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ABSTRACT 

Maintenance is of necessity for sustaining machinery availability and reliability in order to 

ensure productivity, product quality, on-time delivery, and safe working environment. The 

costly maintenance strategies such as corrective maintenance and scheduled maintenance have 

been progressively replaced by superior maintenance strategies in which condition-based 

maintenance (CBM) is one of the delegates. This strategy commonly consists of sequent 

modules such as data acquisition, signal processing, feature extraction and feature selection, 

condition monitoring, etc. However, approaches in literature which have been developed for 

each module and implemented for different applications are standalone instead of a 

comprehensive system. Furthermore, these approaches have been demonstrated in a laboratory 

environment without any industrial validations. For these reasons, an intelligent algorithm based 

CBM platform is proposed in this paper to be applied for rotating machinery easily and 

effectively. Subsequently, two case-studies are presented in order to evaluate the effectiveness 

of this platform in industrial applications. 

 

Keywords: Condition-based maintenance, Diagnostics, Prognostics, Signal processing, Feature 

extraction, Feature selection 

 

1. Introduction 

A failure in industrial equipment results in not only the loss of productivity but also timely 

services to customer, and they may even lead to safety and environmental problems. This 

emphasizes the necessity of maintenance in manufacturing operations. Maintenance can sustain 

the reliability and availability of product equipments, improve the product quality, increase 

productivity, and undertake the safety requirements. However, the general opinion is that 

maintenance is a necessary evil or nothing can be done to improve maintenance costs. Indeed, 

the cost of maintenance contributes a large part of the total operating and production cost in 

specific capital-intensive industries. For example, maintenance cost as a percentage of totals 
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value-added could be up to 20-50% for mining, 15-25% for primary metal and 3-15% for 

processing and manufacturing industries (Campbell, 1995). Additionally, with the augment of 

mechanization and automation, many modern plants have installed flexible automatic computer-

controlled and unmanned equipments, the maintenance costs have been increased substantially. 

Consequently, an efficient and reasonable maintenance strategy is necessary for implementation 

so that the minimum maintenance costs could be attained.  

The maintenance strategies could be broadly classified into two categories, namely 

corrective maintenance (CM) and preventive maintenance (PM) (Tsang, 1995; Lebold et al., 

2003), and summarized in Table 1. CM, also known as breakdown maintenance, is frequently 

performed by unplanned activities and implemented after the occurrence of an obvious 

functional failure, malfunction, or breakdown of the equipment. Its actions can store the 

functional capabilities of failed components by either repairing the defect or replacing the new 

ones. PM involves scheduled maintenance and condition-based maintenance (CBM). Scheduled 

maintenance is periodically carried out by lubricating, calibrating, refurbishing, inspecting, and 

checking equipment for each fixed period of time to lessen the deterioration leading to faults. 

This helps prevent the functional failures by replacing critical components at regular intervals 

which are shorter than their expected useful lives. However, random stoppages of equipment in 

CM or frequent replacements of the expensive components before the end of their lives in 

scheduled maintenance result in high cost of maintenance. 

CBM is a method to reduce the uncertainty of maintenance activities that frequently 

encounter in other strategies. In CBM, equipment operating conditions are continuously 

monitored to identify the need for maintenance in real time. The actual preventive actions are 

only taken when an incipient failure is supposed to have been detected. Therefore, CBM can 

significantly reduce the maintenance costs by reducing the number of unnecessary scheduled 

PM operations if properly established and effectively implemented. For that reason, CBM has 

been received great attention of researchers and practical maintainers. 

 

Table 1 Maintenance approaches. 

 

Generally, a CBM system comprises a number of functional modules: sensing and data 

acquisition, signal processing, feature extraction and feature selection, condition monitoring and 

health assessment, diagnostics, prognostics, decision reasoning, and human system interface. 

