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STV-based Video Feature Processing for Action Recognition 

Jing Wang, Zhijie Xu* 

School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, 

United Kingdom 

Abstract 

Video recordings can provide rich and intuitive information on dynamic events occurred over 

a period of time such as human actions, crowd behaviours, and other subject pattern changes 

in comparison to still image-based processes. However, although substantial progresses have 

been made in the last decade on 2D image processing and its applications such as face 

matching and object recognition, video-based event detection still remains one of the most 

difficult challenges in computer vision research due to the wide range of continuous or 

discrete input signal formats and their often ambiguous analytical features. In this paper, a 

spatio-temporal volume (STV) and region intersection (RI) based 3D shape-matching method 

has been proposed to facilitate the definition and recognition of human actions recorded in 

videos. The distinctive characteristics and the performance gain of the devised approach 

stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism 

developed in the programme. This research has also investigated techniques for efficient STV 

data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in 

each operational cycle in the implemented system prototype. Encouraging features and 

improvements on operational performance have been registered in the corresponding 

experiments. 

Keywords: Spatio-Temporal Volume; 3D segmentation; Region-Intersection; Video event 

detection 

1. Introduction 
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* Corresponding author: Dr. Zhijie Xu 

Email: z.xu@hud.ac.uk 

Tel: 0044 1484 472156 

Fax: 0044 1484 421106 

School of Computing and Engineering, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom 

Manuscript
Click here to view linked References

http://ees.elsevier.com/sigpro/viewRCResults.aspx?pdf=1&docID=9744&rev=1&fileID=323337&msid={AE774F8A-18DF-4FD2-8C3B-CC53006BFC1A}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Computer vision theories and practices have been experiencing an accelerated development 

period over the last 2 decades. Demands from applications such as intelligent surveillance 

systems, machine vision, robotics and automatic guided vehicle (AGC), innovative human 

computer interface (HCI), and even digital entertainment and computer games have pushed 

this trend. As an important application of video event detection technologies, action 

recognition is one of the hotly-pursued areas in computer vision research for automatically 

detecting and interpreting real-world events and activities such as human gestures, crowd 

actions, or other object patterns through extracting and analysing video features denoted in 

the spatial and temporal reference frame. 

As widely recognized, raw video data often suffer from high noise ratio and low resolution 

that require tedious and time-consuming processes to clean up at a frame-by-frame (FBF) 

basis. This research aims at investigating 3D Spatial Temporal Volume based event 

descriptors for video content analysis and event detection. The rationale behind this research 

is to develop robust and intuitive video processing methodologies and techniques for tackling 

challenging tasks such as large video database indexing and querying, automated surveillance 

system design, and Internet-base online video management. 

Generally speaking, the large variations on conditions where videos being made and the 

complicated nature of human gestures and postures are still posing great challenges to the 

conventional pixel-based human action recognition strategies. The complexity exposed to 

video event detection tasks can be classified into three categories. Firstly, the semantic 

meaning of an “event” in a video is often ambiguous since the variations of potential “event 

makers” defined by a particular application or system operators. Secondly, due to the 

limitations of today’s videoing equipment and storage restrictions, real life video data, 

especially those from surveillance systems and Closed-Circuit Television Systems (CCTV), 

inherit great technical difficulties to process. For example, the boundaries between an “event” 

signal and its “background” noise is often either inexplicit or occluded, which renders a 

complete separation of the two signals almost impossible. In many recent pilot researches, a 
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background is often simplified as static sections in continuous video frames. However, this 

presumption is not always applicable in complex real life scenarios, i.e., multiple dynamic 

objects or illumination changes can all cause confusions and blurriness on that. The third 

difficulty can be caused by the uncertainty of video event durations. The time-elapsed factor 

for encapsulating a discrete event is closely coupled with the nature of the event and the 

videoing sampling rates which might be substantially varied for different application systems. 

Compared with the often non-generic local and 2-dimentional (2D) feature-based approaches 

such as head shape detection, and torso-limb spatial relations, the emerging concept of the 

spatial and temporal feature space and the so-called Spatio-Temporal Volume (STV) data 

structure - first introduced by Adelson and Bergen [1] - have shown their promising global 

feature representation potentials for 3D and dynamic video event feature representation and 

pattern recognition. A STV model is capable of encapsulating static and dynamic video 

content features, hence simplifying an event recognition task into corresponding 3D 

geometric feature extraction and matching operations. As illustrated in Figure 1, the STV is a 

volume space confined by 3D coordinates system denoted by X, Y (spatial) and T (temporal) 

axes, in which a STV model can be represented by a 3D shape formed by a stack of 2D arrays 

of pixels, called voxels standing for volumetric-pixels. 

In this research, a spatio-temporal volume (STV) and region intersection (RI) based 3D 

shape-matching method has been proposed to facilitate the definition and recognition of 

human action events recorded in videos. An innovative pattern recognition algorithm has been 

developed to harness the promising characteristics of the STV event models. The core of this 

approach is built upon the region intersection (RI) method to compare STV “shapes” 

extracted from video inputs to pre-defined 3D event templates.  

It has long been understood that many 2D DIP and pattern recognition algorithms can be 

readily extended to 3D domains using higher dimensional vectors for defining complex 

features such as 3D curves, shapes, and volumes. The methodology applied in this research 
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has started with an optimized 3D over-segmentation operation to detect the boundaries and 

feature distributions of the studied STV model that ignores the often confusing semantic 

differences between an event “actor” and its “background”. This “background-independent” 

operation reduces the false-positive rate in differentiating signals from “noises” under 

complex real-world settings. 

After the feature extraction phase, a calibration mechanism is activated to measure the so-

called normalized RI distances. This process evaluates the distribution of the segmented 

regions and then calibrates the matching distance by using a coefficient factor to record the 

linear corrections required. Compared with other conventional RI-based matching approaches, 

this extra step further improves the operational robustness at event recognition stage. 

This paper will focus on two main contributions from the research to the action recognition 

domain: 

 An innovative segmentation algorithm for extracting voxel-level features has been 

developed based on a hybrid discontinuity and similarity-based segmentation model 

through combining Mean Shift (MS) clustering and the graph-based region description 

method. 

 A novel extension of the Region Intersection technique has been realized for human 

action recognition by using a coefficient factor-boosted template matching method; that 

is capable of superior performances under complex and real-world videoing conditions. 

The rest of this paper is organized in the following order: Section 2 reviews the state-of-the-

art for video event detection and STV-based feature processes. Section 3 introduces an 

innovative 3D STV segmentation strategy developed in this research. Section 4 focuses on the 

region-based template matching using the event shapes extracted from video inputs and a set 

of single human action events assembled. Section 5 highlights the implementation strategies 

for system prototyping. The experiment designs are reported in Section 6. Section 7 concludes 

the research with discussions on results acquired and planned future works. 
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2. Literature Review 

Video event detection researches encompass a wide spectrum of studies from basic DIP 

technologies and video processing to pattern analysis and even biological vision systems. 

After over 30 years of intensive research since its birth, progresses have been made on many 

fronts with extensive applications found in industry, such as traffic monitoring systems, 

CCTV-based security and surveillance networks, and robotic control. This section will focus 

on the prominent works to date on video event definition and STV-based template matching. 

2.1. Action Event Definition 

Generally speaking, a video event can be classified as single-human-based, such as gestures 

and postures and multi-human-based like crowd behaviours. For specific research problems 

or applications, many pilot works have defined specific conditions to simplify the settings of 

the research platform. A comprehensive survey on those conditions can be found in 

Moeslund’s paper [2] published in 2001. Those restrictions have simplified the abstracted 

models and reduced the variables needed for dealing with event signals in their feature spaces, 

but the downside of those approaches is the rigidity of the algorithms and their compromised 

suitability for general applications. 

Single-human-based actions have often been used for tracking individuals, recognizing 

gestures, and monitoring the change of subject behaviours. Guler et al. [3] have published a 

paper on tracking individuals who left a baggage behind in an open space. The University of 

Reading had developed a real-time system for verifying those concepts and techniques [4]. 

