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ABSTRACT 
Electrical motor stator current signals have been widely used to monitor the condition of induction 
machines and their downstream mechanical equipment. The key technique used for current signal 
analysis is based on Fourier transform (FT) to extract weak fault sideband components from signals 
predominated with supply frequency component and its higher order harmonics. However, the FT 
based method has limitations such as spectral leakage and aliasing, leading to significant errors in 
estimating the sideband components. Therefore, this paper presents the use of dynamic time 
warping (DTW) to process the motor current signals for detecting and quantifying common faults in 
a downstream two-stage reciprocating compressor. DTW is a time domain based method and its 
algorithm is simple and easy to be embedded into real-time devices. In this study DTW is used to 
suppress the supply frequency component and highlight the sideband components based on the 
introduction of a reference signal which has the same frequency components with the supply power. 
Moreover, a sliding window is designed to process the raw signal using DTW frame by frame for 
effective calculation. Based on the proposed method, the stator current signals measured from the 
compressor induced with different common faults and under different loads are analysed for fault 
diagnosis. Results show that DTW based on residual signal analysis through the introduction of a 
reference signal, allows the supply components to be suppressed well so that the fault related 
sideband components are highlighted for obtaining accurate fault detection and diagnosis results. In 
particular, the root mean square (RMS) values of the residual signal can indicate the differences 
between the healthy case and different faults under varying discharge pressures. It provides an 
effective and easy approach to the analysis of motor current signals for better fault diagnosis of the 
downstream mechanical equipment of motor drives in the time domain in comparison with 
conventional FT based methods. 

Key word: Reciprocating Compressor, Dynamic Time Warping, Motor Current Signal. 

1. Introduction  
Electrical motor current signals have been widely investigated to analyse the health of the induction 
machine and their downstream mechanical equipment. [1, 2]. Moreover, because it is cost-effective 
in obtaining signals and allows remote monitoring, the induction machine stator current signal is 
also used to detect the influence of mechanical problems that result in rotor disturbances [1], and 
the presence of load imbalance can also be detected through analysing the induction machine stator 
current signals [3]. Recent studies [4] have shown that the supply currents can contain components 
related to abnormalities in downstream equipment such as compressors, pumps, rolling mills, mixers, 
crushers, fans, blowers and material conveyors and the technique has been used to detect specific 
axial flow compressor problems. 
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Common approaches used for fault detection are based on the comparison of correlate numerical 
models with measured modal properties from undamaged and damaged components. 
Measurements are normally made in the time domain while a machine runs under different loads 
and speeds. Then the signals acquired in the test are analysed in both the time and the frequency 
domains using various signal processing techniques for extracting effective diagnostic features which 
allows accurate comparison between the signals. 

Unfortunately, the signal processing techniques used for feature extraction are developed 
predominately in the frequency domain through Fourier transform (FT). Although it produces 
satisfactory results, the FT based method is subject to a number of generic limitations: aliasing [5], 
spectral leakage [6, 7] and picket-fence effect [5, 8]. Especially the latter two often lead to significant 
errors in spectrum estimation so that the weak signature due to faults in signals cannot be resolved 
properly for accurate fault detection and diagnosis. Although many methods have been developed 
to improve the limitations [5-8], they have never eliminated them completely. In addition, the 
computation complexity is also high which limits its application in real-time condition monitoring. 

Thus it seems that techniques applied directly to the time domain signals can avoid the 
shortcomings of the frequency analysis. In fact, time domain based methods, especially time 
synchronous average (TSA) [9], have received intensive investigation in recent years for monitoring 
rotating machines and have gained many successful applications. However, it needs a shaft mark 
signal from an additional channel to implement TSA based monitoring, which leads to increased cost 
to applications. The statistical parameters or characteristic features can be calculated from time 
signals, such as mean, peak, standard deviation, root mean square (RMS), and kurtosis, etc. These 
features are very significant in obtaining accurate analysis results in the time domain. In some 
applications, such as speech recognition [10], signature matching [11] and condition monitoring [12], 
the common task with time series data is comparing one sequence with another in order to detect 
the differences between the two sequences for further analysis. However, it is often the case that 
two signals in the time domain have the similar overall component shapes [13], but out of 
synchronization and generally not of exactly the same length as shown in Figure 1(a). In order to find 
the exact dissimilarity between such two signals and as a pre-processing step before comparing 
them, it is necessary to match them to achieve an appropriate alignment. 

