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Abstract 

 This paper presents an improvement of hybrid of nonlinear autoregressive with exogenous 

input (NARX) and autoregressive moving average (ARMA) for long-term machine state 

forecasting based on vibration data. In this study, vibration data is considered as a combination 

of two components which are deterministic data and error. The deterministic component may 

describe the degradation index of machine, whilst the error component can depict the 

appearance of uncertain parts. An improved hybrid forecasting model, namely NARX-ARMA 

model, is carried out to obtain the forecasting results in which NARX network model which is 

suitable for nonlinear issue is used to forecast the deterministic component and ARMA model 

are used to predict the error component due to appropriate capability in linear prediction. The 

final forecasting results are the sum of the results obtained from these single models. The 

performance of the NARX-ARMA model is then evaluated by using the data of low methane 

compressor acquired from condition monitoring routine. In order to corroborate the advances of 

the proposed method, a comparative study of the forecasting results obtained from NARX-

ARMA model and traditional models is also carried out. The comparative results show that 

NARX-ARMA model is outstanding and could be used as a potential tool to machine state 

forecasting. 

 

Keywords: Autoregressive moving average (ARMA), Nonlinear autoregressive with exogenous 

input (NARX), Long-term prediction, Machine state forecasting 

 

1. Introduction 

Machine state forecasting gradually plays an important role in modern industry due to its 

ability to foretell the states of machine in the future. This provides the necessary information for 

system operators to implement the essential actions in order to avoid the catastrophic failures, 

which lead to a costly maintenance or even human casualties. Moreover, foretelling the states of 

machine enables maintenance action to be scheduled more effectively, avoids unplanned 

breakdown, assists maintainers in estimating the remaining useful life, provides alarms before a 
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fault reaches the critical levels to prevent machinery performance degradation and malfunction 

[1], etc. Consequently, machine state forecasting has been considerably attracted the attention of 

researchers in the recent time. 

In order to predict the future states of machine, the forecasting model uses the available 

observations that are generated from measured data by using appropriate signal processing 

techniques. The measured data could be vibration, acoustic, oil analysis, temperature, pressure, 

moisture, etc. Among of them, vibration data is commonly used because of the easy-to-measure 

signals and analysis. Several forecasting models have been successfully proposed in literature in 

which model-based techniques and data-driven based techniques were commonly utilized. 

Model-based techniques are applicable to where the accurate mathematical models can be 

constructed based on the physical fundamentals of a system, whilst data-driven based 

techniques utilize and require large amount of historical failure data to build a forecasting 

models that learn the system behavior. Obviously, data-driven based techniques are inaccurate 

in comparison with model-based techniques in prediction capability. However, data-driven 

based techniques, which are frequently based on artificial intelligence, can flexibly generate the 

forecasting models regardless of the complexity of system. Therefore, these techniques that 

some of those have been proposed in references [1-5] are the first selection of researchers’ 

investigations.  

An alternative approach to ameliorate the predicting capability in time-series forecasting is 

the combination of model-based and data-driven based techniques. According to Zhang [6], the 

reasons for hybridizing these models are: (i) in practice, it is difficult to determine whether a 

time-series under study is generated from a linear or nonlinear underlying process or whether 

one particular method in more effective than the other in out-of-sample forecasting; (ii) data 

obtained from real-work is purely linear or nonlinear that neither model-based techniques nor 

data-driven based techniques can be adequate in modeling and forecasting. Model-based 

techniques can adequately capture the linear component of time series while data-driven based 

techniques are highly flexible in modeling the nonlinear components. Accordingly, numerous 

hybrid models have been depicted to provide the investors with more precise prediction. For 

instance, Zhang [6] combined autoregressive integrated moving average (ARIMA) model and 

neural network model to forecast three well-known time-series sets that were sunspot data, 

Canadian lynx data and the British pound/US dollar exchange rate data. Ince and Trafalis [7] 

proposed a hybrid model including parametric techniques (e.g. ARIMA, vector autoregressive) 

and nonparametric techniques (e.g. support vector regression, artificial neuron networks) for 

forecasting the exchange market. A hybrid of ARIMA and support vector machines was 

successfully presented by Pai et.al [8] for predicting stock prices problems. Other outstanding 

hybrid approaches could be found in references [9-11]. Most of these hybrid models were 

implemented as a following process: first, the model-based technique was used to predict the 
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linear relation, then the data-driven based technique was utilized to forecast the residuals 

between actual values and predicted results obtained from previous step. The final results were 

the sum of results gained each model. Furthermore, these hybrid approaches merely regarded as 

short-term prediction methodology. 

