
University of Huddersfield Repository

Vallati, Mauro, Fawcett, Chris, Gerevini, Alfonso, Hoos, Holger and Saetti, Alessandro

Generating Domain-Specific Planners through Automatic Parameter Configuration in LPG

Original Citation

Vallati, Mauro, Fawcett, Chris, Gerevini, Alfonso, Hoos, Holger and Saetti, Alessandro (2011) 
Generating Domain-Specific Planners through Automatic Parameter Configuration in LPG. In: 7th 
International Planning Competition 2011, 11th-16th June 2011, Freiburg, Germany,. 

This version is available at http://eprints.hud.ac.uk/id/eprint/15382/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



ParLPG: Generating Domain-Specific Planners through Automatic Parameter
Configuration in LPG

Mauro Vallati
University of Brescia

mauro.vallati@ing.unibs.it

Chris Fawcett
University of British Columbia

fawcettc@cs.ubc.ca

Alfonso E. Gerevini
University of Brescia
gerevini@ing.unibs.it

Holger H. Hoos
University of British Columbia

hoos@cs.ubc.ca

Alessandro Saetti
University of Brescia
saetti@ing.unibs.it

Abstract

The ParLPG planning system is based on the idea of us-
ing a generic algorithm configuration procedure – here, the
well-known ParamILS framework – to optimise the per-
formance of a highly parametric planner on a set of prob-
lem instances representative of a specific planning domain.
This idea is applied to LPG, a versatile and efficient plan-
ner based on stochastic local-search with 62 parameters and
over 6.5 × 1017 possible configurations. A recent, large-
scale empirical investigation showed that the approach be-
hind ParLPG yields substantial performance improvements
across a broad range of planning domains.

Introduction
When designing state-of-the-art, domain-independent plan-
ning systems, many decisions have to be made with respect
to the domain analysis or compilation performed during pre-
processing, the heuristic functions used during search, and
several other features of the search algorithm. These design
decisions can have a large impact on the performance of the
resulting planner. By providing many alternatives for these
choices and exposing them as parameters, highly flexible
domain-independent planning systems are obtained, which
then, in principle, can be configured to work well on differ-
ent domains, by using parameter settings specifically chosen
for solving planning problems from each given domain.

The planning system ParLPG that we propose in this
work is based on the idea of automatically configuring
a generic, parameterized planner using a set of training
planning problems in order to obtain planners that per-
form especially well in the domains of these problems.
ParLPG uses the FocusedILS variant of the off-the-shelf,
state-of-the-art automatic algorithm configuration proce-
dure ParamILS (Hutter, Hoos, and Stützle 2007; Hutter
et al. 2009), and LPG (Gerevini, Saetti, and Serina 2003;
2008), a well-known efficient and versatile planning system
with many components that can be configured very flexibly
via 62 exposed configurable parameters, which jointly give
rise to over 6.5 × 1017 possible configurations. Moreover,
this work exploits several meta-algorithmic procedures pro-
vided by the empirical algorithmics environment HAL (Nell
et al. 2011).

We developed two variants of the proposed planner:
ParLPG.s refers to the planners resulting from domain-

specific configuration aiming to minimize the runtime
needed to find an initial satisficing plan, whereas ParLPG.q
refers to the planners resulting from configuration for opti-
mizing plan cost.

In a large experimental study we found that the ap-
proach underlying ParLPG yields substantial performance
gains over the default configuration of LPG on 11 domains
of planning problems used in previous international plan-
ning competitions (IPC-3–6), as well as on the benchmark
problems considered in the learning track of IPC-6, where
we have shown that in terms of speed and usefulness of
the learned knowledge it outperforms the respective IPC-
6 winners PbP.s (Gerevini, Saetti, and Vallati 2009) and
ObtuseWedge (Yoon, Fern, and Givan 2008).

The Parameterized Planner LPG
In this section, we provide a very brief description of LPG
and its parameters. LPG is a versatile system that can be
used for plan generation, plan repair and incremental plan-
ning in PDDL2.2 domains (Hoffmann and Edelkamp 2005).
The planner is based on a stochastic local search procedure
that explores a space of partial plans represented through lin-
ear action graphs (Gerevini, Saetti, and Serina 2003), which
are variants of the very well-known planning graph (Blum
and Furst 1997).

