
University of Huddersfield Repository

Fisher, Michael

Research and Development of a VST Plug-in for the Autonomous Post Production of a Stereo Piano
Recording

Original Citation

Fisher, Michael (2012) Research and Development of a VST Plug-in for the Autonomous Post
Production of a Stereo Piano Recording. Masters thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/17546/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

RESEARCH AND DEVELOPMENT OF A VST PLUG-
IN FOR THE AUTONOMOUS POST PRODUCTION

OF A STEREO PIANO RECORDING

MICHAEL FISHER

A THESIS SUBMITTED TO THE UNIVERSITY OF HUDDERSFIELD IN
PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE BY RESEARCH

THE UNIVERSITY OF HUDDERSFIELD

JANUARY, 2012

2

ABSTRACT

This thesis describes the research and development of a VST Plugin capable of the autonomous post production of

stereo piano recordings within the context of a popular music production. The use of software to make and

manipulate music is the focus of the Music Technology industry. Software utilities do not attempt to replace the

need for the creativity of technologists but instead allow them to perform increasingly complex methods of

production. Automated mixing is a popular area of research and the prototype developed demonstrates that

software is able to make creative decisions within production. The piano is a common instrument within popular

music and was chosen to be the subject of the research due to the diverse range of sounds it produces.

Development involved the implementation of algorithms for signal analysis with the Fast Fourier Transform,

frequency domain transformation with digital filters and time domain transformation with dynamic range

compression. These procedures were combined to allow the plugin to analyse a signal and calculate effects

parameters in real time, resulting in the dynamic and autonomous application of equalisation and compression

processing to a piano recording.

3

I. Background 9

I.1. Introduction 10

I.2. Alternative Systems 14

I.2.1. Signal Analysers 15

I.2.2. Equalizers 17

I.2.3. Compressors 21

I.2.4. Channel Strips 24

I.2.5. Multiband Compressors 26

I.2.6. Dynamic Equalizers 28

I.2.7. Evaluation 30

II. Development 31

II.1. Formal Specification 32

II.1.1. System Overview 33

II.1.2. Signal Analysis Specification 35

II.1.3. Audio Processing Specification 36

II.2. System Design 37

II.2.1. Signal Analysis 38

II.2.2. Audio Processing and Parameter Calculation 48

III. Evaluation 54

III.1. Testing 55

III.1.1. Data Gathering 56

III.1.2. Sample Average Test 62

III.1.3. Sample Transient Test 63

III.1.4. RMS Variance Test 64

III.1.5. FFT Band Variance Test 66

III.1.6. Listening Test 67

III.1.7. Performance Timing 67

III.2. Results 68

III.2.1. Sample Average Test 69

III.2.2. Sample Transient Test 71

III.2.3. RMS Variance Test 81

4

III.2.4. FFT Band Variance test 88

III.2.5. Listening Test 91

III.2.6. Performance Timing 94

III.3. Analysis 96

III.3.1. Test Results 97

III.3.2. Comparison to Alternative Systems 100

IV. Conclusion

IV.1. Conclusions 102

IV.2. Further Development 104

V. Appendix 105

V.1. Fourier Analysis 106

V.1.1. Fourier Analysis 107

V.1.2. Discrete Fourier Transform 110

V.1.3. Fast Fourier Transform 115

V.2. Polynomial Regression 120

V.3. Source Code 149

V.3.1. Juce_vstAudioProcessor 150

V.3.2. FFTALG 167

V.3.3. LogScales 170

V.3.4. Polyfit 171

V.3.5. EQ 173

V.3.6. Compression 176

V.3.7. FBand 179

V.3.8. WriteToFile 182

VI. References and Bibliography 183

5

LIST OF FIGURES

Figure References / Description Page
I.1.1 Screenshot of volume automation in Steinberg Cubase 5 12
I.2.1 –
I.2.9

Screenshots of VST plugins running in Steinberg Cubase 5, cropped and resized using Microsoft
Word 2010. Make and model of each screenshot given below.

I.2.1 BlueCat Audio FreqAnalyst 15
I.2.2a IXL Spectrum Analyzer 15
I.2.2b IXL Spectrum Analyzer 15
I.2.2c IXL Spectrum Analyzer 15
I.2.3 IXL Multimeter 15
I.2.4 Steinberg - Cubase EQ 17
I.2.5 Kjærhus Audio - Golden GEQ-7 17
I.2.6 Waves – API 550A 17
I.2.7 Waves – VEQ4 17
I.2.8 Waves – SSL EQ 17
I.2.9 T-RackS - T-RackS3 Classic 17
I.2.10 Image of the frequency spectrum perceptible to humans with the range of frequencies produced

by various musical instruments marked as bars.
Available at: http://www.psbspeakers.com/Images/Audiotopics/fChart.gif
Copyright © 1980 by Hachette Filipacchi Magazines, Inc. Reprinted from Stereo Review, April
1980, with permission.

18

I.2.11 A table describing the frequency locations of the tonal characteristics of various musical
instruments, credited to Matt Houghton.
White, P. (2008) What’s the Frequency? A Guide to Effective EQ, Sound on Sound, December
2008, Available at: http://www.soundonsound.com/sos/dec08/articles/eq.htm

19

I.2.12-
I.2.17

Screenshots of VST plugins running in Steinberg Cubase 5, cropped and resized using Microsoft
Word 2010. Make and model of each screenshot given below.

I.2.12 Steinberg – Cubase Compressor 21
I.2.13 Kjærhus Audio – Golden Compressor GCO-1 21
I.2.14 Waves – C1 Compressor 21
I.2.15 Waves – SSL Compressor 21
I.2.16 Nomad Factory – BT Compressor CP25 21
I.2.17 T-RackS – T-RackS Classic Compressor 21
I.2.18 Nomad Factory BT BrickWall BW2S-3 23
I.2.19 Waves De-Esser 23
I.2.20 Waves SSL Stereo Channel Strip 24
I.2.21 Waves RChannel 24
I.2.22 Metric Halo ChannelStrip 24
I.2.23 Steinberg MultibandCompressor 26
I.2.24 Waves C4 26
I.2.25 Waves L3 MultiMaximiser 26
I.2.26 Voxengo GlissEQ 28
I.2.27 T.C. Electronic Dynamic EQ 28
I.2.28 Brainwork BX_dynEQ 28
II.2.1 Screenshots of VST plugins running in Steinberg Cubase 5, cropped and resized using Microsoft

Word 2010. Make and model of each screenshot given below.

II.2.1a BlueCat Audio FreqAnalyst 38
II.2.1b IXL Spectrum Analyzer 38
II.2.1c Voxengo SPAN 39
II.2.2 Plot of regressed FFT data of recorded piano audio, pre and post the application of full EQ. FFT

generated using the IXL Spectrum Analyser, regression and plotting carried out with Microsoft
Excel 2010.

40

II.2.3 Five screenshots of the plugin showing the effect of FFT resolution and logarithmic scales on the 41

http://www.psbspeakers.com/Images/Audiotopics/fChart.gif
http://www.soundonsound.com/sos/dec08/articles/eq.htm

6

distance between points on the plot.
II.2.4 Graph of linear versus logarithmic values demonstrating the effects on the distribution of values

within a logarithmic scale when changing its base. Created in Microsoft Excel 2010.
42

II.2.5 As for Figure II.2.4 but with the distribution of values “inverted”. Created in Microsoft Excel 2010. 43
II.2.6 Six screenshots of the plugin showing the effect on the plot of changing the value of LOGBASE. 44
III.1.1 Six photographs showing the microphone techniques used to record the piano audio for testing. 60-61
IV.1.1 A screenshot of compelted prototype running in Cubase 5 102
V.1.1 Four waveform plots showing the transformation of a sine wave to a sawtooth wave, created in

Micrsofot Excel 2010.
107

V.1.2 An illustration of Euler’s Identity, Available at: http://schools-
wikipedia.org/images/177/17797.png

110

V.1.3 The output of the Visual Basic prototyping of the Real DFT for a sine wave of 10Hz. 112
V.1.4 The output of the Visual Basic prototyping of the Real DFT for a sine wave of 10Hz, scaled by N/2 113
V.1.5 The output of the Visual Basic prototyping of the Real DFT for a sine wave of 10Hz with three

even harmonics
114

V.1.6 Diagram showing the Decimation in Time process, scanned from Jackson, L. B. (1996) Digital
Filters and Signal Processing, Kluwer Academic Publishers, London, p. 215

115

V.1.7 Diagram showing the Decimation in Frequency process, scanned from Jackson, L. B. (1996) Digital
Filters and Signal Processing, Kluwer Academic Publishers, London, p. 215

116

V.1.8 Output of the Visual Basic Prototyping of FFT for a 1kHz sine wave. 117
V.1.9 Plot of the Hann window function, Available at:

http://upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Window_function_%28hann%29.p
ng/800px-Window_function_%28hann%29.png

117

V.1.10 Plot of the Hann window function, Available at:
http://upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Window_function_%28hann%29.p
ng/800px-Window_function_%28hann%29.png

118

V.1.11 Plot of the Cosine window function, Available at:
http://upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Window_function_%28sine%29.p
ng/800px-Window_function_%28sine%29.png

118

V.1.12 Ouput of the Visual Basic prototyping of FFT for a 1kHz sine wave with Hann, Hamming and
Cosine window functions applied, shown in (a), (b) and (c) respectively.

118-
119

V.2.1 Plot of tree age versus growth, created using Microsoft Excel 2010, data taken from
http://www.physics.csbsju.edu/stats/least_squares.html

120

V.2.2 Plot of polynomial regression of tree age versus growth, created using Microsoft Excel 2010, data
taken from http://www.physics.csbsju.edu/stats/least_squares.html

122

V.2.3 Plot of FFT analysis and counterpart regression of recorded piano audio. FFT generated using the
IXL Spectrum Analyser, regression and plotting carried out with Microsoft Excel 2010.

123

V.2.4 Plot off regressed FFT data of recorded piano audio, pre and post the application of a high pass
filter. FFT generated using the IXL Spectrum Analyser, regression and plotting carried out with
Microsoft Excel 2010.

125

V.2.5 Plot off regressed FFT data of recorded piano audio, pre and post the application of a low-mid
peaking filter. FFT generated using the IXL Spectrum Analyser, regression and plotting carried out
with Microsoft Excel 2010.

126

V.2.6 Plot off regressed FFT data of recorded piano audio, pre and post the application of a high-mig
peaking filter. FFT generated using the IXL Spectrum Analyser, regression and plotting carried out
with Microsoft Excel 2010.

127

V.2.7 Plot of regressed FFT data of recorded piano audio, pre and post the application of full EQ. FFT
generated using the IXL Spectrum Analyser, regression and plotting carried out with Microsoft
Excel 2010.

128

7

DISC CONTENTS

/JUCE_VST.dll

- The VST Plugin DLL. It has been tested on the following system:
• Cubase 5.1
• Windows 7 Ultimate x86
• Pentium Dual-Core CPU @ 2.2GHz
• 3GB RAM

- To use it, add the following directory to the Cubase/Nuendo plugin paths:

[DISC]/VST Development/JUCE_VST__FFT/Builds/VisualStudio2008/Release/

/Fisher M U0656660 - MSc Thesis - Jan 2012.pdf

- The electronic copy of the thesis

/Project

- /AES
o The Poster, Teaser Slides and Paper Handout used when presenting the research at the 130th AES

Convention 14th-16th May
- /Research

o The two Visual Basic Prototypes created to explore signal analysis principles.
- /Source

o All of the C++ source used, including external libraries and JUCE.
- /Testing

o /AB Tests
 The audio samples and plugin settings screenshots used to carry outthe AB tests demonstrating the use of

polynomial regression on FFT spectra.
o /Audio Samples
 The audio samples used to carry out the testing.

o /Data Outputs
 The raw CSV data output by the plugin.

o /Listening Test
 The samples used with the online listening test.

o /Recording Project
 The Cubase 5 project used to record all audio samples.

- /VST Development
o /JUCE_VST__FFT
 The Visual Studio 2010 project used to develop the plugin.

/Thesis

- /Sections
o The sections of the thesis as written using Microsoft Word 2010.

- /Videos
o The videos of the plugin in operation referenced in the thesis. Please note that the audio is included to give

an idea of what is being run through the plugin - it is not in sync.

COPYRIGHT NOTICE

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any copyright in it
(the “Copyright”) and s/he has given The University of Huddersfield the right to use such Copyright for any
administrative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the regulations of the
University Library. Details of these regulations may be obtained from the Librarian. This page must form part
of any such copies made.

8

iii. The ownership of any patents, designs, trade marks and any and all other intellectual property rights except
for the Copyright (the “Intellectual Property Rights”) and any reproductions of copyright works, for example
graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author
and may be owned by third parties. Such Intellectual Property Rights and Reproductions cannot and must
not be made available for use without the prior written permission of the owner(s) of the relevant
Intellectual Property Rights and/or Reproductions.

9

SECTION I

BACKGROUND

10

I.1

Introduction

11

The initial idea informing this research was developed in 2009 during a research project carried out by the author to

determine optimal recording and mixing techniques for a piano within the context of a modern popular music

production (Fisher, 2010). The outcome was a set of guidelines covering microphone choice and placement and

corrective mixing procedures for both grand and upright pianos. The research demonstrated that both subjective

and objective criteria are used to evaluate the success of a production. The recording process was found to be

mostly subjective – the criteria that constitute a successful piano recording vary between engineers and applications

and are preferential, even if they are informed as much as possible by objective reasoning. In contrast it was

discovered that the corrective post production procedures used to transform a piano for inclusion in a popular music

production were fairly standard; that is the majority of sources used very similar techniques. A significant

component of the similarities was the desire within modern popular music to achieve uniformity; perfect timing and

pitching, low dynamic range and constant tonal properties. The criteria for mixing procedures were not so influenced

by individuals and subjectivity, instead being determined collectively by the requirements of listeners of popular

music and current trends within the production community. It is this objectivity and centralisation of criteria of

success that lead to the question of whether the mixing process could be carried out autonomously by a piece of

software.

Audio mixing techniques can be broadly categorised into creative and corrective processes. Creative processes are

artistic in nature and include the use of delay based effects such as echo, reverb and chorus. Their purpose is to

artistically transform the sound in order to enhance a composition. Corrective processes are used to remove

undesirable characteristics from a recording, for example removing resonant frequencies from ringing drums,

emphasising low frequencies in a bass guitar recording, or reducing the range of dynamic change over the length of a

recording; their purpose is to correct a composition.

Mixing for popular music involves careful regulation of the tonal and dynamic elements of each instrument to give

the engineer as much control as possible over each component of a mix. The tonality of an instrument can be

controlled using equalisation (EQ); multiple digital filters connected in series, each passing, stopping, cutting or

boosting a specified frequency range. EQ would be used to implement the above example of removing resonant

frequencies from ringing drums by isolating the resonant band of frequencies and attenuating them. Dynamics can

be controlled using Dynamic Range Compression (DRC), commonly referred to as compression. Compression in its

most basic form controls the dynamic range of a piece of audio by attenuating a signal when it exceeds a set

threshold of amplitude. The threshold and ratio of change in input level to change in output level can be set to

control the amount of attenuation, as can the attack and release times controlling the rate of change of attenuation.

It is these two effects which are most commonly used to perform corrective post-production, and are most

commonly implemented using software plug-ins. This research aims to streamline the corrective mixing process for a

piano by developing one quick to use plugin which autonomously applies digital effects.

Over the past two decades recording studios have been involved in a rapid transition from the use of analogue

hardware to digital software; microprocessors now perform the tasks once performed by transistors and vacuum

12

tubes. This developmental link with technology has had a profound effect on signal processing; analogue hardware

provided a platform for the modelling of mathematical theory with circuitry, whereas digital software provides the

ability to create software which almost perfectly implements mathematical theory.

It is these digital advantages that have led to a very large proportion of modern recording studios recording and

mixing using a digital medium, such as a Digital Audio Workstation (DAW) software package. The basic function of a

DAW is to simulate an entire analogue recording studio – a mixing desk, recording medium, routing facilities and

audio processing capabilities. DAWs incorporate the use of “plug-ins” as inserts in the signal chain to implement a

wide variety of real-time digital audio effects. There are several software companies that produce DAWs, the three

most notable being Avid, Apple and Steinberg, with all three using a different format of plug-in. Stenberg produce

the Cubase and Nuendo DAWs, both implementing their VST (Virtual Sound Technology) plug-in environment. The

VST platform allows the implementation of real-time effects within a piece of software used extensively throughout

the world to record and mix music, and is therefore an ideal environment for the proposed software.

The implementation of mixing processes such as equalisation and compression using VST plugins is achieved through

the setting of parameters. For example, an EQ plugin allows the characteristics of each filter to be changed by setting

the cut-off frequency and gain parameters, whilst a compression plugin will provide control of threshold level,

ballistics timing and overall output. Most commonly an engineer will spend time setting the parameters of a plugin,

which then remain static throughout playback of the music, however it can also be useful to have parameters

change throughout playback to reduce or increase the impact of an effect. This can be achieved either by splitting

the recording of an instrument into multiple tracks and processing each separately or through the use of

automation. A DAW can be used to automate plugin parameters by graphing the value of a parameter against time:

Figure I.1.1 - Volume automation in Steinberg Cubase 5

The graph created in Figure I.1.1 shows automation create by drawing lines using a mouse, which is a particularly

time consuming process, as is making changes in the future. A quicker approach is the use of a physical interface

connected to the DAW, for example via MIDI, which allows knobs, sliders and buttons to be mapped to particular

parameters. This is a digital implementation of the technique of “riding” the faders of an analogue mixing desk to

automate the volume of a particular instrument and introduces humanisation to the changes in parameters.

Automation is a useful tool when mixing piano recordings as it allows for different tonalities to be created

throughout a performance. The wide range of frequencies and dynamics produced by a piano mean that mixing it for

popular music mostly involves attenuating parts of the spectrum to allow it to interact well with other instruments.

The desired amount of attenuation depends on how the piano is played, which will change over a performance and

hence so will the amount of attenuation. Manually automating the EQ and compression effects used on a piano is

extremely time consuming for example each parametric filter used will have at least three parameters to automate –

cut-off frequency, gain and Q factor, and it is not uncommon to use three or four filters per instrument. Any future

13

change of the automation of one parameter will then have a knock on effect on other parameters requiring them to

be updated as well.

This research aims to develop a plugin which automatically applies EQ and compression to a piano recording

resulting from experimentation into methods of changing effects parameters. The plugin will be capable of

intelligently responding to the changing characteristics of a performance and update parameters to compensate.

This will be achieved with the combination of signal analysis, compression and equalisation:

1. A frequency domain representation of the signal will be created using Fourier analysis and polynomial

regression.

2. The amplitude bins of set frequency ranges will then be used as the input to individual envelope followers.

3. The gain reduction output of each envelope follower is then used to control the gain and cut-off frequency

parameters of a parametric filter.

The design includes several novel contributions to the field of automated mixing;

• The use of polynomial regression to average and shape a frequency spectrum plot,

• The combination of compression and equalisation processes into a single effect,

• The ability to autonomously apply post production processing to a piano recording.

14

I.2

Post Production Systems

15

I.2.1 Signal Analsysis

Signal analysis tools help mixing engineers to make informed choices when mixing an individual instrument or

assessing the overall quality of a mix. An example of their use is to provide a method of analysing the low frequency

range of an instrument in a poor quality listening environment where low frequencies are not reliably reproduced

(Senior, 2011); the plugin allows the user to see how the low frequencies are behaving. Another example is to

compare the spectrums of two instruments which appear to be competing for space to inform how they may be

equalised to better interact with one another.

Figure I.2.1
Figure I.2.2a

Figure I.2.2b

Figure I.2.2c

Figure I.2.3

16

There a large number of plugins available offering signal analysis. Figure I.2.1 shows BlueCat Audio’s FreqAnalyst, a

simple FFT analysis tool. The plot displays either each stereo channel or a summed average of instant or peak level

and the ballistics of levels can be set using the envelope control. This plugin demonstrates the basic functionality

provided by spectral analysis plugins; a real-time FFT display with simple controls to transform it. Figure I.2.2 shows

the more complex IXL Spectrum Analyzer, an FFT analyser which supports three different plot types; a basic FFT plot,

a spectrogram and a third-octave analyser. Figure I.2.2a shows the basic FFT view which offers peak, peak hold and

average plots. Figure I.2.2b shows the spectrogram plot; frequency is plotted on the x-axis, time on the y-axis and

colour is used to denote amplitude as shown by the scale underneath the main plot. The plot scrolls upwards

through time showing the last two to three seconds of audio within the window. Figure I.2.2c shows the third-octave

analyser view which uses bars for each amplitude bin to display the spectrum. Yellow markers on the top of each bar

show peak levels. Each view performs the same task; displaying spectral information over time to the user, and the

view used is an individual preference. Figure I.2.3 shows the IXL Multimeter, a full signal analysis suite. Alongside the

FFT plot statistics collected on the clipping behaviour of the signal are shown as well stereo analysis. The main stereo

analysis tool uses colour to denote amplitude; blue for the left channel and red for the right, with colour brightness

increasing with amplitude. The horizontal plot denotes the stereo image and the colour displays are used to inform

the user of the volume of each part of the image. Another plot shows how the stereo image of signal will be

perceived by a listener; a head is displayed at the centre and the horseshoe shape around it denotes physical hearing

range. The green bars grow inward from the outer edge to show volume and hence where the listener would

perceive the signal to be coming from.

17

I.2.2 Equalizers

EQ plugins are commonly parametric implementations and can be categorised into two main types; modern digital

designs with a GUI providing a graphical display of the filters being applied, or outboard modelling designs with a

knob layout UI mimicking that used on a mixing desk.

Figure I.2.4 Steinberg - Cubase EQ

The stock equalizer provided with Steinberg Cubase. Parameters can be manipulated either with the graphical

Figure I.2.4

Figure I.2.5

Figure I.2.7

Figure I.2.6
Figure I.2.8

Figure I.2.9

18

representation or the sliders underneath. Four bands are available and any filter type can be selected for each from

high pass, low pass, high shelf, low shelf and parametric.

Figure I.2.5 Kjærhus Audio - Golden GEQ-7

Filter parameters are manipulated using the bank of knobs and the resulting contour displayed graphically. Rather than

selectable bands seven filters are provided; low and high shelving filters and five parametric filters.

Figure I.2.6 Waves – API 550A

Filter parameters are controlled with double height knobs. The upper knob controls centre frequency and lower knob

controls gain. Centre frequencies are selected from a limited set. Three bands are provided; 50Hz-400Hz, 400Hz-5kHz,

5kHz-15kHz. The low and high bands can be switched between parametric and shelving types.

Figure I.2.7 Waves – VEQ4

Similar to the API 550A but with more centre frequency options. Low pass and high pass filters can be set along with

low and high shelving filters and low-mid and high-mid parametric filters.

Figure I.2.8 Waves – SSL EQ

Offers a model of the classic Solid State Logic mix bus EQ. Freely selectable centre frequencies are provided for the

same filter set as the VEQ4 less the low pass filter. Polarity inversion is also available.

Figure I.2.9 T-RackS - T-RackS3 Classic

Offers the common filter set seen in these examples; low and high pass, low and high shelving and low-mid and high-

mid parametric filters. Filter parameters are set using the graphical display and can be fine-tuned using the knobs

below.

The plugins offer very similar functionality; a set of filters

connected in series covering the expected regions of the

frequency spectrum. The plugins with knob based user interfaces

usually have a vintage design as they are programmed to simulate

a specific piece of analogue hardware, for example the API 500A.

Hence why these plugins tend to restrict choice of cut-off

frequency and gain; the analogue circuitry’s frequency response

is modelled with specific parameters and it is impractical to do

this for every Hertz and Decibel.

The most common format seen in the examples above is to have

several filters available operating in ranges that together cover

the whole frequency spectrum but individually control significant

bands; low frequencies below 300Hz, low-mid frequencies

between 300Hz and 1kHz, high-mid frequencies between 2kHz

and 7kHz and high frequencies above 8kHz. For most instruments

the low frequencies would be cut to provide room in the mix for

instruments that intentionally produce low frequencies, for example drums and bass guitars. This is almost always

carried out with a high pass filter and/or a low shelving filter (Mellor, 1995). The low-mid frequencies contain the

Figure I.2.10

19

majority of fundamental frequency content for the common popular music instruments; guitars, pianos, keyboards

and low vocal ranges. The high-mid frequencies contain the harmonic frequency content produced by these

instruments and impact greatly on their tonal qualities, for example the presence of a vocal recording usually

occupies 3-4kHz (Mellor, 1995). Different instruments have very different frequency content in these two bands,

hence why filters covering the mid frequencies are usually parametric to allow the maximum amount of control

(Mellor, 1995); frequency centre, frequency range and gain can be carefully controlled. The high frequencies contain

the frequency content from cymbals and other percussion instruments such as tambourines and the higher

harmonics of the whole mix. They can be treated like the low and mid frequency bands using shelving or parametric

filters; the whole range can be attenuated if not relevant to the instrument to leave room for others, for example a

bass drum, or specific frequencies can be controlled to add or remove “shine” and “brilliance”.

Instrument Characteristic and Frequency Location
Kick Drum Bottom or depth is usually found in the 60-80Hz region;

Slap at 2.5kHz.
Snare Drum Weight, fatness or body at about 240Hz;

Bite at 2kHz;
Crispness at 4-8kHz.

Hi-hat 'Gong' at 200Hz;
Shimmer at 7.5-12kHz.

Cymbals 'Clunk' from 100-300Hz;
Ringing overtones at 1-6kHz;
Sizzle at 8-12kHz.

Rack Toms Fullness around 240Hz;
Attack at 5kHz.

Floor Toms Fullness around 80-120Hz;
Attack at 5kHz.

Congas Resonance around 200-240Hz;
Slap at 5kHz.

Bass Guitar Bottom at 60-80Hz;
Attack or 'pluck' at 700Hz to 1kHz;
'Pop' at 2.5kHz.

Electric Guitar Mains hum at 50Hz (UK) or 60Hz (US);
Fullness at 240Hz;
Bite at 2.5kHz.

Acoustic Guitar Bottom or weight at 80-100Hz;
Body around 240Hz;
Clarity from 2-2.5kHz.

Electric Organ Bottom from 80-120Hz;
Presence at 2.5kHz.