Dynamic time warping (DTW) is an algorithm for aligning two such time series. The underlying 
principle behind DTW is, given two time series, to stretch or compress them locally in order to make 
one resemble the other as much as possible. The distance between them is computed, after 
stretching, by summing the distances of individual aligned elements (Figure 2). Figure 1(b) shows the 
alignment of the two time series processed by DTW. 

The DTW is a popular algorithm applied in many areas. Bellman and Kalaba [14] first introduced it on 
adaptive control processes. It was popularised in the '70s, when it was mainly applied to isolated 
word recognition and speech recognition [11, 15-17] to account for differences in speaking rates 
between speakers and utterances. Since then, it has been employed for clustering and classification 
in countless domains: electro-cardiogram analysis [18-20], clustering of gene expression profiles [21, 
22], biometrics [23, 24], process monitoring [25]. Moreover, DTW has been also used in handwriting 
and online signature matching [10], sign language recognition and gesture recognition, data mining 
and time series clustering, computer vision and computer animation, surveillance, protein sequence 
alignment and chemical engineering, music and signal processing [26]. Recently, Zhen D. et al [12, 27] 
have explored it in processing data from motors for condition monitoring and shown promising 
results in that the aligned signals by DTW do not lose information and is suitable for fault diagnosis. 
DTW can be used to suppress the supply frequency component and highlight the sideband 
components. 
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The rest of the paper will be organised as follows. In section 2, the DTW algorithm is reviewed to 
gain an understanding of DTW. Section 3 introduces the characteristics of electrical motor stator 
current signal. Subsequently, the proposed method for fault detection using DTW based on a sliding 
window is presented in section 4. Next, section 5 presents the experimental evaluation and result 
discussion. Section 6 gives the conclusions. 

0 10 20 30 40 50 60 70
-1

0

1

2

Samples

A
m

p
li
tu

d
e

(a) Artificial time series

 

 

Signal 1

Signal 2

0 10 20 30 40 50 60 70 80
-1

0

1

2
(b) Artificial time series prcessed by DTW

Samples

A
m

p
li
tu

d
e

 

 

Signal 1

Signal 2

 

Figure 1 Time series aligned by DTW 

2. Dynamic Time Warping  
Given two time series of length  and  respectively. 

     (1) 

     (2) 

where  and  are represented by the sequences of values at the point  and  in the series  and  

respectively. 

To align the two time series for comparison, a  distance matrix C is built firstly. The element of 
the matrix  is the distance between the two points  and  which is represented by . Typically, 

the Euclidean distance is used to calculate the point-to-point distance by 

     (3) 

Once the distance matrix has been built, the DTW algorithm finds the alignment path which runs 
through the matrix elements that defines a mapping between  and . The alignment path found by 
DTW is a warping path function which can be defined as: 

 With     (4) 

Where 
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In order to obtain the optimal alignment path, the DTW algorithm needs to be applied under certain 
conditions [13, 26]: 

1. Boundary condition: , and . The starting and ending points of the 
warping path must be the first and the last points of aligned time series. 

2. Monotonicity condition: Given  then , where 
 and  . This forces the points in  to be monotonically 

spaced in time. 
3. Step size condition: Given  then , where 

 and . The basic step size condition formulated as 

. This criterion limits the warping path from long jumps 
while aligning sequences, and restricts the allowable steps in the warping path to adjacent 
cells. 

Noting that there is a large number of possible monotonically alignment paths increasing from  
to  according to the three certain conditions. Therefore a dynamic programming algorithm is 
introduced to test the length of all possible distortion paths and to determine the shortest one. The 
dynamic programming employs the cumulated distance  between  and  for a given 
warping path ,  is the sum of the point-to-point distances  along the warping path . 

