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Abstract

The treatment of semantic relations between terms is essential in information
retrieval (IR). Each term in a thesaurus might have classes of synonymous,
narrower, broader, or related terms. The ability to express formally the seman-
tic relations is a core issue in applying mathematical tools to IR. In the appli-
cation of evidential theory, particularly, the problems become more apparent
since evidential theory is based on set theory and individual terms have to be
expressed as subsets of the frame of discernment. Four basic questions are to
be faced: How to establish the frame of discernment using a thesaurus? How
to express terms using subsets of the frame? How to apply evidential functions
to represent documents or queries using the term subset-expressions? What
are appropriate agreement measures for ranking documents against a given
query? This study attempts to answer these questions.

1 Introduction

The objective of an IR system is to identify latent useful information in re-
sponse to user information needs. The effectiveness of an IR model depends
mainly on three central issues: document representation, query representa-
tion and agreement (similarity) measurement. Many important studies focus
on the three issues, and some good formal methods have been developed.

In IR, each document is characterized by a set of index terms that appear
in the document. There exist complex semantic relations between index terms.
Generally, a weighting function, which maps each index term to a numerical
quantity related to a given document, is used to represent the importance of
the index term concerning the document. It should be pointed out that to
arrive at a precise representation of a document by means of a set of weights
of index terms is difficult. This is because it is very hard to obtain sufficient
statistical data for estimating the importance of index terms. It is also very
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hard to explicate the complicated semantic relations between index terms.
Extensive studies on document representation can be found in, for instance
[1, 11, 17, 20, 29, 30, 28, 32, 33, 34].

Query representation is also an obstacle to developing an effective retrieval
system. In practice, the original queries are usually imprecise and incomplete
descriptions of information needs. A retrieval system cannot thus be expected
to produce ideal retrieval results by using a poor query representation. Some
thorough investigations into query representation and query expansion can be
found in, for instance [4, 6, 7, 8].

An agreement measure determines the degree to which individual docu-
ments are relevant to the query. To be successful, the determination should
be performed in such a way that retrieval output and actual outcome are,
on average, in close agreement. The choice of agreement measure is essen-
tial for effective retrieval. The relevance problem has been studied by many
researchers, for instance [2, 9, 15, 23].

The treatment of semantic relations between terms has long been a sig-
nificant subject of interest in IR. Terms in a thesaurus might have a class
of synonymous terms, a class of narrower terms, a class of broader terms,
or a class of related terms. For example, semantically, terms cows and goats

are narrower than term mammals. In a semantic net, “term t1 is narrower
than term t2” is expressed by an arrow from t1 to t2 to impose a specifica-
tion/generalization relation on terms. An example for related terms is that
terms ducks, geese, hens might be related to terms eggs, feathers. It is es-
sential to normalize a thesaurus for treating term semantic relations in IR
applications. This study presents a method for the normalization.

The ability to express formally the semantic relations of terms is a core
issue in IR. Terms are not mutually exclusive, and naive probabilistic methods
may not be adequate for handling the issue. The evidential method appears
to be more convenient than the usual probabilistic methods [32] to express
term semantic relations, to represent objects (i.e., documents and queries),
and to rank documents against a given query. Some retrieval methods based
on evidential theory (Dempster-Shafer’s theory of evidence [25]) have been
proposed [17, 18, 24, 26]. However, in applications of evidential theory, the
construction of a σ-algebra and a base for this σ-algebra in order to construct
a probability space is an arduous task [26]. This study proposes a method to
establish the frame of discernment, and to express each term by a subset of
the frame.

In this study, we are also concerned with the application of evidential
theory to some practical IR problems: we formally discuss the representations
of objects by means of evidential functions; we introduce agreement measures
over the evidential representations for ranking documents against the query.

This paper is organized as follows. In Section 2, we suggest a method for
normalizing a thesaurus semantically. In Section 3, we propose a method for
establishing a frame of discernment and for expressing terms as subsets of
the frame. In Section 4, after introducing basic concepts of evidential the-
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ory, a novel method for representing objects based on evidential functions is
proposed, and the agreement measures for ranking documents based on the
evidential representations are introduced.

2 Normalization of a Thesaurus

This section concentrates on how to normalize a thesaurus semantically. We
introduce notation for the normalization. The notation is used to describe the
relations found in a general thesaurus. An example thesaurus ℵ, taken from
[26], is used throughout this paper. It is given in Table 1. We will denote T
as the set of 28 terms contained in ℵ.

2.1 Treatment of Synonymous Terms

We first introduce two pieces of notation, ⇐ and ⇒.

☞ “⇐” is used to denote ‘use-for’.

“t1 ⇐ t2, t3, ..., tl” means that t1 and t2, t3, ..., tl are synonymous terms,
and that t1 is their representative.

☞ “⇒” is used to denote ‘use’.

“t1 ⇒ t2” means that t1 and t2 are synonymous terms, and that t2 is their
representative.

The synonymous relation between terms is an equivalence relation. That
is, it has the following properties:

reflexive: t⇐ t;

symmetric: if t1 ⇐ t2, then t2 ⇐ t1;

transitive: if t1 ⇐ t2, and t2 ⇐ t3, then t1 ⇐ t3.

Removing the tuples with relations ⊃, ⊂ and ∩ from the thesaurus, and
then with symmetry, further removing relation ⇒, we can obtain a synonym-

normalized thesaurus, denoted S(k,t). For the example thesaurus ℵ, we obtain
Table 2.

In contrast to thesaurus ℵ, we can see that the terms that do not have
relations ⇐ or ⇒, but have relations ⊃, ⊂ and ∩ remain in the first column
of thesaurus S(k,t) (e.g., terms ‘domestic-birds’, ‘eggs’, etc.). In other words,
only those terms that have only relation ⇒ are removed from the first column
of ℵ (e.g., terms ‘barnyard-birds’, ‘farm-animals’, etc.).