Acoustic Piano Bottom from 80-120Hz;
Presence between 2.5 and 5kHz;
Attack around 10kHz;
'Shrillness' at 5-7.5kHz.

Horns Fullness at 120-240Hz;
Shrillness from 5-7kHz.

Brass Warmth at 200-400Hz;
'Honk' at 1-3.5kHz;
'Rasp' at 6-8kHz;
Shrillness at 8-12kHz.

Solo Trumpet & Sax Warmth at 200-400Hz;
Nasal tones at 1-3kHz.

20

Strings Fullness at 200-300Hz;
'Scratch' (bow and string noise) from 7.5-10kHz.

Vocals Fullness around 120Hz;
'Boom' around 200-240Hz;
Presence at 5kHz;
Sibilance from 7.5-10kHz.

Figure I.2.11

21

I.2.3 Compressors

Compression plugins can be categorised in the same was as EQ plugins; digital designs with graphical user interfaces

and outboard modelling designs with vintage styled interfaces:

Figure I.2.12 Steinberg – Cubase Compressor

The stock compression plugin supplied with Cubase. It offers basic digital compressor functionality; threshold and

ratio control, attack and release timing and make-up gain. Extra features include hold time, automatic make-up gain,

automatic release time, hard/soft knee control and blending between peak and rms analysis. A graphical display of

Figure I.2.12

Figure I.2.13

Figure I.2.14

Figure I.2.15

Figure I.2.16

Figure I.2.17

22

Functionality is as common between the above compression examples as it is for the EQ examples. The broad

categorisation of modern digital and vintage modelling reflects the two main desirable outputs of a compression

plugin; careful control over parameters to apply a small amount of compression produce and a clean, modern

sounding result, or the colouration and more severe compression provided by outboard hardware to produce a

vintage sounding result

. Compression is used to control the transients of a recording to emphasise either the attack or body characteristics.

The attack of a sound is emphasised by using long attack and release times that allow a transient through the plugin

untouched but then attenuate the body of the sound, allowing make-up gain to boost the transient (Preve, 2008). By

far the most common usage within modern popular music is the emphasis of attack, particularly on drums, to

produce a “punchy” sound with exaggerates rhythm. The body of a sound is emphasised using short attack and

release times and a threshold level set to be lower than the transient peak level and higher than the body average

level; the transient is attenuated but the envelope falls back as the body passes through the plugin, allowing the

make-up gain to increase the level of the body (Preve, 2008). Both of these implementations have the effect of

shaping the characteristics of a recording as well as reducing its dynamic range. Compression is also widely used

the resulting compression curve is provided.

Figure I.2.13 Kjærhus Audio – Golden Compressor GCO-1

Basic functionality is combined with detailed control over analysis and the envelope. Level detection customisation

includes stereo linking and equalisation. A choice of selectable envelopes based on transient response is supplied.

Also included is hard/soft knee control and input gain level. Graphical display of compression curve is provided.

Figure I.2.14 Waves – C1 Compressor

Basic functionality with a very visual graphical user interface; threshold levels are set using a slider on the input level

meter; the effect of current settings is determined by the joint compression curve/level meter dominating the user

interface.

Figure I.2.15 Waves – SSL Compressor

A hardware modelling plugin simulating the classic Solid State Logic mix bus compressor. Threshold and make-up

gain are freely chosen but ratio, attack time and release time are selected from limited options, although automatic

release time is included. A basic level meter showing gain reduction is provided.

Figure I.2.16 Nomad Factory – BT Compressor CP25

This plugin offers a model of a tube compressor. Threshold and ratio controls are provided as normal but ballistics

are controlled with an attack time and time constant parameter; effectively a release time. A general level of

compression is selectable between low, medium and high which is assumed to control envelope characteristics. Gain

reduction meter supplied.

Figure I.2.17 T-RackS – T-RackS Classic Compressor

A modern digital compressor with a vintage styled GUI. A threshold parameter is not provided, instead it is kept at

0dB and an input drive control is used. Timing and ratio controls are provided as usual, as is a pre-level detection

high pass filter. A gain reduction meter is provided.

23

across an entire mix to reduce the dynamic range of a composition as a whole and hence increase its loudness

(Robjohns, 1999). Loudness is an important quality of mainstream popular music as it increases the “energy” of a

composition and also sounds better when listened to through headphones; it is increasingly common to test a mix

with several sets of headphones as well as several sets of loudspeakers due to the recent boom in portable personal

music players (Walker, 2007).

The compression concept is also utilised in other forms; the two examples above show a brick wall limiter and de-

esser. A brick wall limiter employs a theoretically infinite ratio to prevent a signal rising above a specified amplitude.

The Nomad Factory BT BrickWall BW2S-3 shown in Figure I.2.18 provides a threshold parameter controlling the

maximum peak amplitude and a release time parameter. Brick wall limiting is typically used to create the “pumping”

or “breathing” sound associated with over-compression. A de-esser reduces the sibilant characteristics of a vocal

recording by compressing the frequency band which typically contains the offending harmonics; between 4kHz and

10kHz (Senior, 2009). The Waves De-Esser shown in Figure I.2.19 allows control of the centre frequency and

threshold.

Figure I.2.18

Figure I.2.19

24

I.2.4 Channel Strips

The main purpose of a channel strip plugin is to reduce the number of individual plugins required to produce a

desired result. They offer a reduced CPU load to employ all of the included effects than would be possible with one

effect per plugin. CPU load is an important consideration when mixing a popular music composition as most tracks

will require at least one of the processes provided by the channel strips shown above and most up to date DAWs

have the capability to run hundreds of audio tracks at once; all of this real-time processing requires significant

resources.

The effects included within a channel strip plugin commonly include noise gating, compression, equalisation, phase

inversion and level metering. A noise gate mutes a signal when it falls below a particular threshold. An example of its

use is on a close miked drum track to remove the spill from other drums; the spill will be at a lower level than the

Figure I.2.20

Figure I.2.21

Figure I.2.22

25

recorded drum and so can be easily removed. Figure I.2.20 shows the Waves SSL channel strip; another example of

the modelling of prominent analogue hardware. The plugin incorporates the SSL EQ and SSL Compressor plugins

described in section II.1.1 alongside a noise gate, phase inversion switch and input gain level. Figure I.2.21 shows the

Waves RChannel plugin from the Renaissance range. This plugin provides a graphical display of the applied EQ and

level meters for both pre and post dynamics processing. It allows for a choice of dynamics processors so any

combination of two can be connected in series. Figure I.2.22 shows Metric Halo’s ChannelStrip which employs

interactive level meters for control of the gate and compressor parameters; thresholds are set with a slider on the

meter and the gain reduction of each process is shown below. Graphical displays of the gating and compression

curves are shown. The plugin provides six filters, the type of which can be chosen between high pass, low pass,

shelving and peaking to allow full customisation. The filters can also be manipulated using the graphical display of

the EQ contour.

26

I.2.5 Multiband Compressors

Multiband compression allows separate control of the dynamics of individual frequency ranges. The incoming signal

is filtered into specified frequency bands to which an individual compressor is applied; de-essing, as described in

Section II.1, is an example of multiband compression. An example of its use is when processing a bass guitar;

although the majority of the sound produced is confined to the low frequencies, there can be a significant amount in

the high-mid range if the player has included “pops” and “slaps” to the performance, which are typical

characteristics of a bass performance for genres such as funk music. Compressing the recording with a full

bandwidth plugin would result in the less powerful high-mid frequencies being attenuated when the more powerful

low frequencies force the signal above the set threshold (Walden, 2007). Multiband compression can be used in this

situation to control the dynamics of the low frequencies without affecting the high-mid range.

Figure II.2.7 shows Steinberg’s MultibandCompressor, included as standard with their Cubase DAW. The plugin

provides four bands of operation, the boundaries of which can be set by the user. Each band includes basic

compression parameters, ratio, threshold, attack time and release time, and a graphical display of the compression

curve. Make-up gain is applied manually to the summed processed bands. Figure II.2.8 shows the Waves C4 plugin

which offers identical functionality as the Steinberg plugin, except the threshold level can be set with a slider on the

band level meter. Figure II.2.9 show Waves’ L3 MultiMaximiser which employs multiband limiting. No ratio control is

available and neither is an attack time parameter, though a release time can be set for each band. A feature unique

Figure I.2.23

Figure I.2.24

Figure I.2.25

27

to the LQ is the “separation” parameter which provides control over the blending of the frequency bands before

processing.

28

I.2.6 Dynamic Equalizers

Dynamic EQ is the newest and rarest of the effects described in this section. It allows for the automated control of

individual filters within an EQ plugin based on the amplitude of the overall signal or a specific frequency range. It

serves a similar purpose to multiband compression in that it allows for one area of the frequency spectrum to be

transformed without affecting any other areas.

Figure II.2.10 shows Voxengo’s GlissEQ plugin which offers five EQ bands, each of which has cut-off frequency, gain

and bandwidth parameters as expected. Included within each band is the “Dyn” parameter which is used to control

the amount the dynamic qualities of the incoming signal affect the EQ parameters (Voxengo GlissEQ Overview). The

plugin includes spectral analysis which allows the user to view the effect the plugin has in real-time. Figure II.2.11

shows T.C. Electronic’s Dynamic EQ plugin. It employs four frequency bands which can implement static or dynamic

EQ and each band’s filter can be selected between parametric and shelving types. Each band provides compression

parameters to control the dynamic response of each filter. The input to each compressor can be set to be any

frequency range; the high frequency content of the signal can be used to control the low frequency content (T.C.

Electronic Dynamic EQ Overview). Figure II.2.12 shows the Brainwork BX_dynEQ plugin which takes the functionality

of the previous two examples a step further by offering mid-side processing. The plugin is capable of splitting the

Figure I.2.26

Figure I.2.27

Figure I.2.28

29

incoming signal into its sum and difference components, otherwise known as the mid and side components. This

allows the plugin to treat the centre and edges of the stereo image differently, including the ability to compress the

edges of the stereo image using the centre as a side-chain input (White, 2009). The frequencies within the mid and

side components to which the compressor responds can be set by the user alongside standard compression

parameters.

30

I.2.7 Evaluation

The research into existing products can be used to demonstrate in what ways the proposed plugin is similar and
different to current processes, and hence the novel contribution of this research.

The plugin combines several commonly used processes to create a mixing process that would be very time
consuming to recreate with traditional plugins. The only method of recreating its capabilities using the basic plugins
above would be to use separate EQ and compression plugins or a channel strip, and manually automate all
parameters using critical listening and some form of signal analysis for assistance.

The multiband compressors and dynamic equalizers are a step up from the basic plugins and show how processes
can be combined to form more complex effects. The proposed plugin has similarities to both processes; it
compresses the signal by frequency band and automatically controls EQ parameters. It differs from multiband
compression in that the signal is not filtered in order to be analysed and processed; signal analysis and regression are
used to determine band amplitude and dynamic range compression is applied via filters. It is closet to dynamic EQ –
both use dynamic processing to control EQ parameters, but again is unique in its use of frequency domain signal
analysis to determine effects parameters.

This research aims to take the existing processes described throughout this section and combine them in a way that
produces a novel contribution to the field of automated mixing by experimenting with different methods of
interpreting signal analysis data and its use to apply corrective mixing, and to produce a plugin which can
autonomously mix a piano recording for a popular music production.

31

SECTION 3

DEVELOPMENT

32

II.1

Formal Specification

33

II.1.1 System Overview

This section provides an overview of the system. The developed plugin can be described as system whose input is an

stream of audio samples from a DAW, which are analysed and processed by an algorithm, and outputted back to the

DAW. The audio processing algorithm has as its input the results of signal analysis which are interpreted to derive

effect parameters and output a processed stream of samples:

Three instances of the algorithm are active within the plugin, each processing a specified frequency band. The three

frequency bands to be effected were derived from the previous work into piano recording and mixing carried out by

the author.

Low frequencies – 30Hz – 150Hz

As explained in II.1 this band is commonly attenuated within a popular music production to allow room for other

instruments. It also contains noise from the pedals of a piano and air movement within the recording environment.

The content of the band produced by the piano is “boomy” and resonant, and its attenuation produces a much

clearer overall tone.

Low-mid frequencies – 300Hz – 700Hz

This band contains the “body” of piano tone and so it best treated with a peaking filter with a wide Q and relatively

low attenuation. Its characteristics are “ringing” and resonant, and so like the low frequencies its attenuation

produces a much clearer overall tone.

High-mid frequencies – 3kHz – 5kHz

This band mostly contains harmonics, but most importantly the “attack” characteristic of notes. Boosting it produces

clearer note attack because of this, but also increases the brightness of a recording due to harmonic content.

Generally speaking the equalisation of a piano recording aims to reduce “muddiness” and boost brightness. This

produces a clear, crisp tone conducive to a popular music production. The three bands described above cover nearly

all of the audible frequency spectrum up to 5kHz. The frequencies above 5kHz are relatively low powered and so do

not have much of an impact on the dynamic qualities of a recording, meaning that regulation of the three bands with

dynamic processing will efficiently control the overall dynamic range of the audio.

Input
Audio from DAW

Process Output
Audio to DAW

Stage 1
Analysis of

audio

Stage 2
Calculation of
parameters

Stage 3
Application
of effects

34

35

II.1.2 Signal Analysis Specification

The signal analysis section analyses windows of samples and produces average amplitudes of the three frequency

bands to be processed:

1. FFT Analysis

a. A frequency domain representation of the signal is estimated using FFT analysis. This produces a set

of frequency and amplitude pairs representing the energy content of the window.

2. Polynomial Regression

a. Regression is used to smooth the variance of each amplitude value over time by deriving a curve of

best fit for the spectrum.

3. Band Average

a. Each amplitude value within each of the three desired frequency bands is averaged to produce a

signal level for that band.

4. RMS Measurement

a. A final smoothing stage scales each band level using the RMS level of the entire signal.

Incoming signal

FFT Analysis

Polynomial Regression

Band 1

RMS Measurement

Band 2 Band 3

36

II.1.3 Audio Processing Specification

The audio processing section uses the band levels calculated through signal analysis to calculate parameters for

three instances of a custom effect and apply them. For each of the three frequency bands:

1. Envelope Signal

a. An envelope signal is calculated using the smoothed band level and predefined attack and release

times.

2. Gain Reduction

a. A gain reduction value is calculated using the envelope and predefined threshold.

3. EQ Parameters

a. Gain and cut-off frequency values are calculated using the gain reduction value.

4. Processing

a. The filter is applied to the signal.

As the three bands encompass the most important content produced by a piano, their regulation via dynamics

processing also has a large impact on overall dynamic range.

Amplitude

Envelope Signal

Gain Reduction

EQ Parameters

Processing

Incoming signal

37

II.2

System Design

38

II.2.1 Signal Analysis

Fourier Analysis is a branch of mathematics that is extremely useful in digital signal processing, first published by

James Fourier in 1808 (Fourier, 1808). At its core is the idea than any periodic signal can be expressed as the sum of

an infinite number of sine and cosine waves, known as the Fourier series, (Croft and Davidson, 2008, p.1139), with

the process known as a Fourier transform. In 1965 J.W. Cooley and John Tukey rediscovered the Fast Fourier

Transform algorithm, a re-working of the Discrete Fourier Transform (a solution for applying Fourier analysis to

discrete rather than continuous functions), which computes the transform at speed (Cooley and Tukey, 1965). Many

variations of the FFT exist, but all involve some kind of decimation (Jackson, 1996, p.213).

The purpose of the FFT algorithm within this research is to provide a means to analyse the tonal qualities of a piano

recording. In order to do this, the software must be able to determine the average amplitude over time of different

frequency bands, taking those amplitudes from an FFT trace. As shown in the videos* and three screenshots below,

an FFT trace is a jagged line which moves seemingly randomly over time.

Figure II.2.1a

Figure II.2.1b

*The videos can be found on the DVD under /Thesis/Videos/FFT Plugins

39

Figure II.2.1c

For early implementations of the plugin the amplitude of each desired frequency band was calculated by averaging a

number of bins from an FFT trace. However, the sharp movements in the trace led to sharp changes in effects

parameters. To avoid always having to use long attack and release times to smooth these sharp changes, a different

method of calculating frequency band amplitude was required. In order to pursue the assertion that frequency

domain signal analysis could be used for this purpose, Microsoft Excel was used to explore the usefulness of

regression in smoothing the trace. Specifically, if the frequency domain representation was a smooth plotted line

rather than jagged, would this produce band amplitudes with lower variances, and hence be more representative of

the actual volume of a band over time.

Polynomial regression is a form of curve fitting which derives a polynomial to represent the non-linear relationship

between two variables. The least squares process is used by most software implementations to achieve this (see

V.2). To determine whether it was a viable option for smoothing an FFT trace, a piano recording was made and

analysed in Cubase 5 using the 1/3 Octave Analyser section of the IXL Spectral Analyser and data copied by hand into

Microsoft Excel to be regressed. Traces were recorded at four beats of a bar to allow the same point of a recoding to

be easily captured multiple times for data gathering purposes. Accompanying Figure II.2.1 are some videos* that

demonstrate the movement of the regressed trace over time. Both results give a visual representation of the

averaging effect that regression has on the FFT trace, and it was on this basis that it was decided to implement

regression within the plugin to solve the problem of calculating frequency band amplitudes directly from the FFT

trace.

To implement polynomial regression within the VST framework an external library, ALGLIB, was used (ALGLIB, 2012).

ALGLIB was chosen as it was the only open source implementation of regression in C++ that could be found. It also

includes a comprehensive set of FFT functions, keeping the process of linking external resources to the project as

simple as possible and also keeping the size of resulting plugin smaller than if a separate library was used to calculate

the FFT.

Aural tests were carried out to determine whether using a regressed FFT trace to calculate frequency band

amplitudes reduced the effect of the sharp changes in bin amplitudes on effect parameter changes. The regressed

trace produced much smoother changes in amplitude and as a result more musically pleasing results.

40

-120.0

-110.0

-100.0

-90.0

-80.0

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

20 25 31 40 50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

63
00

80
00

10
00

0
12

50
0

16
00

0
20

00
0

Beat 1

-120.0

-110.0

-100.0

-90.0

-80.0

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

20 25 31 40 50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

63
00

80
00

10
00

0
12

50
0

16
00

0
20

00
0

Beat 2

-120.0

-110.0

-100.0

-90.0

-80.0

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

20 25 31 40 50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

63
00

80
00

10
00

0
12

50
0

16
00

0
20

00
0

Beat 3

-120.0

-110.0

-100.0

-90.0

-80.0

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

20 25 31 40 50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

63
00

80
00

10
00

0
12

50
0

16
00

0
20

00
0

Beat 4

41

The initial implementation of regression within the plugin used 1024 bins from an FFT with logical size 2048 samples

– the symmetrical nature of the resulting trace means that only the first half of bins are used. The regression process

is complex and the algorithm proved to be too slow when used with this many samples. To feed this many values

into the regression algorithm would be hugely costly in efficiency terms; an accurate curve can be achieved with far

less values. Even more inefficient would be to attempt to plot four traces on the GUI (pre and post FFT and

regression traces) of 1024 samples each. A method of reducing the number of bins passed around the plugin was

required. The simplest option would have been to take, for example, one sample for every five from the FFT output,

resulting in an array of 204 bins. However as all spectrum are plotted on a logarithmic frequency axis, it was decided

to implement a logarithmic method of taking bins from the FFT output. This is useful because the vast majority of

sound produced by any musical instrument occurs below 10 kHz; above that are harmonics of lower frequencies. For

a piano the point at which frequency content can be ignored is higher than for other instruments due to the

extended range of notes that can be played, but it is still unnecessary to be analysing amplitudes up to 20 kHz. With

an FFT resolution value of 512 or higher stuttering is introduced to the track within Cubase; the plugin cannot

compute the regression and draw the traces quickly enough and uses so much processing power trying to that the

audio buffers cannot be maintained. It was logical therefore to have the value as low as possible in order to have

CPU overheads at a minimum. To find this minimum the FFT and regression traces were observed at different

resolutions and visual observation used to determine if the value was acceptable; the value at which the regression

curve was smooth i.e. had no sections of straight lines, and moved significantly less than the FFT trace was used.

Figure II.2.3a

Figure II.2.3b

Figure II.2.3c

Figure II.2.3d

42

Figures II.2.3 (a), (b), (c), (d) and (e) show resolutions of 20, 30 50 , 75 and 100 respectively and were implemented

using a base ten logarithm to extract bins from the FFT output, however there is still a significant difference in the

distance between points at each end of the spectrum. This can be improved by using a higher base logarithm; the

graph below shows how the severity of a logarithmic curve increases with its base.

Figure II.2.4

Higher bases are implemented using the formula:

log𝑏 𝑥 =
log𝑎 𝑥
log𝑎 𝑏

So the value of the base 50 logarithm of x is given by:

log50 𝑥 =
log10 𝑥

log10 50

In order to compute the curve above the input must be scaled to match the range of the relevant logarithm:

𝑖𝑜𝑢𝑡 =
log10 �(𝐿𝐵 − 1) 𝑖𝑖𝑛𝑁 + 1�

log10 𝐿𝐵
𝑁

The input index must be scaled first to be between zero and one which is achieved by division by its maximum value,

N, and then scaled between one and the logarithm base, LB. Therefore, an input of zero is first scaled to zero then

0

200

400

600

800

1000

1200

0 61 12
2

18
3

24
4

30
5

36
6

42
7

48
8

54
9

61
0

67
1

73
2

79
3

85
4

91
5

97
6

Base 10

Base 50

Base 100

Figure II.2.3e

43

scaled to one giving a logarithm of zero. An input of N is first scaled to one then scaled to LB giving a logarithm of

one. The output of this is then multiplied by N to re-scale the value back to the index range. This is more easily

demonstrated in the table below, which uses 1000 as the value of N and 50 as the value of LB:

𝑖𝑖𝑛
𝑖𝑖𝑛
𝑁

 (𝐿𝐵 − 1)
𝑖𝑖𝑛
𝑁

+ 1
log10 �(𝐿𝐵 − 1) 𝑖𝑖𝑛𝑁 + 1�

log10 𝐿𝐵

log10 �(𝐿𝐵 − 1) 𝑖𝑖𝑛𝑁 + 1�
log10 𝐿𝐵

𝑁

0 0 1 0 0
250 0.25 13.25 0.66 679.31
500 0.5 25.5 0.83 851.41
750 0.75 37.75 0.93 954.54

1000 1 50 1 1000

However a calculation must also be made to “reverse” the logarithmic curve; the graph and table above show curves

that would take more values from the high end of the spectrum than low and the opposite is required:

𝑖𝑜𝑢𝑡 = 1 −
log10 �(𝐿𝐵 − 1) �1 − 𝑖𝑖𝑛

𝑁 � + 1�
log10 𝐿𝐵

𝑁

Figure II.2.5

More experimentation was carried out to determine a suitable logarithm base. Starting at ten the value was

increased until the distance between points on the trace had evened out. More importantly the value was used to

reduce the size of the straight line at the beginning of the trace before the curve begins, caused by the base ten

logarithmic frequency scale on the trace which displays the 10 Hz to 100 Hz frequency range in the same physical

0

200

400

600

800

1000

1200

0 57 11
4

17
1

22
8

28
5

34
2

39
9

45
6

51
3

57
0

62
7

68
4

74
1

79
8

85
5

91
2

96
9

Base 10

Base 50

Base 100

44

distance as the 1 kHz to 10 kHz range. A higher base value forces more bins to be taken from the low frequency

range, reducing the distant between points. Figure II.2.6 (a), (b), (c), (d), (e) and (f) show LOGBASE values of 10, 50,

100, 150, 200 and 250 respectively.

Figure II.2.6a

Figure II.2.6b

Figure II.2.6c

Figure II.2.6d

Figure II.2.6e

Figure II.2.6f

At 250 the increased logarithm base has shrunk the sharp point where the straight line meets the curve from around

75 Hz to around 20 Hz and has had a significant effect on the spread of points across the trace; at the low end the

points are far closer together and though it is difficult to see at the high end points are further apart. The logarithm

base and resolution values allow the plugin to operate more efficiently by reducing the amount of data to processed

using the FFT resolution, and allowing what is processed to be more relevant. A description of the signal path

through the plugins codebase follows, which can be cross referenced with the source code provided in the appendix.

The FFTALG class handles the interface between the ALGLIB FFT routines and the plugin. Two arrays were used to

send and receive data from the FFT, both of ALGLIB data types; real_1d_array in contains the real valued input and

complex_1d_array out contains the complex valued output. The Init() functions defines these and two sample arrays,

Lc and Rc, with size N. The Do() functions begins by populating the in array with stereo to mono converted samples

45

from the Lc and Rc arrays. These channel arrays are populated outside of the class in the processBlock() function

within Juce_vstAudioProcessor. The FFT is carried out using the fftr1d() function, returning to the array, X. The first

half of this array is then converted from complex to real values and then to Decibels, resulting in the returned array,

out.

In the Juce_vstAudioProcessor header file two FFTALG members FFTpre and FFTpost are declared along with two

output pointers, FFTpre_out and FFTpost_out, and two index integers, fftpre_index and fftpost_index. The two

pointers Lx and Rx are also declared to carry the audio samples around the function. In the main file the two FFTALG

members are initialised in the Juce_vstAudioProcessor constructor using the Init() function. This function takes the N,

FFTRES and LOGBASE values, corresponding to the FFT size, FFT resolution and output logarithm base, which are

declared as static constants in the header file. The integer winType is then set using the wintype class declared in the

FFTALG header file. This value is used as an index to indicate the desired windowing function. Finally the indexes

fftpre_index and fftpost_index are set to 0 and the output pointers FFTpre_out and FFTpost_out are defined with size

FFTRES and each element is set to zero.

In the processBlock() function the current buffer of samples is transferred to the Lx and Rx pointers and the index

variables reset to zero if they have reached N. The index variables are used in the main for loop to ensure that N

samples are passed to the FFT functions no matter what the size of the buffer; the Do() function is called when the

input pointers have been populated with N samples. Therefore for buffer sizes smaller than N an FFT will be carried

out every few buffers, for buffer sizes larger than N an FFT is carried out every buffer and the remaining samples are

discarded. This is achieved within the for loop with an if statement comparing the relevant index variable to N; if the

index is less than N the current stereo samples are added to the Lc and Rc pointer members of the FFTALG class and

the index variable is incremented, if the index is equal to N the FFT is carried out first by applying the chosen

windowing function to the samples with the Window() function, and then by transferring the resulting frequency

bins to the relevant output pointer. When the FFT is completed the index variable to reset to zero. Extra fail safes

protect this function in the form of a check at the beginning of the processBlock() function that resets the index

variables to zero should they be at N, and the if statement within the loop checks to see if the index variable is

greater than or equal to N.

