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Abstract-Texture measurement for simple geometric 

surfaces is well established. Many surface filtration techniques 

using Fourier, Gaussian, wavelets … etc, have been proposed 

over the past decades. These filtration techniques cannot be 

applied to today’s complex freeform surfaces, which have non-

Euclidean geometries in nature, without distortion of the results.  

Introducing the lifting scheme open the opportunity to extend 

the wavelet analysis to include irregular complex surface 

geometries. Using the second generation wavelets and the lifting 

scheme, a method of texture filtration for freeform surface data 

is proposed in this paper. Results and discussion of the 

application of this method to simulated and measured data are 

presented. 

Index Terms—freeform surfaces; irregular wavelets; 

lifting scheme; surface metrology; wavelet analysis; wavelets on 

triangular meshes. 

 

I- INTRODUCTION 

ver many years, the theory of measuring and 

characterising ordinary simple surfaces such as 

planes, spheres and cylinders has been developed [1-5]. 

Indeed, many research papers and industrial standards 

have been published to describe the measurement and 

characterisation of such surfaces [3-9]. However, with the 

development of science and technology, more and more 

complex surfaces are being produced which, unlike the 

conventional surfaces, have no axes of rotation and no 

translational symmetry and could have any shape or 

design; such complex surfaces are called freeform 

surfaces. 

Characterisation and parameterisation of surface texture on 

such freeform geometries is very challenging and requires re-

thinking each step of characterising the texture on simple 

surfaces. Traditionally, the characterisation and 

parameterisation of surface texture is carried out using the 

four major steps namely; surface sampling and 

representation, decomposition and filtration, texture 

representation and mapping and finally characterisation and 

parameterisation as shown in Fig. 1. 

 

Fig. 1: Texture characterisation and parameterisation 

Moving from simple geometries to complex freeform 

geometries, many of the traditional techniques used to 

perform any of the tasks shown in Fig. 1 start to fail. 

Therefore, new theories and tools that can cope with the new 

emerging surfaces are required.  

Surface decomposition and filtration is an essential step of 

the texture characterisation system. During the last decade, 

decomposition and filtration techniques for simple surfaces 

have been comprehensively investigated and many 

algorithms based on Fourier, Gaussian, Spline and wavelet 

techniques were proposed and became the industrial filtration 

standards for such surfaces [6-10]. Unfortunately, all of these 

techniques are designed to decompose and filter Euclidean 

surfaces, so most of these techniques fail to filter freeform 

non-Euclidean surfaces. 

Very recently, our research group have proposed a new 

filtration technique for freeform surfaces, represented by 

triangular meshes, based on solving the diffusion equation 

formulated by using the Laplace-Beltrami operator on that 

surface [11]. 

In this paper, we provide an initial investigation of applying 

the lifting wavelet for freeform surface filtration. The power 

of this filtration technique is that it’s capable to filter any type 

or shape of surfaces. We investigate different methods of 

building the lifting scheme and the results are discussed and 

presented.  

This paper is organised as follows; section 2 discusses 

different techniques to represent a freeform surfaces, section 

3 gives a brief introduction about the lifting scheme and the 

second generation wavelets. A brief review of wavelets and 

multi-resolution analysis on surface is shown in section 4. 

Section 5 details the proposed lifting algorithm on freeform 
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surfaces and the results of the algorithm is shown in section 

6. Finally, the conclusions and future work is discussed in 

section 7.   

II- REPRESENTING FREEFORM SURFACES 

Traditionally, surfaces are represented as height values over 

plane. This type of representation is only valid for simple 

Euclidean surfaces. This type of representation enables 

researcher to successfully apply different processing 

techniques, such as Fourier analysis, wavelet decomposition 

and Gaussian filters, to analyse surfaces’ data. Freeform 

surfaces cannot be represented using the traditional method 

and new method of representing freeform surfaces is 

required. 

Fortunately, there are a number of freeform surface 

representation techniques found in the field of computer 

graphics, computer design and many other fields. These 

techniques can be roughly classified into; discrete method, 

continuous methods. A survey of surface representation 

techniques can be found in [12]. 

The discrete representation consists mainly of two major 

types; point clouds and polygon surface meshes. Point clouds 

is a very primitive way of representing a surface, it is only 

store the surface as a number of (x,y,z) coordinates and no 

geometrical properties can be obtained from this type of 

presentation.  Surface meshes, on the other hand, are widely 

used to represent surfaces of different topological types. 