In what follows, we will call the terms listed in the first column of thesaurus
S(k,t) key-terms, and denote K = {k1, k2, ..., kn} as the set of the key-terms.
Obviously, K ⊆ T and n = |K| ≤ |T |. For instance, for thesaurus ℵ, we have
n = 15 key-terms.
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Table 1. An example thesaurus ℵ

Term Relation Term(s)

animals ⇐ animal
⊃ birds, domestic-animals, mammals

barnyard-birds ⇒ poultry

birds ⇐ bird
⊂ animals
⊃ domestic-birds, poultry
∩ eggs, feathers

cows ⇐ cow
⊂ domestic-mammals

domestic-animals ⇐ farm-animals
⊂ animals
⊃ domestic-birds, domestic-mammals, poultry

domestic-birds ⊂ birds, domestic-animals
⊃ poultry

domestic-mammals ⊂ domestic-animals, mammals
⊃ cows, goats

ducks ⇐ duck
⊂ poultry

eggs ∩ birds, poultry

farm-animals ⇒ domestic-animals

farmyard-birds ⇒ poultry

feathers ∩ birds, poultry

geese ⇐ goose
⊂ poultry

goats ⇐ goat
⊂ domestic-mammals

hens ⇐ chick, chicken-cock, hen
⊂ poultry

mammals ⇐ mammal
⊂ animals
⊃ domestic-mammals
∩ milk

milk ∩ mammals

poultry ⇐ barnyard-birds, farmyard-birds
⊂ birds, domestic-animals, domestic-birds
⊃ ducks, geese, hens
∩ eggs, feathers
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Table 2. A synonym-normalized thesaurus S(k,t)

Key-Term Relation Term(s)

animals ⇐ animal
birds ⇐ bird
cows ⇐ cow
domestic-animals ⇐ farm-animals
domestic-birds -
domestic-mammals -
ducks ⇐ duck
eggs -
feathers -
geese ⇐ goose
goats ⇐ goat
hens ⇐ chick, chicken-cock, hen
mammals ⇐ mammal
milk -
poultry ⇐ barnyard-birds, farmyard-birds

2.2 Treatment of Ordering Terms

Let us introduce two further pieces of notation ⊃ and ⊂.

☞ “⊃” is used to denote ‘narrower-terms’.

“t1 ⊃ t2, t3, ..., tl” means that term t1 has narrower terms t2, t3, ..., tl. The
narrower relation between terms is a partial ordering relation. That is, it
has the following properties:

irreflexive: t 6⊃ t;

asymmetric: if t1 ⊃ t2 then t2 6⊃ t1;

transitive: if t1 ⊃ t2 and t2 ⊃ t3, then t1 ⊃ t3.

☞ “⊂” is used to denote ‘broader-terms’.

“t1 ⊂ t2, t3, ..., tl” means that term t1 has broader terms t2, t3, ..., tl. The
broader relation between terms is a partial ordering relation. That is, it
has the following properties:

irreflexive: t 6⊂ t;

asymmetric: if t1 ⊂ t2 then t2 6⊂ t1;

transitive: if t1 ⊂ t2 and t2 ⊂ t3, then t1 ⊂ t3.

Clearly, term ti has a narrower term tj if and only if term tj has a broader
term ti. This implies that we can use only one of these two ordering relations
in a thesaurus to obtain an ordering-normalized thesaurus, denoted O(ki,kj).

For the example thesaurus ℵ, removing the tuples with relations ⇐, ⇒
and ∩, and then further removing relation ⊂, we obtain Table 3.
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Table 3. An ordering-normalized thesaurus O(ki,kj)

Key-Term Relation Key-Term(s)

animals ⊃ birds, domestic-animals, mammals
birds ⊃ domestic-birds, poultry
domestic-animals ⊃ domestic-birds, domestic-mammals, poultry
domestic-birds ⊃ poultry
domestic-mammals ⊃ cows, goats
mammals ⊃ domestic-mammals
poultry ⊃ ducks, geese, hens

The narrower and broader relations of terms, forming a hierarchical struc-
ture, are given in Fig. 1. Generally, in IR, a hierarchical structure, represented
using a directed acyclic graph (using arrows), is a tree-like structure, which
embeds relations ⊃ or ⊂ in a form such that no key-term appears on a level
below that of its narrower key-term.

birds

ducks geese hens cows goats

animals

mammals

poultry

domestic-birds

domestic-animals

domestic-mammals

eggs 

feathers

eggs 

feathers

milk

Fig. 1. The narrower and broader relations of key-terms on a hierarchical structure.

Notice that all terms given in the first and third columns of thesaurus
O(ki,kj) (i.e., on the hierarchical structure) are key-terms. In what follows, we
will denote the set of all key-terms on the hierarchical structure as hie(K).
Obviously, hie(K) ⊆ K, and it may be that K − hie(K) 6= ∅. For instance,
from our example, we can see that K − hie(K) = {eggs, feathers,milk}.

We denote the hierarchical structure itself as H(K). A key-term k is said
to be on structure H(K), denoted by k ⊢ H(K), if there exists one node of
H(K), such that it is used to represent k. Clearly, k ∈ hie(K) if k ⊢ H(K).

2.3 Treatment of Related Terms

We need to introduce another piece of notation, ∩.

☞ “∩” is used to denote ‘related-terms’.
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“t1 ∩ t2, t3, ..., tl” means that term t1 has related terms t2, t3, ..., tl. The
related relation between terms has the following properties:

reflexive: t ∩ t;

symmetric: if t1 ∩ t2, then t2 ∩ t1;

transitive: if t1 ∩ t2, and t2 ∩ t3, then t1 ∩ t3 may not hold.

For the example thesaurus ℵ, deleting the tuples with relations ⇐, ⇒, ⊃
and ⊂, and then with symmetry, we can obtain Table 4.

Table 4. A related-normalized thesaurus R(ki,kj)

Key-Term Relation Key-Term(s)

birds ∩ eggs, feathers
mammals ∩ milk
poultry ∩ eggs, feathers

The related relation of terms linked to the hierarchical structure (using
dashed lines) is given in Fig. 1.