The Polyfit class serves as the interface between the ALGLIB regression routines and the plugin. The class requires

the ap.h and interpolation.h ALGLIB header files be included; ap.h is the general ALGLIB header containing

definitions of custom data types and interpolation.h contains the functions and data types specific to curve fitting. To

use these functions and data types the class was written within the alglib namespace. The class contains two

functions, Init() and Solve(). Init() takes the value degree as an argument and denotes the degree of the resulting

polynomial; the highest power to which a term is raised. The higher this value the more turning points present in the

curve and hence it is more accurate, but more costly to calculate. The function assigns the desired value to variable

m of type ae_int_t, a ALGLIB custom integer type, incremented by one. The incremented value is the number of

46

basis functions used by the least squares solver to carry out the regression. The Solve() function receives two

pointers, _x and _y, which form the two dimensional input to the regression algorithm. _x contains the x-values of

the Cartesian co-ordinates in pixel units used to plot the traces on the GUI. These values are used rather than array

indexes as they reflect the logarithmic nature of the frequency axis and the method used to extract bins from the

FFT output, and are calculated using the dimensions of the plotting canvas and the LogScales class. _y contains the

amplitude values calculated by the FFT. The third argument is FFTRES, referred to within classes as L, and is used to

define the size ofreal_1d_arrays x and y, another ALGLIB custom data type for holding real valued one dimensional

series of data. A for loop populates the real_1d_arrays with the data contained in _x and _y. The regression itself is

carried out by the polynomialfit() function, the arguments of which are show below, taken from the comments in the

header file:

INPUT PARAMETERS:
 X - points, array[0..N-1].
 Y - function values, array[0..N-1].
 M - number of basis functions (= polynomial_degree + 1), M>=1

OUTPUT PARAMETERS:
 Info- same format as in LSFitLinearW() subroutine:
 * Info>0 task is solved
 * Info<=0 an error occured:
 -4 means inconvergence of internal SVD
 P - interpolant in barycentric form.
 Rep - report, same format as in LSFitLinearW() subroutine.
 Following fields are set:
 * RMSError rms error on the (X,Y).
 * AvgError average error on the (X,Y).
 * AvgRelError average relative error on the non-zero Y
 * MaxError maximum error

The input parameters are as described above, with N being defined as the size of x and y, set using the setLength()

function. The output parameters are defined in the header file as ae_int_t info, barycentricinterpolant p and

polynomialfitreport rep. info is returned as an integer indicating the success of the algorithm with a value other than

zero indicating successful completion. rep is of ALBLIG data type polynomialfitreport and contains several measures

of success including values of RMS and average error of the regression model versus the original function. p is of

ALBLIG data type barycentricinterpolant and contains the resulting polynomial in barycentric form – a homogenous

co-ordinate system (Weisstein, 1999). The output parameters are submitted to the function as call-by-reference

arguments allowing them to be altered by the function itself without returning values (Savitch, 2010). The process

has computational complexity O(NM2).

The polynomialbar2pow() function converts the regression from barycentric from to power basis. The power basis

form represents the polynomial in terms of its coefficients using the standard form:

𝑦 = 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0

47

The polynomialbar2pow() function returns a real_1d_array, identified by the class as polyco, containing these

coefficients in reverse order; a0,…,a4. As described in the comments above the function has computational

complexity O(N2). The final part of the Solve() function populates and returns the curve pointer with the y values of

the Cartesian co-ordinates of the polynomial using the power basis representation of the function and the

polynomial form shown above. Each value of input x is put through a loop which accumulates the result of the value

raised to a power and multiplied by the relevant coefficient.

The Juce_vstAudioProcessor header file contains declarations for the two Polyfit members REGpre and REGpost as

well as the input pointer fftX and output pointers REGpre_out and REGpost_out. The Plot class member fft provides

the x-values for the regression input; Plot is a class used by Juce_vstAudioProcessorEditor to calculate the co-

ordinates of the GUI traces and draw them. The Juce_vstAudioProcessor constructor is used to initialise the fft

instance and define fftX, instantiate the REGpre and REGpost members with the polynomial degree of four, and set

the size of the output pointers as FFTRES. The implementation of the Solve() function is then very simple; at the

point when the FFT is carried out in the processBlock() function the REGpre_out and REGpost_out pointers are

equated to the result of the Solve() function which takes the fftX pointer as x-values, the FFTpre_out or FFTpost_out

pointer as y-values and FFTRES as the array sizes.

The result of these processes are four pointers to arrays; the FFTpre_out and FFTpost_out arrays containing

amplitude data resulting from the FFT algorithm, and the REGpre_out and REGpost_out pointers containing

amplitude data as a polynomial representing the regression of the FFT data. These arrays are then carried over to

the central processing section of the plugin where EQ filter parameters are calculated and the filters implemented.

48

III.2.2 Audio Processing and Parameter Calculation

The implementation of EQ within the plugin was achieved with a simple binomial difference equation and

intermediate variables:

𝑦𝑛 =
𝑏0
𝑎0
𝑥𝑛 +

𝑏1
𝑎0
𝑥𝑛−1 +

𝑏2
𝑎0
𝑥𝑛−2 −

𝑎1
𝑎0
𝑦𝑛−1 −

𝑎2
𝑎0
𝑦𝑛−2

𝐴 = �10
𝐺
20

𝜔0 = 2π
𝐹
𝑓𝑠

𝛼𝑄 𝐹𝑖𝑙𝑡𝑒𝑟 =
sin𝜔0

2𝑄

𝛼𝑆ℎ𝑒𝑙𝑣𝑖𝑛𝑔 𝐹𝑖𝑙𝑡𝑒𝑟 =
sin𝜔0

2
��𝐴 +

1
𝐴
� �

1
𝑄
− 1� + 2

A class named EQ was written to implement the Bristow-Johnson equations and formulae. The class contains three

functions; Init(), setCoefficients(), and Do(). The Init() function receives the desired filter type and sample rate as

arguments. The filter type is defined using the first enumeration in the header file which declares three constants;

LowShelf, Parametric, and HighShelf. This enumeration allows for the constants to be used in switch statements

within the class and also provides an elegant method of indicating the filter type within Juce_vstAudioProcessor -

EQ::LowShelf for example. The variable n is defined as the maximum sample delay in the system corresponding to

the highest power in the z-transform of the difference equation and the order of the filter. Two pointers to arrays, x

and y, which hold the current and delayed input samples are defined as two dimensional arrays to hold the current

and two delayed stereo samples – three sets of two values – and all elements are set to zero. The setCoefficients()

function receives the filter type and calculates the difference equation coefficients accordingly by first calculating the

intermediate variables. The variables cosw0, sinw0 and sq are defined to reduce the number of mathematical

functions that need to be called whilst audio is passing through the plugin; in a basic EQ unit the filter parameters

are set before playback and rarely changed during, within the plugin the parameters will be changing all the time.

With the coefficients calculated the Do() function very simply implements the difference equation to perform the

equalisation. It receives the current input sample and an integer denoting the current channel being processed as

arguments. The current input sample is written to the nth x array element and the current output sample is written

to the nth y array element using the delayed n-1th and n-2th delayed samples from each. Samples are then moved

through the input and output arrays and the latest output sample is returned.

49

Compression was implemented within the plugin with the Compression class. The class contains four functions; Init(),

setParameters(), setAudio(), Do(). The Init() function receives the compression type, buffer size and sample rate as

arguments. The type variable is fed with either Compress or Compand, constants declared with an enumeration in

the header file. Compansion is an inverted form of compression; if the input signal if below the threshold level a gain

boost is applied. The Init() function also defines the look and width variables, the lookahead time and rms window

size respectively, by converting them from milliseconds to a number of samples using the sample rate.; as sample

values they can be used as constraints within a loop. The values for these parameters are hard coded into the

algorithm with a lookahead time of 3 ms and rms window size of 1 ms. The setParameters() function receives the

classic compression parameters as arguments; threshold, slope, attack time and release time. The function defines

the slope, attack and release coefficients by converting them from percentage and millisecond units respectively;

slope is multiplied by 0.01 to scale it’s range as zero to one, and the attack and release coefficients are calculated

with an extra stage to convert the times from milliseconds to seconds to be compatible with the sample rate

measured in Hertz. In order to allow the Do() function to be called with one input sample at a time the setAudio()

function stores the current audio buffer within the class to be referenced by the Do() function. This means the loop

through the buffer can be performed externally whilst still allowing the rms to be calculated within the class. The

setParameters() function receives the stereo audio buffers and the averaged FFT band level calculated with those

buffers as arguments. The Do() function then performs the compression or companision itself; the compansion

algorithm differs from the compression algorithm only in the less than rather than greater than comparison between

envelope and threshold and the result is a positive rather than negative gain.

The level input to the compression algorithm is derived from the FFT band level, however using this value alone

would not have yielded very high quality results. The speed at which the gain reduction level can be changed should

in theory be the same as the sample rate, however in reality this would only be required using attack and release

times of zero, and without these coefficients the system would be performing waveshaping rather than dynamic

range compression. Therefore the gain reduction and hence input level to the system must vary at least as quickly as

the lowest attack and release times that can be expected, which within a digital audio application could be as low as

5 ms. The logical size of the FFT is 2048 samples, a window size of approximately 46 ms at a 44.1 kHz sample rate;

the compressor would only be able to implement attack and release times above and return a new gain reduction

value every 46 ms if the FFT band level was used as an input, as that is how often a new value is created. To counter

this, the Do() function calculates an rms level and blends a small amount of this with the FFT band level converted to

a linear amplitude. A ratio of 80% FFT band level to 20% rms level is used, causing fluctuations in the input level at a

frequency which allows the compressor to vary the gain reduction as quickly as would be required by the

application. A process of experimentation was used to defined the 4:1 ratio of FFT to rms level. In order that as much

of the level as possible was defined by the FFT, an important characteristic of the plugin, the rms part of the ratio

needed to be as low as possible. The amount of rms was increased in 5% intervals and for each value the transient

response of the plugin at low attack and release times was analysed using critical listening; the first value that

allowed the plugin to respond quickly enough was used.

50

This blended input level is fed into the compression algorithm which compares it to the current envelope level and

defines the variable theta with the relevant attack or release coefficient. The envelope level is then converted into

decibels and compared to the threshold, and a gain reduction value is calculated using the slope coefficient. A fail

safe is added to the function between these two stages; a not equal comparison between the envelope level and

itself which returns false if the variable does not contain a real valued number. This prevents the compressor

responding to the envelope variable before it has been initialised and its value is “garbage”, which results in noise at

the output of the plugin.

The EQ and compression classes are combined and implemented with the FBand class. The class has a member

instantiated for each frequency band which needs effecting; the low, low-mid and high-mid bands. The class is fed

with all of the inputs described above and uses them to calculated EQ parameters and implement the filters. The

class contains three functions; Init(), setParams() and Do(). In the Init() function the size, filterType, SR and compType

variables are defined and passed to the EQ and Compression classes as described above using their Init() functions

with instances named EQ and Comp respectively. The fft_frequency and fft_width variables set the location and size

of the frequency band itself; fft_frequency contains the index value of the start of the band and fft_width contains

how many bins wide the band is. These indexes are in the zero to FFTRES range and are received in index form to

allow for them to be easily used within loops that deal with the regression output array pointer. Finally the Init()

function defines five pointers to contain output samples; Lout and Rout contain the output in stereo form, out

contains the output in interleaved form and Lcas and Rcas are used to cascade filters where necessary to increase

their orders. The out pointer is required because the function can only return one variable so could not return the

Lout and Rout pointers.

The setParams() function links the compression output with the EQ parameters and therefore is a central

component. The parameters used to control this process have been named “base” and “ratio” values for both

frequency and gain. The base value is the minimum or maximum value, used when gain reduction is zero, and the

ratio value controls the change in the parameter above or below the base value by scaling a non-zero gain reduction.

An example below demonstrates this for cut-off frequency:

𝑓𝑐 = 𝑓𝑏 + 𝐺𝑅𝑓𝑟

For the example of cut-off frequency fc and fb are measured in Hertz and fr is measured in Hertz/dB; for every

decibel of gain reduction the cut-off frequency is changed by the frequency ratio value. An inversion of the ratio

values is required when the compression type is set to compression; the gain reduction value is negative and

therefore a positive frequency ratio value would result in a negative product. For the resulting multiple to remain

positive the frequency ratio must have its sign inverted; a negative gain reduction and negative frequency ratio have

a positive product. These values’ variables have the identifiers f_base, f_ratio, g_base and g_ratio.

51

The Do() function takes all of the above principles and coding implementations and returns effected audio. The

function receives stereo pointers of audio samples, the regressed FFT trace and two Boolean values which determine

whether or not the EQ and compression have been activated; functionality used during development and testing.

Firstly the FFT band level is calculated by averaging regression bin amplitudes using the fft_frequency and fft_width

variables. This value is then sent to the Compression class with the stereo audio buffers using the setAudio()

function. Next a loop parses the audio buffers using the size variable. The current i value is used when calling the

Do() function of Compression member Comp, which returns a gain reduction value. A conditional statement then

checks to see if compression has been activated using the DRCio Boolean, and also checks if the current value of i is a

multiple of three; the EQ algorithm uses a two sample delay to implement filters and so parameters cannot be

allowed to vary more often than every three samples. The variables F and G are then defined using the base and

ratio values described above and passed to the EQ member with the setCoefficients() function. The filters are then

implemented with three conditional statements. The first checks if EQ has been activated with the EQio Boolean and

whether the current filter type is Low Shelf; if so two shelving filters are connected in series using the Lcas and Rcas

pointers in order to create a fourth order filter. Fourth order was decided based on a compromise between

maximising roll off and reducing processing time; the more cascades used the longer it takes to apply the filter.

Experimentation was carried out and engineering judgement determined that the roll-off was steep enough using a

fourth order filter. The second conditional statement applies the other filter types with no cascading and the third

applies no filtering when the EQio Boolean is set to false. Finally the two stereo audio buffers are interleaved to give

the out output pointer which the function returns.

Within Juce_vstAudioProcessor the FBand members LS, MP and HP are declared corresponding to the low, low-mid

and high-mid frequency bands respectively. Their names are abbreviations of the filters they employ; Low Shelf, Mid

Parametric and High Parametric. Nine arrays are then declared which contain compression parameters and

initialising EQ parameters; F, G and Q contain cut-off frequencies, gains and Q- factors of the filters, T, S, A and R

contain threshold, slope, attack time and release time values for the compressors, and EQio and DRCio contain

Boolean values which activate the EQ and compression functions. An enumeration is used to determine the three

constants _LS, _MP and _HP which are used to refer to the relevant band when using these arrays. The Init Boolean

is required as all of the FBand initialisation, and hence the EQ and Compression initialisation, needs to be carried out

within the processBlock() function in order to provide access to the buffer size. This value is initialised to be false and

at the start of each run of the processBlock() function is checked to see if FBand initialisation is necessary. Four

functions calls per band are necessary to initialiase each member; the FBand Init() and setParams() functions, and

the EQ setCoefficients() function and Compression setParameters() function which are accessed through the FBand

member. The setCoefficients() and setParameters() function are supplied with the relevant parameter arrays

described above as arguments. The values used for each band are tabled below:

52

 LS MP HP

EQ Type Low Shelf Parametric Parametric

Compression Type Compression Compression Compression

FFT Band Index 1 10 75

FFT band Index Width 3 9 25

FFT Band Start 22 Hz 345 Hz 4264 Hz

FFT Band End 129 Hz 711 Hz 8333 Hz

FFT Range 107 Hz 366 Hz 4069 Hz

Frequency Base 20 Hz 500 Hz 5000 Hz

Frequency Ratio 5 Hz/dB 0 Hz/dB 0 Hz/dB

Gain Base -24 dB 0 dB 6 dB

Gain Ratio 1 arb -1 arb -1 arb

Threshold -45 dB -40 dB -40 dB

Slope 50 % 50 % 40 %

Attack 20 ms 20 ms 10 ms

Release 200 ms 200 ms 80 ms

The following paragraphs give justification for the values shown in the above table. Unless specified otherwise the

values were determined via extensive experimentation and a process of trial and error over the course of

development. Aural analysis and informed judgement were used by the author to evaluate each incremental change

in parameter, this is especially true of threshold values. The merits of these settings are determined by the testing

section of this paper, which utilises statistical analysis to determine the effect of the plugin as it provides a

quantitative and scientific testing methodology, which justifies the qualitative methods used to derive parameter

values described below.

The low shelving band analyses amplitudes between 22 and 129 Hz; as discussed in section II this frequency range

contains noise from the piano’s pedals, noise from the recording environment and audio content which needs to be

attenuated to make room for other instruments occupying the same spectral space such as the bass drum and bass

guitar. A low shelf filter is used with a frequency base of 20 Hz and a gain base of -24 dB. As the level of the band

increases the cut-off frequency of the filter increases 5 Hz for every decibel; the louder the piano plays the more

frequency content is attenuated. The filter needs to be removing noise between 20 Hz and 50 Hz at all times to, as

described in section II, leave room in the mix for other low frequency producing instruments, and sufficient

attenuation is achieved with a cut-off frequency in the same margin. The gain reduction needs to be only 6 dB before

53

the cut-off frequency is 50 Hz so the noise attenuation is achieved even at low piano volumes. As the piano is played

louder it generates more frequency content below 150 Hz and this is countered by increasing the cut-off frequency

of the filter so that the attenuation set by the gain parameter is achieved at higher frequencies. When this filter

configuration was first tested aurally during development it was found that the movement in cut-off frequencies was

audible at times. To counteract this a gain base of one was employed; for every decibel above the threshold the gain

of the filter is increased by one decibel. Therefore as the cut-off frequency increases the gain is “ducked” in order to

reduce the severity of the filter. This produces the amount of attenuation required and ensures the process is

inaudible. A gentle slope of 50% (2:1 ratio) was used and attack and release times were set to be quite slow, at 20ms

and 200 ms respectively, both as further measures for reducing the audibility of the parameter changes.

The mid parametric band operates within a frequency range of 345 to 711 Hz. As described in the alternative

systems section this band contains frequencies which make the overall tone of the piano too rich and mask other

instruments central to the production such as vocals. A frequency base of 500 Hz was used with a ratio of zero Hz/dB

which keeps the cut-off frequency constant, along with a gain base of zero with a ratio of minus one. The cut-off

frequency is kept constant because the filter needs to operate on a specific frequency spectrum. The filter acts as a

simple compressor; as the level of the band surpasses the threshold attenuation is applied. The same slope and

ballistics were used as for the shelving filter to again reduce the audibility of parameter changes by making them as

smooth as possible.

The high parametric band functions between 4264 and 8333 Hz, a frequency band which, as discussed in the

alternative systems section, contains note attack transients and frequencies which determine the brightness of the

piano which need to be boosted. The range of the analysis band increases with frequency as low frequency content

is more powerful than high frequency content, but also because the qualities that are altered in each band happen

to occupy increasing frequency ranges; the bright frequencies produced by a piano occupy a large frequency range

than the noise produced by the pedals. The filter is centred on 5 kHz and as for the mid parametric band this value is

kept constant. The gain base is 6 dB and the ratio is -1; at rest the filter applies a 6 dB boost and as the band level

increases the boost is reduced. This is because the volume of note attack frequencies increases with overall piano

volume as would be expected, making the piano brighter when it is played harder and hence less boost is required.

Shorter attack and release times were used because parameter changes are less audible in the higher frequency

ranges, but more importantly to allow the filter to respond to transients quickly. To produce this responsiveness

ballistics were set low enough to require a slight reduction in slope.

54

SECTION III

Evaluation

55

III.1

Testing

56

III.1.1 Data Gathering

The purpose of the prototype is to the control the spectral and dynamic qualities of a piano recording in a way that

imitates a mixing engineer in an efficient manner. A series of tests were employed to establish success covering

three criteria:

• Control of spectral qualities,

• Control of dynamic qualities,

• Computational efficiency.

Both numeric and subjective testing processes were employed; four statistical tests and a listening test. The four

statistical tests comprise two tests analysing the transformation of spectral characteristics and two analysing the

transformation of dynamic characteristics. The listening test analyses the overall transformation performed by the

plug-in. The tests compare the difference between a target audio sample and unprocessed and processed recorded

audio samples. The final test assesses the computational efficiency of the plug-in; performance timers were inserted

into the code to record the time taken to perform each task within the signal chain.

The audio tests required the gathering of various audio samples:

• Target samples

o Recorded piano audio mixed with existing plugins and procedures by professionals to create the

spectral and dynamic characteristics the plugin attempts to achieve

• Original samples

o Recorded piano audio without any processing applied

• Processed samples

o Recorded piano audio that has been processed by the plugin.

Three “target” samples were extracted from commercially successful songs produced by respected and

professionally successful engineers in order to establish their credibility. A sample of the introduction of each song

was taken where the piano is the only instrument playing. The audio tests compare mixed and unmixed samples to

these targets. Attempts were made to procure unmixed versions of the target samples; however the high profile

nature of the artists and songs themselves meant that this was impossible and recordings needed to be made.

Comparing recordings to the targets reduces the validity of the numerical tests as the differences between the

target, original and processed samples are not solely influenced by the plug-in. The listening test was carried out to

provide a method of confirming numerical values; if a failed numerical test corresponded with a successful listening

test it could be suggested that the failure was a result of numerical testing limitations. The listening test also gave an

insight into the views of potential users of the plug-in - professionals and students within the Music Technology field.

57

The comparison to target samples provides an analysis of the operational ability of the developed plugin compared

existing technologies.

Custom unprocessed “original” samples were made by re-recording the piano parts using three different

microphones and configurations. Three configurations were used as it was the maximum number that could be

recorded simultaneously with available equipment. Had it been possible three different pianos would have been

recorded rather than using three different microphones and configurations, however only one piano and recording

environment that produced professional quality recordings was available at the time of testing. It was decided that

recordings of more limited tonal variety but of professional standard would be more useful for testing than low

quality recordings with large tonal differences. Whilst this is a limitation, its impact on the validity of the testing is

minimal because the three recording configurations resulted in three tonally different recordings, which was the

intended result of using three pianos. A Steinway D was recorded in a large concert hall using three spaced stereo

microphone techniques. The piano lid was fully open as this produces the brightest tone and also increases the

directionality of the piano (Senior, 2008). Configuration 1 was a spaced AKG 451 pair with cardioid polar patterns

positioned approximately six feet from the piano, configuration 2 was a Neumann U87 pair with omnidirectional

polar patterns positioned above the strings, and configuration 3 was a Neumann U89 pair with omnidirectional polar

patterns positioned above the hammers. Figure III.1.1 shows photographs of these configurations to provide a more

detailed description. The recordings were completed using the Tascam US-800 audio interface to ensure all three

configurations were recorded using the same pre-amps; each pre-amp colours a recording differently and would

produce tonal changes impossible to measure, reducing the validity of tests analysing tone. The recording process

resulted in nine audio samples, three performances with three recording configurations each.

The “processed” samples were created by processing the original samples with the prototype plugin.

In order to carry out the numeric tests various data streams needed to be exported from the plug-in in real-time into

an analysable format. The testing required RMS levels, regressed FFT curves, compression input levels, EQ

parameters and performance timers. Microsoft Excel was chosen as the software package to analyse the data with,

primarily because it accommodates the importing of data in Comma Separated Values (CSV) format and secondarily

because it supports the ability to reference cells contained in a different workbook, making it much easier to

organise and present large amounts of data. To export the data from the plug-in in real-time the WriteToFile class

was written (see Appendix V.1.8). The class utilises the streaming abilities of the base ios class through the ofstream

data type to write data to a text file. The data is organised in CSV format to allow it to be easily imported into

Microsoft Excel.

The listening test asked subjects to rate the original and processed samples based on their similarity to the target. A

website was made to allow easy distribution of the test which provided streaming version of nine audio samples; the

target and one original and processed configuration from each song. Using all three recording configurations was

58

considered to be an overwhelming amount of data to analyse with critical listening. Subjects rated out of five based

on the tonal and dynamic characteristics of the samples compared to the target; a successful result would have a

higher score for the processed sample than the original.

The performance timing was implemented using the high-resolution performance counter included in all versions of

Microsoft Windows since Windows 2000. The counter is incremented at the clock speed of the processor and can be

used to measure time to very high levels of accuracy; the number of clicks between two events is counted and

divided by the click frequency to produce a value with a unit of time. Four sections were defined from the

processBlock() function to be timed; the initialisation section, including .Init() functions and RMS calculations, the

pre-effect FFT routine, effect implementation routine, and post-effect FFT routine. Although the total time would be

the focus of the test it was relevant to the continuing development process to know which areas of the plugin

performed efficiently and inefficiently.

59

Wav
Filename

Ratings Artist - Title Source Performance Recording (Known details) Mixing (Known details)

Target - 1 PCM Wave

16 bit

44.1 kHz

The Cinematic Orchestra –
To Build a Home

The Cinematic Orchestra –
“Ma Fleur”, 2007, Ninja
Tune

Patrick
Watson
(Discogs)

Recorded by Steve Hodge,
location unknown (Discogs)

Mixed by Steve Hodge and Jason
Swinscoe, location unknown
(Discogs)

Target - 2 PCM Wave

16 bit

44.1 kHz

Coldplay – Trouble

Coldplay – “Parachutes”,
2000, Parlophone

Chris Martin
(Discogs)

Recorded by Ken Nelson at
Parr Street Studios, Liverpool
(Ken Nelson SOS article)

• 2 mics set up, one bright
one full

• Full mic used in mix

Mixed by Michael Brauer at Quad
Studios, New York (Michael
Brauer SOS article)

Target - 3 PCM Wave

16 bit

44.1 kHz

Coldplay - Scientist Coldplay – “Rush of Blood
to the Head”, 2002,
Parlophone

Chris Martin
(Discogs)

Album recorded by Ken
Nelson at:

• Studio 2, Mayfair Studios,
London

• Studio 3 Parr Street
Studios, Liverpool

• Studio 1, Air Studios,
London

(Discogs)

Mixed by Coldplay, Ken Nelson
and Mark Phythian, unknown
location.

Mastered by George Marino,
unknown location.