Geometrical approximation and surface information can be 

derived from the surface mesh. 

Continuous representation methods attempt to describe the 

freeform surface using an equation or a set of equations. 

NURBS, B-SPLINE are the two major types of the 

continuous methods. Describing a freeform surface using 

mathematical equations is not trivial and requires fitting 

algorithms, and also they require that data to be represented 

by meshes. 

Because of the reasons that polygon surface meshes is easier 

to implement and they can easily represent any freeform 

surface and also because they have been used to represent 

surfaces in many different applications and geometrical 

approximation could be extracted from them, polygon surface 

meshes are adopted to represent the freeform surfaces in this 

paper and in particular, the triangular surface meshes. 

A triangular mesh can be simply defined as a collection of 

vertices (points), edges and faces that define the shape or a 

surface of a 3D object. Three major types of meshes 

according to the distribution of the vertices, edges and faces 

among the entire surface can be distinguished; regular, semi-

regular and irregular meshes as shown in Fig. 2 [13]. 

 

Fig. 2: Different types of triangular mesh: (a) regular, (b) semi-regular and 

(c) irregular 

Regular Meshes is a type of mesh where its vertices are 

regularly distributed among the entire surface, all the faces 

have almost the same area and finally all vertices have the 

same number of edges. Semi-regular mesh is a mesh that is 

considered to be regular on local areas but not on the entire 

surface. On the other hand, irregular mesh is that mesh which 

does not possess any of the above properties, the area of each 

face (triangle) is different to the other, and also the number of 

edges per vertex is varying [13]. 

Most of regular and semi-regular types of meshes can be 

found in computer graphics and computer generated surfaces 

and object and it is not very common to be found in actual 

measured surfaces. Irregular type meshes are more realistic 

and suitable from surface texture point of view than the other 

two types, therefore we focus to filter freeform surfaces 

represented by irregular meshes as will be shown in this 

paper. 

III- SECOND GENERATION WAVELET AND THE LIFTING SCHEME 

Wavelets are very powerful tool for representing and 

decomposing general function, curves, surfaces or any type 

of data sets into their basic components. They enjoy a very 

widespread use in many different areas and applications such 

as signal processing, image processing, image compression, 

computer graphics, surface filtration and many others. The 

power of wavelets derives from representing the input data 

sets into time-scale and different levels of resolution. 

Traditionally, wavelets analysis was defined as translation 

and dilation of one particular function called the mother 

wavelet. This translation and dilation was carried out by 

convolving the input data with a series of filter banks. This 

type of wavelet transform was called the first generation 

wavelets. 

First generation wavelets can only be applied to regular data 

such as regular sampled signals, images and Euclidean 

surfaces. However, many applications have irregular data sets 

and therefore new generation of wavelets were required. In 

1995, Swelden proposed the lifting scheme as a new 

generation of wavelets, which he referred as the second 

generation wavelets. The lifting scheme generalises the first 

generation and could be applied for both regular and irregular 

data sets [14-17]. 

The lifting scheme allows the construction of the filter banks 

entirely in the spatial domain and eliminates the need of 

Fourier or convolution operation which limits the first 

generation to only regular data sets. Instead of explicitly 



designing and specifying the scaling and wavelets functions, 

the lifting scheme decompose that data through three major 

operations; splitting, prediction and update as shown in Fig. 

3. 

 

Fig. 3: The Lifting scheme decomposition and reconstruction process. 

The power of lifting scheme is that, it starts with very simple 

wavelet called the lazy wavelet which splits the data onto 

even and odd sets, then this lazy wavelet is lifted up to 

produce the desired wavelet and scaling functions by the 

prediction and the update operations. A simple example of 

how the prediction and update operators can be used to lift up 

the lazy wavelet to the Haar wavelet is shown in [16]. 

The major benefit of using the lifting scheme for surface 

filtration is that it gives us the ability to decompose and filter 

complex surface geometries that could not be represented 

using simple regular data sets.   