In this study, an improved hybrid forecasting model is proposed for long-term prediction the 

operating states of machine. The prediction strategy used here is recursive which is one of the 

strategies mentioned in reference [12]. This forecasting model involving nonlinear 

autoregressive with exogenous input (NARX) [13] and autoregressive moving average (ARMA) 

[14] is novel in the following aspects: (1) vibration data indicating the state of machine is 

divided into deterministic component and error component that is the residual between the 

actual data and deterministic component. NARX and ARMA are simultaneously employed to 

forecast the former and the latter, respectively. The final forecasting results are the sum of 

results obtained from single model; (2) long-term forecasting, which is still a difficult and 

challenging task in time series prediction domain, is applied. 

Additionally, the number of observations used as the input for forecasting model, so-called 

embedding dimension, is the problem often encountered in time series forecasting techniques. 

Embedding dimension could be estimated by using either Cao’s method [15] or false nearest 

neighbor method (FNN) [16]. However, FNN method depends on the chosen parameters 

wherein different values lead to different results. Furthermore, FNN method also depends on the 

number of available observations and is sensitive to additional noise. Cao’s method overcomes 

the shortcomings of the FNN approach and therefore, it is chosen in this study. 

  

2. Background knowledge 

2.1. Nonlinear autoregressive model with exogenous inputs (NARX) 

The NARX model is an important class of discrete-time nonlinear systems that can be 

mathematically represented as follows: 

( 1) [ ( ) ( 1) ( ) ( ) ( 1) ( 1) ]

[ ( ); ( ); ]

, ,..., 1 ; , ,..., , W

y u W

uy
y t f t t t t t n

f n n

y y y t n u u u+ = − − − +

=

− +

 (1) 

where u(t) ∈ R and y(t) ∈ R respectively represent the input and output of the model at time t, 

nu ≥ 1 and nu ≥ 1 (ny ≥ nu) are the input-memory and output-memory orders, W is a weights 

matrix, f is the nonlinear function which should be approximated by using multilayer perceptron. 

The structure of an NARX network is depicted in Fig.1.  

 

Fig. 1 Structure of an NARX network 

 

Basically, NARX network is trained under one out of two models: 
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Parallel (P) mode: the output is fed back to the input of the feed-forward neural network as 

part of the standard NARX architecture: 

ˆ[ˆ( 1) ( ); ( ); ]

ˆ[ ( ) ( 1) ( 1) ( ) ( 1) ( 1) ]ˆ ˆ ˆ, ,..., ; , ,..., ,

y u W

W

p

y u

fy t n n

f t t t n t t t ny y y u u u

+ =

= + − + + − +
 (2) 

Series-Parallel (SP) mode: the output’s regressor is formed only by actual values of the 

system’s output: 

ˆ[ ]ˆ( 1) ( ); ( );

ˆ[ ( ) ( 1) ( 1) ( ) ( 1) ( 1) ], ,..., ; , ,..., ,

W

W

sp

y u

f yy t t u n

f t t t n t t t ny y y u u u

=+
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As mentioned above, NARX network inputs include the regressors of inputs and outputs of 

system while a time series is one or more measured output channels with no measured input. 

