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1. ABSTRACT 

 

 Representation of knowledge (KR) is an essential problem in artificial intelligence 

systems. The primary requirement of KR is the development of a sufficiently precise 

notation for representing knowledge. The importance of KR comes from the current 

design model of intelligent systems need for expert knowledge. Mainly, there are two 

methods to represent knowledge in artificial Intelligence systems, which are encoded 

within an application and encoding within a domain model. The former method describes 

the problem as a part of AI application and on the other hand the domain model method 

insulates the AI application from its problem description. Recently, artificial intelligence 

systems are developed separately from their problem domains in order to facilitate the 

process of updating, maintaining and repairing the domain models as well as the 

possibility to reuse them for other AI purposes. Consequently, number of planning 

domain languages have been developed (e.g STRIPS, ADL, PDDL, OCL) to describe a 

real problem domain formally.  This project aims to develop a set of planning domain 

metrics and comparison techniques based on the domain model languages’ criteria to  

analyse a domain model's structure, characteristics and properties, in order to investigate 

and measure domain complexity and equivalence. 
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2. INTRODUCTION 

2.1 Theoretical and terminology 

Artificial intelligent (AI): Definitions of artificial intelligence according to (Russell 

[22]) are divided into two main categories concerned with thought processes and 

reasoning (i.e think like humans, act rationally). Generally, a planning domain problem 

depends on three terms which are: 

 Automated planning (AP) is the processes of making system act or thank 

autonomously. 

 Knowledge representation (KR) is a way used to form knowledge in an 

intelligence system. Knowledge representation and the methods of KR, notation 

and criteria have not yet met the complexity and requirements of most of realistic 

problem domain.     

 Machine Learning (ML) A computer techniques which are concerned with the 

construction of intelligent algorithms that allow computer systems to learn for 

instance by example or training. In other word, Learning is any process that 

increases the performance of an AI system. 

2.2 Objective 

The objective of this research can be briefly summarized as following (based on the 

experimental section 6.3), developing a set of measurement tools and comparative 

techniques to analyse a domain model’s specifications and features in order to investigate 

their complexity, effectives, and equivalence. 

2.3 Outline of the report 

Below we outline the subsequent chapters of this report 

Chapter 3 contains a brief overview of the AP application and historical development of 

the major techniques for AI planning.  

Chapter 4 highlights the problem of knowledge representation in terms of planning 

domains, providing the theoretical foundation of a number of planning description 

language (i.e. PDDL). 

http://en.wikipedia.org/wiki/Algorithm
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Chapter 5 presents an overview of the development of planning knowledge 

representation and formalization, providing several an ML tools which are used to 

develop and construct a planning domain model. 

Chapter 6 introduces an experimental that shows the structurally differences between an 

automated inductive planning domain model and handcraft one.  

Chapter 7 finally, this chapter draws a framework for the next year work plan. 

3. AI PLANNING AND APPLICATION 

It seems that planning effortlessly, but writing planning engines (planner) is a difficult 

challenge. Planning, the process of generating a sequence of ordered actions based on a 

real problem domain description (i.e. initial state) to achieve desired goals.  

3.1 Planning history  

 

 An automated planning (AP) discipline has appeared in 1950s with the first 

automated problem attempt, the General Problem Solver (GPS). GPS [1] was the first 

automated planner introduced in AP literature that expressed human problem solving 

characteristics in terms of AI algorithms. From that time, it becomes an active research 

field of an AI with a number of organizations and researchers.  Traditionally, AP was 

considered as part of the problem solving and it has been accused using adaptations of the 

classical search. The classical planning techniques were used by systems during 1990s 

include: 

 State space search.  

 Hierarchical decomposition.  

 Heuristic and a range of other techniques developed ad hoc. 

 

The classical approaches in AP presented during that time were assessed on toy 

problems, such as those used in the IPC, that create real world situations with excessively 

assumptions and simplifications.  Dealing with real planning problems require reasoning 

about resource and time by planning engine, treat experience knowledge representations, 

considering dynamic environments, and find way to cooperate with other planners, etc. 

