtain accurate diagnostic results. 

A sliding window was also designed to improve computing efficiency. The diagnostic 

results show that the accuracy and reliability of detection and classification by the 

proposed dynamic time warping method is higher than that from Fourier transform 

spectrum and envelope analysis. In addition, the fault detection and classification is 

based on a root mean square (RMS) linear classifier processes combined with the 

proposed dynamic time warping method, and is based entirely on time domain analysis 

which is easier to apply to a real-time condition monitoring system. It was proved that 

the proposed dynamic time warping is a novel and efficient method for 

cyclostationary/weak non-stationary analysis. 
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Various non-stationary signal processing techniques based on time-frequency domain 

analysis, including Wigner-Ville distribution, fractional Fourier transform and 

continuous wavelet transform, are investigated to process the engine vibration and the 

acoustic signals for the condition monitoring of engine combustion. A sound pressure 

level (SPL) indicator is designed based on the Wigner-Ville distribution (WVD) 

analysis and the fractional Fourier transform filtering of the engine vibro-acoustic 

signals. The processing results demonstrate that the combustion induced acoustics can 

be extracted for the diagnostics of engine combustion process and for condition 

monitoring.  

A root mean square (RMS) linear classifier is developed based on the engine acoustic 

analysis by time synchronous average and continuous wavelet transform, the 

classification demonstrates that the root mean square (RMS) values of the continuous 

wavelet transform coefficients can be used to evaluate the fuel for engine combustion 

and indicate the engine operating conditions. The analysis results verify that the engine 

vibro-acoustics have the potential to be used to diagnose the engine combustion 

process and to monitor the engine operating conditions with the application of suitable 

non-stationary signal processing techniques. This can be used instead of the cylinder 

pressure data which is both intrusive and costly to obtain. 

Finally, the conclusions and achievements are given based on the entirety of this 

research work, and suggestions are presented for further research. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

 

This chapter presents a general introduction to the machinery condition monitoring 

techniques. Firstly, the motivation and background of this research work are presented; 

secondly, maintenance strategies and condition monitoring techniques are reviewed; 

finally, the objectives and organisation of this research are outlined. 
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1.1 Motivation and background 

In industrial application, the reliability of a machine is a critical aspect in the 

evaluation of its performance. The performance of a machine will be deteriorated over 

time as a result of operating under certain stresses or load. Maintenance has been 

introduced as an efficient way to assure a satisfactory level of reliability during the 

useful life of a machine [1]. Maintainability is regarded an important process for 

manufacturing managers especially when the cost involved in the failure and repair of 

equipment is taken into account [2]. Numerous maintenance actions are carried out to 

extend the life span of the machine or process and to avoid catastrophic accidents. 

Generally, maintenance is a combined action depending on an understanding of the 

machine and its working principles. Along with the development of maintenance 

techniques, there is several maintenance strategies used widely: corrective 

maintenance, emergency maintenance, preventive maintenance, scheduled 

maintenance, and condition-based maintenance [2][3]. These maintenance strategies 

can be classified as two main types according to their implementation characteristics, 

which are unplanned maintenance and planned maintenance as shown in Figure 1-1. 

 

 

Amongst these maintenance strategies, condition-based maintenance is a popular 

maintenance strategy which is widely used in practice since it works to predict failure 

at a time sufficiently in advance of the event that action may be taken [2]. It is capable 
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Figure 1-1 Classification of maintenance strategies 
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of exploiting the maximum operating time of a system or machine and minimizing the 

maintenance costs involved. Condition-based maintenance is defined as preventive 

maintenance initiated as a result of knowledge of the condition of an item from routine 

or continuous monitoring [2]. Condition-based maintenance works by determining the 

actual operating conditions of a system or item at any point in time. Condition 

monitoring is a useful technique which is able to monitor the conditions of machine at 

all times and provides an accurate prediction of any potential failure. The main 

purpose of condition-based maintenance is to guide the maintenance be taken at a 

proper time based on the operating conditions of monitored machine. This means that 

the most important aspect of condition-based maintenance is the effectiveness of the 

method used for monitoring the status of a machine. Condition monitoring is an 

effective method used to monitor the operating conditions of a machine and ensures 

that all necessary maintenance actions can be taken at a time appropriate to the 

predicted failure. 

1.2 Introduction to condition monitoring 

Condition monitoring is defined as the continuous and periodic measurement and 

interpretation of data to indicate the condition of a system or plan which is then used to 

guide the maintenance [2]. Condition monitoring is concerned with gathering data to 

enable better understanding of the health or condition of an item [4]. Normally, 

condition monitoring is carried out when the system or plant is running, and its 

application is used to assess the current condition of the system or plant by analysing 

the measured signals using various signal processing techniques. This is in order to 

economically perform maintenance when a potential failure is identified at a 

convenient time. The assessment of the current condition of a system or item is carried 

out through measuring parameters which reflect the condition of a component. These 

measurements may also indicate the future trend of its possible deterioration. 

The use of condition monitoring allows effective maintenance to be scheduled, and 

allows other actions to be carried out in order to avoid accidents before a failure occurs. 

The input of condition monitoring activity is mainly the data obtained from different 
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types of sensors which are used to schedule and carry out the maintenance actions. A 

condition monitoring system consists of three key steps [1]: data acquisition, data 

processing, and maintenance decision making. These are shown in Figure 1-2. 

Data

Acquisition

Data

Processing

Maintenance 

Decision 

Making

 

 

Figure 1-2 The three main steps in a condition monitoring system [1] 

 

Various types of data can be used for condition monitoring. It depends on the kinds of 

sensors used in the data acquisition system. The data can be vibration, acoustic, oil 

analysis data, temperature, pressure, moisture, humidity, and weather or environmental 

data. All these data can be collected by different kind of sensors, such as 

accelerometers, microphones, ultrasonic sensors and acoustic emission sensors [5, 6]. 

Data processing is a vital step in a condition monitoring system, its purpose is to better 

understand and interpret the data so that efficient maintenance policies may be 

proposed [1]. Many kinds of algorithms and techniques have been introduced to 

analyze the data obtained from data acquisition system. 

There are numerous methods used for making maintenance decisions in a condition 

monitoring system. Based on the types of data collected or the types of the sensors 

used for data collected, there are a variety of techniques that can and should be used 

for making maintenance decisions in a condition monitoring system [6]. 

1. Visual inspection [3][7]. 

2. Trend monitoring [7]. 

3. Vibration-based condition monitoring [7][8][9]. 

4. Acoustic emission monitoring [10][11][12]. 

5. Acoustic-based condition monitoring [7][13][14]. 

6. Current-based monitoring [15][16]. 
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Among the various condition monitoring techniques, vibration monitoring is generally 

the most important technique in most condition monitoring systems [3]. Sometimes, all 

of these technologies are applied in a comprehensive condition monitoring system in 

order to obtain accurate conditions assessment of a machine. Especially, acoustic-

based condition monitoring technique is coupled with vibration-based condition 

monitoring for the analysis of the conditions of a machine. 

1.3 Acoustic-based condition monitoring 

Sound or acoustics are related to the vibration of objects. The generation of sound is 

usually attributed to the vibration of solid objects and sound can be explained as 

vibration of the air [17]. Therefore, the vibration, acoustic or the sound noise signals 

are generated from the machine or processes at the same time as a machine is running 

and the noise produced by the machine can be used to indicate the condition of the 

machine. Acoustic-based condition monitoring employs the airborne sound signal with 

the frequency from 20Hz to 20 kHz. 

Airborne sound signals can be picked up by microphones, and can be employed for 

condition monitoring by analysis of the airborne acoustic characteristics or the noise 

produced by machines or equipment. Compared with vibration sensors, microphones 

are easy to install and have higher frequency response ranges which can give more 

detailed information [7]. Acoustic signals are also easy to record, and record the total 

noise level of the monitored system as there are potentially a number of different 

sound sources in one machine. The characteristics of noise generation and the 

transmission of each sound source can be extracted by analyzing the airborne acoustic 

signal, and the sound sources can also be separated for detailed analysis through 

microphone array signal processing techniques [18]. Researchers have focused on the 

use of airborne acoustic signals for condition monitoring more frequently in recent 

decades. Li [13] investigated the acoustic-based condition monitoring of a diesel 

engine operating under different conditions, and the results showed that the extracted 

features from the acoustic signals generated by the test engine were able to identify the 

differences between the engine’s normal and faulty conditions.  
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Even though the airborne acoustic monitoring technique is convenient to use in 

practice, the airborne acoustic signals are easily polluted by background noise. Gu and 

Ball [14] investigated “the influences of the measurement environment on the acoustic 

data, the signal conditioning and the representation techniques were required to 

reveal the condition-indicating content of the monitored acoustic signal.” Airborne 

acoustic signals need to be pre-processed to improve its signal to noise ratio (SNR) 

before extracting the characteristics of the sound sources from the noise signals for 

fault diagnosis. Albarbar, Gu and Ball [19] employed adaptive filtering techniques to 

enhance the diesel fuel injector needle impact excitations contained within airborne 

acoustic signals for better condition monitoring information. Jiang, Gu and Ball [20] 

introduced an effective monitoring method for diesel engine combustion based on 

acoustic one-port source theory and exhaust acoustics measurement, and found that 

“the engine acoustic source has ability of providing an accurate representation of 

engine combustion events by minimizing the reflection effects in the exhaust system.” 

The fact is that airborne acoustics is a sequence of waves of pressure which propagate 

through compressible media air [17]. During their propagation, the sound waves may 

be refracted and attenuated by the medium. Otherwise, if the sound sources are located 

in an enclosed space, the reflection caused by the boundary of the enclosed space will 

affect the basic characteristics of the sound source [17], and increase the difficulties of 

fault diagnosis. 

Condition monitoring techniques are applied to assess the conditions of a machine or 

plant based on the measured signal collection and interpretation using various signal 

processing methods. The signal processing methods selected for the analysis of the 

measured signals are based on the characteristics of the signal itself [2]. In the 

machinery condition monitoring [1][2][4], most of the measured signals can be 

considered as non-stationary signals which contain the information related to the faults 

and operating conditions of the monitored machine. Non-stationary signal analysis is a 

critical part of machinery condition monitoring and it is necessary to study the using of 

appropriate signal processing methods to analyse measured non-stationary signals 
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based on their characteristics for accuracy feature extraction for machinery condition 

monitoring and fault diagnostic. 

1.4 Aims and objectives of the research 

The aim of this research is to study the signal processing methods for non-stationary 

characteristics analysis, extraction and for abnormal detection of signals in machine 

condition monitoring and fault diagnostics. In this research work, electrical current, 

engine vibration and engine acoustic signals are selected as three typical non-stationary 

signals. Effective signal processing algorithm and techniques are studied to be used to 

analyze these three typical non-stationary signals for a compressor fault diagnostic and 

diesel engine condition monitoring.  

To test the abilities and effectiveness of the developed signal processing algorithms on 

feature extraction for the machine condition and fault diagnostics, experiments (see 

Section 4.2 and 5.2) are carried out and the proposed signal processing methods (see 

Section 3.2, 4.4, 4.5, 7.3-7.5, and 8.2-8.4) are used to analyse the measured signals. 

The results of the analysis show that the developed signal processing methods are 

capable of analysing the non-stationary characteristics of signals for feature extraction, 

weak signal enhancement, and for the detection of abnormal components. This leads to 

more accurate detection results for the monitoring of machinery condition and for the 

diagnosing of faults. 

This aim is accomplished by the fulfilment of the following objectives: 

 The reviewing of the signal processing methods and monitoring techniques 

used in machinery condition monitoring (see Chapter 2). 

 The construction of a diesel engine test rig (see Section 5.2) and a reciprocating 

compressor test facility (see Section 4.2) for the study of machinery condition 

monitoring. 

 Improvement of the dynamic time warping algorithm (see Chapter 4) for 

accurate feature extraction used for fault classification of a reciprocating 

compressor. 
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 Analysis of the characteristics of diesel engine vibro-acoustic signals (see 

Chapter 5). 

 Analysis of the combustion process of a diesel engine (see Chapter 6) for 

engine combustion condition monitoring and fuel evaluation. 

 The development of advanced vibro-acoustic signal processing methods (see 

Chapter 7 an 8) to extract the non-stationary nature for diesel engine condition 

monitoring. 

 Analysis of the relationship between vibro-acoustic signal and the combustion 

process of a diesel engine under different conditions (see Section 6.3). 

 The extraction of vibro-acoustic features to monitor the combustion process 

fuel quality of the diesel engine (see Section 7.5 and 8.4). 

1.5 Organisation of thesis 

A brief introduction is listed to outline the thesis as follows: 

Chapter 1: This chapter presents the motivation and background of this research work 

and gives a brief introduction to machinery condition monitoring. The aims, objectives 

and organisation of thesis are also presented. 

Chapter 2: To begin with, this chapter discusses the definition of non-stationary signals 

and the non-stationary process in machinery condition monitoring, then reviews the 

literature of the application of signal processing techniques in machinery condition 

monitoring, especially with regards to non-stationary signal processing methods. 

Chapter 3: This chapter introduces the classic dynamic time warping method, its 

properties and its limitations. Based on the problems associated with classic dynamic 

time warping, the improvement of singularities and time complexity of dynamic time 

warping are studied. The effect of phase properties on the singularities of dynamic 

time warping is also discussed. 

Chapter 4: This chapter concerns the use of dynamic time warping for analysing the 

motor electrical current signals for the fault diagnostics of a reciprocating compressor. 

Information about the compressor test facility is given including current transducer 
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specifications and the experimental setup. Taking into account the characteristics of 

the electrical current signal and the dynamic time warping method, phase estimation 

and compensation is proposed to improve the singularities of dynamic time warping 

for accurate fault feature extraction. Finally, the fault detection and classification 

results are discussed. 

Chapter 5: This chapter studies the characteristics of the diesel engine vibro-acoustic 

signal based on the time domain statistics and the frequency domain spectrum analysis. 

Firstly, information regarding the diesel engine test rig is described including the test 

engine specifications and test rig functions. Secondly, the effects of room acoustics on 

the engine acoustic signals are analysed. Finally, the fuel monitoring of a diesel engine 

based on the engine noise analysis is also investigated and discussed. 

Chapter 6: This chapter introduces the combustion process and combustion parameters 

variability based on the diesel engine test. The generation of the combustion produced 

by vibration and noise are also investigated through analysis of the characteristics of 

the diesel engine combustion process. 

Chapter 7: This chapter employs the Wigner-Ville distribution (WVD) method to 

analyse the time-frequency characteristics of the engine’s vibro-acoustic signals; the 

relationship between the combustion produced vibrations is also discussed, and noise 

is investigated using coherent power spectrum analysis. The combustion produced 

noise is extracted for the combustion process monitoring by applying a band-passed 

filter based on fractional Fourier transform (FRFT). 

Chapter 8: This chapter describes the application of the time-frequency analysis 

techniques to engine noise study. The continuous wavelet transform is introduced and 

applied to the investigation of diesel engine noise for the combustion diagnostics. 

Firstly, time synchronous average (TSA) technique is employed to pre-process the 

engine noise for the enhancement of the signal-to-noise ratio (SNR). Next, the 

continuous wavelet transform with Morlet wavelet function is improved for the 

analysis of engine acoustic signals. Finally, the results obtained from the continuous 
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wavelet transform analysis are given for diesel engine combustion monitoring and fuel 

evaluation. 

Chapter 9: This chapter summarises the results and conclusions drawn from this 

research. Furthermore, suggestions are also given for the future work in related 

research areas. 
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CHAPTER 2 

NON-STATIONARY SIGNAL PROCESSING 

 

 

 

 

This chapter reviews the definition of non-stationary signals and the signal processing 

techniques used in machinery condition monitoring, including time-domain analysis, 

frequency-domain analysis and time-frequency domain analysis. In particular, the 

signal processing methods used for non-stationary signal analysis, such as short-time 

Fourier transform, Wigner-Ville distribution, wavelet transform and fractional Fourier 

transform, are surveyed and discussed. 
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2.1 Introduction to signal processes 

In machinery condition monitoring system, signal processing is the analysis and 

transforms action of data which has been collected from the monitored machines. 

There are various signal processing techniques and algorithms discussed for better 

understanding and interpretation of the collected data for machinery condition 

monitoring and fault diagnostics. The purpose of using signal processing methods in 

condition monitoring is to extract useful information for the assessment of the 

conditions of monitored machine. 

The simplest way of signal processing is to examine the magnitude of the raw 

incoming signal as a function of time and considering it in the time domain analysis 

(see Section 2.1). This is, in fact, the basis of all visual inspection techniques and trend 

analysis. The processing in such cases consists of a comparison of the current record 

against the previous value with a predetermined threshold. This process is easy to 

implement, even when many hundreds of inputs are being monitored. 

The magnitude detection in the time domain implies that machinery condition 

information is seeded in the changing of the signals obtained from the plant. The 

variation of the signals usually shows the changes of the conditions for the monitored 

machine. Variation of a signal in the time domain can be more salient expressed as 

components in the frequency domain. Therefore, frequency domain analysis is a 

common technique of signal processing applied in condition monitoring. Spectral 

analysis (see Section 2.4) is effective especially when applied to process the steady-

state periodic signals, as is usually the case with monitoring machine faults that 

develop gradually [16]. 

For machinery condition monitoring, various kinds of factors, such as changes in the 

environment and the faults of the machine, leading to the measured signals of the 

operating machine contain non-stationary components [21], and generally, these non-

stationary components contain information related to the faults of the machine. Non-

stationary means the frequency components of the signals change over time and space. 

In mathematical, non-stationary signal presents as its statistical parameters vary with 
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time. It is therefore critical to process the non-stationary signals for fault diagnostics. 

Unfortunately, even though spectral analysis is the most widely used and well-

established method for signal processing in machinery condition monitoring, it is 

unsuitable for non-stationary signal analysis and cannot reveal the inherent information 

found in non-stationary signals [21]. 

Various researchers have developed a number of signal processing techniques for non-

stationary signal analysis. Time-frequency analysis (see Section 2.5) is the most 

popular method used for the analysis of non-stationary signals, such as short time 

Fourier transform (STFT) (see Section 2.5.1), Wigner-Ville distribution (WVD) (see 

Section 2.5.2) and wavelet transform (WT) (see Section 2.5.3). These techniques are 

able to provide the time-frequency representations for non-stationary signals and can 

be used to extract features related to the faults and conditions of the monitored 

machines for machinery condition monitoring. 

In this chapter, the definitions of a non-stationary signal and a non-stationary process 

in machinery condition monitoring are discussed (see Section 2.2), and then the 

present available signal processing methods for machinery condition monitoring are 

reviewed based on the three main categories of data analysis: time-domain analysis 

(see Section 2.3), frequency-domain analysis (see Section 2.4) and time-frequency 

analysis (see Section 2.5). 

2.2 Non-stationary processes 

2.2.1 Definition of non-stationary signal 

This section is to discuss the definitions of non-stationary signal and its properties in 

mathematics. Generally, a non-stationary signal is defined as a frequency component 

in which of the signal changes over time and space, such as in human speech where 

frequencies vary over time depending on the words being pronounced. In mathematics, 

the non-stationary signal can be defined based on the definition of the stationary signal. 

This means if the variation of the statistical parameters of one signal, such as mean and 

variance, not met the conditions of a stationary process, it can be considered a non-
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stationary signal. The stationary signal can be defined as a signal whose statistical 

properties do not vary with time in mathematics [22]. On the contrary, processes 

whose statistical properties do change with time are referred to as non-stationary 

signals. 

Strict-sense stationary: 

Assuming that        is a random process or random signal, if its statistical properties 

are invariant by translation in time as: 

                                           (2-1) 

where   denotes the statistical probability of        and         ,                

is the value of the random process at time               , and   is the time shift. 

These random processes can be considered as strict-sense stationary for every moment 

they are invariant by temporal translation regardless of the time shift   applied to them. 

Wide-sense stationary: 

A signal will be stationary if the statistical properties of the signal are objected to the 

following conditions [22]: 

(1) Its average value is constant: 

                        (2-2) 

(2) Its autocorrelation function depends only on the time shift   : 

                            (2-3) 

where    is the average value of the random process       ,      is the expected value 

calculation, and     is the autocorrelation function of       . 

The probability density of one signal should vary randomly when the signal is not 

stationary. Otherwise, there is a special kind of non-stationary signal which can be 

referred to as a cyclostationary signal, whose statistical properties are periodic. Hence, 

each cycle of this signal can be regarded as the realization of the same random process. 
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The cyclostationary signal can also be classified into strict-sense and wide-sense 

cyclostationary signals based on the mathematic theory. 

Strict-sense cyclostationary: 

If the probability density is a periodic of   as in equation (2-4), a random signal        

can be considered as strict-sense cyclostationary signal with the periodic of  . 

                                           (2-4) 

where p denotes the statistical probability of {x(t)},               is the value of 

the signal at time              , and   is the periodic of the probability density. 

Wide-sense cyclostationary: 

A random process is classified as wide-sense cyclostationary if its autocorrelation 

function is a periodic function [23] with the periodic of   for all   and  : 

                                          (2-5) 

where       is the complex conjugate of     .      is the expected value calculation, 

and     is the autocorrelation function of {x(t)}, τ is the time shift. 

It can be seen that most of the measured signals in machinery condition monitoring can 

be considered as non-stationary signal since their characteristics of statistical 

parameters are not conform to that of  stationary signal. 

2.2.2 Non-stationary processes in machinery condition monitoring 

According to the definition of non-stationary signal, it is very common that strong non-

stationary components are presented in the measured signals in the field of machinery 

condition monitoring and damage assessment. This is because of the changes of the 

experimental environment and because of the faults in the monitored machine itself. If 

based on the strict definition of a stationary signal, almost all the measured signals in 

machinery condition monitoring can be classified into non-stationary signals. Some of 
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the data should be considered as weak non-stationary or cyclostationary signals based 

on the definition of wide-sense stationary signal and cyclostationary signal. 

Generally, the non-stationary process is very common when a machine operates under 

different conditions. For example, the transient signals generated during machine start-

up, shutdown or the changing of direction can provide information about machine 

conditions which cannot be revealed from stationary signals. In addition, when the 

experimental environment changes and if faults occur during the machine’s operation, 

the non-stationary process is produced and results in non-stationary signals in the 

collected data. These non-stationary components contain critical information for 

machine condition monitoring and fault detection as a result of its mechanism. 

Signals, such as vibration, acoustic, electrical current and so on, collected from the 

machine during its operation are all combined with non-stationary components which 

contain useful information related to the conditions and faults of the machine. This 

cannot be identified through analysis of the signals by stationary signal processing 

techniques. Individually, vibration and acoustic signals can be considered as strong 

non-stationary signals since strong transient signals are also included when the 

operating conditions and the experimental environment are changed. As well as this, 

when some faults occur, non-stationary or transient signals will contribute to the 

measured vibration and acoustic signals. Electrical current signal contains nonlinear 

components because of the corresponding electromagnetic force produced by the 

nonlinear interaction of the linkage flux of the motor [24]. The current signal presents 

non-stationary behaviour related to the machine operating process and the electrical 

phase fluctuation. Based on the definition of wide-sense cyclostationary signals and 

the characteristics of electrical current signals (see Section 4.3), this non-stationary 

behaviour can be considered as a cyclostationary process [25]. According to the non-

stationary process in machinery condition monitoring, non-stationary signal processing 

techniques need to be studied and developed in order to obtain more accurate analysis 

results. 
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2.3 Time domain analysis 

Time domain analysis is based on the time series by plotting its amplitude against time. 

In time-domain analysis, the characteristic features of signals, such as mean, peak, 

peak-to-peak interval, standard deviation, crest factor, root mean square (RMS), 

skewness, kurtosis, are calculated and used to describe the statistics of signals. These 

features are usually called time-domain features or statistical parameters. A widely 

used time-domain analysis approach is time synchronous average (TSA) [26] (see 

Section 8.3). The objective of time synchronous average is to use the ensemble average 

of the raw signal to remove or reduce noise and effects from other sources, so as to 

enhance the signal components of interest. Time synchronous average is based on the 

knowledge of the revolution period of rotating part of a machine, if the revolution 

specifications obtained, the time synchronous average can be used to highlight the 

signal-to-noise ratio of either stationary or non-stationary signals, for accurate analysis 

results obtained based on the time domain. 

