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ABSTRACT

This thesis presents a systematic study of using TESPAR (Time Encoded Signal Processing

and Recognition), which presently is in use as an effective tool for speech recognition and

shows great advantages in computational demands and accuracy, to develop a new technique

for rolling element bearing fault detection and diagnosis.

The fundamentals of rolling element bearings are presented in line with different failure

modes and relevant monitoring methods in the time domain, the frequency domain, the

envelope spectrum and the wavelet analysis. These reviews show that vibration

measurements  are  a  proven  and  widely  accepted  data  source  for  bearing  monitoring  of

machinery.

This research thus has focused on developing TESPAR based approaches using vibration

signals which are generated from bearings under different severities of faults located at the

outer race, the inner race and the roller element. It firstly examines the theoretical basis of

TESPAR  and  examines  the  diagnosis  performance  with  a  number  of  different  simulated

signals, which confirms that TESPAR based methods are able to resolve different signals by

using their statistics including S-matrix, A-matrix and epoch duration, which paves a frame

work to process and interpolate the bearing signal.

With understandings of the insights of bearing vibrations and TESPAR approaches a signal

processing framework is then suggested to analyse bearing vibration signals. It consists of a

pre-processing step which removes possible noise in the signal, a TESPAR coding step which

converts the signal into TESPAR representations-TESPAR streams, a feature calculation
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step, which produces different TESPAR statistic parameters, and finally a diagnosis step

which applies common statistics to TESPAR statistic parameters to obtain required results.

The TESPAR solution proposed in this thesis shows that discrimination between different

bearing signal waveforms has been implemented successfully. TESPAR S- and A-Matrices

were constructed for the cases tested and used together with statistical correlation to

differentiate between the types of faults. However, the severities of bearing faults have been

identified using another TESPAR feature called the mean absolute magnitude value

calculated using epoch durations.

The performance of the TESPAR approach was then evaluated against the envelope

spectrum; this being the most common method for bearing condition monitoring that is

conducted in two terms; the process complexity and diagnosis performance.

A  major  contribution  of  this  research  programme  is  the  development  of  a  method  that  can

provide improved detection and diagnosis of bearing fault types and severity of faults seeded

into roller bearings.
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CHAPTER ONE

1 Introduction to Condition Monitoring

This chapter reviews the importance of condition monitoring and fault diagnosis for the

smooth running of industrial processes. It emphasises vibration measurement as this is both

the most commonly used monitoring method in industry and the technique selected for the

rolling element bearings used in this project. The sections of the chapter sequentially present

the motivation for this research project, outline the aims and objectives and present the

structure of this thesis.
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1.1 Background

Condition Monitoring (CM) became widespread in the 1960’s and since then the technology

has developed rapidly [1]. When operating as intended all electrical and mechanical systems

generate a characteristic signal. If operating conditions change so does the signal, even if only

slightly, indeed the small differences from the normal or healthy signal can be indicative of

incipient fault development. Machine CM is the procedure of monitoring a parameter (e.g.

temperature or vibration behaviour) of condition in machinery, such that a considerable

alteration in a machine’s condition is indicative of a developing defect. The use of condition

monitoring term permits schedule of maintenance or corrective actions to be taken place to

evade catastrophic failure. However, a deviation from a normal value must happen to identify

hidden faults. Today many books and journal papers are available in the field of CM and

much industrial interest has been expressed both in research and provision of services [2-4].

However, these indicative changes in a machine’s condition may be so small that they are

hidden by the noise in the system. Current interest is to combine modern transducers and

signal processing techniques to differentiate between noise and significant trends and detect

the presence of a fault at the earliest stage and even predict likely time to failure [5]. In a CM

system, the measured signal changes with the parameter being monitored and, if chosen

correctly will be a measurement of the electrical and/or mechanical condition of the machine.

Such signals will include vibration level, acoustic emission and temperature. In addition other

more traditional measurements such as the condition of the lubricant will enhance the

possibility of accurately determining whether a machine may be considered “healthy” or has

a fault which needs to be addressed and whether immediate maintenance action needs to be

scheduled. Determining maintenance action in this way has enormous benefits; it cuts

maintenance costs, extends the life of the machine, and avoids catastrophic failure [6–9].
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CM is both an administrative and technical activity with the goal of maintaining or restoring

a machine or process to a condition to carry out its intended functions. The technique is based

on detecting the presence of a fault, diagnosing the cause of the fault, assessing its level of

severity and making arrangements for its correction. CM offers numerous advantages,

including [10]:

1- Reducing maintenance costs by minimising the number of machine overhauls by

eliminating unnecessary interventions.

2- Because CM provides advanced information on the nature of the fault to be repaired

advance preparations can be made and the duration of intervention time is minimised

thereby minimising production loss.

3- Because CM provides advanced information on the severity of the fault to be repaired

the likely duration of the intervention required can be determined early and disruption

to the production process is minimised.

4-  Avoiding/eliminating catastrophic failure.

The advantages gained by applying CM have led to a vast number of techniques now being

available [2-10].

The  condition  of  all  dynamic  systems  changes  with  time,  and  thus  its  signature  signal

(vibration level, etc.) also changes. These changes in the system signal provide information

on the presence, or otherwise, of the onset of a possible failure mode which until recently

were commonly masked by system background noise. Today there is a growing emphasis on

applying signal processing techniques in order to separate significant trends from random

variations because this provides an earlier diagnosis and hence a longer time-to-failure which

can be very important where the item of plant or machinery is of crucial importance for the

production process, or an important component in any safety procedure.  In other words, CM
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introduces a reliable method to warn of the potential failure of critical components so that

downtime can be based on a just-in-time principle rather than on a routine maintenance basis.

1.2 The Importance of Condition Maintenance and Fault Diagnosis

Competition in the global marketplace is forcing industrial companies to make greater efforts

to reduce costs and enhance product quality to maintain their competitiveness. Catastrophic

failures are dramatic and sometimes fatal and thus can be headline news but chronic failures

which are smaller and often less visible are much more prevalent and frequent than

catastrophic failure [11]. The consequence of chronic failures is frequent interruptions of

production schedules, reduction in product quality and increased production costs. Generally,

however, total downtime due to non-catastrophic failures is greater than that due to

catastrophic failures, extraordinarily expensive and greatly exceeds maintenance costs [12].

Every  year  billions  of  dollars  are  spent  on  plant  maintenance  operations  by  the  world’s

industries [13] and it has been reported that maintenance costs may account for as much as

one third the production costs of goods [14]. Substantial cost savings and increased

profitability can be achieved by greater equipment availability and reliability. This requires

the implementation of an effective CM and machinery maintenance programme [15]. If CM

can be combined with regular and planned maintenance to minimize downtime it will

increase productivity and should be cost-effective. Such a system would be expected to have

contemporaneously improvement.

Correct and rapid fault detection and diagnosis can significantly improve machine

availability. Thus many CM techniques have already been developed, in particular vibration

monitoring using time and frequency domains to improve performance of both machines and

systems [7, 8 and 16].
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The earlier the detection and diagnosis the more time maintenance personnel have to take the

necessary action to ensure production losses are avoided [10]. Because industrial processes

tend to rely on specific machines, these machines are crucial for the smooth functioning of

the system and their malfunction will result in costly production shut-downs. Preventive

maintenance is vital for these machines and a significant amount of research is now being

directed into that area [17, 18]. It follows that CM used with critical machines to provide an

early warning of potential failure minimizes expensive downtime, greatly improving

manufacturing efficiency, quality and safety [19].

Because mechanical failure can be catastrophic there is the risk of secondary damage to

nearby components. CM minimizes such incidents. Traditionally industrial plant maintenance

was reactive, unless the machine broke down it was not attended to - in common parlance: “if

it isn’t broke, don’t fix it!” With the advent of cheap and powerful computers and advances in

cost-effective sensor technology, by the 1990’s many industries had introduced a strategy of

preventive maintenance to identify problem machines and predict maintenance requirements.

A more recent approach to enhance maintenance technologies is called pro-active

maintenance [17] which uses a comprehensive maintenance programme which is a balance of

predictive and preventive maintenance.

1.3 Condition Monitoring Using Vibration Analysis

Considerable effort has been spent developing reliable methods for gear fault detection.

Techniques which have been proven successful include analysis of lubricating oil, the

acoustic signal generated by the gearbox when in operation, temperature and performance

monitoring, electrical motor current analysis, angular speed of crank and drive shafts and,

most popular today, vibration analysis.



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

24
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

Unfortunately, no one technique is able to detect all machine faults. However, it has been

suggested that vibration measurement, which is the most widely used CM technique in

industry, can accurately identify 90% of all machinery failures by the change in vibration

signals which they produce and the level of signal can give an accurate prediction of future

failure [7]. The task is to diagnose the fault at an early stage so corrective action can be taken

as early as possible to extend the life of the machine [20].

1.4 Condition Monitoring Application to Rolling Element Bearings

This research focuses on CM of rolling element bearings because they are the most widely

used component in rotating machinery and the consequences of bearing failure are the cause

of widespread and substantial economic loss and, sometimes, catastrophic failure, [21]. In

addition these bearings have presented a difficult task for maintenance programmes for a long

time [22].

Rolling element bearings are widely used in all sizes of pumps and motors, and surveys have

shown that failure in these elements accounts for just over half of electric motor failures [12].

Bearing defects are often a warning of other faults in the machine because, for example,

misalignment and/or imbalance can be the cause of the bearing defects. Thus the CM of

rolling element bearings is a very important component of many industrial maintenance

programmes [12].

Despite the advances made in bearing design which have significantly increased bearing life,

that life remains dependant on well-known factors such as lubrication (or lack thereof),

contamination of the lubricant, bearing load, bearing speed, the precision of the initial setting

of  the  component  within  the  machine,  the  precision  with  which  the  component  was
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manufactured, the bearing maintenance programme and many other environmental factors

including ambient temperature [23].

It  is  known  theoretically  that  the  time  between  installing  the  bearing  and  the  first  signs  of

material fatigue is a function of the number of bearing revolutions and the magnitude of the

bearing load. However, with so many other factors to consider the life of any individual

bearing can only be estimated since operating conditions will rarely be ideal and, in any case,

there will always be slight variations during manufacture. It is known that apparently

identical  bearings  can  show  considerably  different  lifetimes  under  the  same  test  conditions

[24].

The stresses experienced by bearings will invariably be cyclic in nature and such stresses

produce metal fatigue. With time such stresses generate sub-surface cracks which gradually

extend to the surface of the bearing raceway. The problem is exacerbated because the rolling

elements of the bearing run over the cracks causing fragments of the surface to break away

and increasing the area and depth of the crack. This is known as spalling or flaking. The

surface wear progressively increases until the bearing is no longer viable and must be

replaced. Because industrial processes require large numbers of bearings and individual

bearing failures cannot be predicted accurately, the run time to failure of the process could be

quite short with the danger of catastrophic failure and closure of the entire production line. It

is therefore important to implement a plan for appropriate monitoring of the condition of all

those bearings in the process machinery which are a key to continued production, preferably

continuously, to avoid unplanned downtime and expensive repairs due to bearing failures

[25].
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Using modern technology a bearing CM programme would be expected to detect and locate

the presence of a fault and identify the cause of the damage well before the fault developed to

a serious stage [26, 27]. Early detection of bearing faults requires a method sensitive to

impulsive  signals  and  the  changes  in  them.  Early  bearing  fault  detection  has  the  same

problem  as  all  early  detection  systems,  that  the  signal  to  be  detected  is  small  compared  to

other similar sources in the machine. A number of signal processing methods have been

applied to improve the early defect detection of rolling element bearings and it is often said

that focusing on the higher frequencies of the signals should be more successful because

sharp impacts generate high frequencies and this has the added advantage of less background

noise interference [6, 10]. Additionally a CM programme would track the severity of the fault

allowing accurate prediction of bearing failure and timely corrective action to extend bearing

life and minimize associated costs.

1.5 Literature Survey for Bearing Monitoring Methods

Localised defects are the most common failure mode for rolling element bearings with many

problems in motor operations due to faulty bearings. These typically occur during operation

when a significant piece of material is dislodged from the contact surface. Fatigue cracks due

to cyclic contact stresses are a common cause [28]. Consequently, in industry there is an

emphasis on fault detection and diagnosis of localized defects.

Correct defect diagnosis depends on using suitable signal analysis techniques. The vibration

signal from the transducer will be complex (the sum of many different sources), non-

stationary (the fault is developing) and contaminated by background noise. Processing of the

signal is necessary to extract useful information related to any bearing fault. They are many

signal processing techniques available; all fall into one of three categories: time-domain,

frequency-domain and time-frequency domain [29]. These are briefly reviewed below.
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1.5.1 Time Domain Analysis

The time-domain signal represents the time history of the energy contained in the signal and

is dominated by the most energetic or “noisiest” elements. Time-domain measurement is

often considered the simplest of the measurement techniques and requires relatively

inexpensive and unsophisticated instrumentation. In the time-domain, a defect condition is

often detected and evaluated using statistic descriptors of the vibration signal, such as the

peak value, RMS, crest factor or kurtosis [30]. For a fault to be detected from the peak level

or  RMS  value  of  the  time-domain  signal  it  must  have  progressed  sufficiently  to  be  seen

“through” the background noise.

Analogue time-domain signals are considered continuous but with digital sampling the

magnitude of the signal is collected at a sampling rate which should be at least twice the

maximum frequency of interest. Time-domain signals can provide large amounts of useful

information but this will usually require further analysis of the signal to extract important

characteristics not readily observable. Some of the more common techniques used are

explained below.

The RMS (or possibly the peak) value of the vibration signal can be produced as an ink trace

on  a  chart  and  analysed  visually,  or  simple  statistical  analysis  is  carried  out  and  the  values

obtained examined to determine that they are within acceptable limits. These statistical

parameters are often trended to better detect the early presence of bearing damage.

The most commonly used parameters are RMS, peak value, crest factor and kurtosis [29].

These values for a damaged bearing tend to be greater than the values for a normal bearing.

Both  RMS and peak  values  of  the  vibration  signal  increase  with  the  onset  and  growth  of  a

fault and by comparing these with values determined for acceptable operation of a normal

bearing, the presence of a defect and its severity can be found.
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Crest factor and kurtosis are not amplitude dependent; they are measures of the variability or

spikiness of the vibration signal. Crest factor and kurtosis are most useful in the early stages

of bearing damage when the spikiness of the vibration signal increases noticeably.

Unfortunately, as the damage increases, the vibration signal takes on a more random

appearance and the magnitudes of crest factor and kurtosis reduce back to those for more

normal operation. Crest factor and kurtosis are thus not suited to the detection of bearing

defects at later stages. Skew values of the rectified vibration signal were used [31] for the

early detection of bearing faults and found able to detect bearing faults at an early stage. It

was also found that the results obtained were largely independent of load and speed.

Heng and Nor [32] investigated the application of crest factor, kurtosis and skew to sound

pressure and vibration signals in order to detect defects in a rolling element bearing. These

authors also compared statistical parameters derived from the beta distribution to separate

healthy and faulty cases. It was found that statistical methods can be used to identify different

defects present in bearings. It was also demonstrated that there was no significant benefit

gained from using the beta function parameters rather than kurtosis and crest factor.

1.5.2 Frequency Domain Analysis

With time domain parameters such as the RMS value, the contribution of an incipient fault

will usually be swamped in the overall vibration signal. This is a severe limitation of time

domain analysis that is largely overcome by frequency domain analysis. Because each

component of a gear has its own characteristic frequency so does any fault associated with

that component. These frequency signatures, or signal spectral content, are a good key to

determining bearing condition. These signatures will not be lost in the overall signal because

they  appear  at  distinct  frequencies.  The  FFT  of  the  vibration  signal  is  the  most  common
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method for converting the time domain to the frequency domain. Trending of the frequency

components is a common approach [32].

As a fault develops in a bearing component peaks appear in the vibration spectrum at the

bearing defect frequency and its harmonics associated with that bearing component. Around

each peak there are side bands. The separation of the side bands is complex and can depend

on such factor as transmission path and any periodicities in the load, the amplitudes of the

frequency peaks increase with fault severity. For an old, worn system the signal to noise ratio

(SNR) will be low and the spectrum will contain a very large number of frequency peaks. In

these circumstances it becomes almost impossible to separate out the peak(s) due to a single

fault. For frequency analysis using the FFT this is a serious problem [32].

The article [33] entitled "On Initial Fault Detection of A Tapered Roller Bearing: Frequency

Domain Analysis" reported an investigation of the vibration frequency spectrum of a

defective roller bearing subject to different loads. Both multiple and single point defects

located at arbitrary positions were studied. It was found that the peaks at the defect frequency

and its harmonics produced by a single point defect on the bearing had an "equal frequency

spacing distribution" pattern. It was confirmed that around each peak there were sidebands

whose frequencies were related to the periodicity of the load and were a function of the

transmission path. For multiple defects the frequency characteristics were found to be the

superposition of the frequency characteristics for each defect separately, though this linear

relation may have been due to the limited magnitude of the defects.

The most common frequency analysis technique used for detection and diagnosis of bearing

faults is envelope analysis [34][35][94, 96, 97]. The technique is reported in details in [34],

consider a localised defect hitting a raceway, each time the defect hits the raceway an
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impulsive force (wide frequency content) is generated. This will excite structural resonances

in the transmission bath between the point of impact and the point of measurement. Envelope

analysis is a mechanism for extracting the periodic excitation or the amplitude modulation of

the  resonance  allowing  the  presence  and  location  of  a  defect  to  be  detected.  The  envelope

analysis will be thoroughly investigated in Chapter Three in Section 3.3.3 as the envelope has

been used as a method in this research because of its widespread and effectiveness use in

bearing diagnosis.

1.5.3 Time-Frequency Domain Analysis

The FFT transforms a time domain signal to the frequency domain information about the time

domain signal is lost. Time-frequency domain techniques, however, contain both time and

frequency domain information which enables investigation of such transient features as

impacts. Time-frequency techniques include, for example, the Short Time Frequency

Transform (STFT), the Wavelet Transform (WT) and the Wigner-Ville Distribution (WVD).

These techniques are claimed to have the ability to detect and diagnose bearing faults in

rotating machines where the SNR is low and a large number of frequency components are

present [35].

Li and Ma present the use of the Wavelet Transform for detection of local defects in bearings

[36]. The uncertainty principle means that good resolutions in either time or frequency-

domains can only be achieved by loss of precision in the other [37]. The WT provides a

method of scaling the time window to match the frequency of interest and minimize any

compromise between time and frequency domains. WTs have been successfully applied to

the periodic structural ringing generated by repeated impulsive forces induced by a rolling

element passing over a defect [38]. The method was confirmed using experimental data

collected from bearings with defects at different locations operating under different load
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conditions [38]. The wavelet transform will be looked at in more details in Chapter Three in

Section 3.3.4. The wavelet transform is also used in this research for bearings detection and

diagnosis.

The article [39] entitled "Wavelet Packet Feature Extraction for Vibration Monitoring"

argues that Fourier analysis provides a poor representation of signals well-localized in time

because the FFT assumes a stationary signal and contains no information on when an event

occurred. The article used the WT as a means of extracting time frequency information from

the vibration signal but used statistically based feature selection to discard a large number of

features containing little or no useful information this left a feature subset with a substantially

reduced number of parameters. Such an approach is useful because it can substantially reduce

neural network (NN) classifier training times and increase the ability of the NN classifier to

generalise.

1.5.4 Higher Order Spectral Analysis

Higher  Order  Spectra  can  determine  the  phase  correlation  between  different  frequencies

present in a vibration signal. The presence of a defect in a bearing will generate large values

of phase correlation between the harmonics of one (or more) of the defect frequencies [40].

In rolling element bearings bicoherence spectra have been used for automatic detection and

diagnosis of localized defects by finding features that indicate the condition of the bearing

[40]. The article discussed which features best describe the degree of phase correlation

between three harmonics of the characteristic fault frequencies of the bearing [40].

Bicoherence theory was used to detect local bearing defects and it was shown experimentally

that the method was effective in detection and diagnosis of incipient bearing defects.
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Some researchers have discussed the use of bispectral and trispectral analysis for condition

monitoring [40]. They investigated Higher Order Spectra analysis of machine vibrations to

determine useful diagnostic features. The experimental work was carried out on a based on a

small test rig subjected to bearing faults. The bispectrum or trispectrum of the vibration

signal were used as input features to train a NN classifier to determine the condition of the

bearings. The researchers then compared the technique with simpler statistical feature and

power spectral extraction algorithms and undertook a more detailed investigation of the HoS

of the signals to obtain practical features that can be easily estimated to provide readily

available improved diagnostic information about the bearings.

There are many other methods for classification, common to that are data-driven methods

which is the desired system output modelling using historical data, and not necessarily of the

system mechanics, these techniques include conventional numerical algorithms such as that are

normally found in the machine learning and data mining areas. The latter algorithms

encompass artificial neural networks (ANNs), Support Vector Machines (SVMs), fuzzy logic

and decision trees etc. We enumerate below the most popular data-driven methods for fault

diagnosis are enumerated below. The review given in [41] provides an extensive overview

over data-driven methods in the context of computational intelligence.

1.5.5 Neural Networks Approach

With the Neural Networks (NNs) approach, bearing fault diagnosis is viewed as a pattern

recognition problem. Standard techniques are used to extract features from the vibration

signals which are then used for training NNs to match the features to a specified condition of

the bearing (typically normal, fault 1, fault 2, etc.).
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The extraction method must be such that features obtained for different classes of fault form

well separated clusters in the feature space. The performance attained with the NN approach

depends strongly on the method of feature extraction.

Two researchers [42] report the results obtained from two NN based approaches; a multi-

layer feed forward NN trained using an Error Back Propagation (EBP) technique and an

unsupervised Adaptive Resonance Theory-2 (ART2) based NN. These two methods were

applied to the automatic detection/diagnosis of local defects in ball bearings. The vibration

signal was recorded for defective and normal bearings for a range of speeds and loads.

Statistical measures of the signals were extracted and used as features to train the NNs. The

outputs  of  each  NN  denoted  the  state  of  the  ball  bearing;  the  success  rate  of  the  EBP

technique was more than 95%, while that of the ART network was even better, 100%. The

latter was also found to be very fast.

One researcher [43] has described how bearing vibration can play an important role in the

performance of driven motor systems. In many cases they found the accuracy of controlling

devices were strongly dependent on the dynamic performance of the bearings of the motor.

Thus, fault detection of a motor system is directly related to the diagnosis of the bearing

assembly. These authors examined the use of the vibration frequency features of bearings for

identifying bearing faults. Next, they discussed a method of fault diagnosis using NN and

features from time frequency-domain analysis of bearing vibration. Using both real-world

testing and simulation they demonstrated that such a system can effectively detect a number

of motor bearing faults. Others have analysed the vibration spectra of bearings using fuzzy

logic and showed that fuzzy logic could be usefully applied for accurate diagnosis of bearing

faults if the input data was processed appropriately [44].
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1.5.6 Support Vector Machines

Neural Networks (ANNs) have been proven that they are good classifiers, but yet they need

huge number of samples for training, and that is not at all times true in practice [45]. Support

vector machines (SVMs) are based on the theory of statistical learning and they focus on a

smaller number of samples. SVMs have better generalisation than ANNs and assure the

global and local optimal solution similar to that attained by ANN [46]. Recently, SVMs have

been tested to be good and effective in numerous real-world scenarios [47, 48]. As it is

difficult to gain enough fault samples in practice, SVMs have been used on applications for

machinery defect diagnosis by different researchers in recent years [49-51]. Envelop

spectrum of intrinsic mode function has been used as input data to SVMs for bearing defects

classification, also improved wavelet transform and SVMs have been applied for bearing

defects detection [51].

SVM is developed from the optimal separation plane under linearly distinguishable condition.