Although the mentioned issues are crucial for AP, they have been recently introduced to 
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the planning society (world) as important research directions for the future of AI system. 

However, most of them  are belong to  other AI researched areas, such as Constraint 

Programming, Knowledge Systems, Machine Learning, Intelligent Agents, therefore the 

ideal way is to utilize the effort already put into them. 

3.2 Planning problem 

 Plans (denoted as a tuple P= (O, s0, g)) are produced by searching a space of 

actions until a sequence of feasible actions are reached that can carry out the given tasks. 

In other word, an AP problem comprises a world description: initial, goal states and a 

domain theory. A domain theory defines a transition state, the way in which the 

applicable actions change a state of the domain to a new state and their relations with 

resource. Based on these inputs, planners produce a sequence of executable actions that 

can reach the goal state from the initial state. 

 

 Mainly, one of the keys design philosophy of planning system is domain-

independence. In principle, a domain-independent planner works with any planning 

domain. However, developing domain independent algorithms in many types of problem 

domains is not reasonable.  As a solution of this, some restrictive assumptions were made 

[2]: 

 System has a finite set of state. 

 Problem domain fully observable (complete knowledge). 

 The outputs of actions are deterministic. 

 The system is static (no dynamics events that can change the problem domain)  

 Goals are restricted (planner handles only specified goals) 

 A solution plan is a linearly ordered finite sequence of actions. 

 Actions have no duration 

 Change is not allowed during the plan time (off-line planning).  
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 Such planning techniques that accept these assumptions are formally recognized as 

classical planning. Unluckily, these attempts to improve the domain independence have 

decreased the usability of planning systems because they brought many restrictions that 

are infeasible for real world applications.  

 

 Classical planners are based on semantic descriptions (i.e., preconditions of actions) 

provided by a domain model. Recently, an additional expert knowledge are required by 

planning problems which is may not be fully accessible due to the limitation and 

complexities of the domains for the experts to provide such knowledge. Hence, it is 

difficult to develop learning systems in order to learn knowledge as human contributions 

are restricted [7].  

 

 A typical example of a classical planning problem is a Dock Worker Robot (DWR). 

This problem involves a number of cranes, locations, robots, containers, and piles. Robot 

starts moving out from one of the locations. The goal is to transport each container to its 

final destination in a desired order. Consider, for example, an instance of a simple DWR 

problem with only one robot, two container, two crane and two locations 1 and 2 as given 

in Figure 1.  

 

 

Figure 1: Dock Worker Robot Domain 

 

In this particular example the robot at location 2 and the containers at location 1 in the 

initial state and the goal is to have the containers to location2. The actions in the DWR 

domain describe driving the robot from location 2 to location1,take a container off of the 
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location1 by the crane1, loading a container into the robot at that location1, driving the 

robot from location1 to location2, unloading a container from the robot by crane2, and 

put a container on location2. These actions are given in their standard planning domain 

description language (PDDL) [10] in Figure 2.  

 

 

Figure 2: DWR Domain model in PDDL 

   

The assumptions of classical planning, and the usual mechanisms for solving it, are rather 

restrictive, and most real problems are neoclassical. The main differences between 

classical and neoclassical planning techniques are:  in classical planning, for any problem 

domain consists of group of nodes (search space), every node mapped a partial plan, 

whereas in neoclassical planning node considered as a set of several partial plan [2]. 
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  Many well-known approaches to relax classical planning assumptions have been 

made, including HTN planning [3,7,8,9], MDPs(Markov decision processes) [4], 

temporal planning [5], and so on. Nonetheless, classical planning algorithms are still 

restricted to limited categories of planning domains as most of practical planning 

problems do not satisfy the early mention assumptions of classical planning [2].  

3.3 Planning Application 

 In the past, planning has been successfully applied in various areas including space 

exploration, robotics, transportation, finance, crisis management, etc. 

