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Quorum, ita texturae ceciderunt mutua contra ut cava 
conveniant plenis haec illius illa huiusque inter se, iunctura 
haec optima constat (Titus Lucretius Caro, 96-55 BC, De 
Rerum Natura, Liber VI). 
 
Bodies, that interact in structural harmony to fill each 
other’s voids, combine most perfectly (Translation by 
James Grant, 1896-1966, English poet).  
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Abstract 

 
This study investigated the potential application of formulating pharmaceutical products using 

microwave heating methods alongside associated analytical investigations. Firstly, the 

interaction between three functionally related drugs, ibuprofen, ketoprofen and flurbiprofen, with 

two distinct forms of cyclodextrin at three temperatures, 298, 303 and 310K was investigated 

using isothermal titration calorimetry (ITC). In all cases, the associated changes in Gibbs free 

energy, enthalpy, and entropy are presented along with the stoichiometry and binding constant. 

It was found that binding always occurred at a 1:1 ratio with an associated negative enthalpy 

and Gibbs free energy with the formation of the complex enthalpically, rather than entropically 

driven. The data further demonstrated a clear relationship between the thermodynamic 

behaviour and logP of the drug molecules and provides an insight into the chemistry of drug-

excipient binding for the compounds under investigation in this work.  

Secondly, four drugs, ibuprofen, ketoprofen, flurbiprofen and paracetamol were 

formulated using microwave and conventional heating, with and without the presence of water, 

with four excipients, namely, stearic acid (SA), β-cyclodextrin (BCD), 2-(hydroxypropyl)-β-

cyclodextrin (2HPBCD) and polyvinylpyrrolidone (PVP). Three different analytical techniques 

were employed to determine whether the formulation method made a significant difference to 

the appearance and behaviour of the product. For example, the thermal behaviour of the drug 

and excipient, was investigated by differential scanning calorimetry (DSC). Scanning electron 

microscopy was utilised to determine if the formulation method illustrated any physical 

differences between the formulations and lastly, a thermal activity monitor was used to 

investigate the stability of the different formulations. Overall, it was found that the formulation 

method can make a significant difference to the character of the resultant formulations with a 

change in thermal behaviour or physical appearance observed in certain formulations but with a 

consistent stability seen across all products.  

Lastly, each of the resultant formulations were subjected to dissolution analysis to 

determine if the presence of water or choice of heating method, i.e. conventional heating vs. 

microwave heating affected the dissolution profile obtained. It was found that in the majority of 

cases water increased drug dissolution, which may have occurred because of a reduction in 

particle size. In summary, the application of microwave heating for pharmaceutical formulations 

has been thoroughly investigated and found to be a potential alternative to conventional heating 

with several distinct benefits for industry and the patient.  
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using conventional heating both with and without the presence of water during the 

formulation process 

Figure 5.3.1.3 – A drug release profile for Ibuprofen and SA (ratio 1:3), formulated using 

conventional heating both with and without the presence of water during the formulation 

process 

Figure 5.3.1.4 – A drug release profile for Ibuprofen and BCD (ratio 1:1), formulated 

using microwave heating both with and without the presence of water during the 

formulation process 

Figure 5.3.1.5– A drug release profile for Ibuprofen and PVP (ratio 1:9), formulated 

using microwave heating both with and without the presence of water during the 

formulation process 

Figure 5.3.1.6 – A drug release profile for Ibuprofen and BCD (ratio 1:9), formulated 

using microwave heating both with and without the presence of water during the 

formulation process 



 
 

 

Figure 5.3.1.7 – A drug release profile for Ibuprofen and BCD (ratio 1:9), formulated 

using conventional heating both with and without the presence of water during the 

formulation process  

Figure 5.3.2.1 – A drug release profile for Ibuprofen and SA (ratio 1:3), formulated using 

microwave heating and conventional heating, in both cases with water present as a 

solvent   

Figure 5.3.2.2 - A drug release profile for Ibuprofen and BCD (ratio 1:1), formulated 

using microwave heating and conventional heating, in both cases without water present 

as a solvent  

Figure 5.3.2.3 – A drug release profile for Ibuprofen and BCD (ratio 1:1), formulated 

using microwave heating and conventional heating, in both cases with water present as 

a solvent  

Figure 5.3.2.4 – A drug release profile for Ibuprofen and PVP (ratio 1:1), formulated 

using microwave heating and conventional heating, in both cases without water present 

as a solvent  

Figure 5.3.2.5 - A drug release profile for Ibuprofen and SA, formulated using 

microwave heating and conventional heating, in both cases without water present as a 

solvent 

Figure 5.3.2.6 – A drug release profile for Ibuprofen and HPBCD, formulated using 

microwave heating and conventional heating, in both cases without water present as a 

solvent  

Figure 5.3.2.7 – A drug release profile for Ibuprofen and PVP (ratio 1:9), formulated 

using microwave heating and conventional heating, in both cases with water present as 

a solvent  

Figure 5.3.2.8 – A drug release profile for Ibuprofen and BCD (ratio 1:9), formulated 

using microwave heating and conventional heating, in both cases with water present as 

a solvent  

Figure 5.4.1.1 – A drug release profile for ketoprofen and SA (ratio 1:3), formulated 

using microwave heating both with and without the presence of water during the 

formulation process  



 
 

 

Figure 5.4.1.2 – A drug release profile for ketoprofen and SA (ratio 1:3), formulated 

using conventional heating both with and without the presence of water during the 

formulation process  

Figure 5.4.1.3 – A drug release profile for ketoprofen and BCD (ratio 1:9), formulated 

using conventional heating both with and without the presence of water during the 

formulation process  

Figure 5.4.1.4 – A drug release profile for ketoprofen and BCD (ratio 1:1), formulated 

using microwave heating both with and without the presence of water during the 

formulation process  

Figure 5.4.1.5 – A drug release profile for ketoprofen and BCD (ratio 1:9), formulated 

using microwave heating both with and without the presence of water during the 

formulation process  

Figure 5.4.2.1 – A drug release profile for ketoprofen and SA (ratio 1:3), formulated 

using microwaves and conventional heating, in both cases with water present as a 

solvent 

Figure 5.4.2.2 – A drug release profile for ketoprofen and SA (ratio 1:3), formulated 

using microwaves and conventional heating, in both cases without water present as a 

solvent 

Figure 5.4.2.3 – A drug release profile for ketoprofen and BCD (ratio 1:9), formulated 

using microwaves and conventional heating, in both cases with water present as a 

solvent 

Figure 5.4.2.4 – A drug release profile for ketoprofen and 2HPBCD (ratio 1:9), 

formulated using microwaves and conventional heating, in both cases without water 

present as a solvent 

Figure 5.4.2.5 – A drug release profile for ketoprofen and PVP (ratio 1:9), formulated 

using microwaves and conventional heating, in both cases without water present as a 

solvent 

Figure 5.4.2.6– A drug release profile for ketoprofen and BCD (ratio 1:1), formulated 

using microwaves and conventional heating, in both cases without water present as a 

solvent 



 
 

 

Figure 5.5.1.1 – A drug release profile for flurbiprofen and SA (ratio 1:3), formulated 

using conventional heating both with and without the presence of water during the 

formulation process 

Figure 5.5.1.2 – A drug release profile for flurbiprofen and SA (ratio 1:3), formulated 

using microwave heating both with and without water the presence of water during the 

formulation process 

Figure 5.5.1.3 – A drug release profile for flurbiprofen and PVP (ratio 1:1), formulated 

using microwave heating both with and without water the presence of water during the 

formulation process  

Figure 5.5.1.4 – A drug release profile for flurbiprofen and PVP (ratio 1:9), formulated 

using microwave heating both with and without water the presence of water during the 

formulation process 

Figure 5.5.1.5 – A drug release profile for flurbiprofen and PVP (ratio 1:9), formulated 

using conventional heating both with and without water the presence of water during the 

formulation process  

Figure 5.5.2.1 – A drug release profile for flurbiprofen and PVP (ratio 1:9), formulated 

using microwave and conventional heating, in both cases with water present as a 

solvent  

Figure 5.5.2.2– A drug release profile for flurbiprofen and PVP (ratio 1:1), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  

Figure 5.5.2.3 – A drug release profile for flurbiprofen and SA (ratio 1:3), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  

Figure 5.5.2.4 – A drug release profile for flurbiprofen and PVP (ratio 1:9), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  

Figure 5.6.1.1 – A drug release profile for paracetamol and SA (ratio 1:3), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  



 
 

 

Figure 5.6.1.2 – A drug release profile for paracetamol and PVP (ratio 1:1), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  

Figure 5.6.1.3 – A drug release profile for paracetamol and 2HPBCD (ratio 1:9), 

formulated using microwave and conventional heating, in both cases without water 

present as a solvent  

Figure 5.6.1.4 – A drug release profile for paracetamol and BCD (ratio 1:1), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  

Figure 5.6.1.5 – A drug release profile for paracetamol and BCD (ratio 1:9), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  

Figure 5.6.1.6 – A drug release profile for paracetamol and 2HPBCD (ratio 1:1), 

formulated using microwave and conventional heating, in both cases without water 

present as a solvent  
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Chapter One 
 
1:1 What are pharmaceuticals?  

The pharmaceutical industry covers many subject areas, which are all associated 

with converting drugs into medicines in the most efficient and effective way. Therefore 

the definition of pharmaceuticals is the formulation of a drug, also referred to as 

medicine or medication, which can be loosely defined as any chemical substance 

intended for use in the medical diagnosis, cure, treatment, or prevention of disease. 

However to get the medicine to this stage many problems may be encountered that are 

either associated with the drug, for example stability and solubility, or the formulation 

method1. Consequently it is important to start with, and understand, any problems that 

may be associated with each candidate drug. A major problem is that of aqueous 

solubility, as low solubility may limit the bioavailability of the drug.  Aqueous solubility is 

a crucial molecular property for successful drug development as it is a key factor 

governing drug access to biological membranes1. 

A scientific framework that may be used for guidance and help determining the 

solubility of a drug is a called the Biopharmaceutical Classification System (BCS). This 

classification system, along with in vitro dissolution of the drug product, has the 

following established parameters1-2:  

 

1. Class one: High permeability and high solubility  

2. Class two: High permeability and low solubility  

3. Class three: Low permeability and high solubility 

4. Class four: Low permeability and low solubility.  

 

The fundamental basis for the BCS was established by Dr Gordon Amidon2, and a drug 

substance can be considered highly soluble when the largest dose of a compound is 

soluble in < 250 mL of water over a pH range of 1.0 to 7.5. Drugs can be classed as 

highly permeable when the compound demonstrates > 90% absorption of the 

administered dose2. Once all the possible problems associated with the drug itself have 

been investigated, the next stage in drug development is to look at the most effective 

way of formulating the drug to produce a medicine2.  
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1.2 How drugs are delivered  

 Medicines are drug delivery systems and research must be continuously 

undertaken to ensure that these medicines offer the most efficient, safe and convenient 

way of administering the drugs incorporated in them to the site of action1.  

 

1.2.1 The therapeutic window 

The therapeutic window or zone is a way of estimating the dosage of a drug 

which stays within a range that is safe for the patient. In other words, it is the dosage of 

a medication that gives a desired effect (effective dose), is above a level where the drug 

is ineffective (pain zone) but below levels where adverse effects may be illustrated 

(Figure 1.2.1.1).  

 

 

Figure 1.2.1.1: Therapeutic Drug Plasma Concentration Time Profile3 

 

For any drug delivery system to be therapeutic, the drug must first be administered, 

once it enters the body it then enters into the blood stream where it is transported to the 

site of action. The drug is then metabolised, at which point it begins to work and after a 

set period of time it is excreted. If the bioavailability of the drug is limited then the 

therapeutic window may not be reached (i.e. limited benefit) as the drug concentration is 
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too low. If however the drug delivery system causes the drug to be released too rapidly 

then the concentration will exceed the upper limits of the therapeutic window and toxic 

effects may occur.  As a result it is exceptionally important to administer the drug in the 

correct way to optimise the therapeutic benefits. To do this there are a number of drug 

delivery systems available, with different routes to deliver the correct amount of drug to 

the site of action.  

 

1.2.2 Methods of drug delivery  

 Table 1.2.2.1 is a summary of the major drug delivery systems and the different 

routes of administration for each one.  

 

Route Example 

Oral Capsules and tablets 

    Rectal Suppositories and creams 

Topical Ointments and lotions 

Parenteral Injections and implants 

Respiratory Inhalations and sprays 

Nasal Inhalations and solutions 

Eye Solutions and creams 

Ear Solutions and creams 
                            

Table 1.2.2.1: Examples of drug delivery systems1 

 

The oral route is the most common form of administration, with tablets and capsules the 

most likely drug delivery system to be encountered. However, there are also a number 

of problems associated with this type of administration, for example the stability and 

solubility of the drug can be an issue.  

 

1.2.3 The requirement for formulation 

 Each of the above delivery methods will have a number of requirements so that 

the drug is effective. The drug may need protection to prevent it from being metabolised 

before it reaches the target site1. The drug will have to be released at a certain rate so 

that the levels remain within the therapeutic zone for the optimum amount of time plus it 

may have to overcome problems associated with solubility, and possibly stability. As a 

result, depending on the drug and mode of delivery, the pharmaceutical active is rarely 
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used in the pure form but combined with one or more materials called excipients 

(inactive part of the medication)4.  

 

1.2.4 Excipients  

 Excipients are added to the formulation for a number of reasons. They may 

function, for example, as an antimicrobial preservative, a solubility enhancer, a stability 

enhancer or a taste masker, to name a few1. As a result the International 

Pharmaceutical Excipients Council (IPEC) has defined a pharmaceutical excipient as: 

Any substance other than the active drug which has been appropriately evaluated for 

safety and is included in a drug delivery system to either4:  

 

1. Aid processing of the system during manufacture, or 

2. Protect, support or enhance stability, bioavailability or patient acceptability, or  

3. Assist in product identification, or 

4. Enhance any other attribute of the overall safety and effectiveness of the drug 

    product during storage or use.  

Each additive must have clear justification for inclusion into the formulation and must 

perform a defined function in the presence of the active component and any other 

excipient present in the formulation. Each excipient must be shown to be compatible 

with the formulation and effectively perform its desired function in the product4. Above 

all it must not be toxic to humans after consumption and not affect the bioavailability of 

the drug. After the choice of drug and excipients have been established the next stage 

in development is a formulation method that will enable these components to interact 

and work together to produce the final product medicine4.  

 

1.3 Formulation methods  

 Along with the importance of choice of the excipient, the way the drug and 

excipient are mixed together becomes important. This is known as the formulation 

method, and because the type of dosage form and its method of preparation can 

influence drug dissolution and consequently the bioavailability of the drug, the 
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formulation method must not affect these key parameters. Therefore the method must 

be optimal and not cause any problems with the final product4.  

There are a number of different methods available and the choice is dependent 

on the type of dosage form that is required, for example any injected medication needs 

to be in solution and as a result the solubility and stability of this type of formulation is 

critical4,5. Therefore the choice of excipients and the formulation method must ensure 

that the active remains within solution but is also protected and stable until the site of 

action is reached4,5. The following diagram is an illustration of the different types of 

formulation methods that can be used to formulate tablets and capsules (Figure 1.3.1). 
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Figure 1.3.1: The major formulation methods for tablets and capsules1. 
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The focus of this research specifically considers an adaptation of the melt method to 

formulate drugs with excipients to produce solid dispersions.  

 

1.3.1 Solid dispersions 

One way to overcome the problem of poorly aqueous soluble drugs is to mix with 

particular excipients producing what is now commonly known as a solid dispersion.  

The first solid dispersion was developed in 1961 by Sekiguchi and Obi6-8. Their 

research found that by melting Sulfathiazole with urea and cooling the mixture in an ice 

bath a solid dispersion was produced that enhanced the absorption of the drug6. 

Sekiguchi then extended this work in 1964, with the fusion method used to prepare 

chloramphenicol and urea to improve formulations with this drug7.  

In 1966, Arthur Goldberg and his team confirmed that the drug may be 

molecularly dispersed in a matrix, forming a solid solution. Subsequent investigation 

then went into a wide range of drugs and methods to produce solid dispersions9-14. As a 

result, a solid dispersion is now defined as:  

 

The dispersion of one or more active ingredients in an inert excipient or matrix, 

where the active ingredient could exist in a finely crystalline, solubilised or 

amorphous state15-18.  

 

Solid dispersions can be formulated in the following three ways14-16: the Fusion method, 

the Solvent method, and the Melt-Solvent method.  

 

1.3.2 Fusion method 

The first fusion method consisted of a physical mixture of a drug and a water 

soluble carrier, which were heated directly until both melted. The melted mixture was 

then cooled and solidified rapidly in an ice bath whilst stirred.  Finally, the solid mass 

was then crushed, pulverised and sieved. An advantage of this method includes its 

simplicity and disadvantages included that the drug and/or excipients may decompose, 

or evaporate, at temperatures sufficient to melt either or both components6-7,14.  
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1.3.3 Solvent method 

For the solvent method, the physical mixture of the drug and carrier are dissolved 

in a common solvent followed by evaporation leaving the solid dispersion of the drug in 

the carrier. Advantages for this method include the thermal decomposition of drugs or 

carriers can be prevented because low temperatures are required for the evaporation of 

organic solvents. Disadvantages include the high cost of preparation, difficulty in 

removing solvent completely, possible adverse effects of solvent on the stability of 

drugs, and also difficulty in reproducing crystal forms14,16,19. 

 

1.3.4 Melt-Solvent method 

For this method the drug is first dissolved in a suitable solvent, and then 

incorporated directly into a melt of a chosen excipient.  

Over the past fifty years the three methods discussed, have received much 

interest including different ways of mixing drugs with different excipients to produce a 

solid dispersion14,20-31.  

           Although solid dispersions have been extensively studied, their application in 

drug development has only become significant in the last twenty years. This is because 

of the discovery of more and more poorly soluble drugs that are now under 

development. Common strategies such as particle size reduction, salt formation, and 

solubilisation in organic solvents, are not always successful at achieving the desired 

dissolution and absorption enhancement for a drug4.  

           Current issues that impede the commercial development of solid dispersions 

include: problems in scaling up from the laboratory to industrial manufacture, difficulty in 

controlling physicochemical properties, difficulty in delivering solid dispersion 

formulations as tablets or capsules, and physical and chemical instability of drug and/or 

excipients4.  

       Despite these potential issues, solid dispersions still remain a viable way to improve 

current problems within formulation of drugs. As previously discussed there has been 

much research into solid dispersions, however little is known with respect to the 

potential of microwave heating for this method of formulation.  This consequently forms 

the basis of the current project.  
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1.3.5 Microwave assisted formulation 

          A research paper published in 2003 by Bergese et al27 reported that by heating a 

drug and an excipient, solid state diffusion may occur between the two components. 

Furthermore, this diffusion may be enhanced by the use of microwave heating but so 

little data has been published in this area it is hard to be certain of this statement.  

1.3.6 Conventional heating  

             In conventional heating, thermal energy passes to the surface of the sample 

from an external heat source mainly through conduction32 (Figure 1.3.6.1). The 

temperature of the sample is usually uneven with the outside hotter than the interior. In 

the case of pharmaceutical formulations prepared by melting or thermal diffusion a non-

uniform product may result, which could have detrimental effects on the product.          

Thermal conduction mainly occurs in solids and it works because every atom in the 

solid is physically bonded together in some way. If heat energy is supplied to one part of 

the solid the atoms begin to vibrate faster, and this vibration is passed onto the 

adjoining atoms32. This eventually passes throughout the material and the temperature 

increases.  

          Conduction always occurs from regions of high temperature with the heat energy 

passed to regions of low temperature to equalise the temperature differences33.         

Different types of solids will transfer heat by conduction at different rates, and the rate 

each solid will transfer heat is calculated by the material’s thermal conductivity. 

Materials with a large thermal conductivity will transfer large amounts of heat over time, 

and materials with a low thermal conductivity will transfer small amounts of heat over 

the same period of time33.  
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                                                                  through a solid 

 

 

                                           Figure 1.3.6.1 – Illustration of thermal conduction 
 
 

1.3.7 Microwave heating  

         Microwave technology is a relatively new technique to the pharmaceutical 

industry, and previous work has concentrated on applying microwaves to the drying of 

pharmaceutical products34-39. However the use of microwave energy is now advancing 

into the formulation side of the pharmaceutical industry27-31 with the prospect of 

improving drugs with water solubility issues and also controlling how a drug is released 

in vitro/in vivo.  

        Microwaves are part of the electromagnetic spectrum. Electromagnetic radiation is 

a form of energy radiated in a wave travelling at the speed of light40.  It compromises of 

an electric and magnetic field that oscillates at right angles to each other and in the 

direction of propagation (Figure 1.3.7.1). Generally electromagnetic radiation is 

classified by the wavelength into radiowaves, microwaves, infrared radiation, visible 

light, ultraviolet radiation, X-rays, and gamma rays40, with microwaves spanning the 

300MHz to 300GHz frequency range of the spectrum39. The growing interest in 

microwave heating technology derives from the fact that it relies on direct interaction of 

the material with the electromagnetic radiation and less dependence on thermal 

conduction41-44. The benefit of microwave heating compared with conventional heating 

includes selective and faster heating which allows energy and time saving41-42. The 

depth of microwave heating depends mostly on the frequency of the microwave, the 

power used and the electrical and thermal conductive properties of the material41. This 

type of heating is instantaneous, uniform and penetrating throughout the material41.  
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Temperature 

HEAT 
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Figure 1.3.7.1: Diagram of the electromagnetic wave45 

 

Not all materials are heated to the same extent when exposed to microwave radiation 41-

44. When considering how a material will behave once exposed to microwave heating, a 

critical factor is the material’s dielectric properties. This is the ability to form a dipole 

when exposed to an electric field45. The operation of microwave heating can be 

explained simply in terms of two mechanisms: Ohmic and Frictional heating45-46.  

           In ohmic heating (conductance), which particularly applies to solids, the 

alternating electric field of the microwave (E) causes movement of charged carriers, like 

electrons within the solid45,47. This movement creates a current which produces heat 

through any electrical resistance of the solid (dielectric properties). In frictional heating 

(dipolar polarisation), which practically applies to polar liquids such as water or ethanol, 

the permanent dipoles attempt to track the alternating electric field of the microwave47. 

At microwave frequencies, the molecules can’t quite track the rapidly alternating field 

and the resultant ‘jostling’ produces heat and the liquid heats up (Figure 1.3.7.2).  
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Figure 1.3.7.2: Illustration of Ohmic and Frictional Heating in Solids and Liquids45 

 

The ability for a material to turn microwave energy into heat is sometimes called the 

‘loss factor’. Materials with a high loss factor will readily absorb microwave energy, for 

example, water and alcohol. Materials with a low loss factor are either reflecting or 

transparent to the microwave energy, for example quartz glass and PTFE35,45. The 

diagram below illustrates some materials and how they behave upon exposure to 

microwave energy (Figure 1.3.7.3).  
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Figure 1.3.7.3 Interactions of materials with microwave energy45 

 

The loss factor is temperature dependant and for some materials can rise as it gets 

hotter. In addition, chemical or physical changes in the material (i.e. going from solid to 

liquid) can cause a significant change in the loss factor35. These changes may 

contribute to the process called thermal run-away (illustrated in Figure 1.3.7.4, seen 

within the highlighted circle). This is where the temperature of the material rises rapidly 

even though the amount of microwave power is unchanged35.  

 

 

Figure 1.3.7.4: Illustration of thermal run-away under microwave heating 
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Despite the chance of thermal run-away and the potential heating capabilities of 

microwaves, the actual amount of energy supplied to a material is below the energy 

required to break bonds. Microwaves do not have adverse effects on the actual material 

being heated, they just facilitate this process, allowing a faster and a more uniform 

heating process45.  

            

1.3.7.1 The microwave oven 

         The majority of microwave heating is performed in a microwave oven and a 

modified form of this was used in this research. Microwaves are generated by a 

magnetron; vacuum diodes that are made up of circular resonating cavities around a 

cathode immersed in a perpendicular magnetic field46.  

         Albert Hull created the magnetron in the 1920’s, and this was then further 

investigated by Harry Boot and John Randall in the 1930’s and the early 1940’s. 

Eventually in 1947, Dr Percy Spenser made the first microwave oven47.  

        The microwave oven differs from that used in domestic applications in four 

aspects.  

A) The power control system has been modified so that there are two, rather than 

the usual one transformer to supply the current to the magnetron filament and 

provide the accelerating potential. This configuration means that the power can 

be switched on and off more rapidly, leading to better temperature control.  

B) The incorporation of a metal reflector within the oven. The reflector is made of a 

1mm thick square piece of aluminium that rotates while the microwave is on. This 

allows for the microwave energy to be focused onto the material been heated, 

aiding the whole heating process and allowing the desired temperature to be 

reached at a faster rate.  

C) The use of a fibre optic temperature probe to accurately measure the 

temperature of the sample within the oven. The temperature is monitored by a 

fibre optic probe with a fluorescent chemical (phosphorescent chemical) at the 

tip. This chemical is excited by a light pulse sent down the fibre via a control unit. 

The fluorescent chemical then re-emits the light over a period of time 

(milliseconds) and this is proportional to the actual temperature of the material 
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been heated. The control unit measures the time it takes for the fluorescent 

chemical to re-emit the light and calculates the temperature which is then sent 

and seen on the computer. The operating range for the fibre optic probe is from 

0°C to 300°C48. 

D) The use of bespoke control and acquisition software that allows the microwave 

power to be set to any desired level in real-time and records both the power and 

the fibre optic probe temperature as a function of time. For a visual picture of the 

microwave cavity, refer to Chapter Two, Section 2.2, and Figure 2.2.1.3. 

 

1.4 Techniques used in the analysis of pharmaceutical formulations 

      To evaluate the success of any pharmaceutical formulation careful analysis is 

required. Some of the techniques used within the pharmaceutical industry for the 

analysis of formulations are: Particle size analysis, X-ray diffraction (XRD), scanning 

electron microscopy (SEM), differential scanning calorimetry (DSC), fourier transform 

infrared spectroscopy (FT-IR), isothermal titration calorimetry (ITC), thermal activity 

monitoring (TAM), and in vitro dissolution. All these techniques use different principles 

to help determine how a formulation behaves and the compatibility of the drug and 

excipients. These techniques will also show if any damage or degradation has occurred 

to the drug during the formulation process or potential storage.   

       For the purpose of this research, analysis was limited to the five most appropriate 

techniques, namely 

1. Isothermal titration calorimetry, 

2. Differential scanning calorimetry, 

3. Scanning electron microscopy, 

4. Thermal activity monitoring,  

5. In vitro dissolution.   
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1.4.1 Isothermal Titration Calorimetry (ITC) 

Calorimetry is the measurement of heat evolved or absorbed by a chemical or 

physical process49.  

All chemical and physical changes are accompanied by a change in heat content or 

enthalpy. Therefore all chemical reactions, including solid-state, solution-phase, gas-

phase and biological reactions can be studied using calorimetric techniques50.  

One of these calorimetric techniques is isothermal titration calorimetry (ITC). ITC 

is a highly sensitive technique that investigates weak interactions between molecules 

and by investigating this, it provides thermodynamic and kinetic information for the 

reaction51. Therefore ITC measures binding interactions between, for example, drug 

molecule-carriers, and these interactions can be detected by the associated heat 

absorbed or released during a reaction52. From this, ΔH (enthalpy), and ΔS (entropy) 

can be calculated and a significant amount of information about an interaction can be 

concluded. It is only possible to calculate ΔH, and therefore ΔS, because nearly all 

binding interactions are accompanied by a change in enthalpy. Therefore a full 

thermodynamic profile can be gained from one single ITC experiment53.  

 

For a reversible association between D and C then the following applies:  

 

D + C ↔ DC 

 

Which is characterised by its association binding constant (bonding affinity between two 

molecules at equilibrium), Kb, defined by the following:  

 

                                               [DC]      = Kb         Equation 1.4.1.1 

                                                                  [D] [C] 

 

[DC] = Drug-excipient complex,  

[D] = Drug 

[C] = Excipient  
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In addition, the association constant, K, is related to standard free energy, ΔG, by: 

 

                                          ΔG = ─RTInK                  Equation 1.4.1.2 

 

Where R = Gas constant (8.314 J mol─1)  

            T = Absolute Temperature (K) 

 

Furthermore, the standard free energy is composed of a heat term ΔH, (enthalpy) and 

ΔS (entropy) and related by:  

 

                                   ΔG = ΔH – TΔS54-58                 Equation 1.4.1.3 

 

ΔG = Standard free energy (kJ mol─1) 

ΔH = Enthalpy (kJ mol─1) 

T = Absolute Temperature (K) 

ΔS = Entropy (kJ mol─1) 

 

1.4.1.1 ITC Instrumentation  

ITC comprises two identical cells, a reference cell and a sample cell (1.8mL in 

volume). These two coin-shaped cells are enclosed in an adiabatic shield or jacket, 

illustrated in Figure 1.4.1.1.1. The temperature difference between the reference cell 

and the jacket is continuously monitored to maintain a constant temperature58. A 

feedback system monitors the difference in temperature between the sample and 

reference through a thermocouple that is positioned between the two cells58. This 

thermocouple allows for a highly sensitive response to fluctuations in temperature 

between the cells and the jacket59. Therefore the feedback signal is the measured 

signal.   