IV- WAVELETS AND MULTI RESOLUTION ANALYSIS ON 

SURFACES 

Multi-resolution analysis (MRA) for 3D meshes has been an 

active research area for the past decade. The introduction of 

the second generation wavelets and lifting scheme [14-17] 

made the extension of wavelets and MRA possible for all 

types of 3D meshes and a few algorithms have been proposed 

[13, 18-22].  The main idea behind MRA is to decompose a 

high resolution mesh into a lower resolution mesh and details 

that are needed to recover the original mesh, this operation is 

repeated iteratively starting from the finest mesh M∞ and 

ending wish the coarsest base mesh M0 as shown in Fig. 4. 

Fig. 4:  Decomposition of 3D mesh into approximation and details as 

proposed by Lounsbery [19]. 

Lounsbery et al. have proposed a bi-orthogonal filter banks to 

decompose a regular and semi-regular 3D meshes into a 

lower resolution counterpart and a series of wavelets 

coefficients as shown in Fig. 4 above. In their method, they 

made the connection between the nested spaces of scaling 

functions and 3D mesh decomposition through subdivision. 

They show that subdivision scheme can be considered to be 

nested linear spaces required to build the MRA [19]. The 

decomposition is computed with two analysis filters, A
j
 and 

B
j
 for each resolution level j. The reconstruction is done with 

two synthesis filters P
j
 and O

j
.  They showed that coarser 

mesh and its wavelet coefficients (V
j
 and W

j
 respectively) can 

be calculated from a finer mesh V
j+1

 using the following 

equations: 

V
j
 = A

j
 V

j+1
 (1) 

W
j
 = B

j
 V

j+1
 (2) 

 

The finer mesh V
j+1

 could be recovered from its coarser 

approximation and wavelets coefficients using a pair of 

synthesis filters P
j
 and Q

j
; 

V
j+1

 = P
j
 V

j
 +  Q

j
 W

j
 (3) 

Where the connection between the analysis and synthesis 

filters that insures the perfect reconstruction is given by: 
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j

QP
B

A
   (4) 

 

This technique works only on regular and semi-regular 

meshes but fails to handle the irregular cases. 

Daubechies et al. proposed another technique that can handle 

an irregular 3D meshes. There technique is based on mesh 

simplification and subdivision schemes, the authors use a 

Burt-Adelson pyramid scheme as shown in Fig. 5. The design 

of the subdivision scheme is carried out by inserting new 

values in such a manner that the second order differences are 

minimized [21]. 

 

Fig. 5:  Decomposition of irregular 3D mesh using Burt-Adelson pyramid-

like scheme. 

Schroder and Swelden have proposed an extension of the 

lifting scheme to decompose spherical surfaces [23,24]. In 

their technique they divide the mesh into two sets of vertices, 

the first set contains the new vertices resulted from 

subdivision and the second set contains the old vertices that 

determine the new values. Then the new vertices are 

predicted using interpolation techniques. 

Bonneau was the first to introduce multi-resolution analysis 

over non-nested spaces, which are generated by BLac-

wavlets which is a combination of the Haar function with the 

linear B-Spline function. Two major operators were 

proposed; the smoothing operator to compute the coarse 

mesh and an error operator to determine the difference 

between the approximation and the original meshes (Bonneau 

1998) [20]. 



Roy et al. have proposed a MRA for irregular meshes based 

on split and predict operations [22]. This algorithm consists 

of three main steps: split, predict and down-sampling. The 

split operator separate the odd and even vertices; the odd 

vertices are defined as a set of independent vertices which not 

directly connected by an edge. All the selected odd vertices 

are to be removed by mesh simplification algorithm in the 

global down-sampling stage, and then predicted back using 

the prediction operator that relax the curvature based on the 

Meyer smoothing operator [25,26]. In fact, the work 

presented in this paper is inspired by Roy’s work and his 

paper. 

Valette et al. presented a wavelet-based multi-resolution 

decomposition of irregular surface meshes. The method is 

essentially based on Lounsbery decompositions; however the 

authors introduced a new irregular subdivision scheme. Their 

algorithm uses a complex simplification technique in order to 

define surface patches suitable for the irregular [27]. 

Recently, Szczensa proposed a new multi-resolution analysis 

for irregular meshes using the lifting scheme, in which she 

propose a new prediction operator using Voronoi cells in a 

local neighbourhood [28, 29]. 

V- FREEFORM SURFACE FILTERING USING THE LIFTING 

SCHEME 

Extending the lifting scheme form 1D and 2D regular cases 

into 3D irregular meshes is very challenging. In this section, 

we detail all different blocks required to build the lifting 

scheme on 3D meshes. The framework of a generalised 

lifting scheme for 3D meshes is represented in Fig. 6. Fig. 