      (5) 

Noting that  is the set of all possible warping paths. The goal of the 
dynamic programming is to determine an optimal warping path for which the cumulated distance 
between  and  is minimal: 

     (6) 

The optimal warping path is selected based on the cumulated matrix. Figure 2 is an example of 
optimal warping path selection based on a cumulated matrix for the two signals alignment which is 
shown in Figure 1(b). Assuming that the cumulative distance matrix is , the  are the elements 
of the cumulative distance matrix  which is defined as follows [27]: 

1. First row: . 

2. First column: . 
3. All other elements: 

   (7) 

Once the cumulated distance matrix is built, the alignment warping path could be found by the 
simple backtracking from the point  to  according to the Equation (7). Figure 1(b) 
indicates the two artificial signals aligned by DTW, it can be seen that the two signals are matched to 
each other very well based on the optimal warping path produced by dynamic programming. 
According to the two time series aligned, the accumulated distance matrix has  entries. 
Therefore, the computational complexity of the classic DTW algorithm should be  [28]. 
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Figure 2 Optimal warping path selected by dynamic programming 

3. Phase Current Signal from Reciprocating Compressors 
To study the characteristics of the motor stator current signals, the electromagnetic relationships 
are analyzed in phase  , which is one of the three symmetric phases of a power supply system. If 
the fundamental frequency of electrical supply is , the instantaneous current signal [4,29,30] under 
healthy conditions can be expressed as sinusoidal signals: 

      (8) 

where  denotes the amplitude of the supply current, and  is the angular displacement of supply 
current. Correspondingly, this current interacts with the magnetic flux in motor stator as 

     (9) 

where the amplitude of the magnetic flux is , and  denotes the angular displacement of magnetic 
flux. Therefore, the electrical torque produced by the interaction between the current and magnetic 
flux can be expressed as 

      (10) 

where  is the number of pole pairs, and  is the angular displacement between 
supply current and magnetic flux. If there is a fault occurring in the rotor system, and supposing the 
fault generates a sinusoidal wave with a frequency , and the current amplitude and angular 
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displacement are  and  respectively. So the additional oscillatory torque can be obtained using 
Equation (10) 

    (11) 

This oscillatory torque causes speed fluctuation which can be derived as  

   (12) 

Thus the angular oscillation is: 

   (13) 

where  is the inertia of the rotor system. And the angular variation in Equation (13) produces phase 
modulation to the leakage flux. Correspondingly, the magnetic flux in motor stator can be expressed 
as 

     (14) 

This shows that the flux wave contains nonlinear effects because of the fault in the rotor system. 
This nonlinear interaction of linkage flux will produce corresponding electromagnetic force and 
hence induce a nonlinear current signal in the stator [4]. 

Therefore, referring to the detailed discussion in [4] the simplified stator current can be expressed as 

        (15) 

where  is the angular displacement of motor equivalent circuit impedance at supply frequency [4], 
the amplitudes of lower and upper sideband components are denoted by  and , respectively. 
Equation (15) is employed widely for motor condition monitoring. Various fault information can be 
extracted by analyzing the sideband components of the current signal. 

A reciprocating compressor system consists of a typical induction motor, in which the compressor 
has two basic working processes including compression and expansion. The working process gives 
rise to a periodically varying load to the driving motor due to the compressor requiring more power 
in compression than in the expansion [31]. This varying load leads to high oscillation in the measured 
current signal. According to the Equation (15), the measured current signal can be expressed [4] 

  (16) 

where  and  denote the angular displacement of the lower and upper sideband components 
respectively. The sidebands contents of  and  are distributed around the supply 
frequency content of  with very low amplitude showing that the electrical current signal has the 
similar spectral distributions with an amplitude modulation (AM) signal. Nevertheless, the amplitude 
of the two sideband components will change with the degree of load and speed fluctuations, which 
means when the load fluctuation increases with the increase of discharge pressures, the amplitude 
and phase of the sideband components will change accordingly. Figure 3 shows the stator current 
signals measured from the two-stage compressor under the conditions of healthy and faulty valve 
leakage. 