Popular computer vision databases such as KTH [5], Weizmann [6] and Inria XMAS [7] have 

also encouraged researches into single-human-based action recognition by using 2D/3D 

models shapes, contours, and stick-based skeleton models. In 2007, Wang and Suter [8] 

developed an action recognition technique based on human silhouette analysis using the 

locality preserving projections (LPP) model, which reduces the dimensionality required to 

transform human actions into lower dimensional spatio-temporal feature space. This 

development can address problems such as partial occlusion and noisy background.  
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For multi-human (or crowd) events, particle flows and density models have often been 

adopted to analyze crowd behaviours with individuals being treated as moving particles. 

Kilambi and Masoud [9] devised a Kalman filter-based approach for estimating human group 

sizes. Fleet’s [10] dynamic optical flow system and Porikli’s [11] trajectory matching 

algorithm have both deployed the Hidden Markov Model (HMM) for handling the random 

movements of the monitored crowds. Research progresses on this front have seen proposals 

and prototypes been developed for applications such as intelligent and adaptive traffic light 

control, and emergency evacuation systems. In contrast to the single-human-based events, 

crowd behaviours and events are sometimes difficult to define with accurate semantic 

interpretations. 

This research focuses on investigating proficient global video feature extraction and template 

matching techniques for STV-based single-human action recognition.  

2.2. STV-based Feature Representation  

Stemmed from DIP techniques, traditional video event detection approaches relied on spatial 

or frequency features being extracted from the frame-by-frame-based (FBF) 2D processes 

[12]. However the FBF-based mechanisms often resulted in the loss of “contextual” 

information - a main contributor to form and comprehend “dynamic” video events. This draw-

back can lead to miss identification and high false-positive rate during an event detection 

operation, for example, misjudgement of an action (or pose) caused by two persons across 

over in front of the video camera. One perceived solution for this problem is to construct 

video capsules which encapsulates both time-tag and frame patterns.  

A number of leading computer vision research groups have devised various spatial and 

temporal frames-based techniques for video analysis, such as flow-based iterations [13], 

motion history image [14], and local interesting points [15], which focused on the durations 

and changes of spatial features over time. However, most of these features are gathered from 

consecutive frames and a small group of pre-determined pixels. The global changes over the 
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entire scene and the 3D event exercisers - humans or objects - cannot be represented in their 

entirety. The STV data structure, on the other hand, had long been perceived as a potential 

solution for the aforementioned problems and to better encapsulating the temporal continuity 

and “pixel” changes inherited from a video [1].  

Constrained by the performance of computer capacities at the time, most of the preliminary 

researches on STV and its corresponding innovative 3D voxel-based pattern analytical 

techniques were largely remaining at the level of theoretical discussions. From the middle of 

1990s, a number of world-leading research groups in the field attempted to map the STV 

models to their customized 2D projection planes before applying the conventional pixel-based 

processing methods for further analysis. One of the representative methods from that era used 

the so-called “clipping plan” alone the time axis to generate orthographically projected shapes 

casted from volumetric STV models. These slice-based STV usages have been adopted to 

infer feature depth information [16], generating dense displacement fields [17], analyzing 

camera calibration settings [18], categorizing human motion patterns [19], and performing 

viewpoints synthesis [20] to various degrees of success. 

Since the start of the new millennium, the “real” volumetric approaches for 3D-oriented STV 

processing have been steadily gaining popularity. These new approaches have taken 

advantages of the volumetric nature of the STV feature space and emphasized on the 

alteration of shapes, envelopes, and density of the defined feature points in an enclosed space. 

Research advancements in many related areas such as volume visualization [21] and medical 

image processing [22] have contributed to the development of these improved voxel-based 

techniques. Generally speaking, volumetric approaches provide a better vehicle for global 

representations of the studied subject features. The conceptual model for volumetric video 

feature processing follows a pipeline [23] that contains several operational phases, including 

data acquisition, model segmentation, template modelling, and 3D matching.  

Based on the review, it is clearly envisaged that the global video feature representation 
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approaches, such as the STV, will become a valid and popular strategy [23] for video event 

detection due to its conceptual simplicity and implementation friendliness, which can be 

regarded as a proximate analogue to the extensively adopted Eigenface model for face 

reorganization. 

2.3. 3D Geometry-based Event Definition 

3D geometry-based (henceforth referred as shapes) STV methods treat original STV datasets 

as “sculpture”-containing (formed by distributed “point clouds”) cubes. In 2005, Alper and 

Mubarak [24] introduced a method to extract 3D human silhouettes from the volumetric space 

for shape matching. Based on the shape invariants, Alper’s method applied the so-called 

“differential geometric surface properties”, such as peaks, pits, valleys and ridges as feature 

descriptors to denote specific events in the form of vectors in the feature space.  

In 2006, through transplanting motion history images onto 3D STV models, Weinland and 

Ronfard [7] developed a set of view-invariant motion descriptors for human event definition 

that is capable of representing dynamic events captured in a video by applying Fourier 

transformations in a cylindrical coordinates system. This process formed a solid foundation 

for representing view-invariant features in the forms of specific patterns in the frequency 

domain. 

Another 3D shape-invariant analysis method, which was first proposed by Gorelick [6, 25] 

declared another significant progress in the field. By deploying the Poisson distance equation, 

the local space-time saliency features and the Hessian-based space-time orientations can be 

generated to describe volumetric shape features. Based on the aforementioned methods, 

human gestures can often be classified into a number of types by applying a spectral 

classification algorithm [26]. 

As summarized by Shao [27, 28], a recent trend of integrating and enhancing STV global 

features with a chosen set of local features for calibration has witnessed a degree of success. 

For example, Jiang et al. [29] had introduced an inter-frame constrained local feature 
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definition method for creating a so-called “convex matching scheme” to facilitate human 

action detection. Dollár et al.’s [30] spatio-temporal cuboid prototyping method had extended 

the ability of the 2D interest point segmentation technique into Basharat et al.’s [31] SIFT-

based (Scale Invariant Feature Transform) video retrieval pipeline; Zhai and Shah’s [32] 

spatio-temporal attention model, Laptev and Lindeberg’s [33] slice-based feature 

identification techniques, Loper et al.’s [34] bag-of-visual-features (BoVF) methods, as well 

as Shao’s motion and shape feature-based video content segmentation strategies [35] have all 

been pushing boundaries on this front. 

Recently, action recognition researches have been experiencing a weight-shift from the low 

lever feature and algorithm-oriented development to the semantic-informed machine learning 

domain. For example, the local feature based Bag of Words (BoW) [36] algorithm and its 

variations [37] have been used in machine learning-based classification through the sliding 

window mechanism. Similar efforts, such as Hu’s oriented gradients feature with support 

vector machines (SVMs) [38] technique and Yang’s motion video patch distance with cascade 

classification method [39] had partially addressed the occlusion problems often occurred in 

real-world video recordings. 

Based on the spatio-temporal shape feature distribution and the local region grouping, an RI-

based distance algorithm harnessing the advantages of both global and local features for 

recognizing human actions was first introduced by Ke [40]. Although proven effective when 

segmenting backgrounds of average complexity, the algorithm was less useful when dealing 

with complex real-world scenes where both extremely large and small textured regions 

existed alongside each other. This was one of the early motives of this research to investigate 

system approaches with more consistent performance for real-world applications. 

The investigation on STV-based video event detection and system prototyping in this research 

focuses on two aspects: adaptive feature segmentation optimized shape-based template 

matching, and rapid-and-lean STV model construction for ensuring runtime system 
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performance. 

3. 3D Hierarchical Feature Extraction 

For extracting and representing feature point distributions of a STV model in the event 

detection pipeline, a 3D hierarchical Pair-wise Region Comparison (PWRC) segmentation 

algorithm has been developed in this programme and will be referred as e-PWRC throughout 

this paper with “e” stands for extended.  