6(a) shows the mesh decomposition stage; an input mesh is 

decomposed into a coarser mesh (wavelet approximation) and 

details (wavelet details) by splitting the mesh vertices into 

two groups; evens and odds. Odd vertices are used to update 

the even vertices. Even vertices are chosen to rebuild the 

coarser mesh that approximates the original mesh. The odd 

vertices, on the other hand, are to be removed. The updated 

even vertices are used to predict the odd vertices, and then 

the details coefficients are calculated as the difference 

between the prediction and the original odd vertices. Fig. 6(b) 

shows how to reconstruct the original mesh using its 

approximation and details. All of these different blocks are 

explained in the following sub-sections. 

 

A. Split operation 

The first stage in building the lifting scheme is to split the 

input data into even and odd. In the case of 1D input; this 

task is trivial, but for 3D meshes it not straightforward. 

 

 

Fig. 6: The Generalised Lifting scheme on 3D meshes. (a) Mesh 

decomposition. (b) Mesh reconstruction 

One important notice in the 1D case is that each odd index is 

surrounded by even indices. This observation is kept true in 

our proposed algorithm and so all odd vertices have to be 

surrounded by even vertices and no two odd vertices can 

share an edge. On the other hand, even vertices can be 

adjacent to each other and form edges in the mesh. The 

output of the split operator can be mathematically described 

as: 

����� � � �	

����	

��� (5) 

Where; 

M� represents an input mesh at level j. v���� is the set of odd 

vertices at level j and N�v����� is the set of the even vertices 

that represent one-ring neighbourhood of the odd vertices. 

Different methods can be used to select the odd vertices, and 

the quality of the output coarser mesh depends entirely on the 

selected odd vertices. So, better selection algorithm will 

produce better approximation. Three different split operators 

are implemented and discussed on this paper; random, 

shortest-edges and quadric error metric (QEM) split 

operators. 

� Random split operator: 

In random split, an initial vertex is selected to be odd 

randomly and then all its neighbours are set to be even, then a 

new unprocessed vertex is selected to be odd and all of the 

neighbours are even. This process ends when no more 

vertices can be selected. 

� Shortest-edges split operator: 

The second split operator is based on the shortest edges in the 

mesh. Initially, the length of all edges are calculated and then 

sorted in ascending order in a list. One vertex of the shortest 

edge is selected to be odd and all the adjacent vertices are 



locked to be even. Then, the second shortest edge is selected 

and if one of its vertices are not processed yet, (neither even 

nor odd), then that vertex is selected to be odd and all 

adjacent to be even and so on. The algorithm continues until 

all edges have been processed. 

� Quadric error Metric (QEM) split operator: 

The third splitting algorithm is based on the quadric error 

metrics which is originally proposed by Garland and 

Hechbert [30] to simplify triangle meshes with high accuracy. 

The algorithm uses iterative vertex pair contraction to 

simplify a surface and maintain a geometric error 

approximation of the triangular meshes using the quadric 

matrices. These vertex pairs are used to identify the odd 

vertices in our splitting module. 

Vertex-pair contraction is carried out iteratively based on the 

cost of the contraction. Small costs contractions are 

performed first keeping higher costs to the end. We 

summarise the algorithm of calculating the cost of the 

contraction using the following steps. Readers are referred to 

Garland paper [30] for more details. 

1- For each vertex in the mesh, calculate the error 

quadric (Q) matrix using the following equation: 

 ���� � � K��� ��������  (6) 

 

where; 

K� �   !"!#!$!%
!##"#$#%

!$ !%#$ #%$"$% $%%"& (7) 

and; 

• [a b c d] represents the plane defined by 

the equation ax + by + cz +d =0 where 

  a
2
 + b

2
 + c

2
 =1.  

 

• faces(v) are the set of faces that share the 

vertex v. Each face of these faces is part of 

the plane defined by the coefficients [a b c 

d]. 

 

2- For each edge eij or (vi-->vj) in the mesh calculate 

the contraction cost by: 

 '()*�+ � ,-. ��* . (�* 0 ��+. �*1�� . (�* 0 ��+��1 � (8) 

where; '()*�+ is the cost of contracting the edge )*�, �*1 is 

the transpose of �* and �* � 23 4 5 17. Note that if 

the cost using the vertex �* is less than the cost 

obtained by using �� then �* is an even vertex and ��is an odd vertex that has to be removed. 

