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PERIODIC RESPONSES OF A CONTROLLED
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2 Department of Manufacture Engineering
Budapest University of Technology and Economics

Introduction

Dynamical systems with piecewise linear components in the equations of motion
occur frequently in practice. Gear pairs with backlash, impact dampers, moving parts
with dry friction and adjacent structures during earthquakes are modelled by systems
with piecewise linear damping, stiffness or restoring force |1]-[4]. Analytical solution
techniques which are applicable to weakly nonlinear equations are not suitable for these
investigations due to the strongly nonlinear nature of the governing equations of these
systems, but there exist analytical methods to determine periodic responses [5]-[8].

Control is often added to such systems. Typical cases are when unstable equilibra
of mechanical systems have to be stabilized. This problem arises at the stick balancing
on a cart, where the cart is driven by a motor through a teeth-belt [9]-[11]. The upper
equilibrium of the stick is unstable and backlash appearing at the driving makes this
system piecewise linear. Stability analysis of the system without backlash is discussed
and the stability chart is constructed in previous works [11|. When backlash is present,
periodic motions occur in that parameter domain where stable equilibrium was obtained
by using the Routh-Hurwitz criterion without backlash. In the present paper, periodic
responses are determined by applying the harmonic balance method [5] and results are
compared with those obtained in [12]-[13]| using the continuation method [14].

The pendulum-cart model

The above mentioned balancing system is given in Figure 1 [10|-[13]. The system
has 2 degrees of freedom described by the angle ¢ of the pendulum and the alongation
A = 1y, — g of the belt, where 7, [m] is the radius of the motor axle, 7, [m| and R,
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[m| are radii of the wheel, 1) is the angle of the motor axle and z [m] is the displacement
of the cart. The velocity & of the cart and the angle ¢ of the pendulum with its derivative
are measured. The differential gain based on the cart velocity may eliminate the damping
K [Nms| of the motor, so the control force can be determined in the simplified form

Q= Py+ Dy, (1)
where P and D are the coefficients of the PD regulator. The linearized equations of
motion have the form
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where Ry = sA is the force in the elastic belt, s [N/m]| is the spring stifness, m |kg|] and
mp, |kg|] are masses of the pendulum and the motor, M [kg| is sum of the mass of the
cart, the motor and the reduced mass of the inertia of the wheels, [ [m] is the length of
the pendulum and ¢ [m/s?] is the gravitational acceleration.
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Fig.1. The inverted pendulum-cart model and its stability map

The stability analysis was carried out by the Routh-Hurwitz criterion [11|. The
trivial solution of (2) is asymptotically stable if and only if
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where Hj is the maximum sized Hurwitz-determinant, not presented here algebraically.
The stability chart was constructed as it is shown in Figure 1.

Application of the harmonic balance method

Backlash occurs at the contact of the driving belt and the axle of the motor. The
control force is not transmitted in a tiny zone, which means that the spring characteristic
is nonlinear. The force in the belt is the function of the alongation A

s(A+f) A<—f
R, = 0 Al<f (4)
s(A—f) A>f
where f is the value of backlash. This function is shown in Figure 2(a).

In the followings, the general approach to the use of the harmonic balance method
for piecewise linear systems, proposed in 5[, is used. Let us decompose the above function



to linear and saturation curves |5]. The characteristic is symmetric, therefore it is written
only in the domain of positive alongation

sA A< f
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as it is given in Figure 2(b). Periodic solutions are looked for, so the alongation is
considered in the form of A = Bsin (wt) and since the characteristic is monovalent and
symmetric, the force in the belt is simplified to the following form

Ry = bA + r3Bsin (3wt) 4+ r;Bsin (5wt) + ..., (6)

where
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Fig.2. (a) The spring characteristic and  (b) its decomposition

Let us neglect the subharmonics at the first approximation, then, Ry = bA substi-
tution is applied in equation (2). Periodic solution appears if the characteristic equation
has a pair of pure imaginary roots. Let A be the characteristic root. Substituting A\ = 1w
in the characteristic equation, then separating the real and the imaginary part, two equa-
tions are obtained. Substituting equation (7) and the values of the parameters describing
the system, 4 unknowns are included, the amplitude B and the angular frequency w of
the oscillation as well as the control parameters P and D. If one of the control parame-
ters is fixed, then the angular frequency and the other control parameter are obtained as
the function of the amplitude of the oscillations. Thus, the amplitude and the frequency
of the periodic solution are obtained for every pair of the control parameters for which
periodic solution exists.