7 
 

0 0.05 0.1 0.15 0.2 0.25 0.3
-10

-8

-6

-4

-2

0

2

4

6

8

10
(a) Stator currents

A
m

p
li
tu

d
e

 (
A

)

Time (s)

0 20 40 60 80 100
0

1

2

3

4

5

6

7
(b) Current spectra

A
m

p
li
tu

d
e

 (
A

)

Frequency (Hz)

 

 

Faulty: 42.68Hz  1.685A

Heathy: 42.68Hz  1.561A

Faulty: 50Hz  6.181A

Heathy: 50Hz  5.925A

Faulty: 57.32Hz  1.204A

Heathy: 57.32Hz  1.042A

Healthy

Valve leakage

 

Figure 3 Waveform and spectra of stator current signals from compressor in healthy and faulty valve 
leakage 

It can be seen from Figure 3(a) that the amplitude of the current waveform from the valve leakage is 
slightly higher than that of the healthy condition and the current signals are modulated by a dynamic 
load fluctuating according to the waveform. It is also very clear that the two stator currents have 
similar waveforms but with clear phase shift. 

In the spectra, as shown in Figure 3(b), the amplitudes of the supply and sidebands for the valve 
leakage are also slightly higher than that of the healthy condition, which is consistent with the 
waveform in Figure 3(a). Therefore, the stator current signals contain useful information for 
compressor fault detection. The carrier frequency components at the supply frequency 50Hz have 
high amplitudes and the sideband components at about 50±7.3Hz are also very clear. According to 
the working frequency of the compressor, the load fluctuating frequency is at 7.3Hz. As discussed in 
[29, 30], the upper sideband component results from the lower sideband component due to a 
nonlinear effect caused by the interaction of magnetic flux, load and speed fluctuations. 

Moreover, the components at 50Hz have a clear spectral leakage due to the limitation of FT analysis. 
This leakage will lead to an error in estimating the amplitude at 50Hz, which causes more difficulties 
in identifying and quantifying the small sidebands which are the main feature used for fault 
diagnosis.  

4. DTW based Fault Detection 
According to the theoretical analysis in Section 3, the electrical current signal can be considered as 
an amplitude modulation (AM) signal. The carrier signal is the supply frequency component at about 
50Hz and the load fluctuating component is at about 7.3Hz which is corresponding to the working 
speed of the compressor and its higher order harmonics. To separate the fluctuating component 
from the supply components as accurately as possible, a DTW based approach to data processing 
and fault detection requires including the data manipulation steps shown in Figure 4. It consists of 
mainly data pre-processing, DTW implementation and detection feature setup. 
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4.1 Data Pre-processing 
The purposes of data pre-processing is to suppress noise, to generate a reference signal and to 
determine the sliding window length. A low-pass filtering is applied to the raw signal to suppress the 
inevitable noise. The cut-off frequency of the low pass filter is set to 120Hz so that it removes both 
the high order harmonics of supply frequency and any random noise originating from measurement 
and power supply system. This will ensure that the DTW and frequency estimations can be 
implemented reliably. 

 

Figure 4 A flow diagram of the proposed data analysis 

The reference signal is a sinusoidal signal with the frequency and amplitude calculated from the 
filtered raw signal. Supposing that the filtered raw signal is , the amplitude of the 
reference signal is the amplitude of the filtered raw signal estimated by 

      (17) 

The frequency is estimated by the well-known zero-across detection method [32]. It finds the zero 
crossing points in a predetermined time interval and counts the number of cycles  that occur in 
the time interval to obtain the frequency estimation as equation (18). In this study, the length of the 
measured raw signal is 50,000 and sampling frequency is 24.3 kHz, which means the frequency 
resolution is 0.486 and it is sufficient for the frequency estimation. In addition, a low-pass filter is 
used to restrict the bandwidth to the frequencies close to the supply frequency for accurate 
estimation. However, if the frequency estimation is inaccurate, it will affect the suppression of the 
supply frequency and hence lead to inaccurate dissimilarities extraction in DTW process for fault 
detection and diagnostic. 

