
University of Huddersfield Repository

Shoeeb, Salihin

Investigation into the Theoretical Properties of, and the Relationship Between, AI Planning Domain
Models.

Original Citation

Shoeeb, Salihin (2012) Investigation into the Theoretical Properties of, and the Relationship
Between, AI Planning Domain Models. Technical Report. University of Huddersfield, Huddersfield,
UK. (Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/12907/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Investigation into the theoretical properties of, and the relationship

between, AI planning domain models.

By : Salihin F. Shoeeb

Supervised by Professor Lee McCluskey

A Report Submitted as a Requirement for the Transfer to Second Year

Department of Informatics

UNIVERSITY OF HUDDERSFIELD

School of Computing and Engineering

Planning Domain Model Investigative Tools

 2

TABLE OF CONTENTS

1. ABSTRACT .. 4
2. INTRODUCTION .. 5

2.1 Theoretical and terminology .. 5

2.2 Objective .. 5
2.3 Outline of the report ... 5

3. AI PLANNING AND APPLICATION .. 6
3.1 Planning history .. 6
3.2 Planning problem ... 7

3.3 Planning Application .. 10
4. PLANNING DOMAIN MODEL LANGUAGES .. 11

4.1 STRIPS Language .. 11
4.2 Action Description Language (ADL) ... 13
4.3 Planning Domain Definition Language (PDDL) ... 13
4.4 Object-Centred Language (OCL) ... 14

5. PLANNING KNOWLEDGE-BASE & ML ... 14
5.1 Knowledge acquisition ... 14

5.2 Knowledge representation .. 15
5.3 Domain-dependent ... 16
5.4 Domain-independent. Why? ... 16

6. DOMAIN MODEL INVESTIGATIVE TOOLS .. 17
6.1 Research Issue .. 17

6.2 Research questions ... 17

6.3 Experimental .. 17

A. Experimental Design .. 17
B. Experimental implementation and result .. 20

7. FUTURE WORK .. 23

7.1 Second Year Plan ... 23
A. Literature Review: .. 23

B. Model Design: .. 23
C. Publication: ... 24

Reference .. 25

Planning Domain Model Investigative Tools

 3

TABLE OF FIGURES

FIGURE 1: DOCK WORKER ROBOT DOMAIN ... 8

FIGURE 2: DWR DOMAIN MODEL IN PDDL ... 9

FIGURE 3: SHAKEY THE ROBOT'S WORLD (FROM [22]) ... 12

FIGURE 4: PSEUDOCODE OF CONVERTER COMPONENT .. 18

FIGURE 5: INDUCING DOMAIN MODEL USING FF & LOCM ... 19

FIGURE 6: DEPOT PLAN PRODUCED BY FF ... 20

FIGURE 7: DEPOT PLAN CONVERTED INTO OCL NOTATION .. 20

FIGURE 8: DEPOT DOMAIN MODEL PRODUCED BY LOCM .. 21

FIGURE 9: DEPOT DOMAIN MODEL PRODUCED BY HANDCRAFT .. 22

Planning Domain Model Investigative Tools

 4

1. ABSTRACT

 Representation of knowledge (KR) is an essential problem in artificial intelligence

systems. The primary requirement of KR is the development of a sufficiently precise

notation for representing knowledge. The importance of KR comes from the current

design model of intelligent systems need for expert knowledge. Mainly, there are two

methods to represent knowledge in artificial Intelligence systems, which are encoded

within an application and encoding within a domain model. The former method describes

the problem as a part of AI application and on the other hand the domain model method

insulates the AI application from its problem description. Recently, artificial intelligence

systems are developed separately from their problem domains in order to facilitate the

process of updating, maintaining and repairing the domain models as well as the

possibility to reuse them for other AI purposes. Consequently, number of planning

domain languages have been developed (e.g STRIPS, ADL, PDDL, OCL) to describe a

real problem domain formally. This project aims to develop a set of planning domain

metrics and comparison techniques based on the domain model languages’ criteria to

analyse a domain model's structure, characteristics and properties, in order to investigate

and measure domain complexity and equivalence.

Planning Domain Model Investigative Tools

 5

2. INTRODUCTION

2.1 Theoretical and terminology

Artificial intelligent (AI): Definitions of artificial intelligence according to (Russell

[22]) are divided into two main categories concerned with thought processes and

reasoning (i.e think like humans, act rationally). Generally, a planning domain problem

depends on three terms which are:

 Automated planning (AP) is the processes of making system act or thank

autonomously.