Hence, the forecasting abilities of the NARX network may be limited when applying for time 

series data without regressor of inputs. In this kind of application, the tapped-delay line over the 

input signal is eliminated, thus the NARX is reduced to the plain focused time-delay neural 

network architecture [17]:  

ˆ( 1) [ ( ), ( 1), ( 1)]
y

y t f y t y t y t n+ = − − +  (4) 

According to [18], a simple strategy based on Takens’ embedding theorem was proposed for 

solving this problem. This strategy allows the computational abilities of the original NARX 

network to be fully exploited in nonlinear time series prediction tasks and is described as 

following processes: 

Firstly, the input signal regressor, denoted by u(t), is defined by the delay embedding 

coordinates:  

( ) [ ( ), ( ), ( ( 1) )]
E

u t x t x t x t dτ τ= − − −  (5) 

where 
E u

d n=  is embedding dimension and τ is embedding delay. 

Secondly, since the NARX network can be trained in two different modes, the output signal 

regressor y(t) can be written as follows: 

( )( ) [ ( ), ( 1),..., 1 ]
sp y

t ny t x t x t x −= − +  (6) 

ˆ( ) [ ( ), ( 1), ( 1)]ˆ ˆ
p y

y t x t t t nx x= − − + ; (7) 

where the output regressor y(t) for the SP mode in Eq. (6) contains ny past values of the actual 

time series, while the output regressor y(t) for the P mode in Eq. (7) contains ny past values of 

the estimated time series.  

For a suitably trained network, these outputs are estimates of previous values of x(t+1), and 

should obey the following predictive relationships implemented by the NARX network: 
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ˆ( 1) [ ]( ); ( );y Wu
sp

x t f t t+ =  (8) 

ˆ( 1) [ ]( ); ( );y Wu
p

x t f t t+ =  (9) 

The NARX networks trained according to Eqs. (8) and (9) are denoted onwards by NARX-

SP and NARX-P networks, respectively. 

 

2.2.  Autoregressive Moving Average (ARMA)  

ARMA (p, q) prediction model for time series yt is given as follows: 

1 1

p q

t i t i j t j t

i j

y c yϕ φ ε ε
− −

= =

= + + +∑ ∑  (10)

 

where c is a constant, p is the number of autoregressive orders, q is the number of moving 

average orders, ϕi is autoregressive coefficients, φi is moving average coefficients and εt is a 

normal white noise process with zero mean and variance σ2
.  

Box and Jenkins [19] proposed three iterative steps to build ARMA models for time series: 

model identification, parameter estimation and diagnostic checking. The elaborate information 

of each step could be found in reference [6]. In order to determine the orders of ARMA model, 

autocorrelation function (ACF) and partial autocorrelation function (PACF) are used in 

conjunction with the Akaike information criterion. Other selection technique in associated with 

ACF and PACF for estimating the orders of ARMA model is maximum likelihood estimation 

(MLE) [20] which is used in this study.  

For a weak stationary stochastic process, the first and second moments exist and do not 

depend on time: 

1 2

2

1 2
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( ) ( ) ( )
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L
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From the conditions in the Eq. (11), the covariances are functional only of the lag k. These 

are usually called autocovariances. The autocorrelations, denoted as ρk, can be derived only 

depend on the lag. 

0

( , ) [( )( )]

( ) ( )

t t k t t k

k k

yt t k

k

Cov Y Y E Y Y

Var Y Var Y

µ µ
ρ

σ

γ

γ

+ +

+

− −
= =

=

 (12) 

The autocorrelations considered as a function of k are referred to as the ACF. Note that since: 
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it follows that
k k

γ γ
−

= , and only the positive half of the ACF is usually given. 

In practice, due to a finite time series with N observations, the estimated autocorrelation can 

be only obtained. If rk denotes the estimated autocorrelation coefficient, the formula to obtain 

these parameters is 

1
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1
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then the partial ACF can be attained as 

1 1 2 2
( )

t t k t k t kk t k t
w Y w w wµ ε

− − −
= − = Φ + Φ + + Φ +L  (15) 

 

 

3. Improved hybrid model for long-term forecasting 

Vibration data which is used to indicate the state of machine is not easy to be captured due to 

its complexity. Hence, none of ARMA and NARX is a suitable model for forecasting this kind 

of data. By using NARX network, the high noise of this data leads to difficult convergence if 

the number of neurons is small or over-fitting if the number of neurons is large. On the other 

hand, ARMA model is not able to apply for the data which is inadequate the stationary 

condition. 