Starting from the initial action graph containing only two
special actions representing the problem initial state and
goals, respectively, LPG iteratively modifies the current
graph until there is no flaw in it or a certain bound on the
number of search steps is exceeded. Intuitively, a flaw is
an action in the graph with a precondition that is not sup-
ported by an effect of another action in the graph. LPG at-
tempts to resolve flaws by inserting into or removing from
the graph a new or existing action, respectively. Figure 1
gives a high-level description of the general search process
performed by LPG. Each search step selects a flaw σ in
the current action graph A, defines the elements (modified
action graphs) of the search neighborhood of A for repair-
ing σ, weights the neighborhood elements using a heuristic
function E, and chooses the best one of them according to
E with some probability n, called the noise parameter, and
randomly with probability 1 − n. Because of this noise pa-
rameter, which helps the planner to escape from possible
local minima, LPG is a randomized procedure.



1. Set A to the action graph containing only astart and aend;
2. While the current action graph A contains a flaw or

a certain number of search steps is not exceeded do
3. Select a flaw σ in A;
4. Determine the search neighborhood N(A, σ);
5. Weight the elements of N(A, σ) using a heuristic functionE;
6. Choose a graph A′ ∈ N(A, σ) according to E and noise n;
7. Set A to A′;
8. Return A.

Figure 1: High-level description of LPG’s search procedure.

The 62 configurable parameters of LPG control the pos-
sible settings of different components in the system, and can
be grouped into seven distinct categories (each of which cor-
responds to a different component of LPG):

• Preprocessing information (e.g., mutually exclusive rela-
tions between actions).

• Search strategy (e.g., the use and length of a “tabu list”
for the local search, the number of search steps before
restarting a new search, and the activation of an alternative
systematic best-first search procedure).

• Flaw selection strategy (i.e., different heuristics for decid-
ing which flaw should be repaired first).

• Search neighborhood definition (i.e., different ways of
defining/restricting the basic search neighborhood).

• Heuristic function E (i.e., a class of possible heuristics for
weighting the neighborhood elements, with some variants
for each of them).

• Reachability information used in the heuristic functions
and in neighborhood definitions.

• Search randomization (i.e., different ways of statically
and dynamically setting the noise value).

The Parameter Configurator ParamILS
While ParLPG could in principle utilize any sufficiently
powerful automatic configuration procedure, we have cho-
sen the FocusedILS variant of the off-the-shelf, state-
of-the-art automatic algorithm configuration procedure
ParamILS (Hutter, Hoos, and Stützle 2007; Hutter et al.
2009). At the core of the ParamILS framework lies Iter-
ated Local Search (ILS), a well-known and versatile stochas-
tic local search method that iteratively performs phases of
a simple local search, such as iterative improvement, in-
terspersed with so-called perturbation phases that are used
to escape from local optima. The FocusedILS variant
of ParamILS uses this ILS procedure to search for high-
performance configurations of a given algorithm by eval-
uating promising configurations, using an increasing num-
ber of runs in order to avoid wasting CPU-time on poorly-
performing configurations. ParamILS also avoids wasting
CPU-time on low-performance configurations by adaptively
limiting the amount of runtime allocated to each algorithm
run using knowledge of the best-performing configuration
found so far.

ParamILS has previously been applied to configure state-
of-the-art solvers for SAT (Hutter et al. 2007) and mixed in-
teger programming (MIP) (Hutter, Hoos, and Leyton-Brown
2010). This resulted in a version of the SAT solver Spear
that won the first prize in one category of the 2007 Satisfia-
bility Modulo Theories Competition (Hutter et al. 2007); it
further contributed to the SATzilla solvers that won prizes in
5 categories of the 2009 SAT Competition and led to large
improvements in the performance of CPLEX on several
types of MIP problems (Hutter, Hoos, and Leyton-Brown
2010). Differently from SAT and MIP, in planning, explicit
domain specifications are available through a planning lan-
guage, which creates more opportunities for planners to take
problem structure into account in parameterized components
(e.g., specific search heuristics). This can lead to more com-
plex systems, with greater opportunities for automatic pa-
rameter configuration, but also greater challenges (bigger,
richer design spaces can be expected to give rise to trickier
configuration problems).