 Knowledge representation (KR) is a way used to form knowledge in an

intelligence system. Knowledge representation and the methods of KR, notation

and criteria have not yet met the complexity and requirements of most of realistic

problem domain.

 Machine Learning (ML) A computer techniques which are concerned with the

construction of intelligent algorithms that allow computer systems to learn for

instance by example or training. In other word, Learning is any process that

increases the performance of an AI system.

2.2 Objective

The objective of this research can be briefly summarized as following (based on the

experimental section 6.3), developing a set of measurement tools and comparative

techniques to analyse a domain model’s specifications and features in order to investigate

their complexity, effectives, and equivalence.

2.3 Outline of the report

Below we outline the subsequent chapters of this report

Chapter 3 contains a brief overview of the AP application and historical development of

the major techniques for AI planning.

Chapter 4 highlights the problem of knowledge representation in terms of planning

domains, providing the theoretical foundation of a number of planning description

language (i.e. PDDL).

http://en.wikipedia.org/wiki/Algorithm

Planning Domain Model Investigative Tools

 6

Chapter 5 presents an overview of the development of planning knowledge

representation and formalization, providing several an ML tools which are used to

develop and construct a planning domain model.

Chapter 6 introduces an experimental that shows the structurally differences between an

automated inductive planning domain model and handcraft one.

Chapter 7 finally, this chapter draws a framework for the next year work plan.

3. AI PLANNING AND APPLICATION

It seems that planning effortlessly, but writing planning engines (planner) is a difficult

challenge. Planning, the process of generating a sequence of ordered actions based on a

real problem domain description (i.e. initial state) to achieve desired goals.

3.1 Planning history

 An automated planning (AP) discipline has appeared in 1950s with the first

automated problem attempt, the General Problem Solver (GPS). GPS [1] was the first

automated planner introduced in AP literature that expressed human problem solving

characteristics in terms of AI algorithms. From that time, it becomes an active research

field of an AI with a number of organizations and researchers. Traditionally, AP was

considered as part of the problem solving and it has been accused using adaptations of the

classical search. The classical planning techniques were used by systems during 1990s

include:

 State space search.

 Hierarchical decomposition.

 Heuristic and a range of other techniques developed ad hoc.

The classical approaches in AP presented during that time were assessed on toy

problems, such as those used in the IPC, that create real world situations with excessively

assumptions and simplifications. Dealing with real planning problems require reasoning

about resource and time by planning engine, treat experience knowledge representations,

considering dynamic environments, and find way to cooperate with other planners, etc.

Although the mentioned issues are crucial for AP, they have been recently introduced to

Planning Domain Model Investigative Tools

 7

the planning society (world) as important research directions for the future of AI system.

However, most of them are belong to other AI researched areas, such as Constraint

Programming, Knowledge Systems, Machine Learning, Intelligent Agents, therefore the

ideal way is to utilize the effort already put into them.

3.2 Planning problem

 Plans (denoted as a tuple P= (O, s0, g)) are produced by searching a space of

actions until a sequence of feasible actions are reached that can carry out the given tasks.

In other word, an AP problem comprises a world description: initial, goal states and a

domain theory. A domain theory defines a transition state, the way in which the

applicable actions change a state of the domain to a new state and their relations with

resource. Based on these inputs, planners produce a sequence of executable actions that

can reach the goal state from the initial state.

 Mainly, one of the keys design philosophy of planning system is domain-

independence. In principle, a domain-independent planner works with any planning

domain. However, developing domain independent algorithms in many types of problem

domains is not reasonable. As a solution of this, some restrictive assumptions were made

[2]:

 System has a finite set of state.

 Problem domain fully observable (complete knowledge).

 The outputs of actions are deterministic.

 The system is static (no dynamics events that can change the problem domain)

 Goals are restricted (planner handles only specified goals)

 A solution plan is a linearly ordered finite sequence of actions.

 Actions have no duration

 Change is not allowed during the plan time (off-line planning).

Planning Domain Model Investigative Tools

 8

 Such planning techniques that accept these assumptions are formally recognized as

classical planning. Unluckily, these attempts to improve the domain independence have

decreased the usability of planning systems because they brought many restrictions that

are infeasible for real world applications.

 Classical planners are based on semantic descriptions (i.e., preconditions of actions)

provided by a domain model. Recently, an additional expert knowledge are required by

planning problems which is may not be fully accessible due to the limitation and

complexities of the domains for the experts to provide such knowledge. Hence, it is

difficult to develop learning systems in order to learn knowledge as human contributions

are restricted [7].

