

University of Huddersfield Repository

Dunkley, Liza

Overview of Adult Acquired Flat foot Deformity

Original Citation

Dunkley, Liza (2011) Overview of Adult Acquired Flat foot Deformity. In: Musculoskeletal Research Group Conference 2012, 12th September 2011, University of Huddersfield. (Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/13961/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

An Overview of Adult Acquired Flat Foot and Tibialis Posterior Pathology

Liza Dunkley Senior Lecturer in Podiatry Division of Podiatry and Clinical Sciences

Aim

- Review anatomy and function
- Provide an overview of the presentation, aetiology, pathological features of AAFF and tibialis posterior pathology
- Assist in the recognition of staging the condition for improved clinical decision making
- Improve treatment outcomes through early recognition and appropriate management

Outline

- Define
- Overview of Anatomy
- Function
- Clinical Presentation
- Pathology
- Pathomechanics
- Clinical Assessment

Adult acquired flat foot deformity

- a progressive, painful deformity resulting from gradual stretch (attenuation) of the tibialis posterior tendon as well as the ligaments that support the arch of the foot
- Classification of different stages of presentation increasing in severity and stiffness (Johnson and Strom 1989)
- Progressive weakness, ligament disruption and subluxation of the rear foot
- Management of each stage with different treatment regimes

Why the confusion ?

Does PTT pathology cause a flat foot deformity

or do flat feet cause PTT pathology and late sequale AAFF ?

Literature

- tendon loss, tendon dysfunction
- AAF secondary to TP pathology
- MRI studies Spring ligament, deltoid, interosseous TC lig
- 70% unilateral TP pathology subjects had contralateral asymptomatic flat foot but xray same
- Revisions of classifications

Inter related conditions

- Abnormal biomechanics of foot could result in dysfunction of muscle
- Release of the tendon alone does not reproduce a flat foot.
- Spring lig, plantar aponeurosis, deltoid, talo-calcaneal, long and short plantar need to be released
- TP tendon cannot restore alignment if the ligaments are damaged in experimental conditions

Risk Factors

- Women:men 4,3,2 : 1
- Middle to older age
- Predeposition to flat feet / pes plannus (Dyal et al 1997)
- Obesity, Diabetes, steroid injection and RA, inflammatory arthropathies,
- Acute trauma chronic progressive
- Hypermobility, inflammatory, DJD, muscle imbalance CP

Arch Support mechanisms

- Mobile adaptor/ Rigid lever
- Stabilisers
 - Plantar fascia
 - Spring Ligament
 - Medial TNJ Capsule
 - Interosseous talar calcaneal lig
 - Tibialis posterior tendon
 - intrinsics

A common presentation

Patient presents with lowered arch profile and functions in a pronated position through gait

Pain in the medial ankle and foot region

MUSCULOSKELETAL DIAGNOSIS

Anatomy - Tibialis Posterior

Origin
Insertion
Nerve Supply
Action
Function
Role

stance						
IC FFC	C HC	D TO				
Loading Response	Mid stance	Terminal Stance				
Eccentric	No activity	Concentric				
	??????	é				

Medial Condyle

University of HUDDERSFIELD

Semple et al 2009

Posterior Tibial Tendon

University of HUDDERSFIELD

- Dynamic stabiliser MLA
- Plantarflexion TCJ
- Supination STJ
- elevate medial long arch
- Increases efficiency
 of gastrocnemius

Stabiliser of MTJ - reverses leg rotation through STJ re-supination – oblique axis

Incoiring to property do profe

TP deficient Peroneus brevis is unappossed HuddersfielD

Inspiring tomorrow's professionals

Pulley

- TP contraction pulls navicular posteriorally assists in carrying the load placed on spring ligament
- Fibrocartilagenous sesamoid to aid pressure absorbing and gliding

Biomechnaics

- Small lever for plantarflexion
- main supinator of foot dependant on STJ transverse axis position

Gait

- Kinematics TPD compared to normal individuals
- Significant alteration in position

