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Abstract. Vibration signals from a gearbox are usually very noisy which makes it difficult to 

find reliable symptoms of a fault in a multistage gearbox. This paper explores the use of time 

synchronous average (TSA) to suppress the noise and Continue Wavelet Transformation 

(CWT) to enhance the non-stationary nature of fault signal for more accurate fault diagnosis. 

The results obtained in diagnosis an incipient gear breakage show that fault diagnosis results 

can be improved by using an appropriate wavelet. Moreover, a new scheme based on the level 

of wavelet coefficient amplitudes of baseline data alone, without faulty data samples, is 

suggested to select an optimal wavelet. 

Keywords: Condition monitoring, Helical gearbox, Wavelet Transformation, Time 
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1. Introduction 

Gearboxes are very important for many industrial applications such as wind turbine, power generators 

and helicopter aircrafts [1]. Failures of the gearbox may cause personal injury and significant 

economic loss. Therefore, many techniques have been developed in condition monitoring community 

to diagnose gearboxes faults as early as possible so as to avoid the consequence of any catastrophic 

accidents [2]. The faults of gearboxes including manufacturing defects (material, tooth profile, etc), 

mounting defects (clearance adjustment, misalignment, imbalance etc) and defects appearing during 

transmission (tooth breakage, wear, crack, eccentricity, etc) [4] generate different types of signals, 

such as sound, temperature, motor current and vibration which can be used for condition monitoring 

and fault diagnosis of gearboxes [1, 3]. The vibration signal is mostly used for gearbox condition 

monitoring since it is easy to gather and reflect the basic excitation motion of gearbox. In the mean 

time, airborne acoustics or noise, being correlated closely to vibration but measured with more 

comprehensive information in a remote way, has also been investigated actively for condition 

monitoring and fault diagnosis of gearbox in last two decades. Nevertheless, both vibration and 

acoustic signals can be contaminated by different noises and careful analysis with more advanced tools 

should be carried out to obtain reliable features for fault diagnosis. 



 

 

 

 

 

 

Earlier feature generation methods proposed for gearbox faults detection and diagnosis have 

focused on the time-domain and frequency-domain analysis, such as the spectrum, cepstrum, 

amplitude and phase demodulation techniques. Most of these conventional techniques are able to 

detect and indicate faults but could not provide detailed information about location and severity of the 

fault because they were not suitable for non-stationary signal [5-10]. Vibration signals from a gearbox 

are usually noisy and with the properties of non-stationary. As a result, it is difficult to find early 

symptoms of a potential failure without appropriate analysis tools. Therefore, the time-frequency 

analysis is developed as a more reliable and effective method for machinery condition monitoring. 

Wavelet transform is a typical and powerful time-frequency tool which is widely applied in machinery 

fault diagnosis and condition monitoring. It is capable of revealing the time-frequency characteristics 

of a signal. Especially it is more efficient to disclose small transients and enhance the spikes in signals 

[11]. 

As the tooth breakage is one of the common failures in a gearbox, this paper explores the 

performance of using wavelet analysis based on a two stage helical gearbox with faulty conditions of 

20% and 100% tooth breakage. Vibration signals for these different conditions including baseline case 

are processed by TSA and CWT for feature extraction and fault separation respectively. The paper is 

organized as follow. Following this introduction section, in section 2, basic theory of CWT and TSA 

technique is reviewed. In section 3, test facilities and gear faults are presented. In section 4, the results 

of using wavelet analysis are discussed. Finally, the conclusion is given. 

2. Theoretical Background 

2.1. Continuous Wavelet Transform 

In the field of machinery condition monitoring, the CWT is recognized as a powerful and effective 

tool for feature extraction from a non-stationary signal. The wavelet algorithm used in this study can 

be found in reference [12] in details.  

If            and its Fourier transform      satisfy the admissibility condition 
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     is a mother wavelet function and       is the space of square integral complex functions. 

The corresponding family of a wavelet consists of daughter wavelets shown as Equation (2).  
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where   is scale (dilation) factor and   is time location (translation) factor, | |     is used to ensure 

energy preservation. The daughter wavelets are the translated and scaled versions of the mother 

wavelet with the scale factor   and time location   vary continuously. 