 A typical example of a classical planning problem is a Dock Worker Robot (DWR).

This problem involves a number of cranes, locations, robots, containers, and piles. Robot

starts moving out from one of the locations. The goal is to transport each container to its

final destination in a desired order. Consider, for example, an instance of a simple DWR

problem with only one robot, two container, two crane and two locations 1 and 2 as given

in Figure 1.

Figure 1: Dock Worker Robot Domain

In this particular example the robot at location 2 and the containers at location 1 in the

initial state and the goal is to have the containers to location2. The actions in the DWR

domain describe driving the robot from location 2 to location1,take a container off of the

Planning Domain Model Investigative Tools

 9

location1 by the crane1, loading a container into the robot at that location1, driving the

robot from location1 to location2, unloading a container from the robot by crane2, and

put a container on location2. These actions are given in their standard planning domain

description language (PDDL) [10] in Figure 2.

Figure 2: DWR Domain model in PDDL

The assumptions of classical planning, and the usual mechanisms for solving it, are rather

restrictive, and most real problems are neoclassical. The main differences between

classical and neoclassical planning techniques are: in classical planning, for any problem

domain consists of group of nodes (search space), every node mapped a partial plan,

whereas in neoclassical planning node considered as a set of several partial plan [2].

Planning Domain Model Investigative Tools

 10

 Many well-known approaches to relax classical planning assumptions have been

made, including HTN planning [3,7,8,9], MDPs(Markov decision processes) [4],

temporal planning [5], and so on. Nonetheless, classical planning algorithms are still

restricted to limited categories of planning domains as most of practical planning

problems do not satisfy the early mention assumptions of classical planning [2].

3.3 Planning Application

 In the past, planning has been successfully applied in various areas including space

exploration, robotics, transportation, finance, crisis management, etc.

 AI planning has often been intimately connected with robotics [25]. Some re-

searchers even seem to equate these two issues. For example, [23] introduce their work

on planning with the words: “We are conducting research on robot decisional abilities

taking into account explicit reasoning on the human environment and on the robot

capacities to achieve its tasks in such a context”.

 While planning is very important for robotics, the converse is not necessarily right.

Other authors have a broader view of planning, not only considering robotics and

replication of human planning. [24] Write “Ideally, the set of actions so produced is then

passed on to a robot, a manufacturing system, or some other form of effector, which can

follow the plan and produce the desired output”.

 Even though many authors do not explicitly mention robots, they often seem to

tacitly assume applications having the same or very similar properties. The problem is

normally to synthesize plans for some agent situated in a physical environment,

sometimes of dynamic and uncertain nature. Such an agent can typically perform a small

number of very general and complex operators that can be applied in a large number of

states and objects. The plans are typically not very long but may be hard to find because

of the complexity of a world model employed.

Planning Domain Model Investigative Tools

 11

 An attractive application for AP is when a process collapse or is blocked in an

emergency situation. Following such an incident, the system may be in any number of

states and therefore requires a very complex plan to revive the system again to resume

work normally. It is not realistic to have precompiled plans for how to start up the

operation again from each such state. Furthermore, involved costs are considered as large

industrial process terminated, such as a paper mill, is inactive necessitate a prompt

response from the planner. Another example of applications is a traffic system, for

example a motorway or underground network. In such case a planner could be used raptly

and regularly, to prevent break downs and easy the flow of traffics. For example, as a

support system for network operators to decide how to direct the aeroplanes traffic.

 Additionally, automated planning techniques have been successfully applied to

wide range of real domain problems: space missions [29], management of fire extinctions

[30] or control of underwater vehicles [31]. Although these are very successful

application adopting AP techniques, but still suffering from various knowledge

representation.

4. PLANNING DOMAIN MODEL LANGUAGES

 In current planning research quite a lot of formal work has been produced to

understand and precisely characterize the power of automated planning frameworks ([2,

3, 8.13] and many others).the first issue arises in this field is how and in which form

knowledge should be represented in. Hence, several notations (domain representation

languages) and criteria have been developed over time.

4.1 STRIPS Language

 In this section, we first sketch the basic planning domain model representation

language of classical planning problems, identified as the STRIPS language. Possible

variations in STRIPS-like languages will be described later on. STRIPS (STanford

Research Institute Problem Solver) [20,21] is one of the oldest, simplest, and most used

planning language, even if not too flexible. A problem in Strips is a tuple <A,O,I,G>.