Loading response

 Decrease in dorsiflexion and increase in eversion of the rearfoot

Terminal Stance

- Decrease in plantar flexion and increase in abduction shift
- loss of varus thrust of forefoot limited motion of mid foot
- Decrease in ROM dorsiflexion at 1st MTPJ

Inspiring tomorrow's professionals

Ness et al 2008

Ligaments

- Support the foot's architecture
- If muscles are paralysed or weakened by disuse ligaments give way to stress when unprotected by muscular contraction.
- Deltoid
- Deltoid and interosseous
- Foot disconnected fromleg

- Strengthens ankle joint
- Holds the calcaneus and navicular against the talus
- Fibrous joint capsule TNJ

Tibio- navicular

Tibio-calcaneal

PRIMAL

Plantar calcaneo-navicular ligament (spring lig)

University of HUDDERSFIELD

Important role in stabilising the arch
Completes type socket
Prevents drifting apart

Calcaneo-cuboid (short plantar lig)

 Strengthens calcaneocuboid joint

Long plantar lig

Maintain lateral longitudinal arch of foot
Passes inferiorly to short ligament
Larger attachment more proximal on the calcaneus

Interosseous talar calcneal ligament

Total loss of movement

Interosseous talar calcaneal

Total loss of movement hintermann 1998

Plantar aponeurosis

- Tie beam
- Slips curve over toe sides of flexors
- dorsally insert plantar lig mtpj and flexor sheath
- Pulls arch together when dorsiflex forms rigid structure for push off

Windlass

Adult acquired flat foot deformity

- a progressive, painful deformity resulting from gradual stretch (attenuation) of the tibialis posterior tendon as well as the ligaments that support the arch of the foot.
- Can be a disabling condition
- Strong assocciation with falt feet (Hirano et al 2009)
- Co exsisting DJD, RA, neurological weakness

DDx – pathological flat foot

- CVT
- TC
- Trauma
- Tumour

Unilateral pathology - mechanical

Clinical Signs and Symnptoms

symptoms

- Postero medial foot and ankle, heel and arch pain
- Medial ankle pain and swelling
- Tarsal Tunnel symptoms
- Lateral foot pain
- Worse with increased activity
- Insidious onset
- Fatigue Inspiring tomorrow's professionals
 - Difficulty going up stairs

signs

- Plano valgus deformity
- Appropilsive
- Impaired function
- Pathological flat foot
- Excessive over pronation
- Weakness
- Difficulty rising onto toes
- Positive findings for tendinopathy / ligament
- Tenosynovitis
- Tear

Acute onset symptoms

- Decrease pain and oedema
- Early diagnosis
- Improve mobiliy and prevent deformity

Classification

Progression through stages (Myerson)

- 1. little structural change
- 2. Lowering of arch abduction of forefoot
- 3. Rigidity of the rearfoot
- 4. Severe valgus deformity

Truro

- 1. Little structural change
- 2. Fully correctable deformity
 - a. varus < 15 degrees
 - b. varus > 15 degrees
 - c. forefoot rigid
- 3. Rigidity of the rf and ff with no correction
- 4. Rigidity of the rf and ff with no correction- talar Strom 1989 tilt on Xray

Inspiring tomorrow's professionals Johnson and Strom 1989 tilt on Xray

Stage	Presentation	Tendon	Joints	Tests				
1	Minimal structural change	Inflammation Tendon still functional	flexible	Heel raise with resistance weaker endurance All tests - ve				
2) a b	Lowering of arch, abduction of forefoot	Tendonopathy Functionally impaired Incompetence Or partial rupture	Correctable RF Too many toes sign	Difficult to perform single heel raise Positive sup lag positive 1 st met rise Positive Hubscher manoeuvre				
3	Rigidity of the rear foot	Tendon rupture Dysfunction tendon rupture	fixed Moderate DJD Posterior facet STJ Subchondral bone talar navic	unable to manipulate foot all tests -ve				
4	Severe valgus deformity	Tendon rupture	DJD ankle / rearfoot joints # fibular malleolus	rigid deformity all tests +ve				
nspiring comorrow's processionals Johnson and Strom, Myerson et								