The sample cell contains a solution of the chosen excipient (titrand), and the 

injection syringe contains a solution to be injected into the sample cell called a titrant 

(drug), that will cause a heat change. The injection syringe injects this solution into the 

sample cell in a stepwise manner, usually between 5-10μL at each step and produces a 
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response. Along with delivery into the sample cell, the syringe rotates and stirs the 

mixture at the same time. This mixing of the interacting species is rapid and allows 

response times of the instrument to be less than ten seconds.  

 

                                     Figure 1.4.1.1.1 – A typical ITC cell60  

 

ITC provides information on thermodynamic parameters to be investigated by direct 

measurements of the enthalpy over the course of a titration. This information can then 

be used to provide an insight into stability, specificity and stoichiometry of numerous 

biomolecular interactions.  

ITC is just one calorimetric method, there are many more including non-

isothermal methods such as differential scanning calorimetry (DSC).   

 

1.4.2 Differential Scanning Calorimetry (DSC) 

 Thermal analysis is a group of techniques in which a property of a sample is 

monitored against time or temperature while the temperature of the sample, in a specific 

atmosphere is varied61-65. The chosen program may involve heating or cooling of the 

sample at a fixed temperature rate, holding at a specific temperature, or any sequence 

of these61-65. DSC is a technique that measures the energy difference (heat flow) 

between the sample and the reference61-65.  

DSC is the most often used thermal analysis method, mainly because of its 

speed, simplicity and availability. DSC however also provides detailed information on 

physical and energetic properties of a substance (for example, melting points, re-

crystallisation, and glass transitions)66. It offers the analyst quantitative information 
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about exothermic, endothermic and heat capacity changes as a function of temperature 

and time66. 

To conduct these measurements, the sample is placed into a small pan usually made of 

aluminium. The reference is also an aluminium pan but usually left empty, they may 

also have lids that have a hole pierced into the top of them67. The sample size is usually 

between 5-10mg and the temperature range is typically 25-700°C67.  

 

There are variations in the type of DSC instrumentation available and this research 

used the common ‘heat-flux’ form.  

 

In heat-flux DSC the difference in heat flow into the sample and reference is measured 

while the sample temperature is changed at a constant rate66. Both the sample and 

reference pans are heated by a single heating unit, and heat flows into the sample and 

reference via an electrically heated thermoelectric disk66. The differential heat flow into 

the two pans is directly proportional to the difference in the temperature between the 

two pans.  

 

1.4.3 Thermal Activity Monitoring (TAM) 

The thermal activity monitor (TAM), is an isothermal calorimetric system 

designed to monitor a wide range of chemical and biological reactions. It works on the 

principle that all chemical and biological processes are accompanied by a heat 

exchange with their surroundings, and therefore the system can observe and quantify 

both exothermic (heat-producing) and endothermic (heat-absorbing) processes68-73. The 

TAM can be used to obtain information on the rate, and extent of basic chemical 

reactions, phase changes, changes in structure and metabolism of living systems. Any 

thermal events that these reactions or changes provide, even in the microwatt range 

(μW) can be observed by the TAM. This means that any temperature differences less 

than 10-6°C can be detected68-73.   

TAM utilises the heat flow or heat leakage principle (Figure 1.4.3.1), where heat 

produced from the sample in a thermally-defined vessel flows away in an effort to 

establish thermal equilibrium with the surroundings. Thermal stability is achieved by 
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using a 25L thermostated water bath which surrounds the reaction vessel and acts as 

an infinite heat sink. Any reaction can be studied within the temperature range of 5-80°C 

(working temperature of the thermostat) and up to four individual samples can be held 

and measured in the water bath. The temperature is maintained constantly to allow the 

smallest changes to be accurately measured68. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure1.4.3.1: Heat flow principle68. 
 

Heat energy from the sample in the reaction vessel (glass ampoule) is channelled 

through sensitive thermopile blankets, called the peltier elements, before escaping to 

the heat sink68.  

The peltier elements act as thermoelectric generators using the seebeck effect. 

These are bimetal devices made from semi-conductor materials, and can respond to 

temperature gradients of less than one millionth of a °C. These peltier elements are 

made up of a large number of semiconductor junctions joined in a series. These highly 

sensitive detectors convert heat energy into a voltage signal which is proportional to the 

heat flow. The results are presented on a computer and are a measure of thermal 

energy produced by the sample per unit of time. Interactions involving liquids, solids, 

and gases can be measured68.  

 

 

Heat Sink 

Heat Sink 

Sample Cell 

Thermopiles 
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1.4.3.1 Instrumentation  

The TAM itself is a free-standing multichannel microcalorimeter. Continuous heat 

leakage measurements are conducted under isothermal conditions. 

The two main functions of the system are precise control of the isothermal 

temperature with the water thermostat, and detection of thermal events by a 

measurement system68.   

The samples are placed in the TAM via measuring cylinders (glass ampoules) 

which are maintained at constant temperature by the water thermostat. Each cylinder, 

together with a signal amplified, forms the measuring channel. Up to four channels can 

be operated at the same time in the TAM68.  

In all channels, measurements take place in the measuring cup which is between 

a pair of peltier thermopile heat sensors. In each cylinder there is a single peltier 

element mounted on the base of each cup, and the samples are introduced to each cup 

in sealed ampoules after a pre-equilibration period. This equilibrium period is carried out 

in the neck of the cylinder and outside of the neck is in direct contact with the water from 

the thermostat bath. This allows for rapid exchange of heat between the ampoules and 

the water bath via the neck68.  

The TAM is fitted with two amplifiers, one for each channel. The output signal 

from any thermal event within the sample is fed directly to the appropriate channel 

amplifier and the signal is monitored by a computer.  

  

In summary, calorimetric techniques can provide an array of information about the 

behaviour of a pharmaceutical sample as it undergoes chemical or physical changes. 

However it does not allow the analyst to visually see any differences. To achieve this 

form of analysis requires a technique such as scanning electron microscopy (SEM). 
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1.4.4 Scanning Electron Microscopy (SEM) 

 Scanning electron microscopy can image and analyse bulk materials, with 

magnification up to <1000x. This type of magnification is possible with SEM and not 

light microscopy because SEM uses electrons to produce the image rather than 

photons. However because of this all images are in black and white. SEM has many 

advantages over light microscopy including: large depth of field allowing more of the 

sample to be focused at one time, and higher resolution which allows closely spaced 

specimens to be magnified at a much higher level74-76.  

 

1.4.4.1 SEM Instrumentation  

 Two major components are the electron column and control console (Figure 

1.4.4.1.1). The electron column consists of an electron gun and two or more electron 

lenses, which influence the path of electrons travelling down the evacuation tube. The 

electron gun generates electrons and accelerates them to an energy in the range of 0.1 

to 30 KeV74-76. The electron beam finally emerges from the last lens and into the sample 

chamber, where it interacts with the sample to a depth of approximately 1μm and 

generates a signal which is used to form an image. All of this is carried out under 

vacuum, to prevent any electrons colliding with air molecules which would result in a 

distorted image74.  

 

Figure 1.4.4.1.1 – Illustration of SEM instrumentation77 
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Two pairs of electromagnetic deflection coils (scan coils) sweep the electron beam 

across the sample. The first pair of coils deflect the beam from an optical axis within the 

microscope and the second pair bends the beam back onto the axis at the pivot point of 

the scan74. Once the electron beam interacts with the sample, a number of signals are 

generated. The electronics of the detector system converts these signals to point-by-

point intensity changes which are passed to a computer that reads the signals and 

produces an image74.  

 The two most important signals that are used to produce an SEM image are 

secondary and backscatter electrons (SE and BSE). These signals are capable of 

carrying information about the sample composition, shape (topography), surface textile, 

and thickness. Secondary electrons are loosely bound outer shell electrons from the 

sample atoms. These receive sufficient kinetic energy during the scattering of the 

electron beam and are ejected from the sample and set in motion. Secondary electrons 

are defined on the basis of their kinetic energy and all electrons that are emitted from 

the sample with energy less than 50eV are classed as secondary electrons74.  

Backscatter electrons are a beam of electrons whose trajectories occur because 

of an interception with the surface of the sample. Backscatter electrons remove a 

significant amount of the total energy from the primary beam and the number of these 

electrons that reach the detector is proportional to the mean atomic number of the 

sample74-76.  

 Two types of detectors are used to identify the secondary and backscatter 

electrons these are then used to provide information on the sample. However for the 

electron beam to interact with the sample and for SE and BSE to be produced, the 

sample must be a solid and conducting. Samples that are not conducting are coated 

with a thin layer of a conducting material, such as gold, by a device called a ‘sputter 

coater’.  

 

All the above techniques provide information concerning the formulated product, 

however it is also important to consider how formulation choices affect the subsequent 

drug release profile. One technique that can help in this respect is in vitro dissolution 

analysis. 
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1.4.5 Dissolution analysis  

Dissolution studies of pharmaceutical compounds are exceptionally important 

because the dissolution behaviour will govern the bioavailability of the drug78.  

 Dissolution is defined as the process by which a solid substance enters into a 

solvent yielding a solution. Simply, dissolution is the process by which a solid substance 

dissolves79.  Dissolution testing is generally carried out on pharmaceutical dosage 

forms, including solid and solid-liquid dispersed formulations and mainly for quality 

control between batches78-80.  

 Once a dosage form is administered to the body, it undergoes dissolution in the 

biological media, followed by absorption of the drug79. However for any of this to occur, 

the drug must dissolve before absorption can take place (in vivo).  Dissolution (in vitro) 

can help to predict how well the drug will dissolve, therefore help to predict in vivo 

activity (in vivo, in vitro correlation, IVIVC).  

 

 

Solid   Solution   Blood 

 

Many factors can affect dissolution, including: the manufacturing process of the 

drug/excipient (granulation, tablet punch pressure, composition of the formulation), drug 

properties (solubility/permeability, particle size, wettability, pH, pKa) and the dissolution 

method (paddle/basket method, rotation speed, temperature, volume and pH)79-80.  

If absorption is slow (drug dissolves, but diffusion, or active transport of drug over 

GI tract restricted) when compared with dissolution then absorption is the rate 

determining step. However if dissolution is the rate determining step then the factors 

that affect dissolution will control the overall process81.  

The dissolution rate is described by the Noyes-Whitney equation (this relates the 

rate of dissolution of solid to the properties of the solid and the dissolution medium)82-83:  

 

 

Dissolution 

Absorption 
(ingestion) 
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    Equation 1.4.5.1 

 

M = Mass of solute dissolved in time, t. 

dm/dt = Mass rate of dissolution (mass/time) 

D = Diffusion coefficient of solute in solution 

S = Surface area of exposed solid 

h = Thickness of diffusion layer 

Cs = Solubility of solid 

C = Concentration of solute in bulk solution at time, t. 

t = Time 

 

If diffusion is the rate determining step, Fick’s Law of diffusion can be used. Also if the 

drug concentration at various distances from the surface of the solid are measured then 

a concentration gradient can be seen81.  

 

Fick’s Law of diffusion 

Rate of Solution =       Equation 1.4.5.2 

 

D = Diffusion coefficient 

A = Surface area 

Cs = Solubility of drug 

Cb = Concentration of the drug in bulk solution 

h = Thickness of diffusion layer 

 

1.4.5.1 Methods of dissolution  

 There are a number of methods, but the most common and the official BP 

method is the rotating basket and paddle method for testing solid oral dosage forms. 

The rotating basket method was developed by Pernarowski in 196884, and then soon 

after Hayes developed the paddle method in 196985 which was further improved by 

Poole in 1969. The basket method uses a wire mesh basket to hold a solid dosage form 
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which is in the dissolution media allowing for wetting of the formulation and release of 

the drug.  

 For the paddle method, the solid dosage form is dropped into the dissolution 

media and the paddle rotates the media and the solid dosage form allowing for the 

wetting of the formulation and release of the drug4,79.  

 

1.4.5.2 Instrumentation  

 The dissolution instrument comprises of six 200mL dissolution cells and two 

further one litre cells containing a blank and the other, a standard solution. The 

dissolution cells stand in a water bath maintained at 37°C±0.1°C. Drug dissolution is 

monitored using a UV-Vis spectrometer monitoring a chosen wavelength for the drug of 

interest. The solution is circulated from the cells to the UV-Vis using a peristaltic pump 

while software (Icalis) allows a real-time dissolution profile for each of the cells to be 

determined. Beer-Lambert calibration plots were constructed to allow the absorbance 

values to be converted to percentage drug release.  

1.4.5.3 Buffers  

The definition of a buffer is a ‘substance which by its presence in solution 

increases the amount of acid or alkali that must be added to cause a unit increase in 

pH85. A buffer contains a weak acid and its conjugated base (or a weak base and its 

conjugated acid). This type of solution can maintain a constant pH when a small amount 

of acid or base are added, and are widely used where a change in pH may have 

detrimental effects.  

Dissolution is pH sensitive and so dissolution studies frequently use buffer 

solutions to ensure reliable results as some drugs are acidic in solution. In addition, the 

use of buffers can simulate the pH of parts of the gastrointestinal system to increase the 

realism of the dissolution study85.   

For the current research, a buffer comprising 0.2M Di-sodium hydrogen 

orthophosphate dodechydrate and 0.2M Di-hydrogen orthophosphate di-hydrate was 

used to maintain a pH of 8 as found in the small intestine.   
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1.5 Materials used in this research 

           There were four drugs and four different excipients chosen for the current study. 

These were ibuprofen, ketoprofen, flurbiprofen and paracetamol. These particular drugs 

were chosen because all are non-steroidal anti-inflammatory drugs (NSAID’s) 

commonly used. Consequently there is extensive knowledge on these drugs, i.e. they 

are well characterised. Each of these drugs properties are summarised in Table 1.5.1 to 

1.5.3. 

 

 

         Table 1.5.1 – Structural summary of the four drugs used86-108 
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Drug 
Therapeutic Dose 

(mg) 
Solubility (mg/mL) at 

25°C Appearance pKa 

Ibuprofen 200-1200 0.06 
White Crystalline 

powder 4.5 

         

         
          

Ketoprofen 200-1000 0.30 
White Crystalline 

powder 4.5 

         

         
          

Flurbiprofen 200-1000 0.08 
White Crystalline 

powder 4.5 

         

         

         

          

Paracetamol 500-1000 20.90 
White Crystalline 

powder 9.5 

         

         

         
          

 

Table 1.5.2 – Summary of chemical properties of the drugs used in this work86-108 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

Drug logP MP (°C) BCS 
Dosage 
Forms 

Ibuprofen 3.6 75-77 2 Tablets 

       Capsules 

       Liquids 
        Gels 

Ketoprofen 0.97 95-97 2 Capsules 

       Injections 

       Suppositories 
        Gels 

Flurbiprofen 4.2 114-117 2 Tablets 

       Capsules 

       Eye Solutions 

         

          

Paracetamol 0.49  169-170 1 Tablets 

       Capsules 

       Suspensions 

       Suppositories 
          

 

Table 1.5.3 – Pharmaceutical properties of the drugs used in this research86-108 

 

Ibuprofen, ketoprofen and flurbiprofen have poor aqueous solubility because they are 

weak acids with pKa values in the range 4-5 i.e. when they dissociate, hydrogen ions 

are released. The more hydrogen ions that are released the more acidic the solution 

becomes, this then inhibits the solubility of these drugs because weak acids dissolve to 

a greater extent when in mild basic solutions. Therefore the solubility is pH dependant 

and increases with increasing pH, related by the following equations (Equations 1.5.1-

1.5.2)86-108 

                                    pKa = -log10(Ka)            (Equation 1.5.1) 

 

Ka = [H+] [A-]  

                                                                         [HA]                  (Equation 1.5.2) 

[H+] = Hydrogen ions  

[A-] = Ionised drug 

[HA] = Unionised form of drug  
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1.5.1 Previous research  

Previous research for ibuprofen solid dispersions and inclusion complexes has 

included a number of methods to incorporate ibuprofen into polyvinylpyrrolidone (PVP), 

stearic acid (SA) and β-cyclodextrin (BCD). These include wet granulation109, the 

solvent method110, spray drying111, and freeze drying112-113. This previous work suggests 

that these excipients can help control the release of the drug or improve the solubility 

using the chosen formulation method.  

 Other research which is directly relatable to this work incorporated ibuprofen into 

the above excipients by melting114-115 using conventional heating. Referring to 

references 27-31, Bergese et al, and Moneghini et al formulated ibuprofen with PVP 

and BCD using microwaves to produce solid dispersions or inclusion complexes to 

improve the properties of the drug. All suggest that microwave heating, with the use of 

ibuprofen, could be advantageous and help to control the release of the drug. This 

research, although demonstrating the potential of microwave heating, had drawbacks in 

terms of accurate temperature measurement and power control that the current work 

seems to address. In addition, a wider range of drug-excipient systems were studied 

than previously considered.   

Previous research for ketoprofen solid dispersions and inclusion complexes has 

covered a number of methods including incorporation of ketoprofen into PVP and BCD. 

These include freeze drying to produce a solid dispersion116-117, spray drying118, 

kneading and co-evaporation119. However, little has been published on the use of the 

melt method for the formulation of this drug with the chosen excipients other than two 

papers published in 2008 by Cirri et al120-121. In both the published papers ketoprofen 

was tumble mixed with β-cyclodextrin, methyl-β-cyclodextrin and egg 

phosphatidylcholine in various ratios. Each different mixture was then subjected to 

microwave heating for varying amounts of time and power. It was seen in all cases that 

an improvement for the dissolution of the drug occurred. However despite another 

method of microwave heating illustrating the potential, these methods still illustrated 

drawbacks which have previously been discussed and seem to be taken into 

consideration in the current project. Another novel aspect of this research is the 

incorporation of ketoprofen into PVP, SA and 2HPBCD using the melt method.  
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Previous research into flurbiprofen has been carried out using various methods that 

include co-precipitation, co-evaporation and spray drying122-126. However, no known 

research has incorporated flurbiprofen into the chosen excipients via the different 

heating methods.  

 Paracetamol was the last drug incorporated into this research, however little 

research was found relating to this work. The only paper found that illustrated 

paracetamol and β-cyclodextrin mixed together was published in 1992 by Tasic et al. 

The solid dispersions of paracetamol were prepared by mixing the drug with β-

cyclodextrin via a kneading method (mortar and pestle) and a water-ethanol solvent 

mixture.  

 

In addition to varying the drugs under investigation, this research focuses on varying 

excipients, namely stearic acid (SA), β-cyclodextrin (BCD), polyvinylpyrrolidone (PVP) 

and 2-hydroxypropyl-β-cyclodextrin (2HPBCD).  

 

1.5.2 Excipients  

The choice of excipient is important to any drug formulation. This choice can 

affect the solubility of the drug and therefore the dissolution4. Excipients are generally 

added to a drug to provide a specific function. This can be to mask an unpleasant taste 

provided by the drug, it can provide protection for the drug so it is not damaged before it 

reaches its target site, and they can be added to increase solubility and increase or 

decrease the kinetics of drug release4. However the magnitude of the effects will 

depend upon the drug, the quantities, properties of the excipient4 and the formulation 

method. A summary of the different excipients used within this research, stearic acid, β-

cyclodextrin, polyvinylpyrrolidone, and 2-hydroxypropyl-β-cyclodextrin can be seen in 

Table 1.5.1.1.  
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Excipient  Chemical formula Solubility  Appearance MP (°C) Uses 

SA C18H36O2 Insoluble Waxy solid 66-70 
oral and topical 

formulations 

        Lubricant and binder 

BCD (C6H10O5)2.3H2O  
Soluble 

(0.18g/mL) 
White 

powder 280 
Improve solubility by 

forming 

        inclusion complexes 

2HPBCD 
(C6H10O5)2.3H2O. 
CH2CH(OH)CH3 

Soluble 
(1g/mL) 

White 
powder 280 

Improve solubility by 
forming 

          inclusion complexes 

PVP C6H10NOn 
Cross-Linked 

PVP 
White 

Powder 300 Complex formation with  

    Insoluble     pharmaceutical drugs 
 

Table 1.5.1.1 – Summary of the four different excipients employed for this research128-

132 

 

Stearic acid (Figure 1.5.1.1), is a long chain fatty acid and previous research has 

utilised it with ibuprofen to aid or control the release of the drug132. However in this 

research the stearic acid and ibuprofen mixture was heated using conventional heating 

to encapsulate the drug.  

OH

O

 

                                         Figure 1.5.1.1: Structure of Stearic acid 

 

Cyclodextrins are natural or semi-synthetic cyclic oligosaccharides with α-, β- and γ- the 

most commonly used, consisting of six, seven and eight D-glucopyranose units 

respectively133. Each of these units are linked by an α-1,4, glycosidic bond and because 

of the chair formation of the glucopyranose units, the cyclodextrin takes the shape of a 

truncated cone134-140. As each cyclodextrin increases in glucopyranose units, their cavity 

also increases in size and therefore larger drug molecules can be included (β-

cyclodextrin has a cavity size around 6-6.5Å)141. The cavity is hydrophobic and forms 

inclusion complexes preferentially with hydrophobic drugs134-147.  
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Cyclodextrin complex formation usually results from a combination of electrostatic 

interactions, van der Waal’s, hydrogen-bonding and charge-transfer interactions146-147 

and some papers have suggested that these complexes form in a 1:1 ratio134-147.  The 

structure of β-cyclodextrin (BCD) is illustrated in Figure 1.5.1.2. 

 

 

Figure 1.5.1.2 – Structure of β-cyclodextrin, front and side view144
 

 

 
2-Hydroxypropyl-β-cyclodextrin (2HPBCD) has gained much interest over the years 

because of its increased solubility when compared to the parent β-cyclodextrin148-150. It 

is produced from β-cyclodextrin by hydroxypropylation of the hydroxyl groups of the 

cyclodextrin151. It is chemically stable and the degree of substitution is the average 

number of hydroxypropyl groups per cyclodextrin. The structure is illustrated in Figure 

1.5.1.3 and the hydroxypropyl group is CH2CH(OH)CH3, substituted onto the 

cyclodextrin in the R position.  
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Figure 1.5.1.3 Structure of β-cyclodextrin 

the R groups show where the hydroxypropyl group can be substituted151 

 

The cavity retains its hydrophobic nature and the hydroxypropyl groups give an 

increased water solubility148-155. The degree of substitution of these hydroxypropyl 

groups also allows some control over the bonding to any drug molecule.  

 

Polyvinylpyrrolidone (PVP) is widely used because of the following properties: it is 

highly hydrophilic, it has good biological compatibility, rapid water uptake, low toxicity, 

good swelling properties, adhesive characteristics, it is relatively inert against salts and 

acids, and it is resistant to thermal degradation156-160.  

PVP falls into two different categories based on aqueous solubility. However for 

the purpose of this research only the insoluble form of PVP was utilised. This is 

synthesised by polymerisation of N-vinylpyrrolidone which yields mainly a cross-linked 

polymer156-160. It is widely used in the pharmaceutical industry as a swelling polymer 

(absorbs water) with selective absorptive properties, and it also has favourable 

disintegration effects for tablets160.  The structure of this excipient is illustrated in Figure 

1.5.1.4.  
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                                               Figure 1.5.1.4: Structure of PVP 

                             

Previous research has incorporated a number of drugs into PVP to help improve the 

dissolution behaviour. Methods used to incorporate drugs into the structure of PVP 

include co-precipitation157-159, solid dispersions161-165, spray drying160, solvent 

evaporation, 161-165, and mixing166. Previous research suggests that PVP does help to 

improve solubility and dissolution, because PVP may inhibit crystal growth167-168 

    

1.6 Aims and objectives  

The aims of this project were as follows: 

A) To determine the thermodynamic parameters associated with the binding 

between the chosen drug and excipients, and to analyse whether this is 

temperature dependant.  

B) To compare and contrast the behaviour of drug-excipient formulations 

prepared using conventional and microwave heating.  

Each of these aims was determined by analysing the product formulations via a range 

of analytical techniques including calorimetry, microscopy, and dissolution studies. 

These chosen techniques were used to help illustrate the effectiveness of the 

formulation process. Three objectives were identified to complete the aforementioned 

aims and these are discussed in Chapter Six (p209-217).  

 Although previous researchers have indicated that microwave heating may have 

benefits in drug formulation, their work largely used relatively primitive microwave 

equipment where, critically, the temperature of the mixture or the microwave power was 

not monitored or controlled.  
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Chapter 2  

 In this research a series of drug-excipient formulations were manufactured using 

conventional heating and microwave heating methods. All resultant products were then 

subjected to an array of analytical techniques to fully characterise their properties and 

behaviour.  

 
Materials and Methods 
 

2.1 Materials  

Ibuprofen was a gift from Galpharm, UK. Paracetamol, stearic acid, β-cyclodextrin, 

polyvinylpyrrolidone and 2-hydroxypropyl-β-cyclodextrin were purchased from Sigma-

Aldrich, Dorset UK. 

          Ketoprofen and Flurbiprofen were purchased from TCI chemicals (Manchester 

UK). Di-sodium hydrogen orthophosphate dodechydrate and sodium di-hydrogen 

orthophosphate di-hydrate were purchased from Fisher Scientific, UK. All chemicals 

were ≥99% purity and used as received with no further purification undertaken. 

2.2 Methods 

Figure 2.2.1.1 is an illustration of dry and wet formulation, seen on p55. 

2.2.1 Formulation methods 

 Two methods of heating the drug-excipient mixture during the formulation 

process were investigated, namely conventional heating and a novel microwave heating 

method. In both cases it was possible to undertake the process both with, and without, 

the presence of water as a solvent.  
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Method one: Conventional Heating, Wet Formulation1 

1. 10g of the drug and excipient were prepared in a 1:1, 3:1, and a 1:9 mass ratio.  

2. The dry powders were then tumble mixed for a period of five minutes.  

3. A sample mass of powder (2g) was added to a beaker containing deionised 

water to achieve a 10% w/v solution.  

4. This was then transferred to a hotplate, the temperature was adjusted until the 

water reached 85°C, as monitored by a fibre optic probe.  

5. The temperature was monitored and maintained over a five minute period to 

ensure all contents were at the required temperature.  

6. The beaker was then removed from the hotplate and allowed to cool.  

7. When the contents of the beaker were at 45°C, the resultant formulation was 

collected through vacuum filtration and dried overnight in a desiccator over silica 

gel.  

 

2.2.1.2 Conventional Heating, Dry Formulation 

1. 10g of the drug and excipient were prepared in a 1:1, 3:1, and a 1:9 mass ratio. 

2. The dry powders were then tumble mixed for a period of five minutes. 

3. A sample mass of powder (2g) was added to a crucible and placed in an oven 

set at 85°C. 

4. This was then left for a twenty minute period at this temperature. 

5. The crucible and contents were removed from the oven and allowed to cool to 

room temperature.  

 

Method two: Microwave Heating, Wet Formulation.  

1. 10g of the drug and excipient were prepared in a 1:1, 3:1, and a 1:9 mass ratio. 

2. The dry powders were then tumble mixed for a period of five minutes. 

3. A sample mass of powder (2g) was added to a beaker containing deionised 

water to achieve a 10% w/v solution.  

4. This was then transferred to the microwave oven. 

5. The power was manually adjusted until the water temperature reached 85°C, as 

monitored by the fibre optic probe, Figure 2.2.1.2 and Figure 2.2.1.3.  
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6. This temperature was then monitored and maintained for a five minute period to 

ensure all contents were at the required temperature.  

7. To mimic the conditions on the hotplate, the microwave power was then adjusted 

to allow cooling of the water. 

8. When the temperature reached 45°C, the product was collected through vacuum 

filtration and dried overnight in a desiccator over silica gel.  

 

2.2.1.4 Microwave Heating, Dry Formulation  

1. 10g of the drug and excipient were prepared in a 1:1, 3:1, and a 1:9 mass ratio. 

2. The dry powders were then tumble mixed for a period of five minutes. 

3. A sample mass of powder (2g) was added to a crucible and placed in the 

microwave oven.  

4. The microwave power was then manually adjusted until the temperature reached 

85°C, as monitored by the fibre optic probe, Figure 2.2.1.2 and Figure 2.2.1.3. 

5. This temperature was maintained and monitored for a five minute period to 

ensure all the contents were at the required temperature.  

6. The microwave power was then adjusted to allow the sample to cool.  
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Figure 2.2.1.1: Illustration of dry and wet formulation process carried out using 

microwave and conventional heating.  
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Figure 2.2.1.2 demonstrates the full microwave oven and power control unit (Arrow 1 

and 2 respectively). Figure 2.2.1.3 illustrates the inside of the microwave cavity and 

arrow 3 and 4 illustrate the novel parts of this equipment in terms of the fibre optic probe 

(arrow 3) and the aluminium reflector (arrow 4). 