Notice that all terms listed in the first and third columns of thesaurus
R(ki,kj) are key-terms. For two related key-terms ki, kj ∈ K, we always have
ki ∩ kj and kj ∩ ki. However, we use the following rules to write their related
relation:

- if ki ∈ hie(K) and kj ∈ K − hie(K), write ki ∩ kj ;

- if ki ∈ K − hie(K) and kj ∈ hie(K), write kj ∩ ki;

- if ki, kj ∈ hie(K), simply ignore them as their related relation has been
implied by their narrower or broader relations (see Sect. 2.4);

- if ki, kj 6∈ hie(K), simply ignore them as their related relation is not linked
to the hierarchical structure.

That is, the right side of ∩ is always a key-term in hie(K), i.e., in the first
column of the related-normalized thesaurus; the left side of ∩ is always a
key-term in K − hie(K), i.e., in the third column of the related-normalized
thesaurus.

In what follows, we will denote the set of the key-terms linked to the
hierarchical structure (i.e., listed in the third column of thesaurus R(ki,kj)) as
rla(K). Obviously, rla(K) ⊆ K and hie(K) ∩ rla(K) = ∅. For our examples,
we can see that rla(K) = {eggs, feathers,milk}.

Notice also that, for an arbitrary key-term kj in K−hie(K), we have three
and only three cases:

➟ There exists at least one ki ⊢ H(K), such that, ki ∩ kj ; in this case,
kj ∈ rla(K).
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➟ There exists one ki1 ⊢ H(K) and ki2 , ..., kiλ
6⊢ H(K) (λ ≥ 2), such that,

ki1 ∩ ki2 , ki2 ∩ ki3 , ..., kλ−1 ∩ kλ, kλ ∩ kj ; in this case, kj 6∈ rla(K), as the
related relation does not satisfy transitivity.

➟ There exists no ki ⊢ H(K), such that, ki ∩ kj ; in this case, kj 6∈ rla(K).

2.4 Superiority and Inferiority

Having discussed the properties of the ordering and related relations we can
further discuss the properties between these two relations. The properties
which are useful for an insight into the term semantic relations are:

superior: if t1 ∩ t2 and t3 ⊃ t2, then t1 ∩ t3;

inferior: if t1 ∩ t2 and t2 ⊃ t3, then t1 ∩ t3 may not hold.

From the superiority property we obtain the other two properties:

- If t1 ⊃ t2, then t1 ∩ t2.

In fact, from reflexivity we have t2∩t2. Now t2 ⊂ t1. So t2∩t1 by superiority,
i.e., t1 ∩ t2 by symmetry.

- If t1 ⊂ t2, then t1 ∩ t2.

In fact, from reflexivity we have t1 ∩ t1. Now t1 ⊂ t2. So t1 ∩ t2.

By the superiority property, we can further infer the related relations
between key-terms. For instance, from milk ∩ mammals and animals ⊃
mammals, we have milk ∩ animals.

However, the inferiority property may not always hold. For instance, from
milk∩animals and animals ⊃ birds, an inferred result milk∩birds obviously
makes no sense.

In what follows, we will call S(k,t), O(ki,kj), R(ki,kj) together the semanti-

cally normalized thesaurus, and denote it by

ℵ
SOR

=
[

ℵ; S(k,t)|O(ki,kj)|R(ki,kj)

]

.

Our aim is to formally express the semantic relations between terms, that
is, to establish the frame of discernment, and then to express all key-terms as
subsets of the frame. The next section attempts to discuss this core issue.

Before discussing the core issue, we first point out that the normalized
thesaurus is a precondition for our method to be used. However, in the real
world, it is very likely that a thesaurus will not satisfy the conditions of
normalization. The problem of normalizing a thesaurus is a pressing one, and
may necessitate much effort. It is beyond the scope of this paper to discuss
such a problem, and will be treated as a significant subject for further study.
Thus, in what follows, we always assume that thesaurus ℵ has been normalized
to thesaurus ℵSOR .
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3 Subset-Expressions of Key-Terms

As is known, in the application of evidential theory to IR, the frame of dis-
cernment, in which elements are exclusive and exhaustive, must first be es-
tablished, and each key-term must be expressed as the subset of the frame.
This section attempts to give a method to establish the frame and derive the
subset-expressions of key-terms.

To do so, we need to introduce two further pieces of notation, ⇋ and ⇇.

☞ “⇋” is used to denote ‘expressed-by’.

“k1 ⇋ {k2, k3, ..., kl}”, where k2, k3, ..., kl are atomic-terms, means that
key-term k1 is expressed by the set of these atomic-terms.

☞ “⇇” is used to denote ‘equivalent-to’.

“k1 ⇇ k2, k3, ..., kl”, where k1, k2, ..., kl have the same subset-expression,
means that k1, k2, k3, ..., kl are equivalent key-terms, and k1 is their rep-
resentative.

3.1 The Sub-Frame of Discernment Θ′

The derivation of all atomic-terms is the starting point for establishing the
frame of discernment.

Atomic-terms can be derived from the hierarchical structure H(K). In or-
der to generate H(K), we arrange key-terms from narrower to broader (or
from specific to general) by using an arrow pointing to a ‘parent’ node (repre-
senting a key-term) ki from a ‘child’ node kj ; the arrow denotes the relation
ki ⊃ kj . The oldest node of H(K), such as key-term animals, is called the
root of the hierarchical structure (see Sec. 3.8).

The nodes to which no arrows point, are called terminal nodes. All terminal
nodes are regarded as atomic-terms. The set of all atomic-terms, denoted by
Θ′, is called the sub-frame of discernment. Obviously, Θ′ ⊆ hie(K). From
Fig. 1, we can see that only five key-terms are atomic-terms in thesaurus
ℵ

SOR
:

Θ′ = {cows, ducks, geese, goats, hens}.

Once all atomic-terms on H(K) are derived, we are able to further express
general key-terms using a subset of the sub-frame, called a subset-expression.

Each atomic-term can be expressed by itself. That is, for an arbitrary
a′ ∈ Θ′, a′ ⇋ {a′}. Thus, atomic-terms are always pairwise unrelated since
the intersection of their subset-expressions is always empty.

3.2 Key-Terms in Set hie(K)

The subset-expressions of general key-terms can also be derived from the
hierarchical structure H(K).