Sub stages

Sub stage	deformity	rearfoot	Forefoot supination	correction
2a	mild	mobile	<15 degrees	mobile
2b	mod	mobile	>15 degrees	mobile
2c	severe	mobile	severe	rigid

Inspiring tomorrow's professionals Parsons et al, 2009

Abnormal flatfooted position creates resistance on PTT and increases friction

University of HUDDERSFIELD

INCREASED LOAD PTT

DECREASES STRENGTH

DIMINISHED CIRCULATORY SUPPLY

INFLAMMATION AND OR DEGENERATION

INCREASED FORCES

= LOSS OF ARCH STRUCTURE ---→ Subluxation

Fig. 1-18. Loading response of the subtalar joint. **A**, Adduction of the talus with foot pronation. **B**, The ankle axis (*solid line*) rotates medially (*arrows*) as the talus displaces with foot pronation. **C**, The tibia internally rotates with the talus.

High gear / low gear propulsion

High gear / low gear propulsion

Pathogenesis – Degeneration/ Vascular

- Tendinosis rather than tendinitis alignment of collagen fibres lost
- Zone of ischaemia ff position increases gliding resistance of tendon
- Fibroblast hypercellularity, degeneration and neovascularisation by repeated microtrauma
- Thickening irregular structure
- Synovial effusion
- Overpronation Mobile medial column
- Achilles tightness

Examination

- MSK assessment diagnosis
- Lower leg frontal plane
- Calcaneal alignment / foot posture Index
- Regional assessment of media ankle palpation observation
- Tip toe test mid foot breech
- 10 unsupported heel rises on each leg
- Resisted manual muscle testing inversion and plantar flexion
- Reafoot Forefoot flexibility /stiffness
- Malleloar position

Foot Posture Index

Pronated (+2)

Pronated (+2)

Pronated foot (+2)

Pronated (+2)

Pronated (+2)

Clinical Predictors

- Single heel raise
- Hubschner Manoeuvre
- Supination Lag
- 1st metatarsal Rise
- Tests positive if ligaments not intact

Test for ligamentous stability

Tip toe test

- Fatigues
- Persistent pronation
- Impossible
- Too painful

Fig. 4-1. A, Normal single heel rise test. B, Abnormal single heel rise test.

Compartment Syndrome

- Increased interstitial pressure within muscle compartment interferes with circulation and function
- Vascular and neural effects within the muscle compartment ischaemia
- Chronic, exertional or acute
- Relationship _ mass by _volume _pressure
- Aetiology obstruction crush burns exercise drug overdose
- Increase in thickness and stiffness fascia
- Venous collapse decreased tissue perfusion
- FASCIOTOMY

Medial tibial stress syndrome

- Multi-factorial overuse
- Exercise induced in runners
- 35% incidence in 124 naval recruits 10 week training programme (Yates and White 2004)
- Diagnosis? Problematic
- Stress reaction/ stress fracture/ tendinopathy musculotendinous strain and compartment syndrome
- Anatomy, training, strength, footwear, mechanics
- Excessive tensile forces to fascia by eccentric soleus and flex longus
- Tib post?

(Magnusson et al 2001)

Tibial Stress Reaction and Stress Fracture (Shin splints)

- Repetitive loading of bone
- Magnitude and fequency exceed ability for bone to remodel
- Stress fracture due to chronic loading
- Sudden increase in actvity

Late stage prevention

 complex problems = bony impingement, sinus tarsi inflammation, peroneal tendinopathy equinus contracture, arthrosis

- "can be effectively treated with aggressive conservative management using molded ankle foot orthoses and UCB inserts."
- "67% of the subjects had results that were considered good to excellent based on pain, function, use of an assistive device, distance of ambulation and patient satisfaction." (Chao et al. 1994)
- 87% (Nielson et al 2011)

