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Abstract 

The effects of varying the angle of wind velocity and axis of a cylindrical icing object 

around all of the three mutually perpendicular axes are studied experimentally. The mass, 

shape and profile of ice accretion obtained in a horizontal icing wind tunnel are investigated 

as functions of cylinder inclination. The icing object is exposed to two types of aerosol 

cloud, which are created by different procedures: (i) injecting small droplets horizontally 

into cold air flow, (ii) injecting vertically falling large droplets into cold air flow; so that the 

resulting conditions simulate in-cloud icing and freezing rain, respectively. Observations 

reveal the effects of varying each angle on the mass, shape and profile of ice accreted under 

both conditions. 

Keywords: atmospheric icing, inclined cylinder, supercooled water film, wind-tunnel 

experiments 

 

Nomenclature 

l unit length of cylinder 

m ice mass 

0,αCIm  ice mass obtained under in-cloud icing (CI) conditions with increased liquid water 

content (LWC) for �0=α  
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0,βCIupm  ice mass obtained under CI conditions with increased LWC upstream of cylinder 

midpoint for �0=β  

0,αZRm  ice mass obtained under freezing rain (ZR) conditions for �0=α  

0,βZRm  ice mass obtained under ZR conditions for �0=β  

0,γZRupm  ice mass obtained under ZR conditions upstream of cylinder midpoint for �90=γ  

t time 

SBaT ,  air temperature in tunnel section preceding spray bar 

TSaT ,  air temperature in test section 

aV  air velocity in test section 

Greek symbols 

α angle of cylinder around streamwise axis in vertical plane 

β angle of cylinder around vertical axis in horizontal plane 

γ angle of cylinder around lateral axis in vertical plane 

∆ fluctuation 

 

1 Introduction 

Most of the atmospheric icing models consider a cylindrical icing object placed in an air 

flow carrying a supercooled droplet cloud so that the cylinder axis is perpendicular to air 

velocity. Such a geometrical arrangement involves the possibility to simplify the 

mathematical model to a two-dimensional (2D) representation. This simplification is 

advantageous when the droplets of the aerosol cloud freeze immediately upon impact as is 

the case under extremely cold conditions. However, when the ambient conditions are 

favorable to the appearance of supercooled water on the surface of the accreting ice, or 

especially, when the axis of the icing object forms an angle with the air velocity, then the 

need of 3D models arises for reliable simulation. Scallop formations, which are observed 

on swept wings in aircraft icing when the sweep angle is high enough [1], are also 3D 

structures. Surveys and collections of literature on modeling atmospheric ice accretion on 
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power network equipments are found in [2] and in [3]. A review on modeling ice accretion 

on swept wings is presented in [4]. 

The cylindrical icing object may be inclined in three directions relatively to the air flow as 

sketched in Fig. 1: (i) the cylinder is oriented perpendicularly to air velocity (position at �0 ) 

and forms an angle, α, around the streamwise axis in the vertical plane; (ii) the cylinder is 

oriented perpendicularly to air velocity (position at �0 ), and then its angle, β, is varied 

around the vertical axis in the horizontal plane; (iii) the cylinder is oriented parallel to air 

velocity (position at �90 ), and then its angle, γ, is varied around the lateral axis in the 

vertical plane. The main goal of the present research is to investigate experimentally the 

effects of the three angles defined on the characteristics of the ice accreted on cylindrical 

icing bodies. In order to achieve this goal, a cylinder was placed in the test section of a 

horizontal icing wind tunnel where the aerosol cloud is created by injecting water droplets 

into the circulating cold air flow. A subsidiary goal is to study whether the influence of 

cylinder inclination is dissimilar under different icing conditions modeled by aerosol clouds 

with different droplet size distributions as well as with different manners of water supply. 

In particular, two atmospheric icing phenomena are simulated: (i) in-cloud icing (CI) and 

(ii) freezing rain (ZR). The diameter of ordinary cloud droplets falls in the range of 1-2 µm 

to 40-50 µm [5-7]; thus, the movement of these droplets is not affected to a great extent by 

gravity, and the aerosol cloud may be modeled by injecting small droplets horizontally into 

the cold air flow. The range of droplet size in freezing drizzle (ZL) and ZR covers 

diameters from 50 to 500 µm, and from 500 µm to 3-4 mm, respectively [6]; therefore the 

effect of gravity on droplet trajectories is significant, and the phenomenon may be 

simulated by injecting vertically falling large droplets atomized from precooled water into 

the cold air flow. A series of experiments were carried out in a preceding study [8], which 

was completed recently by further sets of experiments. The complete study, which was thus 

implemented in two steps, forms the subject of the present paper. 

