
University of Huddersfield Repository

Iqbal, Saqib and Allen, Gary

Pointcut Design with AODL

Original Citation

Iqbal, Saqib and Allen, Gary (2012) Pointcut Design with AODL. In: The Twenty-Fourth
International Conference on Software Engineering and Knowledge Engineering (SEKE 2012), July
1-3, 2012., Redwood City, California, USA.

This version is available at http://eprints.hud.ac.uk/id/eprint/13593/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Pointcut Design with AODL

Saqib iqbal

Department of Informatics

University of Huddersfield,

Huddersfield, HD1 3DH, United Kingdom

s.iqbal@hud.ac.uk

Gary Allen

Department of Informatics

University of Huddersfield,

Huddersfield, HD1 3DH, United Kingdom

g.allen@hud.ac.uk

Abstract—The designing of pointcuts is a crucial step in Aspect-

Oriented software development. Pointcuts decide the places

where aspects interact with the base system. Without designing

these pointcuts properly, the weaving process of aspects with the

base system cannot be modelled efficiently. A good design of

pointcuts can ensure proper identification of join points, clear

representation of advice-pointcut relationships and overall

efficiency of the weaving process of the system. The existing

approaches do not design pointcuts separately from their parent

aspects, which hinders in identifying pointcut conflicts before the

implementation of the system. This paper provides a set of

graphical notations to represent join points, pointcuts, advices

and aspects. A graphical diagram has been proposed that shows

the relationships between pointcuts and their relevant advices.

The paper also provides a technique to represent and document

pointcuts along with their related advices and corresponding base

elements in a tabular way. The technique can help in resolving

two of the most complicated problems of pointcut modelling, the

fragile pointcut problem and the shared join point problem.

Keywords-component; Aspect-Oriented Design, Pointcut Design,

Pointcut Modelling, Aspect-Oriented Design Language

I. INTRODUCTION

The handling of concerns is extremely important for
critical, distributed and complex systems. Each concern has to
be identified, specified and designed properly to avoid
inconsistencies which can lead to serious consequences if the
system is critically sensitive. Object-oriented design
approaches have been the pick of the design techniques for
such systems during the last three decades. Unified Modelling
Language [2] emerged in the 1990s, and rapidly became
accepted as the standard analysis and design approach for
object-oriented development of systems. Unfortunately, object-
oriented approaches started showing problems in capturing
concerns that are scattered in nature and whose implementation
overlaps other concerns and/or system units. Such concerns are
known as crosscutting concerns. Examples of crosscutting
concerns include system security, logging, tracing and
persistence. The implementation of these concerns resides
within the implementation of other concerns or classes, which
results in inconsistencies and modification anomalies.

Aspect-Oriented Programming (AOP) [1] was introduced to
rectify this problem. AOP introduced a new construct, called an
aspect, besides the traditional object-oriented classes. The
aspect is identified, specified and designed separately, and is
woven into the base system at run-time wherever it is required.
AOP was proposed as an implementation solution to the
crosscutting problem. That is the reason why initial

developments in AOP were mainly in the field of
implementation. AspectJ, AspectWerkz and JBoss AOP are
among a number of implementation technologies which were
proposed immediately after AOP came into existence. With the
passage of time research was extended to earlier phases of
development as well, resulting into development of aspect-
oriented requirement engineering and design approaches.
Although modularity of aspect-oriented systems has been
ensured with the introduction of such techniques, the cohesive
nature of aspects with the base system has not been addressed
properly in the existing approaches. Pointcuts, which are
responsible for identifying join points in the system where
aspects are invoked, are highly dependent on the base
program‟s structural and behavioral properties. This
characteristic makes pointcuts fragile with respect to any
changes in the base program, and results in a problem called
Fragile Pointcut Problem [6,7]. Another problem related to
pointcuts is Shared Join Point Problem [4], where more than
one advice from a single or multiple aspects are supposed to be
executed at a single join point. A proper design is required to
resolve the precedence of advices so that they run in a pre-
determined order. This paper addresses these two pointcut
problems and proposes a diagrammatic and tabular approach to
help in rectifying both issues without compromising the
consistency of the system. The tabular approach promises
better documentation of pointcuts and enables modifications to
be made in a consistent manner.