 

 AI planning has often been intimately connected with robotics [25]. Some re-

searchers even seem to equate these two issues. For example, [23] introduce their work 

on planning with the words:  “We are conducting research on robot decisional abilities 

taking into account explicit reasoning on the human environment and on the robot 

capacities to achieve its tasks in such a context”.  

 

 While planning is very important for robotics, the converse is not necessarily right. 

Other authors have a broader view of planning, not only considering robotics and 

replication of human planning. [24] Write “Ideally, the set of actions so produced is then 

passed on to a robot, a manufacturing system, or some other form of effector, which can 

follow the plan and produce the desired output”. 

 

 Even though many authors do not explicitly mention robots, they often seem to 

tacitly assume applications having the same or very similar properties. The problem is 

normally to synthesize plans for some agent situated in a physical environment, 

sometimes of dynamic and uncertain nature. Such an agent can typically perform a small 

number of very general and complex operators that can be applied in a large number of 

states and objects. The plans are typically not very long but may be hard to find because 

of the complexity of a world model employed.  

 

 



Planning Domain Model Investigative Tools                                                                    

 11 

 An attractive application for AP is when a process collapse or is blocked in an 

emergency situation. Following such an incident, the system may be in any number of 

states and therefore requires a very complex plan to revive the system again to resume 

work normally. It is not realistic to have precompiled plans for how to start up the 

operation again from each such state. Furthermore, involved costs are considered as large 

industrial process terminated, such as a paper mill, is inactive necessitate a prompt 

response from the planner. Another example of applications is a traffic system, for 

example a motorway or underground network. In such case a planner could be used raptly 

and regularly, to prevent break downs and easy the flow of traffics. For example, as a 

support system for network operators to decide how to direct the aeroplanes traffic. 

  

 Additionally, automated planning techniques have been successfully applied to 

wide range of real domain problems: space missions [29], management of fire extinctions 

[30] or control of underwater vehicles [31]. Although these are very successful 

application adopting AP techniques, but still suffering from various knowledge 

representation. 

4. PLANNING DOMAIN MODEL LANGUAGES 

 In current planning research quite a lot of formal work has been produced to 

understand and precisely characterize the power of automated planning frameworks ([2, 

3, 8.13] and many others).the first issue arises in this field  is how and in which form 

knowledge should be represented in. Hence, several notations (domain representation 

languages) and criteria have been developed over time.   

4.1 STRIPS Language 

 In this section, we first sketch the basic planning domain model representation 

language of classical planning problems, identified as the STRIPS language. Possible 

variations in STRIPS-like languages will be described later on. STRIPS (STanford 

Research Institute Problem Solver) [20,21] is one of the oldest, simplest, and most used 

planning language, even if not too flexible. A problem in Strips is a tuple <A,O,I,G>. 

STRIPS planning was introduced in [20] as a model of the kind of planning problems that 
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people appear to solve in common sense reasoning. STRIPS planning corresponds to a 

certain formal graph search problem.  

 It is important to distinguish between the original STRIPS planner, and the STRIPS 

representation language. Due to its power of representation, the language developed for 

describing STRIPS' operators and world domain models was since then used, with minor 

modifications, in a large number of traditional planners.  

 Planning was historically motivated by the need of robotics. Indeed, STRIPS was 

designed to act as the planner for another pioneering project: "Shakey the robot", 

developed at SRI International. Shakey was supposed to wander in his world (figure 3), 

push boxes around, and turn light switches on/off (the former action also required to 

climb on top of a box, since the robot was short and the switches were high on the wall). 

It is important to note that this environment was quite idealized compared to a real one, 

given the primitive sensors and effectors available at that time. 

 STRIPS represents world domain models as a collection of first order predicate 

calculus formulas. In this context, "problem solving" means finding a sequence of 

operators in the space of world models that will transform an initial model into another 

model in which a given formula (goal) can be proven to be true.  