       (18) 

Raw Signal 
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Power Supply 
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where  is the sampling frequency. Thus the reference signal can be generated by  

     (19) 

However, the phases of measured signals are arbitrary. To implement DTW more efficiently and 
achieve more accurate results, an initial phase needs to be estimated for a preliminary alignment 
between the reference signal and the filtered raw signal. In this work, a phase matching approach is 
developed for initial phase estimation. It uses the Euclidean distance to measure the differences 
between the reference signal given by Equation (19) at different phases  and the original filtered 
raw signal in one cycle. As the phase  varies from 0 to 2  in a step of about 0.02 rad, the Euclidean 
distance can be calculated by 

   (20) 

where,  denotes the filtered raw signal,  is the reference signal with a certain phase shift , and 

 is the number of the signal points.  should have N elements according to the increase of the 
phase , where N is the number of varies . Therefore, each phase angle  corresponds to one 

Euclidean distance in the vector . The initial phase of the reference signal can be selected by 

finding the phase angle  which corresponds to the minimized Euclidean distance in the vector . 

 Subject to    (21) 

     (22) 

Thus the reference signal can be regenerated by Equation (19) to have a minimal phase with the 
filtered raw signal 

     (23) 

Similarly, the estimation of the minimum length of the sliding window for DTW processing can be 
found by calculating the load fluctuating components which correspond to the working speed of the 
compressor.  

      (24) 

where  is the operating frequency of the compressor. It can be can be calculated by equation (25). 

      (25) 

where  is the speed of compressor in rpm, and  is the transmission ratio. The actual length of the 
sliding window may be several times of the minimal length depending on data processing tasks. For 
benchmarking proposed methods with FT based methods, the length is set to 3 times that of the 
minimum so that the FT based results can have a sufficient resolution for sideband extraction in the 
Frequency domain. 

In addition, to align the reference signal and the filtered raw data with each other, the length of the 
reference signal should be the same as the length of the sliding window for high efficiency in DTW 
implementation and memory allocation. 

4.2 DTW Implementation 
Having produced the reference signal and determined the length of the sliding window, the DTW 
algorithm can be applied to process the reference signal and the raw signal selected frame by frame. 
The two signals are matched in the time domain after being processed by DTW, and hence a residual 



10 
 

signal can be obtained by subtracting the raw signal by the reference signal after processing, so that 
the residual signal can be employed to indicate the dissimilarity between the filtered raw signal and 
the reference signal. The window is sliding along the raw signal. Therefore, the DTW can be carried 
out in each sliding window to reveal the differences between the raw signal and reference signal.  

Figure 5 shows the interim results of DTW processing at each key step in a typical sliding window. In 
Figure 5(a) the measured signals are presented with an initial phase when the data is collected 
where the reference signals are presented at 0 initial phase. Obviously, these two signals are shifted 
from each other greatly and cannot be compared directly. Figure 5(b) shows the result after a phase 
shift on the reference signal through the initial phase matching. It can be seen that the overall 
waveforms are aligned better, but many detailed portions in the waveform are still not matched 
sufficiently well for comparison. After DTW processing, the raw signal and reference signal are 
matched to their optimal as shown in Figure 5 (c) and hence the dissimilarity can be revealed by 
subtracting each other. Figure 5(d) shows the residual signal obtained by the subtraction. Clearly, 
the residual signal highlights that the major differences between the waveforms shown in Figure 5(a) 
are around the peak portion of the amplitude modulation when the motor is applied by a higher 
load during the compression process, which has greater effects of mechanical process as addressed 
in section 3. Because of this signal enhancement, a more accurate feature can be calculated from 
this residual signal for fault diagnosis. 
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4.3 Detection Feature 
As shown in Figure 4, the final step in the proposed approach is the detection implementation. The 
aim of applying DTW to process signal is to reveal the differences between the two signals, and the 
distinction is demonstrated by the residual signal. Therefore, the detection can be made through 
analysing the residual signal. In the proposed method, the RMS values of the residual signal are 
employed to measure the amplitude of the residual signals. Compared with peak values, the RMS 
values produce a more reliable feature when the form of AM modulation varies with different 
operating conditions and fault cases. Obviously, a higher RMS value indicates a larger difference 
between the reference signal and the measured signal and hence it indicates the degree of deviation 
of the signal from sinusoidal due to the modulation effects under compressor conditions. 