Its fundamental principle can be demonstrated in two-dimensional manner. Generally, the

SVM attempts to put a linear boundary between two categories of data and orients them in

such manner that the margin is enlarged and the distance separates the boundary and the

closest point of data in each category is maximal. The closest points of data are used to

identify the margin and are named as support vectors.

1.5.7 Fuzzy Logic

The  rule  of  Fuzzy  based  systems  employ  fuzzy  logic  for  inference.  Fuzzy  logic  method  is

based on the concept or the theory of fuzzy set in a way that binary set has been extended to

take in partial membership that range between 0 and 1 [52]. By contrast to other similar

techniques, fuzzy sets have gradual transitions between defined sets, which permit to directly
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model the uncertainty associated with these concepts. The mapping of inputs data to outputs

can be considered as a set of IF-THEN rules and that after identifying each model variable with

a series of overlapping fuzzy sets, this process completely determined from expert knowledge,

or from data. Nevertheless, unlike neural networks, fuzzy models tend to a rule explosion, for

instance, the number of rules increase exponentially if the number of variables or fuzzy sets

per variable increases that makes it complicated to identify the whole model from the

knowledge of an expert only [53]. There are different automated techniques have been used

recently for optimising fuzzy models [53], including neural networks and genetic algorithms.

The fuzzy sets and rules are depended on the knowledge-base of fuzzy model. Inputs to the

fuzzy model are initially fuzzified via the knowledge-base; the rules are processed by a fuzzy

inference engine via a fuzzy inference procedure [54], then the fuzzy surface solution resulted

from the conduction of the rule-base is defuzzified to generate the system output(s). Fuzzy IF-

THEN rules can also be comprised of functional consequents, typically of a linear or

polynomial form [55, 56]. The crisp inputs are fuzzified according to the fuzzy set definitions,

joint via the inference engine, and the functional consequents are weighted which result from

the implementation of the rules. The overall outcome is the equations weighted average as

more  than  a  rule  can  positively  fire  during  a  single  pass  of  the  rule-base.  Fuzzy  logic  has

found numerous successful applications in which the fuzzy rule-based systems are capable to

be built by processing historical data and therefore shaping a data-driven model.

1.5.8 Model-Based Techniques

Model based techniques attempt to match a mathematical model to an electrical, mechanical

or other physical system. Here a mechanical bearing would be modelled is that its output

matched the vibration response of the bearing with and without faults present. A



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

36
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

comprehensive model would include effect due to unbalance, misalignment, etc., to produce

the overall response of the system.

A model that described the vibration response of a rolling element bearing has been

developed [57], the bearing was subjected to constant radial load with a single point defect on

the inner race. This model was relatively sophisticated and included the effects of shaft speed,

bearing geometry, load distribution and transfer function. Comparison of measured and

predicted vibration spectra confirmed the model performed satisfactorily.

A general model has been established for the vibration signals produced by a faulty rolling

element bearing [58]. For low shaft speeds they were able to derive the system’s envelope-

autocorrelation function. A simplified version of the model was used for bearing condition

monitoring. Measured and simulated data were compared and the validity and effectiveness

of envelope-autocorrelation confirmed for effective fault detection for shaft bearings at low

speeds.

A one-dimensional, multiple degree-of-freedom model has been developed for fault detection

using the vibration produced by rolling element bearings in a rotor-bearing system [59].  The

faults were situated on the outer and inner raceways. Two outputs (inner and outer ring

acceleration) were defined based on the theory of Detection Filter Design. It also has been

reported that a robust monitoring system which integrated a sliding mode detector capable of

isolating fault surfaces in the residual space of the detection filter [59].

1.5.9 Bearing Prognostics Using Vibration Signatures

An important area of condition monitoring research is the prediction of the remaining life of a

bearing, which many bearing manufacturers take into account, using trends extracted from

the vibration signal. However, relatively few papers have been published on bearing
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prognosis because (i) usually, there is insufficient vibration data available and (ii) the

difficulty in estimating the remaining life of a bearing even with an accurate vibration history

[60]. Most papers in this field are concerned with statistical life estimation using data from

laboratory experiments.

Currently most calculations of the fatigue life of a bearing are based on the Standard Life

Rating formula provided by ANSI/AFBMA and which is based on the fatigue life theory

[60]:

=  

where is the rolling contact fatigue life in × 10 ,

1 is a reliability factor,

2 is a material factor,

3 is a lubrication factor,

 is the basic load rating of the bearing,

 is the equivalent load applied to the bearing, and  is 3 for ball bearings and 10/3 for roller

bearings.

However, real life conditions may depart quite severely from those assumed in the above

calculation so the expected and actual lives of a bearing can differ significantly. Thus

estimation of remaining life based on online vibration measurement is receiving considerable

attention.

A number of tests on bearings have been conducted in which ran for between 100 to 900

hours before failing [61]. The tests included bearings with inner race, outer race and ball

defects. The RMS, peak, crest factor and kurtosis of the vibration signal in the frequency
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band 5.0 -12.5 kHz were measured and trended in the tests. It was found that the RMS was

particularly useful for predicting the bearing’s remaining life.

The remaining life of a bearing has been estimated using a defect propagation model [62].

The relation of the RMS of the vibration signal in the frequency band 3.0-5.0 kHz to defect

size was found in the form of a linear equation. By comparing measured and predicted defect

sizes  it  was  possible  to  develop  an  adaptive  algorithm  to  fine-tune  the  parameters  of  the

model. This allowed the rate of defect propagation to be determined from which it was

possible to determine an accurate estimate of the bearing’s remaining life.

1.5.10 Acoustic Emission Monitoring

Acoustic Emission (AE) has been defines as “transient elastic waves generated from a rapid

release of strain energy caused by a deformation or damage within or on the surface of a

material [63]. In the application to rotating machinery monitoring, AE are defined as transient

elastic waves generated by the interaction of two media in relative motion. Sources of AE in

rotating machinery include impacting, cyclic fatigue, friction, turbulence, material loss,

cavitations, leakage, etc. For instance, the interaction of surface asperities and impingement

of the bearing rollers over a defect on an outer race will result in the generation of AE.”

Most  AE  sources  are  due  to  material  damage  of  some  form,  thus  monitoring  of  AE  is

commonly used to detect and/or predict material failure. In industry AE is widely used for the

detection of leakage in high pressure vessels and piping systems. One of the advantages of

AE monitoring is that it can detect the growth of subsurface cracks. Hence, it is an important

tool for condition monitoring and it is one of the most effective methods [64].

Generally AE signal processing has as its goal either determining a suitable ‘process model’

from which the properties of specific variables can be used to define the wave state; or the
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creation of a feature data base so that changes in the characteristics of the wave can be

monitored. The important problem with processing AE signals is elimination of noise and to

extract features that correlate uniquely with target process parameters [65, 66].

AE signals are often classified as continuous or burst-type [67]. In fact continuous AE signals

are those where the bursts are sufficiently frequent for the overall signal to have a continuous

appearance. Both types are seen during crack growth, material fracture or chipping.

Once AE signal parameters have been established for a healthy configuration, the RMS (or

another suitable characteristic) of the AE signal may be monitored and compared to the

nominally healthy values to detect the presence of an abnormal event. It has been shown that

such monitoring can detect defects before the defects can be detected the vibration signal [68-

69]. Also it has been shown that peak amplitude and count for the AE signal have been

particularly useful in the detection of defects in ball bearings under load at normal and low

speeds [70]. AE monitoring has been applied to detection of faults in rolling element bearings

and has proposed the area under the time-amplitude plot as a preferred method for defect

detection [71]. The RMS of the AE signal has been successfully used to determine milling

tool breakage during the cutting process [72].

At its present stage of development the major disadvantage of commercial AE systems is that

they can give only qualitative estimates of how much the test material has been damaged and

only estimate the remaining life of a component. Consequently, other non-destructive testing

methods are needed for a more rigorous examination and to provide quantitative predictions.

While  the  frequency  range  of  the  AE  signals  used  to  monitor  machinery  and  equipment  is

usually well outside the range of background noise nevertheless AE signals are usually weak

and must be measured in the vicinity of their generation. Because the AE signals are weak
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reduction of noise present in the signal and signal discrimination can be difficult but are

necessary for successful application.

1.6 Research Motivation

Many novel and interesting CM methods have been developed in recent years [5]; however,

the challenge will always remain of producing a CM system capable of detecting and

identifying the presence of a fault at ever earlier stages of its development. This research is

focused on the development of an approach based on advanced computations to detect and

diagnose bearing condition.

The  first  motive  for  this  project  is  that  it  is  important  to  detect  bearing  defects  as  early  as

possible to provide maximum time for corrective action preventing further damage and

extending bearing life. Without such early detection, maintenance staff must wait until the

later stages of the fault by which time the damage has become both more severe and

extensive.

The  second motive  is  more  personal,  to  be  the  first  to  attempt  a  novel  approach  to  bearing

fault diagnosis and detection. Time Encoded Signal Processing and Recognition (TESPAR) is

a set of signal analysis and classification software that can be used to describe and classify

band limited signals [73].

The use of TESPAR in the context of signal processing is not completely novel there is

already work and some publications especially on speech recognition in electronic field as

mentioned here: King R A, Gosling W, 'Time Encoded Speech', Electronics Letters, 20 July

1978, also King R. A. & Phipps T.C. “Shannon, TESPAR and Approximation Strategies

September 1998 and Vu V V and King R A; “Automatic Diagnostic and Assessment

Procedures  for  the  Comparison  and  Optimisation  of  Time  Encoded  Speech  (TES)  DVI
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systems” September 1989. In addition, in the context of condition monitoring the TESPAR S

and A matrices have been used generally to analyse the input data there are few publications

such as : Rodwell G M and King R A, “TESPAR/FANN Architectures for low-power, low

cost Condition Monitoring Applications” July 1996, and George M H, ‘Time for TESPAR’,

Condition Monitor Number 105, September 1995. However, the novelty of this research is

the adaption of the approach using a new feature and statistics with TESPAR matrices to

identify bearing conditions in both fault location and severity.

The history and development of TESPAR is described in Chapter 4. Here it is sufficient to

say that originally TESPAR was developed to process speech waveforms which are known to

be very complex and highly dynamic [74], an approach which could be useful for the analysis

of impulsive vibration signals. The idea here is to use this technique to explore fault detection

in a bearing rolling element and to compare the capability and effectiveness of TESPAR

based methods with more traditional techniques in terms of identifying the onset of a defect

in different bearing elements. These traditional techniques are described thoroughly in

Chapter Three and will include time domain analysis, frequency domain analysis and wavelet

analysis.

Specifically the idea of using the TESPAR approach as a focus for this research comes from

the observation that almost all current commonly used bearing CM techniques are frequency

domain or time frequency domain, and that there are insufficient studies in the time domain,

of course, except the use of very basic statistics parameters, thus, this research considers a

new focus in the time domain by investigating and exploring the application of TESPAR to

fault detection and diagnosis.
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During this research the following TESPAR benefits that exist over other existing methods

have been identified:

Early Fault Detection & Identification: TESPAR is able to utilise its classification

capability to identify faults at the earliest stages of their inception. Once detected, any

fault can either be repaired or continuously monitored to identify changes in its

severity and if appropriate, predict the time duration before a catastrophic failure.

Low Power and Low Processor/Memory Solution: TESPAR requires two orders of

magnitude less processing power and memory than its frequency domain counterparts

which opens up the prospect of bringing real-time condition monitoring to devices

possessing much less processing power than a DSP (Digital Signal Processor).

Moreover, a significant reduction in battery power is required which provides a

greater scope for tackling problems previously consider infeasible because of the

amount of operating current required. This reduction in processing power and

memory has enabled a real-time TESPAR classification to be successfully

implemented to a number of low-end processors such as the 8-bit Intel 8051 and the

ARM 7 core.

Improve Existing Classification System by Running TESPAR Solution in

Parallel: If a traditional frequency-based system is already monitoring a piece of

machinery, in many cases it is possible to also implement the TESPAR solution in

parallel with the existing approach by using only the spare capacity of the current

processor (e.g. DSP). This is achievable because of the small footprint and processing

requirements  of  the  TESPAR  approach.  This  parallel  methodology  allows  the

advantages of TESPAR to be realised without having the expense or inconvenience of

replacing the current system.
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Applicable  Across  a  Wide  Range  of  Sensor  Types: TESPAR has been applied to

signals from a wide range of sensors including Accelerometers, Vibration, Acoustic

emission, Densitometers (nucleonic devices), Pressure, Temperature, Geophones /

Hydrophones etc. An important advantage of TESPAR is that it does not rely on

expensive high quality sensors in order to successfully achieve its objective – unlike

some tradition condition monitoring systems. In a number of real-world case studies,

Tespar have achieved similar high levels of performance from both cheap (£10) and

expensive (£2000) sensors.

Low False Alarms and Misclassifications:  TESPAR  achieves  a  low  number  of

misclassifications and false alarms by coupling the flexibility of the TESPAR “coding

table”, the information rich TESPAR symbol stream / matrices, with appropriate

highly  accurate  classification  tools.  The  TESPAR  solution  effectively  groups  the

faults into feature space clusters and by selecting the appropriate TESPAR processing

configuration:

o The elements within these clusters become more tightly grouped and

o Separations between different clusters become more clearly defined

o Thus causing a reduction in the number of misclassifications and false alarms.

Resistant to Noisy Signals: TESPAR is highly resistant to noise that may be present

and as a result has a significant advantage over traditional frequency based

approaches. The TESPAR solution can extract signals from heavy noise

contamination  even  at  noise  levels  of  0dB.  There  are  a  number  of  TESPAR

processing techniques that can be used to significantly reduce the effects of noise

effects such as white noise and impulse noise. One such advantage over the traditional

frequency based domain is in the presence of impulse noise – this typically presents

itself across a large proportion of the frequency spectrum, which typically results in a



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

44
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

inferior classification accuracy. Conversely in the TESPAR time domain, the impulse

noise  only  appears  as  one  or  two  epochs  in  the  Tespar  vector  and  so  can  easily  be

excluded from the classification.

Accurate Identification of Fault Source: Using TESPAR for fault detection and

prediction allows the fault source to be accurately identified in a number of ways:

o Each fault type to be detected can be assigned one or more of the various

TESPAR feature sets / matrices

o The output of different sensor types can, if required, be combined using

higher-level logic to obtain more than one view of the potential fault

o If a repetitive action is associated with the machinery under test, not only can

the fault be detected by examining the TESPAR symbols, it will also be

possible to identify its cyclic nature and therefore pinpoint the offending

component.  Moreover,  if  a  piece  of  machinery  is  expected  to  operate  at  a

known rotational speed, specific TESPAR matrices have been developed to

indicate the extent to which the machine has deviated from the expected

rotation speed.

Model Adaptation: Once TESPAR models have been generated for each condition to

be recognised, it is possible to easily adapt these TESPAR models (matrix archetypes)

to ensure that any natural deviation in the machinery’s operating condition can be

incorporated in real-time into the model.

Fault Level Intensity Indicator: A number of techniques exist that allow the output

of the TESPAR classification stage to be represented on a linear scale in order that a

meaningful level of fault intensity/severity can be calculated. I.e. The profile of the

TESPAR matrices and other feature vectors can be displayed on a scale such that a 1

implies low severity and a 10 implies a high severity.
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Provide Continuous Real-Time Monitoring: As TESPAR requires little processing

overhead, this approach can easily support continuous real-time monitoring.

1.7 Research Aim and Objectives

The aim of this research is to investigate the development of an efficient technique using

TESPAR for the more reliable, cost efficient and precise detection and diagnosis of incipient

bearing faults.

The main objectives of this research are:

Objective one: To present and discuss machine condition monitoring and the applications of

rolling element bearings.

Objective two: To describe the fundamentals of rolling bearing transmission, including

bearing types and components, their failure modes and methods of monitoring.

Objective three: To review signal processing conventional methods and their parameters of

bearing fault detection and diagnosis using vibration signal.

Objective four: To describe and explore the fundamentals of the TESPAR approach.

Objective five: To discuss and analyse the data outputs from an accelerometer using

TESPAR methods applied to the time domain data collected for ten different bearing

conditions.

Objective six: To perform a relative evaluation performance of the TESPAR application in

order to explore its effectiveness and reliability on bearing detection compared to

conventional techniques.
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1.8 Thesis Organisation

The thesis begins by reviewing the importance of condition monitoring and fault diagnosis

for the smooth running of industrial processes. It emphasises vibration measurement as this is

the technique selected in this project for monitoring the rolling element bearings. The

motivation for this research is described and the aim and objectives stated.

Chapter two describes the different types of roller bearing and their component parts. It also

describes the typical bearing defects that occur and shows that, generally, such defects are

due to inadequate maintenance or improper installation. The chapter then reviews dynamic

response of roller bearings to local (or point) defects and shows that the typical symptoms are

characteristic peaks in the vibration spectrum. Theoretical predictions of the characteristic

frequencies for the test bearing are compared with measured results.

Chapter three introduces vibration measurement as a method of condition monitoring and

defect detection in roller bearings. It reviews time domain, frequency domain and time-

frequency domain analysis of the vibration signal from roller bearings and compares their

performance regarding incipient fault detection and diagnosis. Various commonly used

statistical parameters are described and their usefulness for incipient fault detection

commented on. Chapter four describes the TESPAR technique as being a technique explored

by this research, its background is given and an introduction to how it works. The chapter

also gives examples of TESPAR in action. In order to provide a new insight into fault

detection  and  diagnosis,  simulation  of  TESPAR  has  been  conducted  to  illustrate  its

principles. Finally, the TESPAR coding and implementation process is explained in details

leading to the new procedure adopted.
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Chapter five reviews the design and construction of a test rig suitable for measurement of

parameters associated with incipient defect detection in a roller bearing. The parameters to be

measured  are  discussed  and  details  of  the  relevant  transducers  and  data  acquisition  system

given, as are details of measurement practice and data management. The manner in which

defects are introduced into the bearings is described in detail. The chapter also reports the

successful application of envelope and wavelet analysis to detection of faults seeded into a

roller bearing.

Chapter six discusses the use of TESPAR and its results. The chapter presents a detailed

discussion of the TESPAR findings and assessment of its performance; comparisons are also

made with a popular method of bearing defect detection (the envelope spectrum) to evaluate

the capability and effectiveness of the proposed techniques in real situations.

Chapter seven summarizes the findings and conclusions and also proposes future work based

on this research. It presents the author’s conclusions on CM of rolling element bearings using

TESPAR  approach.  It  also  reviews  the  aim  and  objectives  one  by  one  comparing  them  to

those set for this study and presented in Chapter one. These are followed by the contributions

to knowledge made by this research. Finally the author makes suggestions for future work.
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CHAPTER TWO

2 Fundamentals of Rolling Element Bearings

This chapter describes the different types of roller bearing and their component parts. It also

describes the typical bearing defects that occur and shows that, usually, such defects are due

to inadequate maintenance or improper installation. The chapter then reviews the dynamic

response of roller bearings to local (or point) defects and shows that the common symptoms

are characteristic peaks in the vibration spectrum. Theoretical predictions of the

characteristic frequencies for the test bearing are compared with measured results and good

agreement found.
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2.1 Introduction

Rolling element bearings are used in their tens of millions in rotating machinery to minimise

friction between adjacent parts moving at different speeds. They are not only one of the most

critical components but also one of the first to fail. The problem is a major one because, as it

has been explained, fewer than 20% of bearings achieve their design life [75] and other

research has found bearing failures account for more than 50% of all motor failures [12]. The

economic loss due to bearing failure in terms of machine down time, and even human life, is

huge compared to the cost of the bearing itself [76]. Therefore, bearing condition monitoring

(CM) and diagnosis has attracted substantial attention over the past four decades as economic

pressure to increase machine speed has accelerated [77 - 97].

Before  discussing  bearing  CM,  and  fault  detection  and  diagnosis,  it  is  necessary  to

understand the principles of operation of rolling element bearings and the signals produced

by faulty bearings. Thus, this chapter introduces basic types of rolling element bearings and

their major components, common fault generating mechanisms and bearing faults, and the

signals to be looked for amongst the general background noise.

2.2 Types of Rolling Element Bearings

Bearings can be divided into two general categories; rolling element and sliding bearings

(hydrodynamic oil film). We are concerned only with the former. Depending on the

application there are many different sizes and designs of rolling element bearings which can

be divided according to the shape of the rolling elements, though it is also possible to classify

the bearings depending on the way the load is supported. The standard geometric shapes of

the rolling elements that make up rolling bearings are listed in Table 2-1.
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Table 2-1 Rolling element bearing types [98]

Rolling Bearing

Roller
Bearing

Radial Roller
Bearing

Cylindrical single row
Cylindrical double row
Tapered single row
Tapered double row
Needle roller bearings
Spherical roller bearings

Axial Thrust
Roller Bearing

Cylindrical roller thrust bearings
Tapered roller thrust bearings
Needle roller thrust bearings
Spherical roller thrust bearings

Ball
Bearings

Radial Ball
Bearings

Single row deep groove
Maximum capacity type
Single row angular contact
Duplex angular contact
Double row angular contact
Four points contact
Self-aligning

Thrust Ball
Bearings

Single direction with flat back face
Single direction with sealing race
Double direction with flat back face
Double direction with sealing race
Double direction angular contact

The shape of the basic rolling element, ball or roller, determine into which of the two families

any particular bearing is placed. Each family includes a variety of types, see Table 2-1 which

will depend on such design requirements as physical space available for the bearing,

magnitude and direction of load (radial, axial, and/or combined load), any misalignment or

axial displacement, speed of rotation, whether quiet running is required, and so on. Ball

bearings tend to be used in light to moderate load applications and high-speed operations.

Roller bearings are used to support heavier loads so therefore, heavy engineering industries

tend to use roller bearings rather than ball bearings.

Depending on the direction of the applied load rolling element bearings can also be classified

as radial or thrust. These bearings are used to transfer loads between two objects (one rotating

relative to the other). As its name implies a radial bearing carries a radial load, which is force
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acting at right angles to the shaft, while a thrust bearing is intended to carry an axial load,

which is force acting parallel to the shaft. In practice most rolling bearings carry both radial

and axial loads so there is some overlap in their use.

Consider the bearing shown in Figure 2-1 whether it is considered to be under radial load or

axial thrust is determined by the magnitude of the contact angle a0. The contact angle is

defined as the angle between a plane perpendicular to the bearing axis passing through the

centre of the bearing (vertical in Figure 2-1) and a line joining the two contact points the ball

makes with the inner and outer raceways. Increasing axial load increases the contact angle.

Bearings where a0 < 45° are radial bearings and their ratings are given by radial load.

Bearings with a0 > 45° are thrust bearings and are rated by axial load [76, 99].

Figure 2-1 Schematic diagram showing contact angle, a0 [100]

Rolling bearings can be classified according to their functions. For example, ball bearings

perform well at high speed under moderate radial and axial loads. They have low friction and

can be produced with high precision and there is a quiet running variant. Thus they are

preferred for e.g. small and medium-sized electric motors. However, in this study, the focus
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is on roller bearings because this is the most popular rolling element bearing due to its high

dynamic load capabilities and toleration of some misalignment. However, most studies based

on roller bearings can be extended to other kinds of rolling element bearings.

2.3 Bearing Description and Components

Most rolling bearings have four basic elements: inner race, outer race, rolling elements, and

cage or separator [76]. The inner race, outer race, and rolling elements support the bearing

load, while the cage separates adjacent rolling elements to avoid friction between them, see

Figure 2-2 and Figure 2-3. Thrust bearings which are designed to support an axial load are

not considered in this thesis.

Figure 2-3 Schematic of cylindrical
roller bearing [100]

2.3.1 Inner Race

The  inner  race  is  mounted  on  the  shaft  of  the  machine  and  so  will  usually  be  the  rotating

element. Depending on the type of rolling elements (spherical, cylindrical, or tapered) the

raceway in which the rolling elements move will have a different form.