 

2 Experimental Setup 

2.1 Facilities 
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The experiments were carried out in the CIGELE atmospheric icing research wind tunnel, a 

horizontal closed-loop low-speed wind tunnel, 30 m in total length, including a 3 m long 

test section with a rectangular cross-section, 0.46 m high and 0.92 m wide (see Fig. 2). The 

temperature in the test section may be cooled down to -25 C� . The velocity of circulating 

air in the test section may reach a maximum of 30 m/s. The icing object, a cylinder of 0.92 

m in length and 0.038 m in diameter, was fixed in the middle of test section, and its 

inclination was changed with the help of special devices. To vary the angle, α, of the 

cylinder around the streamwise axis, the endpoints of the cylinder were fixed to two 

adjustable supports on the tunnel wall. The length of the supports was varied to achieve the 

required angle. To vary the angle, β, around the vertical axis, the cylinder was fixed in a 

support which may be rotated around the vertical axis passing through the midpoint of the 

support. To vary the angle, γ, around the lateral axis, one edge of the cylinder was hung to 

the tunnel ceiling, while the other one was supported from the bottom with different 

support lengths for obtaining different angles. In all cases, special care was taken in order 

to keep the midpoint of the cylinder at the tunnel centreline. The cylinder was rotated in 

one direction only around the streamwise and vertical axes, since the droplet cloud is 

symmetric in the central part of the cross section at the middle of the test section where the 

ice samples were taken from. The reader is referred to [9] for a more detailed discussion on 

the zone of uniformity. However, the inclination of the cylinder was varied in both 

directions around the lateral axis. The limits of the angles which could be achieved were 

determined by the geometry of the set-up. 

Two means of water supply were applied to model different icing conditions. The first one 

included a horizontal spray bar with three air-assisted nozzles located at the midpoint of the 

tunnel cross-section, with 20 cm at left and right of this location (Fig. 3). The nozzles are 

manufactured by Spraying Systems Co., and consist of a 2050 stainless steal water cap and 

67147 stainless steal air cap. This system can create an aerosol cloud with a median volume 

diameter (MVD) of 25 to 70 µm, which models CI. The LWC of the produced cloud may 

be varied from 0.3 to 12 g/m3. Water at room temperature was used for atomization, 

although the temperature of injected water droplets was significantly lower due to the 

cooling effect of cold air which circulated in the tunnel and surrounded the spray bar. The 
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spray bar with the nozzles was located 4.4 m upstream from the icing cylinder, which 

distance is sufficient for droplets to become supercooled. This distance is also long enough 

for water droplets to be mixed in the air flow and to obtain a uniform aerosol cloud in the 

middle of the test section where the icing object is placed. The other way for supplying 

water meant the application of a single nozzle mounted on an aluminum rake which was 

attached to the ceiling of the test section and which was movable horizontally (Fig. 4). The 

distance was set at 0.4 m upstream from the icing cylinder in these experiments. This setup 

included a type H ¼ VV – 11005 VeeJet brass nozzle, also from Spraying Systems Co. The 

nozzle produced an aerosol cloud with ellipsoidal cross section. This nozzle was always 

used with the same water flow rate for creating an aerosol cloud which models ZR 

conditions. Since the distance between the nozzle and the icing object is not sufficient for 

significant cooling of droplets of this size, the water was cooled down to around 4 C�  by a 

commercially designed machine manufactured by CIMCO. The water was further cooled in 

the water pipe leading to the nozzle, because the pipe passes through the cold test section. 

The temperature of the water at injection was measured by an Omega T type thermocouple 

at a distance of 2.54 cm from the nozzle edge inside the water line, and it was usually found 

to be between 1 C�  and 2 C� . 

 

2.2. Selecting Experimental Conditions 

Investigating the effects of air temperature and air velocity in detail was out of the scope of 

this study; consequently, they were kept constant in most of the experiments at values 

corresponding to what occur during both CI and ZR. The air temperature was set at –10 

8.0± C�  in the tunnel section preceding the spray bar, which resulted in an air temperature 

of –8.7 0.1± C�  in the test section. The air temperature at ground level during ZR is 

usually above that range, but the lowest observed temperature reaches these values [6]. 

Also, the relatively short distance between the nozzle and the icing object does not ensure 

the cooling of droplets down to the same temperature as observed in nature under the same 

ambient temperature. Further values of air temperature set in the experiments are presented 

in Table 1 together with their fluctuation. When the desired air temperature was colder, the 
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difference between the air temperatures in the tunnel section preceding the spray bar and in 

the test section was greater, because the test chamber only got moderately cool, thus 

causing the test section temperature to rise. On the other hand, the colder the air 

temperature was the more its fluctuation diminished. The air velocity in most of the 

experiments was set at 20 m/s 1± % in the test section, although some experiments were 

also carried out with different air velocities as presented in Section 3.1.3. The air velocity 

dropped by 4 – 8 % at the end of each experiment depending on the LWC, which drop 

resulted from ice accumulation on the fan blades and on the vanes located in the corners of 

the tunnel. The liquid water content (LWC) of the aerosol cloud modeling CI was set at 1 

g/m3, but a further series of experiments was carried out with a LWC of 3.2 g/m3, with the 

other parameters unchanged. Although this latter value is significantly higher than that 

characterizing CI conditions, it was used to study the effect of LWC, which accelerated the 

experiments, because a higher amount of ice kept accreting in a shorter time on the icing 

body. The higher value of LWC also made it possible to study how the angles varied 

influence pendant ice formation. The LWC and droplet size were controlled by the nozzle-

dynamic parameters, i.e. the pressure in the channels supplying water and air to the nozzles. 

