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Abstract 

In this paper, an experimental investigation was carried out on the combustion process of a 

compression ignition (CI) engine running with biodiesel blends under steady state operating 

conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for 

non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and 

turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured 

simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the 

sound energy level increases with the increase of engine load and speed, and the sound characteristics 

are closely correlated to the variation of in-cylinder pressure and combustion process. The continuous 

wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a 

higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to 

enhance the signal-to-noise ratio (SNR) of acoustic signal by suppressing the components which are 

asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of 

biodiesel fractions and operating conditions (speed and load) on combustion process and engine 

dynamics were investigated. The result leads to the potential of airborne acoustic measurements and 

analysis for engine condition monitoring and fuel quality evaluation. 
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1. Introduction 

The demand for petroleum-based fuel has risen recently, whilst resources of petroleum-based fuel 

have declined. Consequently, efforts to develop alternative fuels which are cheaper and 

environmentally acceptable have been considered to reduce the dependency on fossil fuels [1]. 

Previous research [2-4], has shown that biodiesel is one of the most promising renewable, alternatives 

and environmentally fuels. Biodiesel is composed of fatty acid methyl or ethyl esters from vegetable 

oils or animal fats and its properties are similar to petroleum-based fuel [5]. It is renewable, 

biodegradable, oxygenated and can be used in diesel engine without any modification [11]. However, 

as diesel engines are not specifically manufactured for biodiesel fuel, the impact of biodiesel on the 

performance and condition of diesel engine needs to be analysed. 

Numerous studies [2-12] have been conducted to research performance, especially the combustion 

and emission characteristics of diesel engines fuelled with biodiesel compared with petroleum-based 

diesel. Dorado et al. [7] studied the effect of waste olive oil methyl ester on exhaust emissions using a 

DI diesel Perkins engine. They concluded that lower emissions of CO, CO2, NO and SO2 can be 

obtained by using biodiesel, but emissions of NO2 increased. Tashtoush et al. [8] tested the 

combustion performance and emission of a water-cooled furnace with diesel fuel and ethyl ester of a 

waste vegetable oil. Their results demonstrated that biodiesel burned more efficiently with higher 

combustion efficiency and exhaust temperature at the condition of lower energy rate used. While at 

higher energy input conditions, biodiesel combustion performance deteriorated and was inferior to 

diesel fuel as a result of the high viscosity, density and low volatility. Gumus [25] investigated the 

combustion and heat release rate characteristics of a direct-injection compression ignition engine 
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fuelled with biodiesel. He concluded that the engine running with biodiesel did not show obvious 

deviation from the engine fuelled with diesel in parameters characterising combustion. 

However, most of researchers have used destructive test methods for investigation of combustion 

characteristics which are inconvenient and/or costly in real application. For instance, it has to fix a 

pressure sensor on the cylinder head of a test engine for in-cylinder pressure measurement. Hence, 

airborne acoustic and/or vibration measurement has a potential to be used for engine condition 

monitoring and combustion diagnosis [13-16]. As airborne acoustic sensor is not only easy to install 

in real application but also measured with more comprehensive information in a remote way. Various 

acoustic-based engine monitoring studies have been reported in recent decades. For example, S. H. 

Cho et al. [13] presented an analytical model which can predict the impact forces and vibratory 

response of an engine block surface induced by the piston slap of an internal combustion engine. The 

equivalent parameters such as mass, spring constant and damping constant of the piston and cylinder 

inner wall were estimated by using measured point mobility. The results were compared with 

experimental results to verify the model and to reach the conclusion that prediction of overall 

vibration level showed a similar tendency to the measured noise level close to the surface of engine 

block. Shu and Liang [14] analyzed the complex engine noises using coherent power spectrum 

analysis. They found that the main sources of the engine noise are combustion and machinery. They 

concluded that the noise of the low-frequency band is mainly the machinery noise, while the noise of 

high-frequency band is mainly combustion. Most engine noise is produced by the combustion process 

and slight portion of noise is contributed by the injector, the intake and exhaust valves [15]. 