 

3- Sort the edges according to their costs, and start 

selecting the odd vertices based on the criteria 

described in step 2.  

Similar to the shortest-edges method, this method not only 

selects the odd vertices but also it chooses the even partners 

that will be needed in mesh simplification algorithms as will 

be described later in the paper. 

B.  Prediction operator 

The design of the prediction operator plays a key role in 

surface filtrating using the lifting scheme. It has to predict the 

properties of the odd vertices using the even vertices. In our 

application, these properties could be the vertex’s position or 

the vertex texture, the residual normal distance between the 

nominal and the measured surfaces at that vertex.  

In the split operator, odd vertices are chosen so that each odd 

vertex is surrounded by even neighbours. Therefore, the 

prediction operator depends on the even-ring neighbourhood 

of the odd vertex. 

Traditionally, the predicted odd value is a weighted 

summation of the values of its even neighbours. Many 

algorithms have been proposed to design these weights and 

cubic spline prediction operator is one of the famous methods 

to calculate these weights in traditional lifting scheme.  

In triangular meshes, the predicted odd value is calculated 

using one-ring even neighbours by the equation: 

 

8��*� � � 9*,��� ;��<�  . 8���� (9) 

 

Where 8��*� could be any function or attribute defined over 

the vertex �*, this function in our application is the surface 

texture.  

If the filtration is carried out on the mesh vertices themselves 

and not on a function defined over that mesh, then position of 

the vertex is to be predicted and the predicted location of an 

odd vertex is give by: 

�
4* � � 9*,��� ;��<�  . 4�
4* � � 9*,��� ;��<�  . 4�
5* � � 9*,��� ;��<�  . 5�=>>

?
>>@  

 

(10) 

Where 9*,� are the weights of the even vertices in the even-

ring ���*�. 
Designing the weights is very important and different weights 

can significantly improve the filtration process. These 



weights could be calculated using different methods 

depending on the application. The simplest algorithm to 

calculate these weights is by using equal weights for all the 

surrounding neighbours.  

9*,� � 1��       (11) 

where; NN is the number of even neighbours in the even-ring 

neighbourhood. 

In this paper, the author adopted the weights calculated using 

the curvature-relaxing operator as proposed by Roy et al. [22] 

and which is given by:  

 

 9*,� � cot D*,� 0 cot E*,�∑ cot D*,G 0 cot E*,GGH���I_K*IL       
 

(12) 

where; αi,j and βi,j are the angles opposite to the edge ei,j  as 

shown in the Fig. 7. 

 

Fig. 7: The definition of relaxation angles α and β for the edge ei,j  . 

C.  Update operator 

Traditionally, the update operator preserves some features 

from the input higher resolution signal to the output lower 

resolution coarse signal. For example, the update operator for 

designing a Haar transform using the lifting scheme insures 

that the average of the input fine signal is equal to the 

average of the output coarse signal.  Based on the previous 

observation, the update operator in the 3D mesh case has also 

to preserve some important features in all approximated 

meshes at all different decomposition levels. 

In this paper, we choose to preserve the average value of the 

vertex-ring before and after removing the odd vertex, thus the 

update is given by: 

 

M2�8�����I�7 � ��. �8��	

� N ∑ (8����+�H;��OPP��� Q ��� 0 1�0 8�����I� 
 

(13) 

where;  

NN is the number of even neighbours in the even ring 

neighbourhood. 

 

Fig. 8: Different mesh simplifications algorithms 

D.  Mesh simplification (The approximation) 

Mesh simplification or down-sampling is the process of 

reducing the number of faces, edges and vertices while 

attempting to preserve the overall geometry, shape, 

boundaries as much as possible. It is the step that produces 

the approximated coarser meshes (wavelet approximations), 

which can be used as an input for further decomposition 

levels. 

Many algorithms have been proposed for mesh simplification 

as shown in Fig. 8. These algorithms can be roughly divided 

into three major groups; the first group simplify the mesh by 

selecting an edge to be collapsed, the second define a face to 

be removed and the third type relies on selecting vertex to be 

removed, as shown in the figure. The half-edge collapse does 

not introduce a new vertex position but rather it simplifies 

(subsample) the mesh using the same vertices locations, 

hence, half-edge collapse is adopted to perform the 

simplification step in implementing of the lifting scheme over 

3D meshes. 

