Abstract
This whitepaper reviews design options for the IsoDAR electron antineutrino source. IsoDAR is designed to produce $2.6 \times 10^{22}$ electron antineutrinos per year with an average energy of 6.4 MeV, using isotope decay-at-rest. Aspects which must be balanced for cost-effectiveness include: overall cost; rate and energy distribution of the electron antineutrino flux and backgrounds; low technical risk; compactness; simplicity of underground construction and operation; reliability; value to future neutrino physics programs; and value to industry. We show that the baseline design outlined here is the most cost effective
Information
Library
Documents
Statistics
Downloads
Downloads per month over past year