The baseline 2D PWRC method devised by Felzenszwalb and Huttenlocher [41] is a graph-

based clustering technique for representing an image’s pixels and their neighbours as an 

interconnected graph. The similarity between different regions and the dissimilarity inside a 

region are compared continuously in the graph. Depending on a “similarity factor” k. two 

regions can be merged into a new and larger region. During the operation, the initially 

independent regions will keep growing in an iterative fashion until reaching a predefined 

threshold. Details introduction of this image segmentation approach is beyond the scope of 

this paper. Readers who interest in its technique and algorithms are suggested to refer [41] for 

more details.  

3.1. 3D STV Segmentation 

The PWRC method can be readily extended into 3D domains in theory, for example, the STV 

space. The devised e-PWRC technique in this research initializes a 3D graph with vertices 

denoted by volumetric features, for example, using the maximum 26 neighbouring nodes of 

each voxel to define the edges of the graph. Since each edge can then contain both spatial and 

temporal information, their alterations and “traces” can naturally reflect the dynamic states of 

the “tracked” object during the segmentation processes.  

However, during the initial feasibility experiments, it was observed that the direct 

transformation of the 2D PWRC to 3D domain led to several drawbacks. Firstly, the region 

cluster size C cannot be easily adjusted by the factor k. As illustrated by a 2D example in 

Figure 2, larger k values lead to larger segmented regions but missed out some important 
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sections of the object boundaries - the person’s left arm. A smaller k value ensures all the 

important object boundaries being identified but in an over-segmentation style with a large 

amount of overcut and cluttered areas. Secondly, during the region growing stage of the 

PWRC cycle, the internal difference  CInt  for deciding whether to merge clusters becomes 

less sensitive, especially when closing to the regions filled with small and random textures 

since the weights of edges in the graph are computed at per-voxel level, rather than the more 

representative and efficient regional features. Thirdly, to generate a PWRC graph directly 

from a raw STV model will introduce huge amount of data to the system platform, for 

example, a 100×100×100-voxel STV model creates the adjacency of edges on the scale of 

(100×100×100)
2
 which cannot be handled by any conventional computer programs and 

runtime memory (RAM), never mention other looping and branching operations on those data. 

The proposed solutions for the aforementioned problems were partially motivated by 

Grundmann’s earlier work on video segmentation [42], which focused on the video region 

description by using texture similarity. It highlighted the importance of similar regions along 

the temporal domain. To further strengthening the local voxel colour characteristics of the 

proposed graph-based algorithm, this research has introduced a Mean Shift-based pre-

clustering operation for constructing the initial region groups that emphasized the colour 

features in addition to Grundmann’s texture features at the beginning of the e-PWRC 

operations. 

For extracting accurate STV regions from uncontrolled video settings, the e-PWRC deployed 

an integrated STV manipulation technique consisted of data pre-clustering, histogram-based 

region description, and hierarchical segmentation, which optimises the performance of factor 

k through the reduction of STV data size and the usage of a region feature-based 

representation scheme for segmentation. 

3.2. e-PWRC Implementation 

3.2.1. STV Filtering by Mean-Shift Clustering 
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To apply PWRC directly to STV segmentation, the vertices in the initialized graph are 

essentially un-treated voxels. However, large percentage of those voxels only contains static 

information, which will have no contribution to the eventual feature template matching 

operations. e-PWRC simplifies the initialized graph using the Mean-Shift (MS) clustering to 

remove those redundant static features and to combine “similar” voxels into regions before 

assigning them to the graph vertices based on the similarity of the colour. Compared with the 

per-voxel-based initialization, the number of vertices of this region-based approach can be 

reduced significantly. Although still sensitive to noise, the Mean-Shift clustering operation 

handles small groups of features effectively and can control the segmentation region size 

flexibly through applying the so-called Parzen window density estimator [43]. In this research, 

the Mean-Shift clustering for the raw STV is treated as a pre-processing step for data filtering 

that occur prior to the “primary” STV segmentation step. The core of this data cleansing 

operation is a Probability Density Function (PDF) f(x). In a d-dimensional ( d
R ) feature space, 

if X  denotes the collection of feature points with individual point represented as 

ni ,2,1, ix , the multivariate kernel density estimator with kernel  xHK  can be computed 

at the point x  by 

  



n

i

iHK
n

f
1

1
)( xxx ,  (1) 

where H  is a symmetric positive dd   bandwidth matrix.  

When applied in 2D image processing, the inputs of the model are often limited to the spatial 

coordinates and the colour values of 2D pixels in the feature space. In turn, the generated 

feature space is of 5D  bgryx ,,,, , in which  yx,  denotes the spatial coordinates, and 

 bgr ,,  for the colour of the pixel. These five elements represent a single point ix  in the 

feature space.  

Within the STV domain, the feature space becomes at least 6D defined as  bgrzyx ,,,,, , 
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where  zyx ,,  denotes the spatial coordinates, and  bgr ,,  for the voxel colours. Therefore, 

an identical multivariate kernel density estimation process as detailed above can be applied.  

It is proven in the e-PWRC feasibility study (see Section 6.3), by carefully selecting the 

kernel type and window size factor h  on colour ch  and location lh , the regions composed by 

Mean-Shift clustering can achieve a satisfactory standard with the majority of key features 

identified.  

3.2.2. Histogram-based region description 

Post to the pre-clustering process, the initialization of the 3D segmentation graph will be 

carried out on regional features rather than voxel-level features, hence, significantly reduce 

the quantity of the required graph vertices. To tackle the feature insensitively problem during 

region growing stage, this research has introduced tools such as histogram and Histogram 

Distances to represent region textures in the weighted graph. 

After the colour space transformation, high-level region features, such as textures, can be 

readily defined by the local colour histograms to denote vertices values of a graph. As 

illustrated in Figure 3, each region contains a normalized local histogram based on the 

L*a*b* colours [44]. The distribution of these colours in the histogram embodied richer 

information than the per-voxel features. For example, a texture containing flat distribution of 

solid colours can be readily represented as multiple peaks in the histogram. 

Weights of edges in this new form of graph are defined by the Histogram Distance. In this 

research, a minimum distance method introduced by Cha et al. in 2002 [45] has been adopted, 

which can be explained as: 

If HX and HY are two histograms that contain n elements each with individual element 

specified in the style of hX,i and hY,i, where i=1,2,…,n. The distance D(HX, HY) of these two 

histograms can then been summarised as: 
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Therefore, the weight defined by the minimum distance can be expressed as: 

       jiji HvHvDjivvw ,,,  . (4) 

3.2.3. Hierarchical Pair-wise Region Comparison 

Since region sensitivity of conventional PWRC is only controlled by factor k. A fixed k value 

for the region growing operation is insufficient for feature grouping if texture number varies 

substantially from frame to frame. This drawback has been partially resolved in this research 

by the e-PWRC’s hierarchical segmentation structure and an adaptable and dynamic k-

selection mechanism. 

It is widely recognized that real-world images or video frames especially the outdoor scenes, 

often contain many large and uniform coloured regions (i.e. blue sky and dark ground) as well 

as varied textures (i.e. flowers and trees). Most existing segmentation strategies are seemingly 

specialized in dealing with either prior or latter case. The hierarchical segmentation strategy 

offers a practical approach to solve this problem by building a pyramid structure for storing 

and representing raw data, as illustrated in Figure 4.The low resolution images or frames at 

the top of the pyramid only need to “remember” large coloured blocks with minute details 

filtered out during the re-sampling operation. The bottom level, on the other hand, records all 

the details in the original dataset. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The hierarchical segmentation operation starts from the bottom to register all fine details, 

while the higher level operation builds upon lower level outputs.  

As the e-PWRC pushed up to the higher level, small regions are merged, which requires a 

dynamic mechanism for determining the k  value denoted as  Ck . Since increasing the k  

values suppose to “trigger” the merging actions to generate larger regions, hence the  Ck  can 

be defined based on the largest region within the current hierarchical level, as expressed in 

Equation 5: 

    
 
  



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1
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mean2
1

i

i
ii kk

C

C
CC , (5) 

where iC  is the region collection on the thi  floor in the hierarchical structure. The current k  

value is then iterated and updated based on the region size of the lower level which is related 

to the mean and maximum region sizes. The sensitivity of related parameters were tested in 

experiment and reported in Section 6.1. 