Therefore, in order to implement CBM system, it is required to integrate a variety of hardware 

and software components. In recent times, these components have been continuously improved 

to be applied and practiced in different applications by several researches. In case of hardware 

component, thanks to the fast forwarding development of sensor industry, not only the price and 

the size of sensors have been reduced but also more tasks have been performed in 

benchmarking with the conventional ones. A new sensor generation which involves micro-
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electromechanical systems and smart sensors has been employed for CBM to improve the 

sensor reliability and accuracy. Owing to the advantages of mutual information from multiple 

sensors, sensor fusion techniques are commonly engaged to lead the superiority. In case of 

software component, numerous standalone approaches have been fruitfully developed to 

implement the CBM system for rotating machinery. Most of these approaches focus on fault 

diagnostics and prognostics and fall into three main categories: statistical-based, model-based, 

and data driven-based. The applications of these approaches for rotating machinery could be 

found in the studies of Jardine (Jardine et al., 2006) and Heng (Heng et al., 2009). 

Even though standalone approaches in progress have been developed in literature, there are 

several fundamental opportunities to be considered: 

• Most of existing approaches are able to apply for specific equipment. A scalable 

methodology or systematic toolbox for generic machinery does not exist. 

• Several developed algorithms have been demonstrated in a laboratory environment 

without any industrial validations. 

• Currently, methods are generally focused on solving the failure prediction issue. Tools for 

system performance assessment and degradation prediction have not been well addressed. 

Furthermore, estimating the remaining lifetime of machinery is still a challenge of 

prognostics. 

• There is no available platform that can be applied for various rotating machinery. 

In recent years, several methods in our studies have been developed and applied for various 

rotating machinery in the range of signal processing to prognostics. For instance, wavelet 

transform and statistical method, which were used to extract salient features from raw noise and 

vibration signals, were combined with self-organizing feature map, learning vector quantization 

and support vector machine (SVM) for detecting and classifying faults of reciprocating 

refrigerator compressors (Yang et al., 2005). An expert system, namely VIBEX, was proposed 

to aid plant operators in diagnosing the cause of abnormal vibration for rotating machinery 

(Yang et al., 2005). The decision tree in this system was used as an acquisition of structured 

knowledge to obtain the diagnosing rules from decision table which is built by the cause-

symptom matrix. The integration of case-based reasoning with other methods such as Petri nets, 

adaptive resonance theory, the learning strategy of Kohonen neural network, etc was introduced 

to the fault diagnosis of induction motors (Yang et al., 2004). Other our works in diagnostic area 

could be found in references (Niu et al., 2007; Widodo et al., 2007; Niu et al., 2008; Widodo et 

al., 2008; Tran et al., 2008; Son et al., 2009). Alternatively, in prognostic area, we have 

proposed numerous models for forecasting future states (Tran et al., 2008; Tran et al., 2009; Niu 

et al., 2009; Pham et al., 2010; Caesarendra et al., 2010), assessing the degradation (Niu & Yang, 

2010; Pham et al., 2010; Caesarendra et al., 2010).  

Although most of our researches were validated in industrial equipment, they still were 
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standalone approaches. In order to compensate for the remaining shortcomings mentioned 

above, a systematic platform based on intelligent algorithms, namely intelligent CBM (I-CBM), 

is proposed in this study. This platform consists of sequent modules: data acquisition, signal 

processing, feature extraction and feature selection, condition monitoring and health assessment, 

fault diagnostics, and prognostics. Two case-studies are presented to perform the effectiveness 

of this platform in industrial application. 

 

2. Intelligent condition-based maintenance architecture 

The architecture of I-CBM platform is shown in Fig. 1. This platform contains modules with 

the aim of converting the rotating machinery signals into the useful information for the 

maintainers to take remedial actions, inspect the conditions, and conduct a repair on the defect 

before the catastrophic failure occurs. In each module, many applicable algorithms could be 

appropriately selected to obtain the best result. As depicted in Fig. 1, data can be obtained from 

the sensors installed on the machinery for condition monitoring or manually input working 

conditions. Subsequently, these data are transformed into features by selecting appropriate 

algorithms for signal processing, feature extraction, and feature selection. In the feature space, a 

proper algorithm is employed for each task of classifying the type of faults, performing the 

degradation, and forecasting the remaining lifetime of machinery. In order to easily and 

conveniently implement the proposed I-CBM, a toolbox has been developed which the main 

user interface is shown in Fig. 2 and the algorithms used for each module of this toolbox is 

summarized in Table 2. A brief introduction of these modules is given as follows: 

 

Fig. 1. The architecture of I-CBM platform. 