 

 

 

 

 

 

 

 

 

 

                                                                                     

                                                                                    Figure 2.2.1.3 – Microwave Cavity 

   Figure 2.2.1.2 – Microwave and Control unit 

 

The following pages show examples of the types of experimental profiles that were 

obtained for selected formulation experiments using the microwave oven. In all cases 

the blue line represents the applied microwave power, shown as a percentage of the 

total power (800W), while the red line shows the formulation temperature as monitored 

by the fibre optic probe. During an experiment the user adjusts the microwave power, in 

1% steps, as required to obtain the desired temperature. At the end of the formulation 

period the microwave power was set to 0% so that the cooling profile could be recorded.  
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Figure 2.2.1.4 - The above graph shows the heating of ibuprofen and PVP, 1:1 without 

water. A small step in the temperature can be seen around seven minutes as the 

ibuprofen melts and its loss factor increases.  

 

Figure 2.2.1.5 – The above graph shows the heating of ibuprofen and BCD, 1:1 with 

water. This demonstrates the accuracy with which the temperature can be monitored at 

a chosen power level.  
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Figure 2.2.1.6 – The above graph shows the heating of ketoprofen and BCD, 1:9 

without water.  

 

 

Figure 2.2.1.7 – The above graph shows the heating of ketoprofen and BCD, 1:9 with 

water.  
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Figure 2.2.1.8 – The above graph shows the heating of flurbiprofen and PVP, 1:9 

without water.  

 

Figure 2.2.1.9 – The above graph shows the heating of flurbiprofen and PVP, 1:9 with 

water. 
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Overall, the effect of the relative loss factor for each of the formulations is also 

noticeable with some requiring more power and taking longer to reach the desired 

temperature. Figure 2.2.1.4 is for ibuprofen and PVP, 1:1 without water, and this graph 

shows that it can be difficult to heat, requiring a large amount of microwave energy to 

reach the target temperature (85°C).  

Surprisingly when Figure 2.2.1.4 is compared with Figure 2.2.1.6 which is for 

ketoprofen and BCD, 1:9 without water it can be seen that to enable ibuprofen to reach 

the maximum temperature, 19% microwave power was needed compared with 16% for 

the ketoprofen and BCD formulation. This can also be seen when Figure 2.2.1.4 and 

Figure 2.2.1.6 are compared with Figure 2.2.1.8 which is for flurbiprofen and PVP, 1:9 

without water. For this formulation to reach maximum temperature, 24% microwave 

power was required.  

It is also apparent from the graphs that when water is present within the 

formulation it requires less power and time to reach target temperature and maintain it. 

This is partly because water interacts strongly with the microwave energy, and water is 

present to a greater extent when compared to the actual drug and excipient mixture.  

Another key factor of this method is the ability to maintain the temperature, by 

reducing or increasing the microwave power the maximum temperature can be 

sustained. This illustrates that a temperature of a formulation can be kept constant for 

as long as required.   

The fibre optic probe can be removed from the microwave, and was used to 

measure the temperature for all experiments performed using conventional heating. By 

removing the probe, it allowing for accurate temperature monitoring and control even for 

this method. The graph for a conventional method is shown in Figure 2.2.1.10. The 

graph has no microwave power profile as the heat is generated by an external 

conventional method (oven or hotplate). This enabled some disadvantages to be 

noticed about the conventional method, including the fact that it is more difficult to 

control and maintain the maximum temperature. This also took longer to be reached, 

putting the formulation under more thermal stress and the experiment as a whole also 

took longer. 
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Figure 2.2.1.10 – An illustration of temperature monitoring (red line) using the 

conventional heating method, in this case for flurbiprofen and PVP, 1:1 with water.  

 

In summary, two heating methods were employed in this research to formulate a series 

of pharmaceutical formulations. To completely characterise all samples then required 

the application of several analytical techniques. 

 

2.2.2 Analytical methods 
 
2.2.2.1 Isothermal Titration Calorimetry (ITC) 

All ITC experiments were conducted using a Microcal VP-ITC Microcalorimeter. 

The sample and reference cell were enclosed in an adiabatic outer shield jacket (to 

maintain temperature and prevent loss of heat to surroundings), and during all 

experiments both the sample and reference cell were completely filled. It should be 

noted that the sample cell fill volume was 1.8mL. Experiments initially involved a 

primary temperature equilibration period for the sample in the cell, followed by a 

secondary equilibration with the syringe in place. Periodic calibration was conducted to 

confirm the validity of the data using a known chemical calibration reaction, namely 

barium chloride and 1,4,7,10,13,26-hexaoxacyclooctadecane  (18-crown-6)2-5 
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Experimental  

1. The drug and cyclodextrin solutions were weighed out and placed in pH8 buffer 

solution. Drug concentration ranged from 0.01M to 0.03M, with the cyclodextrin 

concentrations ranging from 0.0005M to 0.001M.  

2. All solutions were then de-gassed using a Thermovac for two minutes.  

3. The reference cell was filled with pH8 phosphate buffer with no significant 

difference in mass recorded before and after degassing. The sample cell was 

filled with a known concentration of cyclodextrin solution up to 1.8mL, and the 

syringe was filled with a drug solution of a known concentration up to 290μL.  

4. The syringe was then placed in the sample cell with the stirring speed of the 

syringe maintained at 300rpm to ensure thorough mixing throughout the 

experiment.   

5. Twenty nine injections were then injected in to the sample cell, each of 10μL 

volume with sufficient time allowed between injections.  

6. All experimental data was monitored via VP-ITC origin software, and this was 

used to analyse all data with a standard fit model. This allowed reaction 

stoichiometry (n), binding constant (Kb) and enthalpy to be calculated.  The 

change in Gibbs free energy was calculated using the derived Kb value and the 

van’t Hoff isotherm with the change in entropy also calculated. 

7. All six drug-cyclodextrin complexes were studied at three different temperatures, 

namely 298, 303, 310K to determine the significance of temperature on the 

complex formation.  

8. All experiments were repeated in a minimum of triplicate for statistical validation 

with all contributions from heats of dilution subtracted from isotherms.  

9. A typical ITC graph is illustrated in Figure 2.2.2.1.1. It can be seen from the 

titration curve that a number of peaks are present which correspond to each 

injection and each peak is the differential power between the sample and the 

reference cell (μCal sec-1). Each peak is deflected in the negative direction 

showing an exothermic reaction had occurred. Towards the end of the titration it 

can be seen that the exothermic peaks begin to reduce as all the possible 

binding sites become saturated. From the titration curve and with the non-linear 
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least squares fit model the following parameters can be determined: Kb, ΔH and 

consequently ΔG and ΔS. Kb is the binding constant and is determined from the 

shape of the curve and is dependent on the concentration of the components, 

enthalpy change (ΔH) is calculated from each injection and from the end point of 

the titration (saturation point)6. 
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Figure 2.2.2.1.1- A typical ITC graph displaying the raw data and calculated data for a 

drug-excipient interaction, in this case ketoprofen at 298K with BCD 
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As a result, at the end of each experiment the computer software (Origin) can then be 

used to analyse the data and provide thermodynamic information on the above 

parameters. Titration calorimetry is the only technique capable of defining all the above 

parameters in a single experiment resulting in a nearly completed thermodynamic 

profile of the reaction.  

 

2.2.2.2 Differential Scanning Calorimetry (DSC) 

Calorimetric experiments were performed using a DSC Mettler Toledo 822. 

Periodic calibration was performed using Benzil to confirm temperature and enthalpy 

values.   

 

Experimental  

1. Between 5-10mg of the samples were weighed out into a 40μL aluminium pan,  

2.  The lid for the sample pan was pierced using a pin and then crimped. 

3.  The samples were subjected to a heating and cooling method starting from 25° 

and finishing at 125°C, 135°C, or 185°C (depending on the formulation) with an 

isotherm of ten minutes after each stage. The heating rate was 10°C min-1 with 

a gas flow of nitrogen at 80mL min-1.  

 
 
2.2.2.3 Thermal Activity Monitor (TAM) 

All experiments were performed using an isothermal calorimeter, (2277 TAM) 

and the system was electronically calibrated to ensure the validity of the results.  

 

Experimental  

1. 100mg of each formulation was placed in a 5mL ampoule.  

2. The cap was then crimped onto the ampoule.  

3. The TAM was set at an isothermal temperature of 30°C and the samples were 

lowered into it and allowed to equilibrate for a forty minute period.  

4. The sample was then left running isothermally at 30°C for a four day period.  

5. Heat changes were monitored and recorded using computer software that 

recorded in real-time to allow a heat time profile to be determined.  
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2.2.2.4. Scanning Electron Microscopy (SEM) 

All experiments were carried out using SEM instrument and model JEOL LSM-

6060LV.  

 

Experimental  

Each different formulation was taken from distant, intermediate and close up 

ranges to provide a representative image of the samples.   

 

         2.2.2.5 Drug dissolution analysis 

All dissolution studies were performed using a Pharmatest PTW III dissolution 

bath, and a Cecil 3021, series 3000 UV visible spectrophotometer and a peristaltic 

pump. A diagram of the dissolution apparatus can be seen in Figure 2.2.2.5.1. Figure 

2.2.2.5.2 and Figure 2.2.2.5.3 display the laboratory set-up for the dissolution 

apparatus.  

 

 

                   Figure 2.2.2.5.1 Systematic diagram of the dissolution apparatus7 

 



66 
 

     

        Figure 2.2.2.5.2 – Dissolution Bath     Figure 2.2.2.5.3 – Bath, pump and UV 

 

Experimental – Formulations analysed in phosphate buffer (pH8) and deionised water 

1. Drug and excipient formulations were weighed into six separate containers.  

2. Each container had 200mL of aqueous phosphate buffer (0.2M monobasic and 

0.2M dibasic sodium phosphate mixed together to produce a solution with pH8) 

or deionised water maintained at 37±0.1°C.  

3. A method was set, allowing a paddle speed of 50rpm, a relevant wavelength 

(ibuprofen 265nm, ketoprofen 235nm, flurbiprofen 260nm and paracetamol          

294nm) and a certain number of measurements to be taken over the time period. 

The buffer/water from each cell was pumped round the system using a peristaltic 

pump at a flow rate 10mL min-1.  

4. Drug release profiles were established with sink conditions maintained 

throughout the analysis. 

5. All experiments were repeated in triplicate with the percentage drug release 

determined in concordance with the Beer-Lambert plot.  
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Determination of Beer-Lambert plots 

To allow for the percentage drug release to be determined for each drug a Beer-

Lambert plot was established. A number of solutions with known concentrations were 

tested in the dissolution bath. The absorbance was determined and the linear equation 

was related to the percentage drug release for all formulations tested.   

 

In summary, several analytical techniques were employed to characterise each 

formulated sample to achieve a comprehensive understanding of the structure and 

behaviour of the products. By combining all of the resultant data it was possible to 

achieve an understanding of the application of microwave heating to pharmaceutical 

formulations.  
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Chapter 3 

3.1 Introduction 

 One of the most fundamental methods of analysing a material is to monitor its 

response as it is heated in a controlled manner, or maintained at a constant 

temperature, and these responses can be measured by a range of calorimetric 

methods. A way to investigate the interactions and compatibility of a drug and excipient 

is to heat the two components and measure any changes that occur during this process 

or combine drugs and excipients at one temperature. With this, important changes on a 

molecular level and valuable conclusions about the sample, previous history, 

preparation, chemical nature, and behaviour of the sample during its proposed use can 

be determined.  

 Chapter Three concentrates on a technique called ITC, which provides 

information on thermodynamic properties including binding constants, stoichiometry, 

enthalpy, entropy and Gibb’s free energy associated with the interactions between 

drugs and excipients. Also investigated will be the potential application of ITC to 

thermodynamically differentiate the complex formation for three guest molecules 

(ibuprofen, ketoprofen and flurbiprofen) of pharmaceutical interest with two forms of 

cyclodextrins over a range of temperatures. This information can then be used to 

determine and understand the complexation process including the strength of the 

interaction between the drug and cyclodextrin and whether the interaction is favourable.  

 

3.1.1 Overview of ITC  

 A full discussion of ITC can be found in Chapter One. ITC is a calorimetric 

technique that is kept at one constant temperature throughout an experiment 

(isothermal). The unit directly measures heat evolved or absorbed in liquid samples 

(heat changes) as a result of mixing precise amounts of reactants (direct enthalpic 

measurements). It contains two identical coin-shaped cells (sample and reference) that 

are filled with liquid throughout the experiment. Both these cells are enclosed in an 

adiabatic outer shield (jacket) and any temperature difference between the sample and 

reference are monitored and measured. The entire experiment is computer controlled 

and the user inputs the experimental parameters (temperature, number of injections, 



70 
 

injection volumes). Origin software is then used to analyse the ITC data using fitting 

models which can then be used to calculate binding constants, reaction stoichiometry 

(n), enthalpy, entropy and Gibbs free energy thus providing a complete thermodynamic 

profile of the molecular interaction in a single experiment. Equations can be seen in 

Chapter One (p17).   

Once the various parameters have been determined, ITC can be used to 

determine the strength of the drug and excipient interaction, the effect of temperature on 

this interaction and the ratio of the drug to the excipient molecule.  

A typical ITC titration curve is illustrated in Figure 3.1.1.1 for barium chloride and 

18-crown-6 which is used for calibrating the ITC. The barium chloride forms a 1:1 

complex with the crown ether which has a well characterised enthalpy of -33kJ mol-1(1-2).  

 

Figure 3.1.1.1 – A typical ITC titration curve including raw data and calculated values for 

barium chloride and 18-crown-6 
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The reaction for this particular compound shows a 1:1 interaction, with a ΔH value that 

equals to -31±0.4kJ mol-1 which is in agreement with the literature (after taking into 

consideration experimental and instrumental error).  It can be seen from the graph, the 

ΔH value is in calories therefore this value was converted from calories to Joules and 

then Joules to kJ mol-1 to give the recognisable ΔH value.   

 

3.2 Previous research  

Extensive research has incorporated non-pharmaceutical compounds into 

cyclodextrins to investigate the thermodynamic parameters and these include 

complexes with benzene5, hexanol6, cyclohexanol7, butanediol8, benzoic acid9-10, amino 

acids11-12, glucose13, and aspartame14. Despite the importance of understanding the 

binding process of drugs to a significant excipient, little research has investigated the 

thermodynamics of pharmaceutical complexes such as a drug to a cyclodextrin 

molecule. However two papers published in 2007 and 2009 by Todorova et al and Xing 

et al investigated the incorporation of ibuprofen and flurbiprofen into β-cyclodextrin15-16. 

The former paper investigated the thermodynamic parameters of the reaction between 

ibuprofen and β-cyclodextrin using a thermal activity monitor at a single temperature 

(298K) and at pH7 (Tris-HCl buffer). The latter paper investigated the reaction between 

flurbiprofen and β-cyclodextrin using ITC, over two different temperatures (293K and 

313K) and a sodium phosphate buffer to give pH6 and pH8. However, the current 

research is the first to investigate three different drugs (ibuprofen, ketoprofen and 

flurbiprofen), into two different cyclodextrin compounds (β-cyclodextrin, and 2-

hydroxypropyl-β-cyclodextrin) at three temperatures 298, 303, and 310K using ITC.  
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3.3 Experimental  

Six different guest-host interactions were investigated, each at three specific 

temperatures, namely 298, 303, and 310K. In each case the reference cell was filled 

with degassed phosphate buffer (pH8) and the sample cell was filled with one of the 

cyclodextrin solutions. The stirring speed of the syringe was maintained at 300rpm to 

ensure thorough mixing throughout the experiment. A total of twenty-nine consecutive 

injections (10μL each) of the drug solution were then injected into the sample cell. Drug 

concentrations in the syringe varied from 0.01-0.03M with the cyclodextrin 

concentrations in the cell ranging from 0.0005-0.001M. All experiments were carried out 

in triplicate to allow for an average to be determined, and in all cases heats of dilution 

were investigated and subtracted from the final titration curves. To understand the 

complexation process, it is important to realise the binding mechanism. An interaction 

will occur once the drug molecule enters the cyclodextrin cavity in a reversible way, and 

the more lipophilic (hydrophobic) part of the molecule will enter the cavity (lipophilic 

cavity) with the more hydrophilic part remaining exposed to the bulk solvent16.  

 

3.4 Results and discussion  

ITC was used to determine the stoichiometry (n), binding constant (Kb) and 

change in enthalpy (ΔH) for a total of eighteen complexation events. From these values 

it is possible to calculate thermodynamic properties, i.e. changes in Gibbs free energy 

(ΔG) and entropy (ΔS) for each complex formation. The results obtained can be seen in 

Table 3.4.1 below with an example of the experimental data for a typical ITC result seen 

in Figure 3.4.1 which has the corresponding binding isotherm alongside (stoichiometry, 

binding constant and enthalpy were determined from this).  
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Drug Cyclodextrin Temperature 
(K) 

Drug: CD 
Ratio 

10
3
 Kb 

(dm
3
.mol

-1
) 

ΔH (kJ mol
-1

) ΔG (kJ mol
-1

) ΔS (kJ mol
-1

) 

Ibuprofen BCD 298 1:1 8.34 (± 0.6) -10.6 (± 0.4) -22.4 (±0.2) 0.04 (± 0.002) 

  303 1:1 6.72 (± 0.3) -12.2 (±0.6) -22.2 (±0.1) 0.03 (± 0.002) 

  310 1:1 9.51 (± 0.5) -12.8 (±0.2) -23.6 (±0.3) 0.03 (± 0.002) 

 2-(hydroxypropyl)-BCD 298 1:1 1.58 (± 0.1) -7.2 (±0.3) -18.2 (±0.1) 0.04 (± 0.002) 

  303 1:1 2.1 (± 0.8) -8.9(±1.0)  -19.3 (±0.8) 0.03 (± 0.002) 

  310 1:1 2.52 (± 0.7) -11.1 (±1.1) -20.2 (±0.9) 0.03 (± 0.002) 

Ketoprofen BCD 298 1:1 1.09 (± 0.1) -14.2 (±1.1) -17.3 (±0.1) 0.01 (±0.001) 

  303 1:1 1.14 (± 0.1) -16.0 (±0.5) -17.7 (±0.2) 0.01 (± 0.002) 

  310 1:1 1.14 (± 0.1) -17.4 (±0.1) -18.1 (±0.1) 0.01 (±0.001) 

 2-(hydroxypropyl)-BCD 298 1:1 0.48 (± 0.1) -10.2 (±0.1) -15.3 (±0.5) 0.02 (±0.001) 

  303 1:1 0.72 (± 0.1) -10.8 (±0.9) -16.7 (±0.1) 0.02 (± 0.002) 

  310 1:1 0.82 (± 0.1) -12.9 (±0.2) -17.3 (±0.1) 0.01 (±0.001) 

Flurbiprofen BCD 298 1:1 14.93 (± 0.6) -15.1 (±1.4) -23.8 (±0.1) 0.03 (± 0.002) 

  303 1:1 8.83 (± 0.8) -15.0 (±1.9) -22.9 (±0.6) 0.03 (± 0.002) 

  310 1:1 5.44 (± 0.4) -15.0 (±0.6) -22.2 (±0.1) 0.02 (± 0.002) 

 2-(hydroxypropyl)-BCD 298 1:1 5.29 (± 0.1) -15.8 (±0.1) -21.2 (±0.1) 0.02 (± 0.002) 

  303 1:1 6.46 (± 0.1) -16.8 (±0.1) -22.1 (±0.1) 0.02 (±0.001) 

  310 1:1 6.53 (± 0.1) -18.5 (±0.2) -22.6 (±0.1) 0.01 (±0.001) 
 

Table 3.4.1 – All ITC data conducted with ibuprofen, ketoprofen and flurbiprofen binding 

to BCD and 2HPBCD.  

 

It can be seen from the table that all the interactions between the three different drugs 

and the two different cyclodextrins have a stoichiometry of 1:1 and are independent of 

temperature. It is apparent from the data that, despite differences in the size of the 

molecules, that a 1:1 stoichiometry is maintained between the drugs and both forms of 

cyclodextrins. This ratio was also unaffected by temperature over the range studied. 

However, there are significant differences in the binding constants, ΔH, and 

consequently ΔG. The results are discussed in greater detail in the following sections.   

 

Previously to this research only the interaction between flurbiprofen and BCD at 298 K, 

and 303 K in pH6 and pH8 buffer was published with an enthalpy of ─17 kJ mol-1 and 19 

kJ mol-1 (15). The enthalpy values presented in this work for this particular binding 

process were all ─15 kJ mol-1 across the range of temperatures. The results obtained 

correlated well with the published enthalpy values and suggests an unchanged binding 
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mechanism. The slight discrepancy in the enthalpy values may have come from 

experimental and/or instrumental error.  In addition to flurbiprofen, experimental data 

was published for ibuprofen and BCD at 298 K which again showed similar ∆H values  

(─14 kJ mol-1) to those presented in this research (─10 to ─12 kJ mol-1) after variation 

within buffer and instrumentation has been taken into consideration.  However despite 

these slight discrepancies which are accountable for, it is possible to say that the data 

obtained in this research is accurate and reliable and is a consequence of the 

interaction between the drug and excipient.  

Any differences seen within the reaction (binding constant, ∆H, ∆G and ∆S) can 

be associated with the following differences: logP value of the drug, the choice of 

cyclodextrin (BCD and the more sterically hindered 2HPBCD), and the chosen 

temperature range.  

Section 3.4.1 and onwards is a separation and explanation of the three individual 

drugs with BCD and 2HPBCD. Each section investigates the results obtained and any 

trends that can be seen between the drug and the two excipients. Section 3.4.2 is a 

comparison of all the results obtained, each drug is then compared to determine any 

differences in the thermodynamic parameters. All results are illustrated in Table 3.4.1.    

 

3.4.1 Ibuprofen and BCD 

It can be seen from Table 3.4.1 that as the temperature increases from 298-310K 

there is a slight difference in the binding constant but it is largely unchanged. This 

therefore suggests that an increase in temperature has minimal effect on the equilibria 

for the formation of the ibuprofen-cyclodextrin complex.   

The enthalpy change for ibuprofen and BCD increases over the temperature 

range, showing the bonding becomes more exothermic as the temperature increases. 

An enthalpy change arises mainly as a result of change in the interaction, for example 

hydrogen bonding17-18. ΔG also shows a slight decrease to a more negative value with 

an increase in temperature. The negative values for ΔG indicates that the complex has 

less free energy than the free drug and cyclodextrin, and consequently the negative 

value for enthalpy, negative values for Gibb’s free energy suggests binding is favoured 

and this promotes the complex formation.  
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3.4.2 Ibuprofen and 2HPBCD 

The reaction between Ibuprofen and 2HPBCD was also investigated. From the 

results obtained, it can be seen that as the temperature increases so do the values for 

ΔH, and ΔG. This shows that there is an increase in the strength of bonding interaction 

as the temperature increases. For all the complexation events between ibuprofen, BCD 

and 2HPBCD, the observed values are negative and it can be said that the process of 

binding is exothermic and enthalpically driven. However when both the binding 

constants and therefore the enthalpy, Gibb’s free energy and entropy were compared 

for ibuprofen binding to BCD and ibuprofen to 2HPBCD it can be seen that ibuprofen 

does form a complex with 2HPBCD but it is a relatively weak process (ibuprofen and 

BCD show significantly higher negative values when compared to  2HPBCD). To 

hypothesise, this result could be occurring because 2HPBCD has seven substituted 

hydroxypropyl groups (CH2CH(OH)CH3) attached in the C6 position of each unit of the 

cyclodextrin making it more sterically hindered. This will then make it more difficult for 

any drug to bind to the cavity of the cyclodextrin thus lowering the binding constants, 

ΔH, and ΔG.   

 

3.4.3 Ketoprofen and BCD 

For ketoprofen with BCD the binding constant showed little change over the 

temperature range (298-310 K) and as a result the ratio of drug and excipient binding is 

unaffected by an increase in the temperature of the reaction. However when the 

temperature increases, there is a change in the enthalpy, and consequently Gibb’s free 

energy.  As the temperature increases, the enthalpy (ΔH) for the reaction also 

decreases with ─14.2 kJ mol-1 obtained at 298 K and ─17.4 kJ mol-1 at 310 K. This 

illustrates a more exothermic process is occurring, which may suggest that the strength 

of the interaction between ketoprofen and the cyclodextrin cavity has increased. 

 Along with this decrease in enthalpy, there is an increase in negativity in the 

Gibb’s free energy with a value of ─17.3 kJ mol-1 (±0.1) obtained for the reaction at 298 

K and ─18.1 kJ mol-1 (±0.1) obtained at 310 K. Consequently the resultant complex has 

less free energy than the free drug and BCD molecules and therefore binding is 

favoured.  
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3.4.4 Ketoprofen and 2HPBCD 

After ketoprofen and BCD, 2HPBCD was also investigated. From the results 

obtained it is apparent that as the temperature increases, there is an increase in 

enthalpy, and as a result the Gibb’s free energy. When the temperature is kept 

isothermally at 298 K, the enthalpy was calculated at ─10.2 kJ mol-1 (±0.1) and at the 

maximum temperature of 310 K the enthalpy was ─12.9 kJ mol-1 (±0.2). Therefore the 

interaction between ketoprofen and 2HPBCD is temperature dependant. The interaction 

becomes more exothermic suggesting an increase in strength between the drug and 

2HPBCD as the temperature increases. This is also the case with the Gibb’s free 

energy because at 298 K it is calculated at ─15.3 kJ mol-1 (±0.5) and at maximum 

temperature of 310 K the Gibbs free energy is ─7.3 kJ mol-1 (±0.1). As a result an 

increase in temperature causes the Gibb’s free energy to become more negative. This 

shows that the complex has less free energy than the free drug and cyclodextrin.  

It is apparent from the results that the interaction seen between ketoprofen and 

2HPBCD is weaker when compared with ketoprofen and BCD. This therefore may be 

suggesting that the substituted groups seen in the structure of 2HPBCD may make it 

difficult for the drug to interact and bind to the cavity of the particular cyclodextrin.  

 

3.4.5 Flurbiprofen and BCD 

 When the flurbiprofen, BCD and 2HPBCD complexes were analysed a number of 

trends were seen. In the case of flurbiprofen with BCD, the binding constant goes down 

with increasing temperature which was not witnessed previously (temperature has no 

usual affect on the binding constant). When the enthalpy for each reaction was 

calculated it was seen to remain constant over the temperature range studied,  

(─15.0 kJ mol-1) suggesting that the binding mechanism is unchanged from 298 to 

310K.  There is also a slight decrease in the Gibb’s free energy, at 298 K this value was 

calculated at ─23.8 kJ mol-1 (±0.1) but as the temperature increased to 310 K the value 

calculated decreased to ─22.2 kJ mol-1 (±0.1). These results suggest that a complex is 

formed and favoured but the strength of it is reduced as the temperature becomes 

elevated. As previously mentioned flurbiprofen with BCD at 298 K has been investigated 
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prior to this research15. The enthalpy values presented in this work for this particular 

binding process were all ─15 kJ mol-1 (±1.3 kJ mol-1) across the range of temperatures.  

 

3.4.6 Flurbiprofen and 2HPBCD 

 For the binding between flurbiprofen and 2HPBCD, the binding constant, 

enthalpy and Gibb’s free energy all increase with increasing temperature which is a 

trend previously seen with ibuprofen and ketoprofen. Again the binding constant 

increases with temperature, and also the binding enthalpy decreases across the studied 

range of 298 to 310 K. This result therefore suggests that the bond between the 

flurbiprofen drug molecule and the cyclodextrin cavity increases in strength with 

increasing temperature. It also shows that the reaction becomes more exothermic at 

higher temperatures. There is an increase in ΔG which shows that at higher 

temperatures, there is less free energy in the complex than the free drug and 

cyclodextrin.  

 When the two different excipients were compared to each other for the 

interaction with flurbiprofen, significant differences were seen. For flurbiprofen and BCD 

the binding constant decreases with increasing temperature, but for flurbiprofen and 

2HPBCD the binding constant increases with increasing temperature. When the 

enthalpy for each of the reactions was calculated it became apparent that this remains 

constant for the interaction of flurbiprofen and BCD but an increase in the enthalpy was 

seen for the drug and 2HPBCD. This result shows that the interaction between 

flurbiprofen and BCD decreases or becomes less favourable as the temperature 

increases, however the opposite is witnessed for the interaction of the drug and 

2HPBCD. This result is also seen in the Gibb’s free energy, with a slight decrease for 

the interaction of flurbiprofen and BCD and an increase for the drug and 2HPBCD. All 

results obtained show that something is occurring to the flurbiprofen and BCD when the 

temperature increases. To hypothesise, the presence of fluorine within the drug 

compound may have a subsequent impact on hydrogen bonding potential both with 

water and the host cyclodextrin, which only becomes apparent when a range of 

temperatures was investigated. 
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 3.4.7 Comparison of ibuprofen, ketoprofen and flurbiprofen with BCD and 2HPBCD 

From analysis of all the results obtained there appears to be differences not only 

between the drug and the choice of cyclodextrin but also between the different drugs. 