10 D. Cai and C. J. van Rijsbergen

First, consider all key-terms that are narrower or broader than at least one
other key-term. For an arbitrary k ∈ hie(K) ⊆ K, a key point of the derivation
is to find all possible narrower key-terms, and then traverse downward to
atomic-terms. The subset of atomic-terms narrower than k is used as the
subset-expression of k. For instance, in Fig. 1, we see that key-term birds

has narrower atomic-terms ducks, geese and hens, we can thus express birds
by a subset {ducks, geese, hens}. Further, with the symbol ⇋, we can write
subset-expressions for all key-terms in hie(K) as shown in Table 5.

Table 5. Subset-expressions for key-terms in set hie(K)

Key-Term Relation Subset-Expression

animals ⇋ {cows, ducks, geese, goats, hens}
birds ⇋ {ducks, geese,hens}
cows ⇋ {cows}
domestic-animals ⇋ {cows, ducks, geese, goats, hens}
domestic-birds ⇋ {ducks, geese,hens}
domestic-mammals ⇋ {cows, goats}
ducks ⇋ {ducks}
geese ⇋ {geese}
goats ⇋ {goats}
hens ⇋ {hens}
mammals ⇋ {cows, goats}
poultry ⇋ {ducks, geese,hens}

3.3 Key-Terms in Set rla(K)

Next, consider all key-terms that are not narrower or broader than any other
key-terms, but are directly related to at least one other key-term on H(K).
For an arbitrary k ∈ rla(K) ⊆ K, link k to the hierarchical structure using
a dashed line between k and the key-terms to which k is related; check the
youngest one among the key-terms; express k using the same subset-expression
as the youngest one. For instance, in Fig. 1, we see key-term eggs linked to the
hierarchical structure by dashed lines between it and two key-terms birds and
poultry. The youngest of the two key-terms is poultry with subset-expression
{ducks, geese, hens}, we can thus express eggs by the same subset poultry
has. Subset-expressions for all key-terms in rla(K) are shown in Table 6.

Notice that the choice of the youngest key-term among the key-terms
related to a given key-term is essential: it ensures that the related relation is
able to satisfy the superiority property (but does not ensure it satisfies the
inferiority property).
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Table 6. Subset-expressions for key-terms in set rla(K)

Key-Term Relation Subset-Expression

eggs ⇋ {ducks, geese,hens}
feathers ⇋ {ducks, geese,hens}
milk ⇋ {cows, goats}

3.4 Representatives in Set rep(K)

Often, while all key-terms in hie(K) ∪ rla(K) are expressed by subset-
expressions, some key-terms have the same subset-expressions.

Two key-terms ki, kj ∈ hie(K)∪ rla(K) are said to be equivalent, denoted
by ki ⇇ kj , if they have the same subset-expression. The set of equivalent key-
terms is called an equivalent class, denoted by equ(k), where k is a representa-
tive of the equivalent class. Denote rep(K) as the set of all the representatives
and, obviously, rep(K) ⊆

(

hie(K) ∪ rla(K)
)

.
We can choose a representative for each equivalent class by taking the

oldest key-term of the class. For instance, from Fig. 1 and from Tables 5 and 6,
we see that key-terms birds, domestic-birds, eggs, feathers and poultry have
the same subset-expression, and that birds is the oldest one, we can thus
take birds as the representative of the equivalent class birds, domestic-birds,
eggs, feathers and poultry. Further, with the symbol ⇇, we can write all
representatives for key-terms in hie(K) ∪ rla(K) as shown in Table 7.

Table 7. Equivalent classes’ representatives in set rep(K)

Representative Relation Key-Term(s)

animals ⇇ domestic-animals
birds ⇇ domestic-birds, eggs, feathers, poultry
mammals ⇇ domestic-mammals, milk

Notice that the choice of the oldest key-term as the representative of an
equivalent class is immaterial: this is done only for the purpose that the root
of the hierarchical structure can be chosen as a representative.

It is worth mentioning, similar to the synonym relation ⇐ on the term set
T , that relation ⇇ is an equivalent relation on the key-term set K with the
following properties:

reflexive: k ⇇ k for an arbitrary k ∈ K;

symmetric: if ki ⇇ kj then kj ⇇ ki, where ki, kj ∈ K;

transitive: if ki ⇇ kj and kj ⇇ kl then ki ⇇ kl, where ki, kj , kl ∈ K.
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It may seem odd that we have relation birds ⇇ eggs and mammals ⇇

milk, etc. Nevertheless, it is mathematically reasonable. Due to the limitations
of thesaurus ℵSOR , key-terms may not be entirely distinguished from each
other. Semantically, it might be doubtful that key-terms birds and eggs are
‘the same’ according to some knowledge. Mathematically, key-terms birds
and eggs are both equal to {ducks, geese, hens} according to the sub-frame
of discernment Θ′, which has only five atomic-terms totally. Semantically,
two key-terms are ‘the same’ if they are synonymous. Mathematically, two
key-terms are equivalent if they contain the same atomic-terms.

3.5 Isolated-Terms in Set iso(K)

Also, we need consider some isolated key-terms. A key-term k′ is said to be
an isolated-term if there exists no key-term ki ∈ hie(K), such that, ki ⊃ k′ or
ki ∩k′. That is, if key-term k′ is isolated, then k′ is neither on the hierarchical
structure, nor (directly) related to any key-term which is on the hierarchical
structure. Denote

iso(K) = K − hie(K)− rla(K).

Then, k′ ∈ iso(K) is an isolated-term. For instance, from Tables 2, 5 and 6,
we can see that iso(K) = ∅.

Like atomic-terms, each isolated-term can be expressed by itself. That is,
for an arbitrary k′ ∈ iso(K), k′ ⇋ {k′}. Thus, isolated-terms are also pairwise
unrelated as the intersection of their subset-expressions is always empty.

However, in practice, isolated-terms may themselves be semantically re-
lated to one another. Further study on how to treat the related relation of
isolated-terms is needed.

3.6 The Frame of Discernment Θ

Generally, a frame of discernment, denoted by Θ, can immediately be estab-
lished after the sub-frame of discernment and the set of isolated-terms are
given:

Θ = Θ′ ∪ iso(K) = {a
1
, a

2
, ..., a

|Θ|
}.