The CWT of a signal       is defined as the inner products between signal      and the wavelet 

family, which are derived from the wavelet function by dilation and translation. 

                        | |    ∫        
        (3) 

where          denotes the wavelet transforming coefficient,     
     represents the complex 

conjugate of the wavelet function.   is known as a dilation parameter and b gives the location of the 

wavelet which is known as translation parameter. 

For a discrete sequence   , let       and      , where                  ,   is the 

sampling point number and    is the sampling interval. The CWT of    can be defined as: 
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The amplitude of the feature corresponding to the scale and how this amplitude varies with time 

can be presented through varying the index   and   corresponding to the scale factor   and time 

location   , respectively. 

Orthogonal and non-orthogonal are two types of wavelet functions commonly used in signal 

processing. The orthogonal wavelet is a wavelet whose associated wavelet transform is orthogonal, 

such as Haar, Daubechies, Coiflets, Symlets and Meyer, while the non-orthogonal wavelet functions 

include Morlet, Mexican hat and DOG [12]. The properties of the wavelet functions are different and 

can be selected for different applications. 

Wavelet coefficients obtained from wavelet transform measure the similarity between the signal of 

interesting and daughter wavelets which are diluted and translated from a particular wavelet. The more 

the daughter wavelet is similar to the feature component of the signal, the larger is the corresponding 

wavelet coefficient [15]. Moreover, wavelet has the oscillating wave-like characteristics and has the 

ability to allow simultaneous time and frequency analysis with the flexible wavelet functions. To 

compare with wave having infinite energy, wavelet has its finite energy concentrated around a limited 

time interval [18]. In addition, it can also represent sharp corner in signal and original signal can be 

completely reconstructed or recomposed [19, 20]. This allows the transient like signals such as 

gearbox vibrations to be represented accurately and efficiently. 

However, there are high numbers of wavelets, and each has its own particular characteristics. In 

addition, the understanding of gearbox vibration is also not perfect. It is necessary to choose a proper 

wavelet function for processing gearbox vibration signal to gain accurate fault diagnosis. 

2.2. Time Synchronous Averaging 

TSA is an effective technique in the time domain to remove the noise in a repetitive signal and widely 

used in vibration monitoring and fault diagnosis [9, 13]. The signal-to-noise ratio (SNR) of vibration 

signal can be improved significantly by suppressing the components which are asynchronous with that 

of interesting. TSA is applied based on the condition of the knowledge of the revolution of the rotating 

part. Traditionally, this requirement is met by using an external trigger signal provided by an shaft 

encoder, and the revolution period of rotating machinery can be obtained. Then, the vibration signal is 

divided into small segments according to the revolution period of the rotating part, and all the 

segments are summed up together so that no coherent components and asynchronous components are 

canceled out. Normally, vibration signals from rotating machinery are a combination of periodic 

signals with random noise. Assuming a signal      consists of a periodic signal       and a noisy 

component     , the period of       is    whose corresponding frequency is   , thus the signal can be 

expressed [17]. 

                       (5) 

The synchronous average of the signal      by using TSA can be expressed as 
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where   is the number of the average segments,      is the averaged signal. 

3. Test facilities and gear faults 

3.1. Test facilities 

The gearbox test rig used in this study is shown in Figure 1. It consists of a two stage helical gearbox 

manufactured by David Brown Radian Limited, a three phase induction motor (11kW, 1465rpm and 

four poles) produced by the Electro-drive Company, and a load system consisting of two flexible 

coupling, DC generator and resister bank. The induction motor is flanged in a cantilever type 

arrangement to the gearbox. The gearbox with 1.45 contact ratio is used in the test with driving gear 

has 58 teeth and the driven gear has 47 teeth. The input shaft is driven by an AC motor. The motor 

speed and load is controlled by a variable speed drive for studying condition monitoring performance 



 

 

 

 

 

 

under different operating conditions. Vibration of the test gearbox is measured by an accelerometer 

(Type PCB 338C04) with a sensitivity of 100 mv/g, and frequency response range is from 1Hz to 20 

kHz. It is mounted on gearbox housing casing, as indicated in Figure 2. An incremental optical 

encoder is equipped to measure instantaneous angular speed (IAS) from its 100 pulse train signal and 

to identify initial phase of the input gear by its once per revolution signal. It is installed to the end of 

the induction motor shaft. A schematic diagram of the test rig is shown in Figure 2. 