Each drug does have some similarities but the main differences include the structures 

and the partition coefficients of the drugs (logP).  

Ketoprofen has the lowest logP of 0.9719, then ibuprofen with a logP of 3.619, 

while flurbiprofen has the highest logP of 4.220. Upon analysis of the results there 

appears to be a clear correlation between the lipophilicity of the drug molecule and the 

experimentally determined binding constant and enthalpy of binding. For example at 

298K the binding constant for ketoprofen is 1.09x103 dm3mol-1, ibuprofen has a binding 

constant of 8.34x103 dm3mol-1 and flurbiprofen has a binding constant of 14.93x103 

dm3mol-1. From this it can be seen that the higher the partition coefficient, and thus the 

greater the lipophilicity, the stronger the interaction between the drug molecule and the 

cyclodextrin. This could therefore be a reflection of the greater affinity of the lipophilic 

compound towards the less polar internal cavity of the cyclodextrin when compared with 

water.  

This trend can be seen throughout the scenarios and over the temperature range 

until 310 K, where the decrease in binding constant, ΔH and ΔG for flurbiprofen and 

BCD causes this result to become smaller than the ibuprofen and BCD scenario at this 

temperature. This consequently suggests another explanation may be involved in this 

result. In addition to the lipophilic difference, another hypothesis is the structural 

difference for flurbiprofen when compared with ibuprofen and ketoprofen. Flurbiprofen 

has a fluorine atom attached to the first benzene ring from the carboxylic group. This 

may have a subsequent impact on the hydrogen bonding potential with the cyclodextrin 

cavity causing a decrease in strength as the temperature increases.  
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3.5 Overall summary  

  To summarise this chapter, the ITC analysis allowed thermodynamic data to be 

calculated that was associated with three different drugs, namely ibuprofen, ketoprofen 

and flurbiprofen. Each of these drugs were analysed with two different cyclodextrins 

over a range of temperatures (298K to 310K). Analysis of the data confirms all 

complexes formed were in a 1:1 stoichiometric ratio, and all binding constants and 

enthalpies of binding increase with increasing temperature. This trend applies 

throughout the analysis apart from flurbiprofen and BCD which shows a decrease as the 

temperature increases, which could be because of the presence of fluorine affecting the 

interaction. Furthermore, there appears to be a positive correlation between drug 

lipophilicity and the measured binding constant and the binding enthalpy, suggesting the 

more lipophilic the drug the stronger the interaction, and consequently stronger the 

bond. This also suggests that the drug had a greater affinity for the less polar cavity of 

cyclodextrin. In general, all complexes that were formed are thermodynamically 

favourable, for example enthalpies and Gibb’s free energies are negative with slightly 

positive entropy and as a result binding is favourable and a complex is likely to be 

formed. Overall, the most favourable complex that was formed appeared to be 

flurbiprofen with BCD at 298K, (Kb = 14.93x103 (±0.6) dm3mol-1, ΔH = ─15.1 (±1.4) kJ 

mol─1, ΔG = ─23.8 (±0.1) kJ mol, ─1 and ΔS = 0.03 (±0.002) kJ mol─1), however for all 

processes it is enthalpic rather than an entropically driven complex formation process.    
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Chapter 4 

 The previous chapter looked into how the drug and excipient bond and the 

energy associated with that mechanism. This chapter presents analytical results of the 

formulated products.  

For clarity, the chapter is separated into three different techniques, namely 

differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and 

thermal activity monitoring (TAM). These techniques will allow the compatibility of the 

drug and excipient to be determined, how each formulation appears, the stability of the 

drug/excipient mixture and if there are any differences between the formulation methods 

(heating and the presence of water).  

 
4.1 Differential Scanning Calorimetry (DSC) 

 Differential scanning calorimetry (DSC) is a thermal analysis technique that 

measures the physical and chemical properties of a sample as a function of 

temperature or time. DSC is useful within the pharmaceutical industry because it helps 

to determine the physical properties of the drug and the excipient and then a mixture of 

the two. Therefore DSC can help to illustrate whether or not the drug and excipient are 

compatible1-4.  

 To determine the compatibility of the drug and excipient and to investigate if the 

formulation method changed the thermal behaviour, analysis considered each of the 

four different drugs and excipients in isolation. Also, all of the different formulations 

prepared using microwave and conventional heating, and with or without water present.  

The illustrated DSC traces are for the initial melt of the formulations and consequently 

only a short section of the trace is illustrated. Each sample weighed 8mg (±0.5mg) and 

was placed within an aluminium pan with a pierced lid. The sample was then placed into 

a heat flux DSC and subjected to a heating program (10°C/min) to mimic the formulation 

process, and to determine the behaviour of the sample. 
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4.1.1 Pure components  

 Each of the four different drugs, ibuprofen, ketoprofen, flurbiprofen and 

paracetamol were first investigated in isolation using DSC. Secondly the four different 

excipients were also investigated in isolation. The results are illustrated below in Figure 

4.1.1.1 - 4.1.1.8. Each of the pure drugs and excipients were subjected to a heating 

program (illustrated by the red line on the graph) with a maximum temperature of 

125°C. This consequently allowed the drug to melt (unless otherwise stated) and also 

determine the behaviour of the drug at the formulation temperature (represented by the 

green line).  

 

 

Figure 4.1.1.1 - DSC trace for pure ibuprofen 
 
 

Figure 4.1.1.1 shows the melting of pure ibuprofen at 77°C as revealed by the 

endothermic peak.  Recrystallisation was often not observed on cooling liquid ibuprofen 

and literature suggests it can remain in a metastable form for a considerable period of 

time5.  
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Figure 4.1.1.2 - DSC trace for pure ketoprofen 
 

 
Figure 4.1.1.2 is for pure ketoprofen, it can be seen from the graph that an endothermic 

peak is present which represents the melt of the drug at around 95°C.  
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Figure 4.1.1.3 - DSC trace for pure flurbiprofen 

 

 

Figure 4.1.1.3 illustrates the thermal behaviour of flurbiprofen and it can be seen that an 

endothermic peak is present. This corresponds to the melt of the drug with a 

temperature of 115°C. The final drug analysed using DSC was paracetamol and 

similarly to the other three drugs, an endothermic peak is seen for the melt of the drug, 

which occurred around 169°C.  

After all the drugs were analysed, each of the different excipients were 

investigated. Each of the excipients were analysed up to 125°C, however in the case of 

BCD, PVP and  HPBCD these were heated to 300°C  to determine how they behaved 

when taken to their decomposition temperature. This however was for interest purposes 

only and because the formulation temperature was 85°C, only the thermal behaviour up 

to 125°C is illustrated.   
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Figure 4.1.1.4 - DSC trace for pure stearic acid (SA) 

 

Figure 4.1.1.4 shows the thermal behaviour for pure stearic acid (SA), and there is an 

endothermic peak present for the melt of this compound.  

 

 

Figure 4.1.1.5 - DSC trace for pure β-cyclodextrin (BCD) 
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From Figure 4.1.1.5 it can be seen that a broad endothermic peak is present when BCD 

is heated to and above the formulation temperature. This broad endothermic peak 

occurs around 120°C, which could correspond to the release of water from the BCD 

cavity. The BCD used is a hydrate. 

 

 

 Figure 4.1.1.6 - DSC trace for pure 2-hydroxypropyl-β-cyclodextrin (2HPBCD)  

 

Figure 4.1.1.6 shows the DSC result for 2HPBCD. Again, there is a clear peak around 

100°C which again could be the loss of water from the cavity. 
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Figure 4.1.1.7 - DSC trace for pure polyvinylpyrrolidone (PVP) 

 

Figure 4.1.1.7 shows the DSC profile for PVP, It is clear from the trace that this 

excipient is not crystalline, and the peak that is seen could be from the loss of water 

trapped in the structure of the polymer.  

 

Each of the four drugs were analysed with the four different excipients formulated using 

microwaves and the conventional heating method (with and without water present).  
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4.1.2 Ibuprofen and SA  

 A total of four different formulations were analysed for this drug and excipient 

combination. Two microwave formulations (with and without water) were investigated 

and the same for the conventionally heated. An example of the DSC result is illustrated 

in Figure 4.1.2.1. 

 

 

Figure 4.1.2.1 - DSC trace for microwave ibuprofen and stearic acid (SA) without water 

present in the formulation process 

 

Ibuprofen and SA was formulated with and without the presence of water. When these 

traces are compared with the pure compounds significant differences can be seen. 

Firstly there is only one peak seen for the melting of the drug and excipient which could 

suggest an overlap and consequently a possible interaction between the two 

compounds after formulation. Another point that may suggest an interaction is the 

reduction in the temperature of the peak associated with the melting, for pure ibuprofen 

the melting point is around 77°C and for SA it is 70°C. However for the microwave 

formulation the melt appears at 65°C, which shows a decrease of 12°C for the drug and 

5°C for the excipient. Upon analysis of the formulation prepared using conventional 
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heating without water present, there is again only one peak present that represents the 

melt of the formulation. There is also a decrease in the temperature of the melt (65°C) 

when compared with the pure drug and excipient.  All of these findings suggest that an 

interaction between the drug and excipient has occurred after the formulation method. 

When the two formulations with water were compared, no significant differences were 

seen between microwave and conventional heating and also no differences were seen 

when compared with the formulations prepared without water.   

 

4.1.3 Ibuprofen and BCD  

 The next formulation analysed was ibuprofen with BCD. Ibuprofen and BCD were 

formulated in a 1:1 and 1:9 ratio using microwaves and conventional heating (with and 

without water present). An example of a DSC trace for this formulation can be seen in 

Figure 4.1.3.1.  

 

 

Figure 4.1.3.1 - Microwave formulated ibuprofen and BCD, 1:1 without water present in 

the formulation process 
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Figure 4.1.3.1 is an example of ibuprofen formulated with BCD without water present 

and in the 1:1 ratio.  The first peak occurs at about 75-80°C which corresponds to the 

melt of ibuprofen, the second peak appears around 100°C which corresponds to the 

loss of water from the cyclodextrin cavity. After these results were compared with the 

pure compounds it appears no significant differences occurred. The melt for ibuprofen 

has not been affected by the addition of the excipient and the loss of water from the 

cyclodextrin cavity is also unaffected. This is also the case for ibuprofen and BCD 

formulated using conventional heating either with or without water present during the 

method. Ibuprofen with BCD in a 1:1 ratio either using microwaves or conventional 

heating appears to not affect the drug’s behaviour when subjected to thermal analysis. 

 Upon comparison of all results obtained for ibuprofen and BCD in the 1:1, it 

appears that there is little or no significant difference between the two heating methods 

and consequently it can be said that the thermal behaviour of this formulation is 

unaffected. Ibuprofen and BCD was also formulated in 1:9 ratio with or without the 

presence of water, and Figure 4.1.3.2 is an example of a result obtained.  

 

 

Figure 4.1.3.2 - Microwave formulated ibuprofen and BCD, 1:9 without water present in 

the formulation process 
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Figure 4.1.3.2 shows the DSC traces for ibuprofen and BCD in a ratio of 1:9 formulated 

using microwave heating. When the formulation is heated without the presence of 

water, two peaks can clearly be seen. The first peak appears to correspond to the melt 

of ibuprofen which is around 76°C and the dehydration of the cyclodextrin cavity, at 

100°C. These temperatures are very similar to the pure drug and excipient, which may 

suggest that the formulation has had no affect on the thermal behaviour of the two 

components. This was also the case for the formulation prepared with water, this again 

suggests that the choice of heating method doesn’t affect the thermal behaviour of the 

drug.  

 

4.1.4 Ibuprofen and 2HPBCD  

 Due to the potential loss of the drug and excipient within the formulation solvent 

i.e. the water, only ibuprofen and 2HPBCD without water was formulated. An example 

can be seen in Figure 4.1.4.1. 

 

 

Figure 4.1.4.1 - Microwave formulated ibuprofen and 2HPBCD, 1:1 without present in 

the formulation process 

 

-18 

-16 

-14 

-12 

-10 

-8 

-6 

-4 

-2 

0 

2 

0 

20 

40 

60 

80 

100 

120 

140 

0 2 4 6 8 10 12 14 

En
th

al
p

y 
/ 

m
W

 

Te
m

p
er

at
u

re
 /

 
C

 

Time / mins 

Temperature  

DSC 



93 
 

Figure 4.1.4.1 is for microwave formulated ibuprofen and 2HPBCD. From the graph it 

can be seen that only one peak is present with a temperature of 75°C which appears to 

correspond to ibuprofen. As a result, it is possible to say that the formulation method 

has had little or no effect on the behaviour of the drug. 

This is also the case for the conventionally formulated ibuprofen and 2HPBCD. 

The only peak present has a melting point of 75°C indicating it is the drug that is 

melting, consequently this example is not illustrated. 

 Ibuprofen and 2HPBCD was also analysed in a 1:9 ratio, an example can be 

seen in Figure 4.1.4.2.  

 

 

Figure 4.1.4.2 - Microwave formulated ibuprofen and 2HPBCD, 1:9 without water 

present in the formulation process 

 

The above DSC traces are for microwave formulated ibuprofen and 2HPBCD, 1:9. From 

analysis and comparison of the formulated compounds with the pure components little 

or no difference is seen for the drug when formulated.  
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4.1.5 Ibuprofen and PVP  

 After ibuprofen was analysed with 2HPBCD, the next excipient formulated with 

the drug was PVP.  The results are illustrated in Figures 4.1.5.1 – 4.1.5.2. 

 

 

Figure 4.1.5.1 - Microwave formulated ibuprofen and PVP 1:1 without water present in 

the formulation process 

 

Figure 4.1.5.1 is for the microwave formulated product without water in the 1:1 ratio. 

Upon comparison of this trace to the pure compounds, there appears to be similarities. 

The only peak present has a temperature of 76°C which relates to the melting point of 

ibuprofen. Therefore it appears that the formulation process and the combining of the 

drug and excipient has made no difference to the behaviour of the two compounds.  

However when water is present in the formulation process, two peaks become 

present with a slight overlap. The first peak has a temperature of 75°C which could be 

the melting point of ibuprofen (slight decrease) and the second peak has a temperature 

of 90°C which could relate to the removal of water from the polymer. For the latter when 

this was compared with the pure PVP trace a difference was noticed, with the 

formulation the removal of water occurs at 90°C, which is a 10°C decrease to the pure 
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compound (100°C). It is possible that because ibuprofen is poorly water soluble, when 

water is present it is more likely to bond to the polymer chain. This would then be seen 

by an easier removal of water from the polymer and as a result a reduction in the 

temperature of the excipient peak.  

 

 

Figure 4.1.5.2 - Conventional formulated ibuprofen and PVP 1:1 with water present in 

the formulation process 

 

Figure 4.1.5.2 is for ibuprofen and PVP heated conventionally with water, and it can be 

seen that a single peak is present. From analysis of the temperature at which this 

occurs, around 75-80°C, it can be said that this peak corresponds to the melt of the 

drug. This was also seen when ibuprofen and PVP was conventionally formulated 

without water and consequently this is not illustrated.  

After ibuprofen and PVP were analysed in a 1:1 ratio, this drug and PVP were 

also investigated in a 1:9 ratio. Figures 4.1.5.3 - 4.1.5.4 are examples of the  DSC 

traces for ibuprofen and PVP, in a ratio of 1:9.   
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Figure 4.1.5.3 - Microwave formulated ibuprofen and PVP, 1:9 with water present in the 

formulation process 

 

Figure 4.1.5.3 is an example of microwave formulated ibuprofen and PVP in a ratio of 

1:9. For the formulation prepared with water, a clear overlap of the two peaks has 

occurred with a significant reduction in the melting point of ibuprofen. For pure ibuprofen 

this melts around 77°C, but in Figure 4.1.5.3 the melt is 60°C which shows a difference 

of 17°C (illustrated by circle). There is also an increase in the second peak temperature 

from around 100°C to 116°C. This is again a difference of 16°C, and these results show 

that after formulation a difference in the behaviour of ibuprofen and PVP has occurred. 

The overlapping peaks and the decrease in the melt for ibuprofen suggest an interaction 

has occurred. 
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Figure 4.1.5.4 - Conventional formulated ibuprofen and PVP, 1:9 with water present in 

the formulation process 

 

Figure 4.1.5.4 shows ibuprofen and PVP, 1:9 formulated using conventional heating. It 

can be seen from the DSC trace that two peaks are present. The first peak corresponds 

to the melt of ibuprofen (illustrated in the circle) and it occurs at 65°C and the second 

peak occurs around 110°C. These results suggest that the formulation process has 

made a difference to the drug and excipient behaviour during thermal analysis with a 

decrease in the melt for ibuprofen and an increase in the expulsion of water from the 

polymer chain. This therefore shows that an interaction may have occurred and a 

complex may have formed between the two compounds.  

From all the results obtained it appears that there are no overall significant differences 

between the two heating methods, however there seems to be a difference between the 

ratios with a complex more likely to form between the 1:9 ratio compared with the 1:1 

ratio.   
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4.1.6 Ketoprofen and SA 

 Figure 4.1.6.1 and Figure 4.1.6.2 show the DSC profiles for ketoprofen and SA 

formulated using microwave and conventional heating. From analysis of the four 

different formulations, in all cases only one peak is present (see illustrated examples). 

 

 

Figure 4.1.6.1- Microwave formulated ketoprofen and SA, with water present in the 

formulation process 
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Figure 4.1.6.2 - Conventional formulated ketoprofen and SA, without water present in 

the formulation process 

 

Figure 4.1.6.1 and 4.1.6.2 illustrates ketoprofen and SA formulated using microwaves 

and conventional heating. It can be seen that a single peak is present and from analysis 

of the temperature, it appears that this thermal event occurs around 55°C. It is therefore 

likely this event corresponds to the melting point of the excipient, however there is a 

decrease in this temperature when compared to the pure compound (70°C to 55°C). 

This may suggests that an interaction has occurred between ketoprofen and SA. 

However, there is no peak that corresponds to the melting point of the drug which may 

show that a reduction in the melting point of the drug has occurred and the single peak 

present is actually both the excipient and the drug. However, another possibility is that 

the formulation is not as homogenous as expected. Ketoprofen doesn’t melt at the 

formulation temperature (85°C) and as a consequence the resultant formulation may not 

be homogenous throughout. Also a small amount of formulation is taken for analysis, 

therefore weight error may have been introduced. If the prior statement is the case then 

a way to overcome this problem would be to increase the initial mixing time, and also to 

grind and re-mix the formulation after the heating process.   

-40 

-35 

-30 

-25 

-20 

-15 

-10 

-5 

0 

5 

0 

20 

40 

60 

80 

100 

120 

140 

160 

0 5 10 15 

En
th

al
p

y 
/ 

m
W

 

Te
m

p
er

at
u

re
 /

 
C

 

Time / mins 

Temperature 

DSC 



100 
 

4.1.7 Ketoprofen and BCD 

 Ketoprofen and BCD were formulated using microwaves and conventional 

heating with and without the presence of water. The following results are examples of 

these formulations and are illustrated in Figures 4.1.7.1 - 4.1.7.2.  

 

 

Figure 4.1.7.1 - Microwave formulated ketoprofen and BCD, 1:1 without water present in 

the formulation process 

 

Figure 4.1.7.1 shows ketoprofen and BCD, 1:1 formulated using microwaves without the 

presence of water. It is evident from the graph that a single peak is present with a 

temperature of 90°C, which is likely to correspond to the melt of the drug. This shows a 

decrease in the melt of the drug and there is also no peak for the removal of water from 

the cyclodextrin cavity. Therefore these results suggest that the formulation process has 

made a difference to the thermal behaviour and it is possible an interaction has 

occurred between the drug and excipient. The result obtained for this particular 

formulation was also illustrated for the conventionally heated formulation (consequently 

example not illustrated), this suggests that the choice of heating method makes no 

difference to the way the compounds behave once formulated.  
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Figure 4.1.7.2 – Microwave formulated ketoprofen and BCD, 1:9 without water present 

in the formulation process 

 
Figure 4.1.7.2 displays the thermal analysis for ketoprofen and BCD, 1:9 formulated 

using microwaves, and without the presence of water. It is clear from the graph that two 

peaks are present, with the first having a corresponding temperature of 85°C and the 

second peak temperature of 110°C. This shows a decrease for the melt of the drug and 

an increase for the removal of water from the cyclodextrin cavity, therefore it is possible 

an interaction occurred between the two compounds. This is justified by a change in the 

thermal behaviour of the drug and excipient after the formulation process. This was also 

seen for the conventional formulation and is consequently not illustrated.  
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4.1.8 Ketoprofen and 2HPBCD 

 Ketoprofen and 2HPBCD was formulated using microwave and conventional 

heating, without the presence of water. The results are illustrated in Figures 4.1.8.1 to 

4.1.8.2.   

 

 

Figure 4.1.8.1 - Microwave formulated ketoprofen and 2HPBCD 1:1, without water 

present in the formulation process 

 
Figure 4.1.8.1 displays the DSC traces for ketoprofen and 2HPBCD in the 1:1 ratio 

formulated using microwave heating, and without the presence of water. It can be seen 

that a single peak can be seen with a temperature of 90°C. This is likely to correspond 

to the melt of the drug, and as a result it is possible to say that the formulation process 

has had little or no effect on the thermal behaviour of the drug. It is also a possibility that 

a single peak is present because the dehydration of the cyclodextrin cavity occurred 

during the heating method and no water was present to prevent this from happening. 

This occurred for both formulations and therefore there is no significant difference 

between the two heating methods.  

 After ketoprofen and 2HPBCD were analysed in the 1:1 ratio, it was also 

investigated in the 1:9 ratio and the results are illustrated in Figure 4.1.8.2. 
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Figure 4.1.8.2 - Conventional formulated ketoprofen and 2HPBCD, 1:9 without water 

present in the formulation process 

 

Figure 4.1.8.2 shows the formulation prepared using conventional heating. It is evident 

from the DSC result that a single peak is present with a temperature of 90°C. This 

temperature corresponds to the melt of the drug and as a consequence the formulation 

process appears to not have made a difference to the thermal behaviour of the drug.  
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4.1.9 Ketoprofen and PVP 

 Ketoprofen was formulated with PVP in the 1:1 and 1:9 ratios, using microwave 

and conventional heating, with or without the presence of water. Figures 4.1.9.1 and 

4.1.9.2 displays ketoprofen and PVP in the 1:1 and 1:9 ratios.  

 

 
Figure 4.1.9.1 – Microwave formulated ketoprofen and PVP, 1:1 without water present 

in the formulation process 

 
Figure 4.1.9.1 shows the microwave formulation prepared without water present, it can 

be seen that the peak is sharp and has a temperature of 90°C. This is likely to 

correspond to the melt of the drug and for that reason it seems that the formulation 

process has not affected the thermal behaviour of the drug.  The absence of the 

polymer dehydration peak may be because the heating method has already removed 

any moisture and as a result it will not be present in the DSC trace.  
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Figure 4.1.9.2 - Microwave formulated ketoprofen and PVP, 1:9 with water present in 

the formulation process 

 
Figure 4.1.9.2 is an example of microwave formulated ketoprofen and PVP with water 

present during the formulation method. It is evident from the graph that only a single 

peak is present, with a temperature of around 90°C which is likely to correspond to the 

melt of ketoprofen. This may suggest that no significant difference has occurred to the 

thermal behaviour of the drug once formulated.  

 

4.1.10 Flurbiprofen and SA 

 Flurbiprofen and SA were analysed in a 1:3 ratio. A total of four different 

formulations were prepared and analysed. However as previously seen only a few 

examples are illustrated unless significant differences occurred between the 

formulations.  
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Figure 4.1.10.1- Microwave formulated flurbiprofen and SA, 1:3 without water present in 

the formulation process 

 

 

Figure 4.1.10.2 - Conventional formulated flurbiprofen and SA, 1:3 with water present in 

the formulation process 
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It can be seen from Figure 4.1.10.1 and 4.1.10.2 that only a single melting peak is 

present. In both cases a peak temperature of 55°C was seen. This shows a clear 

decrease in the temperature when compared with the pure components. This could 

signify an interaction between the drug and excipient has occurred and an overlap of 

two melting points is evident. However, for flurbiprofen to overlap with the melt for the 

excipient, the melt for the drug would have to decrease by over 60°C. Other possibilities 

therefore include that the formulation is not as homogenous as expected and as a result 

when a small amount of the formulation is taken for analysis it may not contain any of 

the drug. Nevertheless, there is still an apparent decrease in the melt for the peak that 

is present. Another possibility could be that at the formulation temperature of 85°C, only 

the SA melts, this could cover the drug, encapsulate it and it may then hide it and 

prevent it from showing up on the DSC trace.  

 

4.1.11 Flurbiprofen and PVP, 1:1 and 1:9 

 Flurbiprofen and PVP were formulated in the 1:1 and 1:9 ratios, using microwave 

and conventional heating, with and without the presence of water.  

 
Figure 4.1.11.1 - Microwave formulated flurbiprofen and PVP, 1:1 without water present 

in the formulation process 
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Figure 4.1.11.1 is for flurbiprofen and PVP, in the 1:1 ratio formulated using microwaves 

and without water present. It is evident from the DSC trace that a single peak is present, 

with a temperature of 115°C which corresponds to the melting point of the drug. This 

shows that the formulation process has not affected the thermal behaviour of the drug, 

but it may have dehydrated the excipient and that is why only a single peak is present. 

The results obtained for the microwave formulations were also observed in the 

formulations prepared using conventional heating, and this shows that there is little or 

no significant difference between heating methods.  

 
After the 1:1 formulations were analysed, flurbiprofen and PVP were investigated in the 

1:9 ratio, illustrated in Figure 4.1.11.2.  

 

 

Figure 4.1.11.2 - Microwave formulated flurbiprofen and PVP, 1:9 with water present in 

the formulation process 
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Figure 4.1.11.2 is for flurbiprofen and PVP, 1:9 with water. It is evident that a single 

peak is present with a temperature around 100°C which could be the loss of water from 

the excipient. It is broad which makes it difficult to determine if there is a peak present 

for the melting point of the drug. This also occurred for the conventional formulation.  

 
The last drug that was formulated with the four different excipients was paracetamol. 

The results for this drug are illustrated in Section 4.1.12.  

 

4.1.12 Paracetamol and SA 

 Paracetamol and SA were formulated without water using microwaves and 

conventional heating in a 1:3 ratio which can be seen in Figure 4.1.12.1 and Figure 

4.1.12.2.   

 

 

Figure 4.1.12.1 – Microwave formulated paracetamol and SA, 1:3 without water present 

in the formulation process 
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Figure 4.1.12.2-Conventional formulated paracetamol and SA, 1:3 without water present 

in the formulation process 

 

Figure 4.1.12.1 is for paracetamol and SA formulated using microwaves, and it can be 

seen from the DSC trace that the first peak has a temperature of 70°C which 

corresponds to the melt of the excipient, SA. The second peak has a temperature of 

170°C, and this corresponds to the melt of the drug (illustrated by the circle). From 

these results it is apparent that the formulation process has made no significant 

difference to the thermal behaviour of the drug and excipient. This result was also 

obtained for the formulation prepared using conventional heating, seen in Figure 

4.1.12.2. No significant difference may have occurred in the thermal behaviour because 

only the excipient melts and may not encapsulate the drug to a maximum extent. This 

result also indicates that the choice of heating method makes no difference to the 

overall formulation after the heating process.  
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4.1.13 Paracetamol and BCD, 1:1 and 1:9 

 Paracetamol was formulated with BCD in the 1:1 and 1:9 ratios using 

microwaves and conventional heating, without the presence of water.  

 

Figure 4.1.13.1 - Paracetamol and BCD, 1:1 formulated using microwave heating 

without the presence of water 

 

Figure 4.1.13.1 illustrates paracetamol and BCD formulated in the 1:1 ratio using 

microwave heating, without the presence of water. It can be seen from both DSC traces 

that two peaks are present, the first has a peak temperature of 110°C which 

corresponds to the dehydration of the cyclodextrin cavity, a result seen throughout. The 

second peak has a temperature of 170°C which illustrates the melt of the drug. The 

about result was also seen for the conventional formulation and consequently this is not 

illustrated.  

 

Paracetamol and BCD were also formulated in the 1:9 ratio, and the results are 

illustrated in Figure 4.1.13.2. 
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Figure 4.1.13.2 - Paracetamol and BCD, 1:9 formulated using microwave heating 

without the presence of water 

 

Figure 4.1.13.2 displays paracetamol and BCD formulated using microwave heating. 

Two peaks are illustrated within this DSC trace, and the first has a peak temperature of 

110°C which shows the dehydration of the cyclodextrin cavity. The second peak has a 

temperature of 170°C which is the melt of the drug.  