5. Experimental Evaluation 
To examine the performance of the proposed DTW approach in fault detection and diagnosis, a set 
of electrical current signals are collected from a two-stage reciprocating compressor induced with a 
number of common faults. The signals are then processed by the DTW approach to produce fault 
detection and diagnosis results. In addition, the results are also compared with that from traditional 
FT analysis. 

5.1 Compressor Fault Cases 
The reciprocating compressor has a common two-stage construction which allows air to be 
compressed as high as 10bar. It is driven by a 2.5kw three-phase four-pole induction motor through 
a V-belt with a transmission ratio of 3.2. During the tests, the compressor is induced with three 
common faults: discharge valve leakage, transmission belt looseness and inter-cooler leakage. These 
faults lead to low operating efficiency and potential damage to the compressors. The leakage is 
usually caused by thermal impacts and mechanical vibrations and the belt looseness is a typical 
feature. The texture of the belt also has some damage. The three types of faults are induced 
individually to the compressor in order to evaluate the effectiveness of the proposed method in 
detecting these faults. The valve leakage is produced by drilling a 1mm hole in the discharge valve 
plate. The distance between two belt pulleys is reduced by 2mm for belt looseness. The case of 
intercooler leakage is induced by adjusting the tightness of the connecting bolt for the degree of 
leakage, which is often a consequence of the resonance of the connection line. 

During the tests, the current in phase A is measured by a hall effect based current transducer of 
frequency response from DC to 1.5 kHz. The current signal is then collected by a high speed ADC 
system at a resolution of 16bit. For each fault the data is collected at 6 different discharge pressures: 
4.8bar, 5.5bar, 6.2bar, 6.9bar, 7.6bar and 8.3bar, which covers the operating pressure range 
specified by the manufacturer. Each collection is 50,000 points which is more than 2 seconds in 
duration for a sampling rate of 24.3 kHz. This data length covers about 12 compressor cycles which is 
sufficient for random noise suppression in an average process. In addition, the high sampling rate 
allows a high accuracy to be obtained in waveform parameter calculation.  

5.2 RMS Linear Classifiers 
Using the DTW approach in section 4, the raw current signals are processed to obtain residual signals 
respective to each case and operating pressures. During the processing the sliding window is set to 
10500 points in length so that it includes 3 compressor cycles, which allows sufficiently good 
frequency resolution in DFT based analysis in comparison study. Figure 6 presents a typical residual 
signal obtained by DTW for the four compressor faulty cases. Comparing the waveform of residual 
current signals under different conditions has found that the amplitude of the residual signals’ 
waveform varies with the different kinds of the faults. In particular, the valve leakage causes higher 
amplitudes in the residual signal whereas the intercooler and belt looseness result in lower 
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amplitude. These are consistent with the changes of modulation characteristics arising from the 
effect of fault induced load oscillation on the electric current consumption addressed earlier in [5]. 

To quantify these differences for separating these faulty cases, RMS values of residual signals are 
calculated for all the cases. Figure 7 shows the RMS of residual signals at different discharge 
pressures. It is clear that the RMS values of the residual current signals change with the degree of 
load oscillation. When the compressor operates at a special discharge pressure, such as 6.2bar, the 
RMS values of the residual signals are also changing with the different kinds of fault cases. It can be 
seen that the RMS value of the residual signal under the fault of valve leakage is higher than that of 
the healthy condition and the RMS value of the residual signal under the fault of belt looseness is the 
lowest in the four conditions. Moreover, when the discharge pressures increase, the RMS values of 
the residual signals are increasing accordingly under each kind of the fault cases. This means that if 
there is a fault in the compressor, the load fluctuation characteristic will be altered and hence the 
RMS values and its distinction will be different from that when the compressor is healthy with the 
increase of the discharge pressures. Based on this analysis, the faults can be detected and diagnosed 
by an RMS linear classifier in association with the discharge pressures. 
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Figure 6 Waveform of residual signals for faulty cases in one sliding window 
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Figure 7 DTW residual signal based detection and diagnosis 