The combustion induced noise occurred towards the end of the compression stroke and subsequent 

expansion stroke. The change of in-cylinder pressure causes the vibration of the engine components 

such as the cylinder head, pistons, connecting rods and engine body, hence produces airborne noise 

accordingly. All the vibration induced noises contribute to the overall engine noise level [16]. The 

vibration and noise of engine are generated due to the in-cylinder pressure variation which is related 

to the engine combustion process. Therefore, the combustion process could be diagnosed and 

monitored through analysing the vibration and noise of the engine. Actually, the unpleasant noise 

signature of diesel engines is due to the harsh irregular self-ignition of the fuel [17]. So the fuels can 

also be evaluated by analysing the combustion induced noise and relate the noise quality back to the 

combustion characteristics. 

Vibration and acoustic signals from an engine are usually noisy and non-stationary. It is essential to 

develop an appropriate analysis tool in order to extract accurate features from the non-stationary 

signals. Time-frequency analysis has been developed as a more reliable and effective method for 

machinery condition monitoring. Wavelet transform is a typical and powerful time-frequency tool and 

being widely used in machinery condition monitoring and diagnostics. It is capable of revealing the 

time-frequency characteristics of a signal, in particular, it is more efficient to disclose small transients 

and enhance the spikes in signals. 

In this paper, the characteristics of the engine noise were investigated in relation to the variation of in-

cylinder pressure during the combustion process. The objective of the paper is to determine the 

relationship between the acoustic characteristics and combustion process of a CI engine running with 

biodiesel and its blends with normal diesel. And then the acoustic characteristics were used to 

diagnosis the combustion process and to monitor the fuel quality. Thus, the paper is organised as 

follows, section 2 presents the diesel engine combustion process characteristics, combustion vibration 

and noise generation. Section 3 reviews the basic theory of the continuous wavelet transforms and its 

properties. Section 4 introduced the experimental facilities and testing procedures. The analysis 

results and discussion are detailed in section 5. Finally, the conclusions are drawn. 
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2. CI engine Combustion Characteristics 

2.1 Combustion process 

Engine combustion is a complex process due to the combustion mechanism. The main parameters 

used for analysing the characteristics of the combustion process are cylinder pressure, ignition time 

delay, combustion duration and heat release rate (HRR) [1]. All these parameters are based on the 

variations of in-cylinder pressure. Hence the combustion parameters can be calculated based on the 

in-cylinder pressure data. Other important combustion parameters, such as combustion duration and 

intensity, can be estimated from the variation of HRR over an engine cycle. In addition, the HRR can 

be used for identifying the start of combustion, indicating the ignition delay for different fuels, 

showing the fraction of fuel burned in the premixed mode and recognizing differences in combustion 

rates of fuels [10]. The HRR can be calculated from a simplified approach derived from the first law 

of thermodynamics [18] as expressed in Equation (1). 

  

  
 

 

   
(  

  

  
  

  

  
)     (1) 

where,     ⁄  is the heat release rate across the system boundary into the system (kJ/deg),   is the 

in-cylinder pressure (Pa),   is the in-cylinder volume (m
3
),   is the ratio of specific heats with an 

appropriate range from 1.3 to 1.35, and   is the crank angle (deg). Moreover,       ⁄   is the rate of 

work transfer done by the system due to system boundary displacement [18]. Furthermore, the 

accumulative heat release rate    can be obtained from the heat release rate in Equation (2). The 

accumulative heat release is the gross heat release due to combustion. 

   ∫
  

  
        (2) 

Ignition delay is also an important parameter for analysing the combustion process of an engine. It is 

defined as the time interval between the start of fuel injection into the combustion chamber and the 

start of combustion [1]. The ignition delay corresponds to the period between the beginning of fuel 

injection until the cylinder pressure rises and can be obtained by calculating the HRR of the engine 

combustion process. Theoretically, a longer ignition delay means more fuel is available for the 

ignition and resulting in more energy release during the premixed combustion stage. However, the 

cumulated fuel with longer ignition delay has the risk to lead to poor air-fuel mixing and result in 

incomplete combustion [5]. Therefore, under the condition of using the fuels with the same properties, 

reduction in ignition delay may result in earlier complete combustion and lead to slightly higher peak 