 

4.1.14 Paracetamol and 2HPBCD, 1:1 and 1:9 

  Paracetamol was formulated with 2HPBCD in the 1:1 and 1:9 ratios using 

microwave or conventional heating without the presence of water.  
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Figure 4.1.14.1 – Microwave formulated paracetamol and 2HPBCD, 1:1 without water 

present in the formulation process 

 

Figure 4.1.14.1 illustrates paracetamol and 2HPBCD, and it can be seen that two peaks 

are present and the first peak which is for the release of water from the 2HPBCD cavity 

has a peak temperature of 85°C and the second peak which is the melt of paracetamol 

has a peak temperature of 165°C. It is evident that there is a reduction in the melting of 

the drug and also the expulsion of water from the cavity.  

 After analysis of the conventionally heated paracetamol and 2HPBCD, 1:1 it was 

noticed that the same results were achieved regardless of heating method, which shows 

no significant difference between the heating methods.  
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Figure 4.1.14.2 – Microwave formulated paracetamol and 2HPBCD, 1:9 without water 

present in the formulation process 

 

Figure 4.1.14.2 is for microwave formulated paracetamol and 2HPBCD, 1:9  and again 

there are two peaks present. The first peak is at 85°C and the second peak is for 

paracetamol and this has a temperature of 165°C. This result was also seen for the 

conventional formulated paracetamol and 2HPBCD, displaying that no difference exists 

between the two heating methods.  

 

4.1.15 Paracetamol and PVP, 1:1 and 1:9 

  Paracetamol was formulated with PVP in the 1:1 and 1:9 ratios, using 

microwaves and conventional heating without the presence of water. After analysis of 

the different formulations, it became evident that the same results were obtained as 

previously seen with the other paracetamol formulations. There was a peak around 

100°C symbolising the release of any trapped water from the polymer chain and a peak 

around 170°C corresponding to the melting point of the drug. Consequently because of 

this the DSC results were not illustrated.  
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After DSC was employed to determine if any differences occurred between formulations 

on a molecular level, it was important to see if any differences can be seen visually and 

therefore on a physical level. SEM was used to investigate the physical properties of 

each of the different formulations.  

 

14.2 Scanning Electron Microscope (SEM) 

 The scanning electron microscope was used to determine if any structural 

differences could be seen between the different formulations. First the pure compounds 

were analysed at three different magnifications (X33, X85 and X300) to gain a 

representative image of the samples. Each formulation prepared, i.e. with or without the 

presence of water and using the two different heating methods was analysed. Figures 

4.2.1 - 4.2.8 illustrate the pure compounds and these were used for comparison with the 

formulations.  

 

4.2.1 Comparison of pure drug and excipients 

 

    

Figure 4.2.1 -SEM image for pure ibuprofen, magnification x300  
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Figure 4.2.2 – SEM image for pure ketoprofen, magnification x300 

  
 

Figure 4.2.3 – SEM image for pure flurbiprofen, magnification x300 

 

Figure 4.2.4 – SEM image for pure paracetamol, magnification x300 

 

 



117 
 

Figures 4.2.1 - 4.2.4 display the SEM images for the four pure drugs. Figure 4.2.1 

illustrates pure ibuprofen. From the image it is possible to conclude that the drug has a 

regular elongated particle shape. Figure 4.2.2 is for ketoprofen and from the image it is 

possible to conclude that the drug has a spherical particle shape. Figure 4.2.3 is for 

flurbiprofen, and for this particular drug the particle shape is rectangular, and the final 

image, Figure 4.2.4, is for paracetamol and the particles appear to be needle-like in 

shape.  

 

Figure 4.2.5 - SEM image for pure stearic acid (SA), magnification x300 

 

Figure 4.2.6 - SEM image for pure β-cyclodextrin (BCD), magnification x300 
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Figure 4.2.7 – SEM image for pure hydroxypropyl-β-cyclodextrin (2HPBCD), 

magnification x300 

 

Figure 4.2.8 – SEM image for pure polyvinylpyrrolidone (PVP),  

magnification x300 

 

Figure 4.2.5 is the SEM image for stearic acid, and it is evident from the image that no 

definable shape appears with this excipient, there only appears to be small and large 

particles that are random in shape. This is also the case for BCD, illustrated in Figure 

4.2.6. Figure 4.2.7 illustrates 2HPBCD, which appears to have spherical shaped 

particles. Figure 4.2.8 displays the SEM image for PVP which appears to include 

particles that are random in size but also have a rough texture. 
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4.2.2 Comparison of the different formulations 

 Ibuprofen was the first drug to be investigated with the four different excipients. 

Figures 4.2.2.1 to 4.2.2.3 illustrates a few examples of the different ibuprofen 

formulations, and Table 4.2.2.1 summarises all the results obtained from the SEM for 

this particular drug.  

 

Figure 4.2.2.1 - Microwave formulated ibuprofen and BCD, 1:1 ratio, with water present 

during formulation, magnification x85 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.2.2.2 - Microwave formulated ibuprofen and 2HPBCD 1:1 ratio, without water 

present during formulation, magnification x85 
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Figure 4.2.2.3 - Microwave formulated ibuprofen and PVP 1:9 ratio, without water 

present during formulation, magnification x85 
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Formulation  
Heating 
Method 

Water 
Present Description  Comment 

Ibuprofen 
and SA MW Yes 

Small particles, with a regular 
shape and size 

No pure drug appears to be in the formulated 
product, 

1:3 MW No 
Larger, irregular particle shape and 
size 

Formulation process changed appearance for 
with and without water 

Ibuprofen 
and SA CN Yes 

The same was also witnessed for 
the  

Same witnessed for conventional as for the 
microwave 

 
CN No 

conventionally formulated as with 
the MW formulation formulations  

Ibuprofen 
and BCD MW Yes     

1:1 MW No     
Ibuprofen 
and BCD CN Yes 

 In all cases, when water is present 
there is a clear reduction    

 
 CN No 

in particle size. The particles appear 
to be uniform in shape.  

Formulation with water contains smaller particles 
with no evidence 

 
MW Yes 

This is the case regardless of the 
heating method and the 

of pure drug. However when water wasn’t 
present possibility of needle-like  

1:9 MW No chosen ratio of drug to excipient.  particles remaining which could be ibuprofen.  
Ibuprofen 
and BCD CN Yes     

 
CN No     

Ibuprofen 
and 2HPBCD MW No 

No comparison can be made to 
formulations prepared with  

MW formulation appeared to contain particles 
from the pure drug, where the formulation 

1:1 

 
  

water. There appears to be no 
significant difference between 

prepared using conventional heating doeant 
appear to contain any drug particles. 

Ibuprofen 
and 2HPBCD CN No the choice of heating methods.  

Both formulations look significant different to the 
pure compounds  

  
  

 
  

 
MW No   

Same results obtained for this ratio and 
formulation as the 1:9 

1:9 

 
  

This result was also obtained for 
the 1:9 ratio 

Difference between heating methods appears to 
exist 

Ibuprofen 
and 2HPBCD CN No     

 

        
Ibuprofen 
and PVP MW Yes 

 
  

1:1 MW No 

 
  

Ibuprofen 
and PVP CN Yes 

Larger, irregular particle shape and 
size when water was present 

Water causes polymer to swell, therefore larger 
particles should be witnessed when 

 
CN No during formulation. Polymer swells compared to formulation prepared without water 

 
MW Yes 

Smaller particles. Not usually 
witnessed. 

This is usually not the case, with the formulations 
prepared with water illustrating smaller 

1:9 MW No 

 
particle size.  

Ibuprofen 
and PVP CN Yes     

 
CN No     

Table 4.2.2.1 – Summary of SEM results obtained for the different ibuprofen 

formulations.  
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After all the different ibuprofen formulations were analysed using SEM, the different 

ketoprofen formulations were also investigated. Figures 4.2.2.4 to Figure 4.2.2.7 

illustrate a few examples of the SEM micrographs obtained for the different ketoprofen 

formulations, and Table 4.2.2.2 is an overall summary of all the results obtained with 

SEM.  

   

Figure 4.2.2.4 - Microwave formulated ketoprofen and BCD 1:1 ratio, with water present 

during formulation, magnification x85 

 

 

Figure 4.2.2.5 - Microwave formulated ketoprofen and BCD 1:9 ratio, without water 

present during formulation, magnification x85 
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Figure 4.2.2.6 - Microwave formulated ketoprofen and PVP 1:1 ratio, with water present 

during formulation, magnification x85 

 

  

Figure 4.2.2.7 - Microwave formulated ketoprofen and PVP 1:1 ratio, without water 

present during formulation, magnification x85 
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Formulation  
Heating 
Method 

Water 
Present Description  Comment 

Ketoprofen 
and SA MW Yes 

Small particles, with a regular shape 
and size 

No pure drug appears to be in the formulated 
product, 

1:3 MW No 
Larger, irregular particle shape and 
size 

Formulation process changed appearance for with 
and without water 

Ketoprofen 
and SA CN Yes 

The same was also witnessed for 
the  

Same witnessed for conventional as for the 
microwave 

 
CN No 

conventionally formulated as with 
the MW formulation formulations  

Ketoprofen 
and BCD MW Yes     

1:1 MW No   
The choice of heating method appears to make no 
significant difference  

Ketoprofen 
and BCD CN Yes 

In all cases, when water is present 
during formulation 

to the appearance of the formulations. However 
the presence of water does affect 

 
CN No 

the particle size and shape appears 
smaller and more 

the particle size and shape. With smaller particles 
present after formulation with  

 
MW Yes 

uniform. This result was obtained 
for both the heating water 

1:9 MW No 
methods and the two different 
ratios   

Ketoprofen 
and BCD CN Yes     

 
CN No     

Ketoprofen 
and 2HPBCD MW No 

No comparison can be made to 
formulations prepared with  

The formulation method appears to have 
significantly changed the appearance 

1:1 

 
  

water. There appears to be no 
significant difference between of the drug and excipient after formulation.  

Ketoprofen 
and 2HPBCD CN No the choice of heating methods.  

The choice of heating method appears to make no 
significant difference  

  
  

 
to the appearance of the formulations 

 
MW No     

1:9 

 
  

This result was also obtained for the 
1:9 ratio This result was also obtained for the 1:9 ratio 

Ketoprofen 
and 2HPBCD CN No     

 

        
Ketoprofen 
and PVP MW Yes 

 
  

1:1 MW No 

 
  

Ketoprofen 
and PVP CN Yes 

Larger, irregular particle shape and 
size when water was present 

Water causes polymer to swell, therefore larger 
particles should be witnessed when 

 
CN No during formulation. Polymer swells compared to formulation prepared without water 

 
MW Yes 

Smaller particles. Not usually 
witnessed. 

This is usually not the case, with the formulations 
prepared with water illustrating smaller 

1:9 MW No 

 
particle size.  

Ketoprofen 
and PVP CN Yes     

 
CN No     

Table 4.2.2.2 – Summary of SEM results obtained for the different ketoprofen 

formulations.  

 



125 
 

Flurbiprofen was the next drug investigated using SEM, Figure 4.2.2.8 and Figure 

4.2.2.9 are a few examples of the SEM micrographs obtained. Table 4.2.2.3 

summarises all the results obtained for this drug and the two different excipients.  

 

 

Figure 4.2.2.8 - Microwave formulated flurbiprofen and PVP 1:1, without water present 

during formulation, magnification x85  

 

 

Figure 4.2.2.9 - Microwave formulated flurbiprofen and PVP 1:9, with water present 

during formulation, magnification x85 
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Formulation  
Heating 
Method 

Water 
Present Description  Comment 

Flurbiprofen 
and SA MW Yes 

Small particles, with a regular shape 
and size 

No pure drug appears to be in the formulated 
product, 

1:3 MW No 
Larger, irregular particle shape and 
size 

Formulation process changed appearance for with 
and without water 

Flurbiprofen 
and SA CN Yes 

The same was also witnessed for 
the  

Same witnessed for conventional as for the 
microwave 

 
CN No 

conventionally formulated as with 
the MW formulation formulations  

Flurbiprofen 
and PVP MW Yes 

 
  

1:1 MW No 

 
  

Flurbiprofen 
and PVP CN Yes 

Larger, irregular particle shape and 
size when water was present 

Water causes polymer to swell, therefore larger 
particles should be witnessed when 

 
CN No during formulation. Polymer swells compared to formulation prepared without water 

 
MW Yes 

Smaller particles. Not usually 
witnessed. 

This is usually not the case, with the formulations 
prepared with water illustrating smaller 

1:9 MW No 

 
particle size.  

Flurbiprofen 
and PVP CN Yes     

 
CN No     

Table 4.2.2.3 – Summary of SEM results obtained for the different flurbiprofen 

formulations.  

 

The last drug analysed using SEM was paracetamol with the four different excipients. 

Figure 4.2.2.10 to Figure 4.2.2.12 display a few examples of these formulations and 

Table 4.2.2.4 summarises all the results obtained from the SEM for this drug.  

 

 

          Figure 4.2.2.10 - Conventionally formulated paracetamol and BCD 1:1 ratio, 

without water present during formulation, magnification x85 
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Figure 4.2.2.11 - Microwave formulated paracetamol and 2HPBCD 1:9 ratio, without 

water present during formulation, magnification x85 

 

 
Figure 4.2.2.12 - Microwave formulated paracetamol and PVP 1:9 ratio, without water 

present during formulation, magnification x85 
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Formulation  
Heating 
Method 

Water 
Present Description  Comment 

Paracetamol 
and SA 

 
      

1:3 MW No 
Both formulations illustrate large 
and irregular shaped particles 

No comparison can be made between with and 
without water. There appears to be no  

Paracetamol 
and SA 

 
    

significant difference between the heating 
methods.  

 
CN No     

Paracetamol 
and BCD         

1:1 MW No     
Paracetamol 
and BCD 

 
  

All formulations illustrate small 
particles, with no particular 

No comparison can be made between with and 
without water. There appears to be no  

 
CN No 

shape. This is consistent between 
heating methods and different 

significant difference between the heating 
methods.  

  
  formulations    

1:9 MW No     
Paracetamol 
and BCD 

 
      

 
CN No     

Paracetamol 
and 2HPBCD     

 
  

1:1 MW No 
 

  
Paracetamol 
and 2HPBCD 

 
  

All formulations consist of large and 
small particles, with no  

No comparison can be made between with and 
without water. There appears to be no  

 
CN No 

particular shape or size. This is 
consistent over the two heating 

significant difference between the heating 
methods.  

  
  methods and different ratios.    

1:9 MW No 
 

  
Paracetamol 
and 2HPBCD 

 
  

 

  

 
CN No     

Paracetamol 
and PVP 

 
  

 
  

1:1 MW No 

 
  

Paracetamol 
and PVP 

 
  

All formulations consist of large and 
small particles, with no  

No comparison can be made between with and 
without water. There appears to be no  

 
CN No 

particular shape or size. This is 
consistent over the two heating 

significant difference between the heating 
methods.  

  
  methods and different ratios.    

1:9 MW No 

 
  

Paracetamol 
and PVP 

 
      

 
CN No     

Table 4.2.2.4 – Summary of SEM results obtained for the different paracetamol 

formulations.  
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4.2.3 SEM summary 

 From all the results obtained, it appears that little or no significant difference 

exists between the two different heating methods. However, in cases where water was 

present during formulation the particle size seemed to be reduced. This was seen 

throughout the analysis until PVP was used as the excipient and when water was 

present. Here, the formulation with water illustrated a larger particle size and this may 

be because of the polymer swelling when exposed to the water in the formulation 

method.  

 

All the different formulations were analysed and compared using DSC and SEM. It was 

noted from the DSC that the formulation method did affect the thermal behaviour of the 

drug and excipient and these differences were seen visually by using the SEM. Despite 

the usefulness of DSC and SEM, these techniques do not determine the stability of the 

drug once it has undergone the heating process, an instrument that will allow this to be 

calculated is the thermal activity monitor (TAM). Out of all the drugs that were 

formulated with the different excipients, ibuprofen was the only one that melted at the 

chosen formulation temperature. It was therefore important to ensure that this didn’t 

affect the stability of the drug once formulated.   

 

4.3 Thermal Activity Monitor (TAM) 

 A thermal activity monitor (TAM) was used to investigate the stability of different 

formulations at 30°C for a period of four days. The TAM has two sample cells so each 

formulation was analysed in duplicate.  

 

4.3.1 Pure ibuprofen 

Three separate experiments were performed to determine the stability of 

ibuprofen. These included: 

A) Under 0% humidity 

B) Under 51% humidity ((Mg(NO3)2) 

C) Dissolved in buffer (pH8) 
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In all cases, there appears to be 0μW/g of heat flow. This indicated that no thermal 

processes occurred over the four day period under any conditions used. Consequently it 

can be said ibuprofen was stable under all conditions, and an example can be seen in 

Figure 4.3.1.1 

 

Figure 4.3.1 - Pure Ibuprofen, held at 30°C, 0% relative humidity 

 

After pure ibuprofen was investigated, each of the different formulations was analysed 

using TAM over a four day period. In all cases an output of 0μW/g was evident for all 

the different formulations indicating no thermal processes occurred, consequently all the 

formulations appeared stable after the formulation process. Two examples are 

illustrated in Figure 4.3.2 and Figure 4.3.3.  
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Figure 4.3.2 Ibuprofen with SA, held at 30°C, 0% relative humidity, formulated using the 

microwave method with water present during formulation 

 

Figure 4.3.3 - Ibuprofen with BCD, 1:1 ratio, held at 30°C, 0% relative humidity, 

formulated using the conventional method with water present during formulation 
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In total there were four drugs and four different excipients formulated. However other 

than ibuprofen, the other three drugs (ketoprofen, flurbiprofen, and paracetamol) did not 

melt at the formulation temperature (85°C). Consequently ibuprofen was studied in 

detail, with the other three drugs to be carried on in the future work programme.  

 However after analysis of a few formulations for the other three drugs, the same 

results seen for ibuprofen were also witnessed for ketoprofen, flurbiprofen and 

paracetamol. Figure 4.3.4 – Figure 4.3.6 illustrate a few examples of the graphs 

obtained from the TAM, in all cases 0μw/g heat flow can be seen and therefore no 

thermal processes occurred over the four days.   

 

 

Figure 4.3.4 - Ketoprofen with PVP, 1:1 ratio, held at 30°C, 0% relative humidity, 

formulated using the microwave method with water present during formulation 
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Figure 4.3.5 - Flurbiprofen with PVP, 1:1 ratio, held at 30°C, 0% relative humidity, 

formulated using the microwave method without water present during formulation 

 

 

Figure 4.3.6 - Paracetamol with BCD, 1:1 ratio, held at 30°C, 0% relative humidity, 

formulated using the microwave method without water present during formulation 
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From all the results illustrated, the output signal is zero for all the ibuprofen formulations 

and for the few examples illustrated for ketoprofen, flurbiprofen and paracetamol. It can 

be said that the formulation process and the presence of water has made no difference 

to the stability of the drug. It is difficult to determine if all the formulations show the same 

results for ketoprofen, flurbiprofen and paracetamol but because of time restrictions 

these drugs could not be studied further. Therefore these formulations can be continued 

and analysed within a programme of future work. However to hypothesise, from the 

results previously seen it is likely that the other formulations will again show no adverse 

effects, i.e. show a signal output on or around zero and consequently will be stable 

within the four different excipients.  
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Chapter 5 – Drug Release: Dissolution Analysis 
 
5.1 Introduction 
 

Dissolution analysis is an important analytical technique in the pharmaceutical 

industry. It provides drug release profiles which can then be used to determine any 

differences between any two or more products under consideration1-4. A detailed 

discussion on the theoretical aspects of the analytical technique itself can be found in 

Chapter One.  

 The percentage of drug release was measured over four hours, however only the 

first ninety minutes will be illustrated as this period is where the majority of the observed 

differences occurred.  

Each graph presented in this section indicates which heating method was used, 

microwave heating (MW) or conventional heating (CN), and identifies the presence 

(with), or the absence (without), of water where appropriate. Each curve is the average 

of three repeat runs with error bars equal to one standard deviation. Where differences 

between the dissolution profiles were observed the initial rate of dissolution was 

calculated by dividing the slope by the horizontal distance between any two points (rate 

of change).  
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Figure 5.1.1 –A drug release profile for Ibuprofen and BCD, 1:1 ratio, displaying the full 

four hours of data 

 

5.2 Ibuprofen, Ketoprofen and Flurbiprofen Drug Release in Water 

 Previous research has suggested that microwaves can increase the solubility 

and rate of drug release of certain drugs5-10, that are classified within the BCS Class 

Two, without the necessity of increasing the pH of the dissolution media.  

To further investigate these findings, all the formulations that were prepared 

using microwave or conventional heating were analysed using dissolution analysis with 

a media of water. The two different heating methods were also compared to determine if 

microwave heating produced any differences in dissolution when compared with 

conventional heating. 

The first formulations analysed were ibuprofen with the four different excipients. 

In all cases there was an improvement in the dissolution of the drug once formulated 

with the various excipients. Another observed trend was that the microwave 

formulations seemed to improve the extent of dissolution of ibuprofen when compared 

with formulations prepared using conventional heating (Figures 5.2.1 and 5.2.2 are 
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examples of ibuprofen with two of the excipients), although the difference is relatively 

small.  

 

Figure 5.2.1 – A drug release profile for Ibuprofen and BCD, 1:9 ratio, highlighting the 

improved release in the presence of the excipient 

 

 

Figure 5.2.2 – A drug release profile for Ibuprofen and 2HPBCD 1:9 ratio highlighting 

the improved release in the presence of the excipient 
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Figure 5.2.1 and Figure 5.2.2 are examples of ibuprofen formulations. Formulating 

ibuprofen with the different excipients seems to increase the extent of the dissolution for 

the drug. Figure 5.2.1 is for ibuprofen with BCD in a 9:1 ratio, the maximum amount of 

pure drug released over the ninety minute time period is 6% (±1%), and when this is 

compared with formulated ibuprofen with BCD, 1:9 ratio an increase up to 60-70% 

(±10%) is seen. This shows an approximate 10-12 fold increase in the extent of 

dissolution after the formulation process. Along with this increase, the release profile for 

ibuprofen formulated using microwave heating appears to improve the dissolution of the 

drug to a greater extent than conventional heating. The first five minutes of analysis 

shows little difference between the two heating methods but after this time period the % 

drug release profiles separate and visually appear to be different. However, when the 

percentage error is calculated a 10% error can be associated with the majority of the 

measurements. This consequently makes it difficult to determine if there are significant 

differences between the release profiles and therefore the two heating methods.  

 Figure 5.2.2 displayes ibuprofen with a second excipient, 2HPBCD. When the 

dissolution for the pure drug was compared with the dissolution of the formulation an 

improvement is again evident. The release profile for the pure drug shows only 6% 

(±1%) of the drug in solution compared with 40-49% (±5%) for the formulated product. 

This illustrates an approximate 7-8-fold increase in the dissolution. There is also a slight 

difference between the release profiles for microwave and conventional heating with the 

microwave formulation releasing a higher percentage of the drug over the ninety minute 

time period. For the first thirty minutes, both profiles appear to release the same amount 

of ibuprofen (35% ± 3%) After this time period, the two release profiles begin to 

separate with the microwave heating releasing over 45% (± 7%) of the drug compared 

with 39-40%(± 2%) for conventional heating.  

Both profiles show how pure ibuprofen behaves in water, only 6-7% of the drug 

dissolves and this illustrates how limiting the rate of dissolution is which will ultimately 

limit bioavailability. The two examples illustrated demonstrate that by adding an 

excipient and heating ibuprofen a great improvement in the degree of drug release can 

be obtained. For all the formulations that were prepared, an improvement in the extent 

of ibuprofen released was obtained. In addition, microwave heating tends to show a 
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greater improvement in the extent of drug release of ibuprofen when compared  with 

conventional heating.  

The highest increase in drug release for ibuprofen was observed when 

formulated with BCD in a 1:9 ratio (Figure 5.2.1), with the next significant increase 

2HPBCD (Figure 5.2.2). The SA and PVP formulations provided an increase in the 

extent of drug release but not as significant as the two formulations illustrated.  

  A similar pattern of improved dissolution after formulation was also observed with 

ketoprofen. Figure 5.2.3 is an example of ketoprofen with PVP, 1:9,  Figure 5.2.4 shows 

ketoprofen formulated with SA, 1:3.  

  

 

Figure 5.2.3 – A drug release profile for ketopofen and PVP, ratio 1:9 using both 

microwave and conventional heating methods compared with ketoprofen alone 
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Figure 5.2.4 – A drug release profile for ketopofen and SA, ratio 1:3 using both 

microwave and conventional heating methods compared with ketoprofen alone 

 

Figure 5.2.3 is an example of ketoprofen formulated with PVP in a 1:9 ratio using 

microwaves and conventional heating. From analysis of the dissolution curves, it 

appears that a slight increase in the release of the drug occurred over the ninety 

minutes. However, when the percentage error was calculated a 10% error can be 

associated with the measurements. This consequently makes it difficult to determine 

any significant differences, but over the last twenty minutes of the dissolution the 

percentage drug release continues to increase for the formulated drug. This may help to 

illustrate that after formulation there is an improvement in the dissolution for ketoprofen. 

There also appears to be little or no difference between the two heating methods with 

both releasing over 90% (±7%) of ketoprofen towards the end of the ninety minutes time 

period.   

 Figure 5.2.4 illustrates ketoprofen and SA formulated using microwaves and 

conventional heating. It is evident from the release profiles that adding the excipient SA 

to ketoprofen has decreased the release of the drug. This result shows an approximate 

2-fold decrease for the microwave formulation and a decrease of 4-fold for the 
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conventional formulation. It is probable the result has been obtained because SA is a 

waxy compound that doesn’t dissolve in this solvent and unlike ibuprofen, ketoprofen 

doesn’t melt at a similar temperature to SA.  It is therefore likely that during the 

formulation process the SA coated the drug making it difficult for any dissolution media 

to penetrate into the matrix once formulated. Also, when the release profiles for both the 

heating methods were compared, it can be seen that the microwave formulation 

released a slight higher percentage of ketoprofen. After the ninety minutes period the 

microwave formulation attained a drug release of 31% (±3%) compared with 18% (±5%) 

using the conventional method. This result may have occurred because of the uniform 

heating that microwaves provide, resulting in a formulation that had the drug and 

excipient evenly mixed throughout the matrix.  

  From analysis of all the different formulations, it is evident that an improvement 

in the extent of release of ketoprofen occurred with the inclusion of excipients, other 

than SA. There is also little or no significant difference between the two heating 

methods other than in the ketoprofen and SA example illustrated (Figure 5.2.4). The 

highest increase in drug release was observed when the drug was formulated with PVP 

in a 1:9 ratio (Figure 5.2.3), with the lowest improvement in the release of ketoprofen 

when SA is present in the formulation, illustrated by Figure 5.2.4.  

After ketoprofen was analysed, a third drug was investigated, namely 

fluribiprofen.  Flurbiprofen was formulated with SA and PVP only. It was not formulated 

using BCD and HPBCD because of difficulties experienced when monitoring the drug 

release as a consequence of a possible shift in absorbance. Despite not investigating 

this drug with all four excipients, some trends were seen. These include an 

improvement in the release of flurbiprofen when PVP was added. Also when SA was 

added to flurbiprofen, a similar trend to that seen for ketoprofen and SA was observed 

(Figure 5.2.5). 

 



144 
 

 

Figure 5.2.5 – A drug release profile for flurbiprofen and SA, ratio 1:3 using microwave 

heating and conventional heating compared with flurbiprofen alone 

 

It is evident from Figure 5.2.5 that by adding SA to the drug a decrease in the 

percentage of drug released occurred. The maximum amount of drug in solution for the 

pure drug at the end of the ninety minutes time period is 84% (±9%), compared with 

14% (±13%) for the microwave formulated flurbiprofen and 10% (±4%) for the 

conventional formulation. Both the formulations show between a 6-8-fold decrease in 

the release of flurbiprofen. As previously mentioned this was a result seen with 

ketoprofen and SA. As with ketoprofen, flurbiprofen doesn’t melt at a similar 

temperature to SA during the heating process. Consequently, the un-melted drug is 

encapsulated by the SA as it melts and the resultant formulation has a waxy texture 

(insoluble). This would make it difficult for the dissolution media to penetrate into the 

matrix and release the drug.  
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The previous section shows the ‘dry melts’ of the drug and excipient can have a 

significant impact on the dissolution profiles and that, in some cases, microwave heating 

showed small but observable differences to conventional heating. The next section 

describes results of experiments investigating the effect of water on the formulation 

process.  

 

5.3 Ibuprofen 

5.3.1 The effect of the presence of water during formulation 

It was decided to incorporate water into the formulation process to determine 

how the presence of a liquid affected the release profiles of a drug with poor aqueous 

solubility. 

Ibuprofen was formulated with three different excipients (2HPBCD not formulated 

with water present) with the resultant formulations analysed to establish drug release 

profiles. A summary of all the results are illustrated at the end of this section in Table 

5.3.1.8. Figures 5.3.1.1 to 5.3.1.7 are examples of some of the results obtained from the 

dissolution of ibuprofen with SA, BCD and PVP. Where significant differences occurred 

in the dissolution profiles, the rate was calculated to support the visual data seen on the 

presented graphs.  