In this paper, an improved hybrid model is proposed in which the vibration data is divided 

into two components: deterministic and error. The deterministic component 

[ ]
1 2 1
, , ..., , ...,

tk
x x x x x

−
=  is obtained from a time series data [ ]

1 2
, , ..., , ...,

tk
y y y y y= by using 

filtering technique, where xk is described as: 

1 1
, 1, 2, 3, ..., 1

3

k k k

k
k t

y y y
x − +

= −
+ +

=  (16) 

The error component [ ]1 2 1
, , ..., ,...,

tk
e e e e e

−
=  is the residual between y and x, where 

1, 2, 3, ..., 1,
k k k

k te y x = −= − . The deterministic component is degradation indicator which 

describes clearly the machine’s health. This component is suitably captured by NARX network. 

The error component which is suitable for ARMA model due to being stationary describes the 

appearance of uncertain parts. The process of m step-ahead prediction using this proposal is 

shown in Fig. 2 

 

Fig. 2 The forecasting process of NARX-ARMA model 

 

4. Proposed forecasting system 

In order to forecast the future states of machine, the proposed system comprises four 
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procedures sequentially as shown in Fig. 3, namely, data acquisition, building model, validating 

model, and predicting. The role of each procedure is explained as follows: 

Step 1 Data acquisition: this procedure is used to obtain the vibration data from machine 

condition. This data is then split into two parts: training set and testing set. Different data is used 

for different purposes in the prognosis system. Training set is used for creating the prediction 

models whilst testing set is utilized to test the trained models. 

Step 2 Building model: Training data is separated into two components: deterministic 

component and error component. They are used to build NARX-ARMA model as the process 

mentioned in the previous section. 

Step 3 Validating model: this procedure is used for measuring the performance capability. 

Step 4 Forecasting: long-term prediction method is used to forecast the future states of 

machine. The predicted results are measured by the error between predicted values and actual 

values in the testing set. 

 

Fig. 3 Proposed forecasting system 

 

5. Experiments and results 

5.1 Experiments 

The proposed method is applied to a real system to predict the trending data of a low 

methane compressor of a petrochemical plant. The compressor shown in Fig. 4 is driven by a 

440 kW motor, 6600 volt, 2 poles and operating at a speed of 3565 rpm. Other information of 

the system is summarized in Table 1 

 

Fig. 4 Low methane compressor 

Table 1 Information of the system 

 

The condition monitoring system of this compressor consists of two types, namely off-line 

and on-line. In the off-line system, accelerometers were installed along axial, vertical, and 

horizontal directions at various locations of drive-end motor, non drive-end motor, male rotor 

compressor and suction part of compressor. In the on-line system, accelerometers were located 

at the same positions as in the off-line system but only in the horizontal direction. 

The trending data was recorded from August 2005 to November 2005 which included peak 

acceleration and envelope acceleration data. The average recording duration was 6 hours during 

the data acquisition process. Each data record consisted of approximately 1200 data points as 

shown in Figs 5 and 6, and contained information of machine history with respect to time 
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sequence (vibration amplitude). Consequently, it can be classified as time-series data. 

 

Fig. 5 The entire peak acceleration data of low methane compressor 

Fig. 6 The entire envelope acceleration data of low methane compressor 

 

5.2. Results 

In order to build the forecasting model, 719 points of peak acceleration data and 749 points 

of envelope acceleration data are used. The remaining points of each data are then utilized to 

test the forecasting model. Additionally, the root-mean square error (RMSE) given in Eq. (17) is 

employed to evaluate forecasting capability 

( )

N

yy
RMSE

N

i ii∑ =
−

= 1

2ˆ
 (17) 

where N represents the number of data points,
i

y is actual value and ŷi represents the predicted 

value. 

The deterministic component xt is obtained from vibration data by using filtering technique. 