Another useful method of time-domain analysis is dynamic time warping (see Section 

3.2) which is an algorithm for aligning two time series which are similar, but out of 

synchronization and generally of differing lengths [27]. The two raw signals can be 

compared directly in the time domain after they are pre-processed by the dynamic time 

warping to get accurate detection results. The underlying principle behind dynamic 

time warping is to stretch or compress two time series locally in order to make one 

resemble the other as much as possible. Dynamic time warping is a widely used 

method and has been applied in many areas, such as word recognition [28], speed 

recognition [29] and online signature matching [30]. Therefore, dynamic time warping 

has the ability to process the non-stationary or nonlinear data for non-stationary 

components analysis in the time domain, especially for amplitude modulation signal 

analysis. 

Empirical mode decomposition (EMD) is also an effective method used for signal 

processing in the time domain, especially for the non-stationary or nonlinear data 

analysis [31]. Empirical mode decomposition will break down a signal into its intrinsic 
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mode functions (IMFs). The intrinsic mode functions are defined as a class of 

functions which can be used to indicate the local properties of the analytical non-

stationary signals [31]. As the frequency of non-stationary or nonlinear data changes 

over time, the signal may involve more than one oscillatory mode. The empirical mode 

decomposition can decompose the signal into IMF components. An IMF satisfies two 

basic conditions [31]: 

(1) The number of extreme and the number of zero crossings must equal or differ 

at most by one in the whole data set. 

(2) The mean value of the envelope defined by the local maxima and the local 

minima is zero at any point. 

Based on the properties of the intrinsic mode functions, the intrinsic mode functions of 

a signal can be decomposed by a sifting process. For further details of the algorithmic 

implementation one should refer to [31] in the references. Empirical mode 

decomposition can be used to decompose a signal into a finite sum of intrinsic mode 

functions based on the energy associated with various intrinsic time scales. It means 

empirical mode decomposition can decompose a signal into components adaptively, 

and each component has meaningful instantaneous frequency, different components 

correspond to different frequency scales. The intrinsic mode functions obtained from 

empirical mode decomposition provide physical insights which are crucial in 

engineering applications [32]. Therefore, empirical mode decomposition is particularly 

suitable for processing nonlinear and non-stationary signals. 

There are many other time-domain analysis techniques used to analyse waveform data 

for machinery fault diagnostics. Jardine and Lin [1] review the time domain analysis 

methods used for data analysis in condition monitoring, such as pseudo-phase portrait, 

singular spectrum analysis, principal component analysis (PCA), and time series 

models including the autoregressive model (AR) and the autoregressive moving 

average (ARMA) model. These are used for time series modelling, feature extraction, 

and fault diagnostics in condition monitoring areas. Jardine and Lin pointed out that 

“the application of autoregressive model or autoregressive moving average models is 
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difficult due to the complexity in the modelling, especially in the need to determine 

order in the model.” 

The advantage of time-domain analysis is that the indication of the conditions and 

faulty information of the monitored objects is based on the variation of the statistical 

parameters. The features of the measured signals are presented by the statistical 

parameters, such as root mean square (RMS), Kurtosis, standard deviation etc. Time-

domain analysis is therefore easy to implement in an online condition monitoring 

system as all the statistical parameters are based on single value representation. Time-

domain analysis can also avoid the shortcoming of frequency-domain analysis 

including aliasing, spectral leakage, sampling determination and picket-fence effect, as 

caused by Fourier transform (FT). If the sampling frequency of recording a signal is 

higher than two times of the highest frequency component of the recorded signal, 

Fourier transform can identify all the frequency components of the signal, but the 

picket-fence effect is still exist. 

2.4 Spectral analysis 

Frequency domain analysis gives spectral information of signals and is often used for 

data analysis. It is realized by transforming the signals from the time domain into the 

frequency domain. The advantage of frequency-domain analysis over time-domain 

analysis is its ability to easily identify and isolate certain frequency components of 

interest. The most widely used conventional analysis is spectrum analysis by means of 

fast Fourier transform (FFT) [1]. The main principle of spectral analysis is either to 

look at the spectrum in its entirety, or to simply look closely at certain frequency 

components of interest and then extract features from the signal. The most commonly 

used tool in spectrum analysis is the power spectrum. Some useful tools for spectrum 

analysis are graphical presentation of the spectrum, frequency filters, envelope analysis 

[33] and side band structure analysis [34]. 

Various useful spectra for processing signal have been introduced with their own 

advantages. Cepstrum can be used to detect harmonics and side band patterns in the 

power spectrum [1]. Power cepstrum is most popular. It is defined as the inverse 
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Fourier transform of the logarithmic power spectrum [1]. High-order spectra, such as 

bi-spectrum and tri-spectrum, can provide more diagnostic information than the power 

spectrum for non-Gaussian signals [1]. The bi-spectrum can be considered as a 

decomposition of the third moment of a signal over frequency and proves useful for 

analysing systems with asymmetric non-linear, while the tri-spectrum represents a 

decomposition of kurtosis over frequency [35]. Bi-spectrum analysis has been widely 

used in machinery diagnostics for various mechanical systems such as gears, 

bearings[35], rotating machines [36] and induction machines [24]. Jardine and Lin [1] 

reviewed the wide use of the frequency-domain analysis in machinery condition 

monitoring and fault diagnostics for various mechanical systems, including the 

application of the bi-spectrum diagonal slice to gear fault diagnostics, the use of both 

the bi-spectrum diagonal slice and the normalized bi-spectrum diagonal slice for 

bearing fault diagnostics, and the application of both the bi-spectrum and tri-spectrum 

to bearing fault diagnostics. 

Although the application of frequency-domain analysis is popular in various areas, its 

limitations, caused by Fourier transform [75-78], such as aliasing, spectral leakage and 

picket-fence, affect its application in practice. Aliasing happens when the frequency 

sampling is less than twice of the highest frequency component in the signal. Aliasing 

causes frequency components that are higher than half of the sampling frequency to 

overlap with the lower frequency components. Spectral leakage is the result of the 

assumption in Fourier transform. The assumption of Fourier transform is that the time 

record for Fourier transform is exactly repeated of the signal intervals. This assumption 

is not established in practice. Picket-fence affects the frequency components identified 

by Fourier transform since it can only produce spectral analysis results in discrete 

frequencies. The latter two limitations, spectral leakage and picket-fence, often lead to 

significant errors in spectrum estimation as the weak signature related to faults in 

signals cannot be resolved properly for accurate fault detection and diagnostics. 
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2.5 Time-frequency domain analysis 

The emphasis of this research focuses on the analysis of non-stationary signals for 

machinery condition monitoring. Hence a number of the main signal processing 

techniques relating to the non-stationary signal analysis are discussed. Time-frequency 

distribution is commonly used in conventional time-frequency analysis, which 

represents the energy or power of signals in two-dimensional functions of both time 

and frequency in order to better reveal fault patterns for more accurate diagnostics. The 

classical time-frequency distribution, such as short-time Fourier transforms (STFT) or 

spectrograms, and Wigner-Ville distribution (WVD) [28–31] are widely used for non-

stationary signal analysis.  

2.5.1 Spectrograms 

The idea of short-time Fourier transforms is to divide an entire signal into segments 

with a short-time window and then to apply Fourier transform to each segment. The 

time-frequency distribution can be obtained by successively sliding the window along 

the time axis of the signal. It assumes the data to be piecewise stationary because it is 

applied based on the traditional Fourier spectral analysis. This assumption is not 

always justified in non-stationary data. It is difficult to ensure that the window size 

adopted always coincides with the stationary time scales. Spectrograms have some 

limitation in time-frequency resolution due to signal segmentation [21]. The window 

width must be narrow in order to localize an event in time. On the other hand, the 

frequency resolution requires a longer time series. This means that short-time Fourier 

transforms has a constant resolution for all frequencies since the same length of 

window is used for the analysis of the entire signal. Therefore, a good frequency 

resolution using a wide window for the analysis of low-frequency components, and a 

good time resolution using narrow window for the analysis of high-frequency 

components, cannot be obtained based on the short-time Fourier transforms analysis. 

In addition, it cannot constitute orthogonal bases during the translation of the window 

function in short-time Fourier transforms, so it is difficult to find a fast and effective 

algorithm to calculate short-time Fourier transforms because there are no orthogonal 

bases for short-time Fourier transforms [21]. These requirements limit the application 
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of spectrograms as they can only be applied to non-stationary signals with a slow 

change in their dynamics. 

2.5.2 Wigner-Ville distribution 

Wigner-Ville distribution does not have the time-frequency resolution limitations of 

spectrograms since it is not based on signal segmentation [21]. Wu and Chiang [37] 

employed Wigner-Ville distribution to analyse the non-stationary sound emission 

signals combined with the probability neural network for an internal combustion 

engine fault diagnosis. Their results showed “the network can achieve a high 

recognition rate with feature extraction using the Wigner-Ville distribution method”. 

Staszewski, Worden and Tomlinson [39] studied the application of the Wigner-Ville 

distribution in gearbox condition monitoring by analysing the gearbox vibration 

signals. Based on the data analysis, they concluded that “the Wigner-Ville distribution 

is capable of detecting local tooth faults in spur gears, and the progression of a fault 

can be monitored by observing changes in features of the distribution”. Albarbar, Gu, 

and Ball [41] studied the non-stationary acoustic signals of a diesel engine using 

Wigner-Ville distribution for fuel injection process characteristics analysis. Based on 

the simulation and experiment analysis, they concluded that “through the use of joint 

time-frequency domain representation, Wigner-Ville distribution allows the 

dominating combustion frequency band in the engine acoustic signal to be defined”. In 

this research work, the Wigner-Ville distribution is employed to analyse the time-

frequency distribution of the engine acoustics for feature extraction to diagnose the 

engine combustion process and to monitor the engine conditions (see Section 7.3). 

The disadvantage of Wigner-Ville distribution is the interference terms formed by the 

transformation itself [21]. These results from the distribution indicate that cross-terms 

of the input components exist in the output, this makes interpretation of the estimated 

distribution difficult [42]. Peng and Chu [21] pointed out the shortcomings of the 

Wigner-Ville distribution: “even though the Wigner-Ville distribution can support a 

good concentration in the time-frequency plane, the interference terms of Wigner-Ville 

distribution will give the wrong impression about the signal analysis”. Gu and Ball [43] 
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investigated a smoothed version of the Wigner-Ville distribution for overcoming the 

interference terms of the Wigner-Ville distribution in the analysis of typical vibration 

symptoms. They concluded that “the smoothing is shown to reduce the presence of 

interference components, and also enhances the representation of noise-contaminated 

data”. 

2.5.3 Wavelet transform 

Another transform widely used for time-frequency analysis is the wavelet transform 

(WT). Different from a time-frequency distribution, wavelet transform is a time-scale 

representation of a signal. Wavelet transform is described as a good solution in the 

time-frequency domain so that it can extract more information in the time domain at 

different frequency bands. Wavelet transform has become well known as a useful tool 

for various signal processing applications in the past decade [44]. Wavelet analysis of 

a raw signal expresses the signal in a series of oscillatory functions with different 

frequencies at different time by dilations via the scale parameter and translations via 

the time parameter. The main advantage of wavelet transform is its ability to produce a 

high frequency resolution at low frequencies and a high time resolution at high 

frequencies for signals with long duration low frequencies and short duration high 

frequencies. Therefore, wavelet transform is very useful in analysing data with gradual 

frequency changes.  

Wavelet transform (see Section 8.2) has been successfully applied to data analysis in 

machinery fault diagnostics such as gears [45][21], bearings [46] and other mechanical 

systems [37]. Baydar and Ball [47] applied wavelet transform to analyse the acoustic 

and vibration signals to examine the ability of the acoustic signal in the detection local 

faults in gearboxes, the analysis results using wavelet transform suggested that 

“acoustic signals are effective for the early detection of faults and may provide 

powerful tool to indicate the various types of progressing faults in gearboxes”. Rubini 

and Meneghetti [46] developed a signal processing method based on the evaluation of 

wavelet transform for fatigue fault detection in rolling bearings. They compared the 

results with those obtained by spectral and envelope analysis to investigate the effects 
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of fault evolution. Many other applications of wavelet transform have been carried out 

on the condition monitoring and fault diagnostics in rotor systems, structures and crack 

detection, etc. Peng and Chu [21] reviewed machine condition monitoring and fault 

diagnostics using wavelets. They presented a summary of the application of wavelet 

transform in machine fault diagnostics in the aspects of the time-frequency analysis, 

the feature extraction, and the de-noising and extraction of the weak signals. 

The basic wavelet transform does have some drawbacks [31]. Firstly, the leakage 

generated by the limited length of the wavelet function leads to difficulties in the 

quantitative definition of the energy-frequency-time distribution. This also makes the 

interpretation of the wavelet counterintuitive. For instance, wavelet transform should 

look for the result in the high frequency range to define a change occurring locally, but 

for the higher the frequency, the basic wavelet will be more localized. If a local event 

occurs only in the low frequency range, it will still be forced to check its effects in the 

high frequency range. Secondly, the non-adaptive nature of wavelet analysis will affect 

its analysis results, meaning that once the wavelet function is selected, it must be used 

to analyse all the data. The performance of the wavelet analysis mainly relies on the 

selection of wavelet functions [31]. Different wavelet functions result in different 

analysis results and the choice of an appropriate wavelet function depends on the 

signal itself and the purpose of the analysis. In most cases, the characteristics of the 

analysed signal changes over time, if a determined wavelet function is used to analyse 

the entire signal, some features of the analysed signal cannot be extracted accurately. 

In spite of these problems, wavelet transform is still currently the best available non-

stationary signal analysis method. In our research work, the wavelet analysis is also 

employed to analyse the characteristics of the engine acoustic and vibration signals for 

condition monitoring of the diesel engine (see Section 8.2 and 8.4). 

2.5.4 Fractional Fourier transform 

The fractional Fourier transform was first introduced as a way to solve certain classes 

of ordinary and partial differential equations arising in quantum mechanics by Namias 

in 1980 [48]. They defined “the fractional Fourier transform based on an operational 
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calculus and this can be considered as the optical version of the fractional Fourier 

transform”. The fractional Fourier transform was then used to process the optical 

signal in 1993 [49] as it was easily realized with some optical instruments. Since then 

the fractional Fourier transform has many applications in optics. Recently, a number of 

researchers studied the application of the fractional Fourier transform on signal 

processing, especially for the processing of non-stationary signals [50]. 

The fractional Fourier transform (see Section 7.4) is a generalization of the classical 

Fourier transform and can be considered as the chirp-basis expansion from its 

definition [50]. The fractional Fourier transform will be defined mathematically in 

section 7.4. Otherwise, it can be interpreted as a rotation in the time-frequency plane. 

The fractional Fourier transform can reveal the characteristics of the signal changing 

from the time domain to the frequency domain with the order increasing from 0 to 1. 

The rotation property of the fractional Fourier transform shows the direct relationship 

between the fractional Fourier transform and the time-frequency distribution, and 

indicates that the fractional Fourier transform domain can be interpreted as a uniform 

time-frequency domain. This offers the advantage of the fractional Fourier transform, 

which can be applied in processing a non-stationary signal. Compared with Fourier 

transform, the fractional Fourier transform is more flexible and suitable for processing 

non-stationary signals since it processes the signals in the unified time-frequency 

domain. 

Along with the development of the fast algorithm of the discrete fractional Fourier 

transform, there are many applications of the fractional Fourier transform in signal 

processing. Tao, Deng and Wang [50] reviewed the applications of the fractional 

Fourier transform in signal processing. In signal detection and parameter estimation, 

the fractional Fourier transform was used to detect and estimate the parameters of 

multi-component linear frequency modulation signals [51]. In phase retrieval and 

signal reconstruction, a complex signal can be completely reconstructed through phase 

retrieval from the magnitudes of its fractional Fourier transform. The fractional Fourier 

transform was also used for filters designed in the fractional Fourier transform domain, 

neural networks and sound analysis. 
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Other than those previously mentioned, there are also many other methods which can 

be used to process non-stationary signals, such as the evolutionary spectrum, the 

empirical orthogonal function expansion (EOF), Gabor transform, cyclic statistics, 

AM/FM signal analysis and so on [31], will not be discussed any further in this 

research. 

In this research, one of the time-domain analysis methods to which dynamic time 

warping (see Chapter 3) is employed in order to process the electrical motor current 

signal based on entirely time domain for a two-stage coprocessor fault diagnostic (see 

Chapter 4). In the following chapters, three of the time-frequency domain analysis 

methods: Wigner-Ville distribution (see Section 7.3), wavelet transform (see Section 

8.2) and the fractional Fourier transform (see Section 7.4) are investigated to process 

the engine vibration and acoustic signals for engine condition monitoring and 

combustion diagnostics. 
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CHAPTER 3 

DYNAMIC TIME WARPING 

 

 

 

 

This chapter gives a brief description of classical dynamic time warping and its 

limitations in application, such as singularity and computational complexity. The 

improvement of the singularities and the computational complexity is studied based on 

the definition of classical dynamic time warping. In addition, the effect of the phase 

properties of two time series on the singularities of the classical dynamic time warping 

is analysed for the improvement of the singularities with classical dynamic time 

warping. Novel phase compensation is then proposed and is demonstrated to have the 

ability of reducing the effect of singularities on maintaining the minimal value of the 

dissimilarity between the two time series with different phase shifts through simulation 

studies. The analysis results show that the proposed phase estimation and 

compensation method can improve the singularities of dynamic time warping 

effectively. 
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3.1 Introduction to dynamic time warping 

In practice, such as speech recognition [30], signature matching [29] and condition 

monitoring [52], a common task with time series data is comparing one sequence with 

another in order to detect the differences between them for further analysis. It is often 

the case that two signals in the time domain have similar overall component shapes 

[53], but are out of synchronization and generally not of exactly the same length as 

shown in Figure 3-1(a). In order to find the exact dissimilarity between such two 

signals and as a pre-processing step before comparing them, it is necessary to match 

the two signals in to achieve an appropriate alignment. 

Dynamic time warping (DTW) is an algorithm which can be used for efficiently 

aligning two time series which are out of synchronization and which do not have the 

same length. The underlying principle behind dynamic time warping is to stretch or 

compress two time series locally in order to make one resemble the other as much as 

possible. The distance between them is computed, after stretching, by summing the 

distances of the individual aligned elements as seen in Figure 3-2. Figure 3-1(b) shows 

the alignment of the two time series processed by dynamic time warping. It can be 

seen that the two signals are matched with each other after the dynamic time warping 

processing meaning that the comparison can then be carried out. 

Dynamic time warping is a popular algorithm which is applied in many areas. Bellman 

and Kalaba [54] first introduced it for adaptive control processes. Dynamic time 

warping was popularised in the 1970s, when it was mainly applied to isolated word 

recognition and speech recognition [29][28] to account for differences in speaking 

rates between speakers and utterances. Since then, dynamic time warping has been 

employed for clustering and classification in countless domains including: electro-

cardiogram analysis [55–57], the clustering of gene expression profiles[58][59], 

biometrics [60][61] and process monitoring [62]. Dynamic time warping has also been 

used in handwriting and online signature matching [30], sign language recognition and 

gesture recognition, data mining and time series clustering, computer vision and 

animation, surveillance, protein sequence alignment and chemical engineering, music 
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and signal processing [63]. Recently, Zhen D. et al [52][64] explored the use of 

dynamic time warping in processing the electrical current signal from motors for 

condition monitoring and the research revealed promising results in that signals 

aligned by dynamic time warping do not lose information and therefore can be used for 

fault diagnosis. Dynamic time warping can be developed to suppress the supply 

frequency component and highlight the sideband components. 

 

 

Figure 3-1 Time series aligned by DTW 

 

3.2 Classical dynamic time warping 

3.2.1 The definition 
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                    (3-1) 

                    (3-2) 

where                and                are represented by the sequences of 

values at the points   and   in the time series   and  , respectively. 

To align the two time series for comparison, firstly a     distance matrix D is built. 

The element of the matrix        is the distance between the two points    and    

which is represented by    . Typically, the Euclidean distance is used to calculate the 

point-to-point distance by, 

       
    

      (3-3) 

Once the distance matrix has been built, the dynamic time warping algorithm is used to 

find the alignment path which runs through the matrix elements defining a mapping 

between the time series   and  . The alignment path found by dynamic time warping 

is a warping path function which can be defined as   [63]. The warping path function 

found by dynamic time warping must conform to the certain conditions in section 3.2.2. 

               With              (3-4) 

where: 

                                      

3.2.2 Properties 

The dynamic time warping algorithm needs to be applied under certain conditions 

[53][63]: 

1. Boundary condition:          , and         . The starting and ending 

points of the warping path must be the first and the last points of the aligned 

time series. 
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2. Monotonicity condition: Given             then                  , 

where           and          . This ensures the points in   to be 

monotonically spaced in time. 

3. Step size condition: Given             then                  , where 

          and          . The basic step size condition formulated 

as                            . This criterion limits the warping path 

from long jumps whilst aligning sequences, and restricts the allowable steps in 

the warping path to adjacent cells. 

Noting that there are a large number of possible monotonically aligned paths 

increasing from       to       according to the three certain conditions. A dynamic 

programming algorithm is introduced to test the length of all possible distortion paths 

and to determine the shortest one. The dynamic programming algorithm will calculate 

all cumulated distances between the two time series based on the possible aligned 

paths found by dynamic time warping, and then extract the shortest warping path 

which produces the minimum cumulated distance. 

The dynamic programming employs the cumulated distance         between   and 

  for a given warping path  ,         is the sum of the point-to-point distances     

along the warping path  . 

                        (3-5) 

Noting that                  is the set of all possible warping paths. The 

goal of dynamic programming is to determine an optimal warping path         for 

which the cumulated distance between   and   is minimal. 

                        (3-6) 

3.2.3 Warping path 

The optimal warping path is selected based on a cumulated matrix. Figure 3-2 is an 

example of an optimal warping path which is selected based on a cumulated matrix for 
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the two signals alignment. Assuming that the cumulative distance matrix is        , 

the     are the elements of the cumulative distance matrix  , defined as follows [63]: 

1. First row:                 
 
   . 

2. First column:                  
   . 

3. All other elements: 

                                                    (3-7) 

 

 

Figure 3-2 Optimal warping path selected by dynamic programming 

 

Once the cumulative distance matrix is built, the alignment warping path can be found 

from the point (1,1) to (N,M) according to the Equation (3-7). According to the two 

aligned time series, the cumulated distance matrix has N×M entries. Therefore, the 
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computational complexity of the classic dynamic time warping algorithm should be 

O(NM) [65]. 

3.3 Dynamic time warping limitations 

Although dynamic time warping has been widely used successfully in many areas, the 

singularity effect and calculation time are the main limitations in its application. The 

singularity will affect the accuracy of the dissimilarly detection, and computational 

complex will limit the on-line application of algorithm since the processing capability 

of electronic device in some case. 

3.3.1 Definition of singularity 

Dynamic time warping is an effective algorithm for measuring dissimilarity between 

time series and has been widely used in various applications. Dynamic time warping 

warps the X-axis based on the variation of values in the Y-axis and the difference 

between the two points from the two time series is minimal in terms of values. This 

value comparison means that the dynamic time warping ignores the trend of the points 

for local accelerations and decelerations in the whole time series. This means that, 

dynamic time warping only considers the Y-axis value of a data point, but does not 

consider its local and global features. Therefore, when a single point on the one time 

series maps onto a large subsection of another time series, an undesirable alignment 

will take place during the processing of dynamic time warping, it will lead to worse 

dissimilarity detection. “This undesirable alignment is called ‘singularity’” as 

proposed by Eamonn and Michael [53], and can lead to inaccurate alignments. Figure 

3-3 illustrates typical singularities located at samples of 8, 20, 32 and 45 in signal 2 

where one point on signal 2 maps onto numerous points on signal 1. 