Figure 5.3.1.1 and Figure 5.3.1.2 are examples of where the presence of water 

during formulation did not significantly affect the release of the drug.  
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Figure 5.3.1.1 – A drug release profile for Ibuprofen and SA (ratio 1:3), formulated using 

microwave heating both with and without the presence of water during the formulation 

process 

 

Figure 5.3.1.1 is an illustration of ibuprofen and SA formulated using microwave 

heating. After the first fifteen minutes, it is evident that the two profiles are the same. 

Over the ninety minutes both formulations are seen to release 70% (±5%) of the drug. 

Therefore it can be said that the presence of water in this particular example did not 

affect the release of ibuprofen from SA.   However, the first fifteen minutes of the 

dissolution profile are different and consequently the rate was calculated to support this 

visual difference. After calculation of the rate it becomes evident that the formulation 

with water releases ibuprofen at a rate of 18.7% per minute compared with 7.8% per 

minute over a three minute time period. As a result, it can be said that the first fifteen 

minutes of the dissolution are different, with the formulation prepared with water present 

releasing the drug at a faster rate. From fifteen minutes onwards it can be seen that 

both rates become similar and the same amount of ibuprofen was released. Table 

5.3.1.1 illustrates the rates for each formulation over a thirty minute time period.  
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Rate (% released per minute) 

Time(min) With Without 

0-3 18.71 7.76 

3-15 0.16 2.38 

15-30 0.36 0.37 
 

Table 5.3.1.1 – Rate of release of ibuprofen from SA when prepared with or without the 

presence of water during microwave formulation 

 

Table 5.3.1.1 illustrates the difference between the formulations for the first fifteen 

minutes of the dissolution experiment, after this time period the rate becomes similar 

(0.36% for the formulation in the presence of water compared with 0.37% for 

formulation without water).  

 Figure 5.3.1.2 is another example of an ibuprofen formulation that was not 

affected by the presence of water. The example illustrated is for ibuprofen and PVP, 1:9 

ratio and conventionally heated.  

 

 

Figure 5.3.1.2 – A drug release profile for Ibuprofen and PVP (ratio 1:9), formulated 

using conventional heating both with and without the presence of water during the 

formulation process 
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Figure 5.3.1.2 displays no overall difference in total drug release with 60% of ibuprofen 

released over ninety minutes in both cases. However for the first three minutes there is 

a significant difference in the rate of release for ibuprofen. The formulation prepared 

without water present releases the drug at a rate of 19% per minute compared with 15% 

for the formulation prepared with water. After this time period the rate slows for both 

formulations. The calculated rate confirms what is visually seen in Figure 5.3.1.2, where 

a difference can be seen for the first fifteen minutes only, illustrated in Table 5.3.1.2.  

 

Rate (% release per minute) 

Time (mins) With Without 

0-3 14.62 19.00 

3-15 1.15 0.06 

15-30 0.11 0.13 
 

Table 5.3.1.2 – Rate of release of ibuprofen from PVP, 1:9 when prepared with or 

without the presence of water during formulation 

 

Figure 5.3.1.1 and Figure 5.3.1.2 illustrates the two formulations where the presence of 

water did not have an overall effect on the release of ibuprofen. However for the 

majority of the ibuprofen formulations prepared with or without water a significant 

difference occurred. From analysis of these formulations it becomes evident that when 

water was present in the formulation method a higher percentage of ibuprofen was 

released.  

Figures 5.3.1.3 to Figure 5.3.1.5 illustrate a few examples of where the presence 

of water had affected ibuprofen release from the excipient.  
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Figure 5.3.1.3 – A drug release profile for Ibuprofen and SA (ratio 1:3), formulated using 

conventional heating both with and without the presence of water during the formulation 

process 

 

Figure 5.3.1.3 confirms that the presence of water facilitated a higher percentage of 

drug to be released, with 70-75% (±1%) of ibuprofen released after forty minutes. This 

is in comparison with 60% (±0.5%) released after forty minutes, which gives an overall 

15% difference between the two formulations. The rate also agrees with this statement, 

i.e. the formulation with water present released ibuprofen at a faster rate than the 

formulation without water present (Table 5.3.1.3). 

 

Rate (% release per minute) 

Time(Mins) CN With CN Without 

0-3 2.42 2.22 

3-15 3.34 1.75 

15-30 0.93 1.52 
 

Table 5.3.1.3 – Rate of release of ibuprofen from SA, when prepared with or without the 

presence of water during conventional formulating 
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Figure 5.3.1.4 – A drug release profile for Ibuprofen and BCD (ratio 1:1), formulated 

using microwave heating both with and without the presence of water during the 

formulation process 

 

Figure 5.3.1.4 shows that for ibuprofen and BCD 1:1 formulated with and without water 

there is a significant effect on the release of ibuprofen. In the presence of water more 

drug molecules are free to dissolve, with 85% (±9%) of the drug released in the first 

fifteen minutes. This is significantly different when compared with the formulations 

prepared without water where only 67% (±3%) of ibuprofen was released in a fifteen 

minute time period. When the rate was calculated for the different formulations, it 

became apparent that the formulation prepared with water released ibuprofen at a faster 

rate than the formulation prepared without water. It is also evident that the rate of 

release for both formulations also decreased as the dissolution progressed which can 

be seen in Figure 5.3.1.4.  
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Rate (% release per minute) 

Time(Mins) MW With MW Without 

0-3 0.27 14.19 

3-15 6.67 1.85 

15-30 0.81 0.05 
 

Table 5.3.1.4 – Rate of release of ibuprofen from BCD, when prepared with or without 

the presence of water during formulation 

 

 

Figure 5.3.1.5– A drug release profile for Ibuprofen and PVP (ratio 1:9), formulated 

using microwave heating both with and without the presence of water during the 

formulation process 

 

Figure 5.3.1.5 is another example of where the presence of water affected the release 

of ibuprofen. The release profile of ibuprofen formulated in the presence of water, 

displayed a higher amount of the drug going into solution. Over the ninety minutes, 80% 

(±1%) of the drug is free to dissolve compared with 66% (±6%) for the formulation 

without water. When the rate was calculated it can be seen that the formulation 

prepared without water initially released a higher percentage of ibuprofen. However 

after three minute, the rate dropped and the formulation prepared with water begins to 
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release more of the drug and this continued for the rest of the dissolution, seen in Table 

5.3.1.5.  

Rate (% release per minute) 

Time(Mins) MW With MW Without 

0-3 21.42 21.03 

3-15 0.78 0.05 

15-30 0.17 0.11 

Table 5.3.1.5 – Rate of release of ibuprofen from PVP, when prepared with or without 

the presence of water during formulation 

 

In the majority of cases, a higher release of ibuprofen from the different excipients was 

observed when water had been present in the formulation process. This may occur for 

the following reasons: Water may aid the mixing process of the drug and excipient when 

drug or both are molten, and as a result a homogenous formulation occurs. This would 

improve dissolution because all drug molecules will be surrounded by the excipient 

improving overall solubility. Secondly, because of the presence of water, this may 

interfere with the interaction between the drug and excipient and as a result, a loosely 

bound complex was formed. 

Alongside this hypothesis, another possible factor for ibuprofen and BCD (1:1) 

without water present can be considered. A decrease in the rate of dissolution was 

apparent and this could be occurring because the drug and excipient were in the same 

ratio (1:1) and consequently close to the saturation point of the excipient11-12.  

In the case of ibuprofen and SA, the difference in the release profiles may have 

occurred because of a loosely packed matrix. SA is a waxy fatty acid and when this 

excipient was formulated without water, there was no water to interfere with the 

interaction and full encapsulation occurs. This then made it difficult for the dissolution 

medium to penetrate into the formulation and slowed the release down (this is evident 

from all release profiles of ibuprofen and SA).  

For ibuprofen and PVP, again the presence of water during formulation allowed 

more of the drug to be released over the time period. PVP has cross-linked chains and 

this gives it a pocket like structure which swells when exposed to moisture13-14. This 

may therefore cause an enlargement of these pockets allowing ibuprofen to fit better 

onto the structure, removing the drug from the water and improving dissolution. It is also 
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clear from the dissolution graphs that in most cases, ibuprofen was not released to a 

maximum of 100% when formulated with SA and PVP. A possible explanation for these 

results is because SA and PVP are insoluble in the chosen buffer and may have 

retained a certain percentage of the drug. It was previously mentioned that in the 

majority of cases when water is present in the formulation method, a higher percentage 

of the drug was released. However the following formulation (ibuprofen and BCD, 1:9) 

does not fit this trend.  

 

 

Figure 5.3.1.6 – A drug release profile for Ibuprofen and BCD (ratio 1:9), 

formulated using microwave heating both with and without the presence of water during 

the formulation process  

 

Figure 5.3.1.6 displays ibuprofen and BCD (1:9) formulated using microwave heating. It 

can be seen that the presence of water has made no significant difference to the overall 

percentage drug release. The first twenty minutes of the dissolution profile indicates the 

formulation without water released a higher percentage of the drug (97% ±1% 

compared with 94% ±3%), and this is also reflected in the rate, Table 5.3.1.6. This was 

a result not previously seen with any other ibuprofen formulation, the usual trend 
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illustrated that when water was present a higher drug release was seen. However after 

this time period it was evident that there was no significant difference between the two.  

Rate (% release per minute) 

Time(Mins) MW With MW Without 

0-3 26.89 30.59 

3-15 0.53 0.41 

15-30 0.42 -0.02 
 

Table 5.3.1.6 – Rate of release of ibuprofen from BCD, when prepared with or without 

the presence of water during formulation 

 

 

Figure 5.3.1.7 – A drug release profile for Ibuprofen and BCD (ratio 1:9), formulated 

using conventional heating both with and without the presence of water during the 

formulation process  

 

Figure 5.3.1.7 illustrates conventionally formulated ibuprofen and BCD both with and 

without the presence of water during formulation.  For this particular formulation when 

water was not present a higher proportion of the drug was initially released. This 

difference is seen within twenty minutes from the start of the dissolution.  For 

formulations with water 79% (±1%) of the drug was released compared with 89% (±1%). 
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This difference is also illustrated by the rate of release of the drug (Table 5.3.1.7). 

Within the first three minutes ibuprofen was released from the formulation without water 

at 27.9% per minute with the majority of the drug released in this time period. The rate 

decreased after this, and this is also seen in Figure 5.3.1.7.  

 

Rate (% release per minute)  

Time(Mins) CN With CN Without 

0-3 15.01 27.87 

3-15 1.99 0.38 

15-30 1.07 0.00 
 

Table 5.3.1.7 – Rate of release of ibuprofen from BCD, when prepared with or without 

the presence of water during formulation 

 

Table 5.3.1.8 illustrates all the results obtained for ibuprofen and the four different 

excipients. In some cases no differences occurred, which is illustrated by the statement 

of ‘no difference’ in the table. When formulation with water resulted in a higher 

percentage drug release this is illustrated by the statement ‘with’ in the table, and 

conversely, when formulation without water resulted in a higher release it is identified as 

‘without’. For ibuprofen and 2HPBCD no comparison could be made between 

formulations prepared with and without water, as this was only prepared without water, 

and this is consequently illustrated by the statement ‘N/A’. 
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Drug/Excipient Microwave Heating Conventional Heating 

  

Difference for 
formulations 

With/Without water 

Difference for 
formulations 

With/Without water 

Ibuprofen/SA 1:3 No Difference With 

      

Ibuprofen/BCD 1:1 With With 

Ibuprofen/BCD 1:9 Without Without 

      

Ibuprofen/PVP 1:1 With No Difference 

Ibuprofen/PVP 1:9 With With 

      

Ibuprofen/2HPBCD 
1:1 N/A N/A 

Ibuprofen/2HPBCD 
1:9 N/A N/A 

 

Table 5.3.1.8 –A summary to indicate conditions that created the greatest drug 

release for ibuprofen with the four different excipients formulated with and without the 

presence of water over a ninety minute time period.  

 

5.3.2 The influence of microwave heating compared with conventional heating on 

subsequent drug release  

Microwaves provide a quicker and more uniform technique of heating which 

could allow an advanced method for formulation of drugs and excipients. Consequently 

if a direct change over to microwave heating can be achieved without causing a 

reduction in drug release and bioavailability this would be advantageous to the 

pharmaceutical industry.  In this section ibuprofen and the four different excipients were 

compared and analysed to determine if there were any differences between the two 

heating methods.  

From all the results obtained, it appeared that the majority of formulations gave a 

higher percentage drug release when formulated using microwave heating. However 

there are some exceptions to this and the following graphs (Figure 5.3.2.1-5.3.2.4) 

illustrate this. A summary of all the results can be seen at the end of this section (Table 

5.3.2.9).  
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Figure 5.3.2.1 – A drug release profile for Ibuprofen and SA (ratio 1:3), formulated using 

microwave heating and conventional heating, in both cases with water present as a 

solvent   

 

Figure 5.3.2.1 displays ibuprofen and SA, 1:3 ratio and from this graph it can be seen 

that the conventional heating method gave a controlled and higher percentage release. 

In the first twenty minutes 60% (±4%) of the drug was released when microwave is the 

chosen heating method compared with 50% (±1%) for conventional heating. However, 

after the first twenty minutes it is evident that the formulation prepared using 

conventional heating begins to release the drug to a greater extent. This occurred until a 

total of 72% (±0.2%) was released from the conventional formulation compared with 

66% (±1%). From calculation of the rate, this was also evident, Table 5.3.2.1. For the 

first three minutes the microwave formulation released ibuprofen at a rate of 19% per 

minute, compared with 2% per second. This then dramatically decreased for the 

microwave formulation as the conventional formulation continues to increase and 

release a higher percentage of the drug.  
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Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 18.71 2.42 

3-15 0.16 3.34 

15-30 0.31 0.93 
 

Table 5.3.2.1 – Rate of release of ibuprofen from SA, microwave heating compared with 

conventional heating 

 

 

Figure 5.3.2.2 - A drug release profile for Ibuprofen and BCD (ratio 1:1), formulated 

using microwave heating and conventional heating, in both cases without water present 

as a solvent  

 

Figure 5.3.2.2 illustrates a formulation where conventional heating achieved a higher 

percentage of the drug released compared with microwave heating. The initial release 

was similar but after a ten minute period, a separation in the release profiles becomes 

evident, with 78% (±2%) of the drug released from the conventional formulation over 

ninety minutes compared with 68% (±2%) for the microwave formulation. These results 

are also reflected in the rate, the initial three minutes of the dissolution show a similar 

rate for both formulations with 44% (±1%) of ibuprofen released (Table 5.3.2.2). After 
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this time period a decrease in the rate was seen (again for both formulations) but the 

rate of release for ibuprofen from the conventional formulations remained higher and 

consequently more of the drug was released.    

 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 14.19 14.72 

3-15 1.85 2.55 

15-30 0.05 0.03 
 

Table 5.3.2.2 – Rate of release of ibuprofen from BCD 1:1, microwave heating 

compared with conventional heating 

 

 

Figure 5.3.2.3 – A drug release profile for Ibuprofen and BCD (ratio 1:1), formulated 

using microwave heating and conventional heating, in both cases with water present as 

a solvent  
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Figure 5.3.2.3 displays no significant difference between microwave and conventional 

heating. In both cases 100% (±4%) of ibuprofen was released over the ninety minutes. 

When the rate of release was calculated it was noted at the beginning of the 

experiment, the formulation prepared using microwave heating released the drug at a 

higher rate. However this rate decreased and at the end of the experiment both 

formulations have a similar rate of release and as a result the same amount of the drug 

was released.  

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
heating 

Conventional 
heating 

0-3 0.27 14.20 

3-15 6.67 3.41 

15-30 0.81 0.76 
 

Table 5.3.2.3 – Rate of release of ibuprofen from BCD 1:1, microwave heating 

compared with conventional heating 

 

 

Figure 5.3.2.4 – A drug release profile for Ibuprofen and PVP (ratio 1:1), formulated 

using microwave heating and conventional heating, in both cases without water present 

as a solvent  
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Figure 5.3.2.4 illustrates no significant difference in the release of the drug from either 

heating methods. A higher release of ibuprofen from PVP was seen for the microwave 

formulation in the initial three minutes (69% ±6% compared with 65% ±1%). However 

after this time period, both formulations released approximately the same amount of the 

drug.  

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 23.15 21.62 

3-15 0.31 0.35 

15-30 0.04 0.06 

Table 5.3.2.4 – Rate of release of ibuprofen from PVP 1:1, microwave heating 

compared with conventional heating 

 

For other ibuprofen based formulations, microwave heating appeared to show a higher 

percentage drug release when compared with conventional heating. Figures 5.3.2.5 to 

5.3.2.9 illustrate a few examples of where this applies.  

 

 

Figure 5.3.2.5 - A drug release profile for Ibuprofen and SA, formulated using 

microwave heating and conventional heating, in both cases without water present as a 

solvent  
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Figure 5.3.2.5 illustrates ibuprofen and SA formulated using microwave and 

conventional heating. It is evident from the dissolution profile that when this particular 

formulation was heated using microwaves, a higher percentage drug release occurred 

initially but after the ninety minutes both formulations released the same amount of the 

drug. After fifty minutes, the microwave formulation released 67% (±2%) and the 

conventional formulation released 59% (±3%). After ninety minutes, both formulations 

were seen to release approximately 70% of the drug (MW 69% ±2%, CN 68% ±4%). 

This result can also be seen in the rate of release, Table 5.3.2.5. 

 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 8.80 2.22 

3-15 2.60 1.75 

15-30 0.29 1.52 
 

Table 5.3.2.5 – Rate of release of ibuprofen from SA, microwave heating compared with 

conventional heating 

 

 

Figure 5.3.2.6 – A drug release profile for Ibuprofen and HPBCD, formulated using 

microwave heating and conventional heating, in both cases without water present as a 

solvent  
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Figure 5.3.2.6 illustrates that for ibuprofen and 2HPBCD, microwave heating released 

90% (±4%) of the drug over the ninety minute period compared with 80% (±1%) for 

conventional heating. Upon calculation of the rate of release, Table 5.3.2.6 it can be 

seen that the microwave formulation releases the drug at a faster rate when compared 

with conventional heating. Consequently more of the drug is released from the 

microwave formulation over the time period.  

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 13.53 11.45 

3-15 3.43 3.24 

15-30 0.03 0.02 
 

Table 5.3.2.6 – Rate of release of ibuprofen from HPBCD, microwave heating compared 

with conventional heating 

 

 

Figure 5.3.2.7 – A drug release profile for Ibuprofen and PVP (ratio 1:9), formulated 

using microwave heating and conventional heating, in both cases with water present as 

a solvent  
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From Figure 5.3.2.7 it can be seen that with the formulation using microwave heating 

more of the drug was released over the ninety minutes time period. It can be seen that 

80% (±1%) of ibuprofen was released from the microwave heated formulation compared 

with 62% (±2%) for conventional heating. The difference between the two formulations 

is also evident from the calculated rate of release, Table 5.3.2.7.  

 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 21.42 14.62 

3-15 0.78 1.15 

15-30 0.17 0.11 

Table 5.3.2.7 – Rate of release of ibuprofen from PVP, microwave heating compared 

with conventional heating 

 

 

Figure 5.3.2.8 – A drug release profile for Ibuprofen and BCD (ratio 1:9), formulated 

using microwave heating and conventional heating, in both cases with water present as 

a solvent  
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From Figure 5.3.2.8 it can be seen that microwave heating not only released more of 

the drug over the time period, but the maximum amount was achieved at a faster rate. 

For the microwave heated formulation in the first twenty minutes 90% (±3%) of the drug 

was released compared with 79% (±1%). However, towards the end of the analysis, the 

profiles began to level with the microwave formulation releasing 94% (±3%) compared 

with 79% (±1%) for conventional. This finding is also reflected in the rate of release of 

ibuprofen, Table 5.3.2.8.  

 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 26.89 15.01 

3-15 0.53 1.99 

15-30 0.42 1.07 
 

Table 5.3.2.8 – Rate of release of ibuprofen from PVP, microwave heating compared 

with conventional heating 

 

To determine why these differences occurred, the way the two different methods heat 

the formulations must be considered. Firstly conventional heating is a slower method of 

heating which works over a temperature gradient, and may illustrate uneven heating 

(Section 1.5.1 Conventional heating). Microwave heating is rapid and by directly 

interacting with the drug and excipient molecules (causing them to flip in alignment with 

the wave of energy, generating heat) no temperature gradient may be observed 

(Section 1.5.2 microwave heating). As a result a more homogenous formulation may be 

evident, and consequently illustrate an improved dissolution.  

 

Table 5.3.2.9 illustrates all the results obtained for ibuprofen and the four different 

excipients prepared using microwave and conventional heating. In some cases no 

differences occurred, which is illustrated by the statement of ‘no difference’ in the table. 

When microwave heating showed a higher percentage drug release this is illustrated by 

the statement ‘MW’ in the table. When conventional heating illustrated a higher 

percentage drug release this is indicated by the statement ‘CN’ in the table. 
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Drug/Excipient 

With water 
Differences between    
              MW/CN 

Without water 
Differences between 

MW/CN 
    

Ibuprofen/SA 1:3 CN MW 

      

Ibuprofen/BCD 1:1 No Difference CN 

Ibuprofen/BCD 1:9 MW MW 

      

Ibuprofen/PVP 1:1 MW No Difference 

Ibuprofen/PVP 1:9 MW MW 

      

Ibuprofen/2HPBCD 
1:1 N/A MW 

Ibuprofen/2HPBCD 
1:9 N/A MW 

   
 

Table 5.3.2.9 –A summary to indicate conditions that created the greatest drug 

release for ibuprofen and the different excipients analysed for differences between 

microwave and conventional heating over a ninety minute time period. 

 

5.3.3 Excipients  

Formulation method parameters, such as the heating method and presence of 

solvent, are not the only factors that affect drug release, excipient selection can also 

play a vital role. In particular, it was found that the excipient which released the greatest 

amount of ibuprofen (formulated in the presence of water) was BCD in the 1:1 ratio 

using both heating methods. Whilst the excipient that released the smallest amount of 

ibuprofen (formulated using conventional heating in the presence of water) was PVP in 

the 1:9 ratio. 

 When water was not used in the formulation process, the excipient that released 

the greatest amount of ibuprofen was BCD in the 1:9 ratio (formulated using both 

heating methods). The excipient that slowed the release of ibuprofen most dramatically 

was 2HPBCD in the 1:9 ratio (formulated using conventional heating).  

 In summary, based on these results, if formulating ibuprofen to enhance drug 

release it would be advisable to use BCD either with or without water present using 

either heating method.   
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In contrast, if formulating ibuprofen to retard drug release it would be advisable to 

formulate conventionally using PVP, when water is present, or HPBCD, when water is 

not present as a solvent. 

 

5.3.4 Summary  

To summerise; when water was present during the formulation method a higher 

percentage of ibuprofen was released. It is difficult to determine the reasons this 

occurred as a number of factors may be contributing to the observed results.  

In the majority of cases when ibuprofen was formulated using microwave heating 

a higher percentage of drug release was witnessed.  

With respect to excipient choice, when formulating ibuprofen to enhance the drug 

release it is advisable to formulate using BCD. If however the drug release needs to be 

delayed then PVP (1:9) or HPBCD should be used. 

 

5.4 Ketoprofen 

5.4.1 The effect of water on the release profile of ketoprofen 

Formulations of ketoprofen were prepared with or without the presence of water 

during the formulation process to determine if the presence of a liquid affected the 

release profiles of the drug.  

Ketoprofen was formulated with three different excipients (2HPBCD not 

formulated in the presence of water) with the resultant formulations analysed to 

establish drug release profiles. A summary of all the results are illustrated at the end of 

this section in Table 5.4.1.6. Figures 5.4.1.1 to 5.4.1.5 are examples of some of the 

results obtained for the dissolution of ketoprofen with SA, BCD and PVP. Figure 5.4.1.1 

and Figure 5.4.1.2 are examples of where the presence of water has significantly 

affected the release of the drug.  
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Figure 5.4.1.1 – A drug release profile for ketoprofen and SA (ratio 1:3), formulated 

using microwave heating both with and without the presence of water during the 

formulation process  

 

Figure 5.4.1.1 is an illustration of ketoprofen and SA formulated using microwave 

heating. It can be seen from the graph that the presence of water has decreased the 

release of the drug. After fifteen minutes the formulation prepared with water only 

released 20% (±1%) compared with 50% (±1%). After the ninety minutes the 

formulation prepared with water released 47% (±2%) compared with 88% (±1%).  

The result visually seen in Figure 5.4.1.1 is also reflected in the rate, Table 

5.4.1.1.  

Rate (% release per minute) 

Time 
(Mins) MW With MW Without 

0-3 1.33 8.88 

3-15 1.51 1.92 

15-30 0.62 0.69 
 

Table 5.4.1.1 Rate of release of ketoprofen from SA, when prepared with or without the 

presence of water during microwave formulation 
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Figure 5.4.1.2 – A drug release profile for ketoprofen and SA (ratio 1:3), formulated 

using conventional heating both with and without the presence of water during the 

formulation process  

 

Figure 5.4.1.2 displays that the formulation prepared without water has released a 

higher percentage of the drug. The formulation prepared without water released 41% 

(±1%) compared with 38 (±1%), and after the ninety minutes 66% (±5%) of the drug was 

released from the formulation prepared without water compared with 59% (±1%). The 

results obtained in Figure 5.4.1.2 are also illustrated by the rate, Table 5.4.1.2. For the 

first fifteen minutes of the dissolution the formulation without water released ketoprofen 

at a faster rate, which would explain why more of the drug is detected in solution from 

the formulation prepared without water.  
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Rate (% release per minute)  

Time 
(Mins) CN With CN Without 

0-3 5.35 7.01 

3-15 1.78 1.60 

15-30 0.33 0.59 

Table 5.4.1.2 Rate of release of ketoprofen from SA, when prepared with or without the 

presence of water during conventional formulation 

 

Figure 5.4.1.3 illustrates ketoprofen formulation with BCD (ratio 1:9) and this is an 

example of where the presence of water hasn’t greatly affected the release of the drug.  

 

 

Figure 5.4.1.3 – A drug release profile for ketoprofen and BCD (ratio 1:9), formulated 

using conventional heating both with and without the presence of water during the 

formulation process  

 

Figure 5.4.1.3 shows a small initial difference between the two profiles. For the first 

fifteen minutes 67% (±6%) of the drug is released from the formulation prepared with 

the presence of water, compared with 76% (±3%). From this result it is evident that a 

difference occurred, however with the associated error it is difficult to be 100% certain. 
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Also after this initial time period, the release profiles become very similar, with 80% 

(±6%) compared with 79% (±3%) of the drug released in total. This is also seen when 

the rate is calculated, Table 5.4.1.3.  

Rate (% release per minute) 

Time 
(Mins) CN With CN Without 

0-3 21.49 24.28 

3-15 0.16 0.25 

15-30 0.14 -0.02 
 

Table 5.4.1.3 Rate of release of ketoprofen from BCD, 1:9 when prepared with or 

without the presence of water during conventional formulation 

 

Figures 5.4.1.3 to 5.4.1.5 illustrate formulations where water shows a higher percentage 

drug release.  

 

 

Figure 5.4.1.4 – A drug release profile for ketoprofen and BCD (ratio 1:1), formulated 

using microwave heating both with and without the presence of water during the 

formulation process  
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Figure 5.4.1.3 illustrates the release profile for ketoprofen and BCD, (ratio 1:1). It is 

evident that the presence of water has increased the percentage drug release. For the 

formulation prepared with water a drug release of 88% (±8%) is seen, and this is 

compared with 80% (±2%) for the formulation prepared without water. From these 

results it is evident that the initial part of the dissolution is similar, however, after this 

time period a separation between the release profiles occurs. After the ninety minutes a 

drug release of 90% (±9%) is seen for the formulation with water which is compared 

with 75% (±2%). This result is also demonstrated in the rate, Table 5.4.1.4.  

Rate (% release per minute) 

Time 
(Mins) MW With MW Without 

0-3 21.72 22.83 

3-15 1.68 0.79 

15-30 0.01 -0.10 
 

Table 5.4.1.4 Rate of release of ketoprofen from BCD, 1:1 when prepared with or 

without the presence of water during microwave formulation 

 

 

Figure 5.4.1.5 – A drug release profile for ketoprofen and BCD (ratio 1:9), formulated 

using microwave heating both with and without the presence of water during the 

formulation process  
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Figure 5.4.1.5 displays ketoprofen and BCD 1:1 ratio formulated using microwave 

heating. It can be seen from the release profiles that the presence of water has had a 

significant effect to the way the drug is released. After the first fifteen minutes of the 

dissolution 90% (±6%) of ketoprofen is released which is compared with 69% (±7%), 

and after the ninety minutes 100% (±6%) of ketoprofen is released when water is 

present, compared with 70% (±7%). The difference in the release profiles was also 

illustrated in the rate calculation, Table 5.4.1.5. For the initial three minutes of the 

dissolution the formulation prepared without water present illustrates a faster drug 

release, 20.83% per minute compared with 16.2%. However after this time period both 

rates drop but the formulation prepared with water has a higher rate of release which 

continues over thirty minutes and consequently more ketoprofen is released. 