Figs. 7 and 8 show the deterministic data after filtering of the envelope and peak acceleration 

data. The NARX forecasting model is then generated by using these data. To build NARX 

model, the embedding dimension
E

d must be firstly determined. As mentioned in the 

introduction section, FNN as well as Cao’s method could be possibly used to estimate dE. Cao’s 

method can settle on a suitable embedding dimension of time series and distinguish 

deterministic signals and stochastic signals clearly. That is a reason why Cao’s method is chosen 

in this paper. According to [15], there are two important values that are E1(d) and E2(d) needed 

to be calculated. E1(d) is used to choose the minimum embedding dimension dE when it reaches 

the saturation. E2(d) is used for the problem in practical computations where E1(d) is slowly 

increasing or has stopped changing if embedding dimension d is sufficiently large. For random 

data, the future values are independent of the past values, hence, E2(d) ≈ 1 for any value of d. 

However, for deterministic data, E2(d) is certainly related to as a result, it cannot be a constant 

for all d. Figs. 9 and 10 depict the embedding dimension applied for deterministic component of 

envelope and peak acceleration data, respectively. In these figures, E1(d) obviously reaches its 

saturation at d = 4. Consequently, the minimum embedding dimension dE is chosen as 4 for 

envelope acceleration data and 5 for peak acceleration data to build NARX model.  

 

Fig. 7 The deterministic component of envelope acceleration data 

Fig. 8 The deterministic component of peak acceleration data 

Fig. 9 The value E1 and E2 of deterministic component of envelope data 

Fig. 10 The value E1 and E2 of deterministic component of peak acceleration data 
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Other parameters to be considered are the number of neurons in two hidden layers of NARX 

model. The number of neurons, N1 and N2, in the first and second hidden layers is the chosen 

according to the following heuristics: 

1 2 12 1,
E

N d N N= + =  (18) 

where N2 is rounded up toward the next integer number. By substituting dE = 4 and dE = 5 into 

Eq. (18), the number of neurons can be found as N1 = 9, N2 = 3 for envelope acceleration data 

and N1 = 11, N2 = 3 for peak acceleration data, respectively. 

The order of the output regressor ny in NARX-P and NARXSP models is calculated by 

product of time delay τ and minimum embedding dimension dE. The time delay τ is chosen as 1 

because long-term recursive forecasting methodology is used in this paper. Thus, the order of 

the output regressor ny is respectively set to ny = τ × dE = 4 and ny = 5 for enveloped and peak 

acceleration data. Both the NARX-P and NARX-SP models are employed to select the proper 

NARX model. The standard back propagation algorithm in which 500 epochs and learning rate 

equals to 0.01 is used to train the networks. The forecasting capability of these models is 

evaluated by RMSE values that show in Table 2. From this table, NARX-SP model is superior 

to NARX-P model in showing more the accuracy. Hence, NARX-SP is chosen to hybridize with 

ARMA model. 

 

Table 2 The RMSE values of NARX-SP and NARX-P 

 

In the next step in forecasting process, the error e mentioned in section 3 is forecasted by 

ARMA model. In order to create this model, the model identification procedure is initially 

implemented to check the stationary condition. In case of the inadequate stationary condition, it 

is considered that how many orders of differencing need to stationalize the data. Time series is 

considered to be stationary if its autocorrelation structure is constant over time or the lag-1 

autocorrelation is zero or negative. Figs. 11 and 12 which depict the ACF of envelope and peak 

acceleration data show that the error component is satisfied the requirement of stationary 

condition. Thus, it can be directly applied to generate ARMA model without necessitating 

higher order of differencing. Basing on ACF, PACF and experimental results, ARMA (3, 4) 

model for envelope acceleration data and ARMA (3, 3) for peak acceleration data are chosen in 

this study. Furthermore, MLE is used to estimate the model parameters ϕi, φi. 