Dynamic time warping may fail to align a pair of sequences on their common trends or 

patterns due to singularity effects, especially when singularities appear at the ends of 

the aligned time series, as seen in the sample of 68 shown in Figure 3-3 in which signal 

1 is aligned to a number of different points at the end of signal 2. 
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Figure 3-3 Examples of singularities in DTW application 

 

Figure 3-4 gives a typical example of singularities located at the ends of the aligned 

time series during the dynamic time warping procedure. In Figure 3-4(a), signal 1 is an 

amplitude modulated signal whilst signal 2 is a pure sinusoidal signal. The frequency 

of the carrier signal of signal 1 is the same as that of signal 2, but the signals have 

different initial phase and amplitude. The simple sinusoid signals with different initial 

phase and amplitude are used in this simulation study. Its aim is to investigate the 

effect of initial phase and amplitude on the singularity of dynamic time warping. The 

two signals are aligned by dynamic time warping and the point alignments are shown 

in Figure 3-4(b), indicating the singularities during the dynamic time warping 

processing, especially at the ends of the signals. From Figure 3-4(c), it can be seen that 

the alignment is poor at the start and end of the aligned time series, which can lead to 

inaccurate dissimilarity estimation. The residual signal which results from comparing 

the two time series is shown in Figure 3-4(d). It is clear that the residual signal is 

unreliable due to the data jump at the ends caused by singularities during the dynamic 

time warping procedure. The singularities located at the ends may be due to the phase 

shift based on analysing the dynamic time warping processing as is shown in Figure 3-

4 since the main difference of the two signals at their endings are their initial phases. 
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The singularities located at the peak points are because of the different amplitude of 

the two signals. 

 

 

Figure 3-4 Singularities located at the ends 
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3.3.2 Computational complexity 

In dynamic time warping application, assuming the lengths of the two time series are 

N and M respectively, the cumulated distance matrix will have N×M entries, therefore, 

the computational complexity of the dynamic time warping will be       [65][66]. It 

means the amount of time taken by the algorithm to run is N×M, indicating the 

algorithm needs to run N×M times. This is especially problematic for embedded 

systems which have limited resources. 

3.4 Dynamic time warping improvements 

Based on the limitations of classical dynamic time warping, various improvements 

have been proposed to improve classical dynamic time warping in order to enhance the 

accuracy of dynamic time warping alignment. Derivative dynamic time warping 

(DDTW) [53] is an effective method for this improvement as it has the ability of not 

only considering the Y-axis of the data points, but also considering the higher level 

features of local features. Derivative dynamic time warping estimates the first 

derivative of the aligned time series and replaces the value of each data point with its 

estimated first derivative. This can be considered as a local feature of the data point 

which expresses the relationship with the two adjacent neighbours. The estimation of 

the first derivative of a data point is the average of the data point as well as its left and 

right neighbour points. The first and last data points of a series cannot have its left or 

right neighbour points, so the derivation dynamic time warping is started from the 

second point of a series, and ended at the second last point. The derivative of a data 

point in a time series not only considering the Y-axis value of the point, but also taking 

into account of its local vary trend, which is better than only considering the Y-axis 

value of the point by calculating is Euclidean distance. It is more robust to estimate the 

dissimilarities than considering only two data points for the comparison. Derivative 

dynamic time warping considers the square of the difference of the estimated 

derivatives as the point-to-point distance instead of using the Euclidean distance which 

is used in the classical dynamic time warping. 
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Global features, which are the overall shapes or significant features that take place in 

the whole time series, may be unable to follow derivative dynamic time warping. With 

the purpose of capturing trends or local and global features of a time series during the 

alignment process, feature based dynamic time warping (FBDTW) [67] is developed to 

align two time series based on the local and global features of each data point and the 

singularities can be improved. A number of other methods have also been proposed to 

improve the singularities, such as windowing [29], slope weighting [29][30], and step 

patterns [30][68]. These methods may all moderate the effects of singularities not 

located at the beginning or start of the series, but the improvement is limited when the 

singularities occur at the start or the end of the aligned time series, leading to which 

larger distortion and causing inaccurate alignment. 

3.4.1 Singularity improvement 

The singularities allow a single point on one time series to align to a large subsection 

of another time series. This occurs when the algorithm tries to explain variability in the 

Y-axis by warping the X-axis as shown in Figure 3-3. The generation of the singularity 

is that the distance between two points is only consider their Y-axis values, but ignores 

the decreasing and increasing trends of the points in the time series. Each point of a 

time series not only has the property of value, but also with the properties of variation 

trend based on the whole series. 

A variety of improvements have been proposed to process singularities. Most of these 

methods essentially search for a suitable warping path by constraining the possible 

wrappings allowed. Slope weighting is used to constrain the warping path, which 

allows warping paths to be constrained by restricting the slope, thereby avoiding 

excessively large movements in a single direction [65]. The slope is controlled by the 

coefficient of weighting   in equation (3-8), 

                                                        (3-8) 

where   is a positive real number, the warping can be constrained by changing  ’s 

value. The warping path is increasingly biased toward the diagonal in accordance with 
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the increase of  . It is not obvious how to select an appropriate parameter    in 

equation (3-8). 

 

 

Figure 3-5 Step patterns: a) the step patterns in classic DTW; b) the step pattern 

improvement 

 

Step patterns are also explored to constrain the warping path. Itakura [68] and Myers 

and Rabiner [30] modify the equation (3-7) to equation (3-9): 

                                                         (3-9) 

The warping path is forced to move one diagonal step for each parallel as shown in 

Figure 3-5(b) to an axis by employing this equation. 

Berndt and Clifford [69] employed a warping window to restrict the possible warping 

paths. Allowable points can be constrained to fall within a given warping 

window          , where ε is a positive integer corresponding to window width. 

These constraints mean that the corners of the matrix are out of consideration, and also 

beneficially improve the computing complexity. The problem associated with this 

method, is that it is difficult to find a suitable window width ε because width varies 

according to its applications. 
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Classic dynamic time warping only considers the Y-axis value of a data point and does 

not take into account the local features of the data point. In other words, a data point of 

one time series not only has the feature of the Y-axis value, but also has the 

characteristic of a trend for local accelerations and decelerations in the time axis. In 

order to prevent this problem, derivative dynamic time warping is used instead as it 

has the ability of not only considering the Y-axis of the data points, but also 

considering the higher level features of local feature. The information about the shape 

is obtained by considering the first derivative of the time series. 

In derivative dynamic time warping, the point-to-point distance     is the square of the 

difference of the estimated derivatives instead of the Euclidean distance of    and    in 

the time series of   and  . The method for calculating the estimated derivative of a 

point in a time series is indicated in equation (3-10) [53], for example, at point   in 

time series  . 

      
                         

 
         (3-10) 

This estimate is simply the average of the slope of the line through the point as well as 

its left and right neighbour points. Figure 3-6(b) indicates the results of two time series 

aligned by derivative dynamic time warping. 

The derivative dynamic time warping algorithm replaces the value of each data point 

with its first deviation which can be considered as a local feature of that point, and 

which expresses its relationship with its two adjacent neighbours. Derivative dynamic 

time warping may lose sight of the overall shapes or significant features which happen 

in the entire time series when only considering the first deviations of each point in 

comparison. The overall shapes can be called the global features. In order to capture 

trends or local and global features of a time series during the alignment process, 

feature based dynamic time warping is developed to align two time series based on 

each point’s local and global features rather than each point’s values or first derivative 

[67]. 
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Figure 3-6 Comparisons of signal alignment by DTW, DDTW and FBDTW 

 

In feature based dynamic time warping [67], the point-to-point distance      consists of 

the local distance and the global distance evaluated which are in turn based upon both 

the local and global features of time series   and   [67]. 

                                     (3-11) 

where               is the distance between    and    based on their local features, and 

               is the distance between    and    based on their global features. 
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The local feature of the data point    denoted as            is defined as a vector of two 

components [67]: 

                                (3-12) 

The global feature of a data point    in a time series should reflect the position of that 

point in the global shape of the series, so it can be also defined as a vector of two 

components [67]: 

                          
   

   
 

             
       (3-13) 

The first component of the vector is the difference between the values of    and the 

average value of the first       points in the series; the second component is the 

difference between the values of    and the average value of the last       points in 

the series. 

The distance between two time series   and   can be evaluated according to equation 

(3-14) which is based upon the local and global features of each time series. When the 

local and global features have been calculated already, equations (3-12) and (3-13) [67] 

should be referred to. 

 
                                     

                                        
   (3-14) 

An optical warping path can then be found by employing dynamic programming to 

calculate the minimal distance based upon the cumulative distance matrix   as 

expressed in equation (3-7). The result of the signal, warped by feature based dynamic 

time warping, is shown in figure 3-6(c). 
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Figure 3-7 The alignment of points based on the warping paths produced by 

DTW, DDTW and FBDTW 

 

The detailed alignments of the points, based on the warping paths produced by 

dynamic time warping (DTW), derivative dynamic time warping (DDTW) and feature 

based dynamic time warping (FBDTW) are shown in figure 3-7. It can be seen that the 

alignment of the data points processed by feature based dynamic time warping is more 

reasonable than that processed by dynamic time warping and derivative dynamic time 

warping. The improvement of singularities is obvious. The improvement of 

singularities is not clear according to the comparison of the data points aligned by 
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derivative dynamic time warping and dynamic time warping in figure 3-7. By 

comparing the derivative dynamic time warping and dynamic time warping signal 

alignments in figure 3-6(b) and figure 3-6(a), we see a slight improvement of the 

singularities in the derivative dynamic time warping algorithm, especially with regards 

to the alignment of the two central peaks.  

 

 

Figure 3-8 Optimal warping paths produced by DTW, DDTW and FBDTW 

 

The optimal warping paths produced by dynamic time warping, derivative dynamic 

time warping and feature based dynamic time warping are shown in figure 3-8. It can 

be seen that the warping path of feature based dynamic time warping is closer to the 

diagonal of the accumulated matrix. The warping paths of dynamic time warping and 

derivative dynamic time warping are further away from the diagonal of the cumulated 

matrix compared with the warping path of feature based dynamic time warping. It has 
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large jumps at some points, such as at those that can be seen at points 10, 25 and 40 in 

the x-axis in figure 3-8, indicating the singularities effects. 

Noting that both the derivation in derivative dynamic time warping (DDTW) and local 

or global features in feature based dynamic time warping have no definition for the 

first and last point in a time series, so both derivative dynamic time warping and 

feature based dynamic time warping calculate the optimal warping path starting with 

the second points of the two time series and ending with the penultimate points. 

Furthermore, the computational cost of derivative dynamic time warping and feature 

based dynamic time warping is the same as classic dynamic time warping which 

is      . 

3.4.2 Time complexity improvement 

In the dynamic time warping, the cumulated distance matrix calculation is the main 

time cost process. If the cumulated distance matrix has     entries, the time 

complexity of the dynamic time warping should be       [65][66]. The time and 

space complexity of dynamic time warping is a critical limitation in its application. In 

order to improve the computational cost of the dynamic time warping algorithm, the 

global constraints should be considered. It can be concluded that the optimal warping 

paths run near the diagonal from classic dynamic time warping based on the warping 

path analysis. It is therefore sufficient to consider only paths lying completely inside a 

band around the diagonal from point       to       [27]. 

The “Sakoe-Chiba band” and “Itakura parallelogram” [68] are two classic global 

constraints used for time complexity reduction. The Sakoe-Chiba band contains all 

index pairs       with         and a band width of   , as can be seen in figure 3-

9(a). The slope of this band is 45° and it holds      index pairs when      . The 

basic idea of Itakura parallelogram is to allow only small distortions at the beginning 

and the end of the time series, while larger ones are accepted in the middle [68], as can 

be seen in figure 3-9. 
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Figure 3-9 Global constraints for time complexity improvement 

a) Sakoe/Chiba band; b) Itakura parallelogram 

 

The time complexity of dynamic time warping can be reduced by employing either of 

the global constraints of the “Sakoe-Chiba band” or the “Itakura parallelogram”. The 

global constraints are easier to implement if the cumulated distance matrix is quadratic 

when    , normalization must be carried out when the two time series do not have 

the same length [27]. Another popular method to speed up dynamic time warping is 

that of the time-series [69]. Piecewise Dynamic Time Warping (PDTW) [70] can be 

developed to improve the time complexity of the dynamic time warping. The 

piecewise dynamic time warping operates on the reduced dimensionality 

representation through piecewise aggregate approximation which approximates a time 

series by dividing it into equal-length segments and recording the mean value of the 

data points which fall within each segment. The segmental signals retain the basic 

characteristics of the original signals even after the dimensionality reduction. Figure 3-

10 shows the comparison between the dynamic time warping and piecewise dynamic 

time warping, two similar time series, and the point alignment between them 



 

 
A STUDY OF NON-STATIONARY SIGNAL PROCESSING FOR 

MACHINERY CONDITION MONITORING 

 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD)  67 

discovered by dynamic time warping in figure 3-10(a). Figure 3-10(b) indicates the 

same time series in their piecewise approximation representation by piecewise 

dynamic time warping. It can be seen that the segmental signals still retain the main 

features of the original signal after processing by piecewise dynamic time warping. 

 

 

Figure 3-10 Comparison of point alignment after processing by DTW and PDTW 

 

One important limitation of piecewise dynamic time warping is that the user must 

carefully choose the approximation levels used in the alignment. This means the 

compression rate of the dimensionality reduction should be selected appropriately. If 

the compression rate is higher, the resulting optimal warping path may become 

inaccurate or even completely useless by decreasing the sampling rate of the time 
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series [63]. Conversely, a lower compression rate signifies a finer approximation, but 

the gains in speed up of dynamic time warping are not obvious [69]. 

3.5 Phase properties of singularities 

According to the definition of dynamic time warping, the optimal warping path is 

selected through finding the minimal distance in the cumulated distance matrix which 

is built based on the distance matrix. The elements of the distance matrix are the point-

to-point Euclidean distance between the two time series. If there is a phase shift 

between the two time series, the Euclidean distance between the first points of the two 

time series is not minimal in the first column or row of the distance matrix. The 

distribution of the cumulated distance matrix changes accordingly and results in the 

optimal warping path selected [30] could not close to the diagonal of the accumulated 

distance matrix as much as anticipated according to step patterns. The cumulated error 

of the cumulated distance matrix will be increased due to the increased values in the 

distance matrix which is caused by the phase shift between the two time series. The 

cumulated error leads to inaccurate minimal distance findings in the dynamic 

programming of dynamic time warping and hence results in more warping jumps 

occurring, especially at the start and end of the aligned time series. This causes 

singularities as a result of the first or last point of one time series mapping onto 

numerous points on the other time series, as is shown in Figure 3-4(b). 
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Figure 3-11 SD of DTW residual signals with different phase shifts 

 

For the purpose of studying the impact of phase shift on singularities, different phase 

shifts    from 0 to   between the two time series are explored. Figure 3-11 shows the 

standard deviation (SD) of the dynamic time warping residual signals from different 

pairs of time series which are of different phase shifts. The standard deviation of the 

residual signal can be calculated by equation (3-15) 

    
 

 
          

       (3-15) 

where   is the number of the points in the residual signal,    is the value of the     

point of the residual signal, and    is the average value of the residual signal. 
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The phase shift 0 denotes that the two aligned signals have the same initial phase, 

whereas   means an opposite phase between two signals. It is revealed that with the 

increase of the phase shift, the standard deviation value of the dynamic time warping 

residual signal clearly increases, demonstrating that larger phase shift leads to larger 

cumulated errors in the cumulated distance matrix and greater data jumps in the 

residual signal. This shows that dynamic time warping produces different dissimilarity 

results at different phase shifts even if the two signatures in comparison are the same. 

This will lead to uncertainty of fault diagnosis when comparing measured signals with 

different phases as a result of diffident acquisition time instants. 

Phase estimation and compensation of the aligned signals should be helpful to improve 

the singularities of dynamic time warping. Figure 3-12(a) shows the result of phase 

estimation and compensation of the two time series shown in Figure 3-4(a). It can be 

seen that the overall waveform of the two time series is now matched better after phase 

compensation has taken place. From the processing results of dynamic time warping 

shown in Figure 3-12(b) and (c) and the dynamic time warping residual signal shown 

in Figure 3-12(d), it is clear that the singularities at the ends of the aligned time series 

as shown in Figure 3-4(b) have moved out and prove that phase compensation has the 

ability to improve the singularity effects of dynamic time warping and reduce the data 

jumps at the ends of the residual signal. Hence, more accurate results of dissimilarity 

recognition by dynamic time warping can be obtained after processing by phase 

compensation. 
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Figure 3-12 The singularity effect of DTW with phase compensation 

 

Figure 3-13 shows the comparison of the standard deviation values between phase 

compensation and non-compensation. It shows that the standard deviation values 

increase with the phase shifts between the two time series without phase compensation. 

The standard deviation values of the dynamic time warping residual signals obtained 
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from the two time series after phase compensation are all similar. This means that the 

phase compensation can reduce the effect of singularities on maintaining the minimal 

value of dissimilarity between the two signals with different phase shifts, especially 

coupled with the results from Figure 3-12, showing that the phase compensation can be 

used to improve the singularities occurred at the beginning and ending of the aligned 

signals, in turn allowing accurate feature extraction for obtaining reliable fault 

detection and diagnosis. 

 
 

Figure 3-13 Comparison of SD of DTW residual signals 

 

The analysis results show that the proposed phase estimation and compensation 

method can improve the singularities of dynamic time warping effectively. In the 

following chapter 4, the dynamic time warping based on phase estimation and 

compensation is used to analyse the electrical motor current signal for fault diagnostics 

of a two-stage reciprocating compressor. 
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CHAPTER 4 

DYNAMIC TIME WARPING OF MOTOR 

CURRENT SIGNALS FOR FAULT 

DIAGNOSIS OF A RECIPROCATING 

COMPRESSOR 

 

 

This chapter introduces the use of dynamic time warping to analyse the electrical 

motor current signal for fault diagnostics of a two-stage reciprocating compressor. 

The electrical motor current signal is a typical non-stationary signal which contains 

nonlinear effects due to the faults of the induction machine and its downstream 

mechanical equipment. Based on the limitations of the classical dynamic time warping, 

a phase estimation and compensation approach has been developed to reduce the 

singularity effect of classical dynamic time warping for the obtaining of accurate 

diagnostic results. A sliding window has also been designed to improve computing 

efficiency. The results of fault detection of a compressor demonstrate that the accuracy 

and reliability of detection and classification from the proposed dynamic time warping 

analysis is higher than those of Fourier transform spectrum and envelope analysis and 

the proposed method is based entirely on time domain analysis which is easier apply in 

real-time monitoring processes. 
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4.1 Introduction to motor current signal analysis 

Electrical motor current signals have been widely investigated to analyse the health of 

the induction machine and its downstream mechanical equipment. [71][72]. As it is 

cost-effective in obtaining signals and allows for remote monitoring, the induction 

machine stator current signal is also used to detect the influence of mechanical 

problems resulting in rotor disturbances [71]. As well as this, the presence of load 

imbalance can also be detected through analysis of the induction machine stator 

current signals [73]. Recent studies [24] have shown that supply currents contain 

components related to abnormalities in downstream equipment such as compressors, 

pumps, rolling mills, mixers, crushers, fans, blowers and material conveyors. This 

technique has been used to detect specific axial flow compressor problems. 

Common approaches used for fault detection are based on the comparison of 

correlating numerical models with measured model properties from undamaged and 

damaged components. Measurements are normally made in the time domain while a 

machine runs under different loads and speeds. The signals acquired in the test are then 

analysed in both the time and the frequency domains using various signal processing 

techniques in order to extract the diagnostic features, allowing accurate comparison 

between signals. 

The signal processing techniques used in fault detection based on current signals are 

developed predominately in the frequency domain through Fourier transform (FT). 

Although it produces satisfactory results, the Fourier transform based method is 

subject to a number of generic limitations: aliasing [74], spectral leakage [75][76] and 

picket-fence effect [74][77] (see section 2.4). The latter two limitations can lead to 

significant errors in spectrum estimation, meaning that the weak signature due to faults 

in the signals cannot be resolved properly for accurate fault detection and diagnosis. 

Although many methods have been developed to improve the limitations of 

conventional Fourier transform, they have never eliminated them completely. 

Thus it seems that techniques applied directly to the time domain signals can avoid the 

shortcomings of the frequency analysis as all the procedure are carried out in the time 
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domain. In fact, time domain based methods, especially time synchronous average 

(TSA) [26] (see Section 8.3), have been the subject of intensive investigation in recent 

years for monitoring rotating machinery and have been applied successfully numerous 

times. However, a shaft mark signal from an additional channel is required in order to 

implement time synchronous average based monitoring, leading to increased cost to 

applications. The statistical parameters or characteristic features can be calculated from 

signals in the time domain, such as mean, peak, standard deviation, root mean square 

(RMS), and kurtosis, etc. These statistical parameters are widely used for representing 

the characteristics of a signal in the time domain (see Section 2.4). 

This chapter presents the use of dynamic time warping (see Section 3.2) to process the 

motor current signals for detecting and quantifying common faults of a two-stage 

reciprocating compressor. Dynamic time warping is used to suppress the supply 

frequency component and to highlight the sideband components based on the 

introduction of a reference signal which has the same frequency components as the 

supply power. This is because the sideband components contain more useful 

information for the indications of faults and conditions of the monitored machine. A 

sliding window is designed to process the raw signal using dynamic time warping 

frame by frame for effective calculation (see Section 4.4.2). In addition, a phase 

compensation approach (see Section 4.4.1) is developed to reduce the singularity effect 

on the accurate detection obtained in diagnosing compressor faults. 

4.2 Reciprocating compressor test 

4.2.1 Test rig 

The experiment is carried out based on a two-stage reciprocating compressor test rig as 

shown in Figure 4-1. Motor current signals of the two-stage reciprocating compressor 

are acquired to identify and quantify common faults of the compressor. It was 

demonstrated that the mechanical faults could result in rotor disturbances which can be 

detected through the changes in the induction machine phase current signals [78]. 

Motor current signals can also be used to detect the presence of load imbalance which 

is the imbalance in the current distribution to the load [71][24]. 
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(a) Two-stage reciprocating compressor  (b) Data acquisition system 

Figure 4-1 Photos of the test facility and data acquisition system 

 

The reciprocating compressor has a common two-stage construction which allows air 

to be compressed as high as 10bar. It is driven by a 2.5kW, three-phase and four-pole 

induction motor through a V-belt with a transmission ratio of 3.2. During the tests, the 

compressor is induced with three common faults: discharge valve leakage, 

transmission belt looseness and inter-cooler leakage. These faults can cause reduced 

operating efficiency and cause potential damage to the compressors. The leakage is 

usually caused by mechanical vibrations while the belt looseness is a typical feature 

should the texture of the belt show damage. 

The three types of faults are induced individually to the compressor for evaluating the 

effectiveness of the proposed method in detecting these faults. The valve leakage is 

produced by drilling a 1mm hole in the discharge valve plate. The distance between 

two belt pulleys is reduced by 2mm for belt looseness. The case of inter-cooler leakage 

is induced by adjusting the tightness of the connecting bolt for the different degrees of 

leakage, often a consequence of the resonance of the connection line. The experimental 

setup schematic is shown in Figure 4-2. It is a fact that faults induced were minor and 

could not easily be detected from performance measures. More details about the 

compressor test and setup are given in Appendix B. 
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4.2.2 Current transducer 

A Hall Effect based current transducer with wide frequency response range is used to 

measure the electrical current signal in the test. The transducer coverts AC/DC input 

current into a load independent output DC -5V~+5V. It has advantages of total 

galvanic isolation between input/output, high accuracy, low temperature drifting, and a 

wide temperature range. The electrical specification for the current transducer is shown 

in Table 4-1. 

 

 
 

Figure 4-3 Current transducer 
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Figure 4-2 The experimental setup 
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Table 4-1 Electrical specification of current transducer 

 

Input AC/DC 0~400A 

Output DC -5V~+5V 

Frequency response DC~1.5 kHz 

Power supply ±12VDC/±15VDC/+24VDC 

Accuracy 1.0% 

Isolation input/output 

Insulation Voltage AC 6000V, 1 min 

Response time 20μs 

4.2.3 Experimental setup 

During the tests, one phase in the three-phase motor current is measured by a Hall 

Effect based current transducer with frequency response from DC to 1.5 kHz. The 

current signal is collected by a high speed ADC system at a resolution of 16-bit. For 

each fault the data is collected at 6 different discharge pressures: 4.8bar, 5.5bar, 6.2bar, 

6.9bar, 7.6bar and 8.3bar, which covers the operating pressure range specified by the 

manufacturer. The fault, load and speed settings in the experimental process are listed 

in Table 4-2. More details about the compressor test are shown in Appendix B. 