STRIPS planning was introduced in [20] as a model of the kind of planning problems that

Planning Domain Model Investigative Tools

 12

people appear to solve in common sense reasoning. STRIPS planning corresponds to a

certain formal graph search problem.

 It is important to distinguish between the original STRIPS planner, and the STRIPS

representation language. Due to its power of representation, the language developed for

describing STRIPS' operators and world domain models was since then used, with minor

modifications, in a large number of traditional planners.

 Planning was historically motivated by the need of robotics. Indeed, STRIPS was

designed to act as the planner for another pioneering project: "Shakey the robot",

developed at SRI International. Shakey was supposed to wander in his world (figure 3),

push boxes around, and turn light switches on/off (the former action also required to

climb on top of a box, since the robot was short and the switches were high on the wall).

It is important to note that this environment was quite idealized compared to a real one,

given the primitive sensors and effectors available at that time.

 STRIPS represents world domain models as a collection of first order predicate

calculus formulas. In this context, "problem solving" means finding a sequence of

operators in the space of world models that will transform an initial model into another

model in which a given formula (goal) can be proven to be true.

Figure 3: Shakey the robot's world (from [22])

Planning Domain Model Investigative Tools

 13

 The restrictions forced by the STRIPS were chosen to make planning algorithms

simpler and able to express real world problems. One of the most important restrictions is

that literals be function-free [22]. With this restriction, an action schema for any problem

can be propositionalized (represented into a finite collection of propositional action that is

free of variables).

 Recently, STRIPS has become inadequately expressive planning description

language for representing various real world domains. As a result, many languages have

been developed.

4.2 Action Description Language (ADL)

 This part, briefly describes an important planning description language, the Action

Description Language (ADL). The ADL (10) relaxed some of the restrictions

assumptions in the STRIPS language and provided some flexibility to encode more

realistic world domains. The Problem Domain Description Language [2] was introduced

as a standardized syntax for representing ADL, STRIPS, and other languages

4.3 Planning Domain Definition Language (PDDL)

 Specification languages like STRIPS or ADL can be used to describe a real

problem domain. Another possibility to describe real domains is the planning domain

definition language (PDDL). It was developed by Drew McDermott in 1998 and later

evolved continuously by International Planning Competitions to standardize planning

domain and problem description languages. The latest version is PDDL3.1 which

introduced two new features, state trajectory and preference constraints [32]. PDDL is

supported by most planning engine. It is used well to identify the domain properties and

specifications in detail, the predicates which are used and the action definition.

Additionally, it includes the properties of some planning domain language such as

STRIPS, ADL, and the hierarchical task networks (HTN)[2,3,9]. PDDL Is descended

from the ancestors of several notations: ADL, SIPE-2, UMCP, Unpop, and UCPOP [10].

http://en.wikipedia.org/wiki/Automated_planning_and_scheduling
http://ipc.informatik.uni-freiburg.de/PddlExtension

Planning Domain Model Investigative Tools

 14

 Although, The STRIPS and ADL demonstrated that are sufficient to express several

of real world domains, there are still some important limitations (restrictions). The most

obvious is that they cannot represent in a natural way the ramifications of actions. For

example, if there are people, luggage, etc in the ship, then they change location when the

ship sails. Changes can be represented as the direct effects of sailing, whereas it seems

more natural to represent the location of the ship's contents as a logical consequence of

the location of the ship. More examples (e.g Block world and Air cargo transport) are

described by [10].

4.4 Object-Centred Language (OCL)

 OCL has been developed by (Donghong Liu and T.L.McCluskey) at the University of

Huddersfield. [26] Described OCL as a tool-supported language for domain developers.

OCL aims to provide a language that representing the domain models in the classical

tradition of AI Planning considering the structure and dynamics of domains.

5. PLANNING KNOWLEDGE-BASE & ML

 Basically, an AI planning algorithm requires a problem domain model to be given

beforehand, for example FF[19], is an independent-domain planner that is required two

separated files to be executed: problem file and domain file. Though, it is both boring and

time-consuming to encode the domain models by hand using a formal language e,g

PDDL [10], OCL [11]. On other way, a domain model can be revised using interactive

systems such as GIPO[18] by obtaining the training plans through monitoring devices

such as sensors and cameras. Another way to extract and induce a problem domain model

by using ML mechanism [14, 17].