Based on the aforementioned algorithms and techniques, the e-PWRC approach is more 

adaptable and robust for processing STV models constructed from video inputs. Table 1 

illustrates the operational pseudo code for the e-PWRC processes. 

In this section, higher-level regional features inherited from raw STV datasets have been 

refined and clustered using an innovative e-PWRC volumetric segmentation technique. The 

outputs of this step, including shape boundaries and the distributions of segmented regions 

describing event models will be used as inputs for pattern analysis and event identification.  

4. Template Matching-based Event Detection 

Compared with traditional FBF-based video analysis strategies, the significant advantage for 

detecting subject changes by using the STV model is rooted to its distinctive ability in 

providing 3D geometric descriptions for dynamic video content features recorded in a footage, 

which provides a theoretical foundation for event template matching. As illustrated in Section 
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2.2, video event features can be abstracted and recognized by using either global feature-

based shape analysis methods, or local feature-based methods, such as spatio-temporal 

interest points. A hybrid approach taken both methods’ advantages has been developed in this 

research. This paper will only focus on the global shape-based techniques developed in the 

programme. 

4.1. Over-segmentation for Region Boundary Preservation 

As a continuous operational flow in the event-detection system pipeline, the segmentation 

outputs (highlighted in Section 3) provide shape and boundaries features for representing 

event profiles in the STV space, which transforms the event recognition operation into a 3D 

shape matching operation. Various pattern matching techniques, such as Gorelick [25], Alper 

[24] and Weinland [7], analyze the distributions of boundary segments directly based on the 

assumption that the segmentation outputs contain “perfectly sorted boundaries”. In reality, 

video events are inherently difficult to be cleanly separated from uncontrolled backgrounds in 

real world recordings, a condition which was often ignored by fine-tuned laboratory 

experiments. Many “fake” regions can be falsely identified as interested regions. For example, 

as illustrated in the Figure 5, the torso of the “actor” in the video has been segmented into 

many small parts due to the texture variance of his clothes, which is far from “perfect”. These 

small regions caused by over-segmentation are commonly treated as problematic and 

considered the main cause to the low efficiency of the relevant pattern analysis algorithms due 

to extra filtering required to “clean” the region boundaries.  

In this research, the over-segmented event volumes are not viewed as “further improvement 

required” but an intermediate output that can be directly fed into the innovative shape-based 

matching algorithm developed in the programme. A close examination of the Figure 5 reveals 

that the over-segmentation has effectively identified all the intersected spaces actually 

contains all the shape boundary fragments (sub-boundaries) in the volume. The matching 

operations can be carried out based on these sub-boundaries through analyzing their 

distributions. This approach can be classified into the so-called “Region Intersection” (RI) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

template matching category. One of the distinctive features of RI methods is their ability to 

perform shape-based event detection in challenging real-world settings where event signals 

are often immersed under complex background noises. The method devised in this research 

has explored the following design theorem. 

4.2. Baseline RI Method 

Based on the Set Theory, the mechanism of a baseline RI method can be simplified into 4 

typified cases as illustrated in Figure 6, where the cuboid represents an over-segmented STV. 

An event shape template, highlighted by the bold boundary will shift through the entire 

volume at runtime to identify any intersections by comparing with the sub-regions. The RI 

matching algorithm then calculates the sum of all the intersected parts and their matching 

distances based on the 4 possible scenarios as illustrated in Figure 6.(b) to(e). 

These different scenarios can be summarized as: 
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where I denotes the distance, E represents event templates and Sw marks one sub-region 

during the matching process. The overall distance between an event template and the detected 

pattern can be written as: 

  
 

 



n

i

wll SEI
EN

SEI
1

,
1

, ; (7) 

  

 
 

























































 

oddEC
EE

evenEC
EE

EN
n

i

E

EE

n

i

E

EE

,
22

,
22

1

2/1

1

1

2/

1

, (8) 

where l denotes the current location of the sliding template window. n and i denote the 

number of sub-regions and current sub-region, respectively. The N(E) is the normalized factor 

associated with the distribution of the event template, which can be calculated independently 

and used as look up table (LUT) during the matching operations. 
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After scanning through the entire volume in the searching window style, the RI operation will 

denote all the “matched” locations judged by matching distances less than a pre-defined 

threshold. 

4.3. Coefficient Factor Enhanced RI Distance 

The RI baseline method introduced above can detect most event corresponding shapes in a 

STV. However, the accuracy of this method can be further improved to satisfy real-world 

settings, where the proposed coefficient factor (CF) serves as a gauging mechanism to verify 

the accuracy of the computed RI distances. As discussed in Section 3.3.3, real-world video 

inputs usually contain both large solid coloured areas and detailed textures. The e-PWRC 

segmentation method can classify these contents into a hierarchical and over-segmented style 

to handle both large and small sub-regions. But as shown in Figure 7.(d), some extremely 

small regions around the event shape boundaries can produce substantial normalized RI 

distances, which is a potential cause for the so-called “false negative” detection results. In the 

new approach, a reward-and-punish scheme has been established to assign more importance 

to the larger sub-regions that effectively reduce the distance values. For the smaller regions, 

contrary measures will be taken automatically. 

This evaluation scheme is automatically generated once the STV is imported and is based on 

a quantifying process on the intersected regions’ local histograms to record the size and the 

numbers of the intersected sub-regions as shown in Figure 7. 

The local histograms discussed above are used to compare with the histograms extracted from 

the controlled and ideal RI matching scenarios (ground truth). When the event actors and 

backgrounds are perfectly segmented as illustrated in Figure 7.(a), all feature points on the 

contour of the template will be matched to the segmented patterns, therefore the histogram 

will show a straight line lying on the horizontal axis.  

In real world scenarios, there are three main representative situations when calculating the 

coefficient factors, as illustrated in Figure 7.(b) - (d), where the event templates are denoted 
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by the artificial ellipses. In Figure 7.(b), the intersection parts are mainly composed by a large 

quantity of small sub-regions. The distribution histogram illustrated at the right hand side 

shows a single peak near the original point. In addition, 7.(b) also indicates template can 

match arbitrary small sub-regions without normalization (Equation 7). It is worth noting that 

the CF factor “amplifies” the difference in this case. On the contrast, in Figure 7.(c), the 

histogram is showing a largely flat curve with small fluctuations indicating a fewer but larger 

intersected region blocks, which is an ideal situation for the RI matching and should be 

“reward” after normalization by reducing the difference between the template and pattern. 

Figure 7.(d) contains both large and small intersectional parts, where the smaller regions are 

in dominance; therefore the diagram shows a prominent peak in the histogram with smaller 

variations on other places. Through using the histograms, the distribution of different types of 

intersectional groups can be evaluated using the normalized χ
2
 distance between the current 

histogram and its ground truth counterpart. 

In general, the coefficient factor (CF) can be expressed as a linear transformation from the 

histogram distance as denoted in Equation 9:  

       SEfbaSEISEI lll ,,,
~

 , (9) 

where fl(E,S) is the normalized χ
2
 distance of the histograms. The lower limited a and slope b 

control the degree of the correction of the RI distance. The value of the coefficient factor 

should be around 1, which is the threshold in switching between “rewarding” and “punishing”. 

In the experiments, the range of changes is in between 0.6 and 1.4, which is proven suitable 

for most of the video datasets tested. 

5. Implementation Strategy and System Prototyping 

5.1. System Modularization and Data Pre-processing 

From the viewpoint of process modularization, computer vision application systems often 

follow a process pipeline composed of three modules, data acquisition, feature extraction, and 

pattern recognition. Each module can also be further divided into detailed operations 
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depending on the deployed processing strategy and algorithms. For example, data acquisition 

is often encompassing from the stage of receiving sensory signals to data pre-processing like 

filtering and decompressing. 