Table 4-2 Faults and Loads in using Experimental testing 

 

Conditions Load1 

(bar) 

Load2 

(bar) 

Load3 

(bar) 

Load4 

(bar) 

Load5 

(bar) 

Load6 

(bar) 

Nominal 

Speed (rpm) 

Health 4.8 5.5 6.2 6.9 7.6 8.3 1400 

Valve leakage 4.8 5.5 6.2 6.9 7.6 8.3 1400 

Inter-cooler 

leakage 

4.8 5.5 6.2 6.9 7.6 8.3 1400 

Belt looseness 4.8 5.5 6.2 6.9 7.6 8.3 1400 

 

Each collection is 50,000 points which is more than 2 seconds in duration for a 

sampling rate of 24.3 kHz for keeping more information from the original signals 

during analog-to-digital conversion. This data length covers about 12 compressor 
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cycles which is sufficient for random noise suppression in an average process. The 

high sampling rate allows high accuracy to be obtained in waveform parameter 

calculation. 

4.3 Phase current signal 

4.3.1 Electromagnetic relationship of the phase current signal 

To study the characteristics of the motor stator current signal, the electromagnetic 

relationships should be analyzed in one of the three symmetric phases of a power 

supply system, which can be defined as phase   in here. Assuming the fundamental 

frequency of electrical supply is   , the instantaneous current signal [24][79] under 

healthy conditions can be expressed as sinusoidal signals [80], 

                     (4-1) 

where   denotes the amplitude of the supply current, and    is its angular.    is the 

instantaneous amplitude of the supply current in phase A. This current interacts with 

the magnetic flux in motor stator as [79], 

                      (4-2) 

where the amplitude of the magnetic flux is  , and    denotes its angular displacement. 

   is the instantaneous amplitude of the magnetic flux in motor stator. Therefore, the 

torque   produced by the interaction between the current and magnetic flux can be 

expressed as [81] 

                 (4-3) 

where    is the number of pole pairs, and           is the angular displacement 

between the supply current and the magnetic flux. If a fault occurs in the rotor system, 

and assuming the fault generates a sinusoidal wave with a frequency   , the current 

amplitude and angular displacement are    and   , respectively. This means that the 

additional oscillatory torque    can be obtained using Equation (4-3) [24], 
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                              (4-4) 

This oscillatory torque causes speed fluctuation    which can be derived as, 

   
 

 
       

      

     
  

                     (4-5) 

thus, the angular oscillation is: 

          
      

     
  

                    (4-6) 

where     is the angular oscillation with fault components in motor stator, and    is 

the inertia of the rotor system. The angular variation in Equation (4-6) produces phase 

modulation to the leakage flux. The magnetic flux in the motor stator can be expressed 

as [24] 

  
                         (4-7) 

where   
  is the magnetic flux with fault component in the motor stator. 

This shows that the flux wave contains nonlinear effects because of the fault in the 

rotor system. This nonlinear interaction of linkage flux will produce a corresponding 

electromagnetic force and hence induce a nonlinear current signal in the stator [24]. 

The simplified stator current can be expressed as [24], 

                                                           

    2  +             (4-8) 

where    is the stator current with fault components in the motor, and   is the angular 

displacement of the motor equivalent circuit impedance at the supply frequency [24], 

the amplitudes of the lower and upper sideband components are denoted by    and   , 

respectively. Equation (4-8) is widely employed for motor condition monitoring. Fault 

information can be extracted by analyzing the sideband components of the current 

signal, such as rotor disturbances and load imbalance. 
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4.3.2 The characteristics of phase current signal 

A reciprocating compressor system consists of a typical induction motor are used for 

the motor current signal collection. It has two basic working processes including 

compression and expansion. The working process gives rise to a periodically varying 

load to the driving motor due to the compressor requiring more power in compression 

than in expansion [81], and it is more accurately for the motor current signal measured. 

This varying load leads to high oscillation in the measured current signal. According to 

Equation (4-8), the measured current signal can be expressed as [24], 

                                                          

  (4-9) 

where    and    denote the angular displacement of the lower and upper sideband 

components respectively.       and       are distributed around the supply 

frequency   , it has similar properties with an amplitude modulation signal. The 

amplitude of the two sideband components will change with the degree of the 

fluctuation of load and speed, which means when the fluctuation of load increases with 

discharge pressures, the amplitude and phase of the sideband components will change 

accordingly. Figure 4-4 shows the stator current signals measured from the two-stage 

compressor under the conditions of healthy and faulty valve leakage. 

It can be seen from Figure 4-4(a) that the amplitude of the current waveform from the 

valve leakage is slightly higher than that of the healthy condition. The current signals 

are modulated by a dynamic load fluctuating according to the waveform. It is also very 

clear that the two stator currents have similar waveforms but with clear phase shift. 

In the spectra, as shown in Figure 4-4(b), the amplitude of the supply power and 

sidebands frequency component for the valve leakage is slightly higher than that of the 

healthy condition, which is consistent with the waveform in Figure 4-4(a). This 

indicates that the stator current signals contain useful information for compressor fault 

detection. The carrier frequency component at the supply frequency of 50Hz has high 

amplitude and the sideband components at about 50±7.3Hz are also very clear. 
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According to the working speed and transmission ratio of the test compressor, the load 

fluctuating frequency is seen at 7.3Hz. 

 
 

Figure 4-4 Waveform and spectra of stator current signals from a compressor 

with healthy and faulty valve leakage 

 

The components at 50Hz would show spectral leakage if the frequency resolution was 

low due to the limitation of Fourier transform based analysis. This leakage would lead 
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to an error in estimating the amplitude at 50Hz, causing more difficulties in identifying 

and quantifying the small sidebands which are the main feature used for fault diagnosis. 

If the frequency resolution cannot separate the frequency components between the 

50Hz and sidebands components, the sidebands components cannot be extracted 

properly. If the frequency resolution is high enough to identify and separate the main 

frequency component and its sidebands component, even the difference between the 

faults and healthy is small, if it is sensitivity and reliability proved by experiments 

carried out under different conditions, the small difference can be used to indicate a 

fault. 

4.4 Phase compensation based dynamic time warping 

According to the theoretical analysis of motor current signal, the electrical current 

signal can be considered as an amplitude modulation signal. The carrier signal is the 

supply frequency component at about 50Hz and the load fluctuating component is 

about 7.3Hz which corresponds to the working speed of the compressor and its 

transmission ratio (see equation (4-19)). 

To separate the fluctuating component from the supply components as accurately as 

possible, the dynamic time warping based approach to data processing and fault 

detection is required with the data manipulation steps shown in Figure 4-5. This 

consists mainly of data pre-processing, dynamic time warping implementation and 

detection feature setup. 
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Figure 4-5 A flow diagram of the DTW based method 

 

4.4.1 Phase estimation 

To improve the singularity effects of the classic dynamic time warping, phase 

estimation and compensation are carried out on the two time series before dynamic 

time warping is implemented. An initial phase needs to be estimated for a preliminary 

alignment between the two aligned time series. In the proposed method, the initial 

phase estimation is developed by a phase matching approach. The assumption that two 

time series have the same length but have different initial phases is expressed in 

Equation (4-10) 

                                                    (4-10) 
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where    is the first time series and    is the second time series.                 and 

                indicate the values of the first and second time series at the     

point respectively. 

In the initial phase estimation, the Euclidean distance given by Equation (4-11) is used 

to measure the differences between the two time series at different phase  . As the 

phase   varies from 0 to 2  in a step of      , the Euclidean distances of the two 

time series can be obtained. 

                  
  

                      (4-11) 

where,     indicates one time series without phase shift, and         denotes another 

time series with a phase shift of   .   is the number of points in the time series.   

should have N elements according to the increase of the phase  , where N is the 

number of the changes of  . Therefore, each phase angle    should correspond to one 

Euclidean distance    in the matrix  . The initial phase shift can be obtained by 

finding the phase angle    which corresponds to the minimal Euclidean distance in the 

matrix  . 

                    Subject to                     (4-12) 

                    (4-13) 

Thus the phase of the time series    can be compensated using the estimated phase 

angle    to obtain the minimal initial phase shaft compared with the time series   . 

4.4.2 Algorithm implementation strategies 

According to the flow diagram of the proposed method for analysing the electrical 

current signal based on dynamic time warping, the approach can be carried out based 

on the following steps in details. 

Step 1: Data Pre-processing 
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The purpose of data pre-processing is to suppress the inevitable random noise and keep 

the supply frequency and it sideband components which are used for compressor fault 

detection. It is carried out by a low-pass filter with a cut-off frequency of 120Hz to 

remove both the high order harmonics of supply frequency and any random noise 

originated from measurement and the power supply system. This will ensure that the 

dynamic time warping and frequency estimations can be implemented reliably. 

Step 2: Reference Signal Generation 

The reference signal is defined as a sinusoidal signal with the frequency and amplitude 

calculated from the filtered measured signal. Supposing that the filtered measured 

signal is             , the amplitude of the reference signal is estimated by equation 

(4-14) to calculate the peak value of the reference signal, as the amplitude of a signal is 

the peak valve of the signal. 

        
 

 
   

 
      (4-14) 

The frequency is estimated by the zero-across detection method [82]. It finds the zero 

crossing points in a predetermined time interval and counts the number of cycles   

that occur in the time interval to obtain the frequency estimation as Equation (4-15). 

               (4-15) 

where Fs is the sampling frequency. Thus the reference signal can be generated by  

                          (4-16) 

In this study, the length of the measured raw signal is 50,000 points and the sampling 

frequency is 24.3 kHz, which means the frequency resolution is 0.486 Hz and it is 

sufficient for the frequency estimation. In addition, a low-pass filter is used to restrict 

the bandwidth of the frequencies close to the supply frequency for accurate estimation. 

If the frequency estimation is inaccurate, it will affect the suppression of the supply 

frequency and hence lead to inaccurate dissimilarities extraction in the dynamic time 

warping process for fault detection and diagnostics. 
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Step 3: Phase Estimation and Compensation 

The initial phase shifts between the measured current signal and the reference signal is 

estimated based on the method proposed in Section 4.4.1. The estimated phase shift    

can be obtained by using Equation (4-13), and hence the reference signal can be 

modified as Equation (4-17) to have minimal initial phase shift when compared with 

the filtered measured signal. 

                           (4-17) 

Step 4: Window Length Determination 

A sliding window is designed to improve the computing efficiency of dynamic time 

warping implementation. The estimation of the minimum length of the sliding window 

for dynamic time warping processing can be found by calculating the load fluctuating 

components which correspond to the working speed of the compressor.  

               (4-18) 

where Fs is the sampling frequency. The load fluctuating components can be 

calculated, 

               (4-19) 

where   and   are the speed and transmission ratio of the compressor, respectively. 

The actual length of the sliding window may be several times the minimal length      

depending on data processing tasks. For benchmarking proposed methods with Fourier 

transform based methods, the length of the sliding window is set to 3 times      so 

that the Fourier transform based results can have a sufficient resolution for sideband 

feature extraction in the frequency domain [77]. 

In order to align the reference signal and the filtered measured signal, the length of the 

reference signal should be the same as that of the sliding window for high efficiency in 

dynamic time warping implementation and memory allocation. 

Step 5: Dynamic time warping Implementation 
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After designing the reference signal and determining the length of the sliding window, 

the dynamic time warping algorithm can be applied to process the reference signal and 

the measured signal selected frame by frame. The two signals are aligned in the time 

domain after being processed by dynamic time warping, and hence a residual signal 

can be obtained by subtracting the reference signal from the measured signal. The 

dissimilarity between the two signals can be shown by the residual signal. As the 

window is sliding along the measured signal, the dynamic time warping can be 

implemented efficiently in each sliding window to reveal the differences. 

Step 6: Feature Detection 

The objective of applying dynamic time warping to process signals is to recognize the 

differences between the two signals with higher accuracy, and using the residual signal 

to demonstrate the differences between them. Therefore, the detection can be made 

through analysis of the residual signal. In the proposed dynamic time warping based 

method, the RMS values of the residual signal are employed to measure the amplitude 

of the residual signals. Compared with peak values, the RMS values produce a more 

reliable feature when the form of amplitude modulation varies under different 

operating conditions and with fault cases. Obviously, a higher RMS value indicates a 

greater difference between the reference signal and the measured signal and hence 

indicates the deviation degree of the signal from the sinusoidal due to the modulation 

effects under the compressor conditions. 

4.5 Faults detection and classification 

4.5.1 Dynamic time warping alignment 

To separate the fluctuating component from the supply component as accurately as 

possible in motor current signals, the dynamic time warping approach based on the 

introduction of a reference signal which has the same frequency contents as the supply 

power is suggested to be applied to the current signals for the distinguishing of 

dissimilarities. The introduction of a reference signal is helpful to suppress the supply 

frequency effectively since it has the same frequency contents as the supply power. 
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Figure 4-6 shows the interim results of dynamic time warping processing at each key 

step in a typical sliding window. The measured signal is presented with an initial phase 

when the data is collected in Figure 4-6(a) and the reference signal is presented with 0 

initial phase. 

 
 

Figure 4-6 DTW processing motor current signal 

 

Obviously, these two signals are greatly shifted from one another and cannot be 

directly compared. Figure 4-6(b) shows the result after phase compensation on the 

reference signal through the initial phase matching. It can be seen that the overall 
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waveforms are better matched, but many detailed portions of the waveform are still not 

matched sufficiently well enough for comparison. After dynamic time warping 

processing, the measured signal and reference signal are matched to their optimal 

values, as shown in Figure 4-6(c) and hence the dissimilarity can be directly revealed 

by subtraction. The phase estimation and compensation is a low consumption process, 

and its time-consumption is only 0.5% of the dynamic time warping implementation 

when the sampling frequency is at 24.3 kHz. Figure 4-6(d) shows the residual signal 

obtained by the subtraction. The residual signal highlights the major differences 

between the waveforms shown in Figure 4-6(a) which is around the peak portion of the 

amplitude modulation when the motor has been applied by higher load during the 

comprising process, and has the higher effects of mechanical process. As a result of 

this signal enhancement, a more accurate feature can be extracted from this residual 

signal. 

4.5.2 Feature extraction and fault diagnosis 

Using the proposed approach based on dynamic time warping as is presented in 

Section 4.4. The raw current signals are processed and subtracted by the reference 

signal to obtain residual signals respective to each case. During processing the sliding 

window is set to 10,500 points in length so that it includes 3 compressor cycles, 

allowing for a sufficiently good frequency resolution in Fourier transform based 

analysis in comparison study. Figure 4-7 presents a typical residual signal obtained by 

dynamic time warping for the four faulty compressor cases. Comparing the waveforms 

of residual current signals under different conditions, it can be found that the amplitude 

of the residual signals’ waveform varies with different kinds of faults. The 

characteristics of the residual signals can be used to indicate the difference between 

different fault cases. 
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Figure 4-7 Waveforms of residual signals for faulty cases in one sliding window 

 

To quantify these differences for separating these faulty cases, RMS values of residual 

signal under each fault case are calculated by equation (4-20) for the faults 

discrimination. 

     
 

 
   

    
      

      
     (4-20) 

where   is the number of points of the residual signal,    is the value of the i
th

 point of 

the residual signal. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-2

0

2
(a) Residual signal for Healthy

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-2

0

2
(b) Residual signal for Valve Leakage

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-2

0

2

  
  
  
  
  
  
  
A

m
p

li
tu

d
e

 (
A

)

(c) Residual signal for Intercooler Leakage

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-2

0

2

Samples

(d) Residual signal for Belt Looseness



 

 
A STUDY OF NON-STATIONARY SIGNAL PROCESSING FOR 

MACHINERY CONDITION MONITORING 

 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD)  92 

 

 
 

Figure 4-8 DTW residual signal based detection and diagnosis 

 

Figure 4-8 shows the RMS of residual signals at different discharge pressures. It is 

clear that the RMS values of the residual current signals change with the degree of load 

oscillation. When the compressor operates at a constant discharge pressure, such as 

6.2bar, the RMS values of the residual signals also change with the different kinds of 

fault cases. It can be seen that the RMS values of the residual signal under the fault of 

valve leakage is higher than that of healthy condition and the RMS value of the 

residual signal under the fault of belt looseness is the lowest in the four conditions. The 

RMS of residual signal falls at higher discharge pressure for the fault of belt looseness. 

This is because the compressor works on its non-linear working range when the 

discharge pressure is too higher. When the discharge pressures increase, the RMS 

values of the residual signals are also increase accordingly under each kind of fault 
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case. This means that if there is a fault in the compressor, the load fluctuation 

characteristic will be altered and hence the RMS values and distinctions will be 

different from those which occur when the compressor is healthy. Based on this 

analysis, the faults can be detected and diagnosed by an RMS linear classifier in 

association with the discharge pressures. 

4.5.3 Results and discussion 

To benchmark the performance of the proposed method, the modulation characteristics 

of the current signals are analysed by two conventional methods: Fourier transform 

based spectrum technique which leads to the use of a sideband amplitude as detection 

feature, and Hilbert transform analysis [83] which produces an envelope level as the 

detection feature. 

 
 

Figure 4-9 Spectrum sideband based detection and diagnosis 
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In performing Fourier transform calculations a Hanning window is used to reduce the 

spectral leakage effects. Figure 4-9 shows the results from the spectrum analysis 

technique. The feature extraction is carried out by extracting the spectral peak values 

of the sideband components which are used to reveal the differences between different 

operating conditions. It can be seen that the sideband amplitude is unable to produce 

full separation results between different fault cases under various loads. Under the 

discharge pressure of 5.5 bar, the valve leakage cannot be separated from healthy 

properly, and under the pressure of 7.6 bar, no suitable linear classifier can be used to 

separate the healthy and valve leakage since the detect results based on sideband 

analysis have large standard deviation. 

 
 

Figure 4-10 Envelope signal based detection and diagnosis 
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the cut-off frequency of 120Hz is applied to process the raw signals to suppress the 

inevitable noise, and then a fast Fourier transform based Hilbert transform method is 

used to obtain the envelope signals. Figure 4-10 shows the RMS values of envelope 

signals for different fault cases under different operating discharge pressures. It shows 

that the envelope analysis can also allow for full separation between the fault cases 

under the operating conditions of interest. The overall trend is very similar to that of 

dynamic time warping results, demonstrating that dynamic time warping is able to 

capture the modulation characteristics with high accuracy. As the envelope RMS 

values are calculated in the time domain, spectrum leakage etc may be minimised in 

these signals. 

A careful comparison of Figure 4-10 and Figure 4-8 may also find that the deviation of 

envelope signals and RMS values is slightly wider than that of dynamic time warping 

residual RMS values. To make a detailed study, the relative standard deviation (RSD) 

at each pressure setting for different methods are calculated by 

    
 

  
 

 

 
          

       (4-21) 

where    is the RMS value for     data segment;    is the average RMS over different 

data segments and N is the total segment number. The deviation of average RMS in 

equation (4-21) removes the influences of pressures on RMS and a comparison of 

deviations between different methods at each pressure can be compared more 

accurately. 
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Figure 4-11 Comparison of standard deviation for three analysis techniques 
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accurate and reliable diagnostic results and be evaluated by numerous experimental 
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warping with the introduction of a reference signal of the same frequency to the supply 

power, this leads to a residual signal that contains mainly the sideband contents. This 

residual signal is then further analysed to obtain accurate and reliable features of the 

current signals measured under different conditions. Based on the analysis, the RMS 

value is developed to diagnose common compressor faults including valve leakage, 

intercooler leakage and belt looseness. The analysis results indicate that the dynamic 

time warping method can be employed to extract accurate features from the current 

signals and the RMS values of the residual signals can be used to differentiate the 

faulty from the healthy and identify the difference between other faulty cases under 

various loads of discharge pressures. The accuracy and reliability of detection and 

classification from dynamic time warping analysis is higher than that from Fourier 

transform spectrum and envelope analysis. The dynamic time warping processing 

procedure, based entirely on the time domain analysis (see Section 2.3), is easier to 

apply in real-time monitoring processes since it distinguishes the faults based on single 

value indicator, and the time cost of the algorithm can be improved by reducing the 

length of the sliding window. 

The weak non-stationary or cyclostationary signal, as well as electrical motor current 

signal, was analysed using the proposed dynamic time warping based method for the 

condition monitoring and fault diagnosis of a two-stage reciprocating compressor. The 

results show the accuracy and reliability of detection and classification from the 

proposed dynamic time warping analysis is higher than those of Fourier transform 

spectrum and envelope analysis because of the results from dynamic time warping has 

smallest standard deviation and less sensitive to noise influences. In the following 

chapter 5, 6, 7, and 8, the typical strong non-stationary signals, take engine vibration 

and acoustics as an example, are analysed using various signal processing methods for 

diesel engine condition monitoring and combustion diagnosis. 
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CHAPTER 5 

THE CHARACTERISTICS OF VIBRO-

ACOUSTIC SIGNALS FROM INTERNAL 

COMBUSTION ENGINES 

 

 

 

This chapter discusses the characteristics and specifications of the test engine and 

gives a brief description of the test rig, instrumentation and test procedures. Firstly, 

the engine vibration and noise characteristics from the measured vibration and 

acoustic signals are investigated using the time domain statistical and frequency 

spectral analysis methods. Secondly, the influence of room acoustics on the 

measurements is considered for spectral analysis. Finally, fuel monitoring is 

investigated based on engine noise analysis. It can be concluded that the engine’s 

acoustic signals are easily polluted by the room modes in the lower frequency band, 

(below 1 kHz) and that accurate or better monitoring results can be obtained through 

analysing the engine acoustic signals in the higher frequency band. 
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5.1 Introduction to engine acoustics 

The study of engine acoustics has been carried out since the early stages of engine 

development. The relationship between the rise of the combustion pressure and the 

noise produced by the engine was described by Ricardo in 1931 [84]. There are a 

number of engine acoustics sources, which can be divided into two categories: airborne 

acoustics and structure borne acoustics [85]. Airborne acoustics generated by systems 

and mechanisms travels through several transmission paths, whereas structure 

acoustics refers to noise generated by vibrations induced in the structure itself. These 

vibrations excite the engine surfaces and cause it to radiate noise. 

The radiated noise levels from diesel engines can be affected by a variety of factors 

such as the engine type, the structure specifications and the operating conditions [86]. 

Although many previous works have provided noise level prediction criteria and 

design fundamentals [87][88], most of them are based on specific diesel engines. As a 

result, the effectiveness in predicting radiated noise levels for other engines is limited 

as a result of vast differences between both the specifications and working principles 

of different engines [7]. 

The objective of this chapter is to investigate the characteristics of engine noise in the 

time and frequency domains by employing some statistical methods such as RMS, 

standard deviation and finding the mean [1]. These methods are easy to interpret and 

implement in monitoring the conditions of the engine and give quick detection results. 

These features are usually called time-domain features. The frequency domain analysis 

of acoustic signals is another useful method in identifying and isolating the dominant 

components and their corresponding harmonics of interest. The aim of spectral 

analysis is to look at either the spectrum in its entirety or to look closely at certain 

frequency components of interest and thus exact features from the signal [89–91]. Here 

frequency domain analysis is used to reveal the dominant frequency bands which 

contribute to engine noise levels. 
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5.2 Engine test facilities and setup 

The test facilities and instruments are presented in this section, particularly the test 

engine specification, the acoustic instruments and the data acquisition system. The test 

engine is one of the most commonly used heavy-duty vehicle engines, and for this 

research, it is equipped with specific purpose mufflers or sound insulators whose aim 

is to simulate the engine’s working conditions as accurately as possible. Various 

transducers and instrumentations capable of collecting some common types of signals 

for general analysis purposes are mounted on the test rig. In addition, the 

eigenfrequencies of the test engine room are calculated based on the room acoustics 

theory for analyzing acoustic signals. 

5.2.1 The test engine specification 

The engine used for this research is a four-cylinder, four-stroke, turbocharged direct 

injection engine with a bore of 103 mm, a stroke of 132 mm, a displacement of 4.4 

litre and a compression ratio of 18.3 [92]. Figure 5-1 shows an overview of the test rig. 

The major specifications of the engine are described in table 5-1. 

 

 

Figure 5-1 The test rig photo 
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Table 5-1 give only a limited number of the engine’s specifications, but more details 

are given in the service manual of the JCB444 T2 Diesel Engine. The test engine is 

placed in an engine test room with the size of 4.8m*4.2m*2.8m. 

Table 5-1 Specifications of the test engine 

 
Technical parameters Technical data 

Maker JCB Power Systems Ltd. 