5.1 Knowledge acquisition

 Knowledge acquisition is the major challenge in AI planning. The most recently

used techniques to extract and acquire a planning knowledge are the machine learning

tools. Therefore, some works have been proposed in automatically learning domain

models from plan traces with intermediate observations. In many real world applications,

such intermediate states are usually not fully observable. Most of these works require an

amount of training data as input [27]. To address this limitation, [13] Present approach to

learning domain model by using other planning domains and transferring shared parts

Planning Domain Model Investigative Tools

 15

from an existing domain models to a new domain model by finding a logical relationship

between these parts. For instance, in transportation domain and DWR domain, a

passenger should be in a bus and a container should be on the robot which means that the

bus, the passenger, the robot and the container must be at desired location Loc in order to

achieve this action. Consequently, the presence of the bus, the passenger, the container

and the robot at the location represents a logical relationship of the two domains.

 [14] Develop a learning algorithm known as Simultaneous Learning and Filtering

(SLAF). The algorithms learn action that a sufficient number of training traces are

available in partially observable domains. SLAF algorithms cannot take advantage of

other related planning domains to help the learning task.

 Most of learning algorithms are required huge amount of training data to be

achieved. From AI planning history, the planning problem is considered in a general

concept where actions can be deterministic, non-deterministic, or probabilistic, and

actions’ effects can be fully [15] or partially observable [14, 16]. Recently, there are

several attempts deal with non-observable environment. A notable example of non-

observable environment is Learning Object-Centred Model (LOCM) [17]. LOCM is an

inductive tool which is automatically induces a domain model from set of training

example of plans. LOCM requires no knowledge in advanced (e.g description of states,

predicates, actions, etc…) to be executed.

5.2 Knowledge representation

 Designing planning domain models is not easy job even for professionals. The

process of encoding is arduous. Questions such as: how to use domain knowledge, what

are the optimal methods to represent a real problem domain, are the existing domain

model languages claim the purpose of domain model representation, and what features

that are needed to be attached with the languages to express various world problem with

less or non-faults, are yet to be accurately answered. Some of the existing planners use

domain independent search heuristics, and some others depend on domain specific

knowledge. Planners that use domain independent are relatively slow compared with

domain dependent planners. This is the answer of the question of why most successful

Planning Domain Model Investigative Tools

 16

real world planning systems are domain specific (or domain dependent). However, it’s

not practically reasonable to build a whole new planner for every domain.

5.3 Domain-dependent

 Nowadays many logic based representations formalisms are available for

knowledge engineering tasks. However, most of them do not support the representation

of domain- specific knowledge. On one hand building special systems, which supports

these representation tasks is a costly and cumbersome process. For specific planning

applications, domain-specific methods are well justified. They are greatly successful in

most of the application areas (e.g path and motion planning, navigation planning).

However, they are restricted for several reasons [2].

Commonalities to all of applications of planning are not addressed.

More costly to address each planning problem anew.

Not satisfactory for designing an autonomous intelligent machine.

 Although, the automated planning is interested in domain-independent but it is not

meant to be opposed to domain-dependant planning techniques. The direct

implementation of inference mechanisms reflecting the semantics available in a specific

domain leads to an inflexible system: any miniature change in the input language results

in changes of the whole system.

5.4 Domain-independent. Why?

There are several reasons for planning domain-independent.

 A domain-independent reduce development, debug and maintenance cost

(knowledge are located in specified place).

 Reusable (it can be reused over time).

 Domain-independent easier to swap planning engines, prove properties of engine

and knowledge base (e.g engine always produces optimal solutions when the

knowledge base is consistent)

 Additionally, Planning engines can be developed independent of their application in

a "clean" fashion (separate efforts developing engines and tools for knowledge

engineering domain models).

Planning Domain Model Investigative Tools

 17

6. DOMAIN MODEL INVESTIGATIVE TOOLS

6.1 Research Issue

 The focus of this project is to develop a set of planning domain metrics and

comparison techniques to analyse a domain model's structure, characteristics and

properties, in order to investigate and measure domain complexity and equivalence.

Briefly, the research study will go through these stages:

 Forming domain model, inductive domain model tools and domain model

languages criteria.

 Developing measurement tools based on high quality of planning domain models.

6.2 Research questions

 The investigation should answer research questions such as, what makes a domain

model structurally sound, efficient, simple or complex? How does impurities (bug)

planning domain model affect an AI system, comparing to a standard notation of the

domain language? How possible to make the domain models that are produced by

machine learning tools to meet the standard domain model language notation?

6.3 Experimental

We implemented our experimental as an extension to the FF planning engine and LOCM

tool on extensive testing performed to evaluate how different, similar, complex are the

domain models that induced by ML tools comparing to the standard ones.