(Discogs)

60

Figure III.1.1

61

Figure III.1.1

62

III.1.2 Sample Average Test

The Sample Average Test was the first of the two numerical tests used to assess the ability of the plug-in to control

spectral characteristics of piano recordings. The test utilised the regression curves in order to calculate average

amplitude over the length of the sample at the critical frequencies discussed throughout this paper; 130 Hz, 500 Hz

and 5 kHz. The average amplitude across the sample for these three bins was calculated for the target sample and all

three original configurations, followed by the difference between each original configuration and the target. The

same process was then carried out between the processed configurations and target. The target vs. original and

target vs. processed results were then compared and two sets of results formulated; one set demonstrating whether

the relevant positive or negative attenuation had been achieved at each frequency bin and the other set

demonstrating whether or not the processed bins were more similar to the target bins than the original bins. This

two result technique was used for all four tests, and for ease of communication in the paper, the first set of results

will be called the basic results, and the second set the delta results. Expected values for basic results are a direction

of change; a positive or negative value depending on the context. Expected values for delta results are negative

values indicating that the processed sample is more similar to the target sample than the unprocessed sample.

Expected results

Basic results – negative values at the low and mid bands and positive values at the high band, indicating attenuation

and boost respectively.

Delta results – negative values indicating a progression towards the target sample between original and processed

samples.

63

III.1.3 Sample Transient Test

The second numerical test used to assess spectral control was the Sample Transient Test. Transients were analysed

because the filters are operating at their most severe during periods of high amplitude due to the control of their

parameters with compression. The test analyses whether or not the filters are behaving the way they should be

when their parameters are at the maximum of their individual ranges. For this test the RMS data was used to select a

transient from each song with two consecutive regression curve windows at the peak of that transient selected to be

analysed. For example for Target – 1 the second transient, the A Major chord, was chosen as the transient. A plot of

the RMS data was used to find the numBuffers value for the peak of the transient for each sample. The numBuffers

value was then cross-referenced with the regression curve data to find the two adjacent curves created with

windows of samples from the peak of the transient to be analysed. Two curves were used so that if one curve

appeared to contain anomalies they could be confirmed by comparison with a second. The amplitudes at the critical

frequencies 130 Hz, 500 Hz and 5 kHz were then recorded from each curve and the difference between each original

and processed configuration and the target sample was calculated. Basic and delta results were then formulated in

the same way as the Sample Average Test.

Expected results

Basic results – negative values at the low and mid bands and positive values at the high band, indicating attenuation

and boost respectively.

Delta results – negative values indicating a progression towards the target sample between original and processed

samples.

64

III.1.4 RMS Variance Test

The RMS Variance Test is the first of the two numerical tests used to analyse the plug-in’s ability to control the

dynamics of a piano recording. It utilises the RMS data and two simple statistical measures of variance; standard

deviation and average absolute deviation. Statistical variance indicates the dispersion, or range, of a data set. This

can be used to measure the level of compression applied to audio as compressed audio has a lower dynamic range,

and therefore lower variance, than uncompressed audio.

Let a set of N discrete samples be denoted xi, where i = 1,…,N. The mean of the data, µ, is calculated:

𝜇 =
∑ 𝑥𝑖𝑁
𝑖=1
𝑁

The deviation of each of sample, di, is then calculated as the distance between it and the mean:

𝑑𝑖 = 𝑥𝑖 − 𝜇

The variance of the data set, σ2, is then defined as the sum of the squares of the deviations, and the standard

deviation, σ, the square root of the variance:

𝜎 = ��(𝑥𝑖 − 𝜇)2
𝑁

𝑖=1

Average absolute deviation is commonly used as an alternative to standard deviation and to maximise the reliability

of the testing process it was decided to implement this second measure of variance to be able to rule out anomalies.

Absolute average deviation is calculated very similarly to standard deviation, however it allows for the use of

different measures of central tendency; either the mean or median. For the purposes of testing the mean will be

used as the measure of central tendency, because within a digital audio system the median value is likely to be very

close to zero due to the oscillating nature of the data.

As for the standard deviation the mean, µ, of the data set is first calculated. Then the absolute deviation, Di, of each

data point is calculated:

𝐷𝑖 = |𝑥𝑖 − 𝜇|

Average absolute deviation, Dµ, is then calculated as the average of the absolute deviations of the data set:

𝐷𝜇 =
∑ |𝑥𝑖 − 𝜇|𝑁
𝑖=1

𝑁

65

The two measures of variance were applied to the RMS data for each of the original configurations and the target

sample. The variances of the original configurations were then expressed as a percentage of the target sample, and

the same process carried out with the processed configurations. The percentage value was calculated as follows:

𝐶𝑜𝑛𝑓𝑖𝑔
𝑇𝑎𝑟𝑔𝑒𝑡

% − 100

This equation results in a value of zero if the recorded sample and target values are equal, a positive value if the

recorded sample value is larger and a negative value is the recorded sample value is smaller. Basic results were then

formed by checking that there had been a reduction in variance between the original to target and processed target

comparisons, and delta results formed by checking the processed variance were closer to that of the target than the

original variances.

Expected results

Basic results – negative values indicating a reduction in dynamic range.

Delta results – negative values indicating a progression towards the target sample between original and processed

samples.

66

III.1.5 FFT Band Variance Test

The FFT Band Variance test is the second of the two numerical tests used to analyse the effect of the plug-in on

dynamic qualities of piano recordings. The test is very similar to the RMS Variance Test; standard deviation and

average absolute deviation were applied to the levels for the low, mid and high frequency bands, and results

expressed as percentages formulated in exactly the same way as the RMS Variance Test. The same frequency bands

were used as for the sample average test; 120Hz, 500Hz and 5kHz. Where the RMS test shows overall change in

dynamic range, the FFT Band test demonstrates change in dynamic range in the each of the critical frequency bands.

Basic and delta results are then formed in the same way as the RMS Variance Test.

Expected results

Basic results – negative values indicating a reduction in dynamic range.

Delta results – negative values indicating a progression towards the target sample between original and processed

samples.

67

III.1.6 Listening Test

Professionals and students within the Music Technology field were played the audio samples and asked to score

each original and processed configuration on a scale of 0 to 5 based on its similarity to the target. A score of five

meant the sample was very similar to the target and a score of zero meant the sample was not at all similar to the

target. Questions were asked of the sample characteristics as a whole rather than of the three frequency bands and

dynamic range to reduce the complexity of the test and encourage more subjects to take part. These questions

produced delta results; basic results were not pursued as they could be reliably produced through numerical testing.

Expected results

Processed samples scoring higher than original samples to indicate a progression towards the target sample

between original and processed samples.

IV.1.4 Performance Timing

To carry out the performance test timing data was exported from all nine of the Original samples at the four points

described above at a rate of 1Hz. The values for each sample are then averaged and summed to form a total:

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝐼𝑛𝑖𝑡 + 𝑇𝑃𝑟𝑒−𝐹𝐹𝑇 + 𝑇𝐹𝑋 + 𝑇𝑃𝑜𝑠𝑡−𝐹𝐹𝑇

𝑇 =
∑ 𝑡𝑖𝑁
𝑖=0
𝑁

The total time is then compared to a target of 10ms, chosen as the largest tolerable delay to be introduced by the

plugin.

Expected results

A total time to carry out the processBlock() function of 10ms or less

68

III.2

Results

69

III.2.1 Sample Average Test

Sample 1 – Original vs. Target

Sample 1 – Process vs. Target

Amplitude Values (dB)

Target Config 1 Config 2 Config 3
 Low (130 Hz) 150.11 149.63 149.75 150.44
 Mid (475 Hz) 143.54 143.12 143.49 145.11
 High (5.7 kHz) 94.35 89.60 79.41 85.14

Config vs. Target Difference (dB)

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

-0.48 -0.35 0.33 -0.17

Mid (475 Hz)

-0.42 -0.05 1.57 0.37
High (5.7 kHz)

-4.75 -14.94 -9.22 -9.64

Amplitude Values (dB)

Target Config 1 Config 2 Config 3
 Low (130 Hz) 150.11 146.69 146.46 146.50
 Mid (475 Hz) 143.54 142.40 142.49 142.29
 High (5.7 kHz) 94.35 94.77 85.10 90.09

Config vs. Target Difference (dB)

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

-3.42 -3.64 -3.61 -3.56

Mid (475 Hz)

-1.14 -1.05 -1.25 -1.15
High (5.7 kHz)

0.42 -9.25 -4.26 -4.36

Sample 2 – Original vs. Target

Sample 2 – Processed vs. Target

Amplitude Values (dB)

Target Config 1 Config 2 Config 3
 Low (130 Hz) 136.52 147.53 147.20 146.56
 Mid (475 Hz) 145.07 147.17 146.70 146.19
 High (5.7 kHz) 100.30 95.95 89.51 91.97

Config vs. Target Difference (dB)

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

11.01 10.68 10.04 10.58

Mid (475 Hz)

2.10 1.63 1.13 1.62
High (5.7 kHz)

-4.34 -10.79 -8.33 -7.82

Amplitude Values (dB)

Target Config 1 Config 2 Config 3
 Low (130 Hz) 136.52 143.31 142.64 143.35
 Mid (475 Hz) 145.07 145.07 144.83 145.71
 High (5.7 kHz) 100.30 100.85 94.87 98.74

Config vs. Target Difference (dB)

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

6.79 6.12 6.83 6.58

Mid (475 Hz)

0.00 -0.23 0.64 0.14
High (5.7 kHz)

0.55 -5.42 -1.56 -2.14

Sample 3 – Original vs. Target

Sample 3 – Process vs. Target

70

Amplitude Values (dB)

Target Config 1 Config 2 Config 3
 Low (130 Hz) 153.71 153.18 153.59 154.68
 Mid (475 Hz) 154.66 153.09 152.91 152.75
 High (5.7 kHz) 109.06 97.64 92.36 95.20

Config vs. Target Difference (dB)

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

-0.54 -0.12 0.96 0.10

Mid (475 Hz)

-1.56 -1.74 -1.91 -1.74
High (5.7 kHz)

-11.42 -16.70 -13.86 -13.99

Amplitude Values (dB)

Target Config 1 Config 2 Config 3
 Low (130 Hz) 153.71 147.44 148.33 148.87
 Mid (475 Hz) 154.66 150.03 150.04 149.41
 High (5.7 kHz) 109.06 102.11 97.00 99.71

Config vs. Target Difference (dB)

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

-6.27 -5.38 -4.84 -5.50

Mid (475 Hz)

-4.63 -4.62 -5.24 -4.83
High (5.7 kHz)

-6.95 -12.06 -9.34 -9.45

Basic Results

Delta Results

SAMPLE 1

Config 1 Config 2 Config 3 Mean

Low -2.94 -3.29 -3.94 -3.39

Mid -0.72 -1.00 -2.82 -1.51

High 5.17 5.69 4.96 5.27

 SAMPLE 2

Config 1 Config 2 Config 3 Mean

Low -4.22 -4.56 -3.21 -4.00

Mid -2.10 -1.86 -0.48 -1.48

High 4.90 5.37 6.77 5.68

 SAMPLE 3

Config 1 Config 2 Config 3 Mean

Low -5.74 -5.27 -5.81 -5.60

Mid -3.06 -2.88 -3.34 -3.09

High 4.47 4.64 4.51 4.54

SAMPLE 1

Config 1 Config 2 Config 3 Mean

Low 2.94 3.29 3.28 3.17

Mid 0.72 1.00 -0.33 0.47

High -4.33 -5.69 -4.96 -4.99

 SAMPLE 2

Config 1 Config 2 Config 3 Mean

Low -4.22 -4.56 -3.21 -4.00

Mid -2.10 -1.40 -0.48 -1.33

High -3.79 -5.37 -6.77 -5.31

 SAMPLE 3

Config 1 Config 2 Config 3 Mean

Low 5.74 5.27 3.88 4.96

Mid 3.06 2.88 3.34 3.09

High -4.47 -4.64 -4.51 -4.54

71

III.2.2 Sample Transient Test

Target – 1 – RMS Plot – Time vs. RMS(dB) Original – 1 - Config 1 – RMS Plot – Time vs. RMS(dB)

Original – 1 – Config 2 – RMS Plot – Time vs. RMS(dB) Original - 1 – Config 3 – RMS Plot – Time vs. RMS(dB)

-40

-35

-30

-25

-20

-15

-10

-5

0

-40

-35

-30

-25

-20

-15

-10

-5

0

-40

-35

-30

-25

-20

-15

-10

-5

0

-40

-35

-30

-25

-20

-15

-10

-5

0

72

Target – 2 – RMS Plot – Time vs. RMS(dB) Original – 2 - Config 1 – RMS Plot – Time vs. RMS(dB)

Original – 2 – Config 2 – RMS Plot – Time vs. RMS(dB) Original - 2 – Config 3 – RMS Plot – Time vs. RMS(dB)

-40

-35

-30

-25

-20

-15

-10

-5

0

-40

-35

-30

-25

-20

-15

-10

-5

0

-40

-35

-30

-25

-20

-15

-10

-5

0

-40

-35

-30

-25

-20

-15

-10

-5

0

73

Target – 3 – RMS Plot – Time vs. RMS(dB) Original – 3 - Config 1 – RMS Plot – Time vs. RMS(dB)

Original – 3 – Config 2 – RMS Plot – Time vs. RMS(dB) Original - 3 – Config 3 – RMS Plot – Time vs. RMS(dB)

-30

-25

-20

-15

-10

-5

0

-30

-25

-20

-15

-10

-5

0

-30

-25

-20

-15

-10

-5

0

-30

-25

-20

-15

-10

-5

0

74

Sample 1 – Original vs. Target
Sample 1 – Window 1 – Regression Curve – Freq. (Hz) vs Amp. (dB)

 Sample 1 – Window 2 – Regression Curve – Freq. (Hz) vs Amp. (dB)

 Target
 Original – C1
 Original – C2
 Original – C3

Sample 1 - Window 1

Sample 1 – Window 2

Amplitude Values

Target Config 1 Config 2 Config 3
 Low (130 Hz) 158.36 162.86 161.12 165.30
 Mid (475 Hz) 155.10 162.74 163.21 165.51
 High (5.7 kHz) 100.79 99.04 90.48 94.02

Config vs. Target Difference

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

4.50 2.76 6.93 4.73

Mid (475 Hz)

7.64 8.11 10.41 8.72
High (5.7 kHz)

-1.75 -10.30 -6.77 -6.27

Amplitude Values

Target Config 1 Config 2 Config 3
 Low (130 Hz) 155.32 162.44 162.49 160.63
 Mid (475 Hz) 152.31 158.38 161.26 162.75
 High (5.7 kHz) 99.87 90.95 82.18 85.80

Config vs. Target Difference

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

7.12 7.17 5.31 6.53

Mid (475 Hz)

6.08 8.95 10.45 8.49
High (5.7 kHz)

-8.92 -17.69 -14.07 -13.56

60

80

100

120

140

160

180

50 500 5000
60

80

100

120

140

160

180

50 500 5000

75

Sample 2 – Original vs. Target

Sample 2 – Window 1 – Regression Curve – Freq. (Hz) vs Amp. (dB)

 Sample 2 – Window 2 – Regression Curve – Freq. (Hz) vs Amp. (dB)

 Target
 Original – C1
 Original – C2
 Original – C3

Sample 2 - Window 1

Sample 2 – Window 2

Amplitude Values

Target Config 1 Config 2 Config 3
 Low (130 Hz) 146.55 152.06 148.69 148.00
 Mid (475 Hz) 154.26 156.11 155.23 154.97
 High (5.7 kHz) 105.09 92.70 88.42 91.26

Config vs. Target Difference

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

5.50 2.14 1.44 3.03

Mid (475 Hz)

1.85 0.97 0.71 1.17
High (5.7 kHz)

-12.39 -16.66 -13.82 -14.29

Amplitude Values

Target Config 1 Config 2 Config 3
 Low (130 Hz) 144.16 159.86 156.35 162.23
 Mid (475 Hz) 152.07 160.84 159.28 159.97
 High (5.7 kHz) 112.18 104.56 96.33 103.47

Config vs. Target Difference

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

15.70 12.19 18.06 15.32

Mid (475 Hz)

8.76 7.20 7.90 7.95
High (5.7 kHz)

-7.62 -15.85 -8.71 -10.73

60

80

100

120

140

160

180

50 500 5000
60

80

100

120

140

160

180

50 500 5000

76

Sample 3 – Original vs. Target
Sample 3 – Window 1 – Regression Curve – Freq. (Hz) vs Amp. (dB)

 Sample 3 – Window 2 – Regression Curve – Freq. (Hz) vs Amp. (dB)

 Target
 Original – C1
 Original – C2
 Original – C3

Sample 3 - Window 1

Sample 3 – Window 2

Amplitude Values

Target Config 1 Config 2 Config 3
 Low (130 Hz) 149.57 154.49 152.99 156.09
 Mid (475 Hz) 150.54 153.33 151.76 154.27
 High (5.7 kHz) 102.45 96.25 90.20 94.69

Config vs. Target Difference

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

4.92 3.42 6.53 4.96

Mid (475 Hz)

2.79 1.22 3.74 2.59
High (5.7 kHz)

-6.20 -12.24 -7.76 -8.73

Amplitude Values

Target Config 1 Config 2 Config 3
 Low (130 Hz) 158.34 162.01 159.21 157.63
 Mid (475 Hz) 157.08 161.72 159.12 157.37
 High (5.7 kHz) 109.52 105.50 98.62 101.62

Config vs. Target Difference

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

3.67 0.87 -0.72 1.27

Mid (475 Hz)

4.64 2.04 0.30 2.33
High (5.7 kHz)

-4.02 -10.90 -7.91 -7.61

40

60

80

100

120

140

160

180

50 500 5000
40

60

80

100

120

140

160

180

50 500 5000

77

Sample 1 – Processed vs. Target

Sample 1 – Window 1 – Regression Curve – Freq. (Hz) vs Amp. (dB)

 Sample 1 – Window 2 – Regression Curve – Freq. (Hz) vs Amp. (dB)

 Target
 Processed – C1
 Processed – C2
 Processed – C3

Sample 1 - Window 1

Sample 1 – Window 2

Amplitude Values

Target Config 1 Config 2 Config 3
 Low (130 Hz) 158.36 155.40 156.21 157.45
 Mid (475 Hz) 155.10 156.06 154.75 157.78
 High (5.7 kHz) 100.79 98.58 96.16 93.39

Config vs. Target Difference

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

-2.96 -2.15 -0.91 -2.01

Mid (475 Hz)

0.96 -0.35 2.69 1.10
High (5.7 kHz)

-2.21 -4.63 -7.40 -4.74

Amplitude Values

Target Config 1 Config 2 Config 3
 Low (130 Hz) 155.32 152.35 155.12 154.37
 Mid (475 Hz) 152.31 154.58 154.89 154.86
 High (5.7 kHz) 99.87 96.81 87.18 95.74

Config vs. Target Difference

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

-2.97 -0.20 -0.95 -1.37

Mid (475 Hz)

2.28 2.59 2.55 2.47
High (5.7 kHz)

-3.06 -12.69 -4.13 -6.63

60

80

100

120

140

160

180

50 500 5000
60

80

100

120

140

160

180

50 500 5000

78

Sample 2 – Processed vs. Target

Sample 2 – Window 1 – Regression Curve – Freq. (Hz) vs Amp. (dB)

 Sample 2 – Window 2 – Regression Curve – Freq. (Hz) vs Amp. (dB)

 Target
 Processed – C1
 Processed – C2
 Processed – C3

Sample 2 - Window 1

Sample 2 – Window 2

Amplitude Values

Target Config 1 Config 2 Config 3
 Low (130 Hz) 146.55 143.89 152.79 139.84
 Mid (475 Hz) 154.26 148.43 156.39 149.87
 High (5.7 kHz) 105.09 98.59 108.63 96.27

Config vs. Target Difference

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

-2.66 6.24 -6.72 -1.05

Mid (475 Hz)

-5.83 2.13 -4.39 -2.70
High (5.7 kHz)

-6.50 3.55 -8.81 -3.92

Amplitude Values

Target Config 1 Config 2 Config 3
 Low (130 Hz) 144.16 153.87 144.80 143.67
 Mid (475 Hz) 152.07 155.35 151.14 151.52
 High (5.7 kHz) 112.18 109.74 97.46 96.35

Config vs. Target Difference

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

9.70 0.64 -0.50 3.28

Mid (475 Hz)

3.28 -0.93 -0.55 0.60
High (5.7 kHz)

-2.44 -14.72 -15.83 -11.00

60

70

80

90

100

110

120

130

140

150

160

50 500 5000
60

80

100

120

140

160

180

50 500 5000

79

Sample 3 – Processed vs. Target

Sample 3 – Window 1 – Regression Curve – Freq. (Hz) vs Amp. (dB)

 Sample 3 – Window 2 – Regression Curve – Freq. (Hz) vs Amp. (dB)

 Target
 Processed – C1
 Processed – C2
 Processed – C3

Sample 3 - Window 1

Sample 3 – Window 2

Amplitude Values

Target Config 1 Config 2 Config 3
 Low (130 Hz) 149.57 145.28 148.51 148.88
 Mid (475 Hz) 150.54 148.88 150.01 151.46
 High (5.7 kHz) 102.45 100.90 95.67 97.99

Config vs. Target Difference

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

-4.29 -1.06 -0.69 -2.01

Mid (475 Hz)

-1.66 -0.53 0.92 -0.42
High (5.7 kHz)

-1.54 -6.78 -4.46 -4.26

Amplitude Values

Target Config 1 Config 2 Config 3
 Low (130 Hz) 158.34 151.08 152.47 154.30
 Mid (475 Hz) 157.08 154.56 154.05 155.20
 High (5.7 kHz) 109.52 106.84 102.77 104.64

Config vs. Target Difference

Config 1 Config 2 Config 3 Mean
Low (130 Hz)

-7.26 -5.88 -4.05 -5.73

Mid (475 Hz)

-2.51 -3.03 -1.88 -2.47
High (5.7 kHz)

-2.68 -6.75 -4.88 -4.77

40

60

80

100

120

140

160

50 500 5000
40

60

80

100

120

140

160

180

50 500 5000

80

Basic Results
Window 1 Window 2

SAMPLE 1

Config 1 Config 2 Config 3 Mean

Low -7.45 -4.91 -7.84 -6.74

Mid -6.68 -8.47 -7.72 -7.62

High -0.46 5.67 -0.63 1.53

SAMPLE 2

Config 1 Config 2 Config 3 Mean

Low -8.17 4.10 -8.16 -4.07

Mid -7.68 1.16 -5.10 -3.87

High 5.89 20.21 5.01 10.37

SAMPLE 3

Config 1 Config 2 Config 3 Mean

Low -9.21 -4.48 -7.22 -6.97

Mid -4.45 -1.75 -2.82 -3.01

High 4.66 5.46 3.30 4.47

SAMPLE 1

Config 1 Config 2 Config 3 Mean

Low -10.09 -7.37 -6.26 -7.91

Mid -3.80 -6.36 -7.90 -6.02

High 5.86 5.00 9.94 6.93

SAMPLE 2

Config 1 Config 2 Config 3 Mean

Low -6.00 -11.55 -18.56 -12.04

Mid -5.49 -8.14 -8.45 -7.36

High 5.18 1.13 -7.12 -0.27

SAMPLE 3

Config 1 Config 2 Config 3 Mean

Low -10.93 -6.75 -3.33 -7.00

Mid -7.15 -5.07 -2.18 -4.80

High 1.34 4.14 3.02 2.84

Delta Results
Window 1 Window 2

SAMPLE 1

Config 1 Config 2 Config 3 Mean

Low -1.54 -0.61 -6.03 -2.73

Mid -6.68 -7.76 -7.72 -7.39

High 0.46 0.63 0.63 0.57

SAMPLE 2

Config 1 Config 2 Config 3 Mean

Low -2.84 4.10 5.27 2.18

Mid 3.99 1.16 3.69 2.94

High -5.89 -5.01 -5.01 -5.30

SAMPLE 3

Config 1 Config 2 Config 3 Mean

Low -0.64 -2.36 -5.84 -2.95

Mid -1.14 -0.69 -2.82 -1.55

High -4.66 -3.30 -3.30 -3.75

SAMPLE 1

Config 1 Config 2 Config 3 Mean

Low -4.15 -6.97 -4.36 -5.16

Mid -3.80 -6.36 -7.90 -6.02

High -5.86 -5.00 -9.94 -6.93

SAMPLE 2

Config 1 Config 2 Config 3 Mean

Low -6.00 -11.55 -17.57 -11.71

Mid -5.49 -6.27 -7.34 -6.37

High -5.18 -1.13 7.12 0.27

SAMPLE 3

Config 1 Config 2 Config 3 Mean

Low 3.59 5.00 3.33 3.98

Mid -2.13 0.98 1.58 0.15

High -1.34 -4.14 -3.02 -2.84

81

III.2.3 RMS Variance Test
Sample 1 – Original vs. Target

Original 1 – Config 1 – Time(s) vs RMS(dB)

 Original 1 – Config 2 – Time(s) vs RMS(dB)

 Target
 Original – C1
 Original – C2
 Original – C3

Original 1 – Config 3 – Time(s) vs RMS(dB) Variance Results

Std.
Deviation

Av. Abs.
Deviation

Std. Dev. /
Target %

Av. Abs. Dev. /
Target %

Target 5.69 4.59 - -
Config 1 10.49 7.63 84.22 66.02
Config 2 10.24 7.22 79.88 57.07
Config 3 9.86 6.71 73.25 46.15

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
0 5 10 15 20 25

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
0 5 10 15 20 25

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
0 5 10 15 20 25

82

Sample 2 – Original vs. Target

Original 2 – Config 1 – Time(s) vs RMS(dB)

 Original 2 – Config 2 – Time(s) vs RMS(dB)

 Target
 Original – C1
 Original – C2
 Original – C3

Original 2 – Config 3 – Time(s) vs RMS(dB) Variance Results

Std.
Deviation

Av. Abs.
Deviation

Std. Dev. /
Target %

Av. Abs. Dev. /
Target %

Target 5.52 4.41 - -
Config 1 5.71 4.81 3.53 9.05
Config 2 5.45 4.38 -1.23 -0.72
Config 3 6.75 5.79 22.42 31.22