Engine type Turbocharged diesel engine 

Number of cylinders 4 

Firing order 1-3-4-2 

Bore 103mm 

Stroke 132mm 

Inlet valve diameter 36.5mm 

Exhaust valve diameter 33.2mm 

Compressor inlet diameter 60mm 

Compressor outlet diameter 60mm 

Turbine inlet diameter 100mm 

Turbine outlet diameter 80mm 

Compression ratio 18.3:1 

Number of valves 16 

Injection system Direct injection 

Displacement 4.399 litre 

Cooling system Water 

Speed range 850-2200 rpm 

Recommended speed 850 rpm 

Maximum torque 425 N m @ 1300 rpm 

Maximum power 74.2 kW @ 2200 rpm 

 

The test engine is controlled by a CP Cadet V12 Control and Data logging System. 

CADETV12 is an advanced, fully integrated, Windows 200-XP based engine vehicle 

test system. The CADETV12 has multistage environment support, full Network 

support using Windows 200-XP, user configurable-screen layout, a visual basic 6.0 

programmer interface and control at up to 320Hz on 16 PIDS. It is integrated with high 

speed data acquisition (cylinder combustion analysis), engine management and control 

system (EMACS) and full vehicle simulation using AC or DC. The transient 

conditions are controlled by six of the PID loops. The outputs from the transducers are 

sent to the control room where the data acquisition equipment and the operating 

computer are located. 
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5.2.2 Measurement instrumentation 

To obtain accurate engine test data for diesel engine condition monitoring and 

diagnosis techniques, the engine test system was carefully set up allowing the engine 

cylinder pressure variation and the changes of the engine vibration and noise under 

different operating conditions to be monitored. 

Figure 5-3 shows the schematic diagram for the test rig and the measurement 

equipment used in this work. Various transducers have been installed on the test rig in 

order to collect the operating parameters of the engine, namely: engine noise, engine 

vibration, in-cylinder pressure and engine speed. These signals were collected by the 

following main transducers: 

 Microphone 

 Accelerometer 

 Pressure transducer  

The cylinder pressure signal is used to judge the combustion conditions of the 

monitored cylinder under different engine conditions. Otherwise, a magnetic pickup 

was used to measure the speed of the engine via the gear teeth on the flywheel. An 

optical encoder was also connected to the crankshaft to provide a trigger pulse once 

per revolution in order to synchronise data collection. A load cell was attached to the 

dynamometer to measure the load applied to the engine. 

1. Acoustic instrumentation 

The acoustic signals are measured by using BAST’s microphone system composing of 

an electrets microphone CHZ-211 and a preamplifier YG-201. Figure 5-2 shows 

photos of both the microphone and the preamplifier. Tables 5-2 and 5-3 list the main 

specifications of the microphone and its preamplifier, respectively. 

From the table it can be seen that the frequency responses of the microphone and its 

preamplifier are determined by the electrets microphone which has a range of up to 20 

kHz. The higher frequency band can still be used for the response, drops by only a few 
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decibels for signals over 20 kHz with the CHZ-211 microphones in comparison with 

its normal response range. 

  

 

    (a) Microphones    (b) Preamplifier 

 

Figure 5-2 Microphones and preamplifier 
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Figure 5-3 Schematic diagram of the engine test system 
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Table 5-2 Specification of the microphone CHZ-211 

 
Items Microphone CHZ-211 

Sensitivity -26±1.5dB (50mV/Pa) 

Frequency response (Ref. 250Hz) 6.3Hz~20kHz (±2dB) 

Sound field Free sound field 

Polarization voltage 0V 

Safety limited < 146dB 

Background noise level < 16dB 

Operating temperature -40°C~+80°C 

Operating humidity 0~98 (RH, %) 

Outer diameter 12.7mm 

Height 17.2mm 

 

Table 5-3 Specification of the preamplifier 

 
Items Preamplifier YG-201 

Power supply 4mA current source 

Frequency response (Ref. 250Hz) 10Hz~110kHz (±0.2dB) 

Attenuation 0.3dB 

Input impedance 5GΩ 

Output impedance < 100Ω 

Maximum output voltages 5V 

Operating temperature -40°C~+80°C 

Operating humidity 0~98 (RH, %) 

Background noise level < 7.0 uV 

Length 70mm 

Diameter 12.7mm 

 

 

 

Figure 5-4 Microphone used for measuring the acoustic signals 

 

In the test, two microphone systems are used to collect the acoustic signals generated 

by the engine at positions close to the engine body and the exhaust pipe respectively, at 

Microphone 
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a distance of approximately 500mm from the engine’s surface and approximately 

1000mm from the ground. Figure 5-4 shows one of the microphones measuring the 

acoustic signals produced by the engine. 

2. Vibration accelerometers 

Accelerometers are a widely used device for measuring the vibration of rotating 

machinery, and have been used extensively in machinery monitoring applications [8]. 

Accelerometers are rugged, compact, light-weight transducers with a wide frequency 

response range. The accelerometer is typically attached to the outer surface of 

machinery for measuring the vibration of the body or structure to which it is attached. 

In this research, a piezoelectric accelerometer (model CA-YD-104T) is used to 

measure the vibration of the test engine. Figure 5-5 shows the installation of the 

accelerometer in the test rig. Its technical specifications are shown in Table 5-4. 

 
 

Figure 5-5 Vibration accelerometer 

 

3. Pressure sensor 

The in-cylinder combustion pressure was measured by a General Electric 4000 series 

pressure sensor as shown in Figure 5-6. The sensor was fixed in the combustion 

Accelerometer 
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chamber of cylinder number 1. The transducer has a combination of high accuracy, 

high overload, excellent stability and a fast dynamic response. Its operating pressure 

range is between 700 mbar and 700 bar gauge. It has also been specifically designed to 

work at high temperatures for precision measurement in internal combustion engines. 

Table 5-4 Technical specification of the accelerometer 

 
Axial sensitivity (20±5°C) 35 pC/g 

Transverse sensitivity ≤ 5% 

Frequency range 5% 1 to 7 kHz 

Mounting resonance frequency 20kHz 

Temperature effect Refer to the temperature 

Polarity Positive direction 

Isolation resistance > 109Ω 

capacitance 1200 pF 

Operating temperature range -20 to + 120°C 

Shock limit (± peak) 2000g 

Magnetic sensitivity 2 g/T 

Base strain sensitivity 0.1 g/µε 

Weight 33g 

 

 
 

Figure 5-6 Pressure sensor 

 

Pressure sensor 



 

 
A STUDY OF NON-STATIONARY SIGNAL PROCESSING FOR 

MACHINERY CONDITION MONITORING 

 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD)  107 

5.2.3 Data acquisition system 

All the signals collected from the test rigs needed to be converted from the original 

analogue form to digital, and detailed analysis using a personal computer needed to 

take place. This can be achieved through the use of a data acquisition system. 

The data acquisition system is based on a Sinocera Model YE6261B dynamic data 

acquisition unit. The Model YE6261B has 32 channels each with 16 bit resolution, 

synchronized acquisition at 100 kHz per channel, an IEEE 1394 interface, and 

selectable signal conditioners as can be seen in Figure 5-7. This type of data 

acquisition is adequate for monitoring vibration and acoustic signals as its high 

sampling frequency which is sufficient for keeping the key information of original 

analog signal during the analog-to-digital conversion. 

 

 

Figure 5-7 Data acquisition equipment (model YE6261B) 

 

5.2.4 Test procedures 

Testing was carried out on the JCB444 test engine. The data was collected using 

related transducers for future analysis. Three accelerometers were mounted on the 

engine body, the exhaust pipe and the cylinder head in order to measure the vibration 

of the test engine in different locations to investigate the contribution of engine 

vibration from different engine parts to the engine acoustics. Two microphones were 
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installed close to the engine body and exhaust pipe in order to measure the engine 

noise and the pressure sensors were placed on the cylinder head. In order to compare 

the collected data and to perform the time domain or angular domain average of the 

signals, a reference point was obtained by using an optimal encoder connected to the 

crankshaft (at the engine’s front) by a rubber rube. 

For comparison purposes raw signals were collected from the sensors under normal 

operating conditions, meaning the engine was running without any induced faults. The 

engine ran under various loads and speeds supplied by diesel and biodiesel, 

respectively. 

 

Table 5-5 Test operating setup-1 

 

Fuel Speed (rpm) Load (N m) 

Pure Diesel 1000, 1500 0, 100, 200, 300, 400 

B25 1000, 1500 0, 100, 200, 300, 400 

B50 1000, 1500 0, 100, 200, 300, 400 

B100 1000, 1500 0, 100, 200, 300, 400 

 

Table 5-6 Test operating setup-2 

 

Fuel Speed (rpm) Load (N m) 

Pure Diesel 900, 1100, 1300 105, 210, 315, 420 

B50 900, 1100, 1300 105, 210, 315, 420 

B100 900, 1100, 1300 105, 210, 315, 420 

 

In the experiment, the test engine was tested with range of blends and operated at 

different loads and speeds in two operating setups as shown in Tables 5-5 and 5-6. In 

the first operating setup, for the speed and load variation, the engine was running at 

one of the two speeds of 1000rpm and 1500rpm, a series of loads were applied at each 

speed: 0, 100, 200, 300 and 400 N m. The engine was otherwise supplied by diesel and 

biodiesel with 25%, 50% and 100% respectively, as is shown in Table 5-5. In the 

second operating setup, the test engine operated at the constant speeds of 900rpm, 
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1100rpm and 1300rpm with loads from 105N m to 420N m with an interval of 105N m 

at each constant speed. The details of the operating conditions are given in Table 5-

6.The test engine was fuelled with rapeseed oil (B50 and B100) as well as normal pure 

diesel. B50 represents the mixture of 50% rapeseed oil and 50% diesel, whereas B100 

is 100% rapeseed oil. The rapeseed biodiesel is produced by a transesterification 

process from ‘virgin’ oil using methanol. The main physical properties such as the 

composition, density, lower heating value (LHV) and viscosity are presented in Table 

5-7 [93]. 

Table 5-7 Properties of biodiesel [93] 

 

Property Units Measured 

Composition % C 77 

 % H 12 

 % O 11 

Density Kg/m
3
 879 

LHV, KJ/Kg MJ/Kg 38.5 

Kinematic Viscosity mm
2
/s 4.9 

 

5.3 The characteristics of engine noise and vibration 

5.3.1 The time domain statistics of engine acoustics and vibration 

The sound pressure level (SPL) is commonly used to indicate noise levels - it is 

derived from the RMS value of the acoustic pressure (see appendix). According to the 

definitions of sound energy and sound intensity, all are calculated based on the sound 

pressure. The sound pressure level can therefore be used to reflect the noise energy 

level. Although the sound pressure level is only a single value, rather than the overall 

noise level, it can still be used to compare the noise level changes under different 

conditions. 
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Figure 5-8 SPL comparisons under different operating conditions 

 

Figure 5-8 shows variations of sound pressure level with respect to five different loads 

and two different speeds. It can be seen that as the engine loads and speeds increased, 

so too sound pressure level did. At 1000rpm, the difference between the minimum load 

and maximum load is about 7dB, and at 1500rpm, the difference is about 9.8dB. It can 

therefore be concluded that speeds and loads have significant influence on the 

measured sound levels, and the increase in sound pressure level with speed is more 

obvious than that of the load as can be seen in Figure 5-9. 
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Figure 5-9 Variations of SPL versus speed and load 

 

Figure 5-10 shows the acoustic signals of the test engine operating under the loads of 0, 

100, 200, 300, and 400 N m, and a speed of 1000rpm and 1500rpm in the angular 

domain respectively. The results are presented based on two complete combustion 

cycles (1440°) [13]. Angular domain is a simple and fundamental way of presenting 

data, which shows the peak or RMS level of the signal which can then be used to 

identify changes under different engine conditions. As seen in Figure 5-10, it is clear 

that, with the increasing of the load at a certain speed, such as 1000rpm, the amplitudes 

of the acoustic signals increase correspondingly and the difference in amplitudes is 

obvious. The higher amplitudes represent higher sound levels as are depicted in Figure 

5-8. Similarly, at a certain load, as the engine speed increases, so too does the 

amplitude of the acoustic signal. As the load increases the temporal pattern becomes 
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more obvious. There are four cyclic pattern of acoustic in every 720 degree when 

engine running two cyclic. At 300 N m and 400 N m the cyclic pattern of the sound is 

clearer than that under lower load. 

 

 

Figure 5-10 Raw acoustic signals under various loads and speeds 

: 1000rpm,   :1500rpm 

 

0 180 360 540 720 900 1080 1260 1440
-2

0

2
Load:0Nm

Acoustic signal under various loads and speeds

Load:0NmLoad:0NmLoad:0NmLoad:0NmLoad:0NmLoad:0NmLoad:0NmLoad:0NmLoad:0NmLoad:0NmLoad:0Nm

0 180 360 540 720 900 1080 1260 1440
-2

0

2
Load:100NmLoad:100NmLoad:100NmLoad:100NmLoad:100NmLoad:100NmLoad:100NmLoad:100NmLoad:100NmLoad:100NmLoad:100NmLoad:100NmLoad:100NmLoad:100NmLoad:100NmLoad:100Nm

0 180 360 540 720 900 1080 1260 1440
-2

0

2
Load:200Nm

A
m

p
li
tu

d
e

 (
P

a
)

Load:200NmLoad:200NmLoad:200NmLoad:200NmLoad:200NmLoad:200NmLoad:200NmLoad:200NmLoad:200NmLoad:200NmLoad:200NmLoad:200NmLoad:200NmLoad:200NmLoad:200Nm

0 180 360 540 720 900 1080 1260 1440
-2

0

2
Load:300NmLoad:300NmLoad:300NmLoad:300NmLoad:300NmLoad:300NmLoad:300NmLoad:300NmLoad:300NmLoad:300NmLoad:300NmLoad:300NmLoad:300NmLoad:300NmLoad:300NmLoad:300Nm

0 180 360 540 720 900 1080 1260 1440
-2

0

2
Load:400Nm

Crankshaft angle(deg.)

Load:400NmLoad:400NmLoad:400NmLoad:400NmLoad:400NmLoad:400NmLoad:400NmLoad:400NmLoad:400NmLoad:400NmLoad:400NmLoad:400NmLoad:400NmLoad:400NmLoad:400Nm



 

 
A STUDY OF NON-STATIONARY SIGNAL PROCESSING FOR 

MACHINERY CONDITION MONITORING 

 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD)  113 

 
 

Figure 5-11 Combustion pressure under various loads 

 

The additional excitation which increases the level of the acoustic signal is due to the 

higher combustion pressure of the fuel at higher loads and higher speeds. As shown in 

Figure 5-11, as the engine loads increase, so too does the amplitude of the in-cylinder 

pressure, from 5.104MPa at load of 0 N m to 8.258MPa at load of 350 N m. 
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Figure 5-12 Raw vibration signals under various loads and speeds 

: 1000rpm,   :1500rpm 

 

Another additional excitation that increases the level of the acoustic signals comes as a 

result of the higher vibration of the engine. The higher the engine’s vibration, the 

stronger the sound source and the more acoustic energy is radiated. Figure 5-12 shows 

the raw vibration signals from the engine under loads of 0, 100, 200, 300, and 400N m, 

and at speeds of 1000rpm and 1500rpm. It can be seen that as the speed and the engine 

loads increase, so too did the amplitude of the vibration from the engine. Figure 5-13 

shows the RMS of the raw vibration signals from the test engine at various loads and 

speeds. It shows the clear trend according to the changes in the loads and speeds. 
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Figure 5-13 RMS of the raw vibration signals from the test engine 

 

5.3.2 Spectrum analysis of engine acoustics and vibration 

Frequency domain analysis gives spectral information of the engine acoustic signals by 

transforming the signal from the time domain into the frequency domain. Frequency 

analysis techniques have been widely used in most engine condition monitoring 

research, and it is an effective method for showing the differences between frequency 

components from the raw signals obtained under different operating conditions. Here, 

the obvious characteristic in the spectrum is the firing frequency and its harmonics of 

various loads and speeds. The acoustic energy is predominantly located in the low 

frequency range [20], the frequency analysis is therefore focused on the low frequency. 

Figure 5-14 shows the spectrum of the engine acoustic signal with speeds of 1000rpm 

and 1500rpm respectively. It reveals that when the speed increases, the sound pressure 
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level increases accordingly. Major sound energy is located under lower frequency 

bands of about 3 kHz in both speeds conditions. 

 
 

Figure 5-14 Spectrum of acoustic signals under different speeds 
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when the engine operates at a speed of 1000rpm, the major frequency components of 

the acoustic signals are the firing frequency 33Hz and its harmonics. As the loads 
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of the firing frequencies and their harmonics increase accordingly. This demonstrates 

that the speeds and loads of the engine can affect the amplitudes of the firing 

frequencies and their harmonics. It also shows that speed and load have a significant 

influence on the measured sound levels. 

 
 

Figure 5-15 Spectrum of acoustic signals under various conditions 

 

Octave band analysis used more frequently for analyzing the acoustic spectra in 

practice. This method provides more information than conventional spectral analysis or 

weighting networks [94] as octave analysis presents the frequency characteristics of a 

signal in frequency band where each frequency band covers an octave. Here the 1/3 

octave band are employed to analyse the acoustic signals from the test engine 
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operating under various loads and speeds. Figure 5-16 shows the 1/3 octave band 

spectra of the acoustic signal of the test engine operating at two speeds of 1000rpm and 

1500rpm with different loads of 100, 200, 300, and 400N m. 

 
 

Figure 5-16 1/3 octave band spectra of acoustic signals 
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of load 400N m can be seen to be almost the highest and 100N m almost the lowest at 

both 1000rpm and 1500rpm. The spectrum of 1500rpm is higher than that of 1000rpm 

in most of the analyzed bands for the same load. The spectrum of some lower loads is 
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70Hz at both speeds. This is due to the room resonance being excited by the firing 

frequency and its harmonics. Most of the frequencies with higher amplitude in low 

frequency band are close to the room resonance frequencies as discussed in section 5.4. 

5.4 Room modes 

The room acoustics should be considered when analyzing engine acoustic signals 

because the tests were carried out in the engine test room and the room acoustic 

characteristics could affect the measured signals. The room modes and its 

eigenfrequencies are based on the room’s size. So far as the test engine room 

dimensions 4.8m×4.2m×2.8m are concerned, and the room modes and its 

eigenfrequencies lower than 200Hz are listed in table 5-8. 

Table 5-8 Lower order room modes 

 

Room Mode 

(        ) 

Frequency (Hz) 

 (  ) 

Room Mode  

(        ) 

Frequency (Hz) 

 (  ) 

0, 1, 0 34 1, 2, 1 101 

1, 0, 0 40 0, 0, 2 121 

1, 1, 0 51 0, 1, 2 127 

0, 0, 1 61 1, 1, 2 133 

0, 1, 1 70 0, 2, 2 141 

0, 2, 0 71 0, 0, 3 182 

1, 0, 1 73 0, 1, 3 186 

1, 1, 1 81 1, 0, 3 187 

1, 2, 0 82 0, 2, 3 195 

0, 2, 1 93 2, 0, 3 199 

 

If one of the modes is excited by external forces, resonance may be induced and the 

sound level at that mode frequency will be increased accordingly. By comparing the 

firing frequencies with the room mode resonance frequencies, it can be seen that the 

firing frequency of 1000rpm has the same frequency as that of room model 010 which 

is 34Hz. It is therefore expected that this particular room mode is excited by the engine 
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rotation speed of 1000rpm. Similarly, the room mode 110 with a frequency of 51 Hz 

has a similar frequency to that of the firing frequency at 1500rpm which is 50Hz. 

Noting that the room modes in table 5-8 are calculated based on a simple rectangular 

room in theory. Experiments need to be carried out for accurate analysis of the test 

engine room modes, because the presence of the diesel engine will affect the room 

modes. In this research work, the main frequency band of engine acoustics used for 

analysis is higher frequency which is above 1 kHz, and the effect of room modes on 

acoustics is in the lower frequency band, so room modes are not measured based on 

experiment here. 

Figure 5-17 shows the spectrum of the acoustic signals while the engine operates under 

speeds of 1000rpm and 1500rpm and loads of 300N m and 400N m. It can be seen that 

with the engine rotation speed of 1000rpm, its firing frequency (33.3Hz) and its third 

harmonic frequency ( 99.9Hz) are similar to room modes 010 (34Hz) and 121 (101Hz) 

respectively. The amplitudes of these frequency components, therefore, are higher than 

those of its other harmonics both at loads of 300N m and 400N m. Similarly, when the 

engine rotates at a speed of 1500rpm, its firing frequency is 50Hz and second and 

fourth harmonic frequencies are 100Hz and 200Hz. These are similar to the room 

modes resonance frequencies 110 (51Hz), 121 (101Hz) and 203 (199Hz). All of the 

amplitudes of these frequency components can be influenced by the room mode 

resonance. 
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Figure 5-17 Difference spectrum of acoustic signals under different speeds 

 

5.5 Fuel monitoring based on engine acoustics 

In the first engine test, the acoustic signals are measured from the test engine operating 

under the different speeds of 1000rpm and 1500rpm under different loads of 0, 100, 

200, 300 and 400N m, and fuelled by biodiesel with different percentages 25% (B25), 

50%(B50) and 100%. (B100). The purpose of this section is to reveal the differences 

between different types of fuels through analysis of the engine acoustic signals and to 

investigate an easy way to monitor the fuels of the engine founded on acoustic based 

condition monitoring. 
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Figure 5-18 Acoustic signals under various fuels supplied in one cycle 

: B25   :B50   :B100 

 

Figure 5-18 shows the acoustic signals of the test engine operating under different 

conditions in one combustion cycle. It can be clearly seen that the amplitude of the 

acoustic signals increases and that the temporal pattern becomes clearer according to 

the increase of the engine loads for all types of fuels. However, the differences in the 

amplitudes of the acoustic signals between different supplied fuels are so small that it 

is difficult to distinguish the different types of fuels used. The sound pressure level 

levels of the measured acoustic signals under different conditions are calculated and 

shown in figure 5-19. It can be seen that as the loads increase under the speeds of 

1000rpm and 1500rpm, the sound pressure level values increase accordingly. In 

addition, upon comparing the sound pressure level values at a certain load, we see that 
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they also increase correspondent with the increase of the speed. The differences of the 

sound pressure level values between different supply fuels are not obvious enough for 

fuel monitoring and distinguishing. 

 
 

Figure 5-19 Variations of SPL under different operating conditions 

 

Considering the effect of room modes applies mainly to the lower frequency band of 

the acoustic signals, a high-pass filter of 1 kHz was designed to process the engine 

acoustic signals and reduce the effect of the room modes on the feature extraction from 

the engine noise. Figure 5-20 illustrates the sound pressure level of the engine noise 

after processing by the high-pass filter. It can be seen that the sound pressure level 

values decrease once the low frequency components of the engine noise have been 

eliminated, and the distinguishing of the differences between fuels is improved. It can 
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be seen that monitoring results can be obtained through the analysis of the engine noise 

in a higher frequency band for fuel evaluation. 

 
 

Figure 5-20 Variations of SPL filtered by high-pass filter 

 

The 1/3 octave band spectra of the acoustic signals under the same speed of 1000rpm 

but supplied by different fuels are calculated and shown in Figure 5-21. It can be seen 

that the spectra do not give much information with respect to the energy levels and 

supplied fuels in the low frequency band below 1 kHz. The energy levels change 

greatly according to the frequency, the peak values appearing at frequencies of about 

33Hz, 100Hz, and 200Hz. This is due to the room resonance, which is excited by the 

firing frequency and its harmonics. 
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Figure 5-21 1/3 octave band spectra of acoustic signals 
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CHAPTER 6 

COMBUSTION AS THE SOURCE OF 

VIBRO-ACOUSTICS FROM AN ENGINE 

FUELLED BY BIODIESEL BLENDS 

 

 

 

This chapter will investigate the combustion process of the test diesel engine fuelled by 

different types of fuels. The combustion parameters including cylinder pressure, heat 

release rate, and ignition delay are analysed based on the measured data from the 

engine test. In addition, the vibration and noise generation mechanisms are studied in 

association with the complex combustion process and complicated engine structures. 