The rest of this paper is structured as follows: Sections 2
and 3 describe the Fragile Pointcut Problem and the Shared
Join Point Problem respectively. Section 4 describes the
proposed pointcut-advice diagram and Pointcut Table, and
section 5 provides discussion and conclusion of the paper.

II. THE FRAGILE POINTCUT PROBLEM

Pointcuts are considered fragile because their definitions
are cohesively coupled with the constructs in the base system.
Upon modification in the base system, pointcuts‟ semantics are
bound to change [6,7]. Pointcuts are defined by join points
which are specific points in the base system. Once a join point
is modified in the base system, the relevant pointcut is altered
to adopt that change or lose that particular join point. This
fragile nature of pointcuts forces designers to reflect changes in
the pointcut definitions when they make any modification to
the base system. Join points are formed not only on structural
characteristics of the system but also on behavioural properties
of functional units of the system. Therefore, any type of change
to structural or behaviour property of the base system would

require related pointcuts to be altered [3]. The fragility of
pointcuts leads to two core problems: unintended join point
capture problem, which arises when a join point is accessed
which does not exist anymore because of modifications to the
source code; and accidental join point miss problem, which
happens when a join point is not captured which was originally
supposed to be captured, again due to an alteration to the
source code of the base program [3].

III. THE SHARED JOIN POINT PROBLEM

Aspects superimpose their behaviours at well-defined join
points in the base system. A shared join point is a point where
multiple aspects interact and superimpose their advices. The
problem arises in deciding which aspect should run first. This
is a critical decision because execution of one aspect‟s advice
can change the attributes which are supposed to be used by
another aspect‟s advice. Figure 1, taken from [4], illustrates the
problem.

Figure 1. „Employee‟ class and its superimposed aspects

(taken from [4]).

This problem is considered to be an implementation-level
problem and has been addressed by renowned aspect-oriented
programming techniques. For example, AspectJ [10] provides a
declare precedence keyword to order advices, Composition
Filters [8] provides Seq operator to declare precedence, and
JAC [9] determines the order by implementing wrappers in the
classes which are filed in a wrapper file in an execution
sequence.

IV. DESIGNING POINTCUTS IN AODL

Pointcuts rely heavily on the lexical structure of the base
program. The definition of pointcuts (group of join points)
contains direct reference to the syntax of base elements. This
tightly coupled nature makes it hard for programmers to make
any changes to base program without having knowledge of
pointcuts and vice versa. Aspect-Oriented Design Language
(AODL) [5] presents a diagrammatic approach to the design of
pointcuts and a tabular way of documenting their definitions.
This kind of well-documented representation of aspects in the
design phase makes it easier for designers as well as
programmers to evolve either aspects or the base program.
Before moving onto the proposed models, we introduce AODL
briefly in the following section.

A. Aspect-oriented Design Language

Aspect-Oriented Design Language (AODL) [5] is a UML-
like design language that has been developed by the authors to
design aspects, aspectual elements, and object-aspect
relationships. AODL offers a unified framework to design both
aspects and objects in one environment. The constructs of
aspects are denoted by specialized design notations and

structural and behavioral representations are done with the help
of design diagrams. The details about the semantics of the
notations can be found in [5]. Figure 2 shows design notations
adopted by AODL.