A formula describing the relationship between the LWC and the nozzle-dynamic 

parameters was proposed in [9] with an estimated maximum discrepancy of 20± %. The 

error in the measured MVD was evaluated in [10] at 5.4± µm 5± %. The pressure in the 

channels supplying water and air to the air-assisted nozzles were adjusted to 193 kPa and 

276 kPa, respectively, for producing a droplet cloud with MVD of 35 µm and with LWC of 

1 g/m3. These pressures were chosen at 235 kPa and 276 kPa in order to increase the LWC 

of the cloud to 3.2 g/m3, without changing MVD significantly, which was increased to 

40 µm this way. When simulating ZR conditions the flow rate of water supplying the 

VeeJet brass nozzle was measured during the experiments, and was kept constant at 0.9 

l/min in order to produce a droplet cloud with MVD of 800 µm and with LWC of 2.8 g/m3. 

The duration of each experiment was 15 minutes. 

 

2.3 Procedure for Collecting Experimental Data 
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The following data were collected after each experimental trial: mass of ice accretion per 

unit length of cylinder, ice shape, and profile of ice accretion. Ice shapes were recorded by 

taking photos of their front, top and bottom views. In order to measure ice mass, the 

cylinder was carefully taken off its supports and set into the specially designed support for 

further examination outside the tunnel. A thin preheated aluminum cutter was used to cut 

the ice specimens for measuring their mass and length. Samples with length of about 10 cm 

were taken from the middle of the cylinder, or from the two sides of the midpoint of the 

cylinder. The maximum error in the measured mass per unit length owing to the fluctuation 

in the experimental conditions and to the precision of the measurement process was 

evaluated at 10± %. After cutting the ice accretion, additional photos were taken to record 

ice profiles. 

 

3 Results and Discussion 

This section discusses the effect of varying the three angles on the mass, shape and profile 

of ice accretion for CI conditions with normal and with increased LWC, and for ZR 

conditions. 

 

3.1 Icing of Cylinder Inclined in Vertical Plane around Streamwise Axis 

3.1.1 Ice Profile and Shape 

The maximum angle of the cylinder placed perpendicularly to the flow with the horizontal 

plane, α, was limited to �28  by geometrical constraints. The profile of ice accretion under 

CI conditions does not change so visibly as under CI conditions with increased LWC or 

under ZR conditions. Therefore, only the first photo in Fig. 7 shows the profile as obtained 

for �4  under CI conditions, but two series of six photos as obtained for six different angles 

are presented in Figs. 5 and 6 for the other two conditions. The corresponding two sets of 

experiments were carried out in a preceding study [8]. However, the ice mass measured in 

that study for different values of angle, α, under ZR conditions seemed to be affected by 

measurement errors so that it was difficult to recognize a tendency; therefore this set of 

experiment was repeated recently. According to Fig. 5, the ice deposit obtained under CI 

conditions with increased LWC turns up and becomes narrower, while the pendant 
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formation at the bottom of the cylinder becomes thicker and more integrated into the entire 

deposit when the angle, α, increases. Simultaneously, the limits of impingement decrease. 

When ZR conditions are modeled, ice accretes around the whole circumference as may be 

observed in Fig. 6. This fact is mainly ascribed to the sort of water supply and to its 

location relative to the icing body. Further significant differences are that the stagnation 

line is not visible and that the plateau of smooth ice surface around the stagnation line does 

not fall in the vertical plane, but turns up correspondingly to the trajectory of the droplets 

colliding with the icing object. The pendant formation on the bottom of the accretion forms 

an angle with the vertical direction. This angle decreases and the pendant formation 

becomes more indivisible from the entire deposit with an increase of the angle of cylinder 

inclination. Fig. 7 compares the profile, the top, front, and bottom views of ice accretions 

obtained for the same angle under the three conditions modeled. This series of photos 

clearly shows the effect of LWC. When the LWC is lower, the ice deposit is tightly packed, 

whereas pendant ice forms for higher values of LWC. 