The analysis indicates that the combustion induced vibration and acoustics are closely 

related to the variation of the cylinder pressure, and can be used to investigate the 

combustion process instead of cylinder pressure data which is both intrusive and 

costly to obtain. 
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6.1 Researches on the performance of engine fuelled by 

biodiesel 

The demand for petroleum-based fuel has risen recently, whilst resources have 

declined [95]. Consequently, a demand to develop alternative fuels which are cheaper 

and environmentally acceptable has been considered to reduce the dependency on 

fossil fuels. Previous research [96–98], has shown that biodiesel is one of the most 

promising renewable alternative and environmentally friendly fuels. Biodiesel is 

composed of fatty acid methyl or ethyl esters from vegetable oils or animal fats and its 

properties are similar to petroleum-based fuel [97]. It is renewable, biodegradable, 

oxygenated and can be used in diesel engines without any modification of engine 

structures [93]. As diesel engines are not specifically manufactured for biodiesel fuel, 

the impact of biodiesel on the performance and condition of diesel engines need to be 

analysed. 

Engine combustion is a complex process due to the combustion mechanism. The 

performance and emission of the engine is dependent on the characteristics of the 

engine combustion process. Numerous studies [85–92] have been conducted to 

research engine performance, especially the combustion and emission characteristics 

of diesel engines fuelled with biodiesel compared with petroleum-based diesel. Dorado 

et al. [104] studied the effect of waste olive oil methyl ester on exhaust emissions 

using a direct injection (DI) diesel Perkins engine. “They concluded that lower 

emissions of CO, CO2, NO and SO2 can be obtained by using biodiesel, but emissions 

of NO2 increased”. Tashtoush et al. [103] tested the combustion performance and 

emission of a water-cooled furnace with diesel fuel and ethyl ester of a waste vegetable 

oil. Their results demonstrated that “biodiesel burned more efficiently with higher 

combustion efficiency and exhaust temperature and lower energy consumption rates. 

At higher energy input conditions, biodiesel combustion performance deteriorated and 

was inferior to diesel fuel as a result of high viscosity, density and low volatility”. 

Therefore, it is important to analyse the combustion characteristics to evaluate the 

performance and influence of biodiesel when used in diesel engines. Combustion 
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analysis is also a critical step in engine condition monitoring and fuel quality 

evaluation. 

6.2 Combustion parameters 

The main parameters used for analysing the characteristics of the combustion process 

are cylinder pressure, ignition time delay, and heat release rate (HRR) [95]. All these 

parameters are based on the variations of cylinder pressure. Hence the combustion 

parameters can be calculated based on the in-cylinder pressure data. The other 

important combustion parameters, such as combustion duration and intensity, can be 

estimated from the heat release rate variation over an engine cycle. The heat release 

rate can be used to identify the start of combustion, indicating the ignition delay time 

of the combustion process, the fraction of fuel burned in the premixed mode, and 

differences in combustion rates of fuels [105]. 

The heat release rate can be calculated from a simplified approach derived from the 

first law of thermodynamics [106] as expressed in Equation (6-1). 

  

  
 

 

   
   

  

  
  

  

  
      (6-1) 

where,       is the heat release rate across the system boundary into the system,   is 

the in-cylinder gas pressure,   is the in-cylinder volume,   is the ratio of specific heats 

and an appropriate range for   for heat release analysis is 1.3 to 1.35 [106].   is the 

crank angle.          is the rate of work transfer done by the system due to system 

boundary displacement [107]. In addition, the cumulative heat release rate,  , can be 

obtained from the heat release rate in Equation (6-2). The cumulative heat release is 

the gross heat release due to combustion. 

    
  

  
         (6-2) 

The ignition delay is an important parameter for analysing the combustion process of 

an engine and can be obtained by calculating the heat release rate of the engine 

combustion process. Ignition delay is defined as the time interval between the start of 
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fuel injection into the combustion chamber and the commencement of combustion. 

The ignition delay determines the quantity of premixed flame contributing to the rate 

of pressure increase and its maximum value [95]. It corresponds to the period between 

the beginning of fuel injection until the cylinder pressure rises. Theoretically, a longer 

ignition delay means more fuel is available for ignition resulting in more energy 

release during the premixed combustion stage. Reduction in ignition delay may result 

in earlier combustion leading to slightly higher peak pressures, whereas an increase in 

the delay period results in poor combustion and may lead to lower peak pressure [100].  

 
 

 

Figure 6-1 shows the cylinder pressure and heat release rate of a diesel engine. It 

indicates that the combustion process can be divided into three distinguishable stages. 

The first stage is the premixed period, where the rate of burning is very high, 

combustion time is short (for only a few crank angle degrees), and the cylinder 

pressure rises rapidly. The second stage is the mixing controlled period and is the main 

heat release period corresponding to a period of gradually decreasing heat release rate 
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and lasting about 30 crank degrees. The third stage is the late combustion period which 

corresponds to the tail of the heat release diagram in which a small but distinguishable 

heat release rate occurs throughout much of the expansion stroke. 

6.2.1 Cylinder pressure 

Cylinder pressure versus crank angle over the compression and expansion strokes of 

the engine running cycle can be used to obtain quantitative information on the progress 

of combustion [107]. Figure 6-2 shows the cylinder pressures versus crank angle for 

different fuels (Diesel, B50, and B100), engine loads (105N m, 210N m, 315N m and 

420N m) and at the constant engine speed of 1300rpm. Figure 6-3 presents the cylinder 

pressure versus crank angle for different fuels (Diesel, B50, and B100), engine speeds 

(900rpm, 1100rpm and 1300rpm) and at the constant engine load of 420N m. 

 
 

Figure 6-2 Cylinder pressure at a speed of 1300rpm under different loads 
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From both the Figures it can be seen that the peak cylinder pressure was higher for 

rapeseed oil biodiesel at all tests. The higher viscosity of biodiesel can enhance fuel 

spray penetration and thus improve air-fuel mixing [108]. A higher viscosity of 

biodiesel can also lead to bad fuel injection atomization. The peak cylinder pressure of 

B50 is slightly higher than that of B100, especially at high loads, and may be due to 

the higher viscosity of B100. The viscosity of the biodiesel increases with increased 

biodiesel percentage in the blends, and higher viscosity decreases combustion 

efficiency due to bad fuel injection atomization [96]. 

 
 

Figure 6-3 Cylinder pressure at a load of 420N m under different speeds 
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From Figures 6-2 and 6-3, it can be seen that, the peak cylinder pressures for both 

diesel and biodiesel and its blends were slightly increased when the engine loads and 

speeds increased. This is due to longer ignition delay which results in more fuel being 

available for ignition and more energy being released during the premixed combustion 

stage [96]. Figures 6-5 and Figure 6-6 show that the ignition delay is longer under 

higher loads and speeds, and the maximum heat release rate was higher than that of 

lower loads and speeds for both diesel and biodiesel and its blends. 

6.2.2 Heat release rate 

Details of the combustion process for an engine can be obtained through analysis of 

the heat release rate of the combustion process. The cumulative heat release rate, 

ignition delay and combustion duration were all determined by analysis of the heat 

release rate. Figures 6-4, 6-5 and 6-6 illustrate the heat release rate for the compression 

ignition (CI) engine used in the current investigation operating with diesel, biodiesel 

and its blends at speeds of 900rpm, 1100rpm and 1300rpm and at four loads of 105N 

m, 210N m, 315N m and 420N m respectively. 

As shown in Figure 6-4, a negative heat release rate was observed initially, which was 

due to the vaporization of the fuel accumulated during ignition delay [109]. It can be 

seen that combustion starts earlier for biodiesel and its blends and the start point of the 

combustion crank angle decreases with the percentage increase of biodiesel under all 

engine operating conditions. From Figure 6-4 it can be seen that the combustion start 

angles for pure diesel, B50 and B100 are 358.8, 357.6 and 357 crank degrees 

respectively at a speed of 1100rpm and load of 105N m. Figure 6-4 also demonstrates 

that at lower loads of 105N m and 210N m, the premixed combustion heat release rate 

is higher for diesel due to the longer ignition delay leading to more fuel accumulation 

in the combustion chamber at the time of the premixed combustion stage. The heat 

release rate of biodiesel was higher at the higher loads of 315N m and 420N m even 

with a shorter ignition delay. 
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Figure 6-4 HRR at speed of 1100rpm and under different loads 

 

The heat release rate for diesel, biodiesel and its blends (B50 and B100) at 210N m 

load with speeds of 900rpm, 1100rpm and 1300rpm are illustrated in Figure 6-5. It can 

be seen that the combustion starts earlier for reduced engine speeds by comparing the 

starting point of heat release rate increasing in crank angle. This means that a longer 

ignition delay is required at higher speeds for both diesel and biodiesel blends. Figure 

6-6 shows the heat release rate of diesel, biodiesel and its blends at loads of 105N m, 

210N m, 315N m and 420N m with a constant speed of 1100rpm. The figure illustrates 

that ignition delay increases alongside engine load for all types of fuel and leads to the 

maximum heat release rate occurring sooner. Maximum heat release rate increased at 

higher engine loads due to the increase in the quantity of fuel injected into the cylinder 

[110]. 
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Figure 6-5 HRR at 210 N m load under different speeds for biodiesels 
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Figure 6-6 HRR at a speed of 1100rpm under different loads for biodiesel blends 
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pressures, sometimes leading to audible knocking noises and resulting in incomplete 

combustion [107]. Fuels with a high cetane number have a shorter ignition delay as the 

ignition occurs before most of the fuel is injected [111]. Hence the heat release rate 

and pressure rise are controlled mainly by the rate of injection and air-fuel mixing. 

Table 6-1 Crank angles at the start of combustion for fuels at different engine 

conditions 

 
Speed 

(rpm) 

900 1100 1300 

Load 

(N m) 

105 210 315 420 105 210 315 420 105 210 315 420 

Diesel 358.1 359.3 362.8 364.8 359.3 361.2 365.2 365.6 360 362.5 365 368 

B50 357.5 359 362 364 358.2 360 363.5 365 358.3 362 364.5 366 

B100 356.2 358 361 363 357.6 359.6 363 364.6 357.4 361 364 365 

 

The crank angles at the start of combustion for the test fuels at different engine 

operating speeds of 900rpm, 1100rpm and 1300rpm and loads of 105N m, 210N m, 

315N m and 420N m are shown in Table 6-1. It can be seen that ignition delay 

increased with increased engine load and speed due to the longer vaporization time of 

the fuel in terms of crank angle [102]. Ignition delays decreased as increasing amounts 

of biodiesel were added to the diesel fuel blends. This was due to the higher percentage 

of high cetane number biodiesel in the fuel [111] and higher viscosity [112], resulting 

in a shorter ignition delay. 

6.2.4 Cumulative heat release 

The cumulative heat release indicates the total heat released during the combustion 

stage. The cumulative heat values calculated from the present investigation on the 

engine running with pure diesel, biodiesel and its blends (B50 and B100) are shown in 

Figure 6-7. It can be seen that B50 resulted in higher cumulative heat release as 

compared to the diesel and B100. 
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Figure 6-7 Cumulative heat release at a speed of 1300rpm and different loads 
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and fast pressure changing result in higher engine vibration and subsequently higher 

level acoustic signals. The variation of engine acoustics and vibration is related to the 

changing of in-cylinder pressure. When the combustion occurred in the cylinder, the 

cylinder pressure increased quickly, leading to the vibration of the engine body and 

generated radiated acoustic accordingly. 
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Figure 6-8 Normalised cylinder pressure, body vibration and engine acoustic 

 

Diesel engines produce a complex noise whose level and sound quality are strongly 

dependent on the fuel combustion, as the primary source. This noise is the so-called 

combustion noise [113]. The complex noise of diesel engines is due to the harsh and 

irregular self-ignition of the fuel. Self-ignition occurs towards the end of the 

compression stroke and subsequent expansion stroke. The rapid pressure change due to 

combustion transmits through the engine structures and forms part of the airborne 

acoustic signal. The change of pressure causes vibration of the engine components 

such as the cylinder head, pistons, connecting rods and engine body; the vibrations of 

which all contribute to the overall engine noise level [114]. Together these noise 

sources account for over 80% of total engine noise. The combustion noise is the 

dominant source. A general description of the diesel engine noise generation from the 

combustion process is shown in Figure 6-9. 
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Figure 6-9 Combustion noise generation diagram 

 

Figure 6-9 shows that noise is transmitted through three paths from the combustion 

impact, namely: 

 The cylinder head 

 Cylinder block 

 The mechanical parts, including piston, connecting rod and crankshaft 

In the first path, the noise is radiated from the cylinder head to the cylinder block and 

then directly into the air. Secondly, the gas explosion directly excites the cylinder 

block through which the noise is transmitted, and finally, noise is induced from the 

mechanical paths. Figure 6-9 is only shows the noise related to the combustion process. 

Another part of noise of diesel engine is the exhaust noise which is radiated from the 

exhaust pipe to the air. 

There are a number of factors that could affect the combustion pressure characteristics 

and accordingly the combustion noise. The first is the cylinder bore dimension. 

Challen and Croker [86] found experimentally that measured noise levels increased 

proportionally with increases in the cylinder bore dimension. The reason for this is that 

the piston slap forces inside the cylinder are proportional to the piston bore dimension. 

Another factor that could affect the combustion noise is the fuel injection system. Fuel 

injection characteristics and the types of injector nozzles could significantly affect 

combustion development. These characteristics include the fuel delivery, injection 

timing, injection pattern, spray formation, swirl level and residual gas which should all 
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be carefully controlled to appropriate levels [115]. Different types of nozzles affect 

combustion by changing the spray formation characteristics. There are also different 

types of combustion chambers, but their influence on combustion performance can be 

ignored [115]. 

The speeds and loads of the engine are additional factors which could affect noise. 

Tung, Challen and Croker [86][116] studied the effect of the speeds and loads on the 

engine noise, and found that the engine noise levels are quite sensitive to the changes 

in speed. Surprisingly, the effect of load variations on noise levels is not as influential 

as expected. It was observed that combustion noise decreased when the percentage of 

load was increased [86]. 

The engine output power, cylinder swept volume and the number of cylinders are also 

factors which influence combustion induced noise levels to a certain degree. In the 

following chapters, the engine vibro-acoustic signals are analysed using various non-

stationary signal processing methods in the lower and higher frequency band 

respectively. The features extracted are used for the identification of engine conditions, 

diagnosis of combustion and evaluation of supply fuel quality. 
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CHAPTER 7 

ANALYSIS OF ENGINE VIBRO-ACOUSTIC 

SIGNAL BASED ON FRACTIONAL 

FOURIER TRANSFORM 

 

 

 

 

This chapter investigates the effects of biodiesel on the combustion process and the 

characteristics of the engine’s vibro-acoustic signals produced by the combustion 

process. Firstly, the statistic characteristics of the engine vibration and noise and their 

relationships are studied by employing coherent power spectrum analysis technology. 

Secondly, the Wigner-Ville distribution is used to analyse the energy distribution of 

engine noise in the time-frequency domain. Finally, a band-pass filter based on 

fractional Fourier transform is developed to extract the main combustion related noise 

for fuel evaluation and diesel engine operating condition monitoring. The 

classification based on sound pressure level indicator shows that the combustion 

induced acoustic can be extracted for the identification of the combustion process and 

engine condition monitoring. 
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7.1 Researches on engine vibro-acoustics 

The generation of sound is usually attributed to the vibration of solid objects and sound 

is explained as vibration of the air [17]. The solid borne noise that is transmitted 

through the objectives is responsible for producing the vibration and inducing noise. 

The study of engine vibration and noise has been carried out since the early stages of 

engine development and numerous noise level prediction researches have been 

proposed during recent decades. 

Fujimoto [117] investigated the effect of the oil film on the piston slap induced noise, 

and found that “the oil film formed between the piston skirt and the cylinder reduced 

the clearance and acted as a damper, therefore reducing the piston slap force to some 

extent”. Periede et al. [84] also carried out a similar investigation and concluded that 

“the piston slap noise was also proportional to the cylinder bore dimension.” S. H. 

Cho et al. [118] present an analytical model which can predict the impact forces and 

vibratory response of an engine block surface induced by the piston slap of an internal 

combustion engine. “The equivalent parameters such as mass, spring constant and 

damping constant of the piston and cylinder inner wall are estimated by using 

measured point mobility.” The results are compared with experimental results to verify 

the model and to reach the conclusion that “prediction of overall vibration level shows 

a similar tendency to the measured noise level close to the surface of the engine block.” 

Shu and Liang [119] analyzed the complex engine noises using coherent power 

spectrum analysis and concluded that “the noise of the low-frequency belt is primarily 

machinery noise, while the noise of the high-frequency belt is mainly combustion 

noise”. Most engine noise is produced by the combustion process, but additional noise, 

such as the injection, inlet and exhaust noise as a result the injection of fuel and the 

intake and exhaust valves all make up a fraction of the overall noise [120]. 

Vibration and acoustic signals from an engine are usually noisy and non-stationary. It 

is essential to develop an appropriate analysis tool in order to extract accurate features 

from the non-stationary signals for engine condition monitoring, combustion 

diagnostics and fuel evaluation. Time-frequency analysis has been developed as a 
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more reliable and effective method for machinery condition monitoring as it can be 

used to observe the frequency variation according to the time. In this chapter, The 

Wigner-Ville distribution is employed to analyse the energy distribution of engine 

noise in time-frequency domain based on the limitation of the conventional methods in 

time or frequency domain. Taking into account the novel properties of the fractional 

Fourier transform (FRFT), a band-pass filter based on fractional Fourier transform has 

been developed to extract the combustion induced noise from the engine noise for 

combustion diagnostic and fuel evaluation. 

7.2 Statistical characteristics of vibration and acoustic 

signals 

7.2.1 Variations of engine vibro-acoustic signals 

As previously discussed, engine noise is linked to engine vibration, and both are 

dependent on the variation of the in-cylinder pressure of the engine during the 

combustion process. This means that the trend of the engine vibration and noise should 

correspond to the changing of the in-cylinder pressure as determined by the fuel 

combustion characteristics for different type of fuels and by the engine operating 

conditions including speeds and loads. 

Figure 7-1 shows the engine vibration signals at a speed of 1300rpm and at different 

loads of 210N m, 315N m and 420N m fuelled by different fuels of diesel, B50 and 

B100. It is presented based on one complete combustion cycle (720 degree) which is a 

simple and fundamental way of presenting data in the angular domain. This indicates 

that the amplitudes of the vibration signals increase alongside the increasing loads 

from 210N m to 420N m at a constant speed. Consequently, the acoustic signals should 

be increased accordingly. Figure 7-2 demonstrates the acoustic signals at a speed of 

1300rpm and under different loads of 210N m, 315N m and 420N m. From this, it can 

be seen that the amplitude of the acoustic signals increases according to the increase of 

engine loads under all types of fuels.  
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Figure 7-1 Vibration signals at a speed of 1300rpm under different loads 

 

Even though the variation of the engine vibration and the noise corresponding to the 

loads and speeds can be indicated simply in the time domain waveform as is seen in 

Figure 7-1 and 7-2, it is difficult to observe clear features between different fuels. This 

is due to the complexity of engine noise sources and their mutual interference during 

the operation of the engine. The non-stationary characteristics of the engine vibration 

and noise also increase the difficulty of feature extraction between different fuels in the 

time domain. Based on the previous study [119], the main sources of noise within an 

engine are machinery noise and combustion noise. While the engine noise of a low-

frequency belt is mainly the machinery noise of the oil pump, gear and valve 

mechanism which radiate from a thin-walled part such as the gear or valve cover. The 
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combustion noise can be seen in the high-frequency band of the engine noise which 

radiates from the combustion process. 

 
 

Figure 7-2 Acoustic signals at a speed of 1300rpm under different loads 

 

Figure 7-3 and Figure 7-4 show the spectrum of vibration and acoustic signals in a low 

operating condition at speed of 900rpm with a load of 105N m, and a high operating 

condition at speed of 1300rpm with a load of 420N m, respectively. It can be seen that 

the energy of vibration and acoustic signals increase alongside the load and speed. The 

amplitudes of the spectrum of the engine noise are higher in the low-frequency band 

compared to that of the high-frequency band. This is potentially due to the resonance 
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components of the machinery noise and vibration in the low frequency band are related 

to the firing frequencies and their harmonics which correspond to the engine speeds. It 

is also difficult to distinguish the fuels from the spectrum of the vibration and acoustic 

signals according to the Figure 7-3 and Figure 7-4. Based on the generation 

mechanism of the acoustic signals, engine noise is excited by the vibration of the 

engine, and the vibration is produced by the in-cylinder pressure changing during the 

combustion process. Therefore, the engine noise should be related to the engine 

vibration and the engine combustion process, even if it is also polluted by the 

background noise and affected by the resonance of the engine room modes. Hence, the 

combustion process and fuel quality should be revealed through analysis of the engine 

vibration or noise signals using proper signal processing methods. 

 
 

Figure 7-3 Spectrum of vibration signals under different conditions 
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Figure 7-4 Spectrum of acoustic signals under different conditions 

 

7.2.2 Coherent power spectrum analysis 

The engine noise measured by an acoustic transducer is the total noise generated by the 

engine, which also includes a number of noise sources such as combustion, injection, 

intake and exhaust noise [14]. In order to analyse the frequency components of the 

engine noise, which is closely related to the combustion process, the correlation of the 

engine noise and the vibration should be analysed as acoustic is derived from vibration 

[17]. 

For analysing the correlation of the engine noise, engine vibration and combustion 

process, the coherent power spectrum analysis should be employed in order to 

recognise the noise sources or vibration sources that are related to the combustion 

process. It is because the vibration is related to the in-cylinder pressure changing 

during the combustion process. The noise generated by an engine can be modelled as a 

linear time system with multiple inputs and a single output as shown in Figure 7-5. 
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Assuming the complex engine noise sources system has   noise sources, which 

produce a signal      , The signal measured by accelerator sensor is   . The function 

      is a scalar transfer function between the input       and the output       of the 

system. The measured output      contains the output       and the uncorrelated 

background noise     . 

The measured acoustic signal      can be formulated as follows: 

                       
       (7-1) 

where * denotes the convolution operation. 

Assuming that there is no correlation among different input signals      , this model 

can be used regarding a frequency independent system [121]. The cross power 

spectrum between input       and output      can be expressed as 

    
              

       (7-2) 

The coherence function of input       and output      can be computed by 

    
  

     
    

 

     
         

     (7-3) 

      

      

      

      

  
  

      

      

      

      

      

     

     

  

      

      

      

  

Figure 7-5 Engine noise source model 
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The input coherent power spectrum can be defined as the product of the coherent 

function and the input power spectrum [119], 

    
        

      
       (7-4) 

where    can be considered as the input signal, and   denotes the output signal of a 

measurement system.      
 and     are the self-power spectrum of    and   

respectively.     
 is the cross power spectrum between the input signal    and the 

output  .     
  represents the coherent function of the input signal    and the output 

signal  . 

 
 

Figure 7-6 Coherent power spectrum analysis of engine noise 
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output signal is the signal measured by the microphone. Figure 7-6 shows the 

coherence power spectrum analysis results of the cylinder head vibration and engine 

acoustic. It indicates that the vibration of the cylinder greatly contributes  to the engine 

noise at the frequency band of 2 kHz - 3 kHz and shows that the noise at the frequency 

around 5 kHz is also related to the vibration of cylinder head. It also can be seen from 

Figure 7-6 that the amplitude of the coherent power spectrum increases with the engine 

load and speed, leading to the increase of engine noise accordingly. 

7.3 The time-frequency distribution of engine acoustics 

7.3.1 The Wigner-Ville distribution 

Wigner-Ville distribution (WVD) is a simple and effective time-frequency analysis 

method, it gives the instantaneous power of the analysed signal at the time   and the 

frequency  . The continuous Wigner-Ville distribution of a general signal      can be 

defined by Equation (7-5) [37]. 

                 
  

  
                 (7-5) 

where      is the real-valued time signal and   and   are the time and frequency 

indices, respectively.   is the redius extending from time  . It can be seen from 

Equation (7-5) that the instantaneous power relies on the nature of the signal being far 

away from the time   due to the integral requiring an infinite signal length. As a result, 

localisation characteristics of the Wigner-Ville distribution are reduced to some extent. 

In application, a time window      is often added to the analysed signal before the 

transform is carried out [37]. 