Join Point

Weaving

Association

Aspect

Pointcut

Figure 2. AODL Design Notations

AODL proposes a three phase design for aspects,
constituent elements and the relationships between aspects and
objects, details can be found in [5]. In the first phase, join
points are modeled with the help of two diagrams, one for the
structural identification of join points, known as a Join point
Identification diagram, and the second for the behavioral
representation of join points, known as a Join Point
Behavioural diagram. In the second phase, aspects are designed
with the help of an Aspect Design Diagram. And in the final
phase, aspects are composed with the base model with the help
of two diagrams, an Aspect-Class Structure Diagram and an
Aspect-Class Dynamic Diagram. Complete details about the
semantics of the language and its usage can be found in [5].

B. Pointcut-Advice Diagram

Pointcuts are highly dependent on the base objects through
join points. Similarly, advices are tightly coupled with their
corresponding pointcuts. To represent these cohesive
relationships, we need to show related pointcuts, advices and
base objects in a diagrammatic model. An Aspect Design
Diagram (shown in Figure 3) contains the properties and
behavior of an aspect. The diagram connects with the base
classes through use of the crosscuts stereotype. Pointcuts are
represented along with their corresponding advices and
occurrence attributes (before, after and around) in a pointcut-
advice diagram.

Figure 3. Pointcut-Advice Diagram

C. Pointcut Table

Pointcuts are predicates which are set on defined points
(join points) in the execution of a program. To define and
document pointcuts properly ensures consistency of the
program. AODL has proposed a pointcut table (shown in Table
1) to document pointcuts along with their related advices,
aspects and base classes. The table defines pointcuts in vertical
columns by indicating the join points of the base system
horizontally. The columns of the table provide list of aspects
and complete definition of their pointcuts along with their
related advices. The rows, on the other hand, show the base

Aspect name

Attributes

Operations

Pointcuts
Advices

 Join points

 Pointcut name

before
Ad01

after

Ad02 Join points

Pointcut Name

system attributes, methods and execution points where join
points have been identified. The execution order of advices on
a single join point is declared in the last column, named Order.
The table has been tested and verified to represent all types of
legitimate AspectJ pointcuts, as defined in [11].

Table 1: Pointcut Table

Aspect A Aspect B Order

 AdA1

(Before)

AdA2

(After)

 AdB1

(Before)

 AdB2

(Around)

Class A this

Attribute

constructor execution

Method1 execution execution
AdA1,

AdB1

Method2

getX()

Class B

Method1 call within
AdB1,

AdA1

Method2 exception(type)

Pointcut

Definition

this(A) &&

exec(MA1)

&& call MB1)

exception(type)
call(A1) OR

within(MB1)

Pointcut P1 P2 P3 P4

Pointcut

Trigger
 !(P2) cflow(P1)

P1

&& P2

Complete

Definition

this(A) &&

exec(MA1)

&& call (MB1)

&&!(P2)

exception(type)

call(A1) OR

within(MB1)

&& cflow(P1)

P1

&& P2

In case of system being too complex and containing a
number of aspects, the table can be broken into multiple tables
and a specific number of aspects can be contained in each table.
This way each table will contain pointcut information about a
specific number of aspects only (say 3 or 5) and the readability
of the system will improve.

D. Implications of the Approach

The existing aspect-oriented design approaches do not provide

means to design pointcuts separately from their parent aspects.

The composition of aspects heavily depends on consistency of

pointcuts because they define the join points where aspects are

woven into the system. The authors felt that (i) the pointcuts

should be designed properly with the help of designated

design notations and design diagrams, (ii) the pointcuts should

be documented properly so that their features and relationships

are specified efficiently before being implemented, and (iii)

the pointcuts should be ordered at the modelling level so that

problems such as the fragile pointcut problem and the shared

join point problems are handled before implementation.

The authors of the paper do not claim that the proposed

diagrammatic and tabular approach resolve both the problems

completely. It is, however, suggested that adopting this type of

approach can help in resolving a number of problems

especially inconsistencies and conflicts involving pointcuts.