pressure while the increase in delay period results in poor combustion and may lead to lower peak 

pressure [18]. Figure 1 shows the cylinder pressure and HRR of a diesel engine. It can be seen that the 

combustion process can be divided into three distinguishable stages [18]. The first stage is the 

premixed period, where the rate of burning is very high and the combustion time is short (for only a 

few crank angle degrees) as well as the cylinder pressure rises rapidly. The second stage is the mixing 

controlled period and is the main heat release period corresponding to a period of gradually 

decreasing HRR and lasting about 30 crank degrees. The third stage is the late combustion period 

which corresponds to the tail of the heat release diagram in which a small but distinguishable HRR 

occurs throughout much of the expansion stroke. 
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Figure 1 Cylinder pressure, heat release rate for diesel engine 

2.2 Combustion vibration and Noise 
Combustion noise is a complex phenomenon whose level and sound quality are strongly dependant on 

the fuel combustion and it is one of the main engine noise sources [17]. It occurs towards the end of 

the compression stroke and subsequent expansion stroke. And the pressure variation in the engine 

cylinder plays a significant role in the analysis of the combustion characteristics, combustion induced 

noise. The noise quality can be related to the in-cylinder pressure variation [17]. On the other hand, 

the combustion process and engine fuels could be monitored through analysing the characteristics of 

engine combustion noise. 

Figure 2 shows the engine acoustic signals monitored in relation to vibration and in-cylinder pressure. 

It indicates that corresponding to the higher cylinder pressure; the combustion process produces 

higher engine vibration and subsequently higher level acoustic signals contributing knocking noise. It 

also shows that the peak of vibration signal happens slightly later than the peak of in-cylinder pressure. 

And the peak of acoustic signals occurred slightly later than the peak vibration signals due to sound 

transmission from the vibration sound source to the noise receiver. 

There are three main paths for the vibration and noise transmission based on their generation 

mechanism and the engine structures [19]. The first path is from the cylinder head to the cylinder 

block and then directly into the air. The second path is the gas explosion directly exciting the cylinder 

block through which the noise is transmitted. The third path begins from the piston to the connecting 

rod and then transmitted to cylinder block through the crankshaft which can be considered as 

mechanically induced noise. All the combustion induced noise is radiated to the air through the 

external surfaces of the engine, and contributes to the overall engine noise level. 
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Figure 2 Normalised cylinder pressure, engine vibration and acoustic [28] 

3. Continuous Wavelet Transform 
In the field of machinery condition monitoring, CWT is recognized as a powerful and effective tool 

for feature extraction from a non-stationary signal. The theory of CWT used in this study can be 

detailed as follows [20]. 

           and its Fourier transform      which should be subjected to the admissibility 

condition in equation (3), 

   ∫
| ̂   |

 

| |
    

 

  
      (3) 

where      denotes a mother wavelet function,   is the angular frequency and       is the space of 

the square integral complex functions. The corresponding family of a wavelet consists of daughter 

wavelets as shown in Equation (4).  

        | |     (
   

 
)      (4) 

where   is scale factor and   is time location factor, | |     is used to ensure energy preservation. 

The daughter wavelets are the translated and scaled versions of the mother wavelet with the factors   

and   vary continuously. 

The CWT of a signal       is defined as the inner products between signal      and the wavelet 

family. They are derived from the wavelet function by dilation and translation through adjustment of 

the parameters   and  . 

                        | |    ∫        
        (5) 

where          denotes the wavelet transform coefficient,     
     represents the complex conjugate 

of the wavelet function.   is known as a dilation parameter and b gives the location of the wavelet and 

is known as a translation parameter. 
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For a discrete sequence    , let       and      , where                  ,   is the 

sampling point number and    is the sampling interval. The CWT of    can be defined as: 

   (  )  ∑     [
       

  
]   

        (6) 

The amplitude of the feature corresponding to the scale and how this amplitude varies with time can 

be presented through variation of the index   and   corresponding to the scale factor   and time 

location   , respectively. 