 

Figure 1. Experimental test rig of gearbox. 

 

Figure 2. Schematic diagram of test rig. 

3.2. Data acquisition system 

As shown in Figure 2, an accelerometer and optical encoder are fitted directly on the test rig. Each 

transducer produces a voltage output which is proportional to the amplitude of the measured 

parameters and then connected to the data acquisition system (DAS) by coaxial BNC cables. The 

placement of transducers is presented in Figure 2. 

The data acquisition instrument used in the test is the model PD2-MF-16-500/16L PCI board which 

has 16 analogy input channels. The sampling rate is 500 kHz for each channel with 16 bit data 



 

 

 

 

 

 

resolution and the input voltage range is    V. The task of the DAS is to convert the analogy signals 

acquired from the transducers to the digital signals transferred to the computer for the future analysis. 

3.3. Gear faults 

In this study, two degrees of the tooth breakage: 20% and 100% tooth damage as shown in Figure 3, 

are simulated to examine the sensitivity of wavelet analysis. They were produced by removing the 

percentage of the tooth face on the pinion gear in the width direction. Vibration signals collected from 

a same gearbox in which the two broken gears were tested once a time. The larger fault of 100% tooth 

breakage is for understanding the potential characteristics of wavelet transform and the 20% tooth 

brokerage is interested in this study to evaluate the performance wavelets in fault detection. 

 

Figure 3. Gear faults: (a) 20% tooth damage (b) 100% tooth damage . 

4. Results and discussion 

4.1. TSA pre-processing 

During the tests, both the vibration and the encoder signals are collected simultaneously by the DAS at 

a sampling rate of 100 kHz. For each fault case the data is collected under 5 different loads: 12.4%, 

21.2%, 30.8%, 39.3% and 42.9% of the full load, respectively. Each collection has 1,600,000 points 

which is 16 seconds in duration, and around 400 rotating revolutions according to the full speed 

(1465rpm). This data length is sufficient for random noise suppression in TSA process. The encoder 

signal includes the shaft revolution events that is used to measure the shaft speed and is the reference 

for synchronous average of the vibration signal. However, the time interval of the pulses in the 

encoder signal is not constant due to the oscillation of the shaft speed. Assuming the shaft speed is 

undergoing constant angular acceleration. The angular acceleration is calculated based on arrival times 

of the adjacent three pulses known from the sampling of the encoder signal. Then, the correct 

placement of the resample on the time axis is carried out based on the constant angular acceleration. In 

this study, the time axis resampling is processed in sections with per section length is 1000 points and 

5 sections are selected. Once the resample times are calculated, the vibration signal is resampled 

according to the resampled time axis for synchronous average. 

Figure 4 shows the averaged vibration signal using TSA for three revolutions of the input shaft 

when the gearbox operates under different loads and faulty cases, where the baseline is the healthy 

case. It can be seen that the amplitude of the vibration signals increases with the increasing of the 

loads for all the faulty cases, and the impulse components of the vibration signals are highlighted for 

all the test conditions, especially for the faulty case of 100% tooth damage. Moreover, TSA signals 

show much clearer indication of the 100% tooth damage compared with the baseline. However the 

signals between the baseline and 20% tooth damage cannot be observed with noticeable differences. 



 

 

 

 

 

 

 

Figure 4. TSA vibration signals under different operating conditions and gear cases. 

For a detailed comparison, common feature parameters such as root mean square (RMS) and 

kurtosis are calculated from the TSA vibration signals. As shown in Figure 5, RMS and kurtosis 

values have similar performance in separating the three cases over different loads. Comparing with the 

baseline, the RMS value of 100% tooth damage is clearly separated from the other two cases under all 

loads and so do kurtosis values. However, the difference between the baseline and 20% tooth damage 

is not very obvious for fault separation. 