Clearly, |Θ| = |Θ′| + |iso(K)| as Θ′ ∩ iso(K) = ∅.

3.7 The Evidence Sub-Space K′

Finally, we form an evidence sub-space K ′. An evidence sub-space, denoted
by K ′, is a subset of the power set of the frame of discernment Θ, over which
the evidence functions can be defined:

K ′ = Θ ∪ rep(K) = {k′1, k
′
2, ..., k

′
m},

where the dimensionality of the sub-space satisfies: m = |K ′| ≤ |Θ|+ |rep(K)|
as it may be that Θ ∩ rep(K) 6= ∅ [5].
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The key-terms in K ′ are called kernel-terms. From the above discussion,
it is clear that each kernel-term in K ′ ⊆ K can be expressed by a subset of
Θ. For thesaurus ℵSOR , we can write subset-expressions for all kernel-terms
as shown in Table 8.

Table 8. Subset-expressions for kernel-terms in set K′

Kernel-Term Relation Subset-Expression

animals ⇋ {cows, ducks, geese, goats, hens}
birds ⇋ {ducks, geese,hens}
cows ⇋ {cows}
ducks ⇋ {ducks}
geese ⇋ {geese}
goats ⇋ {goats}
hens ⇋ {hens}
mammals ⇋ {cows, goats}

It is important to understand that representatives (kernel-terms) in rep(K)
may be related to each other as the intersection of their subset-expressions
over Θ′ may not be empty. For instance, representatives birds and mammals

are not related to one another, but both of them are related to representatives
animals. Consequently, kernel-terms in K ′ ⊇ rep(K) may be related to each
other, and may not partition the frame of discernment Θ ⊇ Θ′.

3.8 Multiple Subset-Expressions

In the above discussion, we gained insight into the concept of term semantic
relations by means of a normalized thesaurus, and a hierarchical structure
generated from the normalized thesaurus. From thesaurus ℵ

SOR
, for instance,

we generated a hierarchical structure H(K) with a root animals. In a real
world application, however, there may exist many roots with respect to a given
normalized thesaurus.

A key-term k is called a root, if

- there exists no key-term ki, such that, ki ⊃ k;

- there exists at least one key-term kj , such that, k ⊃ kj .

Suppose there are s key-terms that are roots, and denote the set of roots as
R(K) = {r1, r2, ..., rs}, where 0 ≤ s < n. Each root will generate a hierarchical
structure or, more precisely, a hierarchical sub-structure.

Denote Hri
(K) as the hierarchical sub-structure corresponding to root ri,

hieri
(K) as the set of key-terms on Hri

(K) (including root ri), Θr
i

as the
set of atomic-terms corresponding to root ri. Clearly, hieri

(K) ⊃ Θr
i

and so
|hieri

(K)| > |Θr
i
| ≥ 1.
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For two arbitrary roots ri, rj ∈ R(K), it is likely that hieri
(K) ∩

hierj
(K) 6= ∅. That is, a key-term may be on, or linked to, both sub-structures

Hri
(K) and Hrj

(K). In particular, it may be that Θr
i
∩Θr

j
6= ∅, that is, an

atomic-term may be on both Hri
(K) and Hrj

(K).
In the context of IR, each root ri should be regarded as referring to one

specific topic, and other key-terms onHri
(K) are its narrower key-terms under

the same topic. Thus, all roots should be regarded as pairwise unrelated.
While key-term k is on, or linked to, more than one hierarchical sub-

structure, it would have multiple subset-expressions corresponding to the in-
dividual roots. This usually happens when key-term k is polysemous (multiple-
meaning). For instance, key-term ‘phoenix’ may have several meanings:

‘the capital and largest city of Arizona’, or

‘a bird in Egyptian mythology’, or

‘a constellation in the Southern Hemisphere near Tucana and Sculptor’.

Thus, ‘phoenix’ may be on, or linked to, three sub-structures.
Since each root is considered to refer to only one topic, the multiple subset-

expressions will be treated as different from root to root. In particular, when
a ∈ Θr

i
∩ Θr

j
, we denote a ⇋ {a}r

i
and a ⇋ {a}r

j
, and regard a as having

different (semantic) meanings, corresponding to roots r
i

and r
j
, respectively.

In an extreme case, there is no root: s = 0. Thus, the sub-frame of dis-
cernment Θ′ = ∅, and n = |K| key-terms are all isolated-terms. We can
then immediately obtain Θ = iso(K) = K = {k1, k2, ..., kn}. That is, all the
key-terms are merged into the frame of discernment (i.e., they are treated as
‘atomic-terms’), and considered unrelated to each other. In many existing IR
models, key-terms are dealt with in this way.

With the above notation, the hierarchical structure is an assembly of
the individual hierarchical sub-structures: HR(K) =

[

Hr
1
(K), Hr

2
(K), ...,

Hrs
(K)

]

. The set of key-terms on at least one hierarchical sub-structure is
denoted by hie(K) = hier

1
(K) ∪ hier

2
(K) ∪ ... ∪ hiers

(K). The sub-frame of
discernment is denoted by Θ′ = Θr

1
∪Θr

2
∪ ... ∪Θrs

.
We give a detailed algorithm for establishing a frame of discernment and

for expressing key-terms as subsets of the frame in [5].

3.9 Thesaurus Classes and Query Expansion

Our method reduces terms (i.e., t ∈ T ) to their thesaurus classes: terms
are replaced by representatives either synonymous (i.e., key-term k ∈ K), or
equivalent (i.e., kernel-term k′ ∈ K ′). In order to clarify how thesaurus classes
can be used to represent objects at a later stage, we introduce three further
pieces of notation: equ(k′), syn(k) and cla(k′).

For an arbitrary key-term k ∈ K, denote

syn(k) =
{

t |k ⇐ t, t ∈ T
}
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as the set of terms which are synonymous with key-term k.
For an arbitrary kernel-term k′ ∈ K ′, denote

equ(k′) =
{

k |k′ ⇋ k, k ∈ K
}

as an equivalent class of key-terms which are equivalent to kernel-term k′.
Also, denote

cla(k′) =
⋃

k∈equ(k′)

syn(k) =
⋃

k∈equ(k′)

{

t |k ⇐ t, t ∈ T
}

=
{

t |k ⇐ t, t ∈ T ; k′ ⇋ k, k ∈ K
}

as a thesaurus class of terms either synonymous with, or equivalent to, kernel-
term k′.