Wavelet coefficients obtained from the wavelet transform can be used to measure the similarity 

between the interesting signal and daughter wavelets. It is noted that the more similar the daughter 

wavelet is to the feature component the more interesting the signal; the corresponding wavelet 

coefficients are consistent [21]. Moreover, the wavelet has oscillating wave-like characteristics and 

allows simultaneous analysis in the time and frequency domains with the flexible wavelet functions. 

In the CWT the wavelet has finite energy concentrated around a limited time interval [22]. In addition, 

it can also represent a sharp feature in the signal and hence the original signal can be completely 

reconstructed or recomposed. 

4. Experimental Facilities and Testing Procedure 

To investigate characteristics of vibro-acoustics from an engine fuelled with biodiesels, an 

experimental study was conducted on a test rig which consists of diesel engine, charge amplifier (for 

vibration signal), filter and amplifier (for acoustic signal), cylinder pressure sensor and Analogue-to-

Digital Converter (ADC). The diesel engine is a four-cylinder, four-stroke, turbocharged, intercooled 

and direct injection engine. It is a typical engine and widely used in the industry application. The load 

to the engine is provided by a 200 kW AC dynamometer with 4 quadrant regenerative drive with 

monitoring and absorbing capability for both steady and transient conditions. The schematic diagram 

of test rig and engine specifications is shown in figure 2 and table 1, respectively. 

 

Table 1 Specifications of the test engine 

Type of engine Turbocharged diesel engine 

Number of cylinders 4 

Bore 103mm 

Stroke 132mm 

Compression ratio 18.3:1 

Number of valves 16 

Injection system Direct injection 

Displacement 4.399 litre 

Cooling system Water 

Maximum power 74.2 kW @ 2200 rpm 
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Figure 3 Schematic diagram of engine test system 

 

In the experiment, the engine was tested with range of fuels blends and operated at the constant 

speeds of 900rpm, 1100rpm and 1300rpm and loads from 105Nm to 420Nm with an interval of 

105Nm at each constant speed. The details of the operating conditions are given in table 2.The test 

engine was fuelled with rapeseed oil (B50 and B100) as well as pure diesel. B50 represents the 

mixture of 50% rapeseed oil and 50% diesel by volume, whereas B100 is 100% rapeseed oil by 

volume. The rapeseed biodiesel is produced by a transesterification process from ‘virgin’ oil using 

methanol. The main physical properties such as the composition, density, measured heat value (MHV) 

and viscosity of pure biodiesel and diesel are presented in Table 3 and Table 4 [6, 24]. 

Table 2 Operating conditions 

Fuel Speed (rpm) Load (Nm) 

Pure Diesel 900 1100, 1300 105, 210, 315, 420 

B50 900, 1100, 1300 105, 210, 315, 420 

B100 900,1100, 1300 105, 210, 315, 420 

During the test, the engine speed, cylinder pressure, crank angle position, engine vibration and 

acoustic signals were measured and recorded for analysis. Engine speed was measured by a Hengler 

RS58 speed sensor. The in-cylinder pressure in cylinder #1 was measured by Kistler 6125A11 model 

air-cooled Piezo-Quartz pressure sensor that was mounted on the cylinder head. The vibration of the 

engine body was measured using accelerometers with the sensitivity of 4.9 mV/ms
-2

. The signals from 

the pressure sensor and accelerometer were passed through a B&K type 2635 charge amplifier before 

feeding them to the Analogue-to-Digital Converter (ADC). The charge amplifier was used to amplify 

the signals [23]. The engine acoustic signal was measured by using BAST’s microphone system 

including electrets microphone CHZ-211 and preamplifier YG-201 with the sensitivity of 48.4mV/Pa 

Vibration Signal 

Cylinder Pressure 

Fuel Pipe 

Speed 

Transducer 

Accelerometer  

Loads Loads 

Fuel Tank Biodiesel Tank 

Model YE6261B ADC 

Filter and 

Amplifier 

Charge 

Amplifier 

TDC Optical 

Encoder 

Microphone 

Torque Transducer 

Diesel Engine 

System Analysis 



8 

 

and frequency response of 6.3-20 kHz. Moreover, Crankshaft position was obtained using a 

crankshaft angle sensor to determine cylinder pressure as a function of crank angle. 