E.  The details 

The details coefficients is defined as the Euclidean distant or 

a vector between the odd vertex properties and its prediction. 

These coefficients must have all the information needed to 

perform a perfect reconstruction of the original mesh. 

In the proposed algorithm the details are stored as number of 

records, the number of details records is equal to number of 

odd vertices selected by the split operator. Each record 

preserves all the information that is required for the 

reconstruction, these information includes; the details vectors 

and all the edges and topological information before 

removing that odd vertex.  



F.  Merge Operator 

The merge operator, mesh up-sampling, defines how to re-

insert new vertices into the mesh. The insertion of new vertex 

into the mesh is controlled by the details record of that 

vertex. The mesh topology before removing the odd vertex 

must be preserved and perfectly reconstructed by the merge 

operator.  In this paper, the merge operator was carried out 

using the vertex-split algorithm adopted from the Progressive 

Mesh (PM) procedure [31]. 

VI- RESULTS AND DISCUSSIONS 

The proposed lifting scheme has been implemented and 

tested to filter measured and simulated surfaces represented 

by 3D irregular triangular meshes and the results are shown 

and discussed in this section. 

Firstly, the proposed algorithm has been demonstrated by 

decomposing and reconstructing a simple 2D mesh shown in 

Fig. 9. The original 2D mesh is shown in Fig. 9(a).  In this 

experiment only one odd vertex has been selected by the split 

operator, which is vertex 6 in the middle of the figure this 

odd vertex has to be removed to produce a simplified coarser 

mesh. 

To remove the odd vertex, the algorithm has to chose one 

edge to be collapsed, the edge e(6-8) is chosen in our 

example. Performing half-edge collapse on the edge e(6,8) 

requires removing the vertex 6 and all edges that have the 

vertex 6 as an end vertex, and then to reconnect those edges 

to vertex 8 instead. Fig. 9(b) shows the coarser mesh. 

 

Fig. 9: Demonstration of the lifting scheme on 2D mesh. (a) The original 

mesh ((10 vertices, 11 faces and 20 edges)). (b) The mesh after collapsing 

the edge e(6-8) ((9 vertices, 9 faces and 17 edges)). (c) The constructed mesh 

using the vertex-split and also using a prediction vertex p calculating using 

the even-ring. 

The even-ring neighbours, vertices (10, 9, 5, 7, 4, 8 and 3) in 

our example, are used to predict the odd vertex. The 

predicted vertex is shown as the vertex p in Fig. 9(b). As 

shown in figures 9(b) and (c), the predicted vertex is very 

close to the original odd vertex, vertex 6 in our example, and 

therefore the predicted vertex could be used to construct the 

mesh as shown in Fig. 9(c). In this experiment, the prediction 

operation is carried out using the equal-weights prediction 

operation discussed earlier in this paper. 

The constructed mesh must have exactly same topology as 

the original mesh; the new vertex p is inserted into the coarse 

mesh in (b) while preserving the relation between the odd 

vertex and its even-ring as shown in Fig. 9(c). 

The next step is to test the algorithm to filter real and 

simulated surfaces. Fig. 10 shows the filtration framework 

that has been used to filter our surfaces. As shown in the 

figure, the input surface mesh is decomposed into N-Levels, 

and the details coefficients are filtered out and set to zero 

before the surface is reconstructed again. More 

decomposition levels mean a smoother output surface. 

However, the number of decomposition levels is limited and 

no further decomposition is possible once we reach the base 

mesh that could not be simplified anymore. Therefore, more 

filtration could be achieved by reapply the output filtered 

surface as an input to the filtration system and repeat the 

process as many times as needed, which is represented by the 

M-iterations in  Fig. 10. 

Fig. 10: Surface filtration algorithm using the lifting scheme. 

 

A.  Simulated surfaces 

Four computer generated surfaces are used to test the 

performance of the proposed algorithm. These surfaces are 

designed to cover a wide range of freeform surfaces with 

different topological types. The first surface is a saddle 

shaped surface which is a typical example of non-Euclidean 

surface with negative curvature. The second surface is a 

sphere that represents positive curvature non-Euclidean 

geometry. The third and forth surfaces are more complicated 

surfaces with non-constant curvatures. We refer to the third 

and fourth surfaces as bumpy and wavy surfaces respectively. 