Outer race

Inner race

Cage

Roller element

Figure 2-2 Rolling elements bearing,
NSK type N406
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2.3.2 Outer Race

The outer race is mounted in the machine housing and so will not usually rotate. Again,

depending on the type of rolling elements the raceway in which the rolling elements move has a

different form.

2.3.3 Rolling Elements

The rolling elements used in rolling bearings are generally ball and roller bearings. The ball

bearing transfers the load by point contact with the raceway, so its load-carrying capacity is

lower than that of a roller bearing. Rollers transfer the load via line contact with the raceways. The

rolling elements are usually made of “bearing steel” a type of carbon chromium steel.

2.3.4 Cage

The cage  separates  the  rolling  elements  to  prevent  contact  between them during  operation  which

would restrict lubrication and increase wear very rapidly. Cages are made from cold rolled steel strip.

In addition to the four elements listed above there are two other important components. The seals

protect the bearing from contamination and keep the lubricant inside the bearings and so are essential

for long and reliable life. The guide races lead the rollers in the bearings so that they will rotate

parallel to the shaft and distribute the load evenly to the raceway. These are essential in roller

bearings that demand extremely high quality

2.4 Bearing Failure Modes

Rolling element bearings have been subject to extensive research over many years to improve their

reliability. However, the large number of bearings associated with any given process increases the

likelihood of system failure due to one of them failing, and such system failure can occur in a very

short  period  of  time.  There  are  many  reasons  for  early  failure,  including;  excessive  loading,

inadequate lubrication, insufficient internal bearing clearance due to an excessively tight fit, etc.



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

54
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

[76][99-101]. The types of mechanical bearing failure and their relative frequencies are listed in

Table 2-2 [102].

Table 2-2 Bearing defection by cause [102]

Failure Mechanism Failure Frequency (all bearings)
Fatigue 2%
Other 10%

Dimensional discrepancies 29%
 Lubrication  (Corrosion and Over-rolling) 59%

The most frequent cause of bearing failure is corrosion, which is lubrication related. Chemical

reaction occurs at the surface of the bearing most often with water but also possibly with any

corrosive material present in the oil. Included as a lubrication failure is over-rolling, here

contaminated lubricant deposits a foreign object within the bearing which then becomes trapped

between the rolling element and the raceway, and is “over-rolled”. The next most common cause is

so-called dimensional discrepancies which is a collective term for damage prior to, or during service,

due to, e.g., manufacturing flaws, or improper handling during installation such as forcing the

bearing into position with hammer blows. These two mechanisms are estimated to cause more than

four-fifths-quarters of all bearing failures [102]. Similar figures have been presented for bearing

failures in aero engines and the authors draw attention to classical fatigue failure (cracks initiated

at surface or sub-surface) as constituting a mere 2% of the total and explain this as being due

to maintenance or manufacturing errors or mis-installation of the bearings [103]. Each factor

will produce its own particular type of damage and leave its own special mark on the bearing

and, in turn, creates secondary damage such as spalling and cracks. Failed bearings, when examined,

usually display a combination of primary and secondary damage. In terms of bearing failures an

understanding of the underlying mechanisms causing defects and the consequences of those

defects helps in determining which features to look for to prevent early failure [100, 101, 103].



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

55
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

Note, smearing of ball bearings is not considered here, nor is electric current damage. Bearing faults

can be categorised into three sets: primary damages, secondary damage and general damage [103].

2.4.1 Primary Damage

The primary mode of failure for a properly lubricated correctly assembled and normally

operated roller bearing is spalling of the bearing element due to local fatigue rather than the

bearing wearing out. This is because of high roller contact load and relatively low wear rate

to which they are subject [103].

Wear

Wear of bearings may be defined as the removal of surface material, see Figure 2-4. This may

be due to abrasion, fatigue, corrosion or erosion. Normally there is little noticeable wear in

rolling bearings, but rapid wear and subsequent failure results when foreign objects (such as

grit) enter the bearing or when lubrication is inadequate. Vibration in bearings and/or

misalignment can also cause excessive wear [76].

Wear can result from the presence of abrasive particles when foreign material which enters the

bearing during cleaning or through a damaged or worn seal causes excessive wear of the

bearing. If the wear is detected early so that there is only light surface bruising the bearings

may be re-used after the bearing and housing are thoroughly cleaned and properly adjusted.

Otherwise the bearing should be replaced. If a seal is damaged then the fine metal particles or

grinding dust that are commonly found in factory environments can enter the bearing and

cause abrasive wear. Within the machine metal components in moving contact will release

fine metal particles into the lubricant, and if these find their way into the bearing can cause

excessive wear of the roller body and races and, especially, on the roller end.
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Figure 2-4 Wear of the surface caused by abrasive particles [110]

If the intruding particles are fine enough they act as a polish and mirror-finish surfaces result.

Lack of effective seals, and lubricant contaminated by foreign particles (which may occur

during installation of the bearing) causes small indentations on the rolling elements and

around the raceways. Dull, worn surfaces are signs of this type of wear. The major problem

here is that any wear changes the bearing adjustment and has been known to cause

misalignment which directly affects other parts of the machine [104].

Wear can also result from inadequate lubrication, it is surprising how much wear is caused by too

low lubricant  levels  or  lubricant  that  has  lost  its  lubricating  property  [105].  Metal  to  metal

contact occurs between moving surfaces which removes the “tops” of the surface asperities

(the peaks of the surface roughness) leaving abrasive particles which are not carried away and

cause wear, as described above. This wear initially shows up as a mirror-like surface, over-

heating results in the surface colour changing to blue/brown with subsequent bearing failure.

Too thin lubrication films can result in a frosted appearance on the surface, usually of depth

of less than 2.5 x 10-3 mm due to patches of flaking on a minute scale. Close examination

reveals multiple hair-line cracks though the surface will not yet be flaking [106].

Misalignment will cause wear. The most common causes of misalignment are bent shafts, dirt on

the shaft, shaft threads not square with the shaft seats, and locking nuts with faces that are not

square  to  the  thread  axis.  When  a  rolling  element  wear  path  is  not  parallel  to  the  raceway



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

57
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

edges misalignment failure will usually be detected on the raceway of the non-rotating race.

Extreme misalignment can cause heavy wear in the cage pockets and/or excessive

temperature increases.

Noticeable wear of bearings resulting from vibration has been described [100, 104]. This is

most usually the case when the machine has been inactive for a long time and there is no

lubricant between metal surfaces. If nearby working machines generating high levels of

vibration there will be a small movement between the metal surfaces in contact. As a result

small particles can, eventually, break away and cause depressions in the metal surfaces

known as a “false brinelling” because it occurs when the machine is apparently idle. In roller

bearings, the rollers will produce rectangular depression marks, called flutings. In ball

bearing the depressions are circular. The presence of the particles causes subsequent wear.

Roller bearings appear more sensitive to this kind of wear than do ball bearings. Of course

excessive vibration of the bearing it could lead to:

Indentation

This is a form of plastic deformation of material either through foreign particles entering the

bearing and causing indentations Figure 2-5, or if the bearing is exposed to excessive load

when stationary, or if an excessive force is applied to the wrong race when mounting which

is transmitted through the rolling elements.

Indentation caused by faulty mounting or overload is also called “true” brinelling, this defect is

usually accompanied by an increase in bearing noise and vibration, and invariably leads to

premature bearing failure. It is characterized by indentations in the raceways of both outer

and inner races; the distance between the indentations is equal to the roller spacing. Common

causes for this type of failure are mounting pressure applied to the wrong race, a sharp impact



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

58
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

incorrectly applied to the bearing during mounting or dismounting, overloading while

stationary, and  excessive hard drive-up on tapered seating.

Figure 2-5 Bearing surfaces indentation [110]

Indentation caused by foreign particles (over-rolling) is a leading cause of premature bearing

failure. Airborne dust and softer particles would be likely to cause small, shallow

indentations distributed around the rolling elements and the inner and outer raceways. Deeper

pitting and bruising is caused by dirt/sand particles and larger metal chips. The depth and

number of the indentations determines whether the bearing must be replaced.

Smearing

Smearing occurs when the lubrication between two moving surfaces is inadequate (too little

or too old) with consequent contact between surface asperities and material is thus transferred

from one surface to the other, see Figure 2-6. The surfaces are said to be smeared, and when

such smearing occurs the material generally becomes very hot and local re-hardening takes

place which may cause localized stress concentrations with surface cracking or flaking.

Smearing may occur on the guiding faces of the flanges or the ends of the rollers because of

sliding under heavy axial loading with inadequate lubrication in cylindrical and taper roller

bearings, and in spherical roller bearings with guide flanges. Roller ends and flange faces

become scored and discoloured.
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Smearing of roller and raceways is caused by roller acceleration when a roller enters the load

zone. Raceway smearing appears at intervals corresponding to the roller spacing while

transverse smearing marks (streaks) appear at intervals equal to the distance between the

rollers in the raceways of cylindrical roller bearings.

Figure 2-6 Bearing smearing [110]

This occurs when one ring is mounted out of line with the roller and cage assembly during

the mounting operation. The surfaces of the rollers appear scored with discoloured areas at

the start of the load zone in the raceways. Sometimes bearing rings can be so heavily loaded

that they move relative to the shaft or housing. In such circumstances smearing, scoring and

discolouration will appear on the outside surface of the outer ring or the surface of the inner

ring bore.

Surface Distress

The root cause of smearing and surface distress is the same: inadequate lubricant film. If, due

to improper or inadequate lubrication between raceways and rolling elements the peaks of the

surface asperities come into contact with each other small cracks form in the surfaces -

known as surface distress. The initial stage of this type of defect is not visible to the naked

eye, it increases gradually until shallow craters with crystalline fracture surfaces appear and
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interfere with the smooth running of the bearing. Note that surface distress is not the same as

fatigue cracks the latter originate beneath the surface and can result in flaking.

Corrosion (rust)

Rust (chemical attack) will form if corrosive materials or moisture/water enter the bearing so

that the lubricant no longer provides adequate protection for the steel surfaces of the bearings

see Figure 2-7. Very quickly deep-seated rust will form. Corrosion is usually accompanied by

an increase in vibration and wear, with subsequent increases in radial clearance or loss of

preload.

Figure 2-7 Bearing rust and corrosion [110]

Any corrosive materials in the bearing will, given sufficient time, cause deep-seated rust

(pitting). Usually, with roller bearings, grey-black streaks appear across the raceways

coinciding with the rolling element spacing. As time progresses other surfaces will suffer

pitting.  Pitting is a serious defect so when pits occur, the bearing should be discarded before

spalling has time to develop.

The layer of oxide forming the rust can act as a protective layer delaying further chemical

reaction. Fretting causes the rust layer to be broken and, if allowed to develop sufficiently,

these areas can become fracture notches. Fretting takes place due to a loose fit between

bearing ring and shaft or housing, allowing relative movement. The result is that the bearing
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rings may not be evenly supported and this produces a detrimental re-distribution of load in

the bearings which exacerbates the process. Here, rust appears in the bore of the inner race or

on the outside surface of the outer race.

2.4.2 Secondary Damage

Spalling (flaking)

Pitting is due to the intrusion of foreign material, spalling occurs due to naturally occurring

fatigue and so is also known as normal fatigue failure, see Figure 2-8. However, other factors

can also cause spalling in bearings: preloading due to incorrect fitting, too great an external

load, distortion of shaft or housing seating, and compression due to thermal expansion will all

contribute to premature spalling. The depth of the crater with spalling can be between 20 

and 100  and the crater can extend over as much as quarter to a third of the contact length

of the roller bearing. For safety reasons the bearing is usually considered to have reached the

end of its working life when the spall area exceeds about  6  [106]. The decision is

dependent on the application and in some circumstances the bearing it may continue to

perform adequately. Spalling in bearings generates noise and vibration which indicates that it

is time to replace the bearing.

For normal operation bearings are usually fitted to have a small clearance. For certain

applications some rolling bearings have a negative clearance when mounted, to generate

internal stress. However, some bearings can be accidentally preloaded as when a bearing race

is fitted so tightly that it exceeds the internal radial clearance. If the internal radial clearance

is lost there will be a rapid and possibly severe temperature rise and in such circumstances

continuing operation will lead to spalling.
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Figure 2-8 Bearing flaking [110]

Spalling will usually occur in the most heavily loaded zones and preload will be indicated by

heavy  rolling  element  wear  paths  in  the  raceways  of  both  inner  and  outer  races.  Other

significant causes of spalling are excessive drive-up on a tapered seating or taper roller

bearings adjusted to give excessive preload.

It can happen that an element of the bearing and/or housing which should be circular is

distorted. Usually the cause is the outer race being forced into place, but sometime it is the

shaft which can be out of shape. This is a common defect in split housings and machine

frames. The result is a deep spalling pathway and flaking on diametrically opposite sections

of either bearing race.

Excessive load is another source of premature bearing failure due to consequent overheating,

deep spalling and flaking, and heavy wear on ball paths. This fatigue spalling can occur over

the  entire  face  if  the  load  is  so  heavy  that  the  lubricant  film  reveals  surface  asperities,  see

Figure 2-9.

If a bearing is mounted incorrectly so that there is insufficient freedom of movement to

accommodate thermal expansion, or where there has been excessive preloading of taper roller

bearings, spalling due to axial compression can result. A common name for this is reverse

loading failure. The spalling appears as a heavily marked raceway pathway pattern to one
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side of the row of rolling elements. In some cases the appearance will be the same as for

damage resulting from preloading.

Figure 2-9 Bearing spalling [110]

Roller bearings can tolerate some misalignment but if the misalignment is excessive high

edge stresses occur due to concentrated load, with subsequent fatigue spalling taking place

on the bearing races. The greater the misalignment and the greater the speed the more rapidly

the spalling progresses.

Cracks

There are many reasons why cracks occur in bearing rings, the most common cause is rough

treatment such as heavy hammer blows when the bearings are being mounted. The hammer

blows can cause fine cracks which can grow and cause fragments of the ring to break-off

when the bearing is put into operation, Figure 2-10 shows bearing cracks.

Another common cause of ring cracking is excessive tensile stresses in the rings of a tapered

seating or sleeve due to excessive drive-up. When the bearing is put into service cracks

appear.

For fretting corrosion, cracks in the outer race are generally longitudinal and for the inner

race the cracks intersect.  Lack of adequate lubrication generally generates cracks at right

angles to the direction of slide.
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Figure 2-10 Bearing cracking [110]

Bearing Cage Damage

It is known that excessive vibration, speed, wear, and blockage cause cage breakage, see

Figure 2-11, fortunately it does not happen often, but when it does it is usually difficult to

identify the precise cause since the other components of the bearing are also damaged.

Figure 2-11 Bearing cage damage [110]

Vibration can cause accelerated fatigue and cracks to form in the cage material which

develop over time and lead to cage failure.

Running bearings run at speeds well in excess of specification subjects the cage to substantial

forces that can lead to fractures. The material of the cage is less hard than the other

components of the bearing and rapid wear may be caused by insufficient lubrication or by

abrasive particles. The cage is thus the first component affected when there is too little

lubrication or the lubrication degrades.
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It is possible that fragments of hard particles of flaked material may become wedged between

the cage and a rolling element. When this happens over-rolling occurs or the rolling element

may no longer rotate at all, both cases can lead to cage failure. Bearing cages subject to

extreme acceleration and deceleration will experience considerable force between the

surfaces in contact and heavy wear can result.

Scoring (galling)

Metal-to-metal contact between the roller end and guide rib face can be another result of

inadequate  lubrication.  This  causes  scoring  which  can  change  the  relative  geometry  of  the

guide rib face and end of the roller with possible severe results: rollers can become distorted

and broken, or may become welded to the races or the rib, causing the bearing to seize and

severely damaging other components. Fortunately scoring on the roller ends is easily

detectable in a roller bearing assembly.

Inadequate lubrication can also result in heating of the bearing (change in hardness) with

damage to the roller ends rib and inner ring raceway.

Rollout

Highly overloaded bearings experience considerable stress deep inside the race which may

exceed the strength of the relatively soft core which will then plastically deform in the axial

direction causing bearing rollout as shown in Figure 2-12 because the housing constrains it in

the radial direction. As the core moves axially relative to the outer ring it causes

circumferential cracks in the load zone.
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Figure 2-12 Bearing rollout [110]

2.4.3 Fatigue Spalling

The primary failure mode for a healthy roller bearing is spalling of the bearing element due to

local fatigue caused by the repeated application of stresses [104], see Figure 2-13. Bearing

material is not truly homogeneous and so is not everywhere equally resistant to failure which

will occur at the weakest point. Thus, apparently identical specimens will show variation in

time to failure even when operated under supposedly identical conditions. Nevertheless,

major increases in bearing life and reliability have resulted from improvements in bearing

materials, manufacturing technology and lubrication.

Figure 2-13 Bearing fatigue [110]



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

67
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

2.5 Dynamic Responses of Roller Bearings to Local Defects

A loaded healthy bearing is subject to many complex static and dynamic forces and moments

so even a defect-free bearing will generate vibration. The static forces will include, for

example,  any preloading, the weights of the shafts and other moving components,  etc.   The

dynamic forces will include centripetal forces acting towards the centre of rotational motion,

frictional and traction forces due to the relative movement of surfaces in contact and fluid

pressure, etc. Typically a healthy bearing rotating at constant speed and subject to a constant

load will be subject to forces which are in quasi-equilibrium. However, when the rolling

element meets a local surface defect, there is a sudden elastic deformation of the element due

to the transient force experienced. These transient forces are detected by the resulting

movements of the bearing components. The resulting movements will not normally be simple

but can include impact and oscillatory contact between any two of roller, raceway and cage,

as well as slippage between cage and roller. Nevertheless the periodic nature of the

movement of the bearing will impose a periodicity on the signals generated, and this strongly

suggests that frequency domain analysis of the signal will be a powerful tool in defect

detection.

Many analytical dynamic models have been developed to represent the motion of the ball

bearings, raceways and rolling elements generated by defects [108, 109]. Such models are

important because the inaccessibility of bearing components makes measuring their angular

and linear motion a difficult task with significant associated errors. In addition, for most

rotating machinery simply detecting of bearing damage is not enough; it is just as important

to assess its effect on bearing life.
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2.6 Characteristic Symptoms for Bearing Failure

Increasingly researchers into vibration analysis of bearings are dividing the defects into point

(or localised) defects and generalised defects [22]. This research focuses on local defects

(scratches) made on the bearings and which are meant to be representative of spalls, pits or

localised damage that appears on raceways and rolling elements. A major benefit of local or

single-point defects is that they produce a characteristic frequency which can be calculated

from the speed of rotation and geometry of the bearing.

Generalized roughness refers to such defects as deformations that occur during

manufacturing, improper installation or wear. Such defects typically generate broadband

machine vibrations and so require specialized techniques for their detection. As will be

explained below crude time-domain parameters cannot be used directly to locate a point

defect, for instance whether the fault is on the inner or outer race, or the roller.

Rolling element bearings have a unique frequency corresponding to the dynamic behaviour

of each bearing component: the outer race characteristic frequency ( ), the inner race

characteristic frequency ( ), the roller characteristic frequency ( ) and the cage

characteristic frequency ( ).

Calculation of the fundamental point defect frequencies of rolling element bearings is useful

because they can indicate what is failing in the bearing. For an angular contact ball bearing in

which the inner race rotates and the outer race is stationary, the four characteristic

fundamental defect frequencies are given in Equations 2.1 – 2.4 [109]. The number of balls in

the race is ,  is the shaft rotational frequency,  is the ball diameter,  is the pitch

circle diameter, and  is the contact angle.

For convenience, we assume that there is only one fault at a time in the outer race, the inner
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race and one rolling element of the bearing. Each time the outer race axially rotates, an

impulsive force is generated by the impact for every rolling element. The frequency of the

impulsive force corresponding with an outer race fault will be  ; the characteristic fault

frequency of the outer race. In an exactly similar way for a single fault on the inner race the

impulsive frequency will be  ; the characteristic fault frequency of the inner race.

Outer race frequency:

= 2 cos                                                 (2.1)

Inner race frequency:

( )                                                                   (2.2)

For a single fault on one rolling element, each time the rolling element rotates axially there

will be an impulsive impact on both inner and outer races. The corresponding impulsive

frequency is the characteristic fault frequency of the rolling element.

Roller characteristic frequency:

= cos                                      (2.3)

Similar to the above analyses, when there is one fault in the cage, the characteristic fault

frequency of cage  can be calculated as:

Cage frequency:

=
1
2 cos                                                  (2.4)
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As explained above, for most applications, the outer race housing  is fixed in a housing and

the inner race rotates at the same speed as the drive shaft so that each of the bearing defect

frequencies are non-integer multiples of running speed, and the cage frequency is always

lower than shaft rotating frequency.

Bearing type N406 is chosen to be used to conduct this research to represent a study on

bearings’ fault detection and diagnosis on the bases of its widespread in industrial machinery

as well as its capacity of carrying heavy load. However, the author acknowledges that some

other kinds of bearings could have been used for this thesis, nevertheless, that also could be a

topic for future work.

For the SKF bearing type N406 as measured in the laboratory   = 9,  ball  diameter  is

14  and pitch circle diameter is 59 .  Knowing  the  shaft  rotational  frequency  to  be

24.3 Hz; and taking  to be 0 as  there  is  no  axial  load,  we  used  the  above  equations  to

calculate the fundamental fault frequencies corresponding to the defects seeded individually

into the bearing. Table 2-3 shows the experimentally measured characteristic frequencies at

full shaft speed and those obtained using the above equations. It can be seen that the two sets

of figures are in close agreement.

Table 2-3 Calculated defect frequencies and corresponding measured

values for bearing type N406

Defect position Measured Frequency (Hz) Calculated Frequency (Hz)
Inner race 136.20 135.48
Outer race 83.50 83.52

Rolling elements 97.34 96.63
Cage 9.025 9.28

Table 2-3 shows frequency spectra for the vibration signals from bearings in which

distinctive peaks can be seen for the faulty bearing compared to that of the healthy bearing.
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Bearings with fatigue spall generate impulsive vibrations with characteristic frequencies and

development to failure can be tracked by following the increasing prominence of one or other

of  these,  as  will  be  demonstrated  in  Chapter  3.  Although the  presence  in  the  spectrum of  a

characteristic defect frequency is a good indicator of the location of a defect, automatic

detection can only be achieved if these peaks can be detected in the presence of strong

background noise. When a roller passes over a bearing defect in the races or cages, pulse-like

excitation forces are generated that result in one or a combination of these defect frequencies

[82].
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CHAPTER THREE

3   Vibration Signal Analysis Techniques for

Bearing Faults

This chapter introduces vibration measurements as a method of condition monitoring and

defect detection in roller bearings. It reviews time domain, frequency domain and time-

frequency domain analysis of the vibration signal from roller bearings and compares their

performance regarding to fault detection and diagnosis. Various commonly used statistical

parameters are described and their usefulness for rolling element bearing faults detection

commented on.
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3.1 Introduction

The use of vibration as a non-intrusive diagnostic tool is well established in engineering, has

been widely applied to the CM of rotating machines and can be used to obtain information

about sub-systems which would otherwise be inaccessible [111, 112]. The ability of vibration

measurement  to  detect  and  diagnose  a  wide  range  of  faults  in  machine  elements  is  a  good

reason  why  it  is  often  chosen  as  a  preferred  and  cost-effective  method  for  CM  [113].  It  is

widely accepted that vibration measurement is able to identify 90% of all machinery faults by

the change in vibration signals which they produce [7] and is reported to be the chosen

method by most researchers to study bearing defects [114]. Given the faults to be studied in

this project and the impacts they generate, vibration measurement has been chosen as the

measurement method.