Fig. 2. The main user interface of I-CBM platform. 

Table 2 Algorithms in I-CBM. 

 

Data acquisition: A major challenge confronted with CBM is that how the functional 

symptoms are monitored in terms of measurable machinery states. Data are a requirement for 

this challenge. Data acquisition is a process of collecting and storing useful data from target 

system to monitor the condition, diagnoses the faults, and prognosticate the future states and 

remaining lifetime. According to (Jardine et al., 200), data used for CBM could be categorized 

into two main types: event data and condition monitoring data. The former includes the 

information on what has happened (e.g., installation, breakdown, overhaul, etc.) and what has 

been done (e.g., minor repair, preventive maintenance, oil change, etc.) to the machinery. The 

latter is the measurements related to the health condition/states of the machinery. Condition 

monitoring data is very versatile which could be vibration, acoustic, oil analysis, temperature, 
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pressure, moisture, humidity, weather or environment data, etc. In this platform, vibration and 

current data are commonly used due to the easy-to-measure signals and analysis. 

Signal processing: is a process of removing distortions and restoring the original shape of 

signals, removing sensor data which is not relevant, transforming the signal to make relevant 

features more explicit. Many methods could be applied for this process in I-CBM platform, for 

example wavelet transform, fast Fourier transforms (FFT) which is demonstrated in Fig. 3. 

 

Fig. 3. FFT for vibration signals. 

 

Feature representation: Data obtained from signal processing process is rarely usable in its 

raw form due to the huge dimensionality. The huge dimensionality causes not only difficulties 

of data storage but also data transfer. Therefore, representing data as features is the demand for 

reduce the huge dimensionality. Feature representation or feature calculation module is a sub-

module of feature-based techniques, as shown in Fig. 4, and plays a crucial role in attaining the 

performance of I-CBM platform. Here, the represented features include time domain features 

(e.g. root mean square, variance, shape factor, skewness, kurtosis, crest factor, etc.), frequency 

domain features (e.g. content at the feature frequency, the amplitude of FFT spectrum, etc.). Fig. 

5 presents an example of feature representation module for vibration signals. 

 

Fig. 4. The user interface of module of feature-based techniques. 

Fig. 5. An example of feature representation module. 

 

Feature extraction and/or feature selection: Total features obtained in the previous process 

can cause cures of dimensionality and peaking phenomenon that greatly degrade the 

classification accuracy. Feature extraction can be viewed as a pre-pruning process to choose a 

small subset of total features that is necessary and sufficient to describe the overall operations of 

machine systems. The importance of feature extraction is not only to reduce the search space, 

but also to speed up the process of classification and also to improve the quality of classification. 

The extracted feature vectors will serve as one of the essential inputs to fault diagnosis and 

prognosis algorithms. In this platform, common algorithms used for feature extraction are 

principal component analysis (PCA), independent component analysis (ICA), kernel PCA, 

kernel ICA, linear discriminant analysis, etc., as an example shown in Fig. 6. Even though 

dimensionality is reduced by the feature extraction process, each feature set contains many 

redundant or irrelevant features as well as salient features in feature space. Consequently, 

feature selection process is of necessity to find an optimal subset of features that maximizes 

information content or predictive accuracy. Fig. 7 is the result obtained from feature selection 

process. 
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Fig. 6. An example of feature extraction in I-CBM platform. 

Fig. 7. The result of feature selection in I-CBM platform. 

 

Diagnostics: This module is used for analyzing the pattern embedded in the features to 

determine the root causes of previous observed faults or degradation. In order to attain this 

purpose by using the I-CBM platform, several classification methods are applied. Furthermore, 

the maintainers can compare the performance of each method to certainly affirm the condition 

of machine. Fig. 8 describes the diagnosing results of induction motor faults. 

Health assessment: The health status and the degradation of machinery are performed in this 

module by using condition parameters. It also provides the unacceptable level or the failure 

threshold for the operations so that the appropriate actions will be taken to avoid the 

consequences of failure before the failure occurs. 