                   (7-6) 

The length of the added window in equation (7-6) is much shorter than that of the 

analytical signal, and the window has the ability to slide along the time axis so that its 

centre is always located at time   [40]. This short-timed window makes the transform 
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capable of capturing transients with a better resolution. The Wigner-Ville distribution 

of the windowed signal as shown in equation (7-6) can be expressed by: 

   
      

 

  
        

  

  
              (7-7) 

where    and    are the Wigner-Ville distribution of the analytical signal and the 

window function respectively. In fact the Wigner-Ville distribution of a signal 

according to equation (7-7) is a low-pass smoothed version of the original Wigner-

Ville distribution in the frequency domain [40]. 

7.3.2 Wigner-Ville distribution analysis of engine acoustics 

Figure 7-7 shows the Wigner-Ville distribution of the test engine noise at loads of 

105N m and 420N m for different fuels. The length of the window for the Wigner-

Ville distribution was determined based on one complete combustion cycle (720 

degrees). It can be seen that the main energy of the engine noise is located in the low 

frequency band which is below 1 kHz at low engine load of 105N m as shown in 

Figure 7-7 (a), (c) and (e). With the increase of the percentage of biodiesel, the energy 

level at the high frequency band (2 kHz-3 kHz) increases as well. At a high engine 

load of 420N m according to Figure 7-7 (b), (d) and (f), the main energy of the engine 

noise is located at a frequency of around 1 kHz and 2 kHz. Wigner-Ville distribution 

of engine noise at the frequency band of 2 kHz to 3 kHz particularly contributed by the 

combustion process as discussed through the coherence analysis of cylinder head 

vibration and engine acoustic. The strength of the acoustic energy in the frequency 

band of 2 kHz to 3 kHz can be used to monitor the combustion process and engine 

supply fuels. A band pass filter based on fractional Fourier transform is designed for 

the extraction of the acoustic signal at the frequency band of 2 kHz to 3 kHz. 
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Figure 7-7 WVD of engine noise at loads of 105N m and 420N m 

 

7.4 The fractional Fourier transform 

The fractional Fourier transform (FRFT) is a generation of the classical Fourier 

transform, introduced from the mathematic aspect and applied in many areas [50]. The 

fractional Fourier transform provides a time-frequency distribution which extends from 

the conventional Fourier theory for the analysis of non-stationary signals, especially 

linear chirp signals. fractional Fourier transform is a technique which rotates the 

conventional time-frequency domains to a specified angle   allowing the designer to 

have more flexibility for extracting the useful signals or decreasing noisy signals [122]. 
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7.4.1 Definition of fractional Fourier transform and its properties 

The     order fractional Fourier transform of a signal      can be defined as [50]. 

             
  

  
           (7-8) 

   
 

 
      (7-9) 

The kernel function         can be expressed as 

        

 
 

  
       

 
   

 

 
       

 

 
                           

                                                                         
                                                                  

  (7-10) 

where   is the rotation angle of the transformed signal for fractional Fourier transform 

and   is the transform order of the fractional Fourier transform. It is found that the 

fractional Fourier transform of the signal      at the order     is the input signal 

     , and the order       corresponds to the Fourier transform of the signal      

while the order     is the inverse of the signal      . The order        is the 

Fourier transform of the signal      . Obviously, the fractional Fourier transform is 

periodic with period of 4. Let         and        . Then the equation (7-8) 

equivalent to: 

             
  

  
             

 

 
 

  
       

  
  

 

 
      

       
 

 
               

  
                           

                                                                                                     
                                                                                            

  (7-11) 

In the time-frequency representations, a plane with two orthogonal axes corresponding 

to time and frequency is used to present the analytical signal as shown in Figure 7-8 

[123]. The Fourier transform of a signal is a counter-clockwise axis rotation of     rad 

from the time axis   to the frequency axis  . The fractional Fourier transform is a 

representation of the signal along an axis   making an angle of   with the time axis  . 



 

 
A STUDY OF NON-STATIONARY SIGNAL PROCESSING FOR 

MACHINERY CONDITION MONITORING 

 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD)  154 

The rotation of the angle   is from 0 to    rad and is presented by the transformation 

kernel         as shown in equation (7-10). The operator of fractional Fourier 

transform can be defined as   . 

 

 

 

 

The operator    has the following properties [123]: 

1. When    ,      

2. When   
 

 
,        

3. Additively of rotations:           

4. When     ,       

where   in property 2 means the Fourier transform, and   in properties 1 and 4 

indicates the signal itself. 

From the properties of the fractional Fourier transform operator, the inverse of an 

fractional Fourier transform with an angle   is the fractional Fourier transform with 

angle – : 

              
  

  
          (7-12) 

  

  

  

  

  

  

  

Figure 7-8 Time-frequency plane and a set of coordinates       rotated 

by an angle   relative to the original coordinates      
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where      is expressed by a class of basic functions          with weight factors 

     . The basic functions are complex exponentials with linear frequency 

modulation. For different values of  , they differ only by a time shift and by a phase 

factor that depends on   [50]: 

            
 

 
                      (7-13) 

7.4.2 Band-pass filter based on fractional Fourier transform 

Based on the definition and the properties of the fractional Fourier transform, a band-

pass filter can be designed for useful or interesting signal extraction from the raw 

measured signal. This is beneficial for the extraction of accurate features for machinery 

condition monitoring or fault diagnosis. The filtering process based on fractional 

Fourier transform should be described as follows: 

1. Calculation of the fractional Fourier transform of the analytical signal 

according to the variation of the order    
 

 
. The range of   is from 0.5 to 

1.5, so the energy distribution of the analytical signal on the fractional plane 

can be obtained as shown in Figure 7-9 (a). 

2. Search for the peak point         on the fractional plane,   acting as a 

parameter for spanning the set of basic functions, and   is related to the angle, 

then calculate the fractional Fourier transform of the analytical signal at the 

order of      
 

 
. 

3. Filter the analytical signal in the fractional domain using a band-pass filter. The 

centre frequency of the filter is based on the localization of the peak point    

on the fractional plane. The energy distribution of the filtered signal on the 

fractional plane is shown in Figure 7-9 (b). 

4. The extracted signal in the time domain can be obtained by calculating the 

fractional Fourier transform of the filtered signal at the order of       
 

 
. 
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Figure 7-9 Energy distributions on the fractional plane 

 

7.4.3 Combustion noise extraction 

From the Wigner-Ville distribution analysis of the engine noise signal in section 7.3.2, 

it can be concluded from figure 7-7 that the frequency of engine noise, which is around 

2 kHz to 3 kHz, has higher energy and can be used to reveal the differences between 

different types of fuels. Based on the coherent power spectrum analysis of the engine 

noise, it can be seen that the frequency of the combustion related noise is mainly 

located between 2 kHz and 3 kHz. Therefore, the band-pass filter based on the 

fractional Fourier transform under the criteria of the maximum peak value is used to 

extract the engine noise components located around 2.5 kHz for fuel evaluation and 

combustion monitoring. 

Figure 7-10 (b), (d) and (f) show the Wigner-Ville distribution of the combustion 

induced noise extracted by the band-pass filter based on fractional Fourier transform. 
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For comparison, Figure 7-10 (a), (c) and (e) show the Wigner-Ville distribution of the 

unfiltered engine noise at the load of 420N m for different fuels, B50 and B100. It can 

be seen that the engine acoustic contributed by the combustion process at the 

frequency band of 2 kHz to 3 kHz is extracted from the total engine noise, and its 

energy level and strength on the time-frequency plane reflected the differences of the 

fuels. A linear classifier based on sound pressure level calculation can be designed 

based on the differences indication for the different operating condition separation, 

including fuel quality, speed and load. 

 
 

Figure 7-10 WVD of engine noise processed by FRFT filter 
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7.5 Feature extraction and classification 

Sound pressure level is calculated from the filtered engine noise at all test conditions, 

and is used as a feature value for the separation and classification of different fuels for 

engine fuel evaluation. Figure 7-11 shows variations of the sound pressure level (SPL) 

and combustion induced noise under different engine operating conditions, including: 

different fuels (diesel, B50 and B100), different speeds (900rpm and 1300rpm) and 

different loads (105N m 210N m, 315N m and 420N m). 

 
 

Figure 7-11 Variations of SPL for different fuels 

 

From figure 7-11, it can be seen that the sound pressure level increased with the 

increase of speeds and loads under all engine fuelled conditions. The sound pressure 

level of the engine fuelled by biodiesel and its blends (B50 and B100) was slightly 

higher than that fuelled by diesel. The sound pressure level of the engine fuelled by 
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B50 is higher than that of the engine fuelled by B100 under all test engine speeds and 

loads. This is because of higher peak pressures and heat release rates obtained during 

the combustion process when the engine was fuelled by B50 according to the 

combustion parameters analysis. It can therefore be concluded that higher pressure 

with fast changing produces higher engine vibration and noise, so the engine vibration 

and acoustic can be used to monitor the engine combustion monitoring instead of using 

in-cylinder pressure. It is a non-contact and practical measurement method. 

In the present study, an experimental investigation was carried out on the combustion 

process, vibration and noise analysis of a CI engine operating with rapeseed biodiesel 

and its blends under steady state operating conditions. Based on the experimental study, 

the main results are summarized as follows: 

 The peak cylinder pressure was higher for rapeseed oil biodiesel than that for 

diesel at all test conditions. The peak cylinder pressures for both diesel and 

biodiesel and its blends were increased with increased engine loads and speeds 

as a result of longer ignition delay resulting in more fuel being made available 

for ignition and more energy being released during the premixed combustion 

stage. 

 The ignition delay increased alongside engine loads and speeds for all types of 

fuels as a result of the extension of the vaporization time of the fuel in terms of 

the crank angle leading to the maximum heat release rate occurring later. The 

maximum heat release rate increased with the rise of the engine loads as a 

result of the increase in the quantity of fuel injected into the cylinder. 

 Combustion started earlier for biodiesel and its blends and decreased as 

increased percentages of biodiesel were introduced under all engine operating 

conditions. 

 The heat release rate of biodiesel was higher at higher loads even with a shorter 

ignition delay. 

 The amplitude of the engine acoustic signals increased alongside the engine 

loads and speeds due to higher engine vibration. 
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 The SPLs of combustion induced noise when the engine was fuelled by 

biodiesel and its blends were slightly higher than those fuelled by diesel due to 

higher in-cylinder pressure producing higher vibration during the combustion 

process. 

Based on the coherent power analysis of engine vibration and acoustics, it can be seen 

that the frequency of the combustion related noise is mainly located between 2 kHz 

and 3 kHz. The engine acoustic components during this low frequency band can be 

extracted for the identification of the combustion process and engine condition 

monitoring by a sound pressure level indicator based on a band-pass fractional Fourier 

transform filter. If the engine acoustic components in the higher frequency band can be 

used for combustion process diagnosis and engine condition monitoring, chapter 8 

presents the analysis of engine acoustics in the higher frequency band for the 

combustion diagnosis and engine condition monitoring. 
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CHAPTER 8 

COMBUSTION DIAGNOSIS BASED ON 

ENGINE ACOUSTICS USING WAVELET 

ANALYSIS 

 

 

 

 

In this chapter, the continuous wavelet transform and time synchronous average will 

be applied with respect to engine noise processing for non-intrusive combustion 

diagnosis. Firstly, the mathematical characteristics and properties of continuous 

wavelet transform are briefly explained. Secondly, the principle of time synchronous 

average and its performance on processing the engine acoustic signals are discussed. 

Thirdly, the analysis results using the continuous wavelet transform and time 

synchronous average are presented and a summary of the results is given at the end of 

the chapter. The RMS linear classification shows that the RMS values of continuous 

wavelet transform coefficients can be used to evaluate the fuel for engine combustion 

and to indicate engine operating conditions. 
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8.1 Introduction to engine acoustics analysis using 

continuous wavelet transform 

Time domain based statistical analysis can be used to observe the variations in signal 

energy trend development. Frequency domain based spectral analysis can reveal the 

compositional information of the acoustic signals in terms of frequency components. 

Acoustic signals from diesel engines are very complicated and difficult to analyse both 

in the sources of the sound, and the mechanism by which it is generated. The vibration 

and acoustic signals from diesel engines are usually noisy and non-stationary with 

wide frequency band. Furthermore, all the signals have distinctive time properties 

related characteristics regarding the structure of diesel engines. For example, 

combustion occurs once at the top dead centre (TDC) position in every two revolutions 

for diesel engines with four cylinders, and the pressure will be changed quickly, 

serious vibration will be generated, then produce noise radiated to the air from the 

engine structure. 

Using conventional signal processing methods (see Section 2.3 and 2.4) based on the 

time or frequency domain it is not possible to reveal the non-stationary characteristics 

of these signals effectively. It is essential to develop effective methods (see Section 2.5) 

to extract accurate features from the non-stationary signals for machinery condition 

monitoring and fault diagnosis. Continuous wavelet transform (see Section 8.2) has the 

ability to capture the transient events present the high frequency band details and can 

reveal time-frequency characteristics of a non-stationary signal. Continuous wavelet 

transform is a typical and powerful time-frequency tool widely used in machinery 

condition monitoring and diagnostics as it is capable of displaying results in both the 

time and frequency domains at the same time. 

In this chapter, continuous wavelet transform is employed to analyse the engine 

acoustic signals for the combustion diagnosis of a diesel engine fuelled by both pure 

diesel and biodiesel blends. The characteristics of the engine noise are investigated in 

relation to the variation of the in-cylinder pressure during the combustion process in 
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order to analyse the relationship between the engine acoustic characteristics and the 

combustion process of the diesel engines. In addition, as diesel engines are rotating 

machinery, the time synchronous average (TSA) can be used to pre-process the engine 

acoustic signals in order to enhance the signal-to-noise ratio (SNR) so that accurate 

analysis results can be obtained. 

8.2 The continuous wavelet transform 

Wavelet transform is an effective time-frequency analysis technique with high 

resolution and localisation characteristics. The width of the time window used in the 

transform can be adjusted; for instance, a wide time window is selected for analysing 

the low frequency band in order to collect complete cyclic information, whilst a 

narrow time window is chosen to extract the short time transient signals of interest in 

the high frequency band. Wigner-Ville distribution cannot adjust the time window 

width once a window has been selected for analysis. This means that the wavelet 

transform is more flexible for processing signals in the time-frequency domain. 

There are two main categories of wavelet transform, namely the discrete wavelet 

transform and the continuous wavelet transform [21]. The discrete wavelet transform is 

suitable for data compression and signal reconstruction while the continuous wavelet 

transform is a better method for signal detection and feature extraction [124]. For the 

discrete wavelet transform, the relevant parameters must be discrete, and dyadic 

discretization is the most popular method using fast algorithms [125]. Although 

discrete wavelet transform saves computing time, it has some limitations making it 

unsuitable for feature extraction. Firstly, the orthogonal of the wavelet is required - it is 

therefore difficult to find a proper wavelet for feature extraction according to this 

restriction. Secondly, the sampling grids in the time-scale plane are rather sparse, 

meaning that the feature components cannot be separated from the irrelevant 

components. Finally, the time shift invariant is very important for feature detection and 

the discrete wavelet transform is not shift invariant [126]. This means that the discrete 

wavelet transform is not suitable for feature extraction, thus the continuous wavelet 

transform is employed in this study for feature extraction from engine acoustic signals. 
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8.2.1 Definition of continuous wavelet transform 

The continuous wavelet transform of a signal       is defined as the inner product 

between signal      and the wavelet family as expressed in equation (8-1)[127][128]. 

                                        
        (8-1) 

where          denotes the wavelet transform coefficient,     
     represents the 

complex conjugate of the wavelet function,   is known as a dilation parameter and b 

gives the location of the wavelet and is known as a translation parameter. 

The family functions are defined as [129]: 

                 
   

 
     (8-2) 

where            denotes a mother wavelet function and its Fourier transform      

which should be subjected to the admissibility condition in equation (8-3), 

    
       

 

   
    

 

  
    (8-3) 

Where   is the angular frequency and       is the space of the square integral 

complex functions. The corresponding family of a wavelet consists of daughter 

wavelets as shown in Equation (8-2). They are derived from the wavelet function by 

dilation and translation through adjustment of the parameters   and  . 

For a discrete sequence   , let       and      , where                 

 ,   is the sampling point number and    is the sampling interval. The continuous 

wavelet transform of    can be defined as: 

              
       

  
    

      (8-4) 

The amplitude of the feature corresponding to the scale and how this amplitude varies 

with time can be presented through variation of the index   and   corresponding to the 

scale factor   and time location   , respectively. 
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Wavelet coefficients obtained from the wavelet transform can be used to measure the 

similarity between the interesting signal and daughter wavelets. It is noted that the 

more similar the daughter wavelet is to the feature component the more interesting the 

signal; the corresponding wavelet coefficients are consistent [130]. The wavelet has 

oscillating wave-like characteristics and allows simultaneous analysis in the time and 

frequency domains with the flexible wavelet functions. In the continuous wavelet 

transform, the wavelet has finite energy concentrated around a limited time interval 

[131]. In addition, it can also represent a sharp feature in the signal and hence the 

original signal can be completely reconstructed or recomposed. 

8.2.2 Properties of continuous wavelet transform 

The scale factor   and time location     determine the time-frequency localisation 

characteristics of the continuous wavelet transform [129]. The window width of the 

wavelet depends on the variation of the scale parameter  , and the changes of the 

translation parameter   represents the position of the wavelet in both the time domain 

and frequency domain. In fact, the window widths in the time domain and the 

frequency domain rely on equations (8-5) and (8-6) [129]. 

                        (8-5) 

 
  

 
 

   

 
 
  

 
 

   

 
      (8-6) 

where    and    are the centres of the windows in the time domain and the frequency 

domain respectively.    and     are the window radius. Hence, the area of the window 

in the time-frequency plane is given by: 

              (8-7) 

A larger dilation scale   produces a wider time window but a narrower frequency 

window. This type of wavelet is suitable for analysing the signal in lower frequency 

bands in which the signal changes slowly, so that complete cyclic information can be 

obtained. 
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Conversely, a smaller dilation scale   will generate a narrower time window but a 

wider frequency window. It is used to capture the fast changing transient events in 

higher frequency bands. Therefore, the width of the window can be adjusted by the 

scale parameter   according to the frequency band being analysed. 

The minimum window width for any wavelet should be no smaller than 2 according to 

the uncertainty principle [129]. This principle demonstrates that it is impossible to 

obtain the highest resolutions in both the time domain and the frequency domain. A 

higher resolution in the time domain leads to lower resolution in the frequency domain, 

and vice versa. 

8.2.3 Morlet wavelet 

The performance of the continuous wavelet transform analysis relies mainly on the 

selection of the types of wavelet functions. There are a number of wavelet functions 

which can be chosen for different applications, including Gabor, Haar, Daubechies, 

Mexican hat, Mallat and Morlet, etc. Different wavelet functions result in different 

analysis results. The choice of an appropriate wavelet function depends on the signal 

itself and the purpose of the analysis. In the application of condition monitoring and 

fault diagnostics, transient signals or impulses are always the symptoms of faults in a 

number of dynamical signals, and the Morlet wavelet is very similar to such impulse or 

transient component. Based on the general conclusion [21], more compactly supported 

and less smooth wavelet functions are better suited to analysing non-stationary and 

irregular signals, such as transient signals. On the contrary, less compactly supported 

and smoother wavelet functions are better suited to processing stationary and regular 

signals, such as periodic signals. The Morlet wavelet function is suitable for analysing 

engine acoustic and vibration signals and should give superior results in its application. 

This is because the vibration and acoustic signals of the machine include periodic 

impulses components when a fault occurs, which have a shape similar to a Morlet 

wavelet as shown in Figure 8-1. 
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Figure 8-1 The Morlet wavelet 

 

A Morlet wavelet function is defined in the time domain as [125]: 

                     (8-8) 

And its function in the frequency domain is given by: 

                       (8-9) 

where    is the centre frequency which determines the location of the Morlet wavelet. 

In order to maintain the admissibility condition, a correction term should be added to 

the Morlet wavelet function equations. The correction term expressed in the frequency 

domain is: 

               
        (8-10) 

The correction term is often neglected if the centre frequency is chosen as     , 

because the maximum value of the correction is very small in this range. In practice, 

the analysis results are not affected significantly and the computation time is reduced 
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after neglecting the correction term. For application, less computation time means 

easier to use in real-time. 

8.3 Time synchronous average 

time synchronous average is an effective technique in the time domain to remove the 

noise in a repetitive signal and is widely used in rotating machine monitoring and fault 

diagnosis [132]. The signal-to-noise ratio (SNR) of a repetitive signal can be improved 

significantly by suppressing the components which are asynchronous with the 

parameters of interest. time synchronous average is based on the knowledge of the 

revolution specifications of the rotating part. Traditionally, this requirement is met by 

using an external trigger signal provided by a shaft encoder, and the revolution period 

of rotating machinery can then be obtained. The measured signal is then divided into 

small segments according to the revolution period of the rotating part, and all the 

segments are summed together so that no coherent components and asynchronous 

components are cancelled out. Normally, vibration and acoustic signals from rotating 

machinery are a combination of periodic signals with random noise. Assuming a signal 

     consists of a periodic signal       and a noisy component     , the period of 

      is    whose corresponding frequency is   , thus the signal can be expressed as 

[133]: 

                      (8-11) 

The synchronous average of the signal      by using time synchronous average can be 

expressed as 

      
 

 
         

   
       (8-12) 

where   is the number of the average segments,      is the averaged signal. 

In practice, the vibration and acoustic signals collected are commonly contaminated by 

different noises such as those from the dynamotor and ventilation fan. This noise is 

unavoidable and is usually introduced into signals by various disturbances such as the 
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disturbance from the external environment and from the testing instrument itself. 

Generally, the fault and condition information included in the measured signals of the 

monitored machine are weak and polluted by various noises. Therefore, the de-noising 

and the extraction of the weak signals are critical for fault diagnostics, especially for 

the early fault detection where features are often very weak and masked by the noise. 

In the present study, time synchronous average was used to pre-process the engine 

acoustic signals for further analysis. A Hengler RS58 speed sensor was used to collect 

the engine speed and provided revolution information for the test engine for time 

synchronous average processing. The time interval of the pulses in the speed signal 

was not constant due to oscillation of the shaft speed. Based on this consideration, 

assuming the shaft speed is undergoing constant angular acceleration [134]. The 

angular acceleration was calculated using the arrival times of the three adjacent pulses 

obtained from the sampling of the speed signal. The correct placement of the resample 

on the time axis was then carried out based on constant angular acceleration. In this 

study, the time axis resampling was processed in sections with each section length 

having 1000 points - 5 lengths were selected. Once the resample times are calculated, 

the vibration signal was resampled according to the resampled time axis for 

synchronous average. 

Figure 8-2 shows the averaged acoustic signals using time synchronous average 

processing for one complete combustion cycle. The engine was operating under 

different loads and fuel types at speed of 1300rpm. It can be seen that the amplitude of 

the acoustic signals increases with increased load for all fuel types, and the periodic 

characteristic of the acoustic signals is better understood. 
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Figure 8-2 TSA acoustic signals under different operating conditions and fuel 

types 

 

Root mean square (RMS) values were calculated from the time synchronous average 

acoustic signals as a feature parameter for comparative analysis. As presented in 

Figure 8-3, RMS values of time synchronous average acoustic signals have shown 

similar trends for the three fuel causes over different loads. The RMS values increase 

with the increase of the engine loads and speeds. However, RMS values cannot 

separate the three fuel cases over different loads, especially under low loads such as 

105N m and 210N m. 
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Figure 8-3 RMS values of TSA acoustic signals under different fuel types 

 

8.4 Feature extraction and RMS linear classification 

To obtain more details of the combustion events for different fuel cases, the continuous 

wavelet transform with Morlet wavelet function is used to analyse the time 

synchronous average acoustic signals collected under different types of diesel, B50 and 

B100 in the higher frequency band (from 10 kHz to 40 kHz). The scale ranges from 

0.5 to 2 are selected for continuous wavelet transform analysis application in this study 

to investigate the time-frequency properties of the engine acoustic signals. 

Figure 8-4 shows the contour plots of the continuous wavelet transform coefficients for 

the time synchronous average acoustic signals at 900rpm with varying loads and 
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different fuel types. It can be seen the contour shapes of the continuous wavelet 

transform in the high frequency band give a superior representation of the start, 

strength and duration of each combustion event. There are four events in every two 

revolutions for diesel engine with four cylinders. It can be indicated in Figure 8-4 in 

every 720 crank degrees. The strength of the combustion events can give sufficient 

information for different fuel types. 