Local discontinuities in the material (this might be a deliberate scratch) forming the different

surfaces of the roller bearings generate impulses in the vibration signal as described in

Section 2.6. As these impulses pass through the bearing to the sensor they will be modulated

by their transmission paths and be superimposed onto background vibration. In the early

stages of defect development (e.g. spalling) the amplitude of the impulse signal generated

will not be large and due to the natural damping provided by, e.g. the lubricants quickly

decay before the next impulse is generated. However, patterns (in both time and amplitude)

do exist in the signal which allows identification of the severity and location of the defects.

The vibrations of a machine during normal machine operation will change with changes in

the dynamic properties of the machine, which could be an indication of component failure

and simultaneously point to the problem. A healthy machine operating properly will

generally produce a constant level of small amplitude vibrations. When a fault is developing
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in a component, but is no longer incipient, it will usually lead to significant changes in

machine dynamics and generate greater vibration, often with different spectral patterns which

can be used to identify the fault [115, 116, and 117].

Vibration monitoring of rolling element bearings has consistently produced good results

because of developments in signal processing techniques. Pattern recognition techniques have

been investigated and shown to be able to diagnose faults in machines for various operating

conditions [118, 73]. In this thesis, we extend pattern recognition analysis using TESPAR

with the aim of increasing the reliability and sensitivity of the method [73]. TESPAR is

described in some detail in Chapter 4.

When using pattern recognition techniques for fault detection and diagnosis, the method used

for feature extraction, and the features selected, can be critical [119]. Here, knowledge of the

system being tested will suggest the features to be used, and the better the system is known,

the easier the diagnosis should be. Ideally, the features selected will uniquely represent the

characteristics of the system being investigated, but such selection is not necessarily

straightforward and will depend on the system being monitored. The features selected for

monitoring should be robust to changes in operating conditions and any noise generated.

3.2 Vibration Measurement

CM can be successful only if the measurements taken are sufficiently accurate; i.e. the

sensors are properly mounted, the instrumentation is properly calibrated, data collected from

the same location under conditions which are largely identical save for the parameter being

investigated [120]. Then the spectrum of the healthy bearing is compared to the one where a

fault may be developing and the differences in the spectra used to detect and diagnose any

possible fault. Such spectral comparisons are a very common technique in CM.
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Nearly all available transducers measure the vibration movement of one or more surfaces of a

machine, using displacement, velocity or acceleration. Today, with the development of

modern electronics the accelerometer is the most used transducer. The signal is integrated

once to provide velocity and integrated twice to provide displacement [121]. Because of their

relative physical size accelerometers have a wider frequency range than their equivalent

velocity or displacement sensors. Accelerometers were the sensors used to collect the data for

this project.

The piezo-electric accelerometer is the most popular vibration measurement transducer in use

today [122]. These are light in weight (can be less than 10 g) with a consequent wide

frequency range (20 kHz is readily obtainable), have a good dynamic range (typically from

about 0.020 to over 106  ) and will withstand both high and low temperatures (-20 to

+120 0C for most common piezo-electric materials) [123]. The signals from the

accelerometer are processed in suitable ways to extract those aspects of the signal which can

be used to detect and diagnose any faults in the machine.

3.3 The Theory of Vibration Analysis Techniques

3.3.1 Time Domain Parameters Theory

Root Mean Square, Peak Value and Crest Factor

The RMS value is a measure of the energy level of vibrations. Peak designates the maximum

amplitude of vibrations. For sinusoidal signals the peak value, = 2 ,  but no such

simple relationship exists for real signals. For digital sampling the random vibration signal

} can be described as a discrete time series  { }( = 1, 2 … ), and the  and peak

values are given by:
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 = [( )/ ]                                        (3.1)

                                  { }                                                 (3.2)

Where there are  samples and  is the value of the   sample.

Attempts have been made to assess fault damage by detecting changes in peak values and

counting the number of peaks above a certain threshold in the measured signal and a signal

with a Gaussian amplitude distribution, but the results were not promising [124] and today

peak values are rarely used except in conjunction with other more reliable parameters.

 is a simple measure of the energy content of the vibration signal and is widely used to

detect deteriorating bearings. With incipient bearing damage, the impact signals occur as

discrete peaks but the  value of the signal remains virtually unchanged [125]. An

obvious statistical parameter to use here is the non-dimensional  :

Crest facto     =
Peak
RMS                                                                     (3.3)

 is will be an effective indicator of the spikiness of the vibration signal [126]. The larger

 the more and sharper will be the peaks in the signal, and the more likely the signal

contains repetitive impulses. However, peak values are very sensitive to random variations so

it is essential to perform an averaging process [125].

As the fault/damage becomes more severe the  value increases, but without necessarily

increasing the peak value, i.e. the  value rises to a peak after which it  falls.  Thus,  the

value could be an indicator of the severity and stage of a bearing defect. However, single
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values cannot be used for detection of bearing faults because even with averaging,  values

will vary over a wide range depending on such operating factors as load and speed.

Combining the measured values of  , peak and  could be an effective method of

determining the presence of a fault, but only if they can be compared with the baseline

healthy values for the given system operating under the same conditions. Normalized values

of , peak and  have been proposed [123] to allow for the operational condition and

non-defect induced vibrations:

    =                                                                        (3.4)

    =                                                                         (3.5)

Where  is the reference value for a healthy bearing, for roller bearing used in fixed

machinery,  would be the value for bearings in good condition under ordinary

operating conditions.

Kurtosis and Impulse Factor

The first and second moments of a distribution of sample values are the mean value and the

standard deviation of the distribution respectively. The third moment is skewness and the

fourth  moment  is  kurtosis.  For  real  signals  the  mean and  skewness  will  usually  be  close  to

zero, suggesting that the amplitude distribution is symmetrical. On the other hand, the higher

the order of the even moment the more sensitive it is to impulses present in the signal.
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Time-domain statistical parameters in addition to those described in the previous section are

used to detect the presence of incipient bearing damage. Commonly used non-dimensional

vibration amplitude parameters are the crest factor ( ),  kurtosis  ( ) and impulse factor

( ) [127]. The impulse factor is a measure of how “sharp” the of the amplitude

distribution is.  A few large spiky peaks in the time-domain vibration signal will give a large

value for , but a flattish time-domain vibration signal will have a low value for the .

Non-dimensional measures such as clearance factor ( ) have also been described [127] but

as these are not in common usage they are not discussed here.  and  have been described

[111] as:

=
[ ) ]/ 1

) 3                               (3.6)

  =                                                                   (3.7)

Where the signal consists of  samples  of  amplitudes 1, 2, … .   is the standard

deviation of the  samples, is the mean value of the  samples

The factor 3” is introduced into the term for kurtosis to normalise the expression so that

 = 0 for the Gaussian/Normal distribution. If  < 0 it means the distribution is flatter

than the Gaussian, if  > 0 it  means  peaks  in  the  spectrum  are  sharper  or  more  pointed

than the Gaussian. A high value for kurtosis tends to mean infrequent large peaks rather than

frequent modestly sized peaks.

Kurtosis has been chosen as a parameter in this work as a compromise between insensitive

lower moments and too sensitive higher moments. It has been found that for healthy bearings

the distribution of amplitudes tends to follow a Gaussian or Normal distribution with a

kurtosis value of about 0



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

79
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

[128].  It has been argued that kurtosis while sensitive to incipient faults in bearings is

insensitive to bearing operating conditions and a value of 3.0 as signifying incipient bearing

damage has been suggested [128].

 and  are  measures  of  the  spikiness  of  the  signal  and  are  largely  independent  of  the

average magnitude of the signal. These two parameters have values of about 0 for  healthy

bearings and increase rapidly when a fault representing fatigue spall is introduced..

However,  and  do not increase linearly with the damage as it progresses. With an inner

race defect, for example, the initial extent of a circumferential crack (fatigue spall) is likely to

be significantly less than the distances between two rollers. Here the bearing is subject to a

discrete impact every time a roller passes over the damaged area with a corresponding peak

in the vibration signal. As the crack propagates around the inner race the vibration becomes

less impulsive and more continuous and the vibration signal becomes more random. In the

latter case the values of both  and  will decrease, and eventually will become close to

those for the healthy condition. Thus, these two parameters cannot always provide accurate

information on the level of fault damage. However, a significant increase of overall vibration

energy – as measured by the  -  will  usually accompany more serious damage. Hence a

combination of  and  with the RMS could be a suitable set of statistical parameters for

identification of the fault level.

It has been said [128] that:  gives similar results to  and  , and that all of  and

are sensitive to incipient fatigue spalling, and this opinion has been confirmed [129].  was

found to be most sensitive parameter for onset faults but the least robust to operating

conditions. It shows that these parameters are sensitive to early spalling but may lead to

inconsistent results if used in isolation.
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The statistical parameters obtained from the time-domain of the vibration signal can be

calculated from the signal with no frequency filtering, or the signal can be passed through a

high pass filter in an attempt to reduce unwanted low frequency background noise; or even

filtered into frequency bands to reduce unwanted signal noise. The time domain parameters

are then calculated for each band.

For established fault detection the  value  of  the  time  domain  of  the  vibration  signal

accompanied by other statistical parameters works well. Nevertheless, for the detection of

incipient defects all time domain techniques, whether supported by frequency filtering or not,

suffer from the same essential drawback: the energy level of the signal must be discernible

over the “noise” from all other components of the machine.

3.3.2 Frequency-Domain Techniques

The Fourier  transform (in  one  of  its  many forms)  is  by  far  the  most  common technique  for

transforming a varying time-domain signal into its frequency-domain representation. The

frequency-domain of the signal, its spectrum, presents the energy in the signal as a function

of frequency and allows the contribution of individual components to be seen. For example,

when using time-domain analysis the signal from a small fault developing in a roller bearing

will be hidden in general bearing noise, but in the frequency-domain there will be a

distinctive peak in the spectrum at the characteristic fault frequency. The challenge is to

detect the presence of an incipient fault at the earliest possible time.

Spectral peaks appear at characteristic frequencies which can be harmonics of the

fundamental, and these signals can be enhanced by filtering out other undesired signals. Thus

frequency-domain analyses often use low-pass, high-pass, and band-pass filtering. Today

enveloping is becoming widely used because the bearing defects can impose distinct
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characteristics on the spectrum [130]. However, efficient and effective use of filtering and

enveloping techniques requires prior knowledge of the frequency band of interest and this

may not be known beforehand.

To address the limitations of traditional frequency domain analysis for early defect detection,

other analysis techniques in the frequency-domain have been developed in recent years

including the digital Fourier transform (DFT) [131, 132] which has largely replaced the

analogue Fourier transform due to the universal availability of the digital PC. A powerful

new technique, bicoherence (also known as bispectrum) analysis is being used in CM for the

processing of signals, in particular where traditional linear analysis cannot provide sufficient

information. Bicoherence is most efficacious when used to investigate faults in rotating

machinery which show themselves as non-linear transformations of the vibration signal with

non-linear coupling between frequencies. Bicoherence analysis detects and quantifies the

presence of the non-linearity in the signal and thus can indicate the severity of the fault [133,

134].

However, bicoherence analysis requires large data sets to produce a reliable evaluation and

thus is computationally intensive and not considered appropriate for on-line applications.

Today the most popular method for deriving the frequency-domain signal of e.g. roller

bearings is to transform the time-domain signal using the discrete fast Fourier transform

[135].

3.3.3 Envelope Analysis

Envelope analysis (amplitude demodulation) is considered a powerful and reliable technique

for the detection of faults in rolling element bearing and is gaining in popularity for detection

and diagnosis of such local faults as spalling and/or cracks in rolling element bearings [136].
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Envelope analysis dates back over one hundred years to the “cat’s whisker” detectors used in

the early years of radio communication, so its mathematical basis is well established. In

amplitude modulated (AM) transmission, the signal carrying the information is used to

modulate the amplitude of the carrier wave transmitted by an antenna. With radio

transmission, the carrier wave – which serves only to carry the transmission of information

from one place to another – will be a radio frequency wave and the modulating wave will

usually be at audio frequencies below about 20 kHz.

Amplitude modulation can be viewed most simply in terms of the time-domain of the signal.

Using an analogue description for easier understanding we can say that if the carrier wave is

 =  and the information carrying, modulating wave is  = ) then the

modulated wave is ) =  = )  [136], see Figure 3-1.

How does this relate to identifying local faults in rotating machinery, particularly bearings?

It is well known, and described earlier in this chapter, that whenever the defect in a rolling

element bearing strikes or is struck it produces high-level pulses of very short duration.

Figure 3-1 Simple example of modulation of carrier wave
 to produce a modulated wave (here signals have amplitudes = 1) [136]



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

83
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

Every time a rolling element passes over the defect an impulse is generated, a process which

is controlled by the geometry of the bearing and the speed of the machine so that the rate at

which the impulses are produced will be characteristic. The spectrum of a repeated impulse,

repetition period =  , is a discrete line spectrum throughout the frequency range of interest

with  a  spacing  of 1/ Hz.  Such  a  signal  is  quite  different  from  those  induced  by  faults  in

other machine components, which should mean that the characteristic repetition could be an

easy identifier of a bearing fault [137].

In fact many bearing manufacturers provide a bearing fault frequency calculator. The user

inputs the bearing type number (which identifies the dimensions of the bearing, number of

balls  or  rollers,  etc.,)  and  the  speed  of  the  shaft  and  calculator  outputs  the  corresponding

potential bearing characteristic frequencies (BCFs) as described and discussed in Section 2.5

and Table 2-3.

The frequencies in Table 2-3 are truly constant only for ideal bearings because real roller

elements not only rotate but also slide and the speed of rotation of the shaft can vary and it

should be checked using a stroboscope or similar device [138]. If the first harmonic changes

by 1 Hz the Nth harmonic will change by N Hz. In addition there are likely to be other local

faults in the bearings each with an associated frequency. It is common to find that the

harmonics smear and higher harmonics may even merge. Notwithstanding these difficulties

the simple frequencies mentioned remain a valuable source of information on bearing fault

identification [139].

Fundamental to the bearing envelope analysis is the fact that each time a defect in a rolling

element bearing under load makes contact with another bearing surface, a short duration

vibration impulse is generated, and the shorter the duration of the pulse the wider the
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frequency range over which the impulsive energy is spread. Thus the impulsive energy is

spread over a wide frequency band at a very low level and it is this wide distribution of

energy which makes bearing defects so difficult to detect by conventional spectrum analysis

– particularly in the presence of other vibration sources.

Over most frequencies the bearing structure acts to damp the impact energy but, nevertheless,

for each impact some force is transmitted into the machine and, because the signal is wide

band, it will excite resonances along its transmission path to the vibration transducer.

Nevertheless any vibration measured on the machine’s surface will contain harmonics of the

repeated impact. The transducer will also pick up signals from other vibration sources within

the machine, general background noise and even vibration from nearby machines [138]. The

resulting complexity of the measured signal makes detection of the periodicity of the original

impulse signal difficult, especially in the early stages of fault development.

In practice, then, the amplitude of the induced vibration at the characteristic bearing fault

frequencies picked up by an accelerometer on the machine frame will be very small

compared to other sources, with all signs of the BPFs hidden in what looks like noise even

though in this case the severity of the bearing defect was rated “very high” [139].

Consider how, in principle, amplitude modulation could be used to enhance the signal. The

impulse generated by the impact of the fault will excite resonances in the machine. Select the

resonance which has the largest amplitude [140]. Experience has shown that these

frequencies will be one of the machine modes and will often be in the region of 8-12 kHz

[141]. In an ideal case where the signal is band pass filtered to remove any extraneous

frequencies the output from the accelerometer would look very similar to the bottom plot in
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Figure 3-1 where the carrier is the resonant frequency of the machine and the envelope is the

characteristic bearing frequency corresponding to the particular fault.

The results of envelope analysis will depend on the frequency band chosen and the band pass

filters must be selected to include those frequencies where the defect signal is strongest [79,

141, 152]. However, this band may not be known initially and also may change as the bearing

operating condition changes. Thus envelope analysis is likely to be more successful if the

operator has prior knowledge of the carrier frequencies before selecting the band pass filters,

however,  a  degree  of  trial  and  error  in  determining  the  best  of  the  resonant  frequencies  to  use  is

sometimes necessary [138]. In practice, however, the raw signal can be very noisy and even

after band pass filtering may still contain undesirable components which increase the

difficulty of identifying the envelope spectrum. Envelope analysis is unsuitable for use with

bearings with severe faults as the damage is likely to have spread to such a degree that the

dynamic response is more random noise than clear impacts.

Figure 3-2 is a schematic diagram representing the digital demodulation process. The raw

signal is filtered to remove unwanted low frequency background noise. The usual practice is

to view the signal caused by the bearing fault in a frequency range associated with a machine

or bearing resonance [138]. It is recommended that the structural resonant frequency is

selected as the centre frequency of the band pass filter, thus the band pass filter will typically be

500 Hz to 10 kHz [142] though the upper limit may be higher if required to increase the signal-

noise ratio. The band pass filter also removes unwanted high frequency noise. This could be

unwanted machine and structural resonances and are separated out by passing the raw vibration

signal from the bearing through a high-pass filter, which is set at about 10 - 12 kHz, a frequency

determined by empiric testing to identify the most suitable resonant frequencies of the test system

[143].
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To recover the modulated signal, full wave rectification is applied to the band pass-filtered signal; If

this rectification is not done the modulation enveloped would, after filtering, cancel itself out

[144].

The remaining unwanted high frequency components the signal is low pass filtered. A

spectrum analyser (e.g. FFT for time-invariant systems) is used to extract the spectrum which

should  contain  the  BPFs.  It  is  because  of  the  inability  of  the  FFT  to  detect  faults  which

exhibit non-stationary that there is a need to seek alternative methods such as wavelets or

TESPAR.

Figure 3-2 Schematic of digital demodulation [80]

A  researcher  used  the  envelope  analysis  routine  contained  in  MATLAB  to  detect  faults

introduced into the outer race of type 6209 ball bearings [145]. The sampling frequency was

20 kHz. The drive motor had a constant speed of 24.55 Hz. The band pass filter was 500 Hz –

7.5 kHz, and the envelope spectrum obtained is shown in Figure 3-3. The bearing pass

frequency of 89.3 Hz and its harmonics are clearly visible. The presence of harmonics can

and should be used as confirmation of the fundamental frequency.

The first peak is visible at 24.55 Hz which corresponds to the shaft rotational speed. The

bearing characteristic frequency of 89.3 Hz can be clearly seen – the calculated value was

93.0 Hz but a slide factor of 0.96 was included to give a “calculated frequency” of 89.7 Hz.
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Figure 3-3 Envelope spectrum (Hz) for bearing
with outer race fault [80]

The results presented show that the version of MATLAB used is important [139, 141]. For

example, in Figure  3-3 there is a large unidentified peak at 125 Hz (and numerous smaller

peaks) in the MATLAB results which is not present with a dedicated instrument such as the

Bruel & Kjear Multianalysator PULSE 3560-B-110. Incidentally, one researcher [141] gives

a good example of averaging to reduce random errors, rather than average the time-domain

signal he averaged the frequency spectrum.

FFT with envelope analysis is definitely able to reveal bearing defects but the results will not

be consistent for all types of defects. If the bearing is subjected to a constant (radial) load a

fault in the outer, stationary race of the bearing will produce uniform impulses.

However, a fault on the rotating inner race will be subject to a varying load, where the

frequency of the variation in load will be the frequency of rotation of the inner race. But the

fault moves in and out of the bearing load zone and while in the load zone, the defect

produces vibration at the ball pass frequency, but when it is out of the load zone the

amplitude of the vibration is reduced.

Consequently, the envelope signal will be amplitude modulated as shown in Figure 3-4 and

this will appear in the envelope spectrum. As a result of considerations such as this [138] it
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has been pointed out that the envelope analysis is able to give excellent results for bearings

having outer race defect but that detection of roller and inner race defect may not be so easy.

Analysis of the envelope signal in Figure 3-4 will show sidebands either side of the

modulation frequency and the presence of such sidebands may be a method of bearing fault

identification.

There are different ways to extract the envelope; traditionally band pass filtering, rectifying

and low pass filtering was used to carry out the demodulation. However, modern digital

techniques tend to use the Hilbert transform for effective and efficient envelope detection

[145].

Figure 3-4 Amplitude modulation of the envelope signal
for fault on inner race [145]

Hilbert transform is a multiplier operator that provides an output with a 900 phase shift from the

input [117] [146]. All negative frequencies of a signal get a +900 phase shift and all positive

frequencies get a -900 phase shift. In the simplest case, if the input is a cosine wave the Hilbert
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transform will create a sine wave out of it without any change in amplitude of the wave. However,

an important consequence of this is that if the input signal is modulated the output will be the

modulating signal, the so-called “envelope of modulation”. In the case of the roller bearing with a

fault in, say, the inner race, the output will be a series of pulses occurring at the roller passing

frequency.

3.3.4 Time-Frequency Analysis - The Wavelet Transform

The Fourier transform is probably the most widely used technique to transform the time-

domain signal into the frequency-domain but in the process time information is lost. The

Fourier transform of a signal contains no information as to when a particular event occurred.

This is not a problem for stationary signals which repeat themselves, but can be important

when investigating/monitoring the growth of faults where transitory phenomena often

constitute the most significant part of the signal.

In  an  effort  to  correct  this  deficiency,  the  Fourier  transform was  adapted  to  analyze  only  a

small section of the signal at a time [147] - a technique called windowing the signal.

Essentially Gabor divided the time-domain signal into a series of contiguous sections and the

signal contained in each section (or window) is then transformed into the frequency domain.

Of course, mathematically the process is not so simple, as the window is a multiplying

function which must be tailored to avoid introducing spurious results.

Today a large number of such windows are available and most have the property that the

initial and final values are close to zero so that the transform does not “see” the time-domain

signal  as  a  series  of  step  functions.  This  process  is  known  as  the  Short-Time  Fourier

Transform (STFT) and produces a series of spectra, one for each window. As the duration of
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each window is known the spectra can be layered into a three-dimensional plot (frequency,

time and amplitude).

The two drawbacks with this method are: (i) Once a particular window size has been selected

it cannot then be changed but many signals can require more precision in determining

frequency  at  some  times  than  at  others,  (ii)  The  uncertainty  principle  means  that  good

resolutions in both time and frequency-domains cannot be achieved simultaneously [148].

For  example,  if  the  signal  to  be  analyzed  is  of  short  duration,  obviously  a  narrow  window

should be selected, but the narrower the window the wider the associated frequency band and

the poorer the frequency resolution.

The logical step was to develop a transform procedure which incorporated variable-sized

windowing. Wavelet analysis allows the use of windows of longer duration when more

precise frequency information is needed, and shorter duration when more precise time

information is required. Because the term frequency is reserved for the Fourier transform we

do not speak about time-frequency domains when discussing wavelets, instead we speak

about time-scale representations where scale can be thought of as an inverse function of

frequency.

The use of wavelet analysis is attracting considerable attention as a tool for diagnosis of the

condition of bearings. Unlike the Fourier transform which expresses the time-domain signal

in terms of sine and cosine functions, wavelet analysis expresses a signal over the whole

spectrum in terms of wavelet functions of different scales which makes it more useful for the

extraction of transient features contained in a signal. Because wavelet analysis uses wavelets

of variable scales it can examine the entire spectrum when extracting a defect signal, and so
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does not require a signal with a dominant frequency band as is needed for frequency-domain

filtering.

Thus the windows used with wavelet transforms have the extremely important and useful

feature that the width of the window can be changed (“scaled”) and the transform is

determined for each spectral component. The initial or so-called mother wavelet is the

function W (t) and is defined for a certain time interval, with W (t) = 0 outside the time

interval. To show that the window progresses with time the mother wavelet is written

as  W ( u), where u is the term that translates or shifts the window along the signal. With

a time-domain signal u will have units of seconds.