Prognostics: Prognostics is the ability to predict the remaining lifetime, future health states, 

or reliability of machinery based on current health assessment and historical trends. Thus, there 

are two main functions of prognostics: failure prediction and remaining lifetime estimation. 

Failure prediction allows the pending failures to be identified before they come to a serious 

situation. Remaining lifetime is the time left before a particular fault will occur or any part 

needs to be replaced. The techniques related to prognostics can be classified as experience-

based, model-based, and data driven-based. The prognostics module of I-CBM platform 

addresses both these functions in which most of methods belong to data driven-based 

techniques. Fig. 9 shows a forecasted result of kurtosis feature of bearing by using ARMA/ 

GARCH model (Pham et al., 2010). 

 

Fig. 8. Performance of each method for fault diagnostics of induction motor. 

Fig. 9. Forecasted result of machine state. 

 

3. Industrial case-studies 

Two industrial case-studies are presented to demonstrate the applications of proposed 

platform for rotating machinery. In the case of diagnostics, induction motor is considered due to 

its indispensable roles in several industrial applications. The faults of induction motor may not 

only cause the interruption of production operation but also increase costs, decrease product 

quality and effect safety of operators. Most common faults of induction motors are bearing 

failures, stator winding failures, broken rotor bar or cracked rotor end-rings and air-gap 

irregularities (Acosta et al., 2006). To diagnose these faults in this case-study, a combination of 

wavelet transform and SVM, namely W-SVM, are employed. In the case of prognostics, a low 
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methane compressor which is an important equipment in petrochemical plant is used as an 

object for investigation. Self-organizing map (SOM) and failure threshold determination are 

used for assessing the degradation of machine and setting an alarm, respectively. Once the 

degradation value is higher than failure threshold, the Cox’s proportional hazard model (PHM) 

(Cox, 1972) in association with SVM is triggered to forecast the remaining lifetime of machine. 

 

3.1. Rotating machinery fault diagnostics 

3.1.1. Data acquisition and feature calculation 

Data acquisition was conducted on induction motor of 160 kW, 440 V, 2 poles as shown in 

Fig. 10. Six accelerometers were installed along vertical, horizontal and axial directions to 

pickup vibration signal at drive-end and non drive-end. The maximum frequency of the used 

signals and the number of sampled data were 60 Hz and 16384, respectively. The condition of 

induction motor is briefly summarized in Table 3. Each condition was labeled as class from 1 to 

7. There are totally 126 features calculated from 6 signals, 21 features and 98 samples 

calculated from 7 conditions, 14 measurements. 

 

Fig. 10. Data acquisition of induction motor. 

Table 3 Condition of induction motor. 

 

3.1.2. Feature extraction 

Structure of three first original features, those are mean, RMS, and shape factor are plotted 

in Fig. 11. This figure shows the performance of original features which are containing overlap 

in some conditions. To make original features well clustered, applying component analysis is 

suggested in this study. Component analysis via ICA, PCA, and their kernel are used to extract 

and reduce the feature dimensionality based on eigenvalue of covariance matrix as described in 

Fig. 12. After performing component analysis, the features have been changed into independent 

and principal components, respectively. The first three independent and principal components 

from PCA, ICA, and their kernel are plotted in Fig. 13. It can be observed that the clusters for 

seven conditions are separated well. It indicates that component analysis can perform feature 

extraction and all at once do clustering each condition of induction motors. 

 

Fig. 11. Original features. 

Fig. 12. Feature reduction using component analysis. 

Fig. 13. The first three principal and independent components. 

 

According to the eigenvalue of covariance matrix, the features are changed into component 

analysis and reduce only 5 component analysis needed for classification process. The other 
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features are discarded due to small of eigenvalue of covariance matrix. The selected component 

analysis is then used as input vectors for W-SVM classifier to diagnose the faults of induction 

motor. 