-35

-30

-25

-20

-15

-10

-5

0
0 2 4 6 8 10 12 14

-35

-30

-25

-20

-15

-10

-5

0
0 2 4 6 8 10 12 14

-35

-30

-25

-20

-15

-10

-5

0
0 2 4 6 8 10 12 14

83

Sample 3 – Original vs. Target

Original 3 – Config 1 – Time(s) vs RMS(dB)

 Original 3 – Config 2 – Time(s) vs RMS(dB)

 Target
 Original – C1
 Original – C2
 Original – C3

Original 3 – Config 3 – Time(s) vs RMS(dB) Variance Results

Std.
Deviation

Av. Abs.
Deviation

Std. Dev. /
Target %

Av. Abs. Dev. /
Target %

Target 3.40 2.73 - -
Config 1 3.27 2.61 -3.77 -4.45
Config 2 3.36 2.67 -1.32 -2.19
Config 3 3.72 2.90 9.51 6.33

-30

-25

-20

-15

-10

-5

0
0 5 10 15 20 25 30

-30

-25

-20

-15

-10

-5

0
0 5 10 15 20 25 30

-30

-25

-20

-15

-10

-5

0
0 5 10 15 20 25 30

84

Sample 1 – Processed vs. Target

Processed 1 – Config 1 – Time(s) vs RMS(dB) Processed 1 – Config 2 – Time(s) vs RMS(dB)

 Target
 Processed – C1
 Processed – C2
 Processed – C3

Processed 1 – Config 3 – Time(s) vs RMS(dB) Variance Results

Std.
Deviation

Av. Abs.
Deviation

Std. Dev. /
Target %

Av. Abs. Dev. /
Target %

Target 5.69 4.59 - -
Config 1 4.71 4.00 -17.34 -12.98
Config 2 4.58 3.82 -19.48 -16.77
Config 3 4.80 3.93 -15.67 -14.44

-35

-30

-25

-20

-15

-10

-5

0
0 5 10 15 20 25

-35

-30

-25

-20

-15

-10

-5

0
0 5 10 15 20 25

-35

-30

-25

-20

-15

-10

-5

0
0 5 10 15 20 25

85

Sample 2 – Processed vs. Target
Processed 2 – Config 1 – Time(s) vs RMS(dB) Processed 2 – Config 2 – Time(s) vs RMS(dB)

 Target
 Processed – C1
 Processed – C2
 Processed – C3

Processed 2 – Config 3 – Time(s) vs RMS(dB) Variance Results

Std.
Deviation

Av. Abs.
Deviation

Std. Dev. /
Target %

Av. Abs. Dev. /
Target %

Target 5.52 4.41 - -
Config 1 3.55 2.82 -35.65 -36.03
Config 2 3.76 2.90 -31.90 -34.27
Config 3 4.00 3.16 -27.47 -28.28

-35

-30

-25

-20

-15

-10

-5

0
0 2 4 6 8 10 12 14

-35

-30

-25

-20

-15

-10

-5

0
0 2 4 6 8 10 12 14

-35

-30

-25

-20

-15

-10

-5

0
0 2 4 6 8 10 12 14

86

Sample 3 – Processed vs. Target
Processed 3 – Config 1 – Time(s) vs RMS(dB) Processed 3 – Config 2 – Time(s) vs RMS(dB)

 Target
 Processed – C1
 Processed – C2
 Processed – C3

Processed 3 – Config 3 – Time(s) vs RMS(dB) Variance Results

Std.
Deviation

Av. Abs.
Deviation

Std. Dev. /
Target %

Av. Abs. Dev. /
Target %

Target 3.40 2.73 - -
Config 1 2.11 1.67 -38.05 -38.81
Config 2 2.23 1.74 -34.58 -36.32
Config 3 2.24 1.73 -34.09 -36.67

-30

-25

-20

-15

-10

-5
0 5 10 15 20 25

-30

-25

-20

-15

-10

-5
0 5 10 15 20 25

-30

-25

-20

-15

-10

-5
0 5 10 15 20 25

87

Basic Results Delta Results
SAMPLE 1

Config 1 Config 2 Config 3 Mean

Std Dev -101.55 -99.36 -88.92 -96.61

Abs Dev -79.00 -73.84 -60.59 -71.14

 SAMPLE 2

Config 1 Config 2 Config 3 Mean

Std Dev -39.18 -30.67 -49.89 -39.91

Abs Dev -45.08 -33.55 -60.59 -46.41

 SAMPLE 3

Config 1 Config 2 Config 3 Mean

Std Dev -34.27 -33.26 -43.60 -37.05

Abs Dev -34.37 -34.14 -42.99 -37.17

SAMPLE 1

Config 1 Config 2 Config 3 Mean

Std Dev -66.88 -60.40 -57.58 -61.62

Abs Dev -53.04 -40.31 -31.71 -41.69

 SAMPLE 2

Config 1 Config 2 Config 3 Mean

Std Dev 32.12 30.67 5.05 22.61

Abs Dev 26.97 33.55 -2.95 19.19

 SAMPLE 3

Config 1 Config 2 Config 3 Mean

Std Dev 34.27 33.26 24.59 30.71

Abs Dev 34.37 34.14 30.34 32.95

88

III.2.4 FFT Band Variance Test

Sample 1 – Original vs. Target Sample 2 – Original vs. Target

Standard Deviation Absolute Average Deviation
Lo Mid Hi Lo Mid Hi

Target 5.16 6.54 7.30 3.94 5.22 5.73
Config 1 9.17 11.50 11.51 7.20 8.65 8.85
Config 2 9.42 12.12 12.20 7.18 8.56 8.84
Config 3 8.93 10.86 10.97 6.74 7.48 7.86

Config vs. Target Difference (%)

Config 1 77.93 75.97 57.66 82.51 65.70 54.40
Config 2 82.63 85.31 67.04 82.18 63.88 54.16
Config 3 73.18 66.06 50.24 70.86 43.21 37.09

Standard Deviation Absolute Average Deviation
Lo Mid Hi Lo Mid Hi

Target 6.15 5.20 6.23 4.98 4.25 5.04
Config 1 6.75 6.29 6.98 5.63 5.25 5.80
Config 2 6.56 5.97 6.79 5.28 4.82 5.43
Config 3 7.84 7.27 7.98 6.58 6.07 6.65

Config vs. Target Difference (%)

Config 1 9.69 20.99 12.09 12.96 23.71 14.97
Config 2 6.63 14.89 9.00 5.93 13.52 7.63
Config 3 27.46 39.83 28.04 32.05 42.95 31.88

Sample 3 – Original vs. Target

Standard Deviation Absolute Average Deviation
Lo Mid Hi Lo Mid Hi

Target 4.43 3.52 4.81 3.46 2.78 3.74
Config 1 4.46 3.76 4.96 3.57 3.05 3.97
Config 2 4.90 4.22 5.47 3.97 3.45 4.43
Config 3 5.23 4.50 5.67 4.13 3.60 4.49

Config vs. Target Difference (%)

Config 1 0.66 6.87 3.19 3.11 9.38 6.36
Config 2 10.60 19.91 13.82 14.82 23.78 18.54
Config 3 18.21 27.84 18.04 19.44 29.21 20.17

89

Sample 1 – Processed vs. Target Sample 2 – Processed vs. Target

Standard Deviation Average Absolute Deviation
Lo Mid Hi Lo Mid Hi

Target 5.16 6.54 7.30 3.94 5.22 5.73
Config 1 4.93 5.01 2.06 4.02 4.06 1.54
Config 2 5.01 4.84 4.36 4.17 4.09 3.58
Config 3 5.13 5.28 3.83 4.12 4.32 2.92

Config vs. Target Difference (%)

Config 1 -4.30 -23.37 -71.80 2.05 -22.33 -73.10
Config 2 -2.80 -25.92 -40.24 5.63 -21.68 -37.56
Config 3 -0.49 -19.31 -47.58 4.39 -17.17 -49.03

Standard Deviation Average Absolute Deviation
Lo Mid Hi Lo Mid Hi

Target 6.15 5.20 6.23 4.98 4.25 5.04
Config 1 3.61 4.41 4.74 2.78 3.43 3.73
Config 2 3.83 4.29 5.69 3.13 3.29 4.56
Config 3 4.76 4.13 5.91 3.61 3.39 4.62

Config vs. Target Difference (%)

Config 1 -41.30 -15.25 -23.94 -44.29 -19.33 -26.08
Config 2 -37.83 -17.45 -8.59 -37.13 -22.49 -9.52
Config 3 -22.61 -20.60 -5.15 -27.51 -20.14 -8.33

Sample 3 – Processed vs. Target

Standard Deviation Average Absolute Deviation
Lo Mid Hi Lo Mid Hi

Target 4.43 3.52 4.81 3.46 2.78 3.74
Config 1 4.43 2.53 3.70 3.67 1.75 2.94
Config 2 4.44 2.25 4.18 3.68 1.75 3.26
Config 3 4.88 2.84 4.09 3.95 1.92 3.19

Config vs. Target Difference (%)

Config 1 -0.03 -28.21 -23.01 6.03 -37.16 -21.22
Config 2 0.25 -36.20 -13.10 6.47 -37.09 -12.88
Config 3 10.28 -19.29 -14.83 14.12 -31.00 -14.61

90

Basic Results
Standard Deviation Average Absolute Deviation

SAMPLE 1

Config 1 Config 2 Config 3 Mean

Low -82.22 -85.43 -73.67 -80.44

Mid -99.34 -111.23 -85.38 -98.65

High -129.47 -107.28 -97.82 -111.52

SAMPLE 2

Config 1 Config 2 Config 3 Mean

Low -51.00 -44.45 -50.07 -48.51

Mid -36.24 -32.34 -60.43 -43.00

High -36.03 -17.59 -33.20 -28.94

SAMPLE 3

Config 1 Config 2 Config 3 Mean

Low -0.69 -10.35 -7.93 -6.32

Mid -35.08 -56.11 -47.13 -46.11

High -26.19 -26.93 -32.87 -28.66

SAMPLE 1

Config 1 Config 2 Config 3 Mean

Low -80.46 -76.55 -66.47 -74.49

Mid -88.02 -85.56 -60.38 -77.99

High -127.50 -91.72 -86.12 -101.78

SAMPLE 2

Config 1 Config 2 Config 3 Mean

Low -57.25 -43.06 -59.55 -53.29

Mid -43.04 -36.01 -63.09 -47.38

High -41.05 -17.15 -40.21 -32.80

SAMPLE 3

Config 1 Config 2 Config 3 Mean

Low 2.93 -8.35 -5.32 -3.58

Mid -46.54 -60.87 -60.21 -55.87

High -27.58 -31.42 -34.79 -31.26

Delta Results
Standard Deviation Average Absolute Deviation

SAMPLE 1

Config 1 Config 2 Config 3 Mean

Low -73.63 -79.84 -72.68 -75.38

Mid -52.60 -59.39 -46.75 -52.92

High 14.14 -26.80 -2.66 -5.11

SAMPLE 2

Config 1 Config 2 Config 3 Mean

Low 31.61 31.20 -4.85 19.32

Mid -5.74 2.56 -19.23 -7.47

High 11.84 -0.42 -22.89 -3.82

SAMPLE 3

Config 1 Config 2 Config 3 Mean

Low -0.63 -10.35 -7.93 -6.30

Mid 21.34 16.29 -8.55 9.69

High 19.82 -0.72 -3.21 5.29

SAMPLE 1

Config 1 Config 2 Config 3 Mean

Low -80.46 -76.55 -66.47 -74.49

Mid -43.37 -42.19 -26.04 -37.20

High 18.70 -16.60 11.94 4.68

SAMPLE 2

Config 1 Config 2 Config 3 Mean

Low 31.33 31.20 -4.54 19.33

Mid -4.38 8.96 -22.81 -6.08

High 11.12 1.90 -23.54 -3.51

SAMPLE 3

Config 1 Config 2 Config 3 Mean

Low 2.93 -8.35 -5.32 -3.58

Mid 27.78 13.31 1.79 14.30

High 14.86 -5.66 -5.56 1.21

91

III.2.5 Listening Test

92

INDEX O1 P1 O2 P2 O3 P3

P1-O1 P2-O2 P3-O3
0 2 3 1 3 2 4

1 2 2

1 3 3 3 4 3 4

0 1 1
2 2 3 3 4 2 5

1 1 3

3 1 2 1 2 2 3

1 1 1
4 2 3 4 5 4 5

1 1 1

5 3 4 3 4 2 3

1 1 1
6 2 4 0 3 1 3

2 3 2

7 1 4 2 4 1 2

3 2 1
8 2 2 2 4 2 3

0 2 1

9 2 3 3 4 2 4

1 1 2
10 3 4 2 4 2 4

1 2 2

11 3 4 3 4 2 3

1 1 1
12 2 4 1 3 2 5

2 2 3

13 3 5 2 3 3 4

2 1 1
14 2 4 2 3 2 3

2 1 1

15 3 4 3 5 4 5

1 2 1
16 1 2 4 3 2 3

1 -1 1

17 2 3 3 4 2 4

1 1 2
18 1 2 0 1 1 1

1 1 0

19 1 3 1 3 1 4

2 2 3

 SUM 41 66 43 70 42 72

25 27 30
MIN 1 2 0 1 1 1

3 3 3

MAX 3 5 4 5 4 5

0 -1 0
AVERAGE 2.05 3.30 2.15 3.50 2.10 3.60

1.25 1.35 1.50

93

3 3 3

0

-1

0

1.25 1.35 1.50

-5

-4

-3

-2

-1

0

1

2

3

4

5

1 2 3

Score Difference

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 2 3

Average Score

Original

Processed

94

III.2.6 Performance Timing

Sample
Time Average (µs)

Initialisation Pre-FFT Effects Post-FFT Total
Original - 1 - Config 1 5.0 1420.3 893.5 1356.7 3675.4
Original - 1 - Config 2 4.9 1312.4 897.5 1359.0 3573.8
Original - 1 - Config 3 4.9 1313.6 891.1 1290.3 3499.9
Original - 2 - Config 1 5.0 1319.4 903.1 1279.7 3507.3
Original - 2 - Config 2 5.1 1310.2 893.1 1283.1 3491.6
Original - 2 - Config 3 5.0 1327.3 894.5 1347.9 3574.7
Original - 3 - Config 1 5.0 1377.3 970.7 1357.0 3710.0
Original - 3 - Config 2 5.1 1321.9 902.3 1426.7 3656.0
Original - 3 - Config 3 5.1 1318.1 901.2 1289.2 3513.7

Statistic
Statistic Result (µs)

Initialisation Pre-FFT Effects Post-FFT Total
MINIMUM 4.9 1310.2 891.1 1279.7 3491.6
MAXIMUM 5.1 1420.3 970.7 1426.7 3710.0

RANGE 0.2 110.0 79.6 147.0 218.4
MEAN 5.0 1335.6 905.2 1332.2 3578.0

MEDIAN 5.0 1319.4 897.5 1347.9 3573.8
STANDARD DEVIATION 0.1 35.6 23.5 47.0 78.7

95

96

III.3

Analysis

97

III.3.1 Test Results

The test results can be used to draw three conclusions. The first establishes the operational functionality of the plug-

in, informed by the numeric basic results, describing the plug-in’s ability to attenuate low and mid-range

frequencies, boost high frequencies and reduce dynamic range. The second and more important conclusion,

informed by the numeric delta results and listening test results, describes the plug-in’s ability to transform audio in a

way that imitates a mixing engineer. The third conclusion, informed by the performance test results, describes the

computational efficiency of the plug-in. As a general measure of success of the audio tests a percentage “pass rate”

was calculated for each test using the basic and delta results; each individual result was compared to the test

hypothesis and coloured green or red on the tables above based on its success, and the pass rate expressed as the

ratio of green to red results. For the listening test a successful result was a positive difference between an original

and processed score. As the testing process has been largely statistical, a measure of significance was employed to

be able to declare a test successful with a value of 90%.

Conclusion 1 – Operational Functionality

To establish whether or not the basic functions of the plug-in work as intended the numeric basic results are used.

The results are consistently successful with a lowest pass rate of 92%:

Test Basic Result
Sample Average 100%

Sample Transient 92%
RMS Variance 100%

FFT Band Variance 99%

These tests produce reliable results as to whether the plugin is transforming audio in the way it should as it uses the

target only as a reference point to which the original and processed samples are compared; the only factor

influencing a result is the processing applied by the plugin.

The results demonstrate that the plug-in attenuates and boosts the relevant frequency bands and reduces

dynamic range as it should.

Conclusion 2 – Target Similarity

To establish whether or not the plug-in imitates a professional mixing engineer the numeric delta results and

listening test results are used:

98

Test Delta Result
Sample Average 58%

Sample Transient 72%
RMS Variance 38%

FFT Band Variance 63%

Sample Listening Result
Sample 1 90%
Sample 2 95%
Sample 3 95%

The delta results are less successful than the basic results with none achieving the statistical significance of 90% and

the RMS Variance test achieving only a 38% pass rate. The combination of good basic results and bad delta results

leads to the conclusion that the plug-in is generally over-processing audio; a successful basic result coupled with a

failed delta result means that whilst the direction of change is correct the processed sample is further away from the

target than the original. For example:

Sample Average Test - Sample 1, Config 1, Low Frequency:

 Amplitude (dB) Vs. Target (dB)
Target 150.11

Original 149.63 -0.48
Processed 146.69 -3.42

Whilst 2.94dB of attenuation has been achieved by the plug-in it has moved the processed value further away from

the target than the original value.

RMS Variance Test – Sample 2, Config 3, Standard Deviation:

 Standard Deviation (dB) Vs. Target (%)
Target 5.52 -

Original 6.75 22.42
Processed 4.00 -24.47

Though the dynamic range of the processed sample has been reduced 49.89% compared to the original, it is 5.05%

further away from the target.

As described in III.1 the numerical testing process had one main limitation; it was not possible to obtain unmixed

versions of the target samples meaning that the difference between target, original and processed samples is not

solely produced by the plugin. A successful set of listening test results combined with successful numeric basic

99

results from the tests analysing dynamic characteristics support the theory that poor numeric delta results can be

explained by the limitations of the numeric testing process.

Using a positive difference between an original and processed score as a successful result the listening test results

show that all three samples achieved a pass rate within the 90% range of statistical significance. The results contain

only one point out of 60 showing a negative difference and three out of 60 showing zero difference. The test was

carried out by 20 individuals with developed critical listening skills and the identities of the original and processed

samples were kept hidden; the evaluation of each individual is trustworthy and unbiased. These results demonstrate

that when asked to compare the tonal and dynamic qualities of a set of audio samples a group of trained Music

Technologists determined that the plugin successfully transforms piano recordings to be more similar to commercial

standard productions.

The results demonstrate that the plug-in produces audio transformed in way that imitates a professional mixing

engineer.

Conclusion 3 – Computational Efficiency

With a pass rate of 100% and a maximum total time of 3710.0µs the performance timing test produced extremely

successful results compared to a target of 10ms. The plug-in achieves this level of performance with consistency; the

total times have a standard deviation of 78.7µs; 2.1% of the mean value.

The performance test results demonstrate that the plug-in operates with significant computational efficiency.

100

III.3.2 Comparative Analysis

This project aims to produce novel research outcomes in the field of automatic mixing, and so a comparison

between the developed plugin and similar products can be used to determine what original concepts are being put

forward. The developed plugin is a prototype and therefore features like effect quality, GUI design and overall

efficiency are lacking compared to professional commercial plugins, so this comparison takes place at a conceptual

level by addressing each of the plugin’s headline features.

Autonomous post production

During background research no plugins were found that offer autonomous post production; plugins are available

that address the issue of changing parameters over time without the use of time consuming automation, including

some that do this in response to signal analysis, but none that offer this functionality with no user input.

Instrument specific design

Plugins such as Waves Bass Rider [Waves Audio Ltd.] offer instrument specific effects; the Bass Rider automatically

“rides” the volume of a bass recording in a way that mimics a mixing engineer.

Regression of FFT

All of the plugins found during background research that process individual components of the frequency spectrum

or respond to signal analysis use filtering and time dime domain analyses such as RMS measurement to determine

the properties of a signal. No plugins were found that use frequency domain analysis to inform effects parameters,

and to the best knowledge of the author the developed plugin is unique in its use of polynomial regression to apply

temporal smoothing.

Envelope following control of EQ parameters

One plugin was found, the bx_dynEQ, that uses compression techniques to control EQ parameters.

The closest relative of the developed plugin is the dynamic equalizer, and it is comparable to a multiband

compressor. Dynamic equalizers use variations in EQ parameters to control the tone of a recording, however no

plugins were found that use this technique to also control dynamics. Neither were any plugins found that use FFT

analysis to determine the parameter changes; the dynamic equalizers described in II.2 Post Production Systems filter

the signal into bands and use RMS measurement to determine amplitude. The multiband compressor filters a signal

into bands and compresses each individually with a view to controlling the dynamics of a particular part of the

frequency spectrum, and a result of this process can be tonal changes in the recording. Multiband compressors have

a large number of parameters to manually manipulate in order to achieve the desired outcome, and though pre-sets

can be used to broadly set up the plugin for use with a particular instrument, this is a still a time consuming process.

101

SECTION IV

CONCLUSIONS

102

IV.1 Conclusions

Figure IV.1.1

At the beginning of this programme of research and development a set of goals were identified:

• Develop a plugin capable of autonomously mixing piano recordings;

• Develop a quick and easy to use plugin whose functions are not replicable without significant time

and effort;

• Provide an original contribution to the area of automatic mixing research;

The ability of the plugin to autonomously mix piano recordings has been determined by the testing process. Whilst

not all testing results were positive they served to prove that the plugin is capable of transforming the tonal and

dynamic characteristics of a piano recording to better conform to the standards expected within a modern popular

music production. As a prototype the plugin can be declared to be functionally capable.

Testimony regarding the quality of the plugin was gathered:

Colin Elliot, Recording and Mixing Engineer, Yellow Arch Studios, Sheffield:

“This will be a useful plugin once a more efficient GUI is in place. I would use it on a piano track that sat in the back of

a mix and it would save a lot of time. For very prominent piano parts I would want the control of individual effects.

Needs an AU version!”

Chris Humphries, Music IT Technician, Headington Girl’s School; Music Technology Postgraduate, University of

Huddersfield:

“I would definitely use this. I like the FFT curves, makes it really easy to see what’s going on. Would be even more

interested in a version that worked on drums.”

103

The testimonials show a positive response to the plugin. The most useful statement is Mr Elliot’s; “I would use it on a

piano track that sat in the back of a mix and it would save a lot of time. For very prominent piano parts I would want

the control of individual effects,” as it provides an indication of the usability of the plugin in a professional context.

The usability of the plugin is excellent as user interaction is minimal due to the autonomous nature of the software;

six switches are supplied to enable or disable the filters and dynamic control for each of the three frequency bands,

and a input gain knob can used if desired. An example method of partially recreating the plugins functionality would

be to use an EQ plugin and automate the gain and frequency parameters of three filters to follow the overall level of

a piano recording; this would not recreate the use of FFT analysis to control the parameters and would not be able

to respond to level changes as quickly as the plugin. Alternatively a dynamic EQ or multiband compression plugin

could be used which could be made to produce similar results, but these plugins usually contain a large number of

parameters and need careful configuration. Compared to either of these methods the developed plugin is far simpler

and easier to use; it only needs to be inserted into the signal chain and activated.

Comparison with the background research provided in section I.2 demonstrates that several aspects of the plugin

represent an original contribution to the area of automatic mixing:

• Though plugins are available which control EQ parameters by responding to an incoming signal, none were

found to use FFT analysis in order to do this;

• No plugins were found which vary cut-off frequency using envelope following or vary EQ parameters to

control the dynamic range of a recording.

• No plugins were found which are designed for use with a specific instrument and are capable of autonomous

processing.

104

IV.2 Further Development

The developed plugin serves as a prototype proof of concept and as such would need further development in order

to be commercially viable. The features which require updating have been developed to the minimum standard

necessary to enable research into the novel components of the plugin; the suggestions outlined below were not

practically employable during the time period available. The most pressing update required is an efficient GUI; the

current implementation served only as a feedback facility for use during the development process. Preliminary

research suggests that the OpenGL library would be a useful tool for this; it is a widely used graphics library and

makes very efficient use of CPU resources (OpenGL.org). The EQ and compression algorithms used are basic and

would benefit greatly from a course of research to determine which of the many available methods of implementing

each suit the application best. The plugin would also benefit from a custom regression algorithm which could exploit

the specifics of the application and boost efficiency. A feature essential before the plugin could be released would be

the availability of RTAS and AU versions; as described in Appendix section describing the JUCE framework, JUCE

includes the ability to build projects into several plugin formats from one set of source code meaning that with the

possession of the relevant SDKs these version could be easily produced.

There are several areas of further development which could be undertaken to improve the plugin in later versions.

Concentrating on piano mixing the piano could be expanded to mix other genres of music besides pop; jazz and

classical for example. This would require research into common mixing practices within these genres and would only

be possible if similarities were observed as they were for popular music. With a coding framework in place to control

the way the EQ and compression parameters respond to the incoming signal pre-sets could be designed which

provide autonomous setups for mixing other instruments. The strongest candidates for this would be instruments

such as kick drums, snare drums and bass guitars; the concept of uniformity within popular music production is most

harshly imposed on these instruments and so they would benefit from new methods of controlling dynamics and

tone. A step further would be to provide an interface to allow users to design custom setups themselves allowing the

effects processing to be used creatively as well as correctively, although this would not be an autonomous solution

and would behave very similarly to the dynamic EQ plugins discussed in section I.2. The EQ and compression

algorithms could be updated to model analogue hardware; this is a current development trend and a popular

feature among consumers of audio plugins.

105

SECTION V

APPENDIX

106

V.1

Fourier Analysis

107

V.1.1 Fourier Analysis

Fourier Analysis is a branch of mathematics that is extremely useful in digital signal processing, first published by

James Fourier in 1808 (Fourier, 1808). At its core is the idea than any periodic signal can be expressed as the sum of

an infinite number of sine and cosine waves, known as the Fourier series, (Croft and Davidson, 2008, p.1139). A

common example of this is the use of additive synthesis to create a saw-tooth wave:

Figure V.1.1

Figure V.1.1 shows graphs of four functions:

a) 𝒇(𝒕) = 𝐬𝐢𝐧 𝒕

b) 𝒇(𝒕) = 𝐬𝐢𝐧 𝒕 − 1
2

sin 2𝑡

c) 𝒇(𝒕) = 𝐬𝐢𝐧 𝒕 − 1
2

sin 2𝑡 + 1
3

sin 3𝑡

d) 𝒇(𝒕) = 𝐬𝐢𝐧 𝒕 − 1
2

sin 2𝑡 + 1
3

sin 3𝑡 − 1
4

sin 4𝑡

Figure V.1.1(a) shows the function 𝐬𝐢𝐧𝒕. Figure V.1.1(b) shows the function 𝐬𝐢𝐧 𝒕 − 𝟏
𝟐
𝐬𝐢𝐧 𝟐𝒕, the original sine wave

with a harmonic added at twice the frequency with half the amplitude. Figures V.1.1(c) and V.1.1(d) show the

addition of more harmonics. As more harmonics are added the waveform can be seen to be approaching that of a

periodic saw-tooth wave, and if an infinite number of harmonics were added the saw-tooth wave would be

represented exactly.