3.1.2 Ice Mass 

The accretion mass per unit length shows an interesting dependence on cylinder angle, α, 

around the streamwise axis. Fig. 8a presents mass per unit length, m/l, under CI conditions 

with normal and with increased LWC divided by the mass per unit length obtained for �0  

under CI conditions with increased LWC, lmCI /
0,α . Maxima of ice growth mass appear at 

angle values between �108 −  for both conditions. This finding may be explained by the 

mass transfer of supercooled water on the cylinder surface. When the angle, α, increases, a 

droplet takes a longer time to reach the bottom of the cylinder; thus, the probability of the 

droplet freezing before shedding increases. However, if the angle, α, is great enough then 

the droplet flows faster on the surface due to gravity, so that the probability of droplet 

freezing before shedding decreases. This tendency was also provided by the morphogenetic 

model of [11]. The angle of inclination was changed by an increment of �5  in that study, 

and a maximum was obtained for an inclination angle of �5 . Since the amount of unfrozen 

water flowing on the surface decreases with decreasing LWC, the variation of ice mass 

with angle, α, diminishes significantly for lower values of LWC. In case of CI conditions 
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with increased LWC, two ice samples from the upper and lower parts of the cylinder near 

its midpoint were weighed for some angles, and that maximum was observed for both 

locations. Maxima appear for approximately the same angle; however, their values are 

different, the maximum ice masses are 12% and 20% greater on the upper and on the lower 

part of the cylinder, respectively, than the accreted mass measured at �0 . Moreover, the 

mass of accreted ice on the lower part is always a few percent greater than that on the upper 

part. Fig. 8a also suggests that the mass of accreted ice is linearly proportional to the LWC, 

because the ice mass is 3.1 – 3.5 times greater when the LWC is increased by a factor of 

3.2. This result is in agreement with the fact that the rate of icing on a unit area of the icing 

object is determined by the LWC, velocity, collection efficiency, sticking efficiency and 

accretion efficiency of the impinging particles (see e.g. [2]). LWC is the only parameter 

which changes significantly in this comparison. The only exception occurs for the highest 

angle considered; however, the measured value at �25  with the lower LWC seems to be out 

of tendency for some reason.  

The mass of accreted ice shows a similar dependence on cylinder angle, α, under ZR 

conditions; however, the mass varies with the angle to a lower extent as under CI 

conditions with increased LWC, and the maximum is not so striking either. Fig. 8b presents 

mass per unit length, m/l, under ZR conditions divided by the mass per unit length obtained 

at �0  under the same conditions, lmZR /
0,α . A further coincidence with the results obtained 

for CI conditions is that the ice mass on the lower part of the cylinder is slightly greater 

than on the upper part in most of the measurements. Fig. 8b also shows the ice mass 

obtained at �0  under CI conditions, which helps conclude that the ice mass under ZR 

conditions is in the same range, or slightly higher than that under CI conditions with 

increased LWC.  In these cases, the difference in LWC is less than 15 %. The collection 

efficiency is significantly greater for ZR conditions, because droplets are an order of 

magnitude greater. However, the sticking and accretion efficiencies are smaller, because the 

distance between the nozzle and cylinder is less in this case; thus, there is not enough time 

for the larger droplets to get supercooled, and more impinging droplets shed, which slows 

down the accumulation process. 
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3.1.3 Effect of Thermodynamic Parameters 

The influence of the angle, α, is compared to the influence of other thermodynamic 

parameters, air temperature and air velocity, by carrying out additional experiments under 

CI conditions with increased LWC and with modified thermodynamic parameters at 

�0=α . The modified values of air temperature in the tunnel section preceding the spray bar 

were –20 C� , –15 C�  and –5 C� , whereas the air velocity in the test section was set at 10 

m/s and 30 m/s at the beginning of these tests. The experimental results presented in Fig. 9 

prove that, although the effect of angle, α, is not negligible, changes in the thermodynamic 

parameters influence the mass of accreted ice to a greater extent than the angle. It may also 

be concluded from Fig. 9 that the mass of ice accretion increases with air velocity in the 

range considered, although this result is affected by the vertical separation of droplets of 

different size [9]. When the velocity is low (10 m/s), the trajectories of big droplets are 

deflected so that they do not contribute significantly to the ice accumulation on the cylinder 

placed at mid-height in the test section. The deflection of droplet trajectories becomes small 

when the air velocity reaches 20 m/s, so that the accreted mass increases considerably. 

However, a further increase in the air velocity does not cause a comparable change in the 

mass of ice accretion. The increasing effect of air velocity was also predicted by the model 

proposed in [12] and observed experimentally in [13]. Although the authors worked with 

higher velocities (30 – 120 m/s), they reported an increase of ice accretion with air velocity 

up to about 60 m/s. Concerning air temperature, when it varies between –17.5 C�  and –

4.5 C� , the accreted mass reaches a maximum in the experiments with –8.7 C� . A 

maximum at –10 C�  was similarly predicted by the morphogenetic model of [11]. LWC 

also has a great influence on both the mass and the shape of ice accretion, as was discussed 

in Sections 3.1.1 and 3.1.2. 