 

Figure 3: Shakey the robot's world (from [22]) 
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 The restrictions forced by the STRIPS were chosen to make planning algorithms 

simpler and able to express real world problems. One of the most important restrictions is 

that literals be function-free [22]. With this restriction, an action schema for any  problem 

can be propositionalized (represented into a finite collection of propositional action that is 

free of variables). 

 Recently, STRIPS has become inadequately expressive planning description 

language for representing various real world domains. As a result, many languages have 

been developed. 

4.2 Action Description Language (ADL) 

 This part, briefly describes an important planning description language, the Action 

Description Language (ADL). The ADL (10) relaxed some of the restrictions 

assumptions in the STRIPS language and provided some flexibility to encode more 

realistic world domains. The Problem Domain Description Language [2] was introduced 

as a standardized syntax for representing ADL, STRIPS, and other languages 

4.3 Planning Domain Definition Language (PDDL) 

 Specification languages like STRIPS or ADL can be used to describe a real 

problem domain. Another possibility to describe real domains is the planning domain 

definition language (PDDL). It was developed by Drew McDermott in 1998 and later 

evolved continuously by International Planning Competitions to standardize planning 

domain and problem description languages. The latest version is PDDL3.1 which 

introduced two new features, state trajectory and preference constraints [32]. PDDL is 

supported by most planning engine. It is used well to identify the domain properties and 

specifications in detail, the predicates which are used and the action definition. 

Additionally, it includes the properties of some planning domain language such as 

STRIPS, ADL, and the hierarchical task networks (HTN)[2,3,9]. PDDL Is descended 

from the ancestors of several notations: ADL, SIPE-2, UMCP, Unpop, and UCPOP [10]. 

 

 

 

http://en.wikipedia.org/wiki/Automated_planning_and_scheduling
http://ipc.informatik.uni-freiburg.de/PddlExtension
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 Although, The STRIPS and ADL demonstrated that are sufficient to express several 

of real world domains, there are still some important limitations (restrictions). The most 

obvious is that they cannot represent in a natural way the ramifications of actions. For 

example, if there are people, luggage, etc in the ship, then they change location when the 

ship sails. Changes can be represented as the direct effects of sailing, whereas it seems 

more natural to represent the location of the ship's contents as a logical consequence of 

the location of the ship. More examples (e.g Block world and Air cargo transport) are 

described by [10]. 

4.4 Object-Centred Language (OCL) 

 OCL has been developed by (Donghong Liu and T.L.McCluskey) at the University of 

Huddersfield. [26] Described OCL as a tool-supported language for domain developers. 

OCL aims to provide a language that representing the domain models in the classical 

tradition of AI Planning considering the structure and dynamics of domains.  

5. PLANNING KNOWLEDGE-BASE & ML 

 Basically, an AI planning algorithm requires a problem domain model to be given 

beforehand, for example FF[19], is an independent-domain planner that is required two 

separated files to be executed: problem file and domain file. Though, it is both boring and 

time-consuming to encode the domain models by hand using a formal language e,g 

PDDL [10], OCL [11]. On other way, a domain model can be revised using interactive 

systems such as GIPO[18] by obtaining the training plans through monitoring devices 

such as sensors and cameras. Another way to extract and induce a problem domain model 

by using ML mechanism [14, 17]. 

5.1 Knowledge acquisition 

 Knowledge acquisition is the major challenge in AI planning. The most recently 

used techniques to extract and acquire a planning knowledge are the machine learning 

tools. Therefore, some works have been proposed in automatically learning domain 

models from plan traces with intermediate observations. In many real world applications, 

such intermediate states are usually not fully observable. Most of these works require an 

amount of training data as input [27]. To address this limitation,  [13] Present approach to 

learning domain model by using other planning domains and transferring shared parts 
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from an existing domain models to a new domain model by finding a logical relationship 

between these parts. For instance, in transportation domain and DWR domain, a 

passenger should be in a bus and a container should be on the robot which means that the 

bus, the passenger, the robot and the container must be at desired location Loc in order to 

achieve this action. Consequently, the presence of the bus, the passenger, the container 

and the robot at the location represents a logical relationship of the two domains.  