(a)

-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

(b)

-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

(c)

(a)

(d)

108

Therefore, the Fourier series of a saw-tooth wave can be expressed as:

𝑓(𝑡) = ��
−2 cos𝑛𝜋

𝑛
�

∞

𝑛=1

sin𝑛𝑡

Using the quantities 𝑎0, 𝑎𝑛 and 𝑏𝑛, known as Fourier coefficients, a generalised equation for periodic function f(t)

with period T can be derived to calculate any Fourier series:

𝑎0 =
2
𝑇
� 𝑓(𝑡)𝑑𝑡
𝑇

0

𝑎𝑛 =
2
𝑇
� 𝑓(𝑡) cos

2𝑛𝜋𝑡
𝑇

𝑇

0
 𝑑𝑡, 𝑛 = 1, 2, 3, …

𝑏𝑛 =
2
𝑇
� 𝑓(𝑡) sin

2𝑛𝜋𝑡
𝑇

𝑇

0
 𝑑𝑡, 𝑛 = 1, 2, 3, …

The Fourier series is given by:

𝑓(𝑡) =
𝑎0
2

+ ��𝑎𝑛 cos
2𝑛𝜋𝑡
𝑇

+ 𝑏𝑛 sin
2𝑛𝜋𝑡
𝑇

�
∞

𝑛=1

Evaluating the first few terms of the series makes it clear that 𝑎𝑛 are the amplitudes of the sine waves in the series,

and 𝑏𝑛 are the amplitudes of the cosine waves:

𝑓(𝑡) =
𝑎0
2

+ 𝑎1 cos
2𝜋𝑡
𝑇

+ 𝑏1 sin
2𝜋𝑡
𝑇

+ 𝑎2 cos
4𝜋𝑡
𝑇

+ 𝑏2 sin
4𝜋𝑡
𝑇

+ ⋯

The Fourier series is a useful tool for analysing theoretical periodic waveforms, but cannot be used to analyse

aperiodic waveforms. All sound that is produced in the natural world is comprised of aperiodic waveforms and so a

different tool, the Fourier transform, must be used to analyse them.

The Fourier transform expresses an aperiodic function not as the sum of other functions but as an integral (Croft and

Davidson, 2008, p. 1149). The Fourier transform of a signal is a function of the continuous frequency variable 𝜔:

𝐹(𝜔) = � 𝑓(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞

−∞

109

 Where

𝑗 = √−1

The modulus and argument of the complex result of the integral can be plotted as amplitude and phase spectra

against 𝜔 (Croft and Davidson, 2008, p.1151), providing the magnitudes of the frequency components of the

function.

110

V.1.2 Discrete Fourier Transform

The Fourier transform processes functions of continuous data and assumed infinite length. Digital audio systems, like

all computer programs, are discrete systems, meaning that the functions they process must be discrete - comprised

of discrete data with finite length. In a digital audio system the continuous function of a waveform in the air is

recorded using a microphone, generating a voltage waveform in an electrical wire, which is then connected to a

computer and converted into samples. A sample is a measurement of voltage, and hence amplitude, at a specific

moment in time. A series of samples, taken with a set interval of time between them, forms a discrete function with

finite length. If a small enough sampling interval is used, a discrete function can very accurately simulate a

continuous function.

The Discrete Fourier Transform (DFT) allows the theoretical analysis of signals provided by the Fourier transform to

be practically realised within a digital system (Smith, 1997, p.150). If 𝑥 is an input signal and discrete function of 𝑁

samples, the DFT 𝑋 is expressed as:

𝑋(𝑘) = �𝑥(
𝑁−1

𝑛=0

𝑛)𝑊𝑘𝑛 𝑘 = 0, 1, … ,𝑁 − 1,

Where

𝑊 = 𝑒−𝑗
2𝜋
𝑁

This form is used for ease of notation, however if 𝑊 is evaluated using Euler’s Identity:

Figure V.1.2

𝑒−𝑗𝑥 = cos 𝑥 − 𝑗 sin 𝑥

𝑊 = cos
2𝜋
𝑁
− 𝑗 sin

2𝜋
𝑁

111

It can be seen that, like the continuous Fourier transform, the modulus and argument of the equation’s result for

each value of 𝑘 can be plotted to give the amplitude and phase spectra of the input signal. It is important to note

that the number of amplitude and phase values produced is the same as the number of samples in the input signal.

The version of the DFT described above can be applied to both real and complex inputs, however as digital audio

samples are real numbers, a complex input will be never be used for this application. For the purposes of

demonstration within this paper, it is far simpler to utilise the “Real DFT”; an algorithmic version which can only be

applied to input signals comprised of real data and hence involves only a few calculations with complex numbers.

The Real DFT will be used to begin demonstrating the methods of implementing Fourier analysis as part of a

computer program.

The Real DFT algorithm uses basis functions in order to establish a frequency domain representation of a signal

(Jackson, 1996, p.189). The basis functions are sine and cosine waves of increasing frequencies to which the input

signal is compared. In the frequency domain the DFT produces two signals - the real and imaginary results of the

equation above. The real result gives the amplitudes of the cosine basis functions, while the imaginary result gives

the amplitudes of the sine basis functions. These two sets of amplitudes are stored by the algorithm using two

arrays; REx and IMx. Weighted with the amplitudes stored in REx and IMx, the basis functions form the component

frequencies of the Fourier series of the signal.

𝑅𝐸𝑥(𝑘) = � cos 2𝜋𝑘
𝑖
𝑁

 𝑘 = 0, 1, 2, … ,𝑁 − 1,
𝑁−1

𝑖=0

𝐼𝑀𝑥(𝑘) = −� sin 2𝜋𝑘
𝑖
𝑁

 𝑘 = 0, 1, 2, … ,𝑁 − 1,
𝑁−1

𝑖=0

As mentioned above, the number of results must be the same as the number of samples in the input signal, in this

case represented by the variable N.

Each of the array values can then be used to calculate the modulus and argument, and hence amplitude and phase,

of each of the basis function frequencies present in the input signal, which together form amplitude and phase

spectra. For the purposes of the plugin it is only necessary to calculate the amplitude spectrum, which is stored by

the algorithm in the array MAGx.

𝑀𝐴𝐺𝑥(𝑘) = �𝑅𝐸𝑥(𝑘)2 + 𝐼𝑀𝑥(𝑘)2

112

The Real DFT algorithm was prototyped in Visual Basic .NET. The input signal, array x, is populated with a sine wave

of frequency 10 Hz:

 Dim N As Integer = 256 'Number of samples in input signal

 Dim F As Integer = 10 'Frequency in Hz of input signal sine wave

 Dim x(N) As Double 'Array containing input signal

 Dim REx(N), IMx(N) As Double 'Arrays containing real and imaginary results

 Dim MAGx(N) As Double 'Array containing amplitudes of the basis functions

 ' Input signal array populated with sine wave

 For i = 0 To N - 1

 x(i) = Math.Sin((2 * Math.PI * F) * (i / N))

 Next

 ' Real and imaginary arrays set to 0

 For k = 0 To N - 1

 REx(k) = 0

 IMx(k) = 0

 Next

 ' Input signal samples multiplied by basis function samples

 For k = 0 To N - 1

 For i = 0 To N - 1

 REx(k) = REx(k) + (x(i) * Math.Cos((2 * Math.PI * k * i / N)))

 IMx(k) = IMx(k) - (x(i) * Math.Sin((2 * Math.PI * k * i / N)))

 Next

 Next

 ' Modulus / amplitude calculated from real and imaginary arrays

 For k = 0 To N - 1

 MAGx(k) = Math.Sqrt((Math.Pow(REx(k), 2) + Math.Pow(IMx(k), 2)))

 Next

The input signal and MAGx array is then plotted using Microsoft Chart Controls .NET:

Figure V.1.3

113

A large amplitude peak can be seen in Figure II.3.3 at 10Hz. However, there is a second peak at 246Hz. This is

because amplitude and phase spectra resulting from any Fourier transform are conjugate-symmetric sequences –

they are symmetrical about the point N/2. This point is also the Nyquist Frequency – the highest frequency that can

be accurately sampled by the system, defined as half the sample rate (Smith, 1997, Chap. 3). This means that whilst

the correlation of basis functions needs to be calculated from 0 to N, the arrays REx, IMx and MAGx need only be

declared with size N/2. This does not change the fact that the number of results is the same as the number of

samples in the input signal, only that half of the results are not required and so the efficiency of the algorithm can be

increased by not calculating them.

It is also notable that the amplitude of the peak is 128 units, showing that the MAGx values need to be scaled by

N/2:

' Modulus / amplitude calculated from real and imaginary arrays

 For k = 0 To N / 2 - 1

 MagX(k) = Math.Sqrt((Math.Pow(REx(k), 2) + Math.Pow(IMx(k), 2))) / (N/2)

 Next

This results in the plot:

Figure V.1.4

When a series of harmonics are added to the input signal, more amplitudes peaks can be seen on the plot:

 For i = 0 To N

 x(i) = Math.Sin((2 * Math.PI * F) * (i / N))

 x(i) += 0.5 * (Math.Sin((2 * Math.PI * (F * 2)) * (i / N)))

 x(i) += 0.25 * (Math.Sin((2 * Math.PI * (F * 4)) * (i / N)))

 x(i) += 0.125 * (Math.Sin((2 * Math.PI * (F * 8)) * (i / N)))

 Next

114

Whilst this algorithm can produce the spectral analysis of signals required, it does so very inefficiently compared to

other methods. By definition each DFT sample is a sum of N products and there are N samples to compute, meaning

an upper limit of O(N2) calculations required to compute the spectra. The Fast Fourier Transform (FFT), a variation of

the DFT, requires an estimated O(Nlog2N) calculations to compute. For example, a DFT of N = 512 requires 262144

calculations to compute, an FFT of the same size requires 4608 calculations, a saving of a factor of 50.

Figure V.1.5

115

V.1.3 Fast Fourier Transform

In 1965 J.W. Cooley and John Tukey rediscovered the Fast Fourier Transform algorithm, a re-working of the DFT

which computes the transform much faster (Cooley and Tukey, 1965). Many variations of the FFT exist, but all

involve some kind of decimation; the separation of an input signal into two signal composed of even and odd

indexed samples respectively (Jackson, 1996, p.213):

𝑋(𝑘) = �𝑥(
𝑁−1

𝑛=0

𝑛)𝑊𝑘𝑛

= � 𝑥(𝑛)𝑊𝑘𝑛 +
𝑛 𝑒𝑣𝑒𝑛

� 𝑥(𝑛)𝑊𝑘𝑛

𝑛 𝑜𝑑𝑑

= � 𝑥(2𝑚)(𝑊2)𝑘𝑚 + 𝑊𝑘 � 𝑥(2𝑚 + 1)(𝑊2)𝑘𝑚

𝑁
2−1

𝑚=0

𝑁
2−1

𝑚=0

Each of these summations can be seen as an N/2 point DFT of the respective input, and the overall DFT can be

written as:

𝑋(𝑘) = 𝑋𝑒(𝑘) + 𝑊𝑘𝑋𝑜(𝑘)

Wk is a complex number known as a twiddle factor. A vital contributing factor to the speed of the algorithm is the

ability to pre-compute these twiddle factors and store them in memory, so that for the most part only real number

calculations need to be carried out. As for the DFT example above, 𝑋𝑒 and 𝑋𝑜 are periodic in k with period N/2, and

so the values above N/2 do not need to be calculated. The decimation is repeated until only 2 2-point DFTs need to

be computed. That is, each N/2 DFT is separated into 2 N/4 DFTS, each of which is separated into 2 N/8 DFTs etc., for

r stages where N = 2r. The process is demonstrated below with the decimation-in-time FFT on a DFT with N = 8.

Figure V.1.6

116

In order for the resulting DFT X to be correctly ordered, the input series must be in bit-reversed order:

Input index Binary Bit-reversed Result

0 000 000 0

1 100 001 4

2 010 010 2

3 110 011 6

4 001 100 1

5 101 101 5

6 011 110 3

7 111 111 7

The decimation-in-frequency FFT produces the opposite; a consecutively ordered input and bit-reversed output:

Figure V.1.7

The decimation process restricts the values of N which can be implemented because, as mentioned above, it must

satisfy the statement N = 2r so that when r is defined from N using r = log2N, r is an integer. The value of N dictates

the resolution of the resulting spectrogram and hence the detail in which the input signal can be analysed. Each FFT

amplitude, X(k), is known as a frequency bin. As the FFT algorithm results in the same number of bins as there

samples in the input signal, the spectrogram resolution is defined as:

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒

𝑁

The frequency bins are the amplitudes of component periodic waveforms at multiples of this resolution. For

example, an FFT where N = 29 = 512 carried out on a signal sampled at 44.1 kHz has a resolution of approximately 86

Hz, meaning that the lowest frequency component which can be measured is 86 Hz, and from there the values of the

117

frequency bins will correspond to the amplitudes of component frequencies at 172 Hz, 258 Hz, 344 Hz, etc., up to

22.016 kHz at N/2.

In order to experiment with the FFT algorithm and related concepts, a Visual Basic prototype was created. FFT was

implemented using the Math.Net external library (http://www.mathdotnet.com/), as the plug-in will utilise an

external library, but all other functions were designed and implemented from scratch. The following examples are

demonstrated using this prototype.

In order to analyse a piano recording, spectral analysis plug-in analyses the audio in batches of N samples, most

commonly 2048 or 4096, displaying a spectrogram plot for each batch. At 44.1 kHz, a spectrogram of 2048 samples is

displayed approximately every 46 ms. The batch is referred to as a window, and the process of windowing prepares

a window of samples before the FFT algorithm is applied to it, in order to reduce the effect spectral leakage. Spectral

leakage occurs because of the limitations of resolution presented by the discrete digital audio system; any frequency

component which does not align exactly with one of the FFT bins will be displayed spread over the two or three bins

either side of it:

Figure V.1.8

The above plot shows the spectrogram of a 1 kHz sine wave. The amplitude peak of the main beam is very clearly

present at 1 kHz, however the base of the peak “spreads out” at lower amplitudes, and the effect is amplified by the

logarithmic decibel scale. Side lobes can also been throughout the rest of the spectrum. Spectral leakage gives less

accurate spectrograms, hence why windowing is an important process.

Windowing is similar to a crossfade; an amplitude envelope is applied to the window of samples, reducing volume at

its beginning and end. There many different windowing envelopes used, and a brief description of the three most

common are described below:

Hann window:

𝑤(𝑛) = 0.5 �1 − cos �
2𝜋𝑛
𝑁 − 1

��

Figure V.1.9

118

Hamming window:

𝑤(𝑛) = 0.54 − 0.46 �1 − cos �
2𝜋𝑛
𝑁 − 1

��

Figure V.1.10

Cosine window:

𝑤(𝑛) = cos �
𝜋𝑛

𝑁 − 1
−
𝜋
2
� = sin �

𝜋𝑛
𝑁 − 1

�

Figure V.1.11

The same 1 kHz sine wave shown above is shown below which each window applied:

Hamming window:

Figure V.1.12a

119

Hann window:

Figure V.1.12b

Cosine window:

Figure V.1.12c

All three windows reduce the “spreading” effect at the base of the main beam and the amplitude of side lobes

throughout the rest of the spectrum.

120

V.2 Polynomial Regression

Curve fitting is a technique for modelling the relationship between two variables using a line of best fit. In linear

terms, independent variable x and dependant variable y are related through an equation of the form y = mx + c.

Figure V.2.1

Above is an example of curve fitting using the age of an oak tree and diameter at breast height (Huff, 1964). Using

Microsoft Excel’s trend line facility, a linear curve has been fitted to the data. The line has a gradient, m, of 0.1278

and y-intercept, c, of 1.2854, leading to the equation of y = 0.1278x + 1.2854.

The curve is derived using the process of regression, implemented with the least squares method, which minimizes

the sum of the squares of the errors between the actual and predicted data. Assume a set of observed data is

denoted xi, for i = 1,…,N. An estimate of the data is denoted ŝ i and is comprised of each observed sample weighted

by a coefficient, α:

ŝ𝑖 = ∝ 𝑥𝑖

The estimate, ŝ i, differs from the desired result, si, by an error, ε i:

𝜀𝑖 = s𝑖 − ŝ𝑖

Combining these two equations results in a simple linear estimation:

s𝑖 = ŝ𝑖 + 𝜀𝑖

y = 0.1278x + 1.2854

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120

Di
am

et
er

 (I
nc

he
s)

Age (Years)

Oak Tree Age vs. Diameter

121

s𝑖 = 𝛼𝑥𝑖 + 𝜀𝑖

A function, f(α), is defined as the sum of the squares of the error components:

𝑓(𝛼) = �𝜀𝑖2
𝑁

𝑖=1

= �(𝑠𝑖 − 𝛼𝑥𝑖)2
𝑁

𝑖=1

When this quadratic function is differentiated with respect to α and the result set to zero,

𝑑𝑓(𝛼)
𝑑𝛼

= �2(𝑠𝑖 − 𝛼𝑥𝑖)(−𝑥𝑖)
𝑁

𝑖=1

= 0

the parameter α is known as the least squares estimate and denoted 𝛼�:

𝛼� =
∑ 𝑠𝑖𝑥𝑖𝑁
𝑖=1
∑ 𝑥𝑖2𝑁
𝑖=1

(Giordano and Hsu, 1985)

This is the fundamental principle of least squares curve fitting, and is as much derivation of mathematics as will be

entered to in this paper because, as for the Fourier transform, its relevancy to the research does not equal its

complexity.

The least squares process can also be used to estimate non-linear relationships. Within the plug-in it is producing a

4th order polynomial of the expected format:

𝑦 = 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0

Software algorithms which carry out the process usually return the values of coefficients an,…,a0, where n is the

order of the polynomial. The purpose of non-linear least squares regression is to allow the use of non-linear curves

as lines of best fit. Below is the previously used oak tree example fitted with a second order polynomial, giving a

more accurate idea of the relationship trend between age and diameter. The curve, however, is only a model of the

relationship as it is obviously incorrect that a tree begins to shrink above 80 years old, but it does demonstrate the

non-linear properties of growth; a much faster rate of growth when the tree is young.

122

Figure V.2.2

To determine whether polynomial regression is a viable option for smoothing an FFT trace, a piano recording was

made and analysed in Cubase 5 using the 1/3 Octave Analyser section of the IXL Spectral Analyser, and data copied

by hand into into Microsoft Excel to be regressed. Traces were recorded at four beats of the same bar:

y = -0.0027x2 + 0.4086x - 3.5325

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120

Di
am

et
er

 (I
nc

he
s)

Age (Years)

Oak Tree Age vs. Diameter

123

-120.0

-110.0

-100.0

-90.0

-80.0

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

20 25 31 40 50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

63
00

80
00

10
00

0
12

50
0

16
00

0
20

00
0

Beat 1

-120.0

-110.0

-100.0

-90.0

-80.0

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

20 25 31 40 50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

63
00

80
00

10
00

0
12

50
0

16
00

0
20

00
0

Beat 2

-120.0

-110.0

-100.0

-90.0

-80.0

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

20 25 31 40 50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

63
00

80
00

10
00

0
12

50
0

16
00

0
20

00
0

Beat 3

-120.0

-110.0

-100.0

-90.0

-80.0

-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

20 25 31 40 50 63 80 10
0

12
5

16
0

20
0

25
0

31
5

40
0

50
0

63
0

80
0

10
00

12
50

16
00

20
00

25
00

31
50

40
00

50
00

63
00

80
00

10
00

0
12

50
0

16
00

0
20

00
0

Beat 4

Figure V.2.3

124

The regression very successfully smooths the FFT trace in the frequency domain. The videos* demonstrate that the

regression also smooths the FFT trace very successfully in the time domain. The regression also acts as an initial

stage of averaging by reducing the variance of the bins. As the parameter calculation algorithm will respond to the

regressed FFT trace, this will result in smoother, and hence less audible, changes in parameters. The regression also

produces a very clear “shape” in the trace. The shape of the trace can be used as a measure of the tonality of the

recording; average amplitudes of relevant spectral bands can be compared to an ideal and altered accordingly.

An example of the usefulness of regression to analyse tonality can be provided by using equalisation to artificially

replicate different tonalities and compare pre and post traces. Using the same four beats, the IXL Spectrum Analyser

was again used with Microsoft Excel to demonstrate this. The three spectral bands relevant to the plug-in were

manipulated using equalisation to simulate a piano recording with correct tonality by applying a high pass filter at

200 Hz, a 9 dB cut with a peaking filter at 500 Hz, and a 9 dB boost with another peaking filter at 4 kHz. Below are

four sets of graphs showing pre and post regressed FFT traces, one for each filter and one for all three filters applied

at once (see next pages). The plots show very clear differences in the audio pre and post EQ and hence give a useful

visual confirmation that the plugin is performing as it should be.

*The videos can be found on the DVD under /Thesis/Videos/Regression

149

-120.0

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 1 - High Pass Filter

Pre

Post

-120.0

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 2 - High Pass Filter

Pre

Post

-120.0

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 3 - High Pass Filter

Pre

Post

-120.0

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 4 - High Pass Filter

Pre

Post

Figure V.2.4

150

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 1 - Low Mid Peaking Filter

Pre

Post

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 2 - Low Mid Peaking Filter

Pre

Post

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 3 - Low Mid Peaking Filter

Pre

Post

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 4 - Low Mid Peaking Filter

Pre

Post

Figure V.2.5

151

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 1 - High Mid Peaking Filter

Pre

Post

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 2 - High Mid Peaking Filter

Pre

Post

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 3 - High Mid Peaking Filter

Pre

Post

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 4 - High Mid Peaking Filter

Pre

Post

Figure V.2.6

152

-120.0

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 1 - All Filters

Pre

Post

-120.0

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 2 - All Filters

Pre

Post

-120.0

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 3 - All Filters

Pre

Post

-120.0

-100.0

-80.0

-60.0

-40.0

-20.0

0.0
Beat 4 - All Filters

Pre

Post

Figure V.2.7

149

V.3

Source Code

150

V.3.1 Juce_vstAudioProcessor

PluginProcessor.h

#ifndef __wtypes_h__
#include <wtypes.h>
#endif

#ifndef __WINDEF_
#include <windef.h>
#endif

#ifndef __PLUGINPROCESSOR_H_641D2B40__
#define __PLUGINPROCESSOR_H_641D2B40__

// JUCE Includes
#include "../JuceLibraryCode/JuceHeader.h"
#include "../JuceLibraryCode/JucePluginCharacteristics.h"

// Object Inclues
#include <FFTALG/FFTALG.h>
#include <Polyfit/Polyfit.h>
#include <FBand/FBand.h>
#include <Bristow-Johnson/EQ.h>
#include <LogScales/LogScales.h>
#include <WriteToFile\WriteToFile.h>

// StringStream and File Output Includes
#include <Windows.h>
#include <tchar.h>
#include <string>
#include <stdio.h>
#include <sstream>

using namespace std;

//==

class Juce_vstAudioProcessor : public AudioProcessor

{
public:

 /*----------------------------------- JUCE Declarations ---------------------------------*/

 //==
 Juce_vstAudioProcessor();
 ~Juce_vstAudioProcessor();

 //==
 void prepareToPlay (double sampleRate, int samplesPerBlock);
 void releaseResources();

 void processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages);

 //==
 AudioProcessorEditor* createEditor();
 bool hasEditor() const;

 //==
 const String getName() const;

 int getNumParameters();

 float getParameter (int index);
 void setParameter (int index, float newValue);

151

 const String getParameterName (int index);
 const String getParameterText (int index);

 const String getInputChannelName (int channelIndex) const;
 const String getOutputChannelName (int channelIndex) const;
 bool isInputChannelStereoPair (int index) const;
 bool isOutputChannelStereoPair (int index) const;

 bool acceptsMidi() const;
 bool producesMidi() const;

 //==
 int getNumPrograms();
 int getCurrentProgram();
 void setCurrentProgram (int index);
 const String getProgramName (int index);
 void changeProgramName (int index, const String& newName);

 //==
 void getStateInformation (MemoryBlock& destData);
 void setStateInformation (const void* data, int sizeInBytes);

 /*--------------------------------- Constant Declarations -------------------------------*/

 static const int SR = 44100; // Sample Rate
 static const int N = 2048; // Logical FFT Size
 static const int FFTRES = 110; // FFT Output Resolution
 static const int LOGBASE = 250; // FFT Output Logarithm Base

 /*----------------------------------- FFT Declarations ----------------------------------*/

 // FFT Objects
 FFTALG FFTpre;
 FFTALG FFTpost;

 // Circular Indexes
 int fftpre_index, fftpost_index;

 // FFT Output Pointers
 float *FFTpre_out, *FFTpost_out;

 /*------------------------------- Regression Declarations -------------------------------*/

 // Regression Objects
 Polyfit REGpre;
 Polyfit REGpost;

 // Output Pointers
 float *REGpre_out, *REGpost_out;

 // X Co-ordinates Pointers
 float *fftX;

 /*-------------------------------- Parameter Declarations -------------------------------*/

 // Parameter Pointer - 3 Frequency Bands
 float F[3]; // Cutoff Frequency
 float G[3]; // Gain
 float Q[3]; // Q
 float T[3]; // Threshold
 float S[3]; // Slope
 float A[3]; // Attack
 float R[3]; // Release
 bool EQio[3]; // EQ Enable
 bool DRCio[3]; // DRC Enable

152

 // Input Gain
 float in_gain;

 // Index Values for Parameters
 enum Param
 {
 _F=0,
 _G,
 _Q,
 _T,
 _S,
 _A,
 _R,
 _EQio,
 _DRCio,
 _St, // FBand Analysis Start
 _En, // FBand Analysis End