Implementation of the Parameter
Configuration Process using HAL

Empirical algorithm analysis and design techniques are of-
ten used in an ad-hoc fashion, relying upon informal experi-
mentation. Furthermore, the techniques used in practice are
often not correct, as many researchers and practitioners do
not have sufficient knowledge of, or easy access to, more so-
phisticated techniques. Even when the best available tech-
niques are used, the implementations of these techniques are
often difficult to use, if they are publicly available at all.

HAL (the High-performance Algorithm Laboratory) was
developed to address this need for easy access to powerful
empirical techniques (Nell et al. 2011). HAL was created
to support both the computer-aided design and the empiri-
cal analysis of high-performance algorithms, by means of
ready-to-use, state-of-the-art procedures. It should be noted
that HAL was designed to support these procedures for a
wide range of problem domains, and was not designed for
or limited to planning in any way.

In this work, we use several meta-algorithmic procedures
provided by HAL, primarily the algorithm configuration tool
ParamILS and the plugin providing support for empirical
analysis of a single algorithm. We also leverage the robust
support for compute clusters and data management.

For each given planning domain, the version of ParLPG
competing in IPC-2011 uses HAL to run ten independent
runs of ParamILS on a provided training set of instances, us-
ing a maximum runtime cutoff of 900 CPU seconds for each
run of LPG and a total configuration time limit of five CPU
days. In the case of ParLPG.s, we can leverage support
in ParamILS for adaptive runtime capping to drastically re-
duce the runtime required for each run of LPG.

After all ten configuration runs have completed, we run
LPG with a runtime cutoff of 900 CPU seconds on each in-
stance in the training set in order to evaluate the so-called
training score for each of the ten incumbent configurations.
For ParLPG.s, this score is the mean runtime required to
find a satisficing solution, and for ParLPG.q, it represents



mean plan cost, with timeouts assigned a plan cost of 231−1.
231 − 1 is the default value for solution quality output in
HAL. The incumbent configuration with the best training
score is returned as the learned knowledge for the given do-
main.

Conclusions
We believe that the generic approach underlying ParLPG
represents a promising direction for the future development
of efficient planning systems. In particular, we suggest that it
is worth including many different variants and a wide range
of settings for the various components of a planning system,
instead of committing at design time to particular choices
and settings, and to use automated procedures for finding
configurations of the resulting highly parameterized plan-
ning systems that perform well on the problems arising in a
specific application domain under consideration.

We note that our approach naturally benefits from future
improvements in planning systems (and in particular, from
new heuristic ideas that can be integrated, in the form of
parameterised components, into existing, flexible planning
systems or frameworks) as well as from progress in auto-
mated algorithm configuration procedures.

We also see much potential in testing new heuristics
and algorithm components, based on measuring the perfor-
mance improvements obtained by adding them to an existing
highly-parameterized planner followed by automatic config-
uration for specific domains. The results may not only reveal
to which extent new design elements are useful, but also un-
der which circumstances they are most effective – something
that would be very difficult to determine manually.

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1-2):281
– 300.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
J. Artif. Int. Res. 20:239–290.
Gerevini, A.; Saetti, A.; and Serina, I. 2008. An approach to
efficient planning with numerical fluents and multi-criteria
plan quality. Artificial Intelligence 172(8-9):899–944.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: Pbp. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS-09),
350–353.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of ipc-4: An overview. J. Artif. Int. Res. 24:519–579.
Hutter, F.; Babic, D.; Hoos, H. H.; and Hu, A. J. 2007.
Boosting verification by automatic tuning of decision proce-
dures. Formal Methods in Computer Aided Design 0:27–34.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. Paramils: an automatic algorithm configuration
framework. J. Artif. Int. Res. 36:267–306.
Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2010. Auto-
mated configuration of mixed integer programming solvers.

In Lodi, A.; Milano, M.; and Toth, P., eds., Integration of AI
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, volume 6140 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg.
186–202.
Hutter, F.; Hoos, H. H.; and Stützle, T. 2007. Automatic al-
gorithm configuration based on local search. In Proceedings
of the 22nd national conference on Artificial intelligence,
1152–1157. AAAI Press.
Nell, C.; Fawcett, C.; Hoos, H. H.; and Leyton-Brown, K.
2011. HAL: A framework for the automated analysis and
design of high-performance algorithms. In LION-5, (to ap-
pear).
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. J. Mach. Learn.
Res. 9:683–718.