 

 [14] Develop a learning algorithm known as Simultaneous Learning and Filtering 

(SLAF). The algorithms learn action that a sufficient number of training traces are 

available in partially observable domains. SLAF algorithms cannot take advantage of 

other related planning domains to help the learning task. 

 

 Most of learning algorithms are required huge amount of training data to be 

achieved. From AI planning history, the planning problem is considered in a general 

concept where actions can be deterministic, non-deterministic, or probabilistic, and 

actions’ effects can be fully [15] or partially observable [14, 16]. Recently, there are 

several attempts deal with non-observable environment. A notable example of non-

observable environment is Learning Object-Centred Model (LOCM) [17]. LOCM is an 

inductive tool which is automatically induces a domain model from set of training 

example of plans. LOCM requires no knowledge in advanced (e.g description of states, 

predicates, actions, etc…) to be executed. 

5.2 Knowledge representation 

 Designing planning domain models is not easy job even for professionals. The 

process of encoding is arduous. Questions such as: how to use domain knowledge, what 

are the optimal methods to represent a real problem domain, are the existing domain 

model languages claim the purpose of domain model representation, and what features 

that are needed to be attached with the languages to express various world problem with 

less or non-faults, are yet to be accurately answered. Some of the existing planners use 

domain independent search heuristics, and some others depend on domain specific 

knowledge. Planners that use domain independent are relatively slow compared with 

domain dependent planners. This is the answer of the question of why most successful 
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real world planning systems are domain specific (or domain dependent). However, it’s 

not practically reasonable to build a whole new planner for every domain.  

5.3 Domain-dependent 

 Nowadays many logic based representations formalisms are available for 

knowledge engineering tasks. However, most of them do not support the representation 

of domain- specific knowledge. On one hand building special systems, which supports 

these representation tasks is a costly and cumbersome process. For specific planning 

applications, domain-specific methods are well justified. They are greatly successful in 

most of the application areas (e.g path and motion planning, navigation planning). 

However, they are restricted for several reasons [2]. 

Commonalities to all of applications of planning are not addressed. 

More costly to address each planning problem anew. 

Not satisfactory for designing an autonomous intelligent machine. 

 

 Although, the automated planning is interested in domain-independent but it is not 

meant to be opposed to domain-dependant planning techniques. The direct 

implementation of inference mechanisms reflecting the semantics available in a specific 

domain leads to an inflexible system: any miniature change in the input language results 

in changes of the whole system.  

5.4 Domain-independent. Why? 

There are several reasons for planning domain-independent.  

 A domain-independent reduce development, debug and maintenance cost 

(knowledge are located in specified place).  

 Reusable (it can be reused over time).  

 Domain-independent easier to swap planning engines, prove properties of engine 

and knowledge base (e.g engine always produces optimal solutions when the 

knowledge base is consistent) 

 Additionally, Planning engines can be developed independent of their application in 

a "clean" fashion (separate efforts developing engines and tools for knowledge 

engineering domain models).  
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6. DOMAIN MODEL INVESTIGATIVE TOOLS 

6.1 Research Issue 

 The focus of this project is to develop a set of planning domain metrics and 

comparison techniques to analyse a domain model's structure, characteristics and 

properties, in order to investigate and measure domain complexity and equivalence. 

Briefly, the research study will go through these stages: 

 Forming domain model, inductive domain model tools and domain model 

languages criteria.  

 Developing measurement tools based on high quality of planning domain models. 

6.2 Research questions 

 The investigation should answer research questions such as, what makes a domain 

model structurally sound, efficient, simple or complex? How does impurities (bug) 

planning domain model affect an AI system, comparing to a standard notation of the 

domain language? How possible to make the domain models that are produced by 

machine learning tools to meet the standard domain model language notation? 