 _rms = 37,
 _rec, // Record Data
 _reg_x_print, // Print Data Headers
 _in_gain // Input Gain
 };

 // Parameter Pointer for Editor
 float *ediParams;

 // FBand Objects
 FBand LS, MP, HP;

 // Band Identifiers
 enum Band
 {
 _LS=0,
 _MP,
 _HP
 };

 // FBand Initialisation Test
 bool Init;

 // RMS Containers
 float rms, rms_db;
 float rms_post, rms_post_db;

 /*---------------------------- Performance Timer Declarations ---------------------------*/

 // StringStream Object
 stringstream ss;

 // Clock Count Containers - _s = Start, _e = End
 __int64 init_s, init_e, pre_s, pre_e, eff_s, eff_e, post_s, post_e;

 // Clock Frequency Container
 __int64 tim_res;

 // Time Calculation Function
 int timeSpan(__int64 s, __int64 e);
 float span;

 // Time Taken Containers
 int init, pre, eff, post, tot;

 // Buffer Counter
 int numBuffers;

153

 /*------------------------------ Miscellaneous Declarations -----------------------------*/

 // Buffer Length
 int numSamples;

 // Stereo Sample Pointers
 float *Lx, *Rx;

 // EQ Series Connection Pointer
 float *out;

 // Function called by Editor to receive parameters for GUI display
 float* getParams(int i);

 // Record Data Test
 bool rec;

 // Print Data Headers Test
 bool reg_x_print;

private:
 //==
 JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (Juce_vstAudioProcessor);
};

#endif // __PLUGINPROCESSOR_H_641D2B40__

PluginProcessor.cpp

#include "PluginProcessor.h"
#include "PluginEditor.h"

// WriteToFile Declaration and Initialisation - need to be global to be accesible in processBlock
WriteToFile reg_coeffs("D:\\Libraries\\MSc\\Project\\Testing\\Data Outputs\\reg_coeffs.csv");
WriteToFile dynamics("D:\\Libraries\\MSc\\Project\\Testing\\Data Outputs\\dynamics.csv");
WriteToFile parameters("D:\\Libraries\\MSc\\Project\\Testing\\Data Outputs\\parameters.csv");
WriteToFile performance("D:\\Libraries\\MSc\\Project\\Testing\\Data Outputs\\performance.csv");

Juce_vstAudioProcessor::Juce_vstAudioProcessor()
{
 /*--------------------------------- FFT Initialisation ------------------------------------*/

 // FFT object
 FFTpre.Init(N, FFTRES, float(LOGBASE));
 FFTpost.Init(N, FFTRES, float(LOGBASE));

 // Circular Indexes
 fftpre_index = 0;
 fftpost_index = 0;

 // FFT Output Pointers
 FFTpre_out = new float[FFTRES];
 FFTpost_out = new float[FFTRES];

 // Set FFT outputs to 0
 for (int i=0; i<FFTRES; i++)
 {
 FFTpre_out[i] = 0.0;
 FFTpost_out[i] = 0.0;
 }

 /*------------------------------- Regression Initialisation --------------------------------
*/

154

 // Regression Objects
 REGpre.Init(4);
 REGpost.Init(4);

 // Output Pointers
 REGpre_out = new float[FFTRES];
 REGpost_out = new float[FFTRES];

 /*------------------------------- Plotting Initialisation ---------------------------------*/

 // Plotting Object - X Co-ordinates Pointer for Regression
 Plot fft;
 fft.Init(SR, N, FFTRES, LOGBASE, 30, 10, 760, 264);
 fftX = fft.X;

 /*------------------------------ Parameter Initialisation ---------------------------------*/

 F[_LS] = 20.0;
 G[_LS] = -24.0;
 Q[_LS] = 1.0;
 T[_LS] = -45.0;
 S[_LS] = 50.0;
 A[_LS] = 20.0;
 R[_LS] = 200.0;
 EQio[_LS] = false;
 DRCio[_LS] = false;

 F[_MP] = 500.0;
 G[_MP] = -6.0;
 Q[_MP] = 0.5;
 T[_MP] = -40.0;
 S[_MP] = 50.0;
 A[_MP] = 20.0;
 R[_MP] = 200.0;
 EQio[_MP] = false;
 DRCio[_MP] = false;

 F[_HP] = 5000;
 G[_HP] = 8.0;
 Q[_HP] = 0.5;
 T[_HP] = -40.0;
 S[_HP] = 40.0;
 A[_HP] = 10.0;
 R[_HP] = 80.0;
 EQio[_HP] = false;
 DRCio[_HP] = false;

 // Input Gain
 in_gain = 1.0;

 // FBand Initialisation Test
 Init = false;

 // Parameter Pointer for Editor
 ediParams = new float[12];
 for (int i=0; i<12; i++)
 ediParams[i] = 0.0;

 /*-------------------------- Performance Testing Initialisation ---------------------------*/

 // Clock Frequency
 QueryPerformanceFrequency((LARGE_INTEGER *)&tim_res);

 // Clock Containers
 init_s = 0;
 init_e = 0;

155

 pre_s = 0;
 pre_e = 0;
 eff_s = 0;
 eff_e = 0;
 post_s = 0;
 post_e = 0;

 // Total Time Taken
 tot = 0;

 // Buffer Counter
 numBuffers = 0;

 /*----------------------------- Miscellaneous Initialisation ------------------------------*/

 // Record Data Test
 rec = false;

 // Print Data Headers Test
 reg_x_print = false;

}

Juce_vstAudioProcessor::~Juce_vstAudioProcessor()
{
}

//==

float Juce_vstAudioProcessor::getParameter (int index)
{
 // Called by Editor to retrieve individual parameter value stored in Processor

 // 3 frequency bands, 12 parameters available per band
 // Index values : 0-11, 12-23, 24-36

 if (index <= 36)
 {
 // Sent index value used to calculate:
 // i : frequency band (0-2)
 // index : parameter index (0-11)

 int i = int(index / 12);
 index -= i * 12;

 // new index value used to retrieve paramter from i'th pointer position

 switch (index)
 {
 case _F: return F[i]; break;
 case _G: return G[i]; break;
 case _Q: return Q[i]; break;
 case _T: return T[i]; break;
 case _S: return S[i]; break;
 case _A: return A[i]; break;
 case _R: return R[i]; break;
 case _EQio: return EQio[i];
 break;
 case _DRCio: return DRCio[i]; break;

 case _St:
 switch (i)
 {
 case 0: return LS.fft_frequency; break;
 case 1: return MP.fft_frequency; break;

156

 case 2: return HP.fft_frequency; break;
 }

 break;
 case _En:
 switch (i)
 {
 case 0: return LS.fft_width; break;
 case 1: return MP.fft_width; break;
 case 2: return HP.fft_width; break;
 }

 break;
 default: break;
 }
 }
 else
 {
 // Other Parameters

 switch (index)
 {
 case _rms: return rms; break;
 }
 }
}

float* Juce_vstAudioProcessor::getParams(int i)
{
 // Called by Editor to retrieve parameters for GUI display
 // Receieves band identifier and populates ediParams pointer accordingly

 // FBand Parameters

 switch (i)
 {
 case _LS:
 ediParams[0] = 20*log10(LS.Comp.level);
 ediParams[1] = LS.F;
 ediParams[2] = LS.G;
 ediParams[3] = LS.Q;
 ediParams[4] = LS.fft_frequency;
 ediParams[5] = LS.fft_width;
 break;
 case _MP:
 ediParams[0] = 20*log10(MP.Comp.level);
 ediParams[1] = MP.F;
 ediParams[2] = MP.G;
 ediParams[3] = MP.Q;
 ediParams[4] = MP.fft_frequency;
 ediParams[5] = MP.fft_width;
 break;
 case _HP:
 ediParams[0] = 20*log10(HP.Comp.level);
 ediParams[1] = HP.F;
 ediParams[2] = HP.G;
 ediParams[3] = HP.Q;
 ediParams[4] = HP.fft_frequency;
 ediParams[5] = HP.fft_width;
 break;
 }

 // Other Parameters
 ediParams[6] = init;
 ediParams[7] = pre;
 ediParams[8] = eff;

157

 ediParams[9] = post;
 ediParams[10] = tot;
 ediParams[11] = rms_db;

 return ediParams;
}

void Juce_vstAudioProcessor::setParameter (int index, float newValue)
{
 // Called by Editor to send new parameter values from GUI to Processor
 // See getParameter()

 if (index <= 36)
 {
 int i = int(index / 12);
 index -= i * 12;

 switch (index)
 {
 case _F: F[i] = newValue;
 break;
 case _G: G[i] = newValue;
 break;
 case _Q: Q[i] = newValue;
 break;
 case _T: T[i] = newValue;
 break;
 case _S: S[i] = newValue;
 break;
 case _A: A[i] = newValue;
 break;
 case _R: R[i] = newValue;
 break;
 case _EQio: EQio[i] = (newValue == 1) ? true : false; break;
 case _DRCio: DRCio[i] = (newValue == 1) ? true : false; break;

 case _St:
 switch (i)
 {
 case 0: LS.fft_frequency = int(newValue); break;
 case 1: MP.fft_frequency = int(newValue); break;
 case 2: HP.fft_frequency = int(newValue); break;
 }

 break;
 case _En:
 switch (i)
 {
 case 0: LS.fft_width = int(newValue); break;
 case 1: MP.fft_width = int(newValue); break;
 case 2: HP.fft_width = int(newValue); break;
 }

 break;

 default: break;
 }

 // Send new parameters to Compression / EQ Objects if necessary

 if (index != _EQio && index != _DRCio)
 {
 switch (i)
 {
 case _LS:

158

 if (EQio[i] && DRCio[i])
 LS.Comp.setParameters(T[i], S[i], A[i], R[i]);
 else if (EQio[i] && !DRCio[i])
 LS.EQ.setCoefficients(F[i], G[i], Q[i]);
 break;
 case _MP:
 if (EQio[i] && DRCio[i])
 MP.Comp.setParameters(T[i], S[i], A[i], R[i]);
 else if (EQio[i] && !DRCio[i])
 MP.EQ.setCoefficients(F[i], G[i], Q[i]);
 break;
 case _HP:
 if (EQio[i] && DRCio[i])
 HP.Comp.setParameters(T[i], S[i], A[i], R[i]);
 else if (EQio[i] && !DRCio[i])
 HP.EQ.setCoefficients(F[i], G[i], Q[i]);
 break;
 }
 }
 }
 else
 {
 switch (index)
 {
 case _rec: rec = (newValue == 1) ? true : false; break;
 case _reg_x_print: reg_x_print = true; break;
 case _in_gain: in_gain = pow(10.0,newValue/20.0); break;
 }
 }
}

void Juce_vstAudioProcessor::prepareToPlay (double sampleRate, int samplesPerBlock)
{

}

void Juce_vstAudioProcessor::releaseResources()
{

}

void Juce_vstAudioProcessor::processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages)
{

 // Performance Timer - Initialisation Start
 QueryPerformanceCounter((LARGE_INTEGER *)&init_s);

 // Get buffer length
 numSamples = buffer.getNumSamples();

 // FBand Initalisation if necessary

 if (!Init)
 {
 // FBand Object - (buffer size, sample rate, compression type, analysis start pointer
index,
 // analysis width in pointer indeces)
 LS.Init(numSamples, SR, EQ::LowShelf, 0, 1, 3);
 // FBand Parameters - (frequency base, frequency ratio, gain base, gain ratio)
 LS.setParams(20.0, 5.0, -24.0, 1.0);
 // EQ Parameters
 LS.EQ.setCoefficients(F[_LS], G[_LS], Q[_LS]);
 // Comression Parameters
 LS.Comp.setParameters(T[_LS], S[_LS], A[_LS], R[_LS]);

159

 MP.Init(numSamples, SR, EQ::Parametric, 0, 10, 9);
 MP.setParams(500.0, 0.0, 0.0, -1.0);
 MP.EQ.setCoefficients(F[_MP], G[_MP], Q[_MP]);
 MP.Comp.setParameters(T[_MP], S[_MP], A[_MP], R[_MP]);

 HP.Init(numSamples, SR, EQ::Parametric, 0, 75, 25);
 HP.setParams(5000.0, 0.0, 6.0, -1.0);
 HP.EQ.setCoefficients(F[_HP], G[_HP], Q[_HP]);
 HP.Comp.setParameters(T[_HP], S[_HP], A[_HP], R[_HP]);

 Init = true;
 }

 /*--------------------------------- Initialisation Section --------------------------------*/

 // Get samples from buffer

 Lx = buffer.getSampleData(0);
 Rx = buffer.getSampleData(1);

 // Calculate RMS

 float total = 0.0;

 for (int i=0; i<numSamples; i++)
 {
 Lx[i] *= in_gain;
 Rx[i] *= in_gain;
 total += (Lx[i] * Lx[i]) + (Rx[i] * Rx[i]);
 }

 total /= numSamples;

 rms = sqrt(total);

 rms_db = 20 * log10(rms);

 // Reset circular indeces if needed (failsafe)

 if (fftpre_index == N)
 fftpre_index = 0;

 if (fftpost_index == N)
 fftpost_index = 0;

 // Performance Timer - Initialisation End
 QueryPerformanceCounter((LARGE_INTEGER *)&init_e);
 // Performance Timer - Pre-Effect Analysis Start
 QueryPerformanceCounter((LARGE_INTEGER *)&pre_s);

 /*------------------------------ Pre-Effect Analysis Section ------------------------------*/

 // Loop through samples

 for (int i=0; i<numSamples; i++)
 {
 // If circular index has reached logical FFT size, do FFT and Regression. If not, add
 // current sample to FFT input pointer

 if (fftpre_index >= N)
 {
 // Window samples for FFT
 FFTpre.Window(wintype::hann);

 // Do FFT and return to output pointer
 FFTpre_out = FFTpre.Do();

160

 // Do regression and return to output pointer
 REGpre_out = REGpre.Solve(fftX, FFTpre_out, FFTRES);

 // reset circular index and exit sample loop
 fftpre_index = 0;
 break;
 }
 else
 {
 // Add current sample to FFT input pointer
 FFTpre.Lc[fftpre_index] = Lx[i];
 FFTpre.Rc[fftpre_index] = Rx[i];

 // Increment circular index
 fftpre_index++;
 }
 }

 // Performance Timer - Pre-Effect Analysis Start
 QueryPerformanceCounter((LARGE_INTEGER *)&pre_e);
 // Performance Timer - Effects Processing Start
 QueryPerformanceCounter((LARGE_INTEGER *)&eff_s);

 /*------------------------------- Effects Processing Section ------------------------------*/

 // Loop through frequency bands

 for (int i=0; i<3; i++)
 {
 // Check if effects enabled

 if (EQio[i] || DRCio[i])
 {
 switch (i)
 {
 // Split channel input, interleaved output
 case _LS:
 out = LS.Do(Lx, Rx, REGpre_out, EQio[i], DRCio[i]);
 break;
 case _MP:
 out = MP.Do(Lx, Rx, REGpre_out, EQio[i], DRCio[i]);
 break;
 case _HP:
 out = HP.Do(Lx, Rx, REGpre_out, EQio[i], DRCio[i]);
 break;
 }

 // Transfer interleaved effected samples back into split channel pointers -
series
 // connection
 int j = 0;
 for (int k=0; k<numSamples*2; k+=2)
 {
 Lx[j] = out[k];
 Rx[j] = out[k+1];
 j++;
 }
 }
 }

 // Performance Timer - Effects Processing End
 QueryPerformanceCounter((LARGE_INTEGER *)&eff_e);
 // Performance Timer - Post-Effect Analysis Start
 QueryPerformanceCounter((LARGE_INTEGER *)&post_s);

161

 /*------------------------------ Post-Effect Analysis Section -----------------------------*/

 // Same as Pre-Effect

 for (int i=0; i<numSamples; i++)
 {
 if (fftpost_index >= N)
 {
 FFTpost.Window(wintype::hann);
 FFTpost_out = FFTpost.Do();

 REGpost_out = REGpost.Solve(fftX, FFTpost_out, FFTRES);

 fftpost_index = 0;

 break;
 }
 else
 {
 FFTpost.Lc[fftpost_index] = Lx[i];
 FFTpost.Rc[fftpost_index] = Rx[i];

 fftpost_index++;
 }
 }

 // Performance Timer - Post-Effect Analysis End
 QueryPerformanceCounter((LARGE_INTEGER *)&post_e);

 /*-------------------------------------- Output Section -----------------------------------*/

 // RMS Calculation

 total = 0.0;

 for (int i=0; i<numSamples; i++)
 {
 total += (Lx[i] * Lx[i]) + (Rx[i] * Rx[i]);
 }

 total /= numSamples;

 rms_post = sqrt(total);

 rms_post_db = 20 * log10(rms_post);

 // Copy effected samples into buffer
 buffer.copyFrom(0, 0, Lx, numSamples);
 buffer.copyFrom(1, 0, Rx, numSamples);

 // If more outputs than inputs, clear unused input buffers in case of garbage

 for (int i = getNumInputChannels(); i < getNumOutputChannels(); ++i)
 {
 buffer.clear (i, 0, buffer.getNumSamples());
 }

 /*------------------------------- Performance Timer Section -------------------------------*/

 // Increment buffer counter
 numBuffers++;

 // Calculation of number of buffers in period of output frequency

162

 float buffer_s = float(int(float(numSamples) / float(SR) * 1000)) / 1000.0;
 int _5Hz = int((1.0/5.0)/buffer_s);
 int _25Hz = int((1.0/25.0)/buffer_s);
 int _1Hz = int(1.0/buffer_s);

 // Check recording enabled

 if (rec)
 {
 // Print X values for regression curves at the start of each batch of data

 if (reg_x_print)
 {
 // Empty stringstream
 ss.str("");
 ss << "x,";

 float fhz;

 // Loop through FFT bins

 for (int i=0; i<FFTRES; i++)
 {
 // Converting the array indexes to Hz
 fhz = FFTpre.log.index[i] * (float(SR) / float(N));

 // Add current value to stringstream with ',' for CSV formatting
 ss << fhz << ",";
 }

 // WriteToFile Object writes stringstream to file
 reg_coeffs.Write(ss.str());

 reg_x_print = false;
 }

// Modulus of numBuffers value with period of desired output frequency in buffers
controls

 // output frequency

 // Regression Plot @ 10Hz

 if (numBuffers % _5Hz == 0)
 {
 ss.str("");
 ss << numBuffers << ",";
 float yval;

 for (int i=0; i<FFTRES; i++)
 {

// Inverting the dB amplitudes to allow them to be plotted on
// logarithmic axes - Excel can't manage negative values

 yval = 200 - abs(REGpost.curve[i]);
 ss << yval << ",";
 }

 reg_coeffs.Write(ss.str());
 }

 // RMS + FFT Band @ 25Hz;

 if (numBuffers % _25Hz == 0)
 {
 // Calculating individual frequency band output levels

 float ls = 0, mp = 0, hp = 0;

163

 for (int i=LS.fft_frequency; i<LS.fft_frequency+LS.fft_width; i++)
 ls += FFTpost.out[i];

 ls /= LS.fft_width;
 ls = (0.8 * ls) + (0.2 * rms);

 for (int i=MP.fft_frequency; i<MP.fft_frequency+MP.fft_width; i++)
 mp += FFTpost.out[i];

 mp /= MP.fft_width;
 mp = (0.8 * mp) + (0.2 * rms);

 for (int i=HP.fft_frequency; i<HP.fft_frequency+HP.fft_width; i++)
 hp += FFTpost.out[i];

 hp /= HP.fft_width;
 hp = (0.8 * hp) + (0.2 * rms);

 ss.str("");
 ss << numBuffers;
 ss << ",";

 ss << rms_post_db;
 ss << ",";
 ss << ls;
 ss << ",";
 ss << mp;
 ss << ",";
 ss << hp;

 dynamics.Write(ss.str());
 }

 // Parameters @ 25Hz;

 if (numBuffers % _25Hz == 0)
 {
 ss.str("");
 ss << numBuffers;
 ss << ",";

 ss << LS.F;;
 ss << ",";
 ss << LS.G;
 ss << ",";
 ss << LS.Q;
 ss << ",";
 ss << MP.F;;
 ss << ",";
 ss << MP.G;
 ss << ",";
 ss << MP.Q;
 ss << ",";
 ss << HP.F;;
 ss << ",";
 ss << HP.G;
 ss << ",";
 ss << HP.Q;
 ss << ",";

 parameters.Write(ss.str());
 }
 }

 // Performance Timers @ 1Hz + RESET

164

 if (numBuffers % _1Hz == 0)
 {
 // Calculate time span using clock values
 init = timeSpan(init_s, init_e);
 pre = timeSpan(pre_s, pre_e);
 eff = timeSpan(eff_s, eff_e);
 post = timeSpan(post_s, post_e);

 tot = init + pre + eff + post;

 if (rec)
 {
 ss.str("");
 ss << init << "," << pre << "," << eff << "," << post << "," << tot;

 performance.Write(ss.str());
 }
 }

}

int Juce_vstAudioProcessor::timeSpan(__int64 s, __int64 e)
{
 span = e - s;
 span /= tim_res;
 span *= 1e6;
 s = 0;
 e = 0;
 return int(span);
}

//====================================== JUCE Functions =====================================//

bool Juce_vstAudioProcessor::hasEditor() const
{
 return true; // (change this to false if you choose to not supply an editor)
}

AudioProcessorEditor* Juce_vstAudioProcessor::createEditor()
{
 return new Juce_vstAudioProcessorEditor (this);
}

//==
void Juce_vstAudioProcessor::getStateInformation (MemoryBlock& destData)
{
 // You should use this method to store your parameters in the memory block.
 // You could do that either as raw data, or use the XML or ValueTree classes
 // as intermediaries to make it easy to save and load complex data.
}

void Juce_vstAudioProcessor::setStateInformation (const void* data, int sizeInBytes)
{
 // You should use this method to restore your parameters from this memory block,
 // whose contents will have been created by the getStateInformation() call.
}

//==
// This creates new instances of the plugin..
AudioProcessor* JUCE_CALLTYPE createPluginFilter()
{
 return new Juce_vstAudioProcessor();
}

const String Juce_vstAudioProcessor::getName() const

165

{
 return JucePlugin_Name;
}

int Juce_vstAudioProcessor::getNumParameters()
{
 return 0;
}

const String Juce_vstAudioProcessor::getParameterName (int index)
{
 return String::empty;
}

const String Juce_vstAudioProcessor::getParameterText (int index)
{
 return String::empty;
}

const String Juce_vstAudioProcessor::getInputChannelName (int channelIndex) const
{
 return String (channelIndex + 1);
}

const String Juce_vstAudioProcessor::getOutputChannelName (int channelIndex) const
{
 return String (channelIndex + 1);
}

bool Juce_vstAudioProcessor::isInputChannelStereoPair (int index) const
{
 return true;
}

bool Juce_vstAudioProcessor::isOutputChannelStereoPair (int index) const
{
 return true;
}

bool Juce_vstAudioProcessor::acceptsMidi() const
{
#if JucePlugin_WantsMidiInput
 return true;
#else
 return false;
#endif
}

bool Juce_vstAudioProcessor::producesMidi() const
{
#if JucePlugin_ProducesMidiOutput
 return true;
#else
 return false;
#endif
}

int Juce_vstAudioProcessor::getNumPrograms()
{
 return 0;
}

int Juce_vstAudioProcessor::getCurrentProgram()
{
 return 0;
}

166

void Juce_vstAudioProcessor::setCurrentProgram (int index)
{
}

const String Juce_vstAudioProcessor::getProgramName (int index)
{
 return String::empty;
}

void Juce_vstAudioProcessor::changeProgramName (int index, const String& newName)
{
}

167

V.3.2 FFTALG

FFTALG.h

// ALGLIB Include
#include <fasttransforms.h>
// Object Include
#include <LogScales/LogScales.h>

#ifndef __mbf_fftalg__
#define __mbf_fftalg__

using namespace alglib;

class FFTALG
{
public:

 // Initialisation Function
 void Init(int _N, int _L, float log_base);
 // FFT Function
 float* Do();
 // Convert to dB Function
 float dB(float in);
 // Magnitude Function
 float c2r(float c, float r);
 // Windowing Function
 void Window(int type);
 // Sinc Function
 float sinc(float x);

 // FFT Logical Size, Output Size
 int N, L;

 // ALGLIB Real Input
 real_1d_array in;
 //ALGLIB Complex Output
 complex_1d_array X;

 // Sample and Output Pointers
 float *Lc, *Rc;
 float *out;

 // LogScales Object
 LogScales log;

 // PI
 double pi;

 // Windowing Coefficient
 float a;
};

// Identifiers for window type

class wintype
{
public:
 enum
 {
 none = 0,
 hann,
 hamming,
 tukey,
 cosine,
 lanczos

168

 };
};

#endif;

FFTALG.cpp

#include <FFTALG/FFTALG.h>
#include <math.h>

void FFTALG::Init(int _N, int _L, float LOGBASE)
{
 // Copy FFT logical and output sizes to local variables
 N = _N;
 L = _L;

 // Set size of ALGLIB inputs and sample pointers
 in.setlength(N);
 X.setlength(N);

 Lc = new float[N];
 Rc = new float[N];

 // Define PI to avoid expensive pi() calls
 pi = 3.1415926535897932384626433832795;

 // Windowing Coefficient
 a = 0.5;

 // Generate logarithmic index
 log.Do(N, L, LOGBASE);
}

float* FFTALG::Do()
{
 // Populate ALGLIB inputs from input pointers

 for (int i=0; i<N; i++)
 {
 in[i] = (Lc[i] + Rc[i]) / 2;
 }

 // Do ALGLIG FFT
 fftr1d(in, X);

 // Empty output pointer
 out = new float[L];