 

Figure 5. RMS and kurtosis values of TSA vibration signals under different gear cases. 
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4.2. Feature extraction based on CWT analysis 

In the present study, the wavelets of Daubiechies order 1 (db1), Symlets order 2 (sym2) and Coiflets 

order 3 (coif3) are selected to analyse the TSA vibration signals obtained under different faulty cases 

of baseline, 20% and 100% tooth damage. These wavelets are all the orthogonal wavelet with the 

faster, perfect reconstruction and non-redundant decomposition[14-16] and used in many applications. 

The scales ranges from 0.5 to 20 are selected for all the wavelets application in this study to 

investigate the time-frequency properties of the vibration signal. The TSA vibration signal of 5,000 

data points are selected to perform CWT analysis for all the test conditions. To show the joint time and 

scale characteristics, wavelet coefficients are present with contour plots for different wavelets and 

loads, as shown in Figure 6, 7 and 8. It can be seen that there are clear difference between the baseline 

and 20% tooth damage for all the wavelets and load conditions. In particular, the wavelet coefficients 

of db1 were much higher with larger visible areas. 

 

Figure 6. Contour plots of db1 wavelet coefficients for different gear cases. 
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Figure 7. Contour plots of sym2 wavelet coefficients for different gear cases. 

 

Figure 8. Contour plots of coif3 wavelet coefficients for different gear cases. 
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From the comparison of Figure 6, 7 and 8, it has found that the three wavelets can give similar 

behaviors. However, the difference enhancements of three faulty cases are in different degrees. Two 

common feature parameters, RMS and kurtosis, are extracted from the wavelet results in terms of 

baseline for comparing the performance of the used wavelets. As shown in Figure 9, it can be seen that 

RMS values can reveal difference under high loads for the small damage. However, the commonly 

used kurtosis only showed little difference. 

Comparing the analysis results of the TSA and CWT shown in Figure 5 and 9, it can be concluded 

that CWT can give clearer fault separation results for all the presented faulty cases, while the 

difference between the small faulty cases, baseline and 20% tooth damage, cannot be observed clearly 

by TSA.  

Although all the three types of the wavelets selected in our study given acceptable performance for 

faulty cases separation, they enhanced the difference in different degree. In order to analyse which 

wavelet is more effective and suitable for gearbox condition monitoring and fault diagnosis, RMS 

values between the three wavelets were compared under baseline case. Figure 10 showed the details of 

the comparison. As the wavelet of db1 has higher RMS values from baseline data, it thus produced the 

largest difference (at load 2) for separating the baseline and 20% tooth damage. On the other hand, 

coif3 could not do separation clearly because of its low RMS values from baseline data. The 

evaluation analysis from Figure 10 indicated the wavelet of db1 is the best one to classify the different 

faulty cases among the three wavelets.  

Moreover, it has observed that a higher RMS values in the case of baseline will produce a higher 

difference for the smaller damage. Based on this, an optimal wavelet can be determined without the 

using of the data sets from damage measurements which are normally not available in condition 

monitoring practices. 

 

Figure 9. Wavelet coefficients map RMS & kurtosis comparison. 
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Figure 10. Comparison of RMS between different wavelets. 

5. Conclusion 

CWT has been shown to be an effective tool for rotating machinery fault detection and diagnosis. In 

this study, the fault diagnosis of a two stage helical gearbox is carried out based on the CWT analysis 

and TSA techniques. TSA allows the noisy components to be removed significantly and hence 

highlights the fault related impulse components which paves the basis for accurate feature extraction. 

Moreover, three types of wavelets: db1, sym2 and coif3 were explored to find the optimal wavelet for 

separating the small fault. 

The results have shown that wavelet db1 produces the best fault separation whereas the coif3 

wavelet fails to do the separation. It means that different wavelets produce different separation results. 

To obtain the best fault separation, a careful selection of wavelets needs to be carried out. Based on 

this study, it is suggested that selecting the wavelet that produces a higher RMS value of wavelet 

coefficients when it is applied to baseline data. This selection scheme does not needs any faulty data 

sets, which is more realistic for condition monitoring practices. 

References 
[1] D. N. Chorafas 1990 Knowledge Engineering. Van Nostrand Reinhold, first editioned. 

[2] R.B Randall 1980 Application of cepstrum analysis to gearbox diagnosis, Bruel&Kjaer. 

[3] P.D McFadden and J.D Smith 1985 A signal processing technique for detecting local defects in gear from 

the signal average of the vibration. Processing of the Institute of Mechanical Engineers. Vol.19., PP 

280-287. 