Table 3 Properties of biodiesel B100 [6] 

Property Units Measured 

Composition % C 77 

 % H 12 

 % O 11 

Density Kg/m
3
 879 

MHV, KJ/Kg MJ/Kg 38.5 

Kinematic Viscosity mm
2
/s 4.9 

All the signals collected from the test engine needed to be converted from the analog form to the 

digital form so that they were suitable for computer analysis. This can be achieved by a data 

acquisition system which is based on the hardware of Model YE6261B dynamic data acquisition 

instrument. The Model YE6261B consists of 32 channels with 16-bit resolution for each channel, 

synchronized acquisition at 100 kHz per channel and an IEEE 1394 interface selectable signal 

conditioners. This data acquisition system is adequate for monitoring vibration and acoustic signals. 

Table 4 Properties of diesel [24] 

Property Units Measured 

Composition % C 86.1 

 % H 13.25 

 % O - 

Density Kg/m
3
 837.8 

MHV, KJ/Kg MJ/Kg 45.85 

Kinematic Viscosity mm
2
/s 3.275 

5. Results and Discussion 

During the test, all the signals were collected simultaneously by the data acquisition system at a 

sampling rate of 100 kHz. Each collection has 403456 data points which is more than 4 seconds in 

duration. This data length covers about 30 engine combustion cycles and is sufficient for random 

noise suppression in TSA process. Additionally, the high sampling rate allows a high accuracy in 

waveform parameter calculation. 

5.1 Cylinder pressure variation 

Cylinder pressure versus crank angle over the compression and expansion strokes of the engine 

running cycle can be used to obtain quantitative information on the progress of combustion [18]. 

Figure 4 shows the cylinder pressures versus crank angle for different fuel cases (Diesel, B50, and 

B100), engine loads (105Nm, 210Nm, 315Nm and 420Nm) and at a constant speed of 900rpm, while 

Figure 5 presents the cylinder pressure versus crank angle at a constant speed of 1100rpm. From both 

figures, it can be seen that the peak cylinder pressure is higher for rapeseed oil biodiesel at most of the 

tests. This is possible due to the high oxygen content of biodiesel which contributes to the combustion 

process [5] that result in the fuel is easier to achieve complete combustion and lead to a higher in-

cylinder pressure. Moreover, the higher viscosity and density of biodiesel can also enhance fuel spray 

penetration through increased fuel injection pressure and thus improve air-fuel mixing [24]. This 

maybe another reason of biodiesels can generate higher peak in-cylinder pressures than that of pure 

diesel. On the other hand, a possible explanation for B100 has lower peak in-cylinder pressure than 

that of B50 in Figure 4 and Figure 5 might be the viscosity of B100 is higher than that of B50 because 

a higher viscosity of biodiesel can lead to bad fuel injection atomization that may affect the 

combustion efficiency [5]. 
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Figure 4 Cylinder pressure at speed of 900rpm 

 

 

Figure 5 Cylinder pressure at speed of 1100rpm 

From Figure 4 and 5, it can be see that the peak cylinder pressure for both diesel and biodiesel blends 

increased when the engine loads and speeds increased. This is natural and due to more fuel injected 

for higher loads and faster angular displacement for higher speed, which all lead to a longer ignition 

delay and results in more fuel available for ignition and more energy release during the premixed 

combustion stage combined with complete combustion [1]. 
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To show further theses understandings, a heat release analysis is performed based on Equation (1) and 

its results are presented in Figure 6 and Figure 7. The HRR for diesel, biodiesel blends (B50 and B100) 

under a load of 210Nm with speeds of 900rpm, 1100rpm and 1300rpm are shown in Figure 6. It can 

be seen that the combustion starts earlier for reduced engine speeds. This means that a longer ignition 

delay is required at higher speeds for both diesel and biodiesel blends. Figure 7 shows the HRR of 

diesel, biodiesel and its blends at loads of 105Nm, 210Nm, 315Nm and 420Nm at a constant speed of 

1100rpm. In general, it shows that ignition delay increases with the increase of engine load for all 

types of fuel. The slight advancement and gradual combustion under 420Nm for B50 may be due to a 

better fuel mixture preparation resulted from combined effects of higher injection pressure, compared 

with diesel, and lower viscosity, compared with B100. In addition, the maximum HRR increases with 

the rise of engine load due to the increase in the quantity of fuel injected into the cylinder [25]. 