The scaled version of the initial template is W (t) where s is a simple mathematical

operation that either extends or compresses the window. Generally, the template function

W (t) can be expressed in terms of the mother template function W (t):

W (t) =
1
s

 W
u

s                                                   (3.10)

Where  is for energy normalization, so that the transformed signal will have the same

energy at every scale.

W (t)dt = W (t)dt W (t)                (3.11)

In a linear signal space, the set of all template functions W (t):  s 0, u R  forms  a

continuous frame   spanned by the scale s and time u. sampling at  s = k and u = mkL,

where k and m represent discrete format of the continuous s and u, a discrete function

W (t) (which is a simplified notation for W (t))  is  obtained.  The  set
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W (t): k or k N, m Z  in which N is the set of all non-negative integers and Z is

the set of all integers, forms a discrete frame , spanned by the parameters k and m. k N

corresponds to s < 1. Frame   or    is said complete in the linear signal space, if any signal

function f(t) can be written in the continuous frame :

f(t) = C(s, u) W (t) ds du                               (3.12)

Or in the discrete frame

f(t) = C(k, m)W (t)                               (3.13)

A complete frame is defined to be constructed with all the necessary template functions to

express any signal function in the space [149]. In Equations (3.12) and (3.13), the coefficient

of the template functions C(s, u) or  C(k, m), is a measure function and shows to what extent

the signal function f(t) is correlated to the template function W of scale s and at a specific

time u.

Wavelet transforms naturally fit into the generalized frame. The finite time interval at

different scales makes the template functions in a wavelet transform more effective than the

exponential (sine and cosine) function of infinite duration in a Fourier transform to express a

non-stationary or transient disturbance signal. The Wavelet transform can be expressed as:

C(s, u) = f(t) W (t)dt                                          (3.14)
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Where the term C(s, u) is  called  the  wavelet  coefficient  in  the  wavelet  transform  and  the

wavelet function W (t) is defined as in Equation (3.10). Due to the intensive computational

load and redundancy in expressing a signal, the continuous wavelet transform is seldom used.

There  are  different  kinds  of  wavelet  functions  such  as  Harr  wavelet  [149],  the  family  of

Daubechies wavelets [150] and the biorthorgonal wavelet [151]. Each has a unique shape that

can be selected to best match the features of interest in a signal f(t) in order to express the

signal by template functions at only a few scales, see Figure 3-5 which shows four common

Daubechies  wavelets.  In  this  project  Daubechies’  fourth  order  (db4)  is  used  as  it  gives  the

best match to the bearing signals.

Figure 3-5 Four common Daubechies wavelets, clockwise from top left
db = 2, db = 3, db = 8 and db = 4, [149]

The Harr wavelet is actually the 1st order Daubechies wavelet, with template

function        
)  (t). It represents a wavelet with a simple rectangular waveform. Symmetric

biorthogonal wavelets are popular in image processing. Daubechies wavelet functions are

non-symmetric in waveform, which makes them suitable to approximate the non-symmetric

impulse response of the bearing structure to the defect impact. In addition, different orders of

Daubechies wavelets provide a library for a user to try out and compare the different results
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in individual applications. Daubechies wavelets have been used in bearing diagnosis by many

researchers [152, 153, and 154].

When using wavelet analysis undesired signals and noise may appear and be so significant

that it is difficult to identify the pattern of the signal from the fault which makes it difficult to

determine what kind of fault it is and what is its magnitude. Statistical parameters such as

RMS and peak values have been used to assist in the evaluation of the results [152, 15].

Recent books have described wavelets as becoming established as the most widely used

investigative technique for detection and quantification of local bearing faults because of

their flexibility and relatively efficient computational processing [155]. They do not,

however, specifically refer to incipient fault detection and the problem remains that even if

the chosen frequency band does contain the necessary resonances, detection can still fail due

to the low amplitude of the fault during its first stages of development.

It is clear that further work is required regarding the theory of incipient fault detection; in fact

further  work  may always  be  required  as  the  boundary  of  detection  is  pushed  ever  closer  to

fault initiation.
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CHAPTER FOUR

4    Time Encoded Signal Processing and

Recognition (TESPAR)

TESPAR is a method of describing waveforms digitally. It is a collection of signal analysis

and classification techniques that was originally used to depict and categorize speech

signals. This chapter introduces the approach used for this research; it explains the TESPAR

concept by giving a background to TESPAR and its origin. Next TESPAR alphabets and

advantages are described then TESPAR S and A matrices are presented and examples of

them showing the TESPAR in action are given. TESPAR simulation to signals associated with

machine and bearing vibrations is discussed in details. Finally TESPAR coding process is

presented in detail with the adaptations made by the author for this research project.
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4.1 Introduction

Because of its commercial potential speech recognition has become an important and rapidly

developing technology. The attraction of speech recognition is in the simplicity and ease of

use of machines and devices given to the operator: e.g. mobile phones, household appliances

and computers. The similarities between speech recognition and fault detection are

considerable: key features are extracted from the input speech signal and interpreted to give a

classification (meaning) to the speech. Bearing defects are impulses in a noisy background

and speech is a sequence of sounds also in a noisy background. Of course, speech recognition

is more complex than fault detection because the same message can have many meanings

depending on the personal and social context.

Not only are the speech signals very susceptible to noise interference they are highly dynamic

and stochastic in nature. After World War II Professor King (and colleagues) at the

University of Bath (and later at Cranfield University) developed a new approach to speech

recognition: TESPAR (Time Encoded Signal Processing and Recognition). This system was

patented and is now available through Tespar dsp Limited, which owns the global intellectual

property rights. TESPAR is straight forward and codes speech signals without the need to use

complex Fourier transformations. TESPAR has the ability to code time varying speech

waveforms into optimum configurations.

Clearly a speech recognition technique which is reported to be highly successful at

simultaneously reducing the complexity of signal analysis while improving the quality of the

information extracted should be of interest to those concerned with extracting relevant

information from the vibration signals for faulty roller bearings [156].
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Simply, TESPAR is a method of describing waveforms digitally. It is a collection of signal

analysis and classification techniques that can be used to describe and classifying a wide

range of complex band limited signals, such as those obtained by CM techniques. TESPAR is

a technique which classifies time domain signals according to certain shape parameters which

can be used as a condition indicator. Various methods can be used to analyse and compare

the signals depending on the way in which the symbol stream is presented. In wide use since

the late 1990’s the technique has been theoretically and practically demonstrated [157, 158].

This author came to the conclusion that TESPAR could be used as part of a new approach to

condition monitoring and as a focus for this research.

4.2 TESPAR Coding Background

4.2.1 Infinite Clipping

Infinite clipping is a signal processing technique that was originally developed over sixty

years ago [74]. Investigations of human speech showed clearly that while clipping removed

amplitude information from the signal and caused big differences in the sound quality heard,

there was little reduction in word recognition. A research has been developed [74] to

eliminate all amplitude information in the speech signal by “infinite clipping” so that the

amplitude of the speech signal waveform was simply absent (reduced to zero) or present at a

constant level (a “one”) [74]. This binary transformation preserved only the zero-crossing

points of the speech signal, see Figure 4-1 [157]. However, the speech remained highly

intelligible. These results strongly suggest that speech intelligibility lies in the time durations

between the zero crossings of the speech waveform signal, which depend only on the

waveform. These observations provided the basis for the development of TESPAR.
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                                      Amplitude

                                     0                                                                           Time

Figure 4-1 Infinite clipping: only zero crossing information preserved [74]

4.2.2 Zero-Based Analysis of Signals

Bond and Cahn in the late 1950’s showed that the limitation of the infinite clipping format

(e.g. signal distortion) could be overcome by introducing so-called “complex zeros” [159]. A

curve that crosses the x-axis only once requires at least a single order equation, two crossings

require at least a quadratic expression and crossing n times at least an nth order expression,

see Figure 4-1.

The complex zeros are associated with perturbations in the signal shape – e.g. turning points,

points of inflexion, etc. - that occur between the well-defined real zeros. The presence of

every turning point adds an order to the expression. While it is relatively easy to identify the

real zeros that correspond to the signal zero-crossings by a host of numerical techniques (e.g.

Newton’s method), it is much more difficult to identify the complex zeros [160].

This is a non-trivial problem that requires the solution of a trigonometric polynomial of order

2TW; where W is the bandwidth and T is the time duration of the waveform [74, 157].

Usually  exceeds several thousand and the analytic solution of equations of such a high

order is generally not possible, and though the computation of numerical solutions is
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achievable with sufficient computer power, such power was not available at the time and that

prevented the further development of the zero models.

However, TESPAR used a method in which the complex zeros were classified directly from

the waveform by a series of approximations based on segmentation of the waveform between

successive zeros. Of course, the locations of the zero’s in the time domain must be equal to

the locations of the real zero’s in the TESPAR zero domain.

The TESPAR technique uses a representation in which a waveform is described in terms of

the locations of its real and complex zeros. This contrasts with conventional techniques based

on amplitude sampling at regular intervals, e.g. Fourier analysis. However, the TESPAR and

Fourier transform are equivalent in that both require  of  digital  sample  data  points  to

describe the waveform [73, 75, 157, 161]. A TESPAR vector quantisation procedure has been

developed  that  codes  the  signal  in  terms  of  approximations  to  its  real  and  complex  zeros

[171] and presents the analysis in terms of S and A-Matrices.

          Figure 4-2 TESPAR: single epoch with D = 14, S = 1, and M = Mx [73]

The region between any two adjacent zero-crossings is called an epoch, see Figure 4-2, and

every epoch is described in terms of three parameters: the duration (D) which is the number
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of intervals between the samples taken over the epoch, the shape (S) which is the number of

minima occurring during the epoch (positive values of amplitude, number of maxima for

negative amplitudes) and the peak amplitude (M) which is the largest sample amplitude.

4.3 TESPAR Alphabets

In fact most applications can be coded and expressed as a small series of discrete numerical

descriptors known as the TESPAR symbol stream. The standard TESPAR symbol alphabet

consists of 28 symbols, as shown in Table 4-1, and this has proven sufficient to represent

most signal waveforms to an acceptable approximation [162]. The 28 symbol alphabet is

presented in Table 4-1 as a look-up table which can be used to convert the epochs comprising

the waveform into an equivalent TESPAR symbol stream.

The look-up table was developed empirically and groups various epoch shapes together in the

way shown to symbolize an appropriate summary of the waveform, whilst excluding

combinations of shape and duration that cannot occur within the bandwidth of the signal. By

this way it reduces the “alphabet” required to describe any single epoch waveform to just one

of 28 symbols (the integers 1 to 28).

In fact the 28 ‘word’ TESPAR alphabet is referred to as the Standard TESPAR alphabet.

Signals with a bandwidth ratio of approximately 10-20:1 produce a natural alphabet of about

200-300 words – each a unique combination of duration and minima. This natural alphabet

may then be used to create a smaller quantised alphabet of TES symbols by mapping the

natural alphabet onto a two dimensional array of epoch duration on one axis and number of

minima on the other. The mapping from natural alphabet to quantised alphabet does not need

to be linear – in practice it has proven advantageous to apply a logarithmic quantisation to

epoch duration. For example, the logarithmic mapping of epoch duration used in the 28



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

101
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

symbol TES alphabet shown in the following table ensures an approximately constant

fractional accuracy in terms of symbols per octave.

Table 4-1 TESPAR symbol “alphabet”

(SF 20kHz) (SF 96kHz)

Duration
Shape

(S) Fundamental
Frequency (Hz)(D) 0 1 2 3 4 5

1 1 1 1 1 1 1 10000 48000
2 2 2 2 2 2 2 5000 24000
3 3 3 3 3 3 3 3333 16000
4 4 4 4 4 4 4 2500 12000
5 5 5 5 5 5 5 2000 9600
6 6 6 6 6 6 6 1667 8000
7 6 6 6 6 6 6 1429 6857
8 7 8 8 8 8 8 1250 6000
9 7 8 8 8 8 8 1111 5333
10 7 8 8 8 8 8 1000 4800
11 9 10 10 10 10 10 909 4364
12 9 10 10 10 10 10 833 4000
13 9 10 10 10 10 10 769 3692
14 11 12 13 13 13 13 714 3429
15 11 12 13 13 13 13 667 3200
16 11 12 13 13 13 13 625 3000
17 11 12 13 13 13 13 588 2824
18 11 12 13 13 13 13 556 2667
19 14 15 16 17 17 17 526 2526
20 14 15 16 17 17 17 500 2400
21 14 15 16 17 17 17 476 2286
22 14 15 16 17 17 17 455 2182
23 14 15 16 17 17 17 435 2087
24 18 19 20 21 22 22 417 2000
25 18 19 20 21 22 22 400 1920
26 18 19 20 21 22 22 385 1846
27 18 19 20 21 22 22 370 1778
28 18 19 20 21 22 22 357 1714
29 18 19 20 21 22 22 345 1655
30 18 19 20 21 22 22 333 1600
31 23 24 25 26 27 28 323 1548
32 23 24 25 26 27 28 313 1500
33 23 24 25 26 27 28 303 1455
34 23 24 25 26 27 28 294 1412
35 23 24 25 26 27 28 286 1371
36 23 24 25 26 27 28 278 1333
37 23 24 25 26 27 28 270 1297
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Figure 4-3 shows the TESPAR symbol stream conversion that is extracted according to the

Table 4-1, for instance, epoch 1 is represented by D = 4 and S = 0, from the Table we can

look up the alphabet symbol matching (D=4, S=0) and that symbol is 4. Epoch 5 is

represented by (D = 9, S = 3), so from the table the corresponding alphabet symbol is 8.

Figure 4-3 TESPAR symbol stream conversion [157]

The six epochs comprising the waveform in Figure 4-3 have a TESPAR symbol stream of 4,

10, 6, 6, 8, 6. Conversion of the TESPAR symbol stream into a compact TESPAR matrix is

simple  to  achieve  and  allows  signals  to  be  represented  entirely  in  terms  of  their  TESPAR

symbol distribution.

4.4 TESPAR Advantages

TESPAR is reported to remain reliable even in noisy environments [163], which is a

requirement for real-time machine CM in industrial environments. It is because of this

robustness that TESPAR has been specifically developed for use in security systems where

the speaker has to be identified with a high degree of reliability [164-166]. The 28 codes for



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

103
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

an individual epoch are claimed to make it sensitive and able to differentiate between

waveforms with similar spectral content in, e.g., rotating machinery giving TESPAR the

possibility of reducing false alarms because of its improved recognition and classification of

faults [167].

The technical benefits of the TESPAR approach over other conventional systems include, for

example, recognising and classifying conditions and events in band-limited signals of any

shape and duration. Also, TESPAR is very much less complex and TESPAR solutions can be

implemented at typically 100 times lower cost because it typically requires very much less

storage space and it is less computationally intensive; typically 10-100 times fewer MIPS are

required [168], in addition TESPAR is very adaptable to changing needs and requirements as

can be seen from the wide range of applications listed on the TESPAR website. The software

is easy to install and also does not need trained personnel [167-169]. TESPAR can run on 8

bit  A/D  systems,  though  12  bit  A/D  systems  are  more  common.  Of  course,  this  advantage

arises  at  the  cost  of  the  results  being  approximations  rather  than  analytical  solutions  to  the

waveform equation

4.5 TESPAR Data Matrices

One  of  the  key  characteristics  of  TESPAR  is  that  it  produces  descriptors  of  fixed  size  and

dimensions regardless of the variability of the waveform being coded. Many of the complex

methods associated with frequency domain analysis and that involve intensive computations

can be discarded; this has the advantage of relative simplicity but at the expense of loss of

some information.

TESPAR demands that the signal segment being examined is limited in time by end-points

which can be varied - the time between the end points can be easily set and the TESPAR
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analysis is restricted to the signal between these two points. The encoding result of the input

signals into its symbols stream ( ) each of symbol has an amplitude  ), where n being

the  symbol in the stream. The allocation of quantised TES symbols will depend upon the

features of the input signal.

The standard S-Matrix is useful for classification purposes and for providing a visual

representation of the signal under test. It is also common practice to divide the signal under

test into fixed sized lengths and for an S-Matrix to be produced for each timeslice. By

plotting these S-Matrices in a 2 dimensional array, it is possible to visualise changes to the

signal  over  time  and  can  be  used  to  identify  additional  discriminatory  parameters  that  can

further separate the different conditions.

An A-Matrix is a histogram of the number of occurrence of pairs of epochs. The epochs that

are included in the epoch pair are determined by the lag setting. The default lag setting is a

lag of 1 - the epoch pair is made up of adjacent epochs; however a different lag can be

specified by using the lag parameter. In general odd numbered lags are preferred as these

results in an epoch pair with both +ve and -ve epochs.

Adjusting the A-Matrix lag parameter can be useful when working with signals in which

events occur cyclically e.g. rotary machinery. For example, if in the normal running state the

same TES symbols occur every cycle, and each cycle is of the same length, then the lag can

be set so that the events in the A-Matrix center around the diagonal. The lag is set so that the

epoch pair made up of corresponding epochs in consecutive cycles. As the signals deviate

from normal, and corresponding symbols in each cycle are no longer the same, the events in

the matrix will move away from the diagonal. The degree to which events move away from

the diagonal can provide a measure of how far the signal is moving away from normal.
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The following provides the mathematical underpinning of the S and A-Matrices.

4.5.1 The S-Matrix

The S-matrix is presented as a histogram of TESPAR symbols which records the number of

times each TESPAR alphabet symbol appears in the TESPAR symbol stream. That TESPAR

matrices are fixed length structures is the main advantage of processing signals using the

TESPAR method over traditional frequency domain methods [168, 169].

Given such stream codes  , it is possible to build a one-dimensional histogram or S-matrix

(in its easiest shape), of the occurrence frequency of quantised TES symbols:

=
1

        1                                     (4.1)

where:

= 1    
0    

4.5.2 The A-Matrix

The A-matrix is defined as a two-dimensional histogram of the occurrence frequency of

couples of quantised TES symbols which allows more temporal information to be included

and so is generally more useful than the S matrix. For a given symbols sequence in the

TESPAR symbol stream , it is possible to build an A-matrix [168, 169] as follows:

=
1

        1 ,                   (4.1)
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where N represents the total number of epochs in the signal waveforms encoded,  is the lag

and ) characterizes the given function:

= 1    ( ) ( )
0        

In this way the A-matrix produces a representation of the TESPAR data stream that provides

information on periodicities contained within the original signal. The magnitude of the A-

matrix at the point ( )  symbolizes  the  total  occurrence  of  the  TESPAR  symbol  pair  ( )

where the second number in the pair is delayed relative to the first by the number of epochs

identified by the lag. Thus the A-matrix represents the temporal relationship between

consecutive pairs of alphabet symbols (integers). It is normally a two dimensional 28 ×

28 vector matrix (0, 1, … , 28 ) that records the number of times each pair of

symbols in the “alphabet” appears n integers apart in the integer stream [167] (some

researchers have used larger matrices, see example below).  is  known  as  the  delay  or  lag

between symbols;  less than 10 characterizes a fast oscillating signal, while  greater than 10

characterized a signal with a slowly oscillating content [169].

Obviously if there is no lag the A matrix will be equivalent to the S matrix, with the entries

appearing in a diagonal line across the A-matrix.

4.6 TESPAR in Action

Example 1: S-Matrix

TESPAR was used for speaker identification application [168]. Here the speech was first

encoded as an S-matrix: a single dimension 1 ×  vector (a histogram), where  in

Figure 4-4 is the number of times the symbol appears in the data stream. It was found that

without exception the uni-dimensional description was not as powerful in discriminating
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between speakers as the two-dimensional A-matrix; see Figure 4-5 below. Eventually, the S-

Matrix was discarded as a means of speaker verification and relied only on the A-Matrices.

Figure 4-4 TESPAR S-matrix used in speaker recognition [168]

Example 2: A-Matrix

As mentioned above, it was reported that the bi-dimensional A-Matrix when used for speaker

identification gives a much greater discriminatory power between two speakers [168]. As can

be seen in Figure 4-5 the number of distinctive peaks and their positions in A-matrices can be

a feature for classification.

Figure 4-5 TESPAR A-matrix used in speaker recognition [168]

TESPAR and its A-Matrices particularly are capable of classifying signals with amplitude

modulation, and because the vibration signals from faulty bearings often exhibit these
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periodic characteristics, so the TESPAR A-Matrices should be able to be used for CM of

bearings, that what will be investigated and discussed thoroughly in Chapter Six.

4.7 Simulation of TESPAR to Detection of Bearing Defects

As explained earlier in the section 3.3.3 envelope analysis bearing faults or defects give rise

to signals at clearly defined frequencies but which, certainly in their early stages are

swamped by the background noise in the system. Envelope analysis approaches the detection

problem indirectly, instead of trying to detect the weak bearing defect signal. Envelope

analysis detects the modulating effect of the bearing signal on more easily detectable machine

resonances. However, can TESPAR achieve this or similar? In this section a theoretical study

of TESPAR S and A-Matrices will be conducted in order to investigate how TESPAR works.

4.7.1 Numerical Study of TESPAR S-Matrices

To clarify and illustrate the TESPAR approach, a simulation of the TESPAR is conducted in

this section. A simple sine wave 100 Hz signal of unit amplitude is passed through the

TESPAR code. 100 Hz has been chosen simply because it can be taken to represent the BCFs

shown in Table 2-3.

There will be 100 cycles per second, so the epochs (periods between zero crossings) will last

for  one  half  of  one  period,  and  number  of  samples  in  each  epoch  =  =

 0.5  0.01 .

In this particular case the sampling rate was chosen to be 96,000 Hz. So the number of

 = 480 (put  another  way  at  a  sampling  rate  of 96,000 S/second  there  are  480

samples taken in one half cycle of a 100 Hz signal). For comparison, a simple sine wave 800

Hz signal of unit amplitude has 60 samples in a one half cycle.
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Figure 4-6 TESPAR S-Matrix for simple
100 Hz signal of unit amplitude

Figure 4-7 TESPAR S-Matrix for simple
800 Hz signal of unit amplitude

For the 100 Hz signal  = 480 and  = 0, since there is only one peak in each epoch.

However, the TESPAR coding/alphabet Table 4-1 has a maximum value of   = 37. So

when  > 37,  TESPAR  sets  a  default  value  of  37.  The  TESPAR  coding  for =

37 = 0 is  23.  Similarly  for  the  800  Hz  signal  = 60  = 0, and again

TESPAR sets a default value of 37. The TESPAR coding for D = 37 and S = 0 is 23. The

TESPAR coding is the same for the 100 Hz and the 800 Hz signals see Figures 4-6 and

Figures 4-7, note that in both Figures an entry can be seen in symbol position 1. This is due to

the edge effects associated with the signal.

This simulation demonstrates that the TESPAR coding depends on the sampling rate. The

bigger the sampling rate the larger the number of Durations and the greater the symbol (x-

coordinate) assigned to that epoch.

Because the TESPAR alphabet was designed for speech, the frequency band of interest was

typically 300 Hz to 3 kHz, and the Table 4-1 was constructed using a sampling rate of 20 000

S/s.  If  the  800  Hz  signal  was  sampled  at  a  rate  of  20,000  S/s  then  the  Duration  = 12

(actually 12.5, but fractions are rounded down, see Figure 4-2),  = 0, so the coding would
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be 9. Obviously then, if two signals are to be compared there must be the same sampling rate

for each signal.

However,  the  simulation  reveals  a  second point.  A maximum value  for  the  Duration  of  37

imposes a lower limit on the frequency analysis – for a sampling rate of 96 000 S/s a

frequency below about 1250 Hz will give  > 37, which will then be set to 37 by default.