Results
Computations are accomplished for values of the parameters described for a realised
pendulum-cart system and which is given in [13] (see Appendix). The proportional gain



and the angular frequency are shown by the continuous curves in Figure 3(a) and 3(b)
as the function of the amplitude, if the differential gain is fixed, D = 2 [Nms|. Periodic
solution with the smallest amplitude is obtained for B = 1.0087 [mm]|, its angular fre-
quency is w = 0.0705 [1/s] and the corresponding proportional gain is P = 0.1986 [Nm],
which is Py given in equation (3). The line bordering the stability domain in Figure 1
is obtained for this value. The straight line indicated in Figure 3(a) corresponds to the
value of the proportional gain which is the P coordinate of the parabola bordering the
stability domain for D = 2 [Nms|.

The differential gain and the angular frequency are given by the continuous curves
in Figure 3(c) and 3(d) as the function of the amplitude, if the proportional gain is fixed,
P = 20 [Nm|. The straight lines in Figure 3(c) correspond the values of the differential
gain which are the D coordinates of the parabola bordering the stability domain for
P =20 [Nm].

The dotted lines in Figure 3 are the results computed by using the continuation
method and presented in [12]. Results obtained by the two method coincide well apart
from a small region at the border of the stability domain where periodic solution does not
exist according to the continuation method.
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Fig.3. (a) P — B function and  (b) w — B function for D = 2 [Nms],
(¢) D — B function and  (d) w — B function for P = 20 [Nm]

The effect of the subharmonics is also examined. The coefficient of the harmonic b,
the first and the second nonzero subharmonics r3 and r5 as the functions of the amplitude
are computed from equations (7)-(9). The coefficients b, r3 and 75 multiplied by the ab-
solute value of the transfer function W () at iw, 3iw and 5iw, respectively, are compared.
If [rsW (3iw) | < |bW (iw) | and |rsW (5iw) | < [bW (iw) |, then the subharmonics can be
neglected.

The effect of the spring characteristic is investigated, so the input signal of the
transfer function is the alongation and the output signal is the force in the spring:
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Figure 4 shows the absolute value of the product of the subharmonics and the
transfer function, or more precisely, this value divided by the absolute value of the product
of the harmonic and the transfer function, which is 1, as it follows from equation (10).
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Fig.4. |r3W (3iw) | (crosses) and |rsW (5iw) | (dots)
(a) D=2 |[Nms|, (b) P =20 |Nm]

If P is chosen from a tiny region near the border of the stability domain at Py, then
subharmonics cannot be neglected, but then |r3W (3iw) | and |r;W (5iw) | decrease below
10% of |bW (iw) |. |rsW (3iw) | has a maximum depending on D, but even this maximum
value does not reach 0.1, unless P is very close to Fy. 75 changes its sign at a certain
value of B, so |rsW (5iw) | has two maxima.

Concluding remarks

Results obtained by the harmonic balance method show good agreement with the
earlier results presented in [12]-[13] in the major part of the stability domain. However,
there are some differences for the values of P chosen near P,. According to the results of
[12], periodic solution appears at a homoclinic bifurcation point and stable fixed points are
found in the small interval between P, and the bifurcation point, while periodic solution
is found in the whole domain of stability using the harmonic balance method.

Subharmonics are neglected and it causes some problems for the values of P close
to F,. Harmonic balance method does not give reliable results here, but apart from
this region, this approximation can be applied for determining the properties of periodic
solutions.
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Appendix
The following parameter values are used in computations:
m = 0.169 |kg] Ty = 0.02 |m]
M =1.136 |kg] R, = 0.03 |m]
mm = 0.2 [kg] rm = 0.01 [m]
g =9.81[m/s? s = 10000 [N/m]
[ =0.5|m| f=0.001 |m|
K = 0.01 |[Nms]

PERIODIC RESPONSES OF A CONTROLLED BALANCING SYSTEM

SUMMARY

The linear stability analysis of an inverted pendulum-cart model constructed in
previous works is summarized briefly. Backlash at the driving is considered by nonlinear
spring characteristic. This makes the system piecewise linear and causes the oscillation of
the stick around its upper equilibrium. Periodic solutions are investigated by the harmonic
balance method, their amplitude and frequency are computed depending on the control
parameters. Effects of higher harmonics are also estimated. Results are compared with
those obtained in previous works and a region of parameters is determined where this
approximation can be applied in a reliable way.