Original STV models are often extremely large in data sizes since their volumetric 3D nature 

and rich per-voxel characteristics. This factor often hampered the effort in adopting the STV-

based methods for real-world applications, especially for those time-critique video indexing 

and retrieval applications. In this research, the runtime optimization technique deployed at the 

data acquisition stage is based on an “on-fly” computer memory management strategy called 

“volume buffering”. 

As illustrated in Figure 8.(a), at runtime, the system starts with building a buffer (assigning 

memory) to the incoming video stream. The index of the first fame and the size of a STV 

model are customizable and dependant on the pre-defined action template sizes. Once the last 

event matching step is completed, the buffer assigned for holding the STV model will be 

freed from the memory to avoid accumulating memory footprints for the next cycle. 

The benefit of this design is achieved through harnessing an efficient computer data structure 

- queue - that enables a first-come-first-serve process order and its intrinsic flexibility in 

handling arbitrary sizes of data packets. Figure 8.(b) illustrates the STV construction and 

registration procedures followed in this programme using 1D vectors as an example. 

Currently, the assignment of the starting frame’s index has been simplified by halving the 

previous STV chunk and using its “middle” frame as the beginning for the next model. A 

more robust sampling approach, for example a one-third start from the previous STV or even 

an arbitrary starter, will see a more adaptable reconstruction process with an improved chance 

to encapsulate an event occurred, but the effect is envisaged as limited with prolonged latency. 

The improved RI matching process can be summarized in the pseudo code shown in Table 2, 

where the settings of the STV size and its starting frame struck index have been 

parameterized. 
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5.2. Pipeline Construction and Prototyping 

The event detection system prototyped in this programme has developed a process pipeline as 

illustrated in Figure 9. The functional modules (enclosed by solid-rectangles) denote the 

methodologies devised and utilized in the system. The modules marked by dashed-rectangles 

represent system optimisation techniques implemented. The system begins with a video signal 

acquisition module that generates STV models in the volume buffer. The e-PWRC 

segmentation then takes place on the models for extracting event shapes prior to the improved 

RI template matching operations. Both online public video databases, such as KTH [5] and 

Weizmann [6], and self-made video clips have been used in creating the benchmark human 

actions, such as “waving hands”, “walking” and “jumping”.  

6. Test and Evaluations 

A series of experiments have been designed and carried out for validating the system design 

and benchmarking its runtime performances under both the controlled and real-world settings. 

The system software was developed using OpenCV 2.2 library functions and the LabVIEW 

simulation toolkit. The hardware platform included a host PC with an AMD 2.62 GHz Athlon 

CPU and 2G RAM. 

6.1. System Performances on Controlled Datasets 

A series of experiments have been carried out in this research to validate the theoretical 

design of the system elaborated in Section 3 and 4.  

The experiments started from processing and recognizing events recorded in the popular KTH 

computer vision database. Table 3 lists the values of relevant parameters used in the 

experiment. The event templates applied for RI matching in the KTH dataset were calibrated 

by averaging the ground truth segmentation results from four volumetric contours in each 

defined event category. 

Figure 10 shows the test results on the detection accuracy based on the confusion matrix 

acquired from each dataset. The average accuracy of the developed system is 82.0%, which is 
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slightly better than other popular techniques as listed in Table 4. As illustrated in the 

confusion matrix, certain events such as “jog-and-run” and “box-and-clap” are difficult to 

distinguish due to their silhouette similarities and small variation along the temporal axis. One 

possible solution to such a problem is to combine the machine learning algorithms with the 

local spatio-temporal features for differentiating human gestures.  

Compared with some recent published methods, such as [37, 46], whose accuracies registered 

on the KTH datasets often reached near 90%, the proposed method seems produced a slightly 

lower detection rate. This is because the experiment does not involve scale-independent 

operations during the STV shape matching for simplifying experiment design and 

highlighting more generic application scenarios for recognizing everyday human activities 

without strong assumptions and pre-conditions on the settings of backgrounds scenes and 

human models, which offers improved consistency and robustness for real-world 

implementation. 

An experiment has been carried out for evaluating the sensitivity of the four parameters 

utilised in the devised system approach, the e-PWRC factor k(C0), the hierarchical level n, 

and the linear factors of the RI coefficients a and b. The same templates employed in the 

previous accuracy evaluations from each action event categories have been utilised. The 

independent contributions from each of the 4 parameters have been evaluated by fixing the 

other three at their optimized value. Figure 11 denotes the relationships between each 

parameter and the average detection accuracy. 

It is noticeable in Figure 11, the curve patterns of the e-PWRC-related parameters k(C0) and n 

have shown similar distributions while the e-PWRC transmitting from over- to under-

segmentation. Hence, the system performance can be improved significantly if more accurate 

over-segmented sub-regions can be extracted. It is also worth noting that the purposed method 

can still successfully detect about 42% of the queried events even under extremely over-

segmented conditions. 
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The second line of Figure 11 listed the learning parameters a and b of coefficient factor used 

in the RI matching. As mentioned in Section 4.3, the value of the coefficient factor should be 

around 1 based on the normalized χ
2
 distance of the histograms, which is the threshold in 

switching between “rewarding” and “punishing”. In the figure 11, the accuracy performance 

is above 90% when appropriate linear transformation can be applied for the threshold. 

As discussed in Section 4.3, the values of the coefficient factor a and b should be around 1 

based on the normalized χ
2
 distance of the histograms, which has been set as the threshold in 

this design for switching between “rewarding” and “punishing”. In Figure 11, the accuracy 

performance is above 90% for detecting the “waving” when appropriate a and b have been 

applied to the threshold. 

6.2. Performances on uncontrolled datasets 

If the aforementioned tests were trials for proof-of-idea, the experiments designed and carried 

out from this section and onwards were focusing on system performances for real applications 

with the raw video inputs subjecting to uncontrolled noise level and challenging real 

application conditions. The parameters adopted for these tests are defined in Table 5.  

Since the online Weizmann computer vision database [6] possesses a set of video files 

containing simple backgrounds and a single event actor in each video clip that was considered 

ideal for extracting standard and benchmarking event templates. In this research, the entire 

Weizmann video database has been examined and utilized for template composition through 

averaging the extracted STV event shapes from the same event category. 

A large set of footages recorded in different locations at different time of the day in a 

university campus have been used in the experiment (see Figure 12), which contains a 

mixture of action events for comparing with predefined templates. The length of each video is 

about 600 seconds. 

The average time consumption for the event detection processes is around 30 seconds based 
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on the parameters listed in Table 5, approximately 10 seconds for video segmentation and 20 

seconds for template matching. 

Figure 13 illustrates the Receiver Operating Characteristic (ROC) and Recall-Precision (RP) 

curves generated from the region intersection experiments recorded at a 10% incremental step 

size on the threshold. It is evident that the proposed system in this programme produces 

superior performances against other benchmarked systems attributing to the introduction of 

the coefficient factor verifying mechanism as explained in Section 4.3. In addition, the 

innovative Hierarchical e-PWRC method facilitated the abstraction of more accurate shape 

features. 

For benchmarking the proposed approach, the Recall-and-Precision experiments have been 

carried out on the widely used video datasets containing complex and dynamic backgrounds 

[47]. The dataset contains 48 videos and 110 distinguishable human actions labelled as one-

hand waving, two-hand waving, picking, pushing, and jumping-jacks, etc. Figure 14 shows 

the detecting accuracies denoted by relevant RP curves. The proposed method and its 

corresponding techniques have shown more consistent and improved performance in 

comparisons with the parts-based template matching and flow correlation method [40]. 

For testing the prototype system’s performance on visual tagging and video indexing, a set of 

real-world CCTV files have been utilized. The original video clips were downloaded from the 

social website – YouTube [48]. Figure 15 shows snapshots and detection result from the 

videos showing a number of pedestrians tripping and falling down at a spot near the entrance 

of a building. The developed system has been used to detect and denote all the “tripping-and- 

falling” events from the footages. The average length of the input videos is approximately 5 

minutes with 8 “tripping-and-falling” events. The first 4 events are used for defining the 

template. All the remaining 4 events were successfully identified and denoted. It is clearly 

visible from the snapshots that the original videos were filled with noise signals and 

containing moving objects such as vehicles and pedestrians in the scenes. 
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6.3. MS Clustering Performance  

The MS clustering performance for the initialization of the e-PWRC graph regions is also 

tested in the experiment by using the campus dataset. The proposed method applies the 

“multivariate normal kernel” [49] for the MS clustering. Relative small bandwidth was 

chosen for keeping most important image. 