Let us consider the following example.

Example 1. Suppose a user enters a query: q = ‘birds’. Notice that term

birds ∈ K ′. Thus, from Table 7, we can write an equivalent class

equ(birds) = {birds, domestic-birds, eggs, feathers, poultry},

Also, from thesaurus S(k,t) given in Table 2, we have

syn(birds) = {bird, birds},

syn(domestic-birds) = {domestic-birds},

syn(eggs) = {eggs},

syn(feathers) = {feathers},

syn(poultry) = {barnyard-birds, farmyard-birds, poultry}.

Hence, we can expand query q from a single term birds to a thesaurus class

cla(birds) = {bird, birds, domestic-birds, eggs, feathers,

barnyard-birds, farmyard-birds, poultry}. ♦

Query expansion, an important component in a retrieval system, has long
been an effective technique to improve retrieval performance [4, 6, 8, 16, 19,
21, 31, 35]. Some good reviews of query expansion methods can be found in
[10, 13].

In a practical IR environment, document collections are processed, and
documents matching the user’s query are displayed in real time. Documents
that do not have any term matching the query are disregarded. Users of an
IR system employing term matching as a basis for retrieval are faced with
the challenge of expressing their queries with terms in the vocabulary of the
documents they wish to retrieve. This difficulty is especially severe in ex-
tremely large, wide-ranging, full-text collections containing many different
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terms describing the same concept. The problem of term-mismatch has long
been serious in IR.

The problem is more pronounced for short queries consisting of just a few
terms related to the subject of interest: this can best be illustrated through
the scenario of information search on the World Wide Web where users tend to
enter very short queries. The shorter the query is, the less chance for important
terms to co-occur in both relevant documents and the query. Hence a good
way of matching terms is urgently needed. Query expansion is a process that
modifies the original query representation so as to more precisely express the
information needs.

Since our method can reduce different terms to their thesaurus classes,
retrieval systems can achieve the effect of automatically expanding objects
with thesaurus classes of the original query terms. The expansion may be
expected to improve performance as it greatly increases matching between
relevant document terms and query terms.

Consider several examples. If a user describes his information need as
‘aviation school’, then relevant information indexed by terms aeronautical en-

gineering institute might meet with retrieval failure—term mismatch arises
from synonymous terms. In a retrieval based on a term ‘cow’, the user might
be also interested in the documents containing term mammal—term mismatch
arises from narrower terms. A user enters a term ‘planet’, he might be think-
ing of something like Mercury or Venus—term mismatch arises from broader
terms. A user tries terms ‘crime’ and ‘murder’ when she desires to find some
thrillers—term mismatch arises from the related terms. Thus, if the reader
traces through all discussions given in this paper, it should become clear that
the structure of the thesaurus classes embodies intuitive meaning, and this
structure can be expected to resolve these term mismatching problems.

4 Retrieval Based on Evidential Theory

So far, we have concentrated on developing an effective method for tackling the
problem of expressing key-terms as subsets of the frame of discernment. Before
seeing how to apply our knowledge of expression to practical IR problems,
we need to introduce evidential theory, which underpins the formal method
proposed in this paper.

4.1 Evidential Theory

Evidential theory is by now a familiar one for many IR researchers. A detailed
account of it can be found in [25]. Some general definitions applied in this
study can be written as follows.

Let Θ = {y
1
, y

2
, ..., y

|Θ|
} denote a frame of discernment. Then the power

set of Θ can be represented as 2Θ = {Y1, Y2, ..., Y2|Θ|} = {Yi | Yi =
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∪mi

j=1{yij
}, 1 ≤ mi ≤ |Θ|, 1 ≤ i ≤ 2|Θ|}, that is, each element Yi ∈ 2Θ is

a subset of Θ.
A function m : 2Θ → [0, 1] is a mass function if there is a random subset

variable Y over the evidence space 2Θ, such that m(Y ) satisfies (1) m(∅) = 0
and, (2)

∑

Yi⊆Θ m(Yi) = 1. In evidential theory, masses are assigned to only
those propositions (subsets) that are supported by evidence.

A function bel : 2Θ → [0, 1] is a belief function if there is a random subset
variable Y on Θ such that bel(Y ) satisfying: (1) bel(∅) = 0, (2) bel(Θ) = 1
and, (3) for any collection A1, A2, ..., Ak (k ≥ 1) of subsets of Θ, bel(A1 ∪
A2∪ ...∪Ak) ≥

∑

I⊆{1,2,...,k},I 6=∅(−1)|I|+1bel(∩i∈IAi). If we suppose bel(Y ) =
∑

A⊆Y m(A), then it is not difficult to verify that bel(Y ) is a belief function.
We call bel(Y ) the belief function corresponding to mass function m(Y ).

Also, suppose pls(Y ) =
∑

A⊆Θ,A∩Y 6=∅m(A), and call it the plausibility

function corresponding to mass function m(Y ).
It can be verified that (1) pls(Y ) = 1−bel(Θ−Y ), (2) bel(Y ) = 1−pls(Θ−

Y ) and, (3) bel(Y ) ≤ pls(Y ). Thus, bel(Y ) is also referred to as the lower

probability function, and pls(Y ) as the upper probability function. The interval
[bel(Y ), pls(Y )] is referred to as the belief interval. Here value bel(Y ) gives the
degree to which the current evidence supports subset Y . The degree to which
Y remains plausible is given by value pls(Y ) = 1− bel(Θ−Y ). The difference
pls(Y ) − bel(Y ) represents the residual ignorance, ign(Y ) = pls(Y ) − bel(Y ),
and is called the ignorance function corresponding to mass function m(Y ).

4.2 Object Representations and Mass Function

Having introduced the evidential functions, we move on to two other impor-
tant issues—defining the representations of objects, and introducing agree-
ment measures for ranking documents against a given query. We discuss the
first in this subsection and the following; the second is discussed in Sec. 4.4.