All of these surfaces are shown in Fig. 11. 



 

Fig. 11: Computer generated surfaces; (a) non-Euclidean negative curvature 

surface “saddle shaped surface” (b) positive curvature surface “sphere”, (c) 

and (d) non-constant curvature surfaces represented by bumpy and wavy 

surfaces respectively 

An artificial Gaussian noise is add to these surfaces to 

represent the texture that needed to be filtered out using the 

proposed lifting scheme and the filtration results are shown in 

figures 12-15. 

Fig. 12 shows the results of applying the proposed algorithm 

on the saddle shaped surface. The original noisy surface is 

show in Fig. 12(a). Figures 12 (b) – (f) show the results using 

1, 4, 8, 16 and 24 decomposition levels respectively. Figures 

12 (g) – (i) on the hand, show the results of using 24 

decomposition levels and 2, 3 and 4 iterations respectively. 

 

Fig. 12: Texture filtration results of the saddle shaped surface; (a) the 

original textured surface. (b)- (f) the filtration results using 1, 4, 8, 16 and 24 

decomposition levels respectively. (g)- (i) The filtration results using 24 

decomposition levels and 2, 3 and 4 iterations respectively. 

 

The proposed algorithm has been also applied to filter the 

other surfaces and the results are shown in figures 13, 14 and 

15 for the sphere, bumpy and wavy surfaces respectively. 

 

Fig. 13: Texture filtration results of the spherical surface; (a) the original 

textured surface. (b)- (f) the filtration results using 1, 4, 8, 16 and 24 

decomposition levels respectively. (g)- (i) The filtration results using 24 

decomposition levels and 2, 3 and 4 iterations respectively. 

 

 

 

Fig. 14: Texture filtration results of the bumpy surface; (a) the original 

textured surface. (b)- (f) the filtration results using 1, 4, 8, 16 and 24 
decomposition levels respectively. (g)- (i) The filtration results using 24 

decomposition levels and 2, 3 and 4 iterations respectively. 

 

 

Fig. 15: Texture filtration results of the wavy surface; (a) the original 

textured surface. (b)- (f) the filtration results using 1, 4, 8, 16 and 24 

decomposition levels respectively. (g)- (i) The filtration results using 24 

decomposition levels and 2, 3 and 4 iterations respectively. 



Figures 16 and 17 show the output of the mesh simplification 

or mesh down-sampling operation using the half-edge 

collapse algorithm as discussed earlier in the paper. In these 

figures the coarser meshes (wavelet approximations) after 1, 

4, 8, 16 and 24 decomposition levels, for the saddle and 

sphere surfaces, are shown in figures (a)-(f) respectively. 

 

Fig. 16: The approximated output meshes (wavelet approximations) for the 

saddle-shaped surface at different decomposition levels. (a) The original 

finest input mesh, (b)-(f) the approximated coarse mesh after 1, 4, 8, 16 and 

24 decomposition levels respectively. 

 

Fig. 17: The approximated output meshes (wavelet approximations) for the 

spherical surface at different decomposition levels. (a) The original finest 

input mesh, (b)-(f) the approximated coarse mesh after 1, 4, 8, 16 and 24 

decomposition levels respectively. 

Fig. 18 shows the output of the split operator using the QEM 

algorithm as explained above. The figure demonstrates how 

the odd and even vertices are distributed and number of even 

and odd vertices are shown at the first, second, firth, eighth, 

sixteenth and twenty-forth level of the decomposition. The 

odd vertices are represented by blue dots while the even 

vertices are the red dots in the figure.  In this paper, we did 

not allow any boundary vertex to be an odd vertex, this will 

insures that all odd vertices have a complete ring of 

neighbourhood and thus will produce more accurate 

prediction and improves the filtration process and also 

eliminates the boundary problem that will occur when 

predicting at the boundary. 

 

Fig. 18: A demonstration of the split operator using the QEM algorithm on 

the wavy surface. The distribution of odd vertices at the first, second, fourth, 

eighth, sixteenth and twenty-fourth are shown in (a)-(f) respectively. 

Boundary vertices are not allowed to be odd vertices. 