Conclusions

- Complex Aetiology, presentation
- Recognising stage 1 and stage 2A and B
- Treat acute symptoms
- Effective staged education
- Absence of pain not necessarily absence of pathology
- Orthotic restore arch and architecture

- Johnson KA, Strom DE. (1989) Tibialis posterior tendon dysfunction. *Clin Orthop Relat Res.* Feb 1989;196-206
- Mann RA, Thompson FM. (1985) Rupture of the posterior tibial tendon causing flat foot. Surgical treatment. *J Bone Joint Surg Am.* Apr 1985;67(4):556-61.
- Foster AP, Thompson NW, Crone MD, Charlwood AP.(2005) Rupture of the tibialis posterior tendon: an important differential in the assessment of ankle injuries. *Emerg Med J.* Dec 22(12):915-6.
- Mosier-LaClair S, Pomeroy G, Manoli A (2001) Operative treatment of the difficult stage 2 adult acquired flat foot deformity. Foot Ankle Clin 6:95–119.
- Parsons S, Naim S, Richards PJ, McBride D (2009) Correction and prevention of deformity in type II tibialis posterior dysfunction. Clin Orthop Relat Res Oct 22
- Deland JT (2001) The adult acquired flatfoot and spring ligament complex. Pathology and implications for treatment. Foot Ankle Clin 6:129–135
- Deland JT, Arnoczky SP, Thompson FM (1992) Adult acquired flat foot deformity at the talonavicular joint:reconstruction of the spring ligament in an in vitro model. Foot Ankle 13:327–332
- Funk DA, Cass JR, Johnson KA (1986) Acquired adult flatfoot secondary to posterior tibial tendon pathology. J Bone Joint Surg Am 68:95–102 ring ligament in an in vitro model. Foot Ankle 13:327–332

Hintermann B, Gachter A. (1996) The first metatarsal rise sign: a simple, sensitive sign of tibialis posterior tendon dysfunction. Foot And Ankle International Apr;17(4):236-41.

Tome J, Mawoczenski A. Flemister A. Houck J (2006) Comparison of Foot Kinematics Between Subjects With Posterior Tibialis Tendon Dysfunction and Healthy Controls J Orthop Sports Phys Ther.36(9):635-644.

Chao W, Wapner KL, Lee Th, Adams J, Hecht PJ.(1996) Nonoperative management of posterior tibial tendon dysfunction. Foot Ankle Int. 17(12): 736-41,

Matthew D. Nielsen, Erin E. Dodson, Daniel L. Shadrick, Alan R. Catanzariti, Robert W. Mendicino, D. ScotMalay (2011) Nonoperative Care for the Treatment of Adult-acquired Flatfoot Deformity, The Journal of Foot anD ankle 50 :3 Pages 311-314

G.B. Holmes and R.A. Mann, (1992), Possible epidemiological factors associated with rupture of posterior tibial tendon. *Foot Ankle*, 13 pp. 70–79

M.S. Myerson, Adult-acquired flatfoot deformity: treatment of dysfunction of the posterior tibial tendon. *Instr Course Lect*, 46 (1997), pp. 393–405

D.H. Richie, (2007), Biomechanics and clinical analysis of the adult acquired flatfoot. *Clin Podiatr Med Surg*, 24 pp. 617–644.