In the IR context, we can simulate: (a) the frame of discernment by
Θ = {a

1
, a

2
, ..., a

|Θ|
}; (b) the evidence space by the evidence sub-space

K ′ = {k′1, k
′
2, ..., k

′
m}; (c) an evidence by an object (i.e., by the statistical

information within the object, more precisely, by term weights obtained from
the statistical information within the object); (d) a proposition by a statement
“kernel-term k′ appears”. Thus, masses are assigned to only those kernel-terms
that are supported by the object. By kernel-term k′ supported by an object
x (i.e., a document x = d or query x = q), we mean here that it or, term(s)
of thesaurus class cla(k′), appears in x.

Putting the above simulations together is equivalent to saying that each
object x can be represented by a mass function mx(k′) over sub-space K ′:

[

mx(k′)
]

1×m
=

[

mx(k′1),mx(k′2), ...,mx(k′m)
]

,

where component mx(k′) can be interpreted as indicating the strength of
kernel-term k′ or, a thesaurus class cla(k′), when supported by x. For instance,
from Table 8, we have
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[

mx(k′)
]

1×8
=

[

mx(animal),mx(birds),mx(cows),mx(ducks),

mx(geese),mx(goats),mx(hens),mx(mammals)
]

.

In order to estimate the strength of kernel-term k′ supported by object x,
suppose that term weights, wx(t), have been obtained, which are considered
to reflect the importance of terms t (∈ V x ⊆ T ) concerning x. Thus, the
mass, mx(k′), can be estimated from the weights of (i) k′, (ii) synonymous
terms of k′, (iii) equivalent key-terms of k′ and (iv) the synonymous terms of
equivalent key-terms of k′, in object x.

More specifically, for an arbitrary kernel-term k′ ∈ K ′, the mass is defined:

mx(k′) =
ψx(k′)

Nx

=
ψx(k′)

∑

k′∈(V x∩K′) ψx(k′)
,

where V x is the set of terms appearing in object x; Nx, is the normalization

factor of object x; function

ψx(k′) =
∑

t∈cla(k′)

wx(t) =
∑

k∈equ(k′)

(

∑

t∈syn(k)

wx(t)
)

.

It can be seen that function ψx(k′) is the sum of weights, wx(t), of terms
in the thesaurus class cla(k′). Thus, mass mx(k′) is proportional to the sum.
It is therefore evident that the design of weighting function wx(t) is crucial in
determining retrieval performance. The effectiveness of the weighting function
for reflecting the statistical importance of a term in respect to individual
objects, has been investigated extensively in the literature [1, 4, 12, 14, 20,
22, 27, 28, 29, 31].

Let us see an example below, which may help to clarify the above idea and
assist in understanding the computation involved in function mx(k′).

Example 2. Let us return to Example 1. Suppose we are given the weights of

terms in document d as follows.

wd(birds) = .646, wd(bird) = .421,

wd(domestic-birds) = .0,

wd(eggs) = .285,

wd(feathers) = .17,

wd(barnyard-birds) = .01, wd(farmyard-birds) = .0, wd(poultry) = .0,

and so on. Suppose also that the normalization factor of d is Nd = 6.52.
Then we arrive at the mass for kernel-term k′ = birds or, the thesaurus class

cla(birds):

md(birds) =
.646 + .421 + .0 + .285 + .17 + .01 + .0 + .0

6.52
≈ .235. ♦
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Notice that all terms in a given object x may not be partitioned into
distinct thesaurus classes (that is, each term t ∈ V x may be classified into at
least one thesaurus class), and that the normalization factor in the estimation
of mx(k′) is therefore given by Nx =

∑

k′∈(V x∩K′) ψx(k′), rather than simply

by Nx =
∑

t∈V x wx(t).
Notice also that there is no necessity to design a weighting function in

advance for estimating mass mx(k′). The estimation can simply be made
using occurrence frequencies of terms. In this case, wx(t) = fx(t).

4.3 Object Representations and Other Evidential Functions

Objects can also be represented by the belief and plausibility functions. In
order to compute functions bel and pls, the narrower relation and related
relation between kernel-terms are involved, and the relations take their math-
ematical meanings: for two arbitrary kernel-terms k′i, k

′
j ∈ K ′, we can consider

their semantic relations k′i ⊂ k′j and k′i∩k
′
j by the set relations and operations

of their corresponding subset-expressions. We can clarify this idea by consid-
ering the example below.

Example 3. Suppose that the mass functions for documents d1, d2, d3, d4 and

queries q1, q2 are obtained. These are given in Table 9.

Table 9. Mass functions

Functions Kernel-Terms d1 d2 d3 d4 q1 q2

mass animals 0.125 0.000 0.133 0.300 0.000 0.200
functions birds 0.560 0.445 0.867 0.000 1.000 0.600

mammals 0.315 0.555 0.000 0.700 0.000 0.200

and mx(cows) = mx(ducks) = mx(geese) = mx(goats) = mx(hens) = 0 for

x = d1, d2, d3, d4, q1, q2.

Then, the corresponding belief and plausibility functions are calculated, and

results are given in Table 10.

For instance, for kernel-term k′ = birds in document d1, we have,

bel(birds) =
∑

k′⊆birds

md1
(k′) = md1

(birds) = 0.560;

pls(birds) =
∑

k′⊆Θ;k′∩birds6=∅

md1
(k′) = md1

(animals) +md1
(birds)

= 0.125 + 0.560 = 0.685,

where, from Table 5, all kernel-terms satisfying k′ ⊆ birds are

birds ⇋ {ducks, geese, hens},
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Table 10. Belief and plausibility functions

Functions Kernel-Terms d1 d2 d3 d4 q1 q2

belief animals 1.000 1.000 1.000 1.000 1.000 1.000
functions birds 0.560 0.445 0.867 0.000 1.000 0.600

mammals 0.315 0.555 0.000 0.700 0.000 0.200

plausibility animals 1.000 1.000 1.000 1.000 1.000 1.000
functions birds 0.685 0.445 1.000 0.300 1.000 0.800

mammals 0.440 0.555 0.133 1.000 0.000 0.400

ducks ⇋ {ducks}, geese ⇋ {geese}, hens ⇋ {hens};

and all kernel-terms satisfying k′ ∩ birds 6= ∅ are

animals ⇋ {cows, ducks, geese, goats, hens},

birds ⇋ {ducks, geese, hens},

ducks ⇋ {ducks}, geese ⇋ {geese}, hens ⇋ {hens}. ♦

4.4 Agreement Measures

In the foregoing, we discussed the definition of the representations of ob-
jects based on evidential functions. In this subsection, for ranking documents
against a given query, we further discuss agreement (similarity) measures, over
the evidential representations.