 

 

Figure 6 HRR under a load of 210 Nm and at varying speeds for different fuel cases 
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Figure 7 HRR at speed of 1100rpm and under varying loads for different fuel cases 

5.2 Time synchronous average 

In a real application, the vibration and acoustic signals collected are commonly contaminated by 

different noises such as those from the dynamotor and ventilation fan which will affect the accuracy 

of feature extraction for condition monitoring and combustion diagnosis. Figure 8 and 9 show the 

engine vibration and acoustic signals at a speed of 1300rpm and at different loads of 210Nm, 315Nm 

and 420Nm while the test engine is fuelled by different fuel of diesel, B50 and B100, respectively. 

The signal covers one complete combustion cycle (720 degree) which is a simple and fundamental 

way of presenting data in the angular domain. It can be seen that the amplitude of the acoustic signals 

increased alongside the increasing engine loads under all types of fuels, showing the signal related to 

engine process closely. 

Moreover, it can be also seen from Figure 9 that the variations of acoustic signal corresponding to 

each cylinder in one complete combustion cycle is not as clear as that of vibration signal, especially 

under lower load conditions. The main reason for this is that the acoustic signal is much noisy because 

of various noise sources. In addition, acoustic signal is more correlated to the velocity of surface 

vibration which highlights more on low frequency vibrations such as that from engine mounting 

system. These indicate more careful analysis needs to be carried out for the acoustic signals to obtain 

useful information for diagnosis. 
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Figure 8 Vibration signals at speed of 1300rpm and under different loads 

 

Figure 9 Acoustic signals at speed of 1300rpm and under different loads 
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TSA is an effective technique in the time domain to remove the noise in a repetitive signal and is 

widely used in vibration monitoring and fault diagnosis [26]. The SNR of an acoustic signal can be 

improved significantly by suppressing the components which are asynchronous with that of interest. 

TSA is based on the knowledge of the revolution specifications of the rotating part. Generally, this 

requirement is met by using an external trigger signal provided by a shaft encoder, and the revolution 

period of rotating machinery can then be obtained. In the present study, a Hengler RS58 speed sensor 

was used to collect the engine speed and provided revolution information for the test engine for TSA 

processing. The time interval of the pulses in the speed signal was not constant due to oscillation of 

the shaft speed. Based on this consideration, assuming the shaft speed is undergoing constant angular 

acceleration [27]. The angular acceleration was calculated using the arrival times of the three adjacent 

pulses obtained from the sampling of the speed signal. The correct placement of the resample on the 

time axis was then carried out based on constant angular acceleration. In this study, the time axis 

resampling was processed in sections with each section length having 1000 points and 5 lengths were 

selected. Once the resample times are calculated, the vibration signal was resampled according to the 

resampled time axis for synchronous average. 

 

Figure 10 TSA acoustic signals under different operating conditions and fuel types 

Figure 10 shows the averaged acoustic signals using TSA processing for one complete combustion 

cycle. The engine was operating under different loads and fuel types at speed of 1300rpm. It can be 

seen that the amplitude of the acoustic signals increases with increased load for all fuel types, and the 

periodic characteristic of the acoustic signals in Figure 10 is better understood compared with results 

in Figure 9. 

For a detailed comparison, root mean square (RMS) values were calculated from the TSA acoustic 

signals as a feature parameter for comparative analysis. As shown in Figure 11, RMS values of TSA 

acoustic signals have presented similar trends for the three fuel causes over different loads. The RMS 

values increase with the increase of the engine loads and speeds. However, RMS values cannot 
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separate the three fuel cases over different loads, especially under low loads such as 105Nm and 

210Nm. 