3.1.4 Evolution of Ice Accretion in Time 

Fig. 10 shows the time evolution of the shape of ice deposit obtained for angles of �4=α  

and �28=α  under CI conditions with increased LWC [8]. That figure reveals that a major 

reason for the variation of ice mass with the angle, α, is the redistribution of supercooled 

unfrozen water on the cylinder surface and, later, on the ice surface from the raised to the 
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lowered edge due to gravity. For �4=α , supercooled water is moved to the bottom of the 

cylinder by the combined effect of gravity and air shear force. For �28=α , however, 

gravity overcomes the air shear force and compels the water film to flow mainly lengthwise 

on the cylinder. Consequently, the pendant ice formation begins earlier for lower values of 

angle, α. The first pair of pictures (t = 4 min) does not show pendant ice which appears 

after t = 5 min of accumulation for �4=α  and after t = 9 min of accumulation for �28=α  

(compare the second and third pairs of pictures in Fig. 10). The pendant ice formation is 

already in a developed phase after t = 14 min for both angles; but the shape of ice deposit is 

still considerably different resulting from the dissimilar mass transfer processes already 

explained. 

 

3.2 Icing of Cylinder Inclined in Horizontal Plane around Vertical Axis 

3.2.1 Ice Profile and Shape 

The rotation of cylinder in the horizontal plane around the vertical axis was not limited by 

geometrical constraints; therefore, experiments were carried out with angle, β, up to �70 . 

Similarly to the case of angle, α, described in Section 3.1, the changes in ice-accretion 

profiles obtained for different angles, β, under CI conditions are more distinguishable for 

higher values of LWC. Fig. 11 shows a sequence of pictures about these profiles up to β = 

�50 . Pendant ice forms up to �30 , then the ice deposit becomes more and more tightly 

packed, a flat plateau occurs at the stagnation line, and the limits of impingement decrease 

as the angle, β, increases. This latter observation is mainly explained by the change of 

droplet trajectories with inclination of the icing object [14]. The air velocity component 

normal to the cylinder axis decreases with the angle, β, and, consequently, so does the 

inertia. Thus, the flow deflects droplet trajectories more easily resulting in lower collection 

efficiency and reduced limits of impingement. 

The pictures in Fig. 12 compare the top views of ice deposits obtained for four different 

values of the angle, β, under the three conditions considered. This set of pictures reveals 

how scallop formation depends on the angle, β, and on the ambient conditions. When 

modeling CI conditions, scallops form at angles of minimum �20 - �25 , and complete 
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scallops occur at angles �30≥β . When LWC increases, scallops are incomplete for β = 

�30 , and complete scallops form at angles around �40  and higher. Complete scallop 

formation is not distinguishable under ZR conditions. Consequently, scallop formation 

appears for lower angles when LWC is lower and other parameters are unchanged. This 

finding coincides with the observation of [1]. Although ice accretion was studied on a 

swept wing tip, the variation of sweep angle in their case has similar effects as that of the 

variation of angle, β, in case of an icing cylinder. They observed complete scallop 

formation for higher angles than the ones presented here, but they worked with significantly 

higher air velocities which were in the range of 33 m/s (75 mph) to 89 m/s (200 mph), and 

they also reported that the minimum angle at which complete scallops formed decreased 

with air velocity. 

3.2.2 Ice Mass 

Fig. 13 shows the effect of angle, β, on the mass of ice accretion. The ice mass decreases 

with the angle, β, under CI conditions. When the LWC is higher, this decrease is slower for 

small angles ( �30<β ), while it is faster for large angles ( �30>β ). Also in this case, two 

ice samples upstream and downstream of the midpoint of the cylinder were taken, and it 

was found that the weigh of the upstream sample was always a few percent higher than that 

of the downstream one. Since the cylinder rotates in the horizontal plane when modifying 

the angle, β, supercooled water does not flow lengthwise on the cylinder due to gravity. 

Thus, the decrease in ice mass per unit length with increasing angle, β, is mostly a 

consequence of the decreasing water flow across a unit cylinder surface. 

The dependence of ice mass on angle, β, appears to be significantly different under ZR 

conditions, as may be observed in Fig. 13b. The ice mass does not decrease with increasing 

angle. On the contrary, it slightly increases for small angles (up to �30 ), and then remains 

approximately constant. This different behavior may principally be explained by the flow 

direction of the aerosol cloud. The trajectory and velocity of colliding droplets have both 

horizontal and vertical components when modeling ZR. Therefore, the water flow across a 

unit cylinder surface does not decrease to a great extent when the angle, β, approaches �90 , 

as it happens when the cylinder is exposed to an aerosol cloud moving horizontally. The 
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masses obtained for �0  under CI conditions are also indicated in Fig. 13b. The masses of 

accreted ice occur in the same range under ZR conditions and under CI conditions with 

increased LWC for �0 , although they diverge under these two conditions as the angle, β, 

increases, due to the different tendencies mentioned above. 

