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Abstract 
 

A simple device for characterisation of the tribo-charging propensity of powders has been 

developed at the University of Leeds, where a small amount of powder is placed inside a 10 ml 

container, which is shaken by reciprocal strokes in a horizontal direction.  Several containers with 

different materials have been made: stainless steel, polytetrafluoroethylene (PTFE) and glass.  The 

charge on the powder is measured using a Faraday cup connected to an electrometer. The charge is 

measured before and after the shaking process. 

 

The main objective of this work is to analyse the operation of this simple test device by 

investigating the behaviour of α-lactose monohydrate, hydroxy propyl cellulose (HPC) and a 50:50 

binary mixture (by mass) of these two powders with various surfaces that are most commonly used 

in the pharmaceutical industry. The experiments are carried out in controlled environmental 

conditions and using different shaking times together with different shaking frequencies of 10, 20 

and 30 Hz.  

 

The experimental results show that α-lactose monohydrate and HPC particles have the highest 

magnitude of charge at 20 Hz frequency against all surfaces tested.  This is surprising, as it is 

intuitively expected that higher charges should be produced at 30 Hz, given other conditions. The 

dynamic movement of particles within a shaking container vary with frequency. This results in a 

varied amount of particle-wall contacts which affects particle charging. 

 
1. INTRODUCTION 
 

In powder handling operations, particles frequently come into contact with each other and with the 

walls of the processing equipment causing the tribo-electrification of the particles. Pharmaceutical 

powders are often small in particle size (less than 100 µm), irregularly shaped and have low bulk 

density. This makes them highly susceptible to electrostatic charging as they normally have a high 

electrical resistance, preventing charge dissipation, Grosvenor and Staniforth [3].  The electrostatic 

forces acting on charged pharmaceutical particles dominate in adhesion and deposition of the 

particles to walls in the case of fine particle systems, such as dry powder inhalers (DPI), Bailey [1] 

and Balachandran et al., [2