 

3.1.3. Result and discussion 

The SVM based multi-class classification is applied to perform the classification process 

using one-against-all methods. Vapnik (Vapnik, 1982) describe a method which used the 

projected conjugate gradient algorithm to solve the quadratic programming (QP) problem in 

SVM. In this study, 1 and 10
-7

 are assigned to the parameter C (bound of the Lagrange 

multiplier) and λ (condition parameter for QP method), respectively. Furthermore, wavelet 

kernel function using Daubechies series is performed. The parameter δ in wavelet kernel refers 

to number of vanishing moment and is set 4. In the training process, the data set is also trained 

using RBF kernel function as comparison. The parameter γ for bandwidth RBF kernel is user 

defined equal to 0.5. 

The complex separation boundaries of W-SVM are presented in Fig. 14. In these figures, the 

circle refers to the support vector that states the correct recognition in W-SVM. Each condition 

of induction motor is well recognized using Daubechies wavelet kernel. In the classification 

process using W-SVM, each condition of induction motors can be clustered well. The good 

separation among conditions shows the performance of W-SVM doing recognition of 

component analysis from vibration signal features. 

The performance of classification process is summarized in Table 4. All data set come from 

component analysis are accurately classified using Daubechies wavelet kernel and SVM and 

reached accuracy 100% in training and testing, respectively. SVM using RBF kernel function 

with kernel width γ = 0.5 is also performed in classification for comparison with Daubechies 

wavelet kernel. The results show that the performance of W-SVM is similar to SVM using RBF 

kernel function, those are 100% in accuracy of training and testing, respectively. In the case of 

number support vectors, SVM with RBF kernel function needs lower than W-SVM except 

kernel PCA. 

 

Fig. 14. Separation boundaries of W-SVM. 

Table 4 Results of classification. 

 

3.2. Rotating machinery prognostics 

3.2.1. Data acquisition 

Methane compressor shown in Fig. 15 is important equipment used in petrochemical 

industry where normal production flow is required to maintain. Due to the importance of this 

machine, condition monitoring and prognostics are of necessity to sustain its operation. This 
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compressor is driven by a 440 kW motor, 6600 V, 2 poles and operating at a speed of 3565 rpm. 

Other information of the system is summarized in Table 5. 

The condition monitoring system of this compressor consists of two types: off-line and on-

line. In the off-line system, the acceleration sensors are installed along axial, vertical, and 

horizontal directions at the locations of drive-end motor, non drive-end motor, male rotor 

compressor and suction part of compressor. In the on-line system, acceleration sensors are 

located at the same places as in the off-line system but only in the horizontal direction. 

Vibration signal was recorded from August 2005 to November 2005. The average recording 

duration was 6 hours during the data acquisition process. 

 

Fig. 15. Low methane compressor. 

Table 5 Information of the system. 

 

3.2.2. Machine health assessment and failure threshold determination 

After acquiring vibration signal, RMS and envelope features used in this study are extracted. 

RMS is a common feature, even the only indicator used in ISO 10816 and ISO 7919 for 

machinery condition monitoring and alarming. Envelope is useful to detect glitches (narrow 

pulse signals). Both of the two features are often used for condition monitoring of rotating 

machinery as plotted in Figs. 16 and 17. In these figures, the machine was obviously in normal 

operating condition during the first 300 points of the time sequence. At the 291st point, the 

machine condition significantly reduced in comparison with other points. After the 300th point, 

the machine suddenly changed the condition and was broken down at the 308th point. Thus, 

there was a process of degrading from normal operating state to failure state in this compressor. 

 

Fig. 16. The entire peak acceleration data of low methane compressor. 

Fig. 17. The entire envelope acceleration data of low methane compressor. 

 

To perform this degradation, a process of normalization is conducted to transform values of 

features into a common scale and group them as input set for feature-fusion. SOM neural 

network is employed to combine the input set into a single out indicator which is minimum 

quantization error (MQE) (Qiu et al., 2003), as shown in Fig. 18. Comparing with the plots of 

RMS and envelope features, MQE indicator maintains a more steady state than envelop curve, 

whilst enhances a degradation trend than RMS curve, which is especially appropriate for initial 

fault detection and health degradation prediction. Additionally, MQE indicator in Fig. 18 can be 

obviously recognized the sudden increase from the 300th point. This appropriates to the sudden 

change of RMS feature mentioned above as well as indicates the abnormal value at the 291st 

point. Therefore, MQE is adequate to assess the machine degradation.  
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Fig. 18. Machine health indicator. 