 

Rate (% release per minute) 

Time 
(Mins) MW With MW Without 

0-3 16.21 20.83 

3-15 2.83 0.49 

15-30 0.35 -0.11 
 

Table 5.4.1.5 Rate of release of ketoprofen from BCD, 1:9 when prepared with or 

without the presence of water during microwave formulation 

 

The above results illustrate the different formulations and how the presence of water 

during formulation has affected the percentage drug release. Some formulations (SA 

and BCD 1:1) illustrate that when water is present during the formulation process, a 

decrease in the percentage drug release is demonstrated. However in the majority of 

cases, when water is present during the formulation process a higher percentage drug 

release is apparent.  
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Table 5.4.1.6 illustrates all the results obtained for ketoprofen and the four different 

excipients. In some cases no differences occurred, which is illustrated by the statement 

of ‘no difference’ in the table. When formulation with water resulted in a higher 

percentage drug release this is illustrated by the statement ‘with’ in the table, and 

conversely, when formulation without water resulted in a higher percentage drug 

release it is identified as ‘without’.  For ketoprofen and 2HPBCD no comparison could 

be made between formulations prepared with and without water, as this was only 

prepared without water, and this is consequently illustrated by the statement ‘N/A’.  

 

Drug/Excipient MW CN 

  With/Without With/Without 

Ketoprofen/SA 1:3 Without No Difference 

      

Ketoprofen/BCD 1:1 With With 

Ketoprofen/BCD 1:9 With No Difference 

      

Ketoprofen/PVP 1:1 With With 

Ketoprofen/PVP 1:9 With With 

      

Ketoprofen/2HPBCD 
1:1 N/A N/A 

Ketoprofen/2HPBCD 
1:9 N/A N/A 

 

Table 5.4.1.6- A summary to indicate conditions that created the greatest drug 

release for ketoprofen with the four different excipients formulated with and without the 

presence of water over a ninety minute time period 
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5.4.2 The influence of microwave heating compared with conventional heating on 

subsequent drug release 

Formulation methods using microwave and conventional heating were compared 

for ketoprofen to determine if the method choice influenced drug release. In the majority 

of cases no difference between the heating methods was apparent, however some 

formulations do show a difference and these are illustrated by Figures 5.4.2.1 to 5.4.2.3. 

A summary of all results obtained can be seen at the end of this section in Table 

5.4.2.7.  

 

Figure 5.4.2.1 – A drug release profile for ketoprofen and SA (ratio 1:3), formulated 

using microwaves and conventional heating, in both cases with water present as a 

solvent 

 

Figure 5.4.2.1 is for ketoprofen and SA and from the graph it can be seen that the 

conventional method showed a higher percentage drug release. For the first fifteen 

minutes 20% (±1%) of ketoprofen was released for the formulation prepared using 

microwave heating, however for the conventional formulation 38% (±8%) of the drug 

was released within this time. After ninety minutes the microwave formulation released 
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47% (±2%) compared with 59% (±9%). This is also reflected in the rate of release, 

Table 5.4.2.1.  

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
heating 

Conventional 
Heating 

0-3 1.33 5.34 

3-15 1.51 1.78 

15-30 0.59 0.34 
 

Table 5.4.2.1- Rate of release of ketoprofen from SA, microwave heating compared with 

conventional heating 

 

 

Figure 5.4.2.2 – A drug release profile for ketoprofen and SA (ratio 1:3), formulated 

using microwaves and conventional heating, in both cases without water present as a 

solvent 

 

Figure 5.4.2.2 illustrates a formulation where microwave heating achieved a higher 

percentage drug release when compared with conventional heating. For the first fifteen 

minutes 50% (±3%) of ketoprofen was released from the formulation prepared using 

microwave heating compared with 41% (±1%) for the conventional formulation. After 

ninety minutes 88% (±1%) of the drug was released for the microwave formulation, and 
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only 66% (±5%) of ketoprofen was released for the conventional method. This result is 

also demonstrated in the rate, with the microwave formulation showing a faster rate of 

release of ketoprofen illustrated in Table 5.4.2.2.  

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 8.88 7.01 

3-15 1.92 1.60 

15-30 0.69 0.59 
 

Table 5.4.2.2- Rate of release of ketoprofen from SA, microwave heating compared with 

conventional heating 

 

 

Figure 5.4.2.3 – A drug release profile for ketoprofen and BCD (ratio 1:9), formulated 

using microwaves and conventional heating, in both cases with water present as a 

solvent 

 

Figure 5.4.2.3 illustrates ketoprofen and BCD, 1:9 and it can be seen from the two 

release profiles that the formulation prepared using microwaves released a higher 

percentage of the drug. After fifteen minutes 90% (±6%) of the drug is released from the 

formulation prepared using microwave heating which is in comparison with 67% (±6%). 
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After ninety minutes over 100% (±6%) of ketoprofen is released from the microwave 

formulation compared with 80% (±6%), this is also illustrated in the rate, Table 5.4.2.3.  

 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 16.21 21.49 

3-15 2.83 0.16 

15-30 0.35 0.14 
 

Table 5.4.2.3- Rate of release of ketoprofen from BCD 1:9, microwave heating 

compared with conventional heating 

 

The previous graphs have illustrated where the choice of heating method has made a 

significant difference to the release of ketoprofen. However in the majority of cases the 

choice of heating method doesn’t have an overall affect on the release of ketoprofen. A 

few examples are illustrated in Figures 5.4.2.4 – 5.4.2.6.  

 

 

Figure 5.4.2.4 – A drug release profile for ketoprofen and 2HPBCD (ratio 1:9), 

formulated using microwaves and conventional heating, in both cases without water 

present as a solvent 
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Figure 5.4.2.4 displays the release profiles for ketoprofen and 2HPBCD formulated 

using microwaves and conventional heating. After the experimental error was calculated 

it can be said that no significant difference occurred between the two heating methods. 

However, after analysis of the percentage drug release, it may be possible to speculate 

that a slight difference does exist. For the first fifteen minutes 53% (±5%) of ketoprofen 

was released from the microwave formulation which is compared with 58% (±8%). After 

the ninety minutes 54% (±6%) of the drug was released from the microwave formulation 

compared with 62% (±8%). However because of the error associated with these results 

it is difficult to be completely sure whether a significant difference does occur. Upon 

calculation of the rate, a difference can be seen between the two heating methods, but 

again the experimental error makes it difficult to be definitive.  

 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 16.04 18.98 

3-15 0.31 0.07 

15-30 -0.15 -0.01 
 

Table 5.4.2.4- Rate of release of ketoprofen from 2HPBCD 1:9, microwave heating 

compared with conventional heating 
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Figure 5.4.2.5 – A drug release profile for ketoprofen and PVP (ratio 1:9), formulated 

using microwaves and conventional heating, in both cases without water present as a 

solvent 

 

Figure 5.4.2.5 demonstrates that the choice of heating method for this particular 

formulation doesn’t affect the way the drug is released. For the first fifteen minutes of 

the dissolution a slight difference is observed with the microwave formulation releasing 

40% (±3%) compared with 44% (±1%). However after this time period both the 

formulations released approximately 50% (49% ±1% microwave formulation, 51% ±1% 

conventional formulation) over the ninety minutes. The result demonstrated above is 

also seen in the rate calculation, Table 5.4.2.5. The conventional formulation released 

the drug at a faster rate within the first three minutes, with 12.2% per minute released 

compared with 10.6% per minute for microwave formulation. However after this time 

period, both rates decrease and a similar amount of drug release can be seen.  
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Rate (% release per minute) 

Time 
(Mins) MW Without CN Without 

0-3 10.64 12.18 

3-15 0.64 0.55 

15-30 0.05 0.08 
 

Table 5.4.2.5- Rate of release of ketoprofen from PVP 1:9, microwave heating 

compared with conventional heating 

 

 

Figure 5.4.2.6– A drug release profile for ketoprofen and BCD (ratio 1:1), formulated 

using microwaves and conventional heating, in both cases without water present as a 

solvent 

 

Figure 5.4.2.6 illustrates another example of where the choice of heating method has 

made no significant difference to the release of ketoprofen. For the first fifteen minutes 

of the dissolution 80% (±2%) of ketoprofen was released from the microwave 

formulation compared with 82% (±1%) for the conventional formulation. After the ninety 

minutes 80% (±2%) of ketoprofen was released from the microwave formulation 

compared with 82% (±2%) for the conventional formulation, this shows a slight 
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difference between the two formulations but nothing significant. Upon calculation of the 

rate it can also been seen that both formulations release ketoprofen at the same rate.  

 

Rate (% release per minute) 

Time 
(Mins) MW Without CN Without 

0-3 22.83 23.09 

3-15 0.79 0.83 

15-30 -0.10 -0.03 
 

Table 5.4.2.6- Rate of release of ketoprofen from BCD 1:1, microwave heating 

compared with conventional heating 

 

All the formulations illustrated in this section are examples of ketoprofen with the four 

different excipients. It can be seen that in the majority of cases the choice of heating 

method doesn’t affect the way ketoprofen is released. However there are a few 

exceptions which are also illustrated. Table 5.4.2.7 summarises all the different 

ketoprofen formulations prepared using microwaves or conventional heating. In some 

cases no differences occurred, which is illustrated by the statement of ‘no difference’ in 

the table. When microwave heating showed a higher percentage drug release this is 

illustrated by the statement ‘MW’ in the table. When conventional heating released a 

higher percentage of the drug this is illustrated by ‘CN’ in the table. For ketoprofen and 

2HPBCD only the formulation prepared without water present could be analysed for any 

differences between the two heating methods, consequently N/A is seen for this 

formulation prepared with water present during formulation.  
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Drug/Excipient With  Without 

  MW/CN MW/CN 

Ibuprofen/SA 1:3 CN MW 

      

Ibuprofen/BCD 1:1 MW      No Difference 

Ibuprofen/BCD 1:9 MW      No Difference 

      

Ibuprofen/PVP 1:1 No Difference No Difference 

Ibuprofen/PVP 1:9 MW No Difference 

      

Ibuprofen/2HPBCD 
1:1 N/A No Difference 

Ibuprofen/2HPBCD 
1:9 N/A No Difference 

 

Table 5.4.2.7- A summary to indicate conditions that created the greatest drug 

release for ketoprofen and the excipients analysed for differences between microwave 

and conventional heating 

 

5.4.3 Excipients  

The formulation method, such as the heating method and the presence of 

solvent, are not the only factors that affect drug release, excipient selection can also 

play a vital role.  

In particular, it was found that the excipient that released the greatest amount of 

ketoprofen (formulated in the presence of water) was BCD in the 1:9 ratio using 

microwave heating. While the excipient that released the smallest amount of ketoprofen 

was PVP in the 1:9 ratio (formulated using both heating methods in the presence of 

water).  

When water was not present in the formulation process, the excipient that 

released the greatest amount of ketoprofen was 2HPBCD (formulated using 

microwaves and conventional heating), and the excipient that slowed the release most 

dramatically was SA (formulated using conventional heating). 

In summary, based on these results, if formulating ketoprofen to enhance drug 

release it would be advisable to formulate using BCD 1:9, with the presence of water 

and using microwave heating. When water is not present during the formulation 
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process, it would be advisable to formulate using 2HPBCD (formulated with microwaves 

or conventional heating) to enhance drug release.  

In contrast, if formulating ketoprofen to retard drug release it would be advisable 

to formulate using conventionally heated PVP in the 1:9 ratio (formulated in the 

presence of water). When water is not present during the formulation process, it would 

be advisable to formulate using SA (formulated using microwaves and conventional 

heating).  

 

5.4.4 Summary 

 To summarise, when water was present during the formulation method, a higher 

percentage of ketoprofen was released. It is difficult to determine the reasons why this 

occurred, as a number of factors may be contributing to the observed results. When the 

two different heating methods were compared, it was noted that no significant difference 

was seen in the majority of cases. However there were some exceptions to that result.  

 With respect to the excipient choice, when formulating ketoprofen to enhance 

drug release it is advisable to formulate using BCD or 2HPBCD. If however the drug 

release needs to be delayed then PVP (1:9) or SA should be used.   

  

5.5 Flurbiprofen 

After an investigation into flurbiprofen and the different excipients began, it 

became evident that a problem was occurring with the absorbance for the drug in 

formulations based on BCD and 2HPBCD. Upon comparison of the Beer-Lambert plot 

for pure flurbiprofen it was noted that the formulations were illustrating a higher 

absorbance and consequently a possible shift may have occurred15. As a result it was 

difficult to measure and report the percentage drug release, a trend only witnessed with 

flurbiprofen and the two excipients. It is difficult to determine why this has occurred and 

only in this case. However a possibility, is that flurbiprofen has fluorine group attached 

which the other drugs do not possess. This therefore may be affecting the way the drug 

and excipients interact. Consequently, flurbiprofen was formulated with SA and PVP 

only and the results are illustrated below.  
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5.5.1 The effect of water on the release profile of flurbiprofen 

 It was decided to incorporate water into the formulation process to determine 

how the presence of a liquid affected the release profiles of a drug with poor aqueous 

solubility. Flurbiprofen was formulated with two excipients with the resultant formulations 

analysed to establish drug release profiles. A summary of all results are illustrated at the 

end of this section in Table 5.5.1.6.  Figures 5.5.1.1 to 5.5.1.5 are examples of some of 

the results obtained from the dissolution of flurbiprofen with SA and PVP.  

 

Figure 5.5.1.1 – A drug release profile for flurbiprofen and SA (ratio 1:3), formulated 

using conventional heating both with and without the presence of water during the 

formulation process  

 

Figure 5.5.1.1 displays the release profile for flurbiprofen formulated with SA using 

conventional heating with and without the presence of water. It is apparent from the 

graph that there is no significant difference between the two formulations, therefore it 

can be said that the presence of water has made no difference to the release of 

flurbiprofen from SA. For the first fifteen minutes of the dissolution the formulation 

prepared with water released 42% (±7%) compared with 36% (±5%), this shows a 

possible difference during the early stages of the dissolution. However after the ninety 

0 

10 

20 

30 

40 

50 

60 

70 

0 20 40 60 80 

%
 D

ru
g 

R
e

le
as

e
 

Time / mins 

Conventional heated with water Conventional heated without water 



186 
 

minutes 55% (±6%) of flurbiprofen was released from the formulation prepared with 

water compared with 56% (±5%) for the formulation prepared without water. This trend 

is also shown when the rate was calculated, Table 5.5.1.1. It can be seen that the 

formulation prepared with water releases flurbiprofen at a slightly higher rate of 8.95% 

per minute compared with 6.01% per minute for the formulation prepared without water.  

Rate (% release per minute) 

Time 
(Mins) CN With CN Without 

0-3 8.95 6.01 

3-15 1.23 1.43 

15-30 0.26 0.59 
 

Table 5.5.1.1 Rate of release of flurbiprofen from SA when prepared with or without the 

presence of water during formulation 

 

 

Figure 5.5.1.2 – A drug release profile for flurbiprofen and SA (ratio 1:3), formulated 

using microwave heating both with and without the presence of water during the 

formulation process  
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Figure 5.5.1.2 displays no overall difference in total drug release, with 45% (±1%) of 

flurbiprofen released when water is present during the formulation process. This is in 

comparison with 44% (±6%) for the formulation prepared without water present. After 

ninety minutes, both formulation release 58% (with water 58% ±1% and without water 

58% ±3%). Upon calculation of the rate, Table 5.5.1.2, it appears that the formulation 

prepared with water may release a slightly higher percentage of flurbiprofen, 9.64% per 

minute compared with 7.07%. However after this time period both rates decrease and 

the same amount of the drug is released. 

 

Rate (% release per minute) 

Time 
(Mins) MW With MW Without 

0-3 9.64 7.07 

3-15 1.28 1.81 

15-30 0.37 0.64 
 

Table 5.5.1.2 Rate of release of flurbiprofen from SA when prepared with or without the 

presence of water during formulation 

 

Figure 5.5.1.3 – A drug release profile for flurbiprofen and PVP (ratio 1:1), formulated 

using microwave heating both with and without the presence of water during the 

formulation process  
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Figure 5.5.1.3 illustrates microwave formulated flurbiprofen and PVP 1:1 with and 

without water present during formulation. It can be seen from the release profiles that a 

slight difference may exist between the two formulations, however it is difficult to be 

certain with the error associated with each data point. After fifteen minutes, the 

formulation prepared with water present released 80% (±3%) compared with 74% 

(±9%). After ninety minutes 94% (±2%) was released for the formulation prepared with 

water compared with 98% (±8%). It is possible that a difference does exist but because 

of the error associated with the dissolution, it can be said that no sigificant difference 

exists between the formulations. Upon calculation of the rate, Table 5.5.1.3, the 

formulation prepared without water released flurbiprofen at a faster rate when compared 

with the formulation prepared with water.  

Rate (% release per minute) 

Time 
(Mins) MW With MW Without 

0-3 14.17 22.13 

3-15 2.46 0.56 

15-30 0.08 0.34 
 

Table 5.5.1.3 Rate of release of flurbiprofen from PVP 1:1 when prepared with or 

without the presence of water during formulation 

 

All the release profiles illustrated so far indicate that the presence of water doesn’t affect 

the overall drug release. However this trend doesn’t apply to all the flurbiprofen 

formulations. Figures 5.5.1.4 to 5.5.1.5, are examples where the presence of water 

reduced the overall release of the drug.  
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Figure 5.5.1.4 – A drug release profile for flurbiprofen and PVP (ratio 1:9), formulated 

using microwave heating both with and without the presence of water during the 

formulation process 

 

Rate (% release per minute) 

Time 
(Mins) MW With MW Without 

0-3 11.75 23.82 

3-15 2.38 0.38 

15-30 0.46 0.33 
 

Table 5.5.1.4 Rate of release of flurbiprofen from PVP 1:9 when prepared with or 

without the presence of water during formulation 
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Figure 5.5.1.5 – A drug release profile for flurbiprofen and PVP (ratio 1:9), formulated 

using conventional heating both with and without the presence of water during the 

formulation process  

 

Rate (% release per minute) 

Time 
(Mins) CN With CN Without 

0-3 14.48 27.80 

3-15 1.88 0.61 

15-30 0.38 0.28 
 

Table 5.5.1.5 Rate of release of flurbiprofen from PVP 1:9 when prepared with or 

without the presence of water during formulation 

 

Figure 5.5.1.4 and Figure 5.5.1.5 both illustrate where the presence of water during 

formulation has decreased the percentage drug release. Figure 5.5.1.4 is flurbiprofen 

and PVP 1:9 formulated using microwaves with and without the presence of water. It 

can be seen from the graph that a higher percentage drug release appears from the 

formulation without water with 76% (±4%) of flurbiprofen released in the first fifteen 

minutes compared with 64% (±8%). After the ninety minutes 91% (±6%) was released 
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for the formulation without water present compared with 85% (±2%). This is also 

illustrated in the rate calculation, Table 5.5.1.4.  

Figure 5.5.1.5 also illustrates a significant difference between the two 

formulations, 68% (±5%) was released from the formulation prepared with water and 

92% (±1%) for the formulation prepared without water present during formulation. After 

ninety minutes 87% (±7%) was released for the formulation with water compared with 

100% (±1%) for the formulation prepared without water. This is also seen in the rate 

calculation, Table 5.5.1.5.  

 

Table 5.5.1.6 demonstrates all the results obtained for flurbiprofen and the two different 

excipients. In some cases no difference occurred, which is illustrated by the statement 

of ‘no difference’ in the table. When the formulation with water resulted in a higher 

percentage drug release this is illustrated by the statement ‘with’ in the table, and 

conversely, when the formulation without water resulted in a higher release it is 

identified as ‘without’.  

 
 

Drug/Excipient MW CN 

  With/Without With/Without 

Flurbiprofen/SA 1:3 No Difference No Difference 

      

Flurbiprofen/PVP 1:1 No Difference No Difference 

Flurbiprofen/PVP 1:9 Without Without 
 

Table 5.5.1.6 – A summary to indicate conditions that created the greatest drug 

release for flurbiprofen with the two different excipients formulated with and without the 

presence of water over a ninety minute time period 
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5.5.2 The influence of microwave heating compared with conventional heating on 

subsequent drug release 

Microwave and conventional heating were compared for flurbiprofen to determine 

if the formulation method selected influenced the drug release. The results are 

discussed below and a summary of all the results can be seen at the end of this section 

in Table 5.5.2.5. 

 

Figure 5.5.2.1 – A drug release profile for flurbiprofen and PVP (ratio 1:1), formulated 

using microwave and conventional heating, in both cases with water present as a 

solvent  

 

Figure 5.5.2.1 demonstrates the release profiles for flurbiprofen and PVP 1:1 formulated 

using microwaves and conventional heating. For this particular formulation the choice of 

heating method has made no significant difference to the overall drug release. However 

for the first five minutes a slight difference in the initial release of the drug is seen, with 

the conventional formulation releasing a higher percentage of the drug 66% (±4%) 

compared with 43% (±4%). Despite this initial difference both formulations can be seen 

to ultimately release the same amount of flurbiprofen. Fifteen minutes into the 

dissolution around 80% of the drug was released for both formulations, 80% (±2%) for 
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conventional heating compared with 81% (±6%). After ninety minutes both formulations 

released over 90% of the drug, 94% (±2%) for conventional heating compared with 92% 

(±6%). The initial difference in the percentage drug release is also evident from the rate 

calculation, Table 5.5.2.1.  

 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 14.17 21.92 

3-15 2.46 0.98 

15-30 0.08 0.05 
 

Table 5.5.2.1- Rate of release of flurbiprofen from PVP 1:1, microwave heating 

compared to conventional heating 

 

 

Figure 5.5.2.2– A drug release profile for flurbiprofen and PVP (ratio 1:1), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  
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Figure 5.5.2.2 demonstrates flurbiprofen and PVP 1:1 formulated without water present 

using microwave and conventional heating. It can be seen from the graph that the 

conventional heating method may release more of the drug but because of the errors 

that are associated with this dissolution it is difficult to be certain. However for the first 

fifteen minutes of the dissolution 84% (±6%) of flurbiprofen was released from the 

conventional formulation. This is compared with 74% (±9%) for the microwave 

formulation, and from these results it is apparent that a possible difference may be 

present. After ninety minutes 98% (±8%) of flurbiprofen was released from the 

formulation prepared using microwave heating compared with around 100% (±8%). 

There is also a difference in the rate between the two formulations, Table 5.5.2.2.  

 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 22.13 27.01 

3-15 0.56 0.27 

15-30 0.34 0.29 
 

Table 5.5.2.2- Rate of release of flurbiprofen from PVP 1:1, microwave heating 

compared with conventional heating 
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Figure 5.5.2.3 – A drug release profile for flurbiprofen and SA (ratio 1:3), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  

 

Figure 5.5.2.3 illustrates flurbiprofen and SA formulated using microwaves and 

conventional heating. It is possible from the graph that a difference has occurred 

between the two different formulations, with the microwave formulation releasing 44% 

(±6%) compared with 36% (±5%) for the conventional formulation. However it is difficult 

to be certain because of the error associated with the results, and at the end of the 

ninety minutes both formulations released over 50% (58% ±3% compared with 56% 

±5% for the conventional formulation). Upon calculation of the rate, Table 5.5.2.3, there 

is a slight difference for the first three minutes of the dissolution with the microwave 

formulation releasing the drug at a faster rate.  
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Rate (% release per minute) 

Time 
(Mins) MW Without CN Without 

0-3 7.07 6.01 

3-15 1.28 1.43 

15-30 0.37 0.59 
 

Table 5.5.2.3- Rate of release of flurbiprofen from PVP 1:1, microwave heating 

compared with conventional heating 

 

 

Figure 5.5.2.4 – A drug release profile for flurbiprofen and PVP (ratio 1:9), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  

 

Figure 5.5.2.4 displays a formulation where the choice of heating method has affected 

the percentage drug release. From the release profiles it is clear that the conventional 

method gave a higher percentage drug release. Within fifteen minutes 92% (±1%) of 

flurbiprofen was released from the conventional formulation compared with 76% (±8%). 

After ninety minutes approximately 100% (±1%) of flurbiprofen was released from the 

conventional formulation compared with 91% (±6%). Once the rate, Table 5.5.2.4, for 

each formulation was calculated a difference was also seen, with the conventional 
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formulation releasing the drug faster than the microwave formulated flurbiprofen and 

PVP.  

 

Rate (% release per minute) 

Time 
(Mins) MW Without CN Without 

0-3 23.82 27.80 

3-15 0.38 0.61 

15-30 0.33 0.28 
 

Table 5.5.2.4 - Rate of release of flurbiprofen from PVP 1:9, microwave heating 

compared with conventional heating 

 

The graphs illustrated above are examples of the different flurbiprofen formulations 

prepared using microwaves and conventional heating. Table 5.5.2.5 illustrates all the 

results obtained for flurbiprofen and the two different excipients prepared using 

microwaves and conventional heating. In some cases no difference occurred, which is 

illustrated by the statement of ‘no difference’ in the table. When microwave heating 

showed a higher percentage drug release this is illustrated by the statement ‘MW’ in the 

table. When conventional heating illustrated a higher percentage drug release this is 

indicated by the statement ‘CN’ in the table.   
 

Drug/Excipient With Without 

  MW/CN MW/CN 

Flurbiprofen/SA 1:3 No Difference No Difference 

      

Flurbiprofen/PVP 1:1 No Difference No Difference 

Flurbiprofen/PVP 1:9 No Difference CN 
 

Table 5.5.2.5 – A summary to indicate conditions that created the greatest drug 

release for flurbiprofen with excipients analysed for differences between microwave and 

conventional heating 
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5.5.3 Excipients  

Formulation method parameters, such as the heating method and presence of a 

solvent, are not the only factors that affect drug release, excipient selection can also 

play a vital role.  

In particular, it was found that the excipient which released the greatest amount 

of flurbiprofen was PVP in the 1:1 and 1:9 ratio using both microwaves and conventional 

heating and in the presence of water. Whilst the excipient that released the smallest 

amount of flurbiprofen was SA formulated using microwaves and conventional heating, 

with and without the presence of water.  

In summary, based on these results, if formulating flurbiprofen to enhance drug 

release it would be advisable to formulate using PVP, 1:1 and 1:9, either with or without 

water using microwaves or conventional heating. In contrast, if formulating flurbiprofen 

to retard drug release it would be advisable to formulate with SA, with or without water, 

and using microwaves or conventional heating.  

 

5.5.4 Summary     

 To summarise, in the majority of cases water has little or no effect on the release 

of the drug. However when a difference was seen, a higher percentage drug release 

occurred when water was not present during formulation.  

 Upon analysis of the flurbiprofen formulations when subjected to microwaves and 

conventional heating, it became apparent that the choice of the method made no 

significant difference to the release of the drug in the majority of cases. The only 

difference occurred with flurbiprofen and PVP 1:9 and the highest drug release was 

seen when the drug and excipient were formulated using conventional heating.   

 Also to increase the release of flurbiprofen, PVP seems to be advantageous but 

to slow the rate down for the drug then SA could be used.  
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Ibuprofen, ketoprofen and flurbiprofen are in Group two of the Biopharmaceutical 

Classification System (BCS). These have high permeability but low solubility, however 

to extend this research further it was decided to formulate a drug within a different 

group, one where the solubility is not an issue. From this, it was decided to use 

paracetamol (BCS group 1), and to formulate the drug without water using the 

microwave and conventional methods.  

 

5.6 Paracetamol  

5.6.1 The influence of microwave heating compared with conventional heating on 

subsequent drug release  

 Paracetamol was formulated with the four different excipients using microwave 

and conventional heating and therefore the following results are a comparison between 

the two different heating methods. A summary of all the results can be seen at the end 

of this section in Table 5.6.1.7. 

From all of the results obtained, it appears that the choice of heating method 

made no significant difference to the release of paracetamol in the majority of cases. 

However the following graphs illustrate the different formulations that do not fit into this 

trend, Figures 5.6.1.1 to 5.6.1.3. 
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Figure 5.6.1.1 – A drug release profile for paracetamol and SA (ratio 1:3), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  

 

Figure 5.6.1.1 illustrates paracetamol formulated with SA using microwaves and 

conventional heating. From the graph it can be seen that the conventional heating 

method gave a higher percentage drug release. For the microwave formulation within 

the first fifteen minutes 20% (±2%) of the drug was released compared with 26% (±2%) 

for the conventional formulation and after ninety minutes the microwave formulation 

released 21% (±1%) compared with 28% (±2%). The result obtained in Figure 5.6.1.1 

was also evident when the rate was calculated, Table 5.6.1.1.  