[4] T. Fakhfakh, F.Chaari, and M. Haddar 2005. Humerical and experimental analysis of a gear system with 

teeth defects Int. J Adv Manuf. Technol., 25: 542-550. 

[5] R.M. STEWART 1977. some useful data analysis techniques for gearbox diagnostic. Institute of Sound 

and vibration Research, Southampton University, 19-22 September. 

[6] T. Robert Shives and L.J Mertaugh 1986. Detection, diagnosis and prognosis of rotating 

machinery.Proceeding of 41st Meeting of the Mechanical Failures Prevention Group, Naval Air Test 

Centre, Patuxent River , MD 28-30 October.  

[7] R.B. Randell 1982. A new method of modeling gear fault. Journal of Mechanical Design 104/259. 

10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7
x 10

-3 RMS Detection Comparison between Different Wavelets

Load(%)

A
m

p
lit

u
d
e

 

 

Baseline by Daubechies

20% Demage by Daubechies

Baseline by Symlets

20% Demage by Symlets

Baseline by Coiflets

20% Demage by Coiflets

db1 sym2 coif3
-5

0

5

10

M
in

im
a
l 
D

if
f.

(%
)

8.37

3.99

-1.71



 

 

 

 

 

 

[8] P.W. Stevens, D.L. Hall, and E.C. Smith 1996. A multidisciplinary research approach to Rotorcraft health 

and usage monitoring, American Helicopter Society 52 and Annual Forum , pp. 1732. 

[9] F. Combet, L.Gelman 2007. An automated methodology for performing time synchronous averaging of a 

gearbox signal without speed sensor. Mechanical Systems and Signal Processing. Vol 21 . pp. 2590. 

[10] L. Mitchell.et al., 2000. Review of vibration analysis methods for gearbox diagnostics and prognostics, 

Proceeding of the 54th Meeting of the Society for Machinery Failure Prevention Technology, pp. 623. 

[11] Naim Baydar and Andrew Ball 2001. A comparative study of acoustic and vibration signals in detection 

of gear failures using Wigner-Ville distribution, Mechanical Systems and signal processing 15(6), 

1091-1107. 

[12] H. Zheng, Z.Li and X.Chen 2002. Gear fault diagnosis based on Continuous Wavelet Transform. 

Mechanical Systems and signal processing, 15(6), pp. 1091-1107. 

[13] J.J. Zakrajsek, D. P. Townsend and H. J. Decker 1993. An Analysis of Gear Fault Detection Methods as 

Applied to Pitting Fatigue Failure Data, Technical Report NASA TM-105950, AVSCOM TR-92-C-

035, NASA and the US Army Aviation System Command, Jan. 

[14] I. Daubechies, 1988. Orthonormal bases of compactly support wavelet, Commputre Applied Mathmatics, 

906-996. 

[15] O. Riol, and P. Duhamal 1992. Fast Algorithms for Discrete and Continuous Wavelet transform, IEEE 

Transaction on Information Theory, Vol.38, No.2 569-585. 

[16] D.E Newland, 1994. Wavelet analysis of vibration,Part I Theory, Journal of vibration and Acoustics, 

Vol.116,409-416. 

[17] Wentao Wu, Jing Lin, Shaobo Han, Xianghui Ding, July 2009. Time domain averaging based on 

fractional delay filter, Mechanical Systems and Signal Processing, Volume 23, Issue 5, , Pages 1447-

1457. 

[18] Gang Niu, Achmad Widodo, Jong-Duk Son, Bo-Suk Yang, Don-Ha Hwang, Dong-Sik Kang, October 

2008. Decision-level fusion based on wavelet decomposition for induction motor fault diagnosis using 

transient current signal, Expert Systems with Applications, Volume 35, Issue 3, pp. 918-928. 

[19] Shie Qian and Dapang Chen 1996. joint Time-Frequency Analysis: Methods and application, Prentice 

Hall PTR, New Jersey.USA. 

[20] C.Sidney Burrus.Ramesh A.Gopinath and Haito Guo 1998. Introduction to wavelets and wavelet 

transform.Prentice Hall PTR. New Jersey USA. 

 