A. Experimental Design

This experimental can be logically described as having three components:

Planner: FF planner [19], independent-domain planner works with any planning domain.

Inductive tool: LOCM [17], an ML tool that automatically generate a planning domain

model from example training plans. In this experimental, the required examples are

provided by FF planner.

Converter component: a piece of code has been written and added to FF planner in

order to collect and reformat the output of the planner into OCL notation. figure 4

describe the operation of the converter component.

Planning Domain Model Investigative Tools

 18

Run FF

 Problem file

 Domain file

 For every domain

 Print: domain (domain name).

 Print: sequence_task (#,[

 End

Read x

 If x is an action & not the last action then

 Print: name of action (parmeter1,

par2,…,parn),

 Else

 Print :],

 ,).

 End if

Save (domain name.pl).

Run LOCM : filename.pl

Figure 4: Pseudocode of Converter Component

Planning Domain Model Investigative Tools

 19

Using several known world domain models (i.e Depot, Rover, DWR) as examples to

show the difference between tow domain models for the same world domain and same

description domain model language. The following diagram illustrates the mechanism of

obtaining a world domain model using FF and LOCM planning tools.

Figure 5: Inducing Domain Model using FF & LOCM

LOCM

FF Planner

Problem Domain

Converter component

Planning Domain Model Investigative Tools

 20

B. Experimental implementation and result

Several diverse types of experiment examples could be performed in this manner. Here is

one example:

Step1: run FF with problem file called (pfile01) and domain file (domain.pddl) .

This figure shows the actions training sequence of Depot domain produced by FF

planning engine.

Step 2: convert the FF result into OCL notation

This figure presents the output of FF planner translated into OCL notation which is

accepted by LOCM.

0: lift hoist0 crate1 pallet0 depot0

1: load hoist0 crate1 truck1 depot0

2: drive truck1 depot0 distributor0

3: lift hoist1 crate0 pallet1 distributor0

4: load hoist1 crate0 truck1 distributor0

5: unload hoist1 crate1 truck1 distributor0

6: drive truck1 distributor0 distributor1

7: unload hoist2 crate0 truck1 distributor1

8: drop hoist2 crate0 pallet2 distributor1

9: drop hoist1 crate1 pallet1 distributor0

 Figure 6: Depot Plan Produced by FF

domain(depot).

sequence_task(1,[

lift(hoist0,crate1,pallet0,depot0),

load(hoist0,crate1,truck1,depot0),

drive(truck1,depot0,distributor0),

lift(hoist1,crate0,pallet1,distributor0),

load(hoist1,crate0,truck1,distributor0),

unload(hoist1,crate1,truck1,distributor0),

drive(truck1,distributor0,distributor1),

unload(hoist2,crate0,truck1,distributor1),

drop(hoist2,crate0,pallet2,distributor1),

drop(hoist1,crate1,pallet1,distributor0)

],

,).

Figure 7: Depot Plan Converted into OCL Notation

Planning Domain Model Investigative Tools

 21

Step 3: run LOCM using the example in step 3 as input.

Full detailed description of the domain is not possible due to the limitation of the report.

Consequently, figure 8 shows a part of the Depot domain model to be compared with

standard one.

(define

 (domain depot)

 (:requirements :typing)

 (:types crate depot hoist pallet truck zero)

 (:predicates

 (crate_state0 ?v1 - crate)

 (crate_state1 ?v1 - crate ?v2 - depot ?v3 - hoist)

 (crate_state2 ?v1 - crate ?v2 - truck)

 (crate_state3 ?v1 - crate ?v2 - depot ?v3 - hoist)

 (crate_state4 ?v1 - crate)

 (depot_state0 ?v1 - depot ?v2 - truck)

 (depot_state1 ?v1 - depot ?v2 - crate ?v3 - hoist)

 (depot_state2 ?v1 - depot)

 (depot_state3 ?v1 - depot)

 (hoist_state0 ?v1 - hoist)

 (hoist_state1 ?v1 - hoist ?v2 - crate ?v3 - depot)

 (hoist_state2 ?v1 - hoist ?v2 - depot ?v3 - truck)

 (hoist_state3 ?v1 - hoist ?v2 - crate ?v3 - depot)

 (hoist_state4 ?v1 - hoist)

 (pallet_state0 ?v1 - pallet)

 (pallet_state1 ?v1 - pallet ?v2 - depot ?v3 - hoist)

 (pallet_state2 ?v1 - pallet)

 (truck_state0 ?v1 - truck)

 (zero_state0)

 (zero_state1))