 
 

Figure 8-4 Contour plots of the results for different fuel types at the speed of 

900rpm 

 

Figure 8-5 shows the continuous wavelet transform coefficients are analogous to those 

shown in Figure 8-4. Comparison of the continuous wavelet transform coefficients at a 

lower speed (900rpm) and then also at a higher speed (1300rpm), shows that the 

strength of the combustion events is higher at a higher speed. It is worth noting that the 
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continuous wavelet transform coefficient results of Figures 8-4 and 8-5 also show 

uniformity in the combustion between cylinders as it can identify the combustion 

events properly. 

 
 

Figure 8-5 Contour plots of the results for different fuel types at the speed of 

1300rpm 

 

A common feature parameter, RMS values of the wavelet transform coefficient, is 

extracted from the continuous wavelet transform coefficient results for fuel types. This 

detection approach involves minimal computational effort, making it suitable for use 

as an on-line condition monitoring technique which is a more practical application. As 

a measure of overall sound level intensity, the average RMS value of the multi-cycle 

acoustic signal is calculated over the four load settings and the three fuel types. Figure 

8-6 presents a comparison of the RMS value of the continuous wavelet transform 
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results under varying loads and different fuel types at speeds of 900rpm and 1300rpm 

respectively. 

 
 

Figure 8-6 Comparison of the RMS values between different loads and fuel types 

 

It can be seen from Figure 8-6 that the RMS values increase alongside engine load and 

speed. The RMS values of the continuous wavelet transform coefficient results for 

biodiesel and its blends (B50 and B100) are slightly higher than those for pure diesel. 

Focusing on the fuel cases of B50 and B100, shows that the RMS values for B50 are 

slightly higher than those of B100 in all test conditions. These behaviours correspond 

to the variation of the in-cylinder pressure, which indicates that the peak cylinder 

pressure for B50 is the highest and the peak cylinder pressure for diesel is the lowest 

over almost all the test conditions. It can, therefore, be concluded that a higher in-

cylinder pressure with faster change produces higher engine vibration and noise. 

100 150 200 250 300 350 400 450
2

4

6

8

10
x 10

-3

Load(Nm)

R
M

S
 V

a
lu

e

Wavelet coefficient RMS comparison at speed of 900rpm

 

 
wavelet: Diesel

wavelet: B50

wavelet: B100

100 150 200 250 300 350 400 450
0

0.005

0.01

0.015
Wavelet coefficient RMS comparison at speed of 1300rpm

Load(Nm)

R
M

S
 V

a
lu

e



 

 
A STUDY OF NON-STATIONARY SIGNAL PROCESSING FOR 

MACHINERY CONDITION MONITORING 

 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD)  175 

Based on the time synchronous average pre-processing and the continuous wavelet 

transform analysis of the experimental noise of the engine, the main results can be 

summarized as follows: 

• The peak cylinder pressure is higher when the engine is run with rapeseed oil 

biodiesel in comparison with regular diesel over almost all tests.  

• The peak cylinder pressures for both diesel and biodiesel and its blends 

increased alongside the engine load and speed. This was because a longer ignition 

delay results in more fuel being available for ignition and more energy being released 

during the premixed combustion stage. 

• The sound in the higher frequency band is less influenced by the measurement 

environment than the sound in the lower frequency equivalent in some ways. 

• The continuous wavelet transform coefficient analysis in the higher frequency 

range is able to represent the combustion details for fuel monitoring. 

• The RMS values of the continuous wavelet transform coefficients of the engine 

acoustic signal correspond to the variation of the in-cylinder pressure, while the 

changes of the in-cylinder pressure depend on the properties of the fuels. 

• The effect of fuel types on combustion can be extracted from the continuous 

wavelet transform contour plots and the RMS values of the continuous wavelet 

transform coefficients. 

 



 

 
A STUDY OF NON-STATIONARY SIGNAL PROCESSING FOR 

MACHINERY CONDITION MONITORING 

 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD)  176 

CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

 

 

 

 

This chapter summarizes the achievements of this research and draws conclusions 

based on the results obtained from the entire research project. It then contains a 

summary of the novel contributions of the research conducted by the author. Finally, 

suggestions are given for future work which could advance the investigations 

presented in this thesis. 
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9.1 Review of thesis objectives and achievements 

This section outlines the objectives and the achievements which have been made 

throughout this study and research contributions which have been made as part of this 

work. This research has focused on the study of non-stationary signal processing for 

machinery condition monitoring. It started with an initial overview of maintenance 

strategies, and particularly focusing on condition based maintenance strategies. The 

key to condition based maintenance is the knowledge of the machine condition which 

can be obtained through various condition monitoring techniques. Widely used 

condition monitoring techniques are outlined in Section 1.3 of this thesis. 

Condition monitoring is defined as the continuous and periodic measurement and 

interpretation of data to indicate the condition of a system or plan which is used to 

guide maintenance. It is concerned with gathering data to enable better understanding 

of the health, or condition of an item of machinery. Condition monitoring is used to 

assess the current condition of a machine through analysis of measured signals. 

Various signal processing techniques are employed to predict potential failure in a 

timely manner and facilitate economic maintenance. Hence, the selection of measured 

signals and associated processing techniques is important for accurate assessment of 

the current condition of a machine. 

Non-stationary signals have been widely used for condition monitoring and damage 

assessment in mechanical applications. In particular, the primary fault information is 

contained in the non-stationary components of the measured signals when machinery 

faults occur. The key challenge and focus of this work has been how to extract useful 

information from the non-stationary signals measured from the monitored machine for 

useful condition monitoring and fault diagnostic purposes. 

According to the aims of this research work (see Section 1.4), various signal 

processing techniques, such as dynamic time warping (DTW) (see Section 3.2 and 4.4), 

Wigner-Ville distribution (WVD) (see Section 7.3), wavelet transform (WT) (see 

Section 8.2), and fractional Fourier transform (FRFT) (see Section 7.4) have been 
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employed and developed in order to process the non-stationary signals measured from 

the monitored objects based on a diesel engine (see Section 5.2) and a two-stage 

reciprocating compressor test rig (see Section 4.2). The typical non-stationary signals, 

such as electrical current (see Section 4.3), engine vibration and acoustic (see Section 

5.3), have been analysed for fault diagnosis and condition monitoring of the test 

compressor and diesel engine. The main objectives of this research work are stated as 

follows: 

1. Survey of signal processing methods and monitoring techniques. 

The review of maintenance strategies (see Section 1.1), condition monitoring 

techniques (see Section 1.2) and main signal processing techniques (see Chapter 2) 

used in machinery condition monitoring were presented. Development of acoustic-

based condition monitoring was reviewed and introduced in Section 1.3. Finally, non-

stationary signal processing methods and their development in machinery condition 

monitoring were reviewed in Section 2.5. 

2. Test rig design and set-up 

In order to analyse the electrical current signal for condition monitoring and fault 

diagnosis of a two-stage reciprocating compressor, a measurement instrumentation 

system based on a compressor was set up. Both the hardware and experimental 

procedures used are provided in Section 4.2. In addition, an acoustic based 

instrumentation system was set up and integrated with the existing engine test facilities 

in the laboratory. The details of the test rig, acoustic instrumentation and data 

acquisition system are given in Section 5.2. The two test rigs and associated 

measurement instrumentation systems were then used to collect all the corresponding 

data sets used for later analysis in this research work. 

3. Electrical current signal processing 

Electrical current is a typical weak non-stationary signal for the condition monitoring 

of downstream equipment of an induction machine. It contains the nonlinear effects 

due to the faults in the rotor machine (see Section 4.3). A variety of fault information 

can be extracted through analysis of the sideband components of the current signal. In 
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this research, dynamic time warping (DTW) was employed to pre-process the 

electrical current signal for the fault diagnosis of the two-stage compressor (see 

Section 4.5). The theory of dynamic time warping was introduced in Chapter 3 and 

through use of the phase properties of the measured electrical current signal, the 

improvement of the classical dynamic time warping for the compressor fault diagnosis 

was developed in Sections 4.4. This method was then used to identify and detect faults 

and classification based on the modified dynamic time warping method and its 

comparison with the detection results based on the Fourier transform based methods 

was outlined in Section 4.5. 

4. Vibro-acoustic signal processing 

In the subsequent chapters (5, 6, 7 and 8), a variety of non-stationary signal processing 

methods were explored to analyse the measured vibration and acoustic signals for 

assessment of the test diesel engine condition. Initially, the characteristics of engine 

noise and vibration were investigated based on the time domain and frequency domain 

analysis (see Section 5.3). The effects of laboratory acoustics on the measured engine 

acoustic signals were also studied to determine the overall characteristics of the engine 

noise (see Section 5.4). The process of combustion in the test engine and combustion 

induced acoustics and vibration was then investigated through analysis of the engine 

vibration and acoustic signals (see Section 6.2 and 6.3). A series of non-stationary 

signal processing methods, such as Wigner-Ville distribution (see Section 7.3), 

fractional Fourier transforms (see Section 7.4), and continuous wavelet transform (see 

Section 8.2) were used to analyse the data. Initial results have been outlined at the end 

section of each chapter. 

The achievements described above demonstrate that the outlined objectives of this 

research work have been fulfilled successfully. 

9.2 Conclusions 

This research has investigated, developed and validated the signal processing methods 

used for analysing the non-stationary signals for machinery condition monitoring and 
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fault diagnosis. Specially, the research has focused on the condition monitoring and 

fault diagnosis of a two-stage reciprocating compressor and a diesel engine. The 

research work was carried out through analysis of typical non-stationary signals 

measured from these two test rigs and a variety of signal processing methods were 

employed. Conclusions arising from the work carried out are summarised in the 

following sections. 

9.2.1 Conclusions regarding the fault diagnostics of the compressor 

using the motor electrical current signal 

Conclusion 1: The electromagnetic force and corresponding nonlinear current signal 

in the stator are produced as a result of the fault in the rotor system and its downstream 

equipment. Analysis of the electromagnetic relationship to the electrical current signal 

in Section 4.3 showed that the motor current signal could be employed widely for 

condition monitoring of the induction machine and its downstream equipment. Fault 

information of various types can be obtained through analysis of the sideband 

components of the current signal. 

Conclusion 2: Analysis of the characteristics of the electrical current signal, as given 

in Section 4.3, is a reliable and effective method for fault diagnosis of the compressor. 

Combination of this with the analysis of phase properties of dynamic time warping 

method (see Section 3.5), demonstrates that phase compensation based dynamic time 

warping (see Section 4.4) is an effective method for processing the electrical current 

signal for accurate feature extraction and compressor fault diagnosis. 

Conclusion 3: The analysis of electrical current signals based on the proposed 

dynamic time warping method has significant potential for the detection and 

identification of the presence of incipient faults in the two-stage compressor (see 

Section 4.5). The analysis results indicate that the dynamic time warping method can 

be employed to extract accurate features of the current signals. The RMS values of the 

residual signals can also be used to differentiate between faulty and healthy signals and 

to identify the difference between other fault types under various loads and discharge 

pressures. 
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Conclusion 4: Compressor fault detection and classification based on the modified 

dynamic time warping methods were discussed in Section 4.5 and overcame the 

limitation of the Fourier transform based analysis method. From this work, it can be 

concluded that the accuracy and reliability of detection and classification using 

dynamic time warping based analysis is higher than that from Fourier transform based 

spectrum and envelope analysis (see Section 4.5.3). In addition, the dynamic time 

warping processing procedure based entirely on the time domain analysis is easier to 

apply in real-time monitoring processes. 

9.2.2 Conclusions regarding the condition monitoring of diesel 

engines 

Conclusion 5: In this research work, vibro-acoustic signals were adopted as the main 

indicator of engine condition. Experimental analysis of results confirmed that the 

vibro-acoustic based analysis was effective and useful for the condition monitoring of 

engines. The vibro-acoustic based analysis has potential advantages for 

implementation in online condition monitoring systems. 

Conclusion 6: Analysis of engine noise and vibration characteristics in the time 

domain and spectrum analysis (see Section 5.3) shows that the variation of the engine 

vibration and noise depends on the engine operating speed and load, and also on the 

variation of the combustion cylinder pressure. Therefore, it can be concluded that 

engine vibration and noise variation has the potential for use as an indicator of 

combustion process instead of using in-cylinder pressure. 

Conclusion 7: The analysis of fuel monitoring based on engine noise in Section 5.5 

demonstrated that the effects of room acoustics on engine acoustic signals (see Section 

5.4) influences the analysis of acoustic signals in the low frequency domain below 1 

kHz. A number of resonant frequencies and harmonics are introduced which cause 

difficulties in feature extraction from the measured engine acoustic signals. Therefore, 

room acoustic effects need to be suppressed and signal to noise ratios enhanced in 

order to obtain accurate detection results for monitoring the operating conditions of the 
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engine. Analysis results shows that engine operating conditions can be monitored 

through analysing the engine acoustic signals in the higher frequency band. 

Conclusion 8: Engine vibration and acoustic signals are typical non-stationary signals 

which contain a large number of short time transient events (see Section 5.3). Based on 

the signal processing analysis of the non-stationary components of the engine vibration 

and acoustic signals (see Section 7.5 and 8.4) it has been shown that useful features 

can be extracted from the engine vibration and acoustic signals for engine condition 

monitoring and fuel evaluation. 

Conclusion 9: The analysis of engine vibro-acoustic signals using coherent power 

spectrum analysis, Wigner-Ville distribution (WVD) (see Section 7.3) and fractional 

Fourier transform (FRFT) (see Section 7.4) methods in chapter 7 demonstrated that 

combustion induced noise is located in the frequency range from 2 kHz to 3 kHz (see 

Section 7.4.3), and can be used to identify fuel quality and for fuel evaluation of the 

diesel engine (see Section 7.5). 

Conclusion 10: Analysis of engine acoustic signals using time synchronous average 

(TSA) (see Section 8.3) and continuous wavelet transform (see Section 8.2) techniques 

in chapter 8 has shown that peak cylinder pressure is higher when the engine is 

operated using rapeseed oil biodiesel rather than diesel. The RMS values of the 

continuous wavelet transform coefficients of the engine acoustic signal corresponded 

to the variation of the in-cylinder pressure and indicated the variation of engine 

operating conditions (see Section 8.4). Therefore, it is possible, using the continuous 

wavelet transform coefficients analysis technique in the higher frequency range, to 

evaluate fuel combustion characteristics and engine condition monitoring. 

9.3 Research contributions to new knowledge 

This thesis has many new elements which have not been considered in previous 

research and has made significant contribution to the knowledge in the area of non-

stationary signal processing for machinery condition monitoring and fault diagnosis. A 

summary of these contributions is given below: 



 

 
A STUDY OF NON-STATIONARY SIGNAL PROCESSING FOR 

MACHINERY CONDITION MONITORING 

 

 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD)  183 

Contribution 1: The application of the dynamic time warping method used for 

detection and diagnosis of the compressor faults is novel (see Section 4.5). No work 

has been found in the literature that describes the use of dynamic time warping for 

machinery fault diagnosis and condition monitoring. 

Contribution 2: The algorithm improvement using phase compensation for dynamic 

time warping is novel (see Section 4.4). Phase estimation and compensation has not 

been used previously for the improvement of the singularity effects of dynamic time 

warping. In this research work, a phase compensation method has been developed to 

improve the classical dynamic time warping algorithm and applied to process electrical 

current signals for fault diagnosis of a two-stage compressor. 

Contribution 3: The application of diesel engine vibration and acoustic signals for 

analysis of the characteristics of the engine combustion process has been investigated. 

Determination of the relationship between the variations of engine acoustic, vibration 

and in cylinder pressure for the combustion diagnosis is a novel approach (see Section 

6.3). 

Contribution 4: The combustion and vibro-acoustic characteristics of a CI engine 

fuelled with biodiesel blends have been investigated (see Section 5.5, 7.5 and 8.4). 

This is a new method of monitoring fuel quality through non-contact measurement and 

analysis of the engine acoustic signals. 

Contribution 5: Coherent power spectrum analysis was used to identify the 

relationship between the engine acoustic and cylinder head vibration (see Section 

7.2.2). Two time-frequency analysis techniques, Wigner-Ville distribution (WVD) (see 

Section 7.3) and fraction Fourier transform (FRFT) (see Section 7.4), were then 

applied for analysis of the energy distribution of the engine acoustic and extraction of 

the combustion induced noise (see Section 7.5). This was a novel approach for 

combustion diagnosis and fuel evaluation. 

Contribution 6: The application of time synchronous average (TSA) (see Section 8.3) 

and continuous wavelet transform methods (see Section 8.2) for extraction of 
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condition-indicating information from the measured engine acoustic signals has been 

demonstrated. An RMS linear classifier (see Section 8.4) has been designed for the 

classification of engine operating conditions and fuel types for combustion process 

monitoring and fuel evaluation. 

9.4 Suggestions for further research 

A great deal of preliminary research work has been undertaken as part of this study to 

investigate signal processing techniques for analysis of non-stationary signals in 

condition monitoring of machinery. If a wider and more extensive study was to be 

undertaken, some key recommendations should be considered for future work in this 

research area. 

Recommendation 1: Several novel methods have been employed and developed 

within the current study for the processing of non-stationary signals for machinery 

condition monitoring. Other new methods may be developed for accurate feature 

extraction from the non-stationary signals for machinery condition monitoring and 

fault diagnosis and these should be considered. 

Recommendation 2: With regards to online condition monitoring implementation, 

powerful and effective signal processing techniques must be developed for feature 

extraction. Methods should be efficient and easy to implement using the measured 

signals. Reliability, cost-effectiveness and accuracy of the monitoring system also need 

to be developed for online applications. 

Recommendation 3:  Condition monitoring of diesel engines using non-contact 

measurement, requires further investigation, particularly of the relationship between 

the combustion process and the engine vibro-acoustic signals. Research should be 

based on both experimental and theoretical studies. 

Recommendation 4: Acoustic measurements are heavily affected by background noise 

and the accuracy of the analysis results is limited due to low signal-to-noise ratios 

(SNR) of the measured signals. Therefore, more effective pre-processing methods need 
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to be developed to enhance the signal-to-noise ratio of the measured acoustic signals 

for more accurate analysis of the results obtained. 

Recommendation 5: Combination of the method developed in this research work with 

other condition monitoring methods in order to improve the detection performance and 

to research new information about the combustion process used for engine condition 

monitoring. 

Recommendation 6: Further experimental work needs to investigate the use of multi-

microphones, such as microphone array, for the collection of engine acoustic signals. It 

contains sufficient information for feature extraction with high accuracy and time 

efficiency for the implement of online condition monitoring system. 
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APPENDIX A 

The Sound Pressure Level 

The sound pressure level (SPL) is defined as: 

         
    

    
     (A-1) 

where      is the RMS value of sound pressure and      is the reference pressure with 

               . The unit of the sound pressure level is in decibels (dB) as 

standard. The selection of this reference value corresponds to the minimum threshold 

of human hearing for the sound pressure at 1 kHz pure tone. The safety threshold of 

sound pressure level for safe hearing is 120 dB [7]. 

The sound intensity level (SIL) is defined as the logarithmic scale of the sound 

intensity, 

         
 

    
     (A-2) 

where   is the sound intensity in     , and      is the reference intensity with 

                  . 

The sound intensity is calculated as the average rate of flow of sound energy through a 

unit area. Expressing the definition in mathematical format gives [17]: 

  
 

 
     

 

 
      (A-3) 

where   and   are the wave pressure and velocity, respectively. 

The relationship between the sound intensity and pressure can be expressed as: 

  
    

    

 
 

    
    

  
     (A-4) 
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where         is the RMS pressure value at the distance   from the source.   is the 

impedance with     , where   is the air density, and   is the speed of the sound in 

the air with           normally. 

Similarly the sound power level is defined as: 

         
 

    
     (A-5) 

where      is the reference sound power with                . 

The total power radiating from a source in a spherical wave at the radius   can be 

calculated by [7], 

     
 

     
    

    

 
       (A-6) 

where    is the intensity vector and   is the area enclosing the source at  . 

The relationship between the above three levels can be expressed using equations (A-4) 

and (A-6), thus: 

                 (A-7) 

and 

             
 

    
      

where             . 
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APPENDIX B 

Compressor Experimental Set Up 

B.1 Test rig facilities 

A two-stage, single-acting Broom Wade TS9 reciprocating compressor was available 

for the test in the school of computing and engineering at the University of 

Huddersfield. Figure B-1 shows the test compressor, which has two cylinders in the 

form of a “V”, and which delivers compressed air at up to 8.3 bar (0.8 M Pa) to a 

horizontal air receiver tank with a maximum working pressure of about 13.8 bar (1.38 

M Pa) [135]. 

 
 

Figure B-1 Broom Wade TS9 reciprocating compressor [136] 
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The compressor motor is a foot mounted, squirrel cage, air cooled, type KX-C184. Its 

specification is given in Table B-1 in detailed [136]. 

Table B-1 Compressor and induction motor specification 

 

Broom Wade TS9 Compressor and Motor 

Max working pressure 13.8 bar (1.38 MPa) 

Number of cylinders 2 (90° opposed) 

Piston stroke 76 mm 

Speed  420 rpm 

Motor power 2.2 kW 

Voltage  380/420V 

Motor speed 1420 rpm 

Current  4.1/4.8 Amp 

 

B.2 Measurement transducers 

As the test rig would be used for several condition monitoring research projects, 

various different transducers were fitted on the compressor, including accelerometers, 

pressure sensors, thermocouples and an angular speed encoder. Each of these 

transducers produces a voltage output proportional to the amplitude of the measured 

parameters and each is connected to a data acquisition system for data recording. For 

more details of the transducers, refer to [136] in chapter 4. 

B.3 Fault simulation [136] 

Three common faults, valve leakage, intercooler leakage and belt looseness, were 

seeded into the test compressor separately. The compressor performance is monitored 

with only one fault present at a time. A base-line signature is obtained of the healthy 

compressor operating normally for reference. This was achieved by first having the 

compressor thoroughly inspected by qualified technician staff and then recording a 

healthy base-line signature [136]. The compressor was then seeded with each of the 

three faults in turn. The signal from each transducer with each fault was then compared 
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to that under base-line. The differences in the signal between the faulty and base-line 

conditions enabled three fault signatures to be developed for each fault. 

B.3.1 Valve leakage simulation 

In this study, valve leakage was seeded by drilling a small hole in the valve plate of the 

second stage discharge valve as shown in Figure B-2. The hole was 2mm diameter, 

which was 2% of the area of the flow cross-section [136]. 

 
 

Figure B-2 Leakage in second stage valve plate 

 

B.3.2 Intercooler leakage 

The loose intercooler joint is seeded into a compression joint close to the second 

cylinder as shown in Figure B-3. The pipeline screw nut, shown on the photo, was 

loosened to create the leakage. A small leakage was achieved by turning the nut 

through one turn. Whilst this represented a realistic leakage, it was not possible to 

quantify the leakage as a proportion of the area of the flow cross-section. 
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Figure B-3 Intercooler leakage 

 

B.3.3 Belt looseness 

To simulate a belt looseness arising from belt wear due to friction the separation of the 

centres of the two pulleys was reduced from 169 mm to 167 mm, equivalent to a 0.5 % 

increase in belt length. 

B.4 Compressor performance analysis under different fault cases 

During the test, the performance of the compressor was monitored with only one fault 

present in each experiment. Before the next experiment was carried out, the 

temperature and tank pressure were checked and the receiver was also drained to make 

sure each experiment was carried out based on the same operating conditions. The tank 

charge duration in time and the discharge pressure were measured in every experiment. 

The discharge pressure was increased from about 1 bar to 8.3 bar in the experiment. 

Figure B-4 shows the tank charge duration against discharge pressure under different 

fault cases. It can be seen that the curves have the same general shape for both the 

healthy and faulty conditions, but there is a significant difference of time interval 
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between faulty and healthy conditions. In healthy condition, the discharge pressure can 

reach the target pressure quickly with shorter tank charge duration, while in the faulty 

condition it needs more time to reach the same target pressure with healthy condition. 

It demonstrates that the performance of the compressor is affected by the impact of 

faults and declined. 

Based on the compressor performance analysis in Figure B-4, it can be seen that even 

the differences of the time interval between faulty and health condition are small, there 

is a substantial difference in tank charge duration due to different faults. This suggests 

that the faults on the compressor can be properly diagnosed even the simulated faults 

are small from a mechanical point of view. 

 
 

Figure B-4 Tank charge duration versus discharge pressure under different faults 
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