 // Populate output pointer with converted values on logarithmic scale
 for(int i=0; i<L; i++)
 {
 out[i] = dB(c2r(float(X[log.index[i]].x), float(X[log.index[i]].y)));
 }

 return out;
}

float FFTALG::dB(float in)
{
 // Convert FFT bin amplitude to Decibels
 return float(20*log10(2 * in / float(N)));
}

float FFTALG::c2r(float c, float r)
{

169

 // Caluclate magnitude of complex number
 return float(sqrt((c*c) + (r*r)));
}

/*-- Windowing --*/

void FFTALG::Window(int type)
{
 // Sample coefficient to apply window
 float multi = 0;

 if (type != wintype::none)
 {
 // Loop through samples calculating relevant coefficient

 for (int i=0; i<N; i++)
 {
 switch (type)
 {
 case wintype::hann:
 multi = float(0.5 * (1 - cos((2 * pi * i) / (N - 1))));
 break;

 case wintype::hamming:
 multi = float(0.54 - (0.46 * cos((2 * pi * i) / (N - 1))));
 break;

 case wintype::tukey:
 if ((0 <= i) & (i <= (a*N)/2))
 multi = float(0.5* (1 + cos(pi * ((2*i)/(a*N)) - 1)));
 if ((N*(1-(a/2)) <= i) & (i <= N))
 multi = float(0.5* (1 + cos(pi * (((2*i)/(a*N)) - (2/a) + 1))));
 break;

 case wintype::cosine:
 multi = float(sin((pi * i) / (N - 1)));
 break;

 case wintype::lanczos:
 multi = float(sinc((float(2 * i)/float(N - 1)) - 1));
 break;
 }

 // Apply coefficient to current sample
 Lc[i] *= multi;
 Rc[i] *= multi;
 }
 }
}

float FFTALG::sinc(float x)
{
 // Sinc function
 return float(sin(pi * x) / (pi * x));
}

170

V.3.3 LogScales

LogScales.h

#ifndef __mbf_log__
#define __mbf_log__

class LogScales
{

public:
 // Main Function
 void Do(int N, int L, float LOGBASE);

 // Ratio of logical size to output size
 int inc;
 // Index values pointer
 int *index;
 // Intermediate variable
 float x;
};

#endif

LogScales.h

#include "LogScales.h"
#include <math.h>

void LogScales::Do(int N, int L, float LOGBASE)
{
 // Usable FFT size - conjugate symmetry
 int N21 = int(float(N)/2 - 1);

 // Increment required to loop through N21 samples in L steps
 inc = N21 / L;

 // Define pointer
 index = new int[L];

 int j = 0;

 // Populate pointer

 for(int i=0; i<N21; i+=inc)
 {
 // logb(x) = loga(x) / loga(b)
 x = (1 - (float(i) / float(N21))) * (LOGBASE - 1) + 1;
 index[j] = int((1 - (log10(x) / log10(LOGBASE))) * (float(N21)));
 j++;
 if(j >= L)
 {
 break;
 }
 }
}

171

V.3.4 Polyfit

Polyfit.h
// ALGLIB Inclues
#include <ap.h>
#include <interpolation.h>

#ifndef __mbf_polyfit__
#define __mbf_polyfit__

using namespace alglib;

class Polyfit
{
public:
 // Initialisation Function
 void Init(int degree);
 // Regression Function
 float* Solve(float *_x, float *_y, int L);

 // ALGLIB Cartesian Inputs
 real_1d_array x;
 real_1d_array y;

 // ALGLIB Polynomial Degree
 ae_int_t m;
 // ALGLIB Error Reporting
 ae_int_t info;
 // ALGLIB Goodness of Fit Report
 polynomialfitreport rep;
 // ALGLIB Barycentric Polynomial
 barycentricinterpolant p;
 // ALGLIB Polynomial Coefficients
 real_1d_array polyco;

 // Output Pointer
 float *curve;
};

#endif

Polyfit.cpp

#include <Polyfit\Polyfit.h>
#include <math.h>

void Polyfit::Init(int degree)
{
 m = degree + 1;
}

float* Polyfit::Solve(float *_x, float *_y, int L)
{
 // Set ALGLIB input sizes
 x.setlength(L);
 y.setlength(L);

 // Transfer Cartesian co-ordinates into ALGLIB inputs
 for (int i=0; i<L; i++)
 {
 x[i] = _x[i];
 y[i] = _y[i];
 }

172

 // Do Regression
 polynomialfit(x, y, m, info, p, rep);

 // Convert barycentric polynomial to coefficients
 polynomialbar2pow(p, polyco);

 // Define output pointer
 curve = new float[L];

 // Populate output pointer with Y values of regression plot
 for (int i=0; i<L; i++)
 {
 curve[i] = 0.0;

 for (int j=0; j<m; j++)
 {
 curve[i] += float(polyco[j] * pow(x[i], j));
 }
 }

 return curve;
}

173

V.3.5 EQ

EQ.h

#ifndef __mbf_eq__
#define __mbf_eq__

class EQ
{

public:
 // Initialisation Function
 void Init(int filterType, int _SR);
 // Coefficient Calculation Function
 void setCoefficients(float F, float G, float Q);
 // EQ Function
 float Do(float in, int channel);

 // Filter Type Identifiers
 enum
 {
 LowShelf=0,
 Parametric,
 HighShelf
 };

 // Stereo Channel Identifiers
 enum
 {
 L=0,
 R
 };

 // Local Filter Type Identifier
 int filterType;
 // Sample Rate
 int SR;
 // Sample Delay
 int n;
 // Delayed Sample Pointers
 float **x, **y;

 // Intermediate Variables
 float A, w0, cosw0, sinw0, alpha, sq;
 // EQ Coefficients
 float b0, b1, b2, a0, a1, a2;

};

#endif

EQ.cpp

#include <Bristow-Johnson/EQ.h>
#include <math.h>

double pi = 3.1415926535897932384626433832795;

void EQ::Init(int _filterType, int _SR)
{
 // Copy filter type and sample rate to local variables
 filterType = _filterType;
 SR = _SR;

 // Maximum sample delay
 n = 2;

174

 // Define delayed sample pointers - 3 stereo samples - and set to 0

 x = new float*[3];
 y = new float*[3];

 for (int i=0; i<3; i++)
 {
 x[i] = new float[2];
 y[i] = new float[2];

 for (int j=0; j<2; j++)
 {
 x[i][j] = 0.0;
 y[i][j] = 0.0;
 }
 }
}

void EQ::setCoefficients(float F, float G, float Q)
{
 // Calculate intermediate variables

 A = pow(10, G/40);

 w0 = float(2 * pi * F / SR);

 cosw0 = cos(w0);
 sinw0 = sin(w0);

 if(filterType == Parametric)
 alpha = sinw0 / (2 * Q);
 else
 alpha = sinw0/2 * sqrt((A + 1/A)*(1/Q - 1) + 2);

 sq = 2*sqrt(A)*alpha;

 // Calculate EQ coefficients for chosen filter type

 switch (filterType)
 {
 case LowShelf:

 b0 = A*((A+1) - (A-1)*cosw0 + sq);
 b1 = 2*A*((A-1) - (A+1)*cosw0);
 b2 = A*((A+1) - (A-1)*cosw0 - sq);
 a0 = (A+1) + (A-1)*cosw0 + sq ;
 a1 = -2*((A-1) + (A+1)*cosw0);
 a2 = (A+1) + (A-1)*cosw0 - sq ;

 break;

 case HighShelf:

 b0 = A*((A+1) + (A-1)*cosw0 + sq);
 b1 = -2*A*((A-1) + (A+1)*cosw0);
 b2 = A*((A+1) + (A-1)*cosw0 - sq);
 a0 = (A+1) - (A-1)*cosw0 + sq ;
 a1 = 2*((A-1) - (A+1)*cosw0);
 a2 = (A+1) - (A-1)*cosw0 - sq ;

 break;

 case Parametric:

 b0 = 1 + alpha*A;

175

 b1 = -2 * cosw0 ;
 b2 = 1 - alpha*A;
 a0 = 1 + alpha/A;
 a1 = -2 * cosw0 ;
 a2 = 1 - alpha/A;

 break;
 }
}

float EQ::Do(float in, int channel)
{
 // Copy latest input sample to delayed samles pointer
 x[n][channel] = in;

 // Calculate latest output sample
 y[n][channel] = (b0/a0)*x[n][channel] + (b1/a0)*x[n-1][channel] + (b2/a0)*x[n-2][channel]
 - (a1/a0)*y[n-1][channel] -
(a2/a0)*y[n-2][channel];

 // Shift samples through delayed samples pointer
 for (int i=1; i<=n; i++)
 {
 x[i-1][channel] = x[i][channel];
 y[i-1][channel] = y[i][channel];
 }

 return y[n][channel];
}

176

V.3.6 Compression

Compression.h

#include <math.h>

class Compression
{
public:
 // Initalisation Function
 void Init(int _type, int _size, int _SR);
 // Parameters Function
 void setParameters(float thold, float slope, float att, float rel);
 // Audio Input Function
 void setAudio(float *_L, float *_R, float _log_fft_band);
 // Compression Function
 float Do(int i);

 // Compression type identifiers
 enum
 {
 Compress=0,
 Compand
 };

 // Type, pointer size and sample rate
 int type, size, SR;

 // Sample pointers
 float *L, *R;

 // Lookahead time and RMS calculation size
 int look, width;
 // RMS running total and container
 float summ, rms;

 // Local logarithmic FFT band level
 float log_fft_band;
 //Linear FFT Band level
 float fft_band;

 // Blended RMS and FFT level
 float level;

 // Linear envelope level
 float env;
 // Logarithmic envelope level
 float log_env;
 // Envelope ballistics coefficent
 float theta;

 // Compression parameters
 float log_thold, slope, att, rel;
 // Gain reduction
 float GR;

};

Compression.cpp

#include <Compression/Compression.h>

void Compression::Init(int _type, int _size, int _SR)
{

177

 // Copy compression type, pointer size and sample rate to local variables
 type = _type;
 size = _size;
 SR = _SR;

 // Convert lookahead variables from ms to samples
 look = int(3 * (SR * 1e-3));
 width = int(1 * (SR * 1e-3));

 // Set envelope to 0
 env = 0.0;
}

void Compression::setAudio(float *_L, float *_R, float _log_fft_band)
{
 // Copy stereo input and current FFT band level to local variables
 L = _L;
 R = _R;
 log_fft_band = _log_fft_band;
}

void Compression::setParameters(float _thold, float _slope, float _att, float _rel)
{
 // Copy and convert parameters to local variables
 log_thold = _thold;
 slope = _slope * float(1e-2);
 att = (_att == 0.0) ? (0.0f) : exp(-1.0f / (SR * (_att/10.0f) * 1e-3f));
 rel = (_rel == 0.0) ? (0.0f) : exp(-1.0f / (SR * (_rel/10.0f) * 1e-3f));
}
float Compression::Do(int i)
{
 // Calculate RMS
 summ = 0.0;

 for (int j=i+look; j<i+look+width; j++)
 summ += (0.5f*L[j] + 0.5f*R[j]) * (0.5f*L[j] + 0.5f*R[j]);

 rms = sqrt(summ / float(width));

 // Convert FFT band level to linear
 fft_band = pow(10, log_fft_band / 20);

 // Calculate blended level
 level = (0.8f * fft_band) + (0.2f * rms);

 if (type == Compress)
 {
 // Calculate ballistics coefficient
 theta = level > env ? att : rel;

 // Calculate envelope level
 env = (1.0f - theta) * level + theta * env;

 // Convert envelope to dB
 log_env = 20*log10(env);

 // Check envelope value is real number
 if (env != env)
 {
 GR = 0.0;
 }

 // Calculate gain reduction
 GR = 0.0;
 if (log_env > log_thold)
 GR -= (log_env - log_thold) * slope;

178

 }

 if (type == Compand)
 {
 theta = level < env ? att : rel;

 env = (1.0f - theta) * level + theta * env;
 log_env = 20*log10(env);
 if (env != env)
 {
 GR = 0.0;
 }
 GR = 0.0;
 if (log_env < log_thold)
 GR += (log_thold - log_env) * slope;
 }

 return GR;
}

179

V.3.7 FBand

FBand.h

// Object Includes
#include <Bristow-Johnson/EQ.h>
#include <Compression/Compression.h>
#include <math.h>

class FBand
{
public:
 // Initialisation Function

void Init(int _size, int SR, int _filterType, int _compType, float _fft_frequency, float
_fft_width);

 // Parameters Function
 void setParams(float _f_base, float _f_ratio, float _g_base, float _g_ratio);
 // Effects Function
 float* Do(float *L, float *R, float *fft, bool EQio, bool DRCio);

 // EQ and Compression Objects
 EQ EQ;
 Compression Comp;

 // Pointer size, sample rate, compression type and filter type
 int size, SR, compType, filterType;

 // Analysis band start point and size
 int fft_frequency;
 int fft_width;

 // FFT band level
 float log_fft_band;

 // Gain reduction
 float GR;
 // FBand parameters
 float f_base, f_ratio, g_base, g_ratio;
 // EQ parmeters
 float F, G, Q;

 // EQ cascade and output pointers
 float *Lcas, *Rcas, *Lout, *Rout;

 // Output pointer
 float *out;

};

FBand.cpp

#include <FBand/FBand.h>

void FBand::Init(int _size, int SR, int _filterType, int _compType, float _fft_frequency, float
_fft_width)
{
 // Copy pointer size, filter type and compression type to local variables
 size = _size;
 filterType= _filterType;
 compType = _compType;

 // Initialise EQ and Compression

180

 EQ.Init(filterType, SR);
 Q = (filterType == EQ::LowShelf) ? 1.0f : 0.5f;
 Comp.Init(compType, size, SR);

 // Copy analysis band start and size to local variables
 fft_frequency = int(_fft_frequency);
 fft_width = int(_fft_width);
 log_fft_band = 0.0;

 // Define output pointers
 Lcas = new float[size];
 Rcas = new float[size];
 Lout = new float[size];
 Rout = new float[size];
 out = new float[size*2];
}

void FBand::setParams(float _f_base, float _f_ratio, float _g_base, float _g_ratio)
{
 // Set FBand parameters, inverting when necessary
 f_base = _f_base;
 f_ratio = (compType == 0.0) ? _f_ratio * -1 : _f_ratio;
 g_base = _g_base;
 g_ratio = (compType == 0.0) ? _g_ratio * -1 : _g_ratio;
}

float* FBand::Do(float *L, float *R, float *fft, bool EQio, bool DRCio)
{
 // Calculate FFT band level
 log_fft_band = 0.0;
 for (int i=fft_frequency; i<fft_frequency + fft_width; i++)
 log_fft_band += fft[i];
 log_fft_band /= fft_width;

 // Copy stereo audio to Compression object
 Comp.setAudio(L, R, log_fft_band);

 // Loop through audio
 for (int i=0; i < size; i++)
 {
 // Gain reduction for current sample

 GR = Comp.Do(i);

 // Update every 3 samples - EQ has 3 sample delay

 if (i % 3 == 0 && DRCio)
 {
 // Calculate cutoff and gain
 F = f_base + GR * f_ratio;
 G = g_base + GR * g_ratio;

 // Calculate EQ coefficients
 EQ.setCoefficients(F, G, Q);
 }

 // Apply EQ if enabled, cascading for low shelf

 if (EQio && filterType == EQ::LowShelf)
 {
 Lcas[i] = EQ.Do(L[i], EQ::L);
 Rcas[i] = EQ.Do(R[i], EQ::R);

 Lout[i] = EQ.Do(Lcas[i], EQ::L);
 Rout[i] = EQ.Do(Rcas[i], EQ::R);
 }

181

 else if (EQio)
 {
 Lout[i] = EQ.Do(L[i], EQ::L);
 Rout[i] = EQ.Do(R[i], EQ::R);
 }
 else
 {
 Lout[i] = L[i];
 Rout[i] = R[i];
 }
 }

 // Populate interleaved output pointer
 int j=0;
 for (int i=0; i<size*2; i+=2)
 {
 out[i] = Lout[j];
 out[i+1] = Rout[j];
 j++;
 }

 return out;
}

182

V.3.8 WriteToFile

WriteToFile.h

#ifndef __mbf_wtf__
#define __mbf_wtf__

#include <iostream>
#include <fstream>
#include <string>

class WriteToFile
{

public:
 WriteToFile(char *filename)
 :filename(filename)
 {}

 void Write(std::string input);

 char *filename;

};

#endif

WriteToFile.cpp

#include "WriteToFile.h"

void WriteToFile::Write(std::string input)
{
 std::ofstream file;
 file.open(filename, std::ios::app);
 file << input << "\n";
 file.close();
}

183

SECTION VI.

REFERENCES

AND

BIBLIOGRAPHY

184

References

ALGLIB, 2012, ALGLIB, Available at: http://www.alglib.net/ [Accessed 07/04/2012]

Bristow-Johnson, R. (Unknown) Cookbook formulae for audio EQ biquad filter coefficients, Available
at: http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt [Accessed 14/01/2012]

Cooley, J.W. and Tukey, J. W. (1965) An Algorithm for the Machine Calculation of Complex Fourier Series,
Mathematics of Compuation, 19, (90), pp.297-301, Available at: http://www.jstor.org/stable/2003354 [Accessed
14/01/2012]

Croft, A. and Davidson R. (2008) Mathematics for Engineers, Pearson Education, Essex, p. 1139

Croft, A. and Davidson R. (2008) Mathematics for Engineers, Pearson Education, Essex, p. 1149

Croft, A. and Davidson R. (2008) Mathematics for Engineers, Pearson Education, Essex, p. 1151

FFTW User Manual (Unknown), Complex One-Dimensional DFTs, Available at: http://www.fftw.org/doc/Complex-
One_002dDimensional-DFTs.html#Complex-One_002dDimensional-DFTs [Accessed 15/01/2012]

Fisher, M. (2010) Optimal recording and mixing technqiues for a stereo piano recording in the context of a modern
popular music production, University of Huddersfield

Fourier, J (1808) Mémoire sur la propagation de la chaleur dans les corps solides p.215-221, Presented 21st December
1807 at l'Institut national - Nouveau Bulletin des sciences par la Société philomatique de Paris, Available
at: http://mathdoc.emath.fr/cgi-bin/oetoc?id=OE_FOURIER__2 [Accessed 14/01/2012]

Giordano, A. A. and Hsu, F. M. (1985) Least Square Estimation with Applications to Digital Signal Processing, John
Wiley & Sons Inc., USA, p. 8

Huff, D. (1954) Least Squares Fitting, in Huff, D. How to Lie with Statistics, [Online] Available
at: http://www.physics.csbsju.edu/stats/least_squares.html [Accessed 15/01/2012]

Jackson, L. B. (1996) Digital Filters and Signal Processing, Kluwer Academic Publishers, London, p. 189

Jackson, L. B. (1996) Digital Filters and Signal Processing, Kluwer Academic Publishers, London, p. 213

Mellor, D (1995) EQ: How & When To Use It, Sound on Sound, March 1995, Available
at: http://www.soundonsound.com/sos/1995_articles/mar95/eq.html [Accessed 14/01/2012]

OpenGL.org, Available at: http://www.opengl.org/ [Accessed 15/01/2012]

Orion-Smith, J. (2007) “The Simplest Lowpass Filter”, in Orion-Smith, J. Introduction to Digital Filters with Audio
Applications, [Online], Available at: https://ccrma.stanford.edu/~jos/filters/Simplest_Lowpass_Filter_I.html
[Accessed 14/01/2012]

Preve, F (2008) September 24th 2008, Tutorial: How to use compression, Available
at: http://www.beatportal.com/feed/item/tutorial-how-to-use-compression/ [Accessed 14/01/2012]

Price, S (2008) Side-chain Compression in Reason, Sound on Sound, September 2008, Available
at: http://www.soundonsound.com/sos/sep08/articles/reasontech_0908.htm [Accessed 14/01/2012]

Robjohns, H (1999) How & When To Use Mix Compression, Sound on Sound, June 1999, Available
at: http://www.soundonsound.com/sos/jun99/articles/mixcomp.htm [Accessed 14/01/2012]

Savitch, W. (2010) Absolute C++, 4th Ed., Pearson Education Inc., US, p.169

http://www.alglib.net/
http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
http://www.jstor.org/stable/2003354
http://www.fftw.org/doc/Complex-One_002dDimensional-DFTs.html#Complex-One_002dDimensional-DFTs
http://www.fftw.org/doc/Complex-One_002dDimensional-DFTs.html#Complex-One_002dDimensional-DFTs
http://mathdoc.emath.fr/cgi-bin/oetoc?id=OE_FOURIER__2
http://www.physics.csbsju.edu/stats/least_squares.html
http://www.soundonsound.com/sos/1995_articles/mar95/eq.html
http://www.opengl.org/
https://ccrma.stanford.edu/~jos/filters/Simplest_Lowpass_Filter_I.html
http://www.beatportal.com/feed/item/tutorial-how-to-use-compression/
http://www.soundonsound.com/sos/sep08/articles/reasontech_0908.htm
http://www.soundonsound.com/sos/jun99/articles/mixcomp.htm

185

Senior, M. (2008) Piano Recording: All You Need To Know To Capture A Great Acoustic Piano Sound, Sound on Sound,
January 2008, Available at: http://www.soundonsound.com/sos/jan08/articles/pianorecording_0108.htm [Accessed
15/01/2012]

Senior, M (2009) Techniques for Vocal De-Essing, Sound on Sound, May 2009, Available
at: http://www.soundonsound.com/sos/may09/articles/deessing.htm [Accessed 14/01/2012]
Senior, M (2011) Listen and Learn: Analysing Commercial Mixes, Sound on Sound, April 2011, Available
at: http://www.soundonsound.com/sos/apr11/articles/listen-and-learn.htm [Accessed 14/01/2012]

Smith, S. W. (1997) The Engineers Guide to Digital Signal Processing, California Technical Publications, LA., p. 150

Smith, S. W. (1997) “Chapter 3: ADC and DAC”, From Smith, S.W., The Scientist and Engineer's Guide to Digital Signal
Processing, California Technical Publications, Available at: http://www.dspguide.com/ch3/2.htm [Accesses
14/01/2012]

T.C. Electronic Dynamic EQ Overview, Available at: http://www.tcelectronic.com/dynamiceq.asp [Accessed
14/01/2012]

Voxengo GlissEQ Overview, Available at: http://www.voxengo.com/product/glisseq/ [Accessed 14/01/2012]

Walden, J (2007) Multiband Compression in Cubase, Sound on Sound, April 2007, Available at:
http://www.soundonsound.com/sos/apr07/articles/cubasetech_0407.htm [Accessed 14/01/2012]

Walker, M (2007) Mixing on Headphones, Sound on Sound, January 2007, Available at:
http://www.soundonsound.com/sos/jan07/articles/mixingheadphones.htm [Accessed 14/01/2012]

Waves Audio Ltd. (2012) “Bass Rider”, Available at: http://www.waves.com/content.aspx?id=11856 [Accessed
09/05/2012]

Weisberg, S. (1985) “Simple Linear Regression”, in Weisberg, S. Applied Linear Regression, John Wiley & Sons Inc,
USA

Weisstein, Eric W. (1999) "Homogeneous Coordinates." From MathWorld--A Wolfram Web Resource, Available
at: http://mathworld.wolfram.com/HomogeneousCoordinates.html [Accessed 15/01/2012]

White, P (2009) Brainwork BX_dynEQ, Sound on Sound, July 2009, Available
at: http://www.soundonsound.com/sos/jul09/articles/bxdynamiceq.htm [Accessed 14/01/2012]

Zölzer, U. and Dutilleux, P. (2002) DAFX: Digital Audio Effects, John Wiley & Sons, Chichester, p.95

Anon. (2011) 3rd Party JUCE Applications, [Online], Available
at: http://www.rawmaterialsoftware.com/wiki/index.php/3rd-party_JUCE_Applications, [Accessed on 15/09/11]

Anon. (2011) Raw Material Software – The JUCE Library, [Online], Available
at: http://www.rawmaterialsoftware.com/juce.php, [Accessed on 15/09/11]

Anon. (2011) Steinberg VST Plugin Zone, [Online], Available
at: http://www.steinberg.net/en/products/partner_products/pluginzone.html, [Accessed on 15/09/11]

http://www.soundonsound.com/sos/jan08/articles/pianorecording_0108.htm
http://www.soundonsound.com/sos/may09/articles/deessing.htm
http://www.soundonsound.com/sos/apr11/articles/listen-and-learn.htm
http://www.dspguide.com/ch3/2.htm
http://www.tcelectronic.com/dynamiceq.asp
http://www.voxengo.com/product/glisseq/
http://www.soundonsound.com/sos/apr07/articles/cubasetech_0407.htm
http://www.soundonsound.com/sos/jan07/articles/mixingheadphones.htm
http://www.waves.com/content.aspx?id=11856
http://mathworld.wolfram.com/HomogeneousCoordinates.html
http://www.soundonsound.com/sos/jul09/articles/bxdynamiceq.htm
http://www.rawmaterialsoftware.com/wiki/index.php/3rd-party_JUCE_Applications
http://www.rawmaterialsoftware.com/juce.php
http://www.steinberg.net/en/products/partner_products/pluginzone.html

186

Bibliography

Collings, S. N. et al. (1977) “Simple Linear Regression”, in Collings, S. N et al. Fundamentals of Statistical Inference -
Unit 14 – Linear Models: Introduction and Least Squares Estimations, The Open University Press, Milton Keynes

Croft, A. and Davidson R. (2008) “An introduction to Fourier series and the Fourier transform”, in Croft, A and
Davidson, R, Mathematics for Engineers, 3rd ed., Pearson Education, Essex

Giordano, A. A. and Hsu, F. M. (1985) “Introduction”, in Giordano, A. A. and Hsu, F. M. Least Square Estimation with
Applications to Digital Signal Processing, John Wiley & Sons Inc., USA

Jackson, L. B. (1996)”Discrete Fourier Transform”, in Jackson, L. B. Digital Filters and Signal Processing, 3rd ed.,
Kluwer Academic Publishers, London

Smith, S. W. (1997) “The Discrete Fourier Transform”, in Smith, S. W. The Engineers Guide to Digital Signal
Processing, California Technical Publications, LA.

Zölzer, U. and Dutilleux, P. (2002) “Nonlinear Processing” in Zölzer, U. (ed.), DAFX: Digital Audio Effects, John Wiley &
Sons, Chichester

Anon. (2005) The Frequencies of Music, Available at: http://www.psbspeakers.com/articles/The-Frequencies-of-
Music [Accessed 14/01/2012]

http://www.psbspeakers.com/articles/The-Frequencies-of-Music
http://www.psbspeakers.com/articles/The-Frequencies-of-Music

	0. Front Matter
	I. Background Research
	II. Development
	III. Evaluation -- 1 - Metholodogy
	III. Evaluation -- 2 - Results
	III. Evaluation -- 3 - Analysis
	IV. Conclusion
	V. Appendix
	VI. Back Matter