 

Figure 11 RMS values of TSA acoustic signals under different fuel types 

5.3 Feature extraction based on CWT 

To obtain more details of the combustion events for different fuel cases, the CWT is used to analyse 

the TSA acoustic signals collected under different fuel types of diesel, B50 and B100 in the higher 

frequency band (from 10 kHz to 40 kHz). The scales from 0.5 to 2 are selected for CWT analysis 

application in this study to investigate the time-frequency properties of the engine acoustic signals in 

high frequency range in which more content of direct sound radiation is included. 

Figure 12 shows the contour plot of the CWT coefficients for the TSA acoustic signals at 900rpm 

with varying loads and different fuel types. It can be seen the contour shapes of the CWT in the high 

frequency band give a superior representation of the start, strength and duration of each combustion 

event. In addition, the contour distribution shows good uniformity among the four cylinders, giving an 

indication of the uniformity of combustions between different cylinders. These show that the CWT 

was very effective in extracting combustion related information from the acoustic signals.  

Moreover, it has observed that the strength increases with loads for all three types. These 

characteristics may indicate that the strength of the combustion events can give sufficient information 

for differentiating fuel types.  

To confirm this at different speed, the CWT coefficients at a higher speed (1300rpm) were also 

presented in Figure 13 for corresponding fuel types. It can be seen that the strength of combustion 

events was higher for higher speed and also increases with loads.  

Therefore, a common feature parameter, RMS, is extracted from the CWT coefficients results for fuel 

types. This detection approach involves minimal computational effort, making it suitable for use as an 

on-line condition monitoring technique. As a measure of overall sound level intensity, the average 

RMS value of the multi-cycle acoustic signal is calculated over the four load settings and the three 

fuel types. Figure 14 presents a comparison of the RMS value of the CWT results under varying loads 

and different fuel types at the speeds of 900rpm and 1300rpm respectively. 
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Figure 12 Contour plots of the CWT results for different fuel types at the speed of 900rpm 

 

Figure 13 Contour plots of the CWT results for different fuel types at the speed of 1300rpm 
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Figure 14 Comparison of RMS between different loads and fuel types 

It can be seen from Figure 14 that the RMS values increase alongside engine loads and speeds. 

Moreover, the RMS values of the CWT coefficient results for biodiesel and its blends (B50 and B100) 

are slightly higher than those for pure diesel. Focusing on the fuel cases of B50 and B100, it shows 

that the RMS values for B50 are slightly higher than those of B100 in all test conditions. These 

behaviours correspond to the variation of the in-cylinder pressure, which indicates that the peak 

cylinder pressure for B50 is the highest and the peak cylinder pressure for diesel is the lowest over 

almost all the test conditions in accordance with discussion in Section 5.1. The trends were confirmed 

to the vibration and noise generation mechanism [19] that higher peak in-cylinder pressure combined 

with higher rate of pressure rise should produce higher vibration and acoustic. 

6. Conclusions 

In the present study, an experimental investigation of the combustion process and noise characteristics 

was carried out on a diesel engine operating with rapeseed biodiesel and its blends under steady state 

operating conditions. Based on the experimental study, the main results are summarized as follows: 

 The peak cylinder pressure is higher when the engine runs with rapeseed oil biodiesel in 

comparison with pure diesel over almost all tests. The possible reasons for this may be the 

high oxygen content and higher viscosity of biodiesel which help the combustion in the 

premixed stage. 

 The sound in the higher frequency band is less influenced by the measurement environment 

than the sound in the low frequency equivalent. These high frequency components can 

represent the CWT coefficients, allowing the determination of the start, duration and strength 

of combustion in each cylinder.  

 The RMS values of the CWT coefficients of the engine acoustic signal correspond to the 

variation of the in-cylinder pressure, while the changes of the in-cylinder pressure depend on 

the properties of the fuels. 

 The effects of fuels types on combustion can be extracted from the CWT contour plots and the 

RMS values of the CWT coefficients. 
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According to the study in this paper, it found that the characteristics of engine acoustic signal are 

potential to indicate the variation of in-cylinder pressure and diagnose the engine combustion process. 

And the RMS values of CWT coefficients of engine acoustic signals can be used to distinguish the 

differences of fuel types under different engine operating conditions. It is capable of evaluating the 

fuel qualities in diesel engines. 
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