Upon comparison of the release of paracetamol from SA it was noted that the 

release seemed to be lower than the previous formulations. As a result, it was decided 

to establish if any problems (degradation or evaporation) were present with paracetamol 

after the formulation method. Microwave thermogravimetry was employed, illustrating 

the same conditions for microwave heating but also a way of measuring the weight 

during the heating process. The results obtained determined that the drug was stable at 

the formulation temperature (85°C). Consequently no degradation or evaporation was 
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occurring that would show a decrease in weight but also a decrease in the amount of 

drug present in the SA formulations. 

 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 4.77 5.60 

3-15 0.47 0.71 

15-30 0.03 0.06 
 

Table 5.6.1.1 - Rate of release of Paracetamol from SA, microwave heating compared 

with conventional heating 

 

 

Figure 5.6.1.2 – A drug release profile for paracetamol and PVP (ratio 1:1), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  

 

Figure 5.6.1.2 displays paracetamol and PVP 1:1 formulated using microwaves and 

conventional heating. This graph is another example of where conventional heating 

shows a higher percentage drug release when compared with microwave heating. For 

the first fifteen minutes, the conventional formulation released 78% (±2%) compared 
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with 65% (±5%) for the microwave formulation. After ninety minutes approximately 

100% (±6%) of the drug was released for the formulation prepared using conventional 

heating. This again is a higher percentage release when compared with the microwave 

formulation (87% ±3%). When the rate was calculated, Table 5.6.1.2, it was also evident 

that the formulation prepared by conventional heating released paracetamol at a faster 

rate. 

 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 20.83 25.42 

3-15 0.16 0.19 

15-30 0.29 0.50 
 

Table 5.6.1.2 - Rate of release of Paracetamol from PVP 1:1, microwave heating 

compared with conventional heating 

 

 

Figure 5.6.1.3 – A drug release profile for paracetamol and 2HPBCD (ratio 1:9), 

formulated using microwave and conventional heating, in both cases without water 

present as a solvent  
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Figure 5.6.1.3 demonstrates that for this particular formulation, microwave heating 

illustrated a higher percentage drug release, with 88% (±5%) released compared with 

74% (±7%) for the conventional formulation. Also at the end of ninety minutes 89% 

(±5%) of the drug was released from the microwave formulation compared with 74% 

(±7%).  

This is also evident when the rate was calculated, Table 5.6.1.3, with the faster 

initial rate of release seen from the microwave formulation (and throughout the 

dissolution). However after the first three minutes, both rates of release dramatically 

drop indicating that the majority of the drug is released after a short period of time.  
 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 26.40 22.70 

3-15 0.71 0.43 

15-30 0.01 0.00 
 

Table 5.6.1.3 - Rate of release of Paracetamol from HPBCD 1:9, microwave heating 

compared with conventional heating 

 

Figure 5.6.1.4 – A drug release profile for paracetamol and BCD (ratio 1:1), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  
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Figure 5.6.1.4 displays the release profile for paracetamol and BCD 1:1 formulated 

using microwaves and conventional heating. It is evident from the graph that the choice 

of heating doesn’t affect the overall percentage drug release. However at the beginning 

of the dissolution a slight difference exists with the formulation prepared using 

conventional heating releasing a higher percentage of the drug. For the first fifteen 

minutes, the conventional formulation released 82% (±4%) compared with 77% (±4%). 

However after this time period and at the end of the ninety minutes the microwave 

formulation released 81% (±4%) compared with 84% (±4%). Therefore it can be said 

that both formulations released the same amount of paracetamol and consequently for 

this formulation the choice of heating method made no significant difference. After the 

rate was calculated, Table 5.6.1.4, the initial difference is also apparent with the 

conventional formulation releasing paracetamol at a rate of 16.22% per minute 

compared with 9.31% per minute.  
 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 9.31 16.22 

3-15 3.87 2.42 

15-30 0.07 0.04 
 

Table 5.6.1.4 - Rate of release of Paracetamol from BCD 1:1, microwave heating 

compared with conventional heating 
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Figure 5.6.1.5 – A drug release profile for paracetamol and BCD (ratio 1:9), formulated 

using microwave and conventional heating, in both cases without water present as a 

solvent  

 

Figure 5.6.1.5 demonstrates that the choice of heating method has made no difference 

to the overall drug release. It is a possibility that for the initial three minutes of the 

dissolution the conventional formulation releases paracetamol slightly faster than the 

microwave formulation, however after and for the rest of the dissolution both 

formulations released the same amount of the drug. For the first fifteen minutes the 

microwave formulation released 78% (±6%) compared with 80% (±4%) and after ninety 

minutes 92% (±7%) of paracetamol was released from the microwave formulation 

compared with 83% (±4%). When the rate was calculated, the observed results from the 

graph were confirmed, Table 5.6.1.5.  
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Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 24.23 25.88 

3-15 0.39 0.15 

15-30 0.06 0.04 
 

Table 5.6.1.5 - Rate of release of paracetamol from BCD 1:9, microwave heating 

compared with conventional heating 

 

Figure 5.6.1.6 – A drug release profile for paracetamol and 2HPBCD (ratio 1:1), 

formulated using microwave and conventional heating, in both cases without water 

present as a solvent  

 

Figure 5.6.1.6 illustrates paracetamol and HPBCD 1:1 formulated using microwaves 

and conventional heating. It is evident from the graph that the choice of heating method 

has not affected the percentage drug release. Within the first fifteen minutes 68% (±1%) 

of paracetamol was released from the microwave formulation, and this is compared with 

71% (±1%) for the formulation prepared using conventional heating. After ninety 

minutes 70% (±1%) of paracetamol was released from the microwave formulation 

compared with 73% (±1%). Upon calculation of the rate, Table 5.6.1.6, it can be seen 
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that the conventional formulation released paracetamol faster with 19.78% released in 

the first three minutes compared with 18.44% per minute for the microwave formulation. 

However after the initial three minutes the rates drop and both formulations can be seen 

to release the same amount of the drug (0.90% compared with 0.97% per minute). 

Rate (% release per minute) 

Time 
(Mins) 

Microwave 
Heating 

Conventional 
Heating 

0-3 18.44 19.78 

3-15 0.97 0.90 

15-30 0.05 0.05 
 

Table 5.6.1.6 - Rate of release of paracetamol from BCD 1:9, microwave heating 

compared with conventional heating 

 

Table 5.6.1.7 illustrates all the results obtained for paracetamol and the four different 

excipients prepared using microwaves and conventional heating. In some cases no 

differences occurred, which is illustrated by the statement ‘no difference’ in the table. 

When microwave heating showed a higher percentage drug release this is illustrated by 

the statement ‘MW’ in the table. When conventional heating illustrated a higher 

percentage drug release this is indicated by the statement ‘CN’ in the table. 
 

Drug/Excipient Without 

  MW/CN 

Paracetamol/SA 1:3 CN 

    

Paracetamol/BCD 1:1 No Difference 

Paracetamol/BCD 1:9 No Difference 

    

Paracetamol/PVP 1:1 CN 

Paracetamol/PVP 1:9 CN 

    

Paracetamol/2HPBCD 
1:1 No Difference 

Paracetamol/2HPBCD 
1:9 MW 

 

Table 5.6.1.7 – Summary to indicate conditions that created the greatest drug 

release for paracetamol and excipients analysed for differences between microwave 

and conventional heating 
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5.6.2 Excipient  

In particular, it was found that the excipient which released the greatest amount 

of paracetamol was PVP, in the 1:1 ratio formulated using microwave heating. While the 

smallest amount of paracetamol was released from SA formulated using microwave 

heating.  

In summary, based on these results, if formulating paracetamol to enhance drug 

release it would be advisable to formulate using PVP and the microwave heating 

method.  

In contrast, if formulating paracetamol to retard drug release it would be 

advisable to formulate using SA, and using the microwave heating method.  

 

5.6.3 Summary 

 Paracetamol does not have poor aqueous solubility and therefore it was decided 

to formulate without the presence of water. Consequently the choice of heating method 

was investigated and the results obtained showed that in the majority of cases no 

significant difference was observed between the two heating methods. However when a 

difference was seen the conventional method of heating showed a higher percentage 

drug release.  

 With respect to excipient choice, when formulating paracetamol to enhance drug 

release it is advisable to formulate using PVP in the 1:1 ratio and with microwave 

heating. If however the drug release needs to be delayed then SA should be used.  

 

From all results obtained, it is clear that the choice of heating method and the presence 

of water can illustrate differences in the percentage drug release. However when the 

formulation temperature becomes further away from the melting point of the drug, these 

differences become less apparent. Therefore without the range of drugs and excipients 

investigated, and a comparison between the heating methods this information would not 

have been noticed.  
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6.1 Conclusion 

 The first aspect of this research was to investigate the thermodynamic 

parameters associated with the binding between three different drugs, namely 

ibuprofen, ketoprofen and flurbiprofen and two excipients, over a temperature range 

(Objective One). The second aspect was to investigate the compatibility between the 

different drugs and excipients to ensure the formulation process was a success and had 

no adverse effects on the drugs themselves (Objective Two). The final part of this 

research was to analyse and determine how the chosen drugs and excipients behaved 

after being exposed to the varying formulation parameters by considering the resultant 

drug dissolution (Objective Three).  

 

6.1.1 Objective One: Drug-Excipient Binding 

The first objective of this research was to determine the thermodynamic 

parameters associated with the binding of ibuprofen, ketoprofen, and flurbiprofen with 

two excipients, BCD and 2HPBCD.  This was investigated using ITC and completed 

over a temperature range to see if the parameters were temperature dependent. In all 

cases, information was obtained on the binding constants, stoichiometry, enthalpy, 

entropy and Gibb’s free energy. This information was then used to determine and 

understand the complexation process including the strength of the interaction between 

the drug and cyclodextrin and whether the interaction was favourable. This was 

successfully carried out and in all cases the drug interacted with the BCD and 2HPBCD 

in a 1:1 ratio, which was unaffected by an increase in the temperature.   For ibuprofen, 

BCD and 2HPBCD, it was concluded that the binding and therefore the interaction 

between these compounds was favourable and likely to happen. As the temperature 

increased, there was an increase in the enthalpy of the reaction showing the bonding 

becomes more exothermic and illustrating an increase in the strength of bonds between 

the drug and cyclodextrin cavity. The change in Gibbs free energy also indicated a slight 

increase to a more negative value with an increase in temperature, and a small positive 

contribution by ΔS (entropy). The negative values for ΔG indicate that the complex has 

less free energy than the free drug and cyclodextrin, and consequently the negative 

value for enthalpy, negative values for Gibb’s free energy and a slightly positive entropy 
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suggests binding was favoured and a complex formation was promoted. However when 

both the binding constants and therefore the enthalpy, Gibb’s free energy and entropy 

were compared for ibuprofen binding to BCD and ibuprofen to 2HPBCD it can be seen 

that ibuprofen does form a complex with 2HPBCD but it is a relatively weak process 

(ibuprofen and BCD show significantly more negative values when compared with  

2HPBCD). This is because 2HPBCD is a more sterically hindered compound, making it 

harder for a drug to bind and form a tight complex with this compound. It can also be 

said that the drug-excipient interactions are temperature dependant as expected.  

Ketoprofen was also investigated with BCD and 2HPBCD, and it was seen that 

as the temperature increases there is a change in the enthalpy, and consequently 

Gibb’s free energy, therefore this reaction is also temperature dependant.  As the 

temperature increases, the enthalpy change for the reaction increased and became 

more negative showing that the strength of the interaction between ketoprofen and the 

cyclodextrin cavity increased. Along with this increase in enthalpy, there was an 

increase in negativity in the Gibb’s free energy with a small positive contribution by 

entropy (ΔS) which would suggest that as the temperature increases, the interaction 

between the drug and cyclodextrin cavity increases. Consequently the resultant 

complex has less free energy than the free drug and BCD molecules and therefore 

binding is favoured. It is apparent from the results that the interaction seen between 

ketoprofen and 2HPBCD is weaker when compared with ketoprofen and BCD. This 

therefore may suggest that the substituted groups seen in the structure of 2HPBCD 

make it difficult for the drug to interact and bind to the cavity of the cyclodextrin, a result 

previously obtained with ibuprofen.  

In the case of flurbiprofen with BCD, the binding constant decreased with 

increasing temperature which was not witnessed previously. When the enthalpy for 

each reaction was calculated it was seen to remain constant over the temperature 

range studied suggesting that the binding mechanism was unchanged. There was also 

a slight decrease in the Gibb’s free energy as the temperature for the reaction 

increased, with positive entropy that remained the same. These results suggested that a 

complex was formed and favoured but the strength of it was reduced as the 

temperature was elevated. For the binding between flurbiprofen and 2HPBCD, the 
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binding constant, enthalpy and Gibb’s free energy all increased with increasing 

temperature which is a trend previously seen with ibuprofen and ketoprofen. This result 

therefore suggested that the bond between the flurbiprofen drug molecule and the 

cyclodextrin cavity increased in strength with increasing temperature. It also showed 

that the reaction was more exothermic at higher temperatures. There was an increase 

in ΔG which indicated that at higher temperatures, there was less free energy in the 

complex than the free drug and cyclodextrin. Therefore because of this and the negative 

enthalpy of binding and the positive entropy, the complex was favourable and more of 

the drug was in the complex instead of free state. When the two different excipients 

were compared, it was noted that the interaction between flurbiprofen and BCD was 

less favourable as the temperature increased, however the opposite was witnessed for 

the interaction of the drug and 2HPBCD. Upon comparison of the three different drugs, 

it was concluded that the more lipophilic the drug, the stronger the interaction between 

the drug molecule and the cyclodextrin. This was a reflection of the greater affinity of the 

lipophilic compound towards the less polar internal cavity of the cyclodextrin when 

compared with water. However, this was not observed for flurbiprofen and BCD. Here 

there was a decrease in the binding constant, ΔH and ΔG at 310K. This consequently 

suggests another factor was influential, i.e. the structural differences present for 

flurbiprofen when compared with ibuprofen and ketoprofen. This may have a 

subsequent impact on the hydrogen bonding potential with the cyclodextrin cavity 

causing a decrease in bond strength as the temperature increased. This finding implied 

that at the highest temperature investigated less of the drug was in a complex with the 

cyclodextrin because of the loss in strength of the hydrogen bonding.  

 

6.1.2 Objective Two: Formulation Stability 

After the first objective was successfully carried out, the second objective was to 

determine if the chosen drugs, namely, ibuprofen, ketoprofen, flurbiprofen and 

paracetamol were compatible with the four excipients (SA, BCD, 2HPBCD and PVP). 

This was determined from the analysis of DSC, SEM and TAM data. In all cases it 

appeared that the drug and excipient were compatible with no adverse effects observed 

following the formulation process. DSC was used to determine if the formulation method 
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made any significant differences to the thermal behaviour of the drug and excipient. 

Firstly, each of the pure compounds were analysed to illustrate the thermal behaviour 

before the formulation process was undertaken. After the pure compounds were 

investigated, each of the formulations were analysed. Any differences in the thermal 

behaviour were recorded and included a decrease in the melting points of the drugs or a 

change in the behaviour of the excipients. In the case of ibuprofen, it was found that the 

choice of heating method made no significant difference to the thermal behaviour of the 

drug and excipient, with an exception for PVP in the 1:1 ratio. Also in the majority of 

cases, having water present during the formulation method, made no difference to the 

thermal behaviour. However there was an exception for BCD (1:9) and PVP in both 

ratios. When water was present for the ibuprofen and BCD formulation prepared in the 

1:9 ratio it can be seen that a clear overlap of the peaks had occurred with an increase 

in the melting point for the drug. This indicated that the presence of water may have 

aided the encapsulation of the drug and pushed it towards the cyclodextrin cavity. Also 

for ibuprofen and PVP a clear decrease of the melting point for the drug was seen, with 

a difference in the behaviour of the excipient after formulation. These results indicate 

that an interaction had occurred because of the formulation process.  

After ibuprofen was investigated, ketoprofen was also analysed. Firstly, 

ketoprofen was formulated with SA which caused a change in the thermal behaviour of 

the drug and excipient, indicated by a decrease in the melt temperature for both. 

However for this result to be reliable, there would have to be a decrease by a 

substantial amount of 40ºC. Therefore it may be possible that the formulation was not 

homogenous throughout and because of the small amount taken for DSC analysis 

weight errors may have been introduced. To overcome this problem with future 

formulations it may be advisable to initially mix for a longer period of time, formulate, 

then grind and re-mix. For the other formulations, it appeared that the choice of heating 

method did not affect the thermal behaviour of the drug and excipient, other than when 

ketoprofen was formulated with PVP in the 1:9 ratio using conventional heating. This 

was a result also obtained for ibuprofen and PVP, although in a different ratio. A logical 

explanation for this is the fact that during conventional heating the drug and excipient 

were exposed to heat and moisture for longer periods of time which may enable the 
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excipient to have swelled to a greater extent. It was also evident from the results that in 

the majority of cases water affected the thermal behaviour of the drug and excipient 

when ketoprofen was formulated with BCD and PVP. In both cases, when water was 

present a broad peak was witnessed with a decrease in the temperature associated 

with that peak.  

Flurbiprofen was investigated with two excipients, namely SA and PVP. This was 

because of difficulties during formulation of the drug with the remaining two excipients. 

However from analysis of the drug with the two excipients it appeared that the 

formulation method made no significant difference to the thermal behaviour of the drug 

either using microwaves or conventional heating, and with or without the presence of 

water.  

 The last drug investigated using DSC was paracetamol, with the four excipients, 

and without the presence of water. In the majority of cases the choice of heating method 

made no significant difference to the thermal behaviour of the drug and excipient. 

 DSC was utilised to investigate the compatibility of the drugs and excipients and 

also to ensure no adverse effects occurred to the formulation after the heating process. 

In the majority of cases, it can be said that the choice of excipients were compatible with 

the different drugs and this was illustrated by a change in the thermal behaviour of the 

formulation. In some cases no differences were illustrated, this however only became 

more prominent when the formulation temperature of 85ºC was significantly different 

from the melting point of the drug, for example paracetamol at 169 ºC.  Also there was 

no evidence that any adverse effects occurred to either the drug or excipient after the 

formulation process.  

Each of the drugs and excipients were analysed using SEM, followed by each of 

the formulations prepared using microwaves and conventional heating, with and without 

the presence of water. In the case of ibuprofen, it was apparent that the formulation 

process did affect the overall physical appearance of both drug and excipient. This was 

illustrated by a change in the particle shape and size. Choice of heating method did not 

affect the appearance. Also it was apparent that when water was present during the 

formulation process, a smaller particle size was observed. This may have occurred 

because during formulation with water, the mixture was continuously stirred which may 
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give a smaller particle size. This was a trend seen throughout the different formulations, 

until PVP was analysed. This drug and excipient formulation showed a larger particle 

size when exposed to the moisture, and this occurred because PVP swelled upon 

exposure to moisture.  

 Ketoprofen was also analysed using SEM, and for this drug and excipients it 

became evident that there was no significant difference between the two different 

heating methods. When water was present during formulation, it became apparent that 

a reduction in the particle size occurred. This indicated that the continuous stirring of 

any of the ketoprofen formulations during heating helped to reduce particle size, 

however this was not the case for PVP. This excipient once again showed a larger 

particle size when water was present. 

Flurbiprofen was the next drug analysed with SA and PVP only. However, 

despite only having two excipients to investigate, the results obtained showed that in the 

presence of water the resultant formulation had a smaller particle size (apart from PVP). 

It was also noted that the choice of heating method made no overall difference to the 

physical appearance.  

 Lastly, paracetamol was analysed using SEM, this drug was formulated using 

microwave and conventional heating without the presence of water. Therefore this drug 

was investigated to determine if any differences were apparent between the two heating 

methods. From all the different formulations analysed it was evident that the choice of 

heating method made no significant difference to the final appearance of the drug and 

excipient. 

  

DSC and SEM have been utilised to determine compatibility of the drugs and excipients 

and to visually see if the formulation method illustrated any differences in appearance of 

the resultant formulations. Experiments were then conducted using a TAM to determine 

the stability of these formulations. However, because of time restrictions it was decided 

to analyse ibuprofen only. This was because at the formulation temperature, ibuprofen 

is the only drug that melts.  
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Firstly, pure ibuprofen was subjected to three different parameters, namely dry 30ºC, 

30ºC and 51% RH, and ibuprofen dissolved in phosphate buffer. From these different 

conditions it was concluded that pure ibuprofen was stable for the four day period. As a 

result, each of the different formulations were analysed at 30ºC over four days. The 

results obtained indicated that after the formulation process, ibuprofen appeared stable 

and as a consequence no adverse effects were seen when the drug was heated and 

formulated with the four chosen excipients. In all cases, the signal during the 

experiment remained close to or on 0μW/g indicating no degradation.  

 

6.1.3 Objective Three: Formulation parameters investigated. The influence 

of formulation solvent on subsequent dissolution and choice of heating 

method 

The third objective was to determine if the presence of water during the 

formulation process affected subsequent drug release. This was analysed using drug 

dissolution and ibuprofen, ketoprofen and flurbiprofen were all investigated with the 

excipients.  When ibuprofen was formulated with the excipients and in the presence of 

water, it was evident that a higher drug release occurred in the majority of cases. It is 

difficult to determine why these results were obtained but it may be because of the 

following three reasons. Firstly, ibuprofen is a poorly water soluble drug and when 

formulated in the presence of water the drug may be forced towards the excipient, 

aiding complex formation and therefore showing an improvement in dissolution. 

Secondly, because of the presence of water, ibuprofen may bind to the excipient, but 

not as efficiently as formulations without water and as a result, a loosely bound complex 

was formed. Lastly, it was noticed from analysis of the images obtained from the SEM 

that a smaller particle size was evident when water was present during formulation. As 

a result, the formulation would dissolve at a faster rate and therefore an improved 

dissolution rate was seen.  

 When ketoprofen was formulated with the four excipients and in the presence of 

water, an improved dissolution was seen.  



 216  
 

Flurbiprofen was formulated with SA and PVP, and it was apparent that formulating this 

drug in the presence of water made no significant difference to the dissolution profile. 

Both these excipients and the drug are insoluble in aqueous solutions and therefore 

water was not likely to change the particle size, and as a result the dissolution rate was 

not enhanced. In addition, flurbiprofen did not melt at the formulation temperature.  

Paracetamol was not formulated in the presence of water therefore no comparison 

between the different formulations was made.  

From analysis of all the different formulations it can be concluded that the 

presence of water did make a significant difference to the overall release of the drug. In 

the majority of cases, it appeared that when water was present an enhanced dissolution 

rate was expected. This could be because of a reduction in particle size, or as a result 

of continuous stirring during the heating method.  

Finally, dissolution experiments were conducted to determine if the choice of 

heating method affects the dissolution profile for a chosen drug. Each of the four drugs 

were investigated with the excipients either with or without the presence of water during 

formulation. When ibuprofen was formulated using microwave heating, it was seen that 

a higher percentage drug release occurred when compared with conventional heating. 

This result could have occured because of the way microwaves heat, which is by direct 

interaction with the molecules in contrast to a temperature gradient. Also ibuprofen 

melts at this temperature which may be beneficial to aid encapsulation.  

 The next drug analysed was ketoprofen with the four different excipients. From 

the results obtained it became evident that when this drug was formulated using 

microwave heating a higher percentage drug release was seen. However, in some 

cases no difference was seen between the two heating methods. This result suggests 

for these formulations that the choice of heating method makes no overall difference to 

the drug release. When microwaves illustrated a higher percentage drug release, this 

may have occurred because of a more uniform method of heating which may aid 

encapsulation, which in turn improves the release from the formulation.  

Flurbiprofen formulations were also analysed and it can be seen from the results 

that the choice of heating does not affect the release of the drug in the majority of 

cases. When a significant difference was observed, the conventionally heated 
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formulation was seen to release a higher amount of the drug. This may have occurred 

because the conventional method takes longer to heat the formulation and because the 

drug doesn’t melt it may require this extra time to encapsulate the drug and show an 

improvement in the dissolution.  

 For paracetamol in the majority of cases, no significant difference occurred 

between the two heating methods. This again indicated that the further away the 

formulation temperature is to the melting point of the drug, the less difference appeared 

between the two methods. When a difference did occur, the formulation that displayed a 

higher percentage drug release was the conventional formulation. This may indicate 

that the further away the formulation temperature is from the melting point of the drug, 

the longer it may require to encapsulate and show an improvement in the drug release.  

 From all the results obtained it appeared that when ibuprofen and ketoprofen 

were formulated using microwaves a higher percentage drug release was evident yet 

for flurbiprofen and paracetamol this was not the case. Also in some cases, no 

difference was seen between the two heating methods. This suggests that the choice of 

method will not necessarily affect the the dissolution profile. Conseqeuntly microwave 

heating could still be used to formulate in these instances, for example, to reduce 

energy costs associated with conventional methods. Microwaves also provide a more 

uniform way of heating reducing any implications associated with uneven heating.  

In summary, the chosen analytical techniques allowed all three objectives to be 

investigated. The different thermodynamic parameters were investigated and 

determined for the interactions between ibuprofen, ketoprofen and flurbiprofen with the 

two different cyclodextrins (BCD and 2HPBCD). The formulation method did not appear 

to cause any adverse effects on the drug and excipients, and all seemed compatible 

with a change in thermal behaviour and appearance for the majority of the different 

formulations. From the dissolution profiles, it does appear that the choice of heating 

method will influence the release profiles for drugs close to the formulation temperature 

of 85°C, with microwave based formulations displaying a greater extent of drug release. 

Also drug release appears further enhanced when water is present during the heating 

stage, which may be the result of a decrease in the particle size.  
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6.2 Future Work 

To extend this work further, some areas that could be investigated are described below.  

 

1. Extend the selection of drugs and excipients studied using ITC 

ITC was utilised to analyse the binding interactions between a comparatively small 

selection of drugs with increasing partition coefficients and two excipients. To extend 

this further it would be possible to analyse other drugs with different partition 

coefficients with BCD and 2HPBCD to see if the positive correlation between 

temperature and lipophilicity continues. It may also be possible to increase the 

number of excipients to see if similar trends are obtained. Other excipients that could 

be investigated include α and γ-cyclodextrins, and possibly a few derivatives of the 

cyclodextrins, including Hydroxyethyl-β-CD, or Methyl-β-CD.  

2. Extend the study of the application of microwave heating 

The controlled power microwave method to produce pharmaceutical formulations is 

novel and therefore there are many parameters that could be varied within this 

aspect of the research area. This could be achieved by varying the amount of the 

time that each formulation is subjected to the microwave energy. Also by varying the 

formulation temperature, this may help to determine the optimum conditions for the 

microwave method. It was also noted that the further away the formulation 

temperature was from the melting point of the drug the less variation was present 

between the parameters. Therefore, to investigate further more drugs that have a 

melting point around the formulation temperature need to be investigated. Also 

drugs with a melting point considerably different to the formulation temperature need 

to be investigated to determine if the same trends are witnessed. This method can 

also be extended to the conventional method so a direct comparison can still be 

made.  

3. Explore alternative analytical techniques 

DSC, SEM and a TAM were used to determine any changes to the drug and 

excipient as a result of the formulation process. Other analytical techniques that may 

help to illustrate and understand any changes may include XRD (x-ray diffraction) 

and FT-IR (fourier-transform infra-red). XRD can be used to determine if the 
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formulation method reduced crystallinity, which may also help to explain the 

resultant variations in dissolution profiles. As a consequence of formulation, 

hydrogen bonding occurs between the two components and this could be 

investigated using FT-IR, which is illustrated by a shift in certain peaks.  

During analysis of the DSC profiles it was evident that some changes occurred in 

the thermal behaviour of the resultant formulations, however for ketoprofen and 

flurbiprofen no peak was seen for the melt of the drug. This may indicate that the 

formulation was not homogenous throughout, and to eradicate this problem the initial 

mixing time can be increased from five minutes to ten or fifteen minutes. Also after 

the heating method, the formulation can be milled and re-mixed to ensure a 

homogenous mixture. Again, further analysis may help confirm this theory. 

Rather than using a further technique, more work could be conducted using a 

TAM. For example, the stability of the ibuprofen formulations was investigated using 

a TAM, to extend this section of work further the amount of time each formulation 

was analysed could be increased from four days to weeks or months to be certain 

no problematic instability exists. Also all formulations could to be investigated for 

stability and therefore ketoprofen, flurbiprofen and paracetamol could be analysed 

using a TAM.  

In addition, MWTG was used to investigate if any degradation or evaporation of 

the drugs occurred at the formulation temperature. To ensure that no adverse effects 

occur at the chosen temperature, MWTG can be utilised and used as a screening 

method to ensure that the drugs can withstand the thermal stress presented during 

heating.  

In summary, the research presented in this thesis has confirmed the potential 

application of microwave heating for pharmaceutical formulations with 

accompanying analytical techniques. However, there is far more work that can be 

undertaken in this area to fully explore all of the possible uses of this novel method 

of formulation.  