Fig. 19 compares between the three different split operators 

discussed earlier in the paper, i.e.; the random, shortest-edges 

and QEM algorithms. Fig. 19 (a) shows the percentage of odd 

vertices at different decomposition levels for the saddle shape 

surface, while Fig. (b) shows the same but for the wavy 

surface. Both figures show that the random and the shortest-

edges give higher odd vertices percentage in the first 

decomposition levels but quickly drop and give very low 

percentage at higher levels. On the other hand, the QEM has 

the smallest percentage in the beginning but it slow decay 

and cover more decomposition levels. This means that the 

QEM split operator gives the best mesh approximation output 

and the mesh gradually become coarser at each 

decomposition level as shown in Fig. 16 and 17. 

B.  measured surfaces 

After the initial application of the proposed algorithm to 

computer generated surfaces, the lifting scheme filtering was 

performed on real surface measurement data.  The data were 

obtained from coordinate measuring machine (CMM) 

measurement of portion of hip replacement components. 

These two measured surfaces are shown in Fig. 20; we refer 

to these two surfaces as hip-part1 and hip-part2 as shown in 

Fig. 20(a) and (b) respectively. As with the computer 

generated surfaces an extra artificial Gaussian noise is added 

to these surfaces and then these surfaces are filtrated using 

the proposed algorithm. 



 

Fig. 19: Comparison between the random, shortest-edges and the QEM split 

operators at different decomposition levels; (a) the results of saddle-shaped 

surface, (b) the results of the wavy surface. 

 

 

Fig. 20: Two real measured surfaces obtained with CMM for hip 

replacement component. We refer to these surface as; (a) hip-part1 and (b) 

hip-part2. 

 

Figures 21-22 show the results of applying the proposed 

lifting technique to filter the surface texture at different 

decomposition levels and iterations.  As with the simulated 

results, the proposed algorithm was successfully capable of 

smoothing the texture to different scales according to the 

decomposition levels and number of iterations. Figures 23-24 

show the outputs of the mesh-simplification process (wavelet 

approximations) at different decomposition levels for the two 

surfaces shown in Fig. 20. 

 

Fig. 21: Texture filtration results of the hip-part1 surface; (a) the original 

textured surface. (b)- (f) the filtration results using 1, 4, 8, 16 and 24 

decomposition levels respectively. (g)- (i) The filtration results using 24 

decomposition levels and 2, 3 and 4 iterations respectively. 

 

 

Fig. 22: Texture filtration results of the hip-part2 surface; (a) the original 

textured surface. (b)- (f) the filtration results using 1, 4, 8, 16 and 24 

decomposition levels respectively. (g)- (i) The filtration results using 24 

decomposition levels and 2, 3 and 4 iterations respectively. 

 

 

Fig. 23: The approximated output meshes (wavelet approximations) for the 

hip-part1 surface at different decomposition levels. (a) The original finest 

input mesh, (b)-(f) the approximated coarse mesh after 1, 4, 8, 16 and 24 

decomposition levels respectively. 

 



 

Fig. 24: The approximated output meshes (wavelet approximations) for the 

hip-part2 surface at different decomposition levels. (a) The original finest 

input mesh, (b)-(f) the approximated coarse mesh after 1, 4, 8, 16 and 24 

decomposition levels respectively. 

 

VII- CONCLUSIONS 

In this paper, a generalised lifting scheme to filter the texture 

of freeform surfaces represented by 3D irregular triangular 

meshes has been proposed. The proposed algorithm has been 

applied to filter the texture of computer generated and real 

measured free-from surfaces. The results show that the 

proposed lifting algorithm is robust and has good potential 

for free-from surface filtration. Furthermore, the proposed 

algorithm is capable to filter the surface texture at different 

scales depending on the decomposition levels and the number 

of iterations. 

Moreover, three split operators have been implemented; the 

random, the shortest-edges and the quadric error metric 

(QEM) methods. The QEM algorithm gives the best surface 

approximation of the original surface after the simplification 

process. However, the random and shortest-edges give higher 

number of odd vertices at lower decomposition levels as 

shown in the paper. 

The prediction operator plays an important role in the 

filtration process. In this paper, two prediction methods were 

discussed, the first is using equal weights, and the second is 

using weights that would minimize the curvature. The choice 

of the weights depends on the surface being filtered, 

therefore, more prediction methods need to be investigated to 

cover a wide range of freeform surfaces. 
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