E. Example

To make the proposed approach more understandable, we
will implement the Observer Pattern [12] as implemented by
[13]. An abstract aspect Observer is extended by two aspects,
Observing1 and Observing2 as shown in Figure 4. The

following sections implement this example using a Pointcut-
Advice Diagram and a Pointcut Table.

Figure 4: Observer Pattern Implementation (Taken from [13])

Pointcuts are designed with the help of pointcut-advice

diagrams, where each pointcut is represented along with its
corresponding advice. As shown in Figure 5a, pointcuts p() and
c() of the Observing1 aspect have been represented with the
help of a pointcut diagram which shows the definition of the
pointcut (set of join points) and the advices with the occurrence
attribute (which is after for both the pointcuts). Similar diagram
has been drawn in the Figure 5b for Observing2 aspect.

Figure 5a: Aspect Design Diagram for Observing1

Figure 5b: Aspect Design Diagram for Observing2

OBSERVER PATTERN

abstract aspect Observer {

void notify() { ... }

abstract pointcut p();

abstract pointcut c();

after(): p() {notify();}

after(): c() {notify();}

}

aspect Observing1 extends Observer {

pointcut p(): call(void Buffer.put(int));

pointcut c(): call(void Buffer.get());

}

aspect Observing2 extends Observer {

pointcut p():within(Buffer) && call(* put*(*);

pointcut c():within(Buffer) && call(* get*(*));

}

<<crosscuts>>

Observing2

Attributes
 Operations

 Buffer

after

 notify
within(Buffer)&&
call(*put*(*);

 p()

after

 notify within(Buffer)&&
call(* get*(*);

 c()

<<crosscuts>>

Observing1

Attributes
 Operations

 Buffer

after

 notify
call(void
Buffer.put(int));

 p()

after

 notify call(void

Buffer.get());

 c()

Table 2 shows the pointcut table for the Observer Pattern. It
documents all of the information about the pointcuts of a
particular aspect, along with the corresponding base methods
and attributes, in a tabular way. Besides documenting all the
information about a pointcut, the table also shows the order in
which advices are executed on a particular join point. For
instance, in the first row of the table we have two advices,
AdOb2_1 and AdOb2_2, which are supposed to be executed on
a join point “within” which is defined on objects of the Buffer
class. The table also provides the Order column, where we can
show which advice should be executed first, which in the case
of Table 2 shows that AdOb2_1 will execute before AdOb2_2.

Table 2: Pointcut Table for Observer Pattern

Observing1 Observing2 Order

AdOb1_1

(After)

AdOb1_2

(After)

AdOb2_1

(After)

AdOb2_2

(After)

Class

Buffer
 within within

AdOb2_1,

AdOb2_2

Attributes

put() call

put(int) call call
AdOb1_1,

AdOb2_1

get() call call
AdOb1_2,

AdOb2_2

get(int) call

Pointcut

Definition

call(void
Buffer.put(int))

call(void
Buffer.get())

witin(Buffer) &&
call(*put*(*))

witin(Buffer)

&&
call(*get*(*))

Pointcut

Name
P() c() p() c()

Pointcut

Trigger

Complete

Definition

call(void

Buffer.put(int))

call(void

Buffer.get())

witin(Buffer) &&

call(*put*(*))

witin(Buffer)
&&

call(*get*(*))

V. FRAGILE POINTCUT AND SHARED JOIN POINT PROBLEM

The method to document pointcuts, shown in Table 1 and
Table 2, reduces the fragile nature of pointcuts. The table
provides complete information about a pointcut, which helps in
modifying the pointcut without allowing inconsistencies. This
kind of tabular documentation helps remove modification
anomalies when join point definitions are altered in the base
system.

The pointcut table also provides a column named Order to
declare the precedence of advices which have execution clashes
with each other. Advices are grouped in order of their
execution on a join point which is shown in that particular row.
The table therefore provides an opportunity for designers to set
the precedence on the execution of advices during the design
phase in order to avoid clashes in execution.