However, the bearing characteristic frequencies (BCFs) of the bearing being investigated

were all well below 1250 Hz, see Table 2-3. Each of the BCFs in Table 2-3 would be

assigned the same coding of 23 for sampling frequencies which meet the Nyquist criterion for

machine resonant frequencies. Thus while analysis of raw data using TESPAR could detect

the appearance of BCFs it may not be able to discriminate between them.

Extending this approach it is considered that the TESPAR coding acts as a coarse frequency

filter. For  = 1 = 0, the frequency corresponding to a sampling frequency of 96 000

S/s is 48 kHz. The column on the right hand side of Table 4-1 lists the frequencies associated

with Duration but is should be noted that the TESPAR codings for   > 5 extend over

several Durations. For S = 0 a code of 11 covers a frequency range of 2.7 kHz to 3.4 kHz.

Generally, the higher the value of the coding the lower the precision in determining the

corresponding frequency content of the signal. It is also correct that the lower the sampling

rate the finer the filter, but for condition monitoring – as will be shown later – a sampling rate

of 96,000 S/s is reasonable.

In Figures 4-6 and 4-7 both the 100 Hz and 800 Hz signals had same TESPAR codes but the

S-Matrix gives a value of 160 to the 800 Hz signal but a value of only 20 to the 100 Hz. The

reason for this is that the ordinate does not represent the maximum amplitude of the signal

( ) but the number of epochs in the signal. A signal of 0.1 seconds long is chosen here, an
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800 Hz signal has 160 epochs in 0.1 seconds, so the corresponding amplitude or occurrence is

160, a 100 Hz signal has only 20 epochs in 0.1 seconds so the corresponding code 23 has

occurrence of 20. By default, S-matrices give equal weighting to all codes; for each

occurrence of a code the corresponding entry in the matrix increases by one. Thus the S-

Matrix contains no amplitude information, only information on the frequency content of the

signal.

Suppose that the machine resonance frequency is 8000 Hz and repeat the above TESPAR

analysis for an 8 kHz sine wave. Theoretically exactly 6 samples will be taken in one half

cycle of an 8 kHz signal with sampling rate 96,000 S/second. Since = 0 the code will be 6;

and the ordinate will be 1600. This is what the result shows in Figure 4-8. Once again a small

rectangle at symbol = 1 which was not predicted and again it is due to edge effects. However,

the rectangle at code 5 in Figure 4-8 is more interesting because it represents “rounding

issues” within the system. An 8000 Hz signal gives a calculated Duration of

exactly  6;  = 0, and then the symbol value should be 6.

Figure 4-8 TESPAR S-Matrix for simple 8000
Hz signal of unit amplitude
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But the system is not perfect and uses approximations so that sometimes the crossing can be

rounded down to  = 5. So = 5 = 0 so the coding is 5. Note that the total count is

1600 – as predicted, but 200 of this count are at code 5 and 1400 at code 6. This implies there

is either significant “wobble” on the 8000 Hz sine wave or in the TESPAR processing.

By simulating the presence of an incipient bearing fault with BCF 100 Hz, Figure 4-9 below

shows the S-Matrix for white noise (assumed to be background noise) and Figure 4-10 shows

the S-Matrix for background noise containing a 100 Hz signal with one tenth the amplitude of

the noise. No significant difference can be seen. The 100 Hz signal (representing the incipient

bearing fault) is effectively hidden.

Figure 4-9 S-Matrix for white noise Figure 4-10 S-Matrix for 1 tenth of white
noise with 100 Hz

4.7.2 The S-Matrix and Amplitude Modulation

Considering the amplitude modulation, the two vibrations are then physically interlinked by

the process described in section 3.3.3, mathematically, the modulation behaved as the

multiplication  of  the  two  signals.  One  immediate  simplification  arises  as  a  result  of  the

multiplication the relative amplitudes of the signals are not important. Once the BCF exists

(an incipient fault) it will modulate the machine resonant frequency. By using the two
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frequencies  above  again,  the  modulated  signal  is  now the  product  of  two sinusoids,  one  of

100 Hz and the other of 8000 Hz see Figure 4-11.

By simplifying the product trigonometrically using the formula below:

(2 ) × (2 ) =
1
2

( ) ( ) (4.3)

Then:

sin(2 8000 sin(2 100 ) =
1
2

[ ( (8100) ) ( (7900) )]

The appearance of a modulated signal is expected which contains sidebands (7900 Hz and

8100 Hz) either side of the 8000 Hz carrier frequency.

Figure 4-11 The modulated signal of 100 HZ and 8000 HZ

For the 8100 Hz signal the  = 5.92, which should be rounded down to 5 and with

= 0, the code should be 5. For the 7900 Hz signal the  = 6.08, which should be

rounded down to 6 and with S=0, the code should be 6. For the 100 Hz signal the code 23

should have zero ordinate (the BCF does not appear on the S-Matrix). In duration of 0.1

seconds there should be 1600 zero crossings and in the S-Matrix the ordinate values do

indeed total 1600, see Figure 4-12.
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Figure 4-12 S-Matrix for the modulated signal

The ordinate at code 1 is – as previously – due to edge effects in the system. The rectangle at

code 10 occurs is possibly due to random fluctuations and/or sampling errors at points such

as at = 0.001 seconds, causing the curve to fail to just “touch” the  axis and to not quite

reach a zero value, TESPAR will then see a duration of twice the value calculated

(2  6.67 = 13, ) = 13 = 1  10.

Compare Figures 4-8 which represents the “healthy” condition and Figure 4-12 which

represents the condition with the BCF present (“faulty” condition), the two sidebands at 7900

Hz and 8100 Hz which occur by fault existence fall within codes 5 and 6 as for the “healthy”

situation that shows TESPAR is a coarse filter.

The major difference between the two plots is the emergence of a small rectangle at symbol

10. This suggests that TESPAR can be used to detect amplitude modulated signals where the

BCF modulates a machine resonance.

However,  noise  is  present  and  it  is  necessary  to  simulate  how  TESPAR  performs  with  the

modulated frequencies in the presence of background noise. Figure 4-13 shows the S-

Matrices for one tenth of the white noise and modulated signal with sampling rate of 96,000
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S/s. The result of the background noise in the Figure shows the effect on the amplitude of the

machine resonance, which can be problematic for fewer machines.

Figure 4-13 S-Matrix for one tenth of white noise and the modulated signal

It is confirmed, exactly as found by previous researchers investigating amplitude modulation

as a means of fault detection, it is necessary for the machine resonance to be of much greater

magnitude than the background noise.

However,  an important point arises here concerned with sampling rate.  It  is  commonly said

that the sampling frequency must be at least twice the maximum frequency of interest

(Nyquist  criterion).  But  that  is  not  adequate  where  the  sum of  two sine  terms  is  concerned

(non-coherent sources, very unlikely where a single bearing or drive shaft is involved).

Assume having sin )  ( )  (where A and B are not multiples of one another) it can

be then seen that the differences in durations of the epochs change from a minimum that can

last as little as a few   to a maximum which is the period of the higher frequency

signal. To capture such information a high sampling rate is required.

Thus  the  higher  the  sampling  rates  the  better  for  the  kinds  of  signals  likely  to  be  used  for

bearing fault detection. The TESPAR handbook recommends a sampling rate of three times
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the Nyquist criterion [172] but this work shows that where the equipment allows for faster

rates they should be used.

4.7.3 Numerical Study of TESPAR A-Matrices

In section 4.5.2 the A-Matrix is defined as a two dimensional 28×28 histogram that records

the number of times each pair of symbols in the alphabet appears n symbols apart in the

symbol stream, n is called the lag or delay which is the distance between symbols.

Suppose, just for example, the TESPAR symbol stream is short: 4, 8, 9, 7, 4, 13, 9, 2, 8, 5, 7,

4, 10, 9, 1.

Give n the value 2 – means looking at the symbol pairs that appear 2 apart. Looking through

the stream it is noted that (4, .. ,9) appears 3 times. (8, .. ,7) appears twice (9, .., 4) appears

once, (7, .., 13) appears once, (13, .., 2) appears once, (9, .., 8) appears once, (2, .., 5) appears

once, (8, .., 7) appears once, (5, .., 4) appears once, (7, .., 10) appears once, (4, .. 9) appears

once and (10, .., 1) appears once. Here an A-matrix has a square base, 28×28. The height of

the ordinate at (4,9) is 3, at (8,7) is 2, and the ordinates at (2,5), (4,9), (5,4), (7,10), (7,13),

(8,7), (9,4), (9,8), (10,1) and (13,2) are all 1. All other ordinates on the Matrix will be zero

since there are no more pairings.

Looking at the line of figures in the TESPAR stream above the pairs can be read from right to

left. So the following is also true; the height of the ordinate at (9,4) is 3, at (7,9) is 2, and the

ordinates at (5,2), (4,9), (4,5), (10,7), (13,7), (7,8), (4,9), (8,9), (1,10) and (2,13) are all 1.

This means the A-Matrix has a line of diagonal symmetry which corresponds to there being

no lag with the entries appearing in a diagonal line across the A-matrix and the line of

symmetry being equivalent to the S matrix.
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The A-Matrices of the simple 100 Hz sine wave is a single peak at (23, 23), see Figure 4-14.

For the 8000 Hz signal (supposedly healthy condition) there is a major peak at (6, 6) with

very small side peaks at (5, 6) and (6, 5), see Figure 4-15. For the modulated signal

(supposedly fault condition) there is a major peak at (6, 6) with very small side peaks at (6,

10) and (10, 6), see Figure 4-16.

Figure 4-14 A-Matrix for 100 Hz sine wave with (96,000 S/s)

Figure 4-15 A-Matrix for 8000 Hz sine wave with (96,000 S/s)
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Figure 4-16 A-matrix for modulated signal with (96 000 S/s)

The A-Matrix  for  white  noise,  and  is  what  would  be  expected  a  maximum at  (1,  1)  falling

away smoothly and steeply shown in Figure 4-17. The A-Matrix for the simulated modulated

signal with background noise is shown in Figure 4-18 and to the eye there appears very little

difference to the Matrix with no fault present, the peak at (23, 23) disappears due to the

TESPAR processes.

Figure 4-17 A-Matrix for one tenth of amplitude
of random white noise
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The addition of white noise has very little effect on the A-Matrix when the resonant signal is

10dB above background, see Figure 4-19, but the BCF is no more discernible.

Figure 4-18 A-Matrix for modulated signal with white noise

But what physical meaning does this A-Matrix pairing mechanism have?  If n=0, simply the

original TESPAR stream emerges which is the S-Matrix appearing along the diagonal of the

A-Matrix,  = 0 provides  information  on  the  total  numbers  of  epochs  of  a  given  duration

and shape but little information on the signal’s temporal pattern. For  = 1 (adjacent

symbols), an elementary insight into the temporal pattern of the signal is obtained, in the

sense of a statistical measure of the order in which epochs follow each other.

The example of one tenth of white noise with modulated signal being examined here, the

8000 Hz signal should repeat itself every 12 samples and so the delay, ,  was set  to 12 and

Figure 4-19 was obtained. There are significantly sharper peaks than for = 1, at about (1,

5) and (5, 1). There is thus the potential for better fault discrimination if the delay is set to

match the carrier frequency or, possibly, one of the modulated frequencies.

Therefore a series of tests were carried out on the test rig to investigate the effect of changing

n on the A-Matrices for the different faults. The outcome was that = 1 was the delay used
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because in the trials as n was increased there were only small changes in the A-Matrix and in

every case in the direction of smaller ordinate values.

Figure 4-19 A-Matrix for modulated signal with white noise and delay = 12

4.8 TESPAR Coding and Implementation Process

Chapter Five describes how the raw signal is obtained from the CM sensor on the test rig and

sampled in a way which ensures successful categorization and processing of the signal

waveform for each of the ten bearing conditions investigated in this thesis. The TESPAR

code was written to process the data so obtained.

Typically all TESPAR analyses comprise three main processing stages: pre-processing,

TESPAR coding and classification. Figure 4-20 shows these steps. The pre-processing stage

includes filtering the raw data so only the frequencies of interest are analysed during the

TESPAR coding process. The filter applied was a 2nd order Butterworth bandpass filter with

high and low pass frequencies of 250 Hz to 17000 Hz respectively.
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Figure 4-20 TESPAR coding and classification procedure action

The reason for using 250 Hz high pass filter cut off even though the lowest frequency that

can be coded by TESPAR is 1297 Hz; is because of the low filter order being used. The filter

order is only a 2nd order filter and therefore the filter roll-off will not be particularly steep. If

a higher order filter of 8 or 16 had been used, the high pass cut off could have been moved

much closer to the TESPAR coding limit of 1297 Hz (based upon the 96 kHz sampling rate).

Nevertheless, it is believed that using a 2nd order filter significantly reduced the

computational processing required by higher filter orders and yet was still sufficient to

provide classification of fault locations and severities.

The TESPAR coding process comprises the following key steps:

Create TESPAR stream

This is performed using the code:

TStream = tespar(FilteredSignal,FluctError);
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Where the first parameter is the filtered signal, the second parameter is the fluctuation error

(in this case set to 0). Epoch fluctuations that have a peak-to-peak value of less than

‘FluctError’ are not counted as extrema and do not contribute to the shape attribute of an

epoch.

The output ‘TStream’ is a 3-by-N matrix where N is the number of epochs and:

Row Description

 1 Peak Epoch Amplitude

 2 Epoch Duration (No. of samples)

 3 Epoch Minima/Maxima

Create TESPAR codes

This is performed using the code:

TCode = tescode(TStream,AmpThresh,stdalph);

Where the first parameter is the TStream (generated above), the second parameter is the

amplitude threshold (in this case set to 0) which assigns the TES symbol for silence to epochs

whose peak amplitude is less than the specified silence threshold. The third parameter

confirms the standard TESPAR alphabet is used. This is simply the look up table that

converts the duration and shape epoch components into a TESPAR code value between 1 and

28 (29 including the silence threshold).

The output ‘TCode’ is a 2-by-N matrix where N is the number of epochs and:

Row Description

 1 Absolute Peak Epoch Amplitude

 2 TESPAR code value



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

123
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

Create TESPAR S-Matrix and A-Matrix for each fault location example (as there are

three examples of each of the four fault locations, twelve S-Matrices and twelve A-Matrices

will be generated).

This is performed using the codes:

S-Matrix:

Mats{FaultLocnLoop,SigLoop} = smatrix(TCode,AmpWeight,28);

A-Matrix:

Mats{FaultLocnLoop,SigLoop} = amatrix(TCode,AmpWeight,Lag,28);

The first parameter is the 2xN vector TCode generated above, the second parameter specifies

the epoch amplitude weighting to be applied. By default, S-matrices and A-matrices give

equal  weighting  to  all  TES codes;  for  each  occurrence  of  a  TES code  or  pair  of  codes,  the

corresponding entry in the matrix is incremented by one. Thus, by this measure, the

magnitude or energy of  the  segments  of  the  signal  forms  no  part  in  these  descriptors.

Amplitude weighting takes advantage of the peak epoch amplitude data stored as part of the

TES code of each epoch. The corresponding entry in the matrix is incremented by a value

proportional to the peak epoch amplitude. In this way, epochs with higher amplitudes are

given more weighting than epochs of lower amplitude.

Depending on the application, amplitude weighting can result in improved discrimination

between signals from different condition sets. The default value for weight is 0 indicating that

no  amplitude  weighting  will  be  applied,  in  which  case,  each  occurrence  of  a  pair  of  TES

symbols causes the entry in the corresponding bucket of the A-matrix to be incremented by 1.

If the weight argument is specified, the amount by which the corresponding bucket in the A-
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matrix is incremented is calculated by adding together the amplitudes of both epochs,

dividing this figure by the weight and adding 1.

The third parameter specifies the lag to be used during the A-matrix generation process by

comparing TES symbol codes from epochs that are separated by ‘Lag’, in this research n = 1.

The  fourth  parameter  simply  fixes  the  size  of  the  A-matrix  output  with  a  default  setting  of

28×28 elements. For a given quantised TES symbol sequence (n), it is possible to construct

a two-dimensional histogram using Equations (4.1) and (4.2).

4.9 Test Procedure Adopted

Assuming that the mean absolute magnitude of the lower frequencies in the spectrum

provides an indicator of fault severity because it is anticipated that as fault severity increases

the magnitude of the lower frequency epochs increases. However, the simulations above

suggest these might be hidden by the traditional forms of TESPAR data presentation – the S

and A Matrices - and so a modified approach was adopted. Firstly, all epochs that had

durations greater than the average duration associated with the whole signal were identified.

Then the code was adapted to generate the mean absolute magnitude value of all these longer

than average epochs. The mean absolute magnitude value thus produced is taken to be a

direct indictor of fault severity.

Then create baseline S and A-Matrices, called an archetype, for each of the four bearing

conditions, one healthy and three different faults.

As dimensions of the S-Matrix are fixed at 1×28 and the A-Matrix are fixed at 28×28, it is

very simple to generate an archetype matrix for each of the conditions by simple averaging
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the individual matrices generated from the example associated with each condition the S and

A Matrix archetypes are given below:

Archetype =
S  Matrix(i)

n                     (4.4)

and

Archetype =
 A Matrix(i)

n                     (4.5)

When  using  TESPAR  as  a  signal  processing  solution,  it  is  not  necessary  to  always  use

matrices as a means of classification. It is possible to use other and possibly more appropriate

TESPAR features to identify the presence and classify the severity of a fault.  There can be

advantages to using the output directly from the TESPAR or Tescode functions. Within the

code, the following lines are processed for each example:

Idx = find(TStream(2,:) >= mean(TStream(2,:)));

The code above identifies the indices of all of the epochs whose duration is greater than the

mean duration within the signal. Essentially the indices being identified are those associated

with the lower frequency components from within the signal.

MeanMag = mean(abs(TStream(1,Idx)));

This part of the code generates the mean absolute magnitude values from all of the indices in

the epochs identified above.

Essentially this means identifying the energy associated with the lower frequency

components within the signal.

AllMeanMags = [AllMeanMags MeanMag];
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The part of the code above stores the mean absolute magnitude generated. A comparison then

will be made between the stored values which can be used to identify the fault severity as will

be shown later in Chapter Six.

It is proposed to identify the fault location during the classification stage of the data

processing. This will be done by comparing each of the test S-Matrices A-Matrices with the

four S and A archetypes. In this example, correlation was used as the classification procedure

of choice. A ‘winner takes all’ strategy is applied, meaning that the archetype giving the

highest correlation score when matched with the test Matrix is defined as the ‘winning’ fault.

The correlation is performed by using the ‘score’ function:

C = SCORE(A,B);

This function returns the angle correlation score between matrices A and B: this is simply the

square of the cosine of the angle between the two `vectors'.

) =
(( ))^2

)  ) (4.5)

The correlation scores produced by comparing each signal under test with each archetype are

discussed  later  in  TESPAR  analysis  in  Chapter  Six.  Classification  of  the  faults  was  done

using both S-Matrix correlation and the A-Matrix correlation described above.

To determine which methodology (the conventional methods or TESPAR) is better; metric

needs to be identified which can be used to compare the different techniques. During this

research, three key metrics have been identified that can be used for this purpose. These are:

Results accuracy.

Processing overheads (memory used, current draw and number of processing cycles

required).



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

127
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

Ease of implementation.

Although other techniques can match the TESPAR performance, the TESPAR

implementation requires significantly less processing overheads and is easier to implement as

less underlying mathematical knowledge is required.
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CHAPTER FIVE

5 Test Rig Facility and Experimental Procedure

This chapter introduces the test rig construction and the parameters measurement associated

with incipient defect detection in a roller bearing. The parameters to be measured are

discussed and details of the relevant transducer and data acquisition system given, as are

details of measurement practice. The manner in which defects are introduced into the

bearings and data acquisition is described in detail.
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5.1 Experimental Facilities

The aim of this study was to detect specific faults introduced into given roller bearings and to

diagnose differences between the different faults. This will be done by monitoring the

vibration signal from an accelerometer placed on the bearing housing. The rig was simple and

industrially relevant in which faults could be introduced in a repeatable and controlled

manner and the vibration be measured to an acceptable level of accuracy.

An important element of CM research is the seeding of faults in a controlled manner into a

practical system that will provide real data similar to that which might be recorded in an

industrial situation. The choice of a roller bearing is because this component is in widespread

use in a wide range of industries. The bearing chosen for this experiment was a NSK type

N406 cylindrical roller bearing which is typical of many used in industry and the bearing

faults could be introduced as required. The rig also had to include an accelerometer for

measuring the vibration generated. The instrumentation and equipment used was selected on

the basis that it was available within the Centre for Efficiency and Performance Engineering

at the University of Huddersfield and had been found to be accurate and reliable. The

advantage of using an existing rig that has been developed and used previously is represented

in disassembling and re-assembling and that is due to its construction which has been done in

a way to ease its connection to other experimental facilities such as sensors as well as its

isolation from other sources of vibration. New instrumentation was also purchased from

Sinocera on the basis that this was a company that produced quality products at competitive

prices.

5.1.1 Test Rig Construction and Components

The test rig is shown in Figure 5-1. The drive power is from a 4kW, 3-phase, and 4 pole

electric inductions motor. The speed and torque of the motor are controlled by a Siemens
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Micro Master Controller so the drive shaft can be run at different speeds (to a maximum of

1460 rpm) with different applied torque loads to a maximum of 4.0 kW. Two pairs of

matched flexible couplings couple the motor to the brake via three short cylindrical steel

shafts.  There  are  two  bearing  housings  to  support  the  shafts,  the  housing  nearer  the  motor

contains a MAC cylindrical roller bearing type N 406 and the other contains an SKF double

row self-aligning spherical roller bearing type 22208 EK.

A radial load is applied to the central shaft using a hand pump with a pressure gate to

pressurise a hydraulic ram frame, which is connected to a load cell. The Sinocera YD-5

piezoelectric accelerometer with frequency range up to 20 kHz was positioned on the housing

of the N 406 bearing; it was mounted vertically to measure the vibration.

    Hydraulic ram frame

             AC Motor      Accelerometer               Load Cell               DC Brake

           Shaft

   Couplings

Figure 5-1 Schematic of the test rig construction

BCA

Adjusting Bolts

Encoder

Bearing Housings
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Figure 5-2 Test rig construction

5.1.2 Data Acquisition System

A data acquisition system was designed to monitor and record data parameters such as

temperature, vibration, sound, etc., but it also contains some basic data analysis tools

including spectrum analysis for online data examination.

A Sinocera type YE6232B, 16 channel, 16 bit data acquisition system was used, see Figure 5-

2. Essentially a 16-channel high speed data acquisition system was employed to record all the

measurements at a sampling rate of 96 kHz. The hardware consisted of three parts: the

piezoelectric accelerometer (sensor) which was connected via a charge amplifier to a data

acquisition card which was then connected to a computer. The amplifier is necessary to

amplify the vibration signal, which is often very weak, and it also electronically isolates the

accelerometer from the processing and display equipment. The software is the data

acquisition logic and the analysis software (with other utilities that can be used to access and

MotorShaft

Bearings Housing Flexible couplings

Brake Sensor Hydraulic ram frame Load cell

Hand pump
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analyse data from the data acquisition memory of the computer). The data acquisition system

specification is shown in Table 5-1.

Figure 5-3 Sinocera YE6232B data acquisition system

Table 5-1 Data acquisition system specification

Data Acquisition System Specification
Manufacturer Sinocera YE6232B

Number of channels 16 channels, selectable voltage/IEPE input
A/D conversion resolution 16 bit
Sampling rate (maximum) 100 kHz per channel parallel sampling

Input range ±5V
Gain Selectable either 1, 10 or 100
Filter Anti-aliasing filter

Interface USB 2.0

A data acquisition control programme developed for Lab-Windows was used and consists of

a main data inspection panel and parameters set-up panel. This software was based on a

Windows operating system and had the capability to carry out on-line data sampling.