 

The next step is to determine the failure threshold so that the prognostic module is triggered. 

Further reading the method for determining this threshold could be found in reference (Ginart et 

al., 2006). Failure threshold is also employed to attain the censored data which is used for 

generating the PHM in the next process. This data consists of a series of “0” and “1” values 

indicating the normal condition and failure condition, respectively. 

 

3.2.3. Remaining lifetime estimation 

To estimate the remaining lifetime, The Cox’s PHM is built based on the censored data 

obtained from previous step. The parameters of this PHM are estimated as β1 = −0.8042 for 

RMS feature and β1 = 0.1062 for envelope feature. Hazard rate and survival function estimation 

of this PHM are depicted in Figs. 19 and 20, respectively. In Fig. 19, the hazard rate gradually 

increases with respect to time. From the 300th point, the hazard rate significantly changes 

because of the rapid growth of RMS values. Thus, the more the hazard rate increases, the less 

the reliability is. 

 

Fig. 19. Hazard rate estimation. 

Fig. 20. Survival function estimation. 

 

After attaining the survival function, the process of training and forecasting by using SVM in 

association with time-series forecasting techniques is carried out. The multi-step ahead direct 

prediction method [20] of time-series forecasting techniques is applied for this study. The values 

of survival function up to 291st point are used to train SVM model in which the Gaussian kernel 

2 2( , ) exp( | | /(2 ) )K x y x y σ= − −  is employed. The other predefined parameters ε and C are set 

to 0.001 and 500, respectively. Moreover, 5-fold cross validation is also applied to choose the 

best SVM model. The predicted results of 17 points from the 292nd point where the machine 

commences degrading the state are depicted in Fig. 21. Even though the multi-step ahead is 

employed, the predicted results is closely resemble with the actual values. From the predicted 

results, the remaining lifetime could be estimated by using the predefined survival probability 

for fault. For example, if this value is chosen as 0.2, the point where predicted result reaches for 

0.2 is 306th. This means the predicted remaining lifetime of machine after degrading state 

occurred is 84 hours ((306 − 292) × 6 = 84) while the actual remaining lifetime is 84 hours (the 

306th point). As a result, the prognostic module of I-CBM platform can estimate accurately the 

remaining lifetime of the methane compressor. 
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Fig. 21. Forecasting results. 

 

4. Conclusions 

This study proposes the I-CBM platform based on standalone data-driven approaches as a 

comprehensive system for rotating machinery. This platform contains necessary modules to 

adequate the request for CBM system involved hardware and software components. A toolbox 

has also been developed as a software component to easily and conveniently implement this 

platform in application. Two industrial cases are used to validate the effectiveness of the I-CBM 

platform. The accurate results obtained from these cases indicate that the I-CBM platform can 

fulfill the shortcomings of previous approaches i.e. systematic tool for various rotation 

machinery, performance degradation assessment, remaining lifetime estimation, and industrial 

validation. 
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Fig. 1. The architecture of I-CBM platform. 

 

 

 

Fig. 2. The main user interface of I-CBM platform. 
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Fig. 3. FFT for vibration signals. 

 

 

 

 

 

Fig. 4. The user interface of module of feature-based techniques. 
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Fig. 5. An example of feature representation module. 

 

 

 

 

Fig. 6. An example of feature extraction in I-CBM platform. 
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Fig. 7. The result of feature selection in I-CBM platform. 

 

 

 

 

Fig. 8. Performance of each method for fault diagnostics of induction motor. 
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Fig. 9. Forecasted result of machine state. 

 

 

Fig. 10. Data acquisition of induction motor. 
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Fig. 11. Original features. 
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Fig. 12. Feature reduction using component analysis. 
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(b) Independent components 
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(c) Kernel principle components 
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(d) Kernel independent components 

Fig. 13. The first three principal and independent components. 
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(a) Daubechies kernel with PC data 
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(b) Daubechies kernel with IC data 
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(c) Daubechies kernel with kernel PC data 
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(d) Daubechies kernel with kernel IC data 

Fig. 14. Separation boundaries of W-SVM. 