 

Fig. 11 ACF of error component of envelope acceleration data 

Fig. 12 ACF of error component of peak acceleration data 

 

Finally, the final forecasting values of the hybrid model are the sum of the results obtained 



 11 

from NARX-SP and ARMA models. Table 3 shows a summary of the RMSE values of three 

models applied for peak and envelope acceleration data. In this table, all the RMSEs of the 

NARX-ARMA model are vastly superior to the other traditional models in that it is more 

accurate in both cases of peak and envelope acceleration data. The example of forecasting 

capability using one-step ahead shows in Figs. 13 and 14 of peak acceleration and envelope 

acceleration data, respectively. They indicate that the NARX-ARMA hybrid model can 

effectively capture and track the system behavior. 

  

Table 3 The RMSE values of ARMA, NARX and NARX-ARMA 

Fig. 13 The forecasted results of NARX-ARMA model for envelope acceleration data using 

one-step-ahead 

Fig. 14 The forecasted results of NARX-ARMA model for peak acceleration data using one-

step-ahead 

 

6. Conclusions 

Machine state forecasting gradually plays an important role in modern industry due to its 

ability to foretell the operating condition of machine in the future. Hence, finding out the 

precise and reliable forecasting model is an important and challenging task. In this paper, an 

improvement of hybrid model consisted of NARX and ARMA is investigated for long-term 

forecasting. Peak acceleration and envelope acceleration trending data of a low methane 

compressor are used to demonstrate the predictive ability of proposed method. From the results 

of a comparative study, the improved hybrid model (NARX-ARMA) has a higher forecasting 

accuracy the other traditional models. This demonstrates that the NARX-ARMA model is a 

reliable and accurate tool for forecasting the machine state. 
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Fig. 1 The structure of NARX with nu inputs and ny output delays 
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Fig. 2 The forecasting process of NARX-ARMA model 
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Fig. 3 Proposed forecasting system 
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Fig. 4 Low methane compressor: wet screw type. 
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Fig. 5 The entire peak acceleration data of low methane compressor 
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Fig. 6 The entire envelope acceleration data of low methane compressor 
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Fig. 7 The filtered envelope acceleration data of low methane compressor 
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Fig. 8 The deterministic component of peak acceleration data 
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Fig. 9 The value E1 and E2 of deterministic component of envelope data 
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Fig. 10 The value E1 and E2 of deterministic component of peak acceleration data 
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Fig. 11 ACF of error component of envelope acceleration data 
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Fig. 12 ACF of error component of peak acceleration data 
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Fig. 13 The forecasting results of NARX-ARMA model for envelope acceleration data using 

one-step-ahead 
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Fig. 14 The forecasting results of NARX-ARMA model for peak acceleration data using one-

step-ahead 
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Table 1 Description of system 

Electric motor Compressor 

Voltage 6600 V Type Wet screw 

Power 440 kW 
Lobe 

Male rotor (4 lobes) 

Pole 2 Pole Female rotor (6 lobes) 

Bearing NDE:#6216, DE:#6216 
Bearing 

Thrust: 7321 BDB 

RPM 3565 rpm Radial: Sleeve type 

 

 

Table 2 The RMSE values of NARX-SP and NARX-P 

Vibration data 
NARX-SP NARX-P 

Training Predicting Training Predicting 

Peak 0.0232 0.0260 0.4170 0.0450 

Envelope 0.0241 0.0188 0.0597 0.0363 

 

Table 3 The RMSE values of forecasting results of ARMA, NARX and NARX-ARMA 

Number of 

step ahead 

Peak acceleration data Envelope acceleration data 

ARMA NARX NARX-ARMA ARMA NARX NARX-ARMA 

1 

2 

3 

4 

5 

6 

0.2647 

0.2821 

0.2921 

0.3026 

0.3226  

0.3950 

0.0703 

0.2221 

0.2421 

0.2826 

0.3026 

0.3250 

0.0363 

0.0595 

0.0671 

0.0896 

0.0956 

0.1764 

0.2647 

0.2821 

0.2826 

0.2935 

0.2950 

0.3125 

0.2090 

0.2581 

0.2664 

0.2867 

0.3018 

0.3271 

0.0693 

0.1178 

0.1232 

0.1276 

0.1310 

0.1331 

 


