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Abstract. One of the most important parameters in designing a capsule transporting pipeline is the
pressure drop in the pipes carrying capsules and associated pipe fittings such as bends etc. Capsules
are hollow containers with typically cylindrical or spherical shapes flowing in the pipeline along
with the carrier fluid. The dynamic behavior of a long train of capsules depends on the behavior of
each capsule in the train and the hydrodynamic influence of one capsule on another. Researchers so
far have used rather simplified empirical and semi-empirical correlations for pressure drop
calculations, the range and application of which are fairly limited. Computational Fluid Dynamics
(CFD) based techniques have been used to analyze the effect of the presence of solid phase in
hydraulic bends. A steady state numerical solution has been obtained from the equations governing
turbulent flow in pipe bends carrying spherical capsule train consisting of one to four capsules. The
bends under consideration are of 45° and 90° with an inner diameter of 0.1m. The investigation
was carried out in the practical range of 0.2 <Vb> 1.6 m/sec. The computationally obtained data set
over a wide range of flow conditions has been used to develop a rigorous model for pressure drop
calculations. The pressure drop along the pipe bends, in combination with the pressure drop along
the pipes, can be used to calculate the pumping requirements and hence design of the system.

1. Introduction

Bends are an integral part of any pipeline network. The total pressure or power requirement for a piping
network depends on pressure drop due to the bends along with the pipes. This is especially true for HCPs
(Hydraulic Capsule Pipelines) which carry spherical or cylindrical capsules. Research on straight HCP
pipelines is extensively available. However, limited research is available on pressure drop in bends
carrying spherical capsules. Ulusarslan and Teke [1-4] have recently carried out experimental work to
calculate the pressure drop in hydraulic pipe bends. They have shown that due to the presence of the solid
medium in the flow, the pressure drop increases. This increase in the pressure drop is reflected in the
increase in friction factor to be used in the equations. In order to completely understand the dynamic
behavior of the capsules in the bends, and to analyze the effects of flow and geometry of the capsules on
the pressure drop, CFD based analysis has been carried out for spherical capsules in pipe bends.



Nomenclature

k Capsule to Bend Diameter ratio (-) L Length of the test section (m)
d Capsule Diameter (m) N Number of Capsules (-)

D Bend Diameter (m) AP Pressure drop (Pa )

€ Bend’s surface roughness (m) p Density (Kg/m®)

f Friction Factor (-) Re Reynolds Number (-)

g Acceleration due to gravity (m/sec’) u Dynamic Viscosity (Pa-sec)
\'% Flow Velocity (m/sec) 0 Bend Angle (°)

n Number of bends (-)

Subscripts

p Pipe c Capsule

b Bulk m Mixture

w Water

2. Numerical Modelling

Three dimensional steady Navier-Stoke’s equations have been numerically solved using commercially
available CFD package FLUENT 6.3.26. Second order spatial discretization scheme with SIMPLE
pressure-velocity coupling has been employed. The mesh incorporated is fine enough to capture all the
important flow features. ‘Figure 1’ shows the geometrical setup for the case 8 = 90°, N =1 and d = 0.08m.
The following assumptions have been made to solve the equations governing the turbulent flow in the
capsule carrying bends:

¢ Flow is steady

e Capsule velocity has been taken to be equal to the velocity of water i.e. Vy, = V. =V as suggested
by Ulusarslan [1]

e The pressure drop can be computed using a single phase method for the bulk velocity V,=V

e Capsules are made of polypropylene material which has the same density as water i.e. py, = p. = p
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Figure 1. Geometrical setup of the Capsules in the Bend.




3. Results

The important non-dimensional parameters, as suggested by Ulusarslan [4], in order to develop a semi-
empirical model for the calculation of pressure drop in the cylindrical capsule carrying hydraulic pipeline,
are Reynolds number (for both water and capsules), capsule to pipe diameter ratio (k = d/D) and number

of capsules (N).

3.1. Pressure Drop in Hydraulic Bends without

Capsules

Figure 2 shows the variations in pressure drop per unit length for 45° and 90° pipe bends in the absence of
capsules. The results depict that as the bulk velocity of the flow increases, the pressure drop in the bends
increases. The difference between the pressure drops between both the bends is 8.38% on average with a

standard deviation of 0.19%.
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Figure 2. Variations in Pressure Drop in Hydraulic Bends.

The result, compared with that of Asim et al. [5] for a horizontal pipe, indicates that the pressure drop
depends on the angle given to the flow i.e. angle of the pipe bend. For a flow velocity of 1.6 m/s, the
pressure drop in a horizontal pipe and in the aforementioned bends is shown in table 1.

Table 1. Comparison of Pressure Drop in different pipe geometries.

Geometry Pressure Drop
(Pa/m)
Horizontal Pipe 210
45° Bend 240
90° Bend 260




The results in table 1 show that in 45° and 90° bends, the pressure drop is 12.5% and 19.2% more than
that in a horizontal pipe respectively. Using curve fitting technique, it can be shown (figure 3) that the
pressure drop in the hydraulic bends, without the presence of the solid phase, can be expressed as:

(). =2+ fu (1)

Where f,, is the friction factor due to water alone. It can be expressed as:

_ (0.06 * Sin®)+0.177
fu =" @)

Where the Reynolds number of water can be computed from:
3)

Equation (2) predicts the friction factor due to water in the bends with an average error of less than 5%
and hence can be considered reasonably accurate. For the case when 6 = 0°, which represents a straight
pipe, equation (2) reduces to the form obtained by Asim et al. [5] for a horizontal pipe.
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Figure 3. Variations of friction factor in hydraulic bends.