 (:action

 drive

 :parameters

 (?Truck1 - truck ?Depot2 - depot ?Depot3 - depot)

 :precondition

 (and

 (zero_state0)

 (truck_state0 ?Truck1)

 (depot_state0 ?Depot2 ?Truck1)

 (depot_state2 ?Depot3))

 :effect

 (and

 (depot_state0 ?Depot3 ?Truck1)

 (not (depot_state2 ?Depot3)))

)

Figure 8: Depot Domain Model Produced by LOCM

Planning Domain Model Investigative Tools

 22

Step 4: standard domain

Figure 9 shows the final result of the experimental which is clearly conclude The

differences between the two domain models(step 3 and step 4)

(define (domain Depot)

(:requirements :typing)

(:types place locatable - object

 depot distributor - place

 truck hoist surface - locatable

 pallet crate - surface)

(:predicates (at ?x - locatable ?y - place)

 (on ?x - crate ?y - surface)

 (in ?x - crate ?y - truck)

 (lifting ?x - hoist ?y - crate)

 (available ?x - hoist)

 (clear ?x - surface))

(:action Drive

:parameters (?x - truck ?y - place ?z - place)

:precondition (and (at ?x ?y))

:effect (and (not (at ?x ?y)) (at ?x ?z)))

Figure 9: Depot Domain Model Produced by Handcraft

Planning Domain Model Investigative Tools

 23

7. FUTURE WORK

 A problem with the current designing of the planning domain models is its

complexity of development. It may be necessary to look at ways to measure the domain

models, domain model inductive tools and domain model representation languages to

find out what make them different structurally and if they affect the final AI systems.

This may involves considerably different optimisation techniques, or simply writing a

code in a more efficient manner. In general, the current target is to develop a technique

that can define optimal (or near to optimal) standard notation to build non-bugged

planning domain model considering its description language notations. Based on the

result of the experimental, a set of planning domain metrics and comparison techniques to

analyse a domain model's structure, characteristics and properties will be developed, in

order to investigate and measure domain complexity and equivalence.

7.1 Second Year Plan

A. Literature Review: during the first year, I have failed to cover some important topics

that related to the area of research. consequently, within the first three mounts

important topics will be revised once again.

 Run and evaluate some other planning algorithms that are presented in ICAPS

and ICKEPS.

 Comparative study and evaluation of most known LM domain models

inductive tools comparing to LOCM.

 Review latest related research paper (ICAPS and ICKEPS)

 Revise using available material to fill some holes in knowledge engineering

background.

 Continue improving skills of using Prolog.

 Intensive survey of domain model languages (advantage/disadvantage)

B. Model Design:

 Perform experiments using different planning algorithms and domain model

inductive tools.

 Develop a new independent (can be used with any planner) component to

convert planning example into OCL notation.

Planning Domain Model Investigative Tools

 24

 Identify standard criteria to be used with our matrix measurement tools

 Create and design feasible standard domain model metrics tools.

C. Publication:

 School conference

 ICAPS

 First journal paper

Planning Domain Model Investigative Tools

 25

Reference

[1] A. Newell and H. Simon. Computers and Thought, chapter GPS, a Program that

simulates human thought, pages 279-293. McGraw Hill, NY, 1963.

[2] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice.

Morgan Kaufmann, 2004.

[3] D. Nau, T. Au, O. Ilghami, U. Kutter, W. Murdock, D. Wu, and F. Yaman.

SHOP2: An HTN planning system. Journal of Artificial Intelligence Research,

20:379-404, December 2003.

[4] L. Kaelbling, M. Littman, and A. Cassandra. Planning andacting in partially

observable stochastic domains. Artificial Intelligence, Volume 101, pages: 99-

134, 1998.

[5] Bacchus and Kabanza, 2000,F. Bacchus and F. Kabanza. Using temporal logics to

express search control knowledge for planning. Artificial Intelligence, 116:123-

191, 2000.

[6] Chapman and Agre, 1987, D. Chapman and P. Agre. Pengi: An implementation of

a theory of activity. AAAI-87, 1987.

[7] C.Hogg, U.Kuter, H.Munoz-Avila. From Plan Traces to Hierarchical Task

Networks Using Reinforcements: A Preliminary Report. Workshop on Learning

Structural Information from Traces (STRUCK-09). AAAI Press. IJCAI-09,

[8] H. Zhuo, D. Hao Hu, C. Hogg, Q. Yang, H. Munoz-Avila.Learning HTN Method

Preconditions and Action Models from Partial Observations. Artificial

Intelligence (IJCAI 2009), Pasadena, California, USA, Pages 1804-1809.