Suppose that document d and query q can be represented by md(k
′) and

mq(k
′), respectively. Our method involves computing belief bel(md = mq) and

plausibility pls(md = mq). A study on the computation can be found in [3].
The agreement measures between md(k

′) and mq(k
′) are defined by

bel(md = mq) =
∑

k′⊆K′

md(k
′)mq(k

′),

pls(md = mq) =
∑

k′
i
,k′

j
⊆K′; k′

i
∩k′

j
6=∅

md(k
′
i)mq(k

′
j)

=
∑

k′
j
⊆K′

mq(k
′
j)

(

∑

k′
i
⊆K′; k′

i
∩k′

j
6=∅

md(k
′
i)

)

.

Obviously, the lower agreement, bel(md = mq), measures the belief that
document kernel-terms and query kernel-terms are equal (i.e., their subset-
expressions are the same); the upper agreement, pls(md = mq), measures the
plausibility that document kernel-terms and query kernel-terms are related
(i.e., their subset-expressions have non-empty intersections).

Further, let us consider the belief interval

[

bel(md = mq), pls(md = mq)
]

.
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As mentioned, bel(md = mq) gives the degree to which the current evidence
supports md(k

′) = mq(k
′). The degree to which evidence md(k

′) = mq(k
′)

remains plausible is given by pls(md = mq) = 1 − bel(md 6= mq).
The following example illustrates the computation involved.

Example 4. Let us return to Example 3. We there gave mass functions for

documents d1, d2, d3, d4 and queries q1, q2. Thus, for d1 and q1, we have

bel(d1 = q1) =md1
(animals)mq1

(animals) +md1
(birds)mq1

(birds)+

md1
(mammals)mq1

(mammals)

=0.125× 0 + 0.560 × 1 + 0.315× 0 = 0.560;

pls(d1 = q1) =mq1
(birds)

(

md1
(animals) +md1

(birds)
)

=1 ×
(

0.125 + 0.560
)

= 0.685,

also, we have

bel(d2 = q1) = 0.445, bel(d3 = q1) = 0.687, bel(d4 = q1) = 0;

pls(d2 = q1) = 0.445, pls(d3 = q1) = 1, pls(d4 = q1) = 0.3.

Similarly, for d1 and q2, we have

bel(d1 = q2) =md1
(animals)mq2

(animals) +md1
(birds)mq2

(birds)+

md1
(mammals)mq2

(mammals)

=0.125× 0.2 + 0.560× 0.6 + 0.315× 0.2 = 0.424;

pls(d1 = q2) =mq2
(animals)

(

md1
(animals) +md1

(birds)+

md1
(mammals)

)

+

mq2
(birds)

(

md1
(animals) +md1

(birds)
)

+

mq2
(mammals)

(

md1
(animals) +md1

(mammals)
)

=0.2 ×
(

0.125 + 0.560 + 0.315
)

+ 0.6 ×
(

0.125 + 0.560
)

+

0.2 ×
(

0.125 + 0.315
)

= 0.699,

also, we have

bel(d2 = q2) = 0.378, bel(d3 = q2) = 0.5468, bel(d4 = q2) = 0.2;

pls(d2 = q2) = 0.578, pls(d3 = q2) = 0.8266, pls(d4 = q2) = 0.58.

Finally, ranking documents by the belief interval, we respond to users’ queries

as follows.

For query q1, the response is

d3[0.687, 1.0] ≻ d1[0.560, 0.685] ≻ d2[0.445, 0.445] ≻ d4[0, 0.3].

For query q2, the response is

d3[0.5468, 0.8266] ≻ d1[0.424, 0.699] ≻ d2[0.378, 0.578] ≻ d4[0.2, 0.58],

where di[beli, plsi] ≻ dj [belj, plsj] is explained as “document di is more in

agreement with the query than document dj”. ♦
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Conclusion and Further Work

The ability to formally express term semantic relations is a core issue in IR.
The problems for the expression are how to establish the frame of discern-
ment, and how to express key-terms as subsets of the frame. The problems
lead to many other IR problems as pointed out repeatedly in the literature.
Solution of the problems is a technical barrier to applying mathematical tools,
especially evidential theory, to IR. In this study, we focus on the problems,
and present a method for establishing the frame of discernment and for de-
riving subset-expressions of key-terms. Then, we propose a novel method for
representing documents and queries based on evidential functions, and for
ranking documents against a given query. A central aim of this study is to
treat the semantic relations between terms and incorporate the relations into
the retrieval strategies for more effective retrieval.

A key-term, if polysemous, may be expressed by different frame subsets
corresponding to different roots. In IR, it is difficult to automatically de-
termine which meaning is being used in the context. Almost all existing IR
methods suffer from the same problem. Thus, it is hard to determine into
which thesaurus class a polysemous term should be placed. This paper does
not deal with how the class is determined; it is left as a significant subject for
further study.

Thesaurus class methods can be regarded as recall1 improving devices. The
thesaurus classes of query terms may be expected to retrieve more relevant
documents because extra ‘related’ terms are added to the query when the
thesaurus classes are assigned to the query instead of single terms. However,
if terms included in a thesaurus class have high document frequencies2, then
the addition of these terms would be likely to lead to unacceptable losses in
precision3. For this reason, some studies suggest that thesaurus classes should
be formed only from those terms which have low document frequencies, [36]
for instance. This interesting issue needs to be investigated in further work.

We intend to develop an experimental investigation into the performance
of our method.
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