It is evident in the experiments that the e-PWRC method has been benefitted significantly 

from its MS-based hierarchical design and the dynamic parameter controls. Similar 

conclusions were reached by comparing the e-PWRC-empowered method with the 

Coefficient Factor (CF)-boosted RI method as shown in Figure 16. The event detection 

accuracy has registered a 9% increase by using the devised e-PWRC framework. 

Different from Grundmann’s approach [42], the vertices of the initial PWRC graph and k(C0) 

in the Equation 5 in the new method were based on the aforementioned MS clustering results 

rather than the direct employment of the original colours of each voxel. The improved k(C0) 

corresponds to the MS parameters, Hc and Hl, to highlight the importance of the low-level 

colour features during the initial PWRC merging calculations at the bottom layer within the 

hierarchical structure. After the first merging operation is completed, the PWRC segmentation 

will literally shift from a colour-based process to texture-based calculations. The experiment 

results have shown that during the feature extraction stage, the MS pre-clustering actually 

serves as an effective measure for simplifying the initial graph setting. 

As indicated by the experimental results, the e-PWRC method has proven its effectiveness for 

providing quality outputs for the following RI matching operations, especially when 

subjecting to complex real-world conditions. Accompanied by the optimization measures 

employed at the template matching stages, the process pipeline and its various operational 

models have shown satisfactory consistency and robustness. 

6.4. RI Matching Performance and Template Representativeness 

In the system prototype design, templates are formed by averaging event boundaries from the 
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same event groups. In this experiment, the matching accuracy was further evaluated by taking 

into account of template representativeness that is the number of “similar” events used for 

producing the averaged template. The template samples were all selected from Weizmann 

dataset and the self-recorded campus videos were used for assessment. The final accuracy 

performances of each event categories are illustrated in Figure 17. 

Experiment results shown in Figure 17 indicate that the accuracy improvements can be 

significant when more representative templates were deployed. However, it was also observed 

that if too many samples - even with just small distinctions - were used, the final “averaged” 

template can carry substantial “fuzziness” that can lead to miss-identification to other event 

types. For this project, a sample template number of 7 seemingly struck the balance between 

the template representativeness and distinctiveness. 

7. Conclusions 

This research programme has developed a STV-based strategy and related techniques to 

tackle the challenging problems faced by the researchers and applications in video event 

detection domain. An innovative image segmentation technique has been developed in this 

research during the feature extraction phase of the operational pipeline. The proposed 

extended Pair-wise Region Comparison (e-PWRC) method is a set of hierarchical 

segmentation operations for classifying STV regions based on regional colour and texture 

features. Its baseline algorithm follows an iterative mechanism and updates each cluster in 

every cycle by comparing their inner difference and similarities with neighbouring clusters. In 

this research, a graph-oriented comparison approach has been applied into the STV space. 

Based on the theoretical study and practical trials, the e-PWRC segmentation strategy 

developed in this project has proven its effectiveness and efficiency when extended from 2D 

to 3D feature spaces.  

Based on the early works from Ke et al.’s [40], an improved Region Intersection (RI) method 

has been developed for recognizing video events by matching the global features assembled 
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from the over-segmented e-PWRC outputs with event templates. The matching outputs can be 

further refined by deploying an evaluation scheme based on the so-called coefficient factors 

through verifying the RI distances. These devised recognition procedures have shown their 

distinctive advantages when dealing with real-world video inputs. To maintain runtime 

performance of the research system, the process pipeline and system prototype have adopted a 

modularised design and were enhanced by a number of optimization techniques, such as 

volume buffering for pre-filtering the STV models. 

The research system of its current form can only handle video events that possess distinctive 

convex-style shape changes. It cannot register motions occurred “inside” of a volume 

(concave), for example, a front view of a human hand-clapping event. It is envisaged that the 

future works will focus on integrating other analytical features in the volume space to yield 

more intrinsic and non-intuitive information for interpretation.  
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Figure Captions: 

Figure 1 A “falling down” video event defined by a STV shape. 

Figure 2 Factor k-control for dealing with noisy video signals. Since the factor dominates PWRC 

segmentation performance, a dynamic k value based on the scene complicity is required for the 

flexibility improvement under uncontrolled real-world settings. 

Figure 3 Graph formed by using region histogram. The histograms represent the local texture regions 

initialized by MS clustering. 

Figure 4 e-PWRC Hierarchical graph representation. 

Figure 5 Video segmentation result by using hierarchical e-PWRC. The shape, size and distribution of 

the over-segmented regions can be used for STV-based event matching since the regions 

actually contain all the shape boundary fragments in the volume. In this research, the shape and 

topological distribution of the regions are matched by using region intersection method. The 

size and its statistical distributions, defined as a matching coefficient, are evaluated based on 

the histogram of intersected regions. 

Figure 6 RI template matching algorithm and the four typical scenarios. 

Figure 7 The coefficient factor designed for RI distance. (a): Template ground truth and size-quantity-

histogram of the intersection regions, which is a straight line lying on the horizontal axis. (b)-

(d): Three over-segmented region distributions during the intersection. The left column shows 

diagrams illustrating the RI distance (shade areas). The templates are denoted by red 

boundaries and possible patterns are highlighted by bold area. The snapshots in the middle 

indicate each distribution under a real-world scenario highlighted in red ellipses area (artificial 

templates). The right histograms are size-quantity statistic. 

Figure 8 Volume buffer structure for large video indexing. (a): Volume buffer data structure. (b): Volume 

buffering procedures. 

Figure 9 System pipeline. 

Figure 10 The KTH confusion matrix. 

Figure 11 Parameter sensitivity test result 

Figure 12 Campus Dataset. 

Figure 13 System performance on campus datasets. The experiment also indicated the accuracy 

improvement based on the proposed method. 

Figure 14 Benchmarking Recall-and-Precision experiments on complex video datasets. System 

performances on crowded video dataset compared with benchmarked method. 

Figure 15 Detecting and indexing exercise of the“Falling down” events. The templates are highlighted in 

the first row. Selected snapshots from video feed-ins are lined up in the second row, where the 

ground truths are denoted by the red overlaying areas, and the indexed results highlighted by 

the orange regions. 

Figure 16 The confusion matrices on the campus dataset for evaluating the independent MS contribution 

within e-PWRC. 

Figure 17 Accuracy impact from averaged template numbers. 
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Figure 15
Click here to download high resolution image

http://ees.elsevier.com/sigpro/download.aspx?id=323315&guid=5867e2e6-1a80-40e6-90f3-3523c8960710&scheme=1


(a) PWRC+RI (without MS)

average accuracy = 57.1% 

(c) PWRC+RI+CF (without MS)

average accuracy = 80.2% 

(b) e-PWRC+RI (with MS) 

average accuracy = 61.1% 

(d) e-PWRC+RI+CF (with MS)

average accuracy = 90.1% 

Figure 16
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Figure 13
Click here to download high resolution image

http://ees.elsevier.com/sigpro/download.aspx?id=323335&guid=636ad39b-3d6c-4089-98fe-ce261715e1de&scheme=1
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Pseudocode Improved Pair-wise Region Comparison 

INPUT 

1. Spatio-temporal Volume  

2. Mean Shift window size factor: ch  and lh  

3. Initialised Pair-wise Region Comparison factor  0Ck  

4. Hierarchical levels n  

OUTPUT 

STV with Labelled segmentation regions 1nC  

ALGORITHM 

Initialise 0C  with STV-based Mean Shift segmentation.  