 

3.3 Icing of Cylinder Inclined in Vertical Plane around Lateral Axis 

3.3.1 Ice Profile and Shape 

The angle, γ, of cylinder placed in the vertical plane which is parallel to the flow was 

changed between �61  and �90  in both directions around the lateral axis. The limiting values 

were determined by geometrical constraints. The negative angle corresponds to the case 

when the top half of the cylinder is exposed to the air flow, whereas the positive angle 

corresponds to the case when the bottom half of the cylinder is exposed. Only the sets of 

experiments under CI conditions with increased LWC and under ZR conditions were 

carried out with different values of angle, γ, in a preceding study [8], because the variation 

of ice shape and mass is better observable for higher values of LWC as was concluded in 

Sections 3.1 and 3.2. The side views of ice deposits formed for different angles, γ, under CI 

conditions with increased LWC are shown in Fig. 14. The pictures are organized to 

facilitate comparison of ice deposits obtained for approximately the same angles with 

opposite signs. Ice accretions for the same absolute values of angle, γ, seem similar; 

however, the influence of gravity on ice shape and mass may be noticed in a better way on 

the accretions obtained under ZR conditions (see Figs. 15 and 16). Gravity impedes 

supercooled water flow on the surface of cylinder or ice due to air shear stress for negative 

values of angle, γ; while it magnifies the effect of air shear stress for positive values of that 

angle. It should be noted that when varying the angle, β, this asymmetry in the effects of 

gravity and air shear force, and consequently, in the ice shape does not appear. Scallop 

formation can clearly be seen for all the considered values of angle, γ, which is not 

surprising, because all of these angles are greater than �60  in absolute value, and scallops 

form for those angles even for the higher value of LWC as was observed in Section 3.2.1. A 

further observation from Fig. 14 is that the limits of impingement decrease with increasing 
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absolute value of angle, γ. However, the amount of frozen droplets spread on the bare part 

of the cylinder increases, which is a consequence of the flow geometry. 

Fig. 15 presents a series of pictures on the profiles and on the top or side views of ice 

deposits obtained under ZR conditions for different values of angle, γ. Similarly to the 

observation made in Section 3.1.1, ice accretes around the whole circumference of the 

cylinder when the type of water supply modeling ZR is applied. The shapes of accretions 

obtained for similar absolute values of angle, γ, are different, and these differences are more 

visible than those in Fig. 14 for CI conditions with increased LWC. A reason for this 

asymmetry is the amplifying and opposing effects of gravity and air shear force on droplet 

movement for positive and negative values of the angle, γ, respectively. This asymmetry is 

further magnified when modeling ZR conditions due to the vertical component in the 

trajectory of colliding droplets. Scallop formation may be observed for all the angles 

considered, although scallops are not as distinguishable as under CI conditions with 

increased LWC, which results from the different flow geometry. 

3.3.2 Ice Mass 

The mass of ice accreted on a unit length of the cylinder, m/l, for different values of angle, 

γ, is divided by the ice mass per unit length obtained upstream of the midpoint of the 

horizontally placed cylinder ( �90=γ ) under ZR conditions, lmZRup /
0,γ , in order to facilitate 

the comparison of results measured under different ambient conditions. Fig. 16 plots the 

resulting values for CI conditions with increased LWC and for ZR conditions upstream and 

downstream of the midpoint of the cylinder. It is clearly seen in this figure that a minimum 

of ice mass occurs at �90=γ , although experiments with �90=γ  were not reliable due to 

the influence of the cylinder support. This experiment was not even carried out when a 

horizontally moving aerosol cloud was produced to model CI conditions with increased 

LWC. On the other hand, the mass per unit length shows similar dependences on the 

angles, β and γ, in the overlap region ( �� 7060 − ). Its rates of decrease with increasing 

angles are similar under CI conditions with increased LWC, while it is approximately 

constant under ZR conditions. Contrarily to the cases of angles, α and β, there is no 

symmetry around �0=γ . The mass decreases with angle, γ, more rapidly so when the 
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bottom half of the cylinder is exposed to the flow, and this asymmetry is more significant 

under ZR conditions. The reasons for this asymmetry are mentioned in Section 3.3.1. 

The comparison of the effects of other thermodynamic parameters and angles, β and γ, is 

not discussed in detail. Since the water flow per unit cylinder surface is reduced drastically 

when the cylinder is placed closely parallel with the flow (β or γ approaches �90 ), the mass 

of ice accretion changes more significantly with these angles than with angle, α, and the 

changes due to the variation of these angles and due to air velocity or air temperature are 

comparable. 

 

4 Concluding Remarks 

The dependence of the mass and shape of ice deposits accreted on an inclined cylinder on 

the angles around the three mutually perpendicular axes was investigated in an icing wind 

tunnel. Two different water supplies were applied to model three different icing conditions: 

CI conditions with normal and with increased LWC, and ZR conditions. The main 

observations regarding the effects of the three angles as they are varied may be summarized 

as follows:  

• The ice mass accreted on a unit length of a cylinder rotated in the vertical plane 

around the streamwise axis reaches a maximum for an angle, α, which is 

approximately �� 108 −  for all the icing conditions examined. 