Modifications such as the number of channel, sampling frequency, data length and filenames

can be chosen, recorded and stored on separate set-up page of the software package.
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5.1.3 Vibration Transducer

A vibration transducer used to measure the structural vibration converts vibration energy into

a measurable voltage. While velocity pickups and eddy current or proximity probes are still

used for vibration measurement, accelerometers are by far the most popular vibration

transducers used with rotating machinery [171].

Piezoelectric accelerometers can be described as a single degree of freedom spring-mass

system which is so arranged as to generate a force equivalent to the amplitude and frequency

of vibration. The force is applied to a piezoelectric element, which produces a charge on its

terminals that is proportional to the vibratory motion. A charge amplifier is used to produce

an output Voltage. The specification of the accelerometers is given below in Table 5-2 also

see Figure 5-3.

Figure 5-4 Sinocera accelerometer model YD-5 [121]

Table 5-2 Sinocera accelerometer specification [121]

Accelerometer Manufacturer Sinocera
Type Piezoelectric

Model YD-5 (SN. 4251)
Frequency range 0.5 Hz to 20kHz

Sensitivity (Calibration) 8.08 mv/ms-2

Temperature -20ºC to 120ºC
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The accelerometer was attached to the bearing housing casing vertically by threaded bronze

studs. The vibration transducer was connected to a charge amplifier and from the charge

amplifier to the data acquisition system and then to the computer via a USB port.

5.1.4 Load Cell

The load cell, see Figure 5-4, is a sensor used to measure the force applied by the hydraulic

ram onto the bearings. Specification of the Sinocera model CL-YB-11 5kN load cell is given

in Table 5-3

Figure 5-5 Sinocera load cell [121]

Table 5-3 Sinocera load cell specification [121]

Load Cell Manufacturer Sinocera
Name Weigh transducers (Strain based)
Type CL-YB-11

Sensitivity 1.5-mV/V
Linear range 0-5 kN

Overload 150%
Operating temperature -20ºC to 60ºC

Material Special alloy steel
Output type Five core shielded cable
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5.1.5 Speed and Torque Controller

The test rig is operated at different speeds and with different torque loads, so a speed and

torque controller was required. In Figure 5-5, the Siemens Micro Master Controller was

connected into the rig and proved easy to use and was able to deliver a known torque and

speed accurately.

Figure 5-6 Photograph of Siemens Micro Master Controller
and data acquisition system

5.2 Bearing Sample Preparation

In this research, ten NSK type N406 cylindrical roller bearings were used and their

specifications are shown in Table 5-4:

Table 5-4 Specification of NSK type N406 cylindrical roller bearing

Parameter Measurement
Pitch Diameter 59 mm
Bore Diameter 30 mm

Roller Diameter 14 mm
Roller Number 9
Contact Angle 00

Data acquisition

Micro controller

Data plotter
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One of the bearings had no fault introduced and was considered a reference. Three kinds of

faults were simulated; roller, inner race and outer race. The faults were scratches of varying

degrees of severity introduced by Electrical Discharge Machining (EDM). The scratches were

all rectangular slots of depth 0.1mm and width 0.18mm, but of varying lengths for all

simulated faults used in this research. It is obvious that single scratches of uniform width and

depth  are  not  truly  representational  of  real  defects  in  bearings,  but  this  approach  has  three

important advantages: the faults are consistently reproducible across all the bearings; such a

defect is expected to produce a clear periodic signal which will optimise the possible success

of the TESPAR application; and it is possible to control the degree of the fault, i.e to

introduce  a  small  fault.  As  known  a  real  defect  depends  on  the  nature  of  the  cause  of  that

defect, some of them start small in terms of depth, width and length then increase gradually,

others are apparent from the start, sees section 2.4 in Chapter two.

It is accepted that a possible alternative would have been to overload and run to failure and

this could be a topic for further work. This method was not the one chosen here because,

firstly, the radial load on the bearing needed would have been higher than the rig capacity to

bear as well as being time consuming in a time restricted research project. Secondly, the

faults could be produced and simulated in the same way by electrical discharge machining.

Faults R1, R2 and R3 were scratches introduced onto the rollers of the bearing see Figure 5-6

for example. The most severe fault (R1) extended right across the roller (100% = 13.2mm

length), the least severe fault (R3) extended only 30% of the way across the roller (3.96mm

length)  starting  from  the  edge  of  the  ground  area  and  the  intermediate  fault  (R2) extended

60% of the way across the roller (7.92mm length), again starting from the edge of the ground

area.
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Figure 5-7 Photograph of NSK type N406 cylindrical roller bearing

with 30% roller fault (R3)

Faults  I1,  I2 and  I3 were scratches introduced onto the inner race see Figure 5-7 as an

example. The most severe fault (I1) extended right across the race (100% = 12.00mm length),

the least severe fault (I3) extended only 30% of the way across the race (3.60mm length)

starting from the edge of the ground area and the intermediate fault (I2) extended 60% of the

way across the race (7.20mm length), again starting from the edge of the ground area.

Figure 5-8 Photograph of NSK type N406 cylindrical roller bearing

with 60% inner race fault (I2)
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Faults  O1,  O2 and  O3 were scratches introduced onto the outer race see Figure 5-8 as an

example. The most severe fault (O1) extended right across the race (100% = 18.50mm

length), the least severe fault (O3)  extended  only  30% of  the  way across  the  race  (5.55mm

length)  starting  from  the  edge  of  the  ground  area  and  the  intermediate  fault  (O2) extended

60% of the way across the race (11.10mm length), again starting from the edge of the ground

area.

Figure 5-9 Photograph of NSK type N406 cylindrical roller bearing

with 100% outer race fault (O1)

Table 5-5 lists the specifications of the defects (scratches).

Table 5-5 Bearings defect specification
(defect width = 0.18mm and depth = 0.10mm)

Bearing Fault Length  mm Remarks

1 Roller = R1 100% = 13.20 Starts from
Edge of

Ground area
2 Roller = R2 60% = 7.92
3 Roller = R3 30% = 3.96

Bearing Fault Length  mm Remark
4 Inner race = I1 100% = 12.00 Starts from

Edge of
Ground area

5 Inner race = I2 60% = 7.20
6 Inner race = I3 30% = 3.60

Bearing Fault Length  mm Remark
7 Outrace = O1 100% = 18.50  Starts from

Edge of
Ground area

8 Outrace = O2 60% = 11.10
9 Outrace = O3 30% = 5.55
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5.3 Experimental and Data Collection Procedure

The bearing rig was allowed to run 5 minutes to warm up before starting data collection. Of

course errors such as manufacturing error, speed relative errors and roller estimation error

might be presented and the accuracy cannot be 100%, however, the ten bearing conditions

were tested with the assumption that the bearings have no clearance, no lubrication and no

slippage error. The bearing with no faults introduced was tested and used as a reference.

Vibration signals were collected from the accelerometer mounted as already described on the

bearing housing. Experiments were conducted to study bearing fault detection and diagnosis.

Three sets of data were taken for each bearing condition, the three data sets of each bearing

condition were taken in the same day, each set  of data contains sex tests to ensure that the

signals  obtained  were  self-consistent,  one  of  the  sets  was  used  to  create  the  S  and  A

archetype matrices and the other sets of data were used to create the matrices. All

experiments were conducted in equipped Laboratory that maintains the same weather

condition; therefore, all tests were supposedly carried out under the same conditions and also

under full shaft rotational speed of 1460 rpm (24.3 Hz) to enhance the vibration produced by

running on high speed. As known in real condition there are different kinds of vibration

conditions; axial, torsion and radial loads, therefore, 50% of 4kW torsion load and a radial

load of 450N was applied vertically on the shaft that is connected to the bearings in every test

where the vibration is also measured vertically and picked from the housing that contains the

bearing N(406) tested, the other supporting bearing was not subject to experiments because

the study concerns heavy duty bearing and also avoid adding other modifications to the pre-

excited rig (e.g. adding other kind of bearing or extra sensors) which would cause more

difficulties and more time consuming to a fixed time research, and also to prevent potential

disturbing  for  existing  ones.  These  loads  are  applied  to  the  rig,  firstly  to  simulate  real
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conditions in industry, and secondly to be sure that they are permissible by the rig tolerance.

The sampling rate was 96 kHz and data length was 960000 points with duration of 10

seconds. At this shaft speed the bearing would have rotated over 240 times in 10 seconds and

it was considered that this was an adequate number (also 10 seconds is a convenient

duration). The sampling rate of 96 kHz meant the upper frequency limit of the system was

over 40 kHz; this was about 300 times the highest of the calculated and measured

characteristic frequencies (inner race at 136Hz) and so would include all harmonics of

interest.

The bearings experiments have taken two week to be conducted; and the time-consuming part

of the experiments was changing bearings. Swopping a bearing takes three hours.  First the

rig needed to be dismantled and the shaft taken out. Then the first tested bearing was slid out

and the next bearing to be tested slid onto the shaft. This part of the process required the use

of a pressing machine. Then the bearing was replaced and the rig re-assembled. This

procedure had to be repeated every time with all bearings.

The order of the experimental procedure was healthy bearing, bearing with outer race fault,

bearing with roller fault and finally bearing with inner race fault. In each case the 30% fault

was tested first followed by the 60% fault and then the 100% fault.
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CHAPTER SIX

6 Results and Discussion

This Chapter reports the analysis of the bearing data collected using conventional methods

and the TESPAR approach developed by the author to determine whether it is suitable for use

with bearing condition monitoring. The results presented include the envelope technique,

wavelet and the TESPAR. Eextraction of TESPAR streams and codes for the vibration signals

from both healthy and faulty bearings is implemented. The construction of both S and A-

Matrices is described for each fault. A method for assessing the similarity of the S and A-

Matrices is developed using a correlation technique to determine both the presence and type

of fault. This chapter reports the successful development of a fault severity classification

based on the TESPAR system and shows that such an assessment can be a direct measure of

fault severity. The results indicate that TESPAR can be a suitable method for detection and

diagnosis of faults in bearings.
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6.1 Initial Results and Discussion

The most obvious technique is to visually inspect the time-domain waveform. Figure 6-1

shows a 0.25 second sample of a vibration signal from two N(406) bearings where the

sampling rate was 62.5 kHz and rotational speed was 1460 rpm (24.3 Hz). There are two

traces present one is from a bearing with a small outer race fault (blue trace) and the other is

from a bearing with a large inner race fault (red trace). It can be seen that the amplitude of the

red trace is significantly larger than that of the blue trace.

Figure 6-1 Time domain waveforms for small outer and big inner races faulty bearings

Figure 6-1 shows repetitive impacts at intervals corresponding to the time interval between

the rolling elements passing the point on the outer race and the inner race where the faults are

situated.  It is also seen that these repeated impulses are amplitude modulated with a similar

patterns repeated for every revolution.

Each  impact  of  a  passing  element  with  the  fault  excites  damped  resonances  in  the  bearing

structure that die away rapidly. Unfortunately, vibration signals from bearings do not always

produce a signal showing the impacts as clearly as in Figure 6-1. The vibration signal from a
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sensor will  be the sum of all  the vibrations from the machine arriving at  that  point and will

contain many components. It is unlikely that simply viewing the time-domain signal will

detect, for example, a spalling defect in the bearing [123]. Certainly at the inception stage

small impulses due to spalling will be masked by background noise generated by vibrations

from other components. The present means of overcoming this problem is to extract certain

characteristic parameters from the signal and trend them with time.

Typically vibration signals from real bearings are non-stationary and non-deterministic.

Time-domain feature extraction is done by determining statistical parameters, which provides

information  about  overall  level  and  the  “spikiness”  of  the  signal  associated  with  the  defect

induced impulses [124]. Commonly used time-domain parameters are  , peak

value ( ), crest factor ( ), kurtosis ( ) and impulse factor ( ).

The probability density distribution  has also been found useful [124, 125]. The

will directly reflect the energy level of the vibration. The Peak value is the maximum value

attained by the signal.  and  indicate the degree of spikiness of the signal and are useful

with defect-induced impulses.

Consider two signals 1 and 2 with the same peak value. Suppose 1 has the greater energy

but is less spiky, while S2 has less energy but is spikier. We should observe that 1 has the

greater  value but S2 has larger  and  values.

,  and  are non-dimensional and can be used to indicate incipient spalling due to

fatigue. However, if the fault develops and becomes sufficiently severe, then  and

return to the values observed for a normal bearing. Thus these parameters are not often used

in isolation.
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When a fault develops in a bearing, the vibration signal will exhibit sharp impulses of

relatively low amplitude, these will appear with incipient damage and as the fault develops

the vibration energy level will first increase significantly and then substantially. Figure 6-2

shows vibration signals taken from a normal “healthy” bearing and a bearing with a fault in

the outer race. It can be seen that the vibration amplitude of the defective bearing is

significantly higher than for the normal bearing both in terms of peak value and RMS.

Figure 6-2 Vibration signals for normal bearing and bearing with outer race fault

In frequency domain, the presence of peaks in the vibration spectrum can be used to identify

both the type of fault and its location. For detection and diagnosis of bearing faults, the

characteristic frequencies associated with specific faults need to be known and specimen

calculations of these are presented in Table 2-3. Figure 6-3 shows the vibration spectrum of a

healthy  /  normal  bearing  and  a  bearing  with  a  fault  in  the  outer  race.  The  initial  dominant

peak in the spectrum can be easily identified by the difference between the healthy and faulty

spectra.

However, automatic detection of faults using characteristic bearing frequencies is not simple;

it requires the spectrum be searched for specific frequencies and their harmonics and
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sidebands [175]. One major difficulty is that the vibration energy of the bearing is wide-band

noise which can easily bury specific frequencies; another is that impacts generate wide band

noise which can excite resonances in the bearing and surrounding structure. Spectrum

comparison has also been investigated for the purpose of signature analysis [176].

Figure 6-3 Vibration spectra of normal bearing and bearing with outer race fault

Here the baseline spectrum against which the others are to be compared is for a machine (or

component) in a healthy condition. A difficulty here is that often there can be considerable

divergence between the spectra for apparently identical healthy machines, and some form of

averaging has to be undertaken. Any difference which subsequently develops between the

baseline spectrum and the measured spectrum is taken as an indication of changes in the

mechanical condition of the machine (or component). The comparison identifies frequencies

at which significant changes in amplitude have taken place. In Figure 6-3 the baseline

spectrum was determined for the healthy bearing. Then the measured signal with fault in the

outer race is plotted on the same axes and compared with the baseline. Subtraction produces a

'difference' spectrum which forms the basis for decision-making. A weakness with this

technique is that often incipient faults produce insufficient energy to make a noticeable
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difference in the spectrum compared to the total machine component vibration. Another

problem is that the vibration spectra from bearings vary with bearing speed and loading.

6.2 Base-Lining Analysis and Results

6.2.1 Envelope Spectrum

As explained in Chapter three, it is well known that a popular method for CM of bearings is

to use the envelope spectrum. To check if the data contains the information of different faults

a common envelope procedure is applied to the data to check the character frequencies are

shown in the envelope spectrum. Moreover it  will  be used as a reference to benchmark the

results obtained late from TESPAR analysis.

Figure 6-4 Envelope spectrums for healthy and three different
degrees of outer race faulty bearings

Figures 6-4 to 6-7 show the envelope spectrum of the datasets for all the bearings tested in

the frequency band from 8 kHz to 15 kHz. With no fault present the envelope spectrum of the

vibration signal from a bearing show very little as can be seen by the results in plots labelled
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(a) in Figures 6-4, 6-5 and 6-6 compared with the plots obtained when a fault was present the

envelope spectrum for the healthy bearing is very flat with no clear spectral lines to be seen.

Similarly with Figure 5-9 (b) which represents the smallest  of the outer race faults,  there is

little indication of the presence of a fault. However, Figure 6-4 (c) and (d) show the

characteristic outer race fault frequency (83.3 Hz) clearly indicating the presence of an outer

race fault.

Figure 6-5 shows the results obtained for roller faults. Here peaks at the characteristic fault

frequency (97.3 Hz) can be seen even with the smallest  fault.  The amplitude of these peaks

increased as the fault severity increased.

Figure 6-5 Envelope spectrums for healthy and three different
degrees of roller faulty bearings

Figure 6-6 shows the results obtained for inner race faults. Here peaks at the characteristic

fault frequency (134.4 Hz) can be just discerned even with the smallest fault. Once again the

amplitude of these peaks increased as the fault severity increased.
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Figure 6-6 Envelope spectrum for healthy and three different
degrees of inner race faulty bearings

In  Figure  6-7  the  spectra  of  the  roller  and  the  inner  race  faults  are  quite  clear  as  shown in

Figure 6-7 (c) and Figure 6-7 (d) respectively. The roller and the inner race characteristic

faults’ frequencies are identified at 97.3 Hz and 134.4 Hz respectively as mentioned above.

Figure 6-7 Envelope spectrum for healthy bearing and three different bearing faults
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Moreover, the characteristic frequencies cannot be seen in envelope spectrum in 6-7 (a)

which indicates healthy bearing spectra. This can be illustrated by the blue solid line in the

Figure. In Figure 6-7 (b) the spectra representing the small outer race fault appears smooth

and there is only a small amplitude which cannot be seen easily from the figure.

6.2.2 Wavelet Analysis

As  explained  in  Chapter  Three,  there  are  different  kinds  of  wavelets  for  different  kinds  of

applications and the wavelet function of 4th order of Daubechie was chosen for the research

because it gives the best match of the bearing defects signal which features strong non-

stationary characteristics.

Figures 6-8, 6-9 and 6-10 show the results of applying wavelet analysis to the time domain

datasets obtained for all the bearings tested.

Figure 6-8 shows the wavelet signal obtained for the healthy bearing and bearing with three

severities of outer race faults. Figure 6-8 (a) shows the waveform for the healthy bearing and

seems to be smooth and flat with no distinctive features except a very small peak at the shaft

speed. Similarly in Figure 6-8 (b), the waveform of the bearing with a 30% outer race fault

does not show any clear indication that a fault was present.
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Figure 6-8 Spectrum of wavelet filtered signals for a healthy and three
different severities of outer race faults

However, Figure 6-8 (c) and (d) which show the signal waveforms for the 60% and 100%

outer race faults respectively clearly exhibit peaks at the characteristic outer race fault

frequency of 83.3Hz and its harmonics. Unlike the envelope analysis the amplitude of the

peaks does not increase as the severity of the fault increases.

Figure 6-9 shows the wavelet results obtained for roller faults. Here peaks at the

characteristic fault frequency (97.3 Hz) and its harmonics can be seen even with the smallest

fault, and the amplitude of the peaks increased with severity of the fault sufficiently for the

severity of the faults to be differentiated.
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Figure 6-9 Wavelet signals for a healthy and three different degrees of rollers faults

Figure  6-10  shows  the  wavelet  results  obtained  for  inner  race  faults.  Here  peaks  at  the

characteristic fault frequency (134.4 Hz) can be just discerned even with the smallest fault.

However, the 60%, 100% inner race fault shows very similar waveforms which makes it very

difficult to determine the severity.

From Figure 6-11 it can be seen that the least severe fault, in the case of the outer race the

fault cannot be identified easily. In the case of the roller element fault characteristic defect

frequencies could be located at 97.3 Hz and its harmonics. But with the inner race fault there

is clear indication of peaks at the characteristic frequency of 134.4 Hz and its harmonics, the

inner race defect seems to generate the largest amplitude peaks.
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Figure 6-10 Wavelet signals for a healthy and three different degrees
of inner race faults

Figure 6-11 Wavelet signals for a healthy and three different small bearings faults

Thus, three conventional techniques of time domain, envelope spectrum and wavelet analysis

have been used with the ten bearings to provide a base-line with which to assess the

effectiveness of the TESPAR analysis.
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6.3 TESPAR Processing Specification

The bearing data being processed, detailed in Chapter Five, represents ten conditions, with a

healthy bearing as baseline and with three different fault locations; outer race, inner race and

roller (each of these fault locations having three levels of severity).

The TESPAR processing applied to both the classification of fault location and fault severity

comprises relatively few steps:

Step 1: Load each raw data signal

Step 2: Filter the signal using a 2nd order Butterworth bandpass filter with filter band

of 250Hz–17000Hz.

Step 3: Each of the filtered signals is passed into the TESPAR function to produce the

TESPAR stream. Each epoch in the filtered signal is converted into a magnitude,

duration and shape component, thus producing a 3xN length vector where N is the

number of epochs within the signal.

Step 4: Each TESPAR stream is passed into the Tescode function to convert the

TESPAR stream into the TESPAR codes vector. The duration and shape component

of each epoch is converted into a TESPAR code by using the look-up table. The

output of this step is a 2xN length vector comprising the magnitude and TESPAR

code associated with each epoch.

To classify the fault location:

o Step  L5:  Generate  TESPAR  S  and  A-Matrices  for  each  signal  by  using  the

corresponding vector codes output from Step 4.
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o Step L6: Generate a TESPAR archetype for each bearing condition.

o Step L7: Correlate each matrix produced in step L5 with each matrix

archetype produced in step L6. Whichever archetype produces the closest

match with the matrix under test  is  determined to be the winner and thus the

predicted fault location.

To classify the fault severity:

o Step S5: For each signal, find all epochs that have durations greater than the

average duration calculated from the signal as a whole. Generate the average

absolute magnitude value from all of the epochs that are identified.

o Step S6: The average absolute magnitude value generated from each signal

under test is used to identify the fault severity.

6.4 Fault Location Classification

This section describes in more detail how TESPAR classifies the different fault locations by

using  the  S  and  A-Matrices  with  the  use  of  correlation.  The  S  matrix  is  a  2  dimensional

representation of TESPAR codes, as explained in Section 4.5.1 that have been generated from

the TESPAR coding stream. In its raw form, the S-Matrix is simply a histogram of each

TESPAR code on the X-axis and the number of occurrences of each code on the Y-axis.

The A-Matrix is a 3 dimensional (28×28) matrix, as explained in Section 4.5.2, that provides

the number of occurrences of each combination of TESPAR codes (with the X and Y axes

representing  the  combination  of  TESPAR codes  and  the  Z  axis  representing  the  number  of

occurrences of each TESPAR code combinations). The discussion below shows that the

correlations between the test S-Matrices and the S-Matrices archetypes for faults and the test
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A-Matrices and the A matrices archetypes for faults works well and can be used as a good

measure for detection of fault location in rolling element bearings.

6.4.1 Classification of Bearing Faults Using S-Matrix

This section presents the matrices and results when using TESPAR S-Matrices to classify the

fault location. Figures 6-12 (a), (b), (c) and (d) show the three examples of bearing normal

conditions and their archetype.

Figure 6-12 (a) S-Matrix for the first
Normal condition

Figure 6-12 (b) S-Matrix for the second
Normal condition

Figure 6-12 (c) S-Matrix for the third
Normal condition

Figure 6-12 (d) S-Matrix Archetype
For the Normal condition

Also Figures 6-13 (a), (b), (c) and (d) show the three different degrees of outer race faults and

their  archetype.  Figures  6-14  (a),  (b),  (c)  and  (d)  show the  three  different  degrees  of  roller

faults and their archetype and Figures 6-15 (a), (b), (c) and (d) show the three different
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degrees of inner race faults and their archetype respectively. It can be seen that most of S-

Matrices have symbol values less than about 10 which mean the signals being presented

contain a greater proportion of higher frequency epochs. S-Matrices populated by symbols in

the range 20-30 would indicate a greater proportion of longer duration epochs and a lower

frequency signal.