Transform STV colour space from RGB to L*a*b*.(Equation 6 to 10) 

Loop i  from 1 to 1n  

 Build histogram for each region in 1iC  

Represent 1iC  as graph: 

The vertexes value is L*a*b* colour 

The weight of edges is Cha’s minimum histogram distances. (Equation 

13) 

 Calculate  ik C  (Equation 14) 

 Calculate iC based on original PWRC method (Equation 1 to 4) 

 Build next hierarchical level on lower resolution (Except the last loop) 

End Loop 

Output iC  

END Pseudocode 
 

Table 1. Operational Pseudo code for the e-PWRC 

Table 1



Pseudocode volumeBuffering (input videoFile) 

START: 

//Initialization 

Allocate appropriate buffer size “L” based on videoFile configuration; 

Calculate number of time-tablets “I” based on event template durations; 

Calculate the remainder frames ”N” at the end of the videoFile; 

 

//Traverse through entire the video volume  

Loop ( I ) 

//Calculate the new starting point and length “R” of the input STV 

 if (at the end of video)   

  R = N; 

 else 

R = L; 

 

//STV-based template matching 

Release tested STV; 

Compose and renew STV; 

RI matching; 

END 
 

Table 2 Volume buffering implementation 

Table 2



e-PWRC Coefficient Factor 

k(C0) n a b 

4 7 0.7 0.7 

Table 3 Parameters used for testing KTH dataset 

Table 3



Methods and 

techniques 

Event Detection 

Accuracy 

This Method: e-

PWRC + RI + 

CF(Coefficient factor)   

82.0% 

Ke et al.’s MS (Mean 

shift) + RI + Flow [40] 
80.9% 

Schuldt et al. [5] 71.7% 

Dollár et al. [30] 81.2% 

Niebles et al. [36] 81.5% 

Table 4 The Accuracy performance compared with other approaches 

 

Table 4



e-PWRC Coefficient Factor 

k(C0) N a b 

5 11 0.6 0.8 

Table 5 Parameters applied for uncontrolled testing 

Table 5



Summary of Amendments 

 

Re: Paper No. SIGPRO-D-11-01271 

Title: STV-based Video Feature Processing for Action Recognition 

 

Categorization of Reviewers Comments and Recommendations 

It is felt that the reviewers had examined the above manuscript carefully and provided 

the authors in-depth and comprehensive feedbacks. Based on the improvement 

recommendations, extensive review, expanded referencing, and extra evaluation 

works have been carried out by the authors. To make the indexing and tracking of the 

corresponding changes to the manuscript easier, the authors have classified the 

reviewers’ feedbacks into the following categories (Note: R1 stands for Reviewer1 

and henceforth R2 and R3): 

1. Experiment Design 

a. Expanding the test datasets to evaluate the proposed methods’ 

performances under more complex and challenging conditions; (R2) 

b. Benchmarking the devised techniques against Ke’s and other popular 

action recognition methods; (R1 & R3) 

c. Justifying the appropriateness of the investigated approach for 

indexing and visual tagging;  (R1) 

d. Assessing the independent contribution from the MS-based pre-

filtering towards the e-PWRC’s overall performance gain; (R2) 

e. Quantifying the parameter sensitivity of the deployed kernel settings. 

(R2) 

2. Paper Structure 

a. Be more explicit on the original contributions from this research; 

(R1&R2) 

b. Consider a more appropriate title for the paper to accurately reflect 

the nature of the research; (R1) 

c. Distributing the section weights of the paper more evenly to better 

focusing on the latest development and research outputs from 

previous works; (R1 & R2) 

d. Extra literature review on Ke’s and Grundmann’s methods to justify 

the improvement of the proposed method; (R2 & R3) 

3. References and Writing Style 

a. Citing and analysing more up-to-date and important developments in 

the field; (R1, R2 & R3) 

b. Reducing non-essential introduction on basic concepts and techniques 

through more consistent referencing; (R2) 

c. Formal writing and extra proof-reading. (R1)   

*Response to Reviewers



Revision Specifications 

Improved Experimental Design 

1. To address Point 1.a and 1.b, the devised techniques have been further tested by 

applying a wider spectrum of public databases containing arbitrary and more 

complex backgrounds. Following paragraphs have been added into Section 6: 

For benchmarking the proposed approach, the Recall-and-Precision experiments 

have  been carried out on the widely used video datasets containing complex and 

dynamic backgrounds [47]. The dataset contains 48 videos and 110 

distinguishable human actions labelled as one-hand waving, two-hand waving, 

picking, pushing, and jumping-jacks, etc. Figure 14 shows the detecting 

accuracies denoted by relevant RP curves.  by, The proposed method and its 

corresponding techniques have  shown more consistent and improved 

performance in comparisons with the parts-based template matching and flow 

correlation method [40]. 

 

Figure 14. Benchmarking Recall-and-Precision experiments on complex video datasets 



2. To address Point 1.c, real-world CCTV recordings have been tested for video 

indexing and visual tagging applications as detailed in Section 6.2: 

For testing the prototype system’s performance on visual tagging and video 

indexing, a set of real-world CCTV files have been utilized. The original video 

clips were downloaded from the social website – YouTube [48]. Figure 15 shows 

snapshots and detection result from the videos showing a number of pedestrians 

tripping and falling down at a spot near the entrance of a building. The 

developed system has been used to detect and denote all the “tripping-and- 

falling” events from the footages. The average length of the input videos is 

approximately 5 minutes with 8 “tripping-and-falling” events. The first 4 events 

are used for defining the template. All the remaining 4 events were successfully 

identified and denoted. It is clearly visible from the snapshots that the original 

videos were filled with noise signals and containing moving objects such as 

vehicles and pedestrians in the scenes. 

 

Figure 15. Detecting and indexing exercise of the“Falling down” events. The templates are highlighted in 

the first row. Selected snapshots from video feed-ins are lined up in the second row, where the ground truths 

are denoted by the red overlaying areas, and the indexed results highlighted by the orange regions. 

3. The overall performance of the developed system has been benchmarked against 

other published counterparts to reflect on the Point 1.b and 2.c. The results are 

detailed in Section 6. Additional analyses on the distinctive characteristics of the 

devised approach have been added at the end of Section 6.1. For example, for 

justifying the performance variations of the proposed method when applied to a 

particular dataset – KTH, following paragraph has been added:  



Compared with some recent published methods, such as [37, 46], whose 

accuracies registered on the KTH datasets often reached near 90%, the proposed 

method seems produced a slightly lower detection rate. This is because the 

proposed approach had been focusing on more generic application scenarios for 

recognizing everyday human activities without strong assumptions and pre-

conditions on the settings of backgrounds scenes and human models, which offers 

improved consistency and robustness for real-world implementation.  

4. To address Point 1.d, extra experiments have been conducted (see amended 

Section 6.3). The independent contributions of the Mean Shift pre-clustering 

process have been evaluated. The new series of experiments have also served as 

an integral part of the improved assessment strategy of this programme. 

It is evident in the experiments that the e-PWRC method has been benefitted 

significantly from its MS-based hierarchical design and the dynamic parameter 

controls. Similar conclusions were reached by comparing the e-PWRC-

empowered method with the Coefficient Factor (CF)-boosted RI method as shown 

in Figure 16. The event detection accuracy has registered a 9% increase by using 

the devised e-PWRC framework. 

 

Figure 16. The confusion matrices on the campus dataset for evaluating the independent MS contribution 

within e-PWRC. 



Different from Grundmann’s approach [42], the vertices of the initial PWRC 

graph and k(C0) in the Equation 14 in the new method were based on the 

aforementioned MS clustering results rather than the direct employment of the 

original colours of each voxel. The improved k(C0) corresponds to the MS 

parameters, Hc and Hl, to highlight the importance of the low-level colour 

features during the initial PWRC merging calculations at the bottom layer within 

the hierarchical structure. After the first merging operation is completed, the 

PWRC segmentation will literally shift from a colour-based process to texture-

based calculations. The experiment results have shown that during the feature 

extraction stage, the MS pre-clustering actually serves as an effective measure 

for simplifying the initial graph setting. 