3.2. Pressure Drop in Capsule transporting Hydraulic Bends

Kroonenberg [6] states that the pressure drop in a capsule transporting hydraulic pipeline is more than the
pressure drop in a hydraulic pipeline in the absence of capsule/s. This increase in the pressure drop due to
the presence of solid phase is reflected in the friction factor. The same is true for pipe bends. The effect of
the number of capsules, the diameter of the capsules and the flow velocity has been analyzed. Figures 4a
and 4b show the variations in pressure drop per unit length at different bulk velocities in capsule
transporting hydraulic bend with an angle of 90°.
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The results depict that the pressure drop increases as the bulk velocity increases. Furthermore, as the
volumetric concentration of the solid phase in the bend increases, the pressure drop increases. Increasing
the number of capsules in the bend and increasing the capsule to bend diameter ratio k increases the
volumetric concentration of the solid phase in the bend.
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Figure 4. Variations in Pressure Drop for Spherical Capsules in 90° Hydraulic Bend, (a) N=1, (b) N=3

Figures 5a and 5b shows the same trends as figures 4a and 4b i.e. as the bulk velocity increases, the
pressure drop increases. Furthermore, as the volumetric concentration of the solid phase in the bend
increases, the pressure drop increases. By comparing figures 3 and 4, it can be seen that the pressure drop,
at the same bulk velocity and for the same number of capsules in the bends, is more in the 90° as
compared to the 45° bend. On average, the pressure drop in a 90° bend is 13% higher than the pressure
drop in a 45° bend with a standard deviation of 3%.
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Figure 5. Variations in Pressure Drop for Spherical Capsules in 45° Hydraulic Bend, (a) N=1, (b) N=3.

From the results presented in figures 3 and 4, pressure drop in capsule transporting hydraulic bends can
be expressed as:

AP _ npv?
(T)m =% * Im )
Where f,, is the friction factor for the mixture of capsule/s and water in the bend. It can be expressed as:

fm=fwt fe (&)

Where f. is the friction factor for the solid phase in the mixture only i.e. for capsules. The steps involved
in the determination of f, from the results presented here are:

1. Calculate the pressure drop i.e. (%) from CFD
m

2
2. Divide this pressure drop by % . This will give the value of f,

3. Subtract f,, from f,, to get the value of f.



In order to develop a semi-empirical model for the calculation of pressure drop in spherical capsule
transporting hydraulic bends, the curve fitting technique, as discussed earlier, has been applied for f. data
calculated using the above steps. Figures 6a and 6b show the variations in f. at different Reynolds number
of the capsule in a 90° pipe bend whereas figures 7a and 7b show the variations in f; in a 45° pipe bend.
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Figure 6. Variations in fc for Spherical Capsules in 90° Hydraulic Bend, (a) N=1, (b) N=3.



The results show that as the bulk velocity increases, the friction factor due to the solid phase decreases.
Furthermore, an increase in the volumetric concentration of the solid phase in the bend increases, the
friction factor due to capsules increases.
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Figure 7. Variations in fc for Spherical Capsules in 45° Hydraulic Bend, (a) N=1, (b) N=3.



Using the curve fitting technique (figure 8), the following relationship for the prediction of friction
factor due to the capsules in hydraulic bends has been developed with less than 5% variation:

fo = {(0.0025  N) + (0.0014 x Sin@) — 0.0021} = ege'f;f;‘) 6)

Where the Reynolds number of capsules can be computed used the following equation:

Re, = T (7)
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Figure 8. Variations in friction factor due to the capsule for 8=45°, N=2 and k=0.5.

4. Conclusions

A methodology has been developed for the prediction of pressure drop in spherical capsules transporting
hydraulic bends. Flow of equi-density spherical capsules of various diameters is simulated at different
bulk velocities and pipe bends of different angles. The results indicate that the pressure drop, and hence
head loss, in hydraulic capsule transporting bends increases as the bulk velocity, diameter of the capsules
and the number of capsules increases. Furthermore, an increase in the bend angle increases the pressure
drop. This increase in pressure drop is reflected in the friction factor due to the presence of solid medium
in the flow. A rigorous semi-empirical model for the calculation of pressure drop has been developed



which accounts for this increase in the friction factor with reasonably accuracy. The model developed
here, along with the model developed by Asim et. al. [6], can be used to design a spherical capsule
transporting pipeline.

References
[1]  D. Ulusarslan, and I. Teke, “An experimental investigation of the capsule velocity, concentration
rate and the spacing between the capsules for spherical capsule train flow in a horizontal circular
pipe,” Journal of Powder Technology, vol. 159, pp. 27-34, July 2005
[2] D. Ulusarslan, “Effect of Capsule Density and Concentration on Pressure Drops of Spherical
Capsule Train Conveyed by Water,” Journal of Fluids Engineering, vol. 132, pp. 11304-1, Jan.
2010
[3] D. Ulusarslan, “Determination of the loss coefficient of elbows in the flow of low-density spherical
capsule train”, Journal of Experimental Thermal and Fluid Science, vol. 32, pp. 415-422, May
2007
[4] D. Ulusarslan and I. Teke, “Relation between the Friction Coefficient and Re Number for Spherical
Capsule Train-Water Flow in Horizontal Pipes”, Journal of Particulate Science and Technology,
vol. 27, pp. 488-495, 2009
[5] T. Asim, R. Mishra, M. Saqib and K. Ubbi, “Pressure Drop in Capsule Transporting Pipeline
Carrying Spherical Capsules,” Proceedings of the 38th National Conference on Fluid Mechanics
and Fluid Power, Dec 2011
[6] H. H. van den Kroonenberg, “A mathematical model for concentric horizontal capsule transport”,
Canadian Journal of Chemical Engineering, vol. 56, pp. 538, 1978