[9] C. Hogg, H. Mu˜noz-Avila, and U. Kuter. HTN-MAKER: Learning HTNs with

minimal additional knowledge engineering required. In Proceedings of AAI,

pages 950–956, 2008.

[10] AIPS-98 Planning competition Committee. PDDL – the Planning Domain

Definition Language. Technical Report CVC TR-98-003/DCS TR-1166, Yale

Center for Computational Vision and Control, 1998.

[11] D. Liu and T.L.McCluskey. The OCL Language Manual, Version 1.2

Technical report, Department of Computing Science, University of Huddersfield,

2000.

[12] Zimmerman, T. and Kambhampati, S. (2003). Learning-assisted automated

planning: looking back, taking stock, going forward. AI Magazine, 24:73 – 96.

Planning Domain Model Investigative Tools

 26

[13] Hankui Zhuo, Qiang Yang, Derek Hao Hu and Lei Li, Transferring

Knowledge from Another Domain for Learning Action Models. PRICAI 2008. Pp

1110 -1115.

[14] Amir, E. 2005. Learning partially observable deterministic action models. In

Proceedings of IJCAI’05, 1433–1439. Benson, S. 1995. Inductive learning of

reactive action models. In Proceedings of ICML’95, 47–54.

[15] Xuemei Wang: Learning by Observation and Practice: An Incremental

Approach for Planning Operator Acquisition. ICML 1995: 549-557

[16] Allen Chang, Eyal Amir: Goal Achievement in Partially Known, Partially

Observable Domains. ICAPS 2006: 203-211

[17] S. N. Cresswell and T. L. McCluskey and M. M. West. Acquisition of object-

Centred Domain Models from Planning Examples. ICAPS 2009: 338-341

[18] T. Leo McCluskey, D. Liu, R.M. Simpson, GIPO II: HTN planning in a tool-

supported knowledge engineering environment, in: Proceedings of the

International Conference on Automated Planning and Scheduling (ICAPS 2003),

Trento, Italy, 2003, pp. 92–101.

[19] J¨org Hoffmann and Bernhard Nebel. The FF planning system: Fast plan

generation through heuristic search. Journal of Artificial Intelligence Research,

14:263–302, 2001.

[20] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application

of theorem proving to problem solving. Artificial Intelligence, 2:198-208, 1971.

[21] R.Frikes and N. nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2:189-208, 1971.

[22] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 1995.

[23] Rachid Alami, Aur´elie Clodic, Vincent Montreuil, Emrah Akin Sisbot and

Raja Chatila. Task planning for Human-Robot Interaction. P81-85, 2005.

[24] Moataz Ahmed, Ernesto Damiani, and David Rine. Fast Recall Of Reusable

Fuzzy Plans Using Acyclic Directed Graph Memory.272-276, 1998.

[25] Alami, R.; Chatila, R.; Clodic, A.; Fleury, S.; Herrb, M.; Montreuil, V.; and

Sisbot, E. A. 2006. Towards human aware cognitive robots. In AAAI-06, Stanford

Spring Sympoium.

Planning Domain Model Investigative Tools

 27

[26] Liu, D., and McCluskey, T. L. 2000. The OCL Language Manual, Version 1.2.

Technical report, Department of Computing and Mathematical Sciences,

University of Hudderseld.

[27] T.L.McCluskey, S.N.Cresswell, N.E.Richardson, R.M.Simpson and

M.M.West. Acquisition of Planning Operator Schema using Opmaker.

[28] Jorge A. Baier and Fahiem Bacchus and Sheila A. McIlraith. A Heuristic

Search Approach to Planning with Temporally Extended Preferences. IJCAI07. P

1808 – 1815

[29] Nayak, P., Kurien, J., Dorais, G., Millar, W., Rajan, K., and Kanefsky, R.

(1999). Validating the ds-1remote agent experiment. In Artificial Intelligence,

Robotics and Automation in Space.

[30] Castillo, L., Fdez.-Olivares, J., Garc´ıa-P´erez, O., and Palao, F. (2006).

Bringing users and planning technology together. experiences in SIADEX. In

International Conference on Automated Planning and Scheduling (ICAPS 2006).

[31] Bellingham, J. and Rajan, K. (2007). Robotics in remote and hostile

environments. Science,318(5853):1098–1102.

[32] Stefan Edelkamp, On the Compilation of Plan Constraints and Preferences.

2006, American Association for Artificial Intelligence. P 374-377