- Kettlekamp and Alexander (1969) Spontaneous Rupture of the posterior tibial tendon Journal of bone and joint surgery 51 A 4 pp. 759-764
- Bullman, E.M. and Myerson, M.D. (2007) 'Posterior tibial tendon dysfunction: a refined classification system' *Foot* & *Ankle clinics of North America*, 12, (2) pp.233-249.
- Frey, C., Sheriff, M. and Greenidge, N. (1990) 'Vascularity of the posterior tibial tendon' *American Journal of Bone Joint Surgery*, 72, pp 884-888.
- Geidemenn, W.M. and Johnson, J.E. (2000) 'Posterior Tibial Tendon Dysfunction' *Journal of Orthopaedic & Sports Physical Therapy*, 30, pp. 68-77.
- Hintermann, B. (1997) 'Tibialis posterior dysfunction: a review of the problem and personal experience' *Journal of Foot & Ankle Surgery*, 3, (2) pp. 61-70.
- Hirano, T., McCullough, M.B.A., Kitaoka, H.B., Ikoma, K. and Kaufman, K.R. (2009) 'Effects of foot orthoses on the work of friction of the posterior tibial tendon' *Clinical Biomechanics*, 24, (3) pp. 776-780.
- Imhauser, C.W., Siegler, S., Abidi, N.A. and Frankel, D.Z. (2004) 'The effect of posterior tibialis tendon dysfunction on the plantar pressure characteristics and the kinematics of the arch and the hindfoot' *Clinical Biomechanics*, 19, (1) pp. 161-169.
- Johnson, K.A. and Strom, D.E. (1989) 'Tibialis Posterior Tendon Dysfunction' *Clinical Orthopaedic & Related Research*, 239, pp. 196-206.
- Kitaoka, H.B., Ahn, T.K., Luo, Z.P. and An, K.N. (1997) 'Stability of the arch of the foot' *Foot & Ankle International*, 18, (10) pp. 644-648.
- Kulig, K., Reische, S.F., Pomrantz, A.B., Burnfield, J.M., Requejo, S.M., Thordarson, D.B. and Smith R.W. (2009) Nonsurgical management of posterior tibial tendon dysfunction with orthoses and resistive exercises: A Randomised Controlled Trial' *Journal of Physical Therapy*, 89, (1) pp. 26-36.

- Myerson, M.S., Badekas, A. and Schon, L.C. (2004) 'Treatment of Stage II Posterior Tibial Tendon deficiency with Flexor Digitorum Longus Tendon Transfer and Calcaneal Osteotomy' *Foot & Ankle International*, 25, pp. 445-450.
- Myerson, M., Solomon, G. and Shereff, M. (1989) 'Posterior tibial tendon dysfunction: Its association with seronegative inflammatory disease' *Foot & Ankle International*, 9, pp. 219-225.
- Myerson M.S. and Corrigan, J. (1996) 'Treatment of Posterior Tibial Tendon Dysfunction with Flexor Digitorum Longus Tendon Transfer & Calcaneal Osteotomy' *Orthopaedics*, 19, pp. 383-388.
- Nester, C.J. (2009) 'Lessons from dynamic cadaver and invasive bone pin studies: do we know how the foot really moves in gait? *Journal of Foot & Ankle Surgery*, 2, (18), pp. 1-7.
- Nester, C.J, Liden, M.L. & Bower, P. (2003) 'Effect of foot orthoses on the kinematics and kinetics of normal walking in gait' *Gait & Posture*, 17, pp.180-187.
- Pomeroy, G.C., Pike, R.H., Beals, T.C. and Manoli, A. (1999) 'Current concepts review: Acquired flatfoot in adults due to dysfunction of the Posterior Tibial Tendon' *American Journal of Bone & Joint Surgery*, (8) pp. 1173-1182.
- Supple, K.M., Hanft, J.R., Murphy, B.J. (1992) 'Posterior tibial tendon dysfunction' *Seminars in Arthritis and Rheumatism*, 22, pp. 106-113.
- Trnjka, H.J. (2004) 'Dysfunction of the tendon of tibialis posterior' *The American Journal of Bone & Joint Surgery*, 86, (7) pp. 939-946.
- Uchiyama, C., Kitaoka, H.B., Luo, Z.P. (1996) 'Gliding Resistance of the posterior tibial tendon' *Journal of American Podiatric Medical Association*, 27, (9) pp. 223-227.
- Yeap, J.S., Singh, D. and Birch, R. (2001) 'Tibialis posterior tendon dysfunction: a primary or secondary problem' *Foot & Ankle International,* 22, pp. 51-55.