5.3 Comparison with FT Based Analysis 
To benchmark the performance of the proposed method, the modulation characteristics of the 
current signals are analysed by two conventional methods: FT based spectrum technique which 
leads to a sideband amplitude as detection feature, and Hilbert transform analysis which produces 
an envelope level as the detection feature.  
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Figure 8 Spectrum sideband based detection and diagnosis 

In performing FT calculation a Hanning window is used to reduce the spectral leakage effects. Figure 
8 shows the results from the spectrum analysis technique. The feature extraction is carried out by 
extracting the spectral peak values of the sideband components which are used to reveal the 
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differences between different operating conditions. It can be seen that the sideband amplitude is 
unable to produce full separation results between different fault cases under various loads. 

In calculating the envelope, a low-pass filter with cut-off frequency of 120Hz is applied to the raw 
signal and then an FT based Hilbert transform method is used to obtain the envelope signals. Figure 
9 shows the RMS values of envelope signals for different fault cases under the different operating 
discharge pressures. It shows that the envelope analysis can also allow a full separation between the 
fault cases under the operating conditions of interest. The overall trend is very similar to that of 
DTW results, demonstrating that DTW is able to capture the modulation characteristics with high 
accuracy. However, as the envelope RMS values are calculated in the time domain, spectrum leakage 
etc may be minimised in the time domain envelope signals. 
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Figure 9 Envelope signal based detection and diagnosis 

A careful comparison of Figure 9 and Figure 7 may also find that the deviation of envelope signal 
RMS values is slightly wider than that of DTW residual RMS values. To make a detailed study, the 
relative standard deviation (RSD) at each pressure setting for different methods are calculated by  

     (26) 

where  is the RMS value for  data segment;  is the average RMS over different data segments 
and N is the total segment number. The division of average RMS in equation (26) removes the 
influences of pressures on RMS and a comparison of deviations between different methods at each 
pressure can be compared more accurately. Figure 10 shows RSD values for the three methods 
under different pressures. It was found that the standard deviation for DTW is the smallest, 
compared with the other two methods. It shows that DTW is less noise sensitive to noise influences 
and able to produce repeatable results. It also means that the DTW method can differentiate smaller 
changes for earlier fault detection and diagnosis. Therefore, DTW may produce more accurate and 
reliable diagnostic results. 
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Figure 10 Comparison of standard deviation of three analysis techniques 

6. Conclusion 
This work concluded that the analysis of electrical current signals based on the DTW has the significant 
potential to extract weak signals and hence to identify the presence of incipient faults of the downstream 
mechanical equipment of motor drives. Experiment evaluation is carried out based on a two-stage 
reciprocating compressor which can lead to significant modulations to motor current signals due to its 
reciprocating motions and fault conditions. Results show that the sideband components due to modulations 
can be extracted accurately by the DTW through the introduction of a reference signal of the same frequency 
contents with the supply power, which result in a residual signal that contains mainly the sideband contents 
for measuring the modulation levels. The RMS value of residual signal is then used as a feature to detect and 
diagnose common compressors faults: discharge valve leakage, transmission belt looseness and inter-cooler 
leakage. The correct diagnosis of these faults over wider operating conditions has demonstrated that the DTW 
based method is an effective way to obtain accurate features from motor current signals for monitoring the 
conditions and diagnosing common faults of downstream compressors. Comparatively, the accuracy and 
reliability of detection and classification from FT spectrum and envelope analysis are slightly lower in 
differentiating fault cases. In addition, the DTW processing procedure is implemented entirely in the time 
domain which is easier to be applied in real-time monitoring processes. 
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