A novel pitch evaluation method based on a cross-correlation filter

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/17340/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Abstract

A cross correlation filter – a half period of sinusoidal waveform sequence (\(p_T\) period), is applied to filter the topographical signal (\(p_T\) period) of an arbitrary grating. The cross-correlation filter can extract the signals of interest from noise. Fourier-Transform-based (FT) method can be used, but it cannot detect the pitch uniformity.

1. If present pitch evaluation methods meet noise?

2. 1D sinusoidal grating-probed signal filtering

A cross correlation filter:

\[T(x_T) = \sum_{-\infty}^{\infty} R_k \cos \frac{2\pi x_T}{p} \]

After cross-correlation filtering, the signal:

\[R_k = R_{k-1} + R_{k+1} - 2R_k \]

where \(k < \infty\) is still a tilt component.

4. Application of cross-correlation filter to signal of 1D, \(p\)-periodic and arbitrary-structured grating

It can be written as a Fourier series:

\[f(x_T) = \sum_{n} A_n \sin \frac{2\pi x_T}{p} \]

where \(A_n = \frac{2}{p} \int_{-p/2}^{p/2} f(x_T) \sin \frac{2\pi x_T}{p} dx_T \) (9)

when it cross-correlated with a half sinusoidal waveform template of \(p\)-period, \(R_p = C_1 \sin \frac{2\pi x_T}{p} + C_2 \sin \frac{2\pi x_T}{p} + \ldots \) (10)

where \(p = k/p, k = 2, 3, 4, \ldots \) and \(C_i \) is proportional to \(A_i\)

5. Experiments and results

5.1 Agreement between evaluated pitch and true pitch value

Table 1 Simulation results of average of pitch deviations and variations (arbitrary units)

<table>
<thead>
<tr>
<th>Pitch evaluation method</th>
<th>Noise level</th>
<th>Deviation average</th>
<th>Variation (STD)</th>
<th>Deviation average</th>
<th>Variation (STD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0</td>
<td>0.01</td>
<td>0.0</td>
<td>0.01</td>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0</td>
<td>0.02</td>
<td>0.0</td>
<td>0.02</td>
<td>0.0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0</td>
<td>0.03</td>
<td>0.0</td>
<td>0.03</td>
<td>0.0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0</td>
<td>0.04</td>
<td>0.0</td>
<td>0.04</td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.05</td>
<td>0.0</td>
<td>0.05</td>
<td>0.0</td>
</tr>
<tr>
<td>FT</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0</td>
<td>0.01</td>
<td>0.0</td>
<td>0.01</td>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0</td>
<td>0.02</td>
<td>0.0</td>
<td>0.02</td>
<td>0.0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0</td>
<td>0.03</td>
<td>0.0</td>
<td>0.03</td>
<td>0.0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0</td>
<td>0.04</td>
<td>0.0</td>
<td>0.04</td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.05</td>
<td>0.0</td>
<td>0.05</td>
<td>0.0</td>
</tr>
</tbody>
</table>

5.2 Cross-correlation filtering and pitch evaluation in PD method

It can be written as a Fourier series:

\[f(x_T) = \sum_{n} A_n \sin \frac{2\pi x_T}{p} \]

where \(A_n = \frac{2}{p} \int_{-p/2}^{p/2} f(x_T) \sin \frac{2\pi x_T}{p} dx_T \) (9)

when it cross-correlated with a half sinusoidal waveform template of \(p\)-period, \(R_p = C_1 \sin \frac{2\pi x_T}{p} + C_2 \sin \frac{2\pi x_T}{p} + \ldots \) (10)

where \(p = k/p, k = 2, 3, 4, \ldots \) and \(C_i \) is proportional to \(A_i\)

5.3 In-plane tilt angles measurement

Figure 9. (a), (b) and (c) are the images of 1D sinusoidal grating with in-plane tilt angle I, II and III respectively. Angles are measured and calculated as 21.57, 35.12 and 12.03° while measurement repeatability (STD) is 0.027, 0.044 and 0.05° respectively.

References