6.3 Experimental 

We implemented our experimental as an extension to the FF planning engine and LOCM 

tool on extensive testing performed to evaluate how different, similar, complex are the 

domain models that induced by ML tools comparing to the standard ones.  

A. Experimental Design 

This experimental can be logically described as having three components: 

Planner: FF planner [19], independent-domain planner works with any planning domain.  

Inductive tool: LOCM [17], an ML tool that automatically generate a planning domain 

model from example training plans. In this experimental, the required examples are 

provided by FF planner.   

Converter component: a piece of code has been written and added to FF planner in 

order to collect and reformat the output of the planner into OCL notation. figure 4 

describe the operation of the converter component. 
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Run FF 

 Problem file 

 Domain file 

 For every domain 

  Print:  domain (domain name). 

  Print:  sequence_task (#,[ 

 End 

Read x 

 If x is an action & not the last action then 

  Print:  name of action ( parmeter1, 

par2,…,parn ), 

 Else 

  Print :  ], 

   _,_). 

 End if 

Save (domain name.pl). 

Run LOCM : filename.pl 

 

Figure 4: Pseudocode of Converter Component 
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Using several known world domain models (i.e Depot, Rover, DWR) as examples to 

show the difference between tow domain models for the same world domain and same 

description domain model language. The following diagram illustrates the mechanism of 

obtaining a world domain model using FF and LOCM planning tools. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Inducing Domain Model using FF & LOCM 

           

LOCM 

           

FF Planner 

Problem Domain 

Converter component 
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B. Experimental implementation and result 

 

Several diverse types of experiment examples could be performed in this manner. Here is 

one example: 

Step1:  run FF with problem file called (pfile01) and domain file (domain.pddl) . 

This figure shows the actions training sequence of Depot domain produced by FF 

planning engine. 

 

 

 

 

 

 

 

 

 

Step 2: convert the FF result into OCL notation 

This figure presents the output of FF planner translated into OCL notation which is 

accepted by LOCM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0: lift hoist0 crate1 pallet0 depot0 

1: load hoist0 crate1 truck1 depot0 

2: drive truck1 depot0 distributor0 

3: lift hoist1 crate0 pallet1 distributor0 

4: load hoist1 crate0 truck1 distributor0 

5: unload hoist1 crate1 truck1 distributor0 

6: drive truck1 distributor0 distributor1 

7: unload hoist2 crate0 truck1 distributor1 

8: drop hoist2 crate0 pallet2 distributor1 

9: drop hoist1 crate1 pallet1 distributor0 

 Figure 6: Depot Plan Produced by FF 

domain(depot). 

sequence_task(1,[ 

lift(hoist0,crate1,pallet0,depot0), 

load(hoist0,crate1,truck1,depot0), 

drive(truck1,depot0,distributor0), 

lift(hoist1,crate0,pallet1,distributor0), 

load(hoist1,crate0,truck1,distributor0), 

unload(hoist1,crate1,truck1,distributor0), 

drive(truck1,distributor0,distributor1), 

unload(hoist2,crate0,truck1,distributor1), 

drop(hoist2,crate0,pallet2,distributor1), 

drop(hoist1,crate1,pallet1,distributor0) 

], 

_,_). 

 
Figure 7: Depot Plan Converted into OCL Notation 
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Step 3: run LOCM using the example in step 3 as input. 

Full detailed description of the domain is not possible due to the limitation of the report. 

Consequently, figure 8 shows a part of the Depot domain model to be compared with 

standard one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(define 

   (domain depot) 

   (:requirements :typing) 

   (:types crate depot hoist pallet truck zero) 

   (:predicates 

      (crate_state0 ?v1 - crate) 

      (crate_state1 ?v1 - crate ?v2 - depot ?v3 - hoist) 

      (crate_state2 ?v1 - crate ?v2 - truck) 

      (crate_state3 ?v1 - crate ?v2 - depot ?v3 - hoist) 

      (crate_state4 ?v1 - crate) 

      (depot_state0 ?v1 - depot ?v2 - truck) 