• The ice mass accreted on a unit length of a cylinder rotated in the horizontal plane 

around the vertical axis decreases monotonically as the angle, β, increases when the 

cylinder is exposed to an aerosol cloud moving horizontally in order to simulate CI. 

However, when the velocity of the aerosol cloud has both horizontal and vertical 

components as in the simulations of ZR, the ice mass per unit length increases slightly 

for small angles, and then it becomes approximately constant. The range of 

increasing, decreasing and constant tendencies is expected to depend greatly on the 

flow direction of the aerosol cloud. 

• The ice mass accreted on a unit length of a cylinder rotated in the vertical plane 

around the lateral axis decreases with the angle of rotation, γ, in the domain 
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considered. The results obtained for the same values of the angles, β and γ, suggest 

that the dependences on the two angles are qualitatively similar. However, unlike for 

the angles of rotation around the other two axes, the dependences are not identical for 

positive and negative values of the angle, γ. The decreasing tendency is faster when 

the bottom half of the cylinder is exposed to the flow. 

Experiments with different values of LWC show that the mass of ice accretion is linearly 

proportional with LWC when other conditions are unchanged. Scallop formation is 

observed when the cylinder angle with the direction perpendicular to the flow is large 

enough. The dependence of scallop formation on the angle between the cylinder and flow, 

on LWC and on air velocity coincides with the observations of previous studies made 

during icing of aircraft wing tips. The importance of this result is emphasized by the fact 

that the same phenomena are observed at low velocities and on different geometry. Thus, 

scallop formation can be studied even in low-speed wind tunnels on an icing object with 

such simple geometry as a cylinder. 
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Figure Captions 

Fig. 1: Angles of inclination, (a) angle, α, varied around streamwise axis in vertical plane, 

(b) angle, β, varied around vertical axis in horizontal plane, (c) angle, γ, varied around 

lateral axis in vertical plane 

Fig. 2: Schema of the wind tunnel from the spray bar section to the test section with a 

cylinder in horizontal position perpendicularly to the flow (not to scale) 

Fig. 3: Horizontal spray bar with three nozzles which inject droplets horizontally 

Fig. 4: Nozzle on the ceiling of test section for injecting droplets vertically 

Fig. 5: Profiles of ice accretions for various values of angle, α, around streamwise axis 

under CI conditions with increased LWC [8] 

Fig. 6: Profiles of ice accretions for various values of angle, α, around streamwise axis 

under ZR conditions [8] 

Fig. 7: Profile, top, front and bottom views of ice accretions for �4=α , (a) CI conditions, 

(b) CI conditions with increased LWC [8], (c) ZR conditions [8] 

Fig. 8: The ratio of ice accretion mass per unit length on the inclined cylinder to that on the 

horizontal one versus the cylinder angle α, (a) CI conditions with normal (CI_1) and with 

increased (CI_3.2) LWC, 
0,αCIm – ice mass obtained under CI conditions with increased 

LWC for �0=α , (b) ZR conditions, 
0,αZRm – ice mass obtained under ZR conditions for 

�0=α ; “up” and “low” in legend refer to ice samples from the upper and lower parts of the 

cylinder, respectively; * – present study, ** – [8] 

Fig. 9: The effects of air temperature and air velocity on the ice accretion mass per unit 

length under CI conditions with increased LWC for �0=α ; 
0,αCIm – ice mass obtained 

under CI conditions with increased LWC for �0=α , C10,
�−=SBaT  ( C7.8,

�−=TSaT ), 

20=aV m/s 

Fig. 10: Time evolution of the shape of ice deposits accreted for angles of 4=α o (left) and 

28=α o (right) under CI conditions with increased LWC [8] 

Fig. 11: Profiles of ice accretions for various values of angle, β, around vertical axis under 

CI conditions with increased LWC 



20 

Fig. 12: Top views of ice accretions for various values of angle, β, around vertical axis, (a) 

CI conditions, (b) CI conditions with increased LWC, (c) ZR conditions 

Fig. 13: Relative ice mass per unit length versus the cylinder angle, β, (a) CI conditions 

with normal (CI_1) and with increased (CI_3.2) LWC, 
0,βCIupm – ice mass obtained under 

CI conditions with increased LWC upstream of cylinder midpoint for �0=β , (b) ZR 

conditions, 
0,βZRm – ice mass obtained under ZR conditions for �0=β ; “up” and “down” in 

legend refer to ice samples from upstream and downstream of cylinder midpoint, 

respectively 

Fig. 14: Side views of ice accretions for various values of the angle, γ, around lateral axis 

under CI conditions with increased LWC [8] 

Fig. 15: Profiles (left) and top or side views (right) of ice accretions for various values of 

the angle, γ around lateral axis under ZR conditions [8] 

Fig. 16: Relative ice mass per unit length versus the cylinder angle, γ, obtained in [8]; 