Figure 6-13 (a) S-Matrices for the 30%
fault of the Outer Race

Figure 6-13 (b) S-Matrices for the 60%
fault of the Outer Race

Figure 6-13 (c) S-Matrices for the 100%
fault of the Outer Race

Figure 6-13 (d) S-Matrix Archetype
for the Outer Race Fault
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Figure 6-14 (a) S-Matrices for the 30%
fault of the Roller

Figure 6-14 (b) S-Matrices for the 60%
fault of the Roller

Figure 6-14 (c) S-Matrices for the 100%
fault of the Roller

Figure 6-14 (d) S-Matrix Archetype
for the Roller

Figure 6-15 (a) S-Matrices for the 30%
fault of the Inner Race

Figure 6-15 (b) S-Matrices for the 60%
fault of the Inner Race
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Figure 6-15 (c) S-Matrices for the 100%
fault of the Inner Race

Figure 6-15 (d) S-Matrix Archetype
for the Inner Race Fault

The S-Matrix archetypes associated with each fault location are simply the average of the S-

matrix examples associated with each fault location.
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score and thus the closest to one of the four archetype conditions. This test is to show that the

different fault conditions are clearly distinguishable from each other using this technique. The

correlation score produced is in the range 0-100%, with a score of 100% indicates that the

profile of the two matrices are identical.

Table 6-1 shows the correlation scores produced by comparing the S-matrix generated from

each signal under test with each S-matrix reference archetype associated with the healthy
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generated from the signal under test and correlated against each of the four S-Matrix

reference archetypes with the highest score indicating the fault location. It can be seen from

the table that the faults are clearly distinguishable from each other.

Table 6-1 Correlation scores for S-matrix archetypes

Archetype:
Normal

Archetype:
Outer Race

Archetype:
Roller

Archetype:
Inner Race

Normal Example 1 99.96% 74.95% 44.99% 55.38%
Normal Example 2 99.96% 74.95% 44.99% 55.38%
Normal Example 3 99.83% 74.31% 44.12% 54.53%

Outer Race Small 74.62% 93.60% 66.60% 69.04%
Outer Race Medium 67.81% 95.64% 74.29% 71.92%
Outer Race Large 46.25%  91.54% 45.99% 57.71%

Roller Small 64.21% 70.66% 90.72% 74.67%
Roller Medium 23.67% 59.56% 88.11% 70.45%
Roller Large 40.49% 58.51% 92.90% 74.02%

Inner Race Small 55.57% 74.92% 73.91% 93.96%
Inner Race Medium 47.07% 74.42% 71.56% 95.62%
Inner Race Large 53.32% 68.92% 70.81% 95.37%

The correlation method used to generate the results in Table 6-1 was generated by calculating

the  angular  correlation  between  the  S-matrix  under  test  and  each  of  the  four  reference

archetypes as explained in Chapter Four Section 4.9.

The next section discusses the results obtained using the TESPAR A-matrices to classify the

fault location.
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6.4.2 Classification of Bearing Faults Using A-Matrix

This section presents the results of A-Matrices when using TESPAR to categorize the

location of faults.

Figures 6-16 (a), (b), (c) and (d) show the three examples of A-Matrices for the normal

conditions and their archetype. Figures 6-17 (a), (b), (c) and (d) show the A-Matrices of the

three different degrees of outer race faults and their archetype. Figures 6-18 (a), (b), (c) and

(d) show the A-Matrices of the three different degrees of roller faults and their archetype and

Figures 6-19 (a), (b), (c) and (d) show the A-Matrices of the three different degrees of inner

race faults and their archetype respectively.

The matrices are primarily populated on the left-hand side signifying that the bearing data

contains a greater proportion of TESPAR codes in the range 0-10 as demonstrated in Figures

6-12, 6-13, 6-14 and 6-15.

Figure 6-16 (a) A-Matrix for the first
Normal condition

Figure 6-16 (b) A-Matrix for the second
Normal condition
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Figure 6-16 (c) A-Matrix for the third
Normal condition

Figure 6-16 (d) A- Matrix Archetype
for the Normal condition

Figure 6-17(a) A- Matrices for the 30%
fault of the Outer Race

Figure 6-17 (b) A- Matrices for the 60%
fault of the Outer Race
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Figure 6-17 (c) A- Matrices for the 100%
fault of the Outer Race

Figure 6-17 (d) A- Matrix Archetype
for the Outer race fault

Figure 6-18 (a) A- Matrices for the 30%
Roller fault

Figure 6-18 (b) A- Matrices for the 60%
Roller fault
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Figure 6-18 (c) A- Matrices for the 100%
Roller fault

Figure 6-18 (d) A- Matrix Archetype
for the Roller fault

Figure 6-19 (a) A- Matrices for the 30%
Inner Race fault

Figure 6-19 (b) A- Matrices for the 60%
Inner Race fault
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Figure 6-19 (c) A- Matrices for the 100%
Inner Race fault

Figure 6-19 (d) A- Matrix Archetype
for the Inner Race fault

Figures 6-16 (d), 6-17 (d), 6-18 (d) and 6-19 (d) display the A-matrix archetypes associated

with each fault location. As mentioned above in Section 6.2.1, each archetype is the average

of the A-matrix examples associated with each of the three fault locations. As described

above, it requires very little processing to generate the archetypes.
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one of the four archetype conditions.

Table 6-2 presents the correlation scores generated by comparing the A-Matrix produced

from  each  signal  under  test  with  each  A-matrix  reference  archetype  associated  with  the

normal and three fault locations.

The results presented on each row of the tables are the percentage comparison scores
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archetypes.  The  winning  (highest)  correlation  score  on  each  row is  in  bold.  In  a  real-world

scenario to identify the fault location, an A-matrix will be generated from the signal under

test and correlated against each of the four A-matrix reference archetypes with the highest

score indicating the fault location.

Table 6-2 correlation scores for A-matrix archetypes

Archetype:
Normal

Archetype:
Outer Race

Archetype:
Roller

Archetype:
Inner Race

Normal Example 1 99.98% 74.51% 62.67% 70.95%
Normal Example 2 99.98% 74.51% 62.67% 70.95%
Normal Example 3 99.89% 72.32% 60.76% 69.31%

Outer Race Small 67.17% 93.90% 59.38% 70.65%
Outer Race Medium 59.43% 94.16% 65.11% 69.11%
Outer Race Large 38.35% 92.56% 31.93% 49.00%

Roller Small 73.48% 57.88% 91.84% 74.70%
Roller Medium 56.26% 52.30% 85.90% 60.93%
Roller Large 30.53% 47.49% 88.80% 72.55%

Inner Race Small 68.89% 70.47% 74.85% 90.16%
Inner Race Medium 65.07% 71.51% 71.77% 95.49%
Inner Race Large 60.94% 70.52% 69.99% 93.35%

The reason that the correlation method works when separating the different fault locations is

predominantly due to the TESPAR matrices being able to extract sufficient information from

the signals of interest to be able to adequately represent the various fault locations.

The success of the solution proposed in this thesis is due to the combination of the TESPAR

processing specification with a powerful correlation technique. During these investigations

into the use of TESPAR both the S-Matrices and A-Matrices were able to correctly separate

the fault locations without generating any errors when using correlation techniques, a general

rule is that confidence in any solution is higher if a classification method can be used.
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6.5 Fault Severities - Results and Discussion

TESPAR approach has various features which may be employed to different applications to

investigate different practices. In other words, the previous section described how TESPAR

approach was used to detect and classify various bearing fault locations using S and A-

Matrices.  However,  it  is  not  possible  to  use  either  S  or  A  matrices  to  give  a  severity

assessment for each type of the fault. Therefore, it is important to note that it is not necessary

for  TESPAR  matrices  to  be  used  within  every  TESPAR  generated  solution.  The  TESPAR

solutions may be generated by employing both TESPAR matrices and TESPAR statistics in

isolation and in combination.

In this section we will see how a TESPAR feature called the mean absolute magnitude value

used to determine the bearing faults severities for the conditions tested in this thesis.

Once a fault type has been identified using the S or A-Matrices, its corresponding fault

severity can be estimated based on the information from TESTPAR stream. In particular the

amplitude information, which has not been included in S or A-Matrices, will be utilised for

fault severity classification.

As it shown in Chapter 4, the signal under test has been filtered and the TESPAR stream is

generated, which produces a 3-by-N matrix, each representing the number of epochs, and for

each epoch recording the magnitude (row 1), duration (row 2) and shape (row 3). The

MATLAB code to generate the fault severity is two simple lines of code (N.B. TStream used

in the code is the 3xN TESPAR stream):

Idx = find(TStream(2,:) >= mean(TStream(2,:)));
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The line of code above finds all epochs that have durations greater than the average duration

associated with the whole signal. The indices of all the epochs matching the search criteria

are stored in the vector Idx.

SeverityPrediction = mean(abs(TStream(1,Idx)));

The line of code above generates the mean absolute magnitude value from all of the epochs

matching the previous search criteria. The mean absolute magnitude value produced is then

used as a direct indictor of fault severity.

The mean absolute magnitude values (fault severity values) associated with the bearing data

are given in Table 6-3.

Table 6-3 Severity values based on epoch
mean absolute magnitude

Bearing conditions Severity index
Normal_Example1 9.89
Normal_Example2 9.89
Normal_Example3 10.57

Small outer race 23.11
Medium outer Race 42.05

Large outer Race 55.90

Small roller 48.61
Medium roller 84.54

Large roller 92.12

Small inner race 49.56
Medium inner race 53.44

Large inner race 60.09

The reason why the mean absolute magnitude feature provides an indicator of fault severity is

that the feature is essentially examining the magnitude of the most significant lower

frequency events within the signal under investigation. In the time domain, longer duration
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epochs are associated with lower frequency events (conversely the shorter the epoch, the

more high frequency the sound). It is anticipated that for as the fault severity increases, the

magnitude of the lower frequency epochs increases.

Figures 6-20, 6-21 and 6-22 display a graphical representation of the mean absolute

magnitude values produced for each of the 12 signals under test.

Figure 6-20 Mean absolute magnitude values for healthy
 and outer race location

Figure 6-21 Mean absolute magnitude values for healthy
and Roller Location
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Figure 6-22 Mean absolute magnitude values for healthy
and Inner Race Location

The above results indicate that the mean absolute magnitude value could be used to determine
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applications can be satisfied with S or A-Matrices - two or three dimensional matrices -

making subsequent processing very much simpler, quicker and cheaper. It is a further benefit

that the TESPAR matrices are of fixed size.

To demonstrate the lower processing power requirements of the TESPAR solutions a 10 word

recognition system operating in real-time on a very low power 8-bit 8051-derivative micro-

controller processing platform has been implements [173]. Others have demonstrated that

TESPAR based signal processing solutions typically require at least two orders of magnitude

less processing power than traditional Fourier based solutions [174].

An important distinction between the TESPAR and envelope solutions is that the TESPAR

solution is able to identify both the condition and severity of the fault using only one

frequency range of 250Hz-17000Hz. The traditional techniques solutions need to specifically

target different frequency ranges and is therefore one of the reasons why the conventional

methods solutions requires significantly greater processing overheads. Another important

aspect of the TESPAR processing solution worth raising is that in addition to producing

perfect classification performance of the fault locations and fault severities when using the

full 10 seconds associated with each of the available bearing signals; the TESPAR solution

also produces perfect classification performance of the fault locations and fault severities

when  using  any  random  5  second  section  from  each  of  the  available  bearing  signals.  Both

envelope and wavelet analysis were able to discriminate between the faults and severities

based on characteristic frequencies and the level of their peaks, however, there was some

difficulty with small outer race fault.

An alternative approach was used, manipulating the TESPAR codes produced from the

Tescode function in order to discriminate between different operating conditions. The

TESPAR solution described here uses the same stream of TESPAR symbols to identify both

the fault location and determine the fault severity. Fault location is determined by comparing
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archetype S and A-Matrices for the healthy and three given fault conditions with test data,

and fault severity is obtained from the magnitude of the average ordinate over the range of

symbols  of  interest.  It  is  important  to  understand  that  exactly  the  same stream of  TESPAR

codes is used to identify both the fault locations and severity and thus minimal processing

overheads are required.
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CHAPTER SEVEN

7 Conclusions and Recommendation of Future

Work

The chapter summarises the TESPAR finding results on bearing detection and diagnosis.

Conclusions are drawn on the progress made on developing a method using the TESPAR

approach to discriminate bearing fault locations and severities. Contributions to knowledge

made by the researcher are presented as are suggestions for possible future work.
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7.1 Summaries and Conclusions

This research has been focused on detecting and diagnosing bearing faults in three different

locations: outer race, inner race and roller element based on TESPAR approaches. Vibration

was chosen as the measurement parameter because it has long been used for CM of

machinery, and many analytical techniques based on vibration have been introduced to detect

and diagnose machine faults.

The need for an improved technique to recognize faults in bearings always remains

important. The TESPAR has been in use for over thirty years, but hardly has the literature

contained reports of it being successfully applied to raw time-domain data for condition

monitoring of rotating machinery. The reason for this is most likely that TESPAR was

originally developed as tool for speech recognition and was based on the observed fact that

humans gain virtually no information from the amplitude of the sound (the same information

can be conveyed in a whisper or a shout); instead the frequency content and temporal pattern

is much more important.

However, the TESPAR technique came as a result of looking at the approximation of the

complex zeros location alongside duration and shape of the signal waveform.

The method proposed here has little in common with envelope spectrum which has been

discussed in Chapter Three alongside other conventional methods. The simulation of

TESPAR for the detection of bearing defects discussed in section 4.7 in Chapter Four shows

that  if  two  signals  are  to  be  compared  they  must  be  at  the  same  sampling  rate.  Also  a

maximum value for the Duration of 37 imposes a lower limit on the frequency analysis. Thus

while analysis of raw data using TESPAR could detect the appearance of BCFs it may not be
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able to discriminate between them, therefore, trained S and A-Matrices were used in this

thesis for discrimination.

It is also found that TESPAR can be used to detect amplitude modulated signals where the

BCF modulates a machine resonance. In addition, It is confirmed, exactly as found by

previous researchers investigating amplitude modulation as a means of fault detection, it is

necessary for the machine resonance to be of much greater magnitude than the background

noise.  Also the TESPAR handbook recommends a sampling rate of three times the Nyquist

criterion [172] but this work shows that where the equipment allows for bigger rates they

should be used.

Consequently, it could be expected that using TESPAR on the raw time domain bearing

signal might provide a new insight into fault detection and diagnosis, and it was found that

TESPAR approach applied on time-domain data successfully discriminated different bearing

conditions. The correlations of healthy and faulty S-Matrices and the A-Matrices proved

capable of discerning between fault locations.

In addition, the approach adopted here which appears most promising is to simply look

directly  at  the  absolute  magnitude  of  the  signal  and  compare  healthy  and  faulty  conditions

using a fault severity index. This indicates the presence of a fault but does not diagnose the

type of fault. In other words, bearing faults severities have been classified using different

TESPAR features. The mean absolute magnitude value was capable of differing between the

three different severities for each bearing fault tested.

The TESPAR technique was compared with very widely used bearing CM technique: the

envelope spectrum analysis in an attempt to develop a powerful method that can detect faults

in different bearing components. To evaluate the effectiveness and efficiency of this proposed



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

175
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

technique, its results were compared with those obtained using the envelope spectrum. It is

recognised that while conventional techniques for rolling element bearing are in widespread

use they are not always very useful and effective for fault detection.

7.2 Review of Aim and Objectives

This section reviews the objectives and achievements of the research, by comparing them one

by one to the objectives for this study presented in Chapter 1. Substantial progress has been

made towards meeting the aim of the research: TESPAR application has produced an

efficient technique for reliable and precise detection and diagnosis of bearing faults. The

main objectives and achievements of this research were:

Objective one: To present and discuss machine condition monitoring and its application to

rolling element bearings.

Achievement one: The concept of condition monitoring for machinery has been defined and

discussed in Chapter One in Sections 1.3 and 1.4 in terms of fault detection and diagnosis, the

importance of timely maintenance to minimise overall product cost and increase process

profitability. Chapter one emphasises vibration measurement as this is both the most

commonly used method in industry and the technique selected for monitoring of the rolling

element bearings used in this project setting the motivation, the aim and objectives also

providing the structure for the research.

Objective two: To describe the fundamentals of rolling bearing transmission, including

bearing types and components, their failure modes and methods of monitoring.

Achievement two: The fundamentals of roller element bearing have been dealt with

comprehensively in Chapter Two in Section 2.2 which describes bearing types and
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components as well as explaining modes of failure in Section 2.4. The dynamic response of

roller bearings to local faults was also reviewed in Section 2.5 which shows that typical

symptoms produce characteristic peaks in the vibration spectrum. The calculated

characteristic frequencies for the test bearing are compared with measured results in Section

2.6, and good agreement was found.

Objective three: To review signal processing conventional methods and their parameters of

bearing fault detection and diagnosis using vibration signal.

Achievement three: The time domain, frequency domain, envelope spectrum and wavelet

analysis are the most common CM techniques for bearing faults detection and diagnosis, and

have been introduced primarily in Chapter One in Section 1.5 and reviewed in details in

Chapter Three in Section 3.3 with experimental examples and explanations.

Objective four: To describe and explore the fundamentals of the TESPAR approach and its

capability as being the focus of this research.

Achievement four: The TESPAR concept has been illustrated by giving a detailed

background of TESPAR origin, alphabets and TESPAR coding and its S and A matrices.

How  TESPAR  works  was  the  focus  of  Chapter  Four  which  gave  examples  of  TESPAR  in

action. A study of TESPAR simulation illustrating S and A-Matrices in details was

implemented in Section 4.7 including the idea that TESPAR can be used to detect bearing

faults was proposed.

Objective five: To discuss and analyse the data outputs from an accelerometer using

TESPAR methods applied to the time domain data collected for ten different bearing

conditions.
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Achievement five: All data signals from the accelerometer were successfully TESPAR

encoded using the code written for the MATLAB environment by the researcher. Chapter Six

reported the successful extraction of TESPAR streams and codes for the vibration signals

from both healthy and faulty bearings. S-Matrices and A-Matrices have been created for the

healthy condition and for each fault. Archetype or typical S and A-Matrices were created for

each fault, and then the measured S or A-Matrix correlated with the different fault

Archetypes  to  determine  the  highest  correlation  coefficient.  This  was  two  tests  in  one,  the

closer  the  measured  S  or  A-Matrix  was  to  one  of  the  fault  Archetypes  (the  higher  the

correlation coefficient) the more likely it was the fault that was developing, and the higher the

score the more developed the fault. Table 6-1 shows the results for the S-Matrices and Table

6.2 for the A-Matrices. The results are very promising, particularly as a method of fault

identification.

This chapter has also successfully developed a fault severity classification in Section 6.4

based on the TESPAR system. All epochs that had durations greater than the average

duration associated with the whole signals were identified. The code was further adapted to

generate the mean absolute magnitude value from all of these longer than average epochs.

The mean absolute magnitude value produced is then used as a direct indicator of fault

severity as it has been shown in Figures 6-20 to 6-22. This measure of fault severity appears

directly  related  to  the  severity  of  the  seeded  fault  but  did  depend on  the  type  of  fault.  The

results suggest a very promising method of fault detection.

The results obtained indicate that TESPAR is a suitable method for detection and diagnosis if

faults in rolling element bearings.
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Objective six: To perform a relative evaluation of the TESPAR application and the envelope

spectrum as the most commonly used method for bearing detection in order to ascertain the

TESPAR efficiency and effectiveness for bearing fault detection and diagnosis in the given

system.

Achievement six: A detailed systematic and theoretical study with justifications has been

carried out with different examples of comparing the performance of the S and A Matrices of

the TESPAR approach against the standard bearing fault detection method, in particular the

envelope spectrum in Section 6.5.

7.3 Contributions to Knowledge

First contribution: A new technique has been produced that can detect faults at three

different bearing locations with three levels of severity. This research will provide future

researchers with a basis of building on TESPAR results for monitoring bearing conditions.

Second contribution: A variety of TESPAR features have been employed and tested on

different bearing vibration signals in order to select the most suitable and promising for each

kind of signal waveform.

Third contribution: Both S matrices and A matrices were constructed and used in this thesis

and which eventually reach the same conclusion for bearing detection.

Fourth contribution: Statistical classification has been implemented on TESPAR results for

both S matrices and A matrices to categorise different bearing waveforms.

Fifth contribution: A  complete  Matlab  code  has  been  written  to  implement  the  TESPAR

coding process and produce different TESPAR features for different bearing vibration signal

waveforms for bearing condition classification in both terms the location and severity.
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Sixth contribution: The author has suggested a new method for rolling element bearing fault

detection. An underpinning technique has been developed and successfully tested.

Seventh contribution: The TESPAR solution proposed uses significantly less processing

time and computer memory than traditional Fourier based techniques making TESPAR a

more  cost  efficient  solution,  and  one  that  requires  less  energy  to  operate  and  thus  is  more

environmentally friendly.

Eighth contribution: Highlighting the use of non-traditional signal processing techniques

could encourage others to investigate the use of TESPAR when investigating other condition

monitoring problems.

7.4 Suggestions for Further Work

Based on this research a number of suggestions are made for further researches in this field:

1- The  S  matrices  and  A  matrices  normally  consists  of  a  total  of  28  symbols  in  all,  and  a

small percentage of observations occur for symbols whose value is > 28. Future work could

examine whether including these higher values might improve fault classifications when

using other TESPAR features and specifications.

2- TESPAR features and specifications could be used to test other different kinds of bearings

types and design as well as detect and classify other rolling element bearing defects such as

misalignment, unbalance, looseness, and lack of lubrication, and also to investigate and

explore bearing signal with other types of signal waveforms such as acoustic emission, etc.

3- Future researchers should develop an experimental rig that can cope with harsh conditions

such as high torsion and radial loads as well as high speeds, as this work shows that where

the equipment allows for faster rates they should be used.
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4- In addition to using correlation as a technique to detect and classify a bearing fault, future

research could focus on applying other methods such as an artificial neural network for

bearing faults classification using both TESPAR S-matrices and A matrices.

5- Modify and improve the TESPAR coding table (i.e. the combination of epoch duration and

shape information that defines each TESPAR code) to determine whether further

performance improvements can be achieved by including fewer frequency range codes.

6- Investigate how TESPAR can be used to assist  in the determination of time to failure of

equipment components.

7- Determine whether any single TESPAR technique can be used to determine both fault

condition and severity.

8- Combine TESPAR with other signal processing techniques to determine whether a

combined solution could provide the best of both techniques.

9- Test  TESPAR  and  other  traditional  techniques  on  real-world  bearing  rigs  to  identify

whether a solution works better in an operational scenario.

10- Possible improvements in the method could be to either to (i) simply determine the

severity index for all codes, or to (ii) simply determine the severity index for all codes and

subtract the value for the normal archetype.

11- TESPAR ought to generate interest leading to the development of a wireless-based

condition monitoring solution.
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8  Appendix

Photograph of the simulated bearing faults used in this research

Photograph of NSK type N406 cylindrical roller bearing with of 100% roller fault (R1)

Photograph of NSK type N406 cylindrical roller bearing with of 60% roller fault (R2)
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Photograph of NSK type N406 cylindrical roller bearing with 30% roller fault (R3)

Photograph of NSK type N406 cylindrical roller bearing with of 100% inner race fault (I1)
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Photograph of NSK type N406 cylindrical roller bearing with of 60% inner race fault (I2)

Photograph of NSK type N406 cylindrical roller bearing with of 30% inner race fault (I3)
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Photograph of NSK type N406 cylindrical roller bearing with of 100% outer race fault (O1)

Photograph of NSK type N406 cylindrical roller bearing with of 60% outer race fault (O2)



Detection and Diagnosis Rolling Element Bearing Faults Using Time Encoded Signal Processing and Recognition

185
DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

Photograph of NSK type N406 cylindrical roller bearing with of 30% outer race fault (O3)
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