As indicated by the experimental results, the e-PWRC method has proven its 

effectiveness for providing quality outputs for the following RI matching 

operations, especially when subjecting to complex real-world conditions. 

Accompanied by the optimisation measures employed at the template matching 

stages, the process pipeline and its various operational models have shown 

satisfactory consistency and robustness. 

5. To address Point 1.e, a new experiment has been designed for testing the 

sensitivity of each parameter within the CF-boosted RI distance model. 

Following conclusions have been added in Section 6.1. 

An experiment has been carried out for evaluating the sensitivity of the four 

parameters utilised in the devised system approach, the e-PWRC factor k(C0), the 

hierarchical level n, and the linear factors of the RI coefficients a and b. The 

same templates employed in the previous accuracy evaluations from each action 

event categories have been utilised. The independent contributions from each of 

the 4 parameters have been evaluated by fixing the other three at their optimized 

value. Figure 11 denotes the relationships between each parameter and the 

average detection accuracy. 

It is noticeable in Figure 11, the curve patterns of the e-PWRC-related 

parameters k(C0) and n have shown similar distributions while the e-PWRC 

transmitting from over- to under-segmentation. Hence, the system performance 



can be improved significantly if more accurate over-segmented sub-regions can 

be extracted. It is also worth noting that the purposed method can still 

successfully detect about 42% of the queried events even under extremely over-

segmented conditions. 

 

Figure 11. Parameter sensitivity test result 

As discussed in Section 4.3, the values of the coefficient factor a and b should be 

around 1 based on the normalized χ
2
 distance of the histograms, which has been 

set as the threshold in this design for switching between “rewarding” and 

“punishing”. In Figure 11, the accuracy performance is above 90% for detecting 

the “waving” when appropriate a and b have been applied to the threshold. 

Revamped Paper Structure 

For providing more explicit rationales and highlighting the original contributions from 

this research, the revised paper has introduced a number of new sections and 

paragraphs, as well as removing substantial quantity of less significant background 

information.  



1. The main contributions from this research have now been specified and clearly 

stated at the start of the paper, as suggested by reviewers (see Point 2.a): 

This paper will focus on two main contributions from the research to the action 

recognition domain: 

 An innovative segmentation algorithm for extracting voxel-level features 

has been developed based on a hybrid discontinuity and similarity-based 

segmentation model through combining Mean Shift (MS) clustering and 

the graph-based region description method. 

 A novel extension of the Region Intersection technique has been realized 

for human action recognition by using a coefficient factor-boosted 

template matching method; that is capable of superior performances 

under complex and real-world videoing conditions. 

2. The phrase “event detection” that was extensively used in the original manuscript 

encompasses an extensive spectrum of computer vision topics. For better 

alignment with the intrinsic characteristics of this research and paper, it has now 

been replaced by a more specific phrase - action recognition. For example, in 

Section 1, the following paragraph has been added: 

 In this research, a spatio-temporal volume (STV) and region intersection (RI) 

based 3D shape-matching method has been proposed to facilitate the definition 

and recognition of human action events recorded in videos. 

Also, the title has now been changed to “STV-based Video Feature Processing 

for Action Recognition” to respond to the reviewer’s recommendation in Point 

2.b. 

3. To address Point 2.c, the abstract has been re-written and the conclusions 

shortened: 

Video recordings can provide rich and intuitive information on dynamic events 

occurred over a period of time such as human actions, crowd behaviours, and 

other subject pattern changes in comparison to still image-based processes. 

However, although substantial progresses have been made in the last decade on 

2D image processing and its applications such as face matching and object 



recognition, video-based event detection still remains one of the most difficult 

challenges in computer vision research due to the wide range of continuous or 

discrete input signal formats and their often ambiguous analytical features. In 

this paper, a spatio-temporal volume (STV) and region intersection (RI) based 

3D shape-matching method has been proposed to facilitate the definition and 

recognition of human actions recorded in videos. The distinctive characteristics 

and the performance gain of the devised approach stemmed from a coefficient 

factor-boosted 3D region intersection and matching mechanism developed in the 

programme. This research has also investigated techniques for efficient STV data 

filtering to reduce the amount of voxels (volumetric-pixels) that need to be 

processed in each operational cycle in the implemented system prototype. 

Encouraging features and improvements on operational performance have been 

registered in the corresponding experiments. 

4. To address Point 2.d, the improvement of the proposed action recognition 

approach from the baseline method introduced by Ke et al. has been specified in 

Section 2.3: 

Based on the spatio-temporal shape feature distribution and the local region 

grouping, an RI-based distance algorithm harnessing the advantages of both 

global and local features for recognizing human actions was first introduced by 

Ke [40] in 2007. Although proven effective when segmenting backgrounds of 

average complexity, the algorithm was less useful when dealing with complex 

real-world scenes where both extremely large and small textured regions existed 

alongside each other. This was one of the early motives of this research to 

investigate system approaches with more consistent performance for real-world 

applications.  

Additional References and Proofreading 

1. To address Point 3.a, additional and up-to-date publications in the field have been 

referenced and discussed as recommended by the reviewers. For example, in 

Section 2.3, following paragraphs have been added: 

As summarized by Shao [27, 28], a recent trend of integrating and enhancing 

STV global features with a chosen set of local features for calibration has 



witnessed a degree of success. For example, Jiang et al. [29] had introduced an 

inter-frame constrained local feature definition method for creating a so-called 

“convex matching scheme” to facilitate human action detection. Dollár et al.’s 

[30] spatio-temporal cuboid prototyping method had extended the ability of the 

2D interest point segmentation technique into Basharat et al.’s [31] SIFT-based 

(Scale Invariant Feature Transform) video retrieval pipeline; Zhai and Shah’s 

[32] spatio-temporal attention model, Laptev and Lindeberg’s [33] slice-based 

feature identification techniques, Loper et al.’s [34] bag-of-visual-features 

(BoVF) methods, as well as Shao’s motion and shape feature-based video content 

segmentation strategies [35] have all been pushing boundaries on this front. 

Recently, action recognition researches have been experiencing a weight-shift 

from the low lever feature and algorithm-oriented development to the semantic-

informed machine learning domain. For example, the local feature based Bag of 

Words (BoW) [36] algorithm and its variations [37] have been used in machine 

learning-based classification through the sliding window mechanism. Similar 

efforts, such as Hu’s oriented gradients feature with support vector machines 

(SVMs) [38] technique and Yang’s motion video patch distance with cascade 

classification method [39] had partially addressed the occlusion problems often 

occurred in real-world video recordings 

2. Also addressing Point 3.a, the Grundmann’s 2010 paper has been cited with a 

discussion added  in Section 3.1: 

The proposed solutions for the aforementioned problems were partially motivated 

by Grundmann’s earlier work on video segmentation [42], which focused on the 

video region description by using texture similarity. It highlighted the importance 

of similar regions along the temporal domain. To further strengthening the local 

voxel colour characteristics of the proposed graph-based algorithm, this research 

has introduced a Mean Shift-based pre-clustering operation for constructing the 

initial region groups that emphasized the colour features in addition to 

Grundmann’s texture features at the beginning of the e-PWRC operations. 

3. To address Point 3.b, non-essential but related concepts and background 

information have been removed from the main text and referred in appropriate 



manner. For example, details of the 2D PWRC method introduced in the original 

manuscript (Section 3.1) has become a brief review over the parameter k used in 

the e-PWRC algorithm. More details can be referred to the authors’ earlier paper. 

The entire section about the Lab colour space has been removed from the paper. 

The paragraphs discussing the non-human based video events have been removed 

from Section 2.1. 

4. The entire manuscript has gone through additional rounds of proofreading to 

respond to Point 3.c. 
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Highlights 

 Video event definition based on volumetric and over-segmented shape regions 

 Advanced 3D feature extraction approach based on improved Pair Wise Region Comparison 

 Innovative event template matching using Region Intersection techniques 

 Optimized implementation strategy through an on-fly buffering mechanism 

 

*Highlights