0,γZRupm – ice mass obtained under ZR conditions upstream of cylinder midpoint for 

�90=γ ; “up” and “down” in legend refer to ice samples from upstream and downstream of 

cylinder midpoint, respectively 
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Tables 

 

( )C,
�

SBaT  ( )C,
�

SBaT∆  ( )C,
�

TSaT  ( )C,
�

TSaT∆  

-5 0.1±  -4.5 3.1±  

-10 8.0±  -8.7 0.1±  

-15 8.0±  -13.1 0.1±  

-20 2.0±  -17.5 4.0±  

 

Table 1: Air temperature data in the tunnel and their fluctuations; SBaT , , TSaT ,  – air 

temperatures in tunnel section preceding spray bar and in test section, respectively; SBaT ,∆ , 

TSaT ,∆  – fluctuation in air temperature in tunnel section preceding spray bar and in test 

section, respectively 
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Fig. 1: Angles of inclination, (a) angle, α, varied around streamwise axis in vertical plane, 
(b) angle, β, varied around vertical axis in horizontal plane, (c) angle, γ, varied around 
lateral axis in vertical plane 
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Fig. 2: Schema of the wind tunnel from the spray bar section to the test section with a 
cylinder in horizontal position perpendicularly to the flow (not to scale) 
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Fig. 3: Horizontal spray bar with three nozzles which inject droplets horizontally 

honeycomb 

air-assisted nozzles nozzle heating element 

spray bar 
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Fig. 4: Nozzle on the ceiling of test section for injecting droplets vertically 

VeeJet brass nozzle 

channel supplying 
water to nozzle nozzle support 

fixed to ceiling of 
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for icing object 

icing object 
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Fig. 5: Profiles of ice accretions for various values of angle, α, around streamwise axis 
under CI conditions with increased LWC [8] 
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Fig. 6: Profiles of ice accretions for various values of angle, α, around streamwise axis 
under ZR conditions [8] 
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          (a)            (b)            (c) 
 
Fig. 7: Profile, top, front and bottom views of ice accretions for �4=α , (a) CI conditions, 
(b) CI conditions with increased LWC [8], (c) ZR conditions [8] 
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Fig. 8: The ratio of ice accretion mass per unit length on the inclined cylinder to that on the 
horizontal one versus the cylinder angle α, (a) CI conditions with normal (CI_1) and with 
increased (CI_3.2) LWC, 

0,αCIm – ice mass obtained under CI conditions with increased 

LWC for �0=α , (b) ZR conditions, 
0,αZRm – ice mass obtained under ZR conditions for 

�0=α ; “up” and “low” in legend refer to ice samples from the upper and lower parts of the 
cylinder, respectively; * – present study, ** – [8] 



30 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-20 -15 -10 -5 0

T a,TS / OC

(m
/l

)/
(m

C
I,

αα αα
0
/l

)

10 m/s

20 m/s

30 m/s

 
 

Fig. 9: The effects of air temperature and air velocity on the ice accretion mass per unit 
length under CI conditions with increased LWC for �0=α ; 

0,αCIm – ice mass obtained 

under CI conditions with increased LWC for �0=α , C10,
�−=SBaT  ( C7.8,

�−=TSaT ), 

20=aV m/s
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Fig. 10: Time evolution of the shape of ice deposits accreted for angles of 4=α o (left) and 
28=α o (right) under CI conditions with increased LWC [8] 
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Fig. 11: Profiles of ice accretions for various values of angle, β, around vertical axis under 
CI conditions with increased LWC 
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        (a)          (b)         (c) 
 
Fig. 12: Top views of ice accretions for various values of angle, β, around vertical axis, (a) 
CI conditions, (b) CI conditions with increased LWC, (c) ZR conditions 
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Fig. 13: Relative ice mass per unit length versus the cylinder angle, β, (a) CI conditions 
with normal (CI_1) and with increased (CI_3.2) LWC, 

0,βCIupm – ice mass obtained under 

CI conditions with increased LWC upstream of cylinder midpoint for �0=β , (b) ZR 

conditions, 
0,βZRm – ice mass obtained under ZR conditions for �0=β ; “up” and “down” in 

legend refer to ice samples from upstream and downstream of cylinder midpoint, 
respectively 
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Fig. 14: Side views of ice accretions for various values of the angle, γ, around lateral axis 
under CI conditions with increased LWC [8] 
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Fig. 15: Profiles (left) and top (–79.5O

, –63O

, 90O) or side (69O) views (right) of ice accretions 
for various values of the angle, γ, around lateral axis under ZR conditions [8] 
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Fig. 16: Relative ice mass per unit length versus the cylinder angle, γ, obtained in [8]; 

0,γZRupm – ice mass obtained under ZR conditions upstream of cylinder midpoint for 
�90=γ ; “up” and “down” in legend refer to ice samples from upstream and downstream of 

cylinder midpoint, respectively 
 