It is again stressed that the authors do not claim that the
proposed approach resolves all types of pointcut conflicts
including the fragile pointcut problem and shared join point
problem. It is, however, asserted that this approach can help in
designing pointcuts at modelling level and it can help in
identifying and resolving some key issues of pointcuts before
they are implemented.

VI. DISCUSSION AND CONCLUSION

Aspect-Oriented Development unifies separately defined
aspects with objects of the base system through well-defined
join points. The composition between aspects and objects
depends heavily on the identification of join points and their
proper grouping in the form of pointcuts. The cohesive nature
of pointcuts is defined by definition of join points which are
susceptible to change if an alteration is made in the base
program. The resultant pointcuts are inconsistent with the
system and result in either missing some join points or
capturing join points which are not intended by the designer.
To avoid such problems, proper documentation and proper
design of a pointcut becomes vitally important. This paper has
proposed a diagrammatic approach to the design of pointcuts
along with their related aspects, advices and base objects. The
diagram does not only help structural design of a pointcut but
also helps in representing the relationships between an aspect
and its corresponding advices. The paper also proposes a
tabular approach to the documentation of pointcuts during the
design phase, so that all of the corresponding definitions of a
pointcut are defined along with its characteristics and parent
entities (aspects and classes). The pointcut table promises the
rectification of two of the most common problems of pointcut
design, the fragile pointcut problem and the shared join point
problem during the design phase.

The future research will strive to develop pointcut composition
models to identify aspect interferences at the pointcut level.
Tool support will also be provided to automate development of
pointcut models and generation of code.

REFERENCES

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M.

Loingtier, and J. Irwin. “Aspect-Oriented Programming,” In: Proceedings of

ECOOP 1997, Jyväskylä, Finland, June 9-13, 1997, pp. 220-242.

[2] “Unified Modelling Language”, OMG, http://www.uml.org/. Accessed on

09 Dec. 2011.
[3] A. Kellens, K. Gybels, J. Brichau, and K. Mens. A model-driven pointcut

language for more robust pointcuts. In Proc. Workshop on Software

Engineering Properties of Languages for Aspect Technology (SPLAT), 2006.
[4] I. Nagy, L. Bergmans, and M. Aksit. “Composing aspects at shared join

points”. In Proceedings of International Conference NetObjectDays (NODe),

Erfurt, Germany, Sep 2005.
[5] S. Iqbal and G. Allen, Designing Aspects with AODL. International

Journal of Software Engineering. 2011, ISSN 1687-6954 (In Press)

[6] C. Koppen and M. Stoerzer. Pcdiff : Attacking the fragile pointcut
problem. In First European Interactive Workshop on Aspects in Software

(EIWAS), 2004.
[7] M. Stoerzer and J. Graf. Using pointcut delta analysis to support evolution

of aspect-oriented software. In 21st IEEE International Conference on

Software Maintenance (ICSM), pages 653–656, 2005.
[8] “Compose* portal”, http://composestar.sf.net, Accessed on 24 Jan, 2012.

[9] “Java Aspect Component”, http://jac.ow2.org/, Accessed on 24 Jan, 2012.

[10] Eclipse, AspectJ, http://www.eclipse.org/aspectj/, Accessed 05 Dec. 2010
[11] Pointcuts, Appendix B. Language Semantics,

 http://www.eclipse.org/aspectj/doc/next/progguide/semantics-pointcuts.html,

Accessed on 30 Jan, 2012.
[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Professional Computing

Series. Addison-Wesley, Reading, Ma, USA, 1995.
[13] W. Cazzola, S. Pini, and M. Ancona. Design-Based Pointcuts Robustness

Against Software Evolution. In Proceedings of RAM-SE‟06 Workshop,

Nantes, France, July 2005

http://composestar.sf.net/
http://jac.ow2.org/
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/doc/next/progguide/semantics-pointcuts.html