 

 

Fig. 15. Low methane compressor. 
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Fig. 16. The entire peak acceleration data of low methane compressor. 
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Fig. 17. The entire envelope acceleration data of low methane compressor. 
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Fig. 18. Machine health indicator. 
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Fig. 19. Hazard rate estimation. 
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Fig. 20. Survival function estimation. 
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Fig. 21. Forecasting results. 
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Table 1  

Maintenance approaches. 

Maintenance 
strategy 

Frequency of 
maintenance 

Criteria of initiating 
maintenance 

Condition 
assessment 

Results 

Corrective Unscheduled Upon failure/ work 
stoppage to fix 
immediate problems 

Unusual ·Unpredictable asset 
availability and reliability 

Preventive Pre-scheduled Prescribed based on 
failure history or test 
data 

Unusual/ manual 
data collection 

·Maintenance performed 
more often than may be 
necessary 

Condition-
based 

Just-in-time Prescribed based on 
statistical patterns in 
operating 
parameters 
 

Continuous/real-
time sensor 
monitoring and 
data collection 

·Maintenance performed 
when necessary ·Highest asset availability 
and reliability of mission-
critical assets ·Continuous data collection 
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Table 2  
Algorithms in I-CBM. 
Module name Methods 

Signal processing  Wavelet transform 

Fast Fourier transform 

Empirical mode decomposition 

Feature representation Time domain analysis 

Frequency domain analysis 

Time-frequency domain analysis 

Feature extraction Principal component analysis (PCA)  

Independent component analysis (ICA) 

Kernel PCA 

Kernel ICA 

Fisher discriminant analysis (FDA) 

Linear discriminant analysis (LDA) 

Generalized discriminant analysis (GDA) 

Clustering techniques 

Feature selection Individual feature evaluation based on space distribution 

Condition entropy 

Backward feature selection 

Forward feature selection 

Branch and bound feature selection 

Plus l-take away r feature selection 

Floating forward feature selection 

Distance evaluation technique 

Taguchi method-based feature selection 

Genetic algorithm 

Diagnostics Linear classifier 

Quadratic classifier 

Bayesian classifier 

k-nearest neighbors 

Self-organizing feature map neural network  

Learning vector quantization neural network 

Radial basic function neural network 

ART-Kohonen neural network 

Support vector machine (SVM) 

Decision tree 

Random forest 

Adaptive neuro-fuzzy integrated system (ANFIS) 

Data fusion system 

Prognostics Adaptive network-based fuzzy inference system (ANFIS) 

Classification and regression trees (CART) 

Dampster-Shafer regression 

Autoregressive moving average (ARMA) 

Generalized autoregressive conditional heteroscedasticity (GARCH) 

Relevance support vector machine (RVM) 

Support vector machine (SVM) 

Logistic regression 

Proportional hazard model 
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Table 3  
Condition of induction motor. 

Class No. Condition Description Others 

1 Bent rotor  Maximum shaft deflection 1.45mm 

2 Eccentricity  Static eccentricity (30%) Air-gap: 0.25 mm 

3 MCDE  Magnetic center moved (DE) 6 mm 

4 MCNDE  Magnetic center moved (NDE) 6 mm 

5 Normal  No faults - 

6 Unbalance  Unbalance mass on the rotor 10 gr 

7 Weak-end shield Stiffness of the end-cover - 

 

 

 

 

Table 4  
Results of classification. 

Kernel 

Accuracy (training/test), % Number of SVs 

IC PC 
Kernel 

IC 

Kernel 

PC 
IC PC 

Kernel IC Kernel 

PC 

Wavelet  

Daubechies 100/100 100/100 100/100 100/100 35 39 39 17 

RBF-Gaussian 

(γ = 0.5) 
100/100 100/100 100/100 100/100 22 22 25 33 

 

 

 

 

Table 5  
Information of the system. 

Electric motor Compressor 

Voltage 6600 V Type Wet screw 

Power 440 kW 
Lobe 

Male rotor (4 lobes) 

Pole 2 Pole Female rotor (6 lobes) 

Bearing NDE:#6216, DE:#6216 
Bearing 

Thrust: 7321 BDB 

RPM 3565 rpm Radial: Sleeve type 

 

 