      (depot_state1 ?v1 - depot ?v2 - crate ?v3 - hoist) 

      (depot_state2 ?v1 - depot) 

      (depot_state3 ?v1 - depot) 

      (hoist_state0 ?v1 - hoist) 

      (hoist_state1 ?v1 - hoist ?v2 - crate ?v3 - depot) 

      (hoist_state2 ?v1 - hoist ?v2 - depot ?v3 - truck) 

      (hoist_state3 ?v1 - hoist ?v2 - crate ?v3 - depot) 

      (hoist_state4 ?v1 - hoist) 

      (pallet_state0 ?v1 - pallet) 

      (pallet_state1 ?v1 - pallet ?v2 - depot ?v3 - hoist) 

      (pallet_state2 ?v1 - pallet) 

      (truck_state0 ?v1 - truck) 

      (zero_state0) 

      (zero_state1)) 

 

   (:action 

   drive 

   :parameters 

   (?Truck1 - truck ?Depot2 - depot ?Depot3 - depot) 

   :precondition 

   (and 

      (zero_state0) 

      (truck_state0 ?Truck1) 

      (depot_state0 ?Depot2 ?Truck1) 

      (depot_state2 ?Depot3)) 

 

   :effect 

   (and 

      (depot_state0 ?Depot3 ?Truck1) 

      (not (depot_state2 ?Depot3))) 

) 

 
Figure 8: Depot Domain Model Produced by LOCM 
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Step 4: standard domain 

Figure 9 shows the final result of the experimental which is clearly conclude The 

differences between the two domain models(step 3 and step 4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

 

 

(define (domain Depot) 

(:requirements :typing) 

(:types place locatable - object 

 depot distributor - place 

        truck hoist surface - locatable 

        pallet crate - surface) 

 

(:predicates (at ?x - locatable ?y - place)  

             (on ?x - crate ?y - surface) 

             (in ?x - crate ?y - truck) 

             (lifting ?x - hoist ?y - crate) 

             (available ?x - hoist) 

             (clear ?x - surface)) 

  

(:action Drive 

:parameters (?x - truck ?y - place ?z - place)  

:precondition (and (at ?x ?y)) 

:effect (and (not (at ?x ?y)) (at ?x ?z))) 

 

Figure 9: Depot Domain Model Produced by Handcraft 
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7. FUTURE WORK 

 A problem with the current designing of the planning domain models is its 

complexity of development. It may be necessary to look at ways to measure the domain 

models, domain model inductive tools and domain model representation languages to 

find out what make them different structurally and if they affect the final AI systems. 

This may involves considerably different optimisation techniques, or simply writing a 

code in a more efficient manner. In general, the current target is to develop a technique 

that can define optimal (or near to optimal) standard notation to build non-bugged 

planning domain model considering its description language notations.  Based on the 

result of the experimental, a set of planning domain metrics and comparison techniques to 

analyse a domain model's structure, characteristics and properties will be developed, in 

order to investigate and measure domain complexity and equivalence.  

7.1 Second Year Plan 

A. Literature Review: during the first year, I have failed to cover some important topics 

that related to the area of research. consequently, within the first three mounts 

important topics will be revised once again. 

 Run and evaluate some other planning algorithms that are presented in ICAPS 

and ICKEPS. 

 Comparative study and evaluation of most known LM domain models 

inductive tools comparing to LOCM. 

 Review latest related research paper (ICAPS and ICKEPS) 

 Revise using available material to fill some holes in knowledge engineering 

background. 

 Continue improving skills of using Prolog.  

 Intensive survey of domain model languages (advantage/disadvantage) 

B. Model Design:  

 Perform experiments using different planning algorithms and domain model 

inductive tools. 

 Develop a new independent (can be used with any planner) component to 

convert planning example into OCL notation.  
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 Identify standard criteria to be used with our matrix measurement tools     

 Create and design feasible standard domain model metrics tools. 

C. Publication: 

 School conference  

 ICAPS 

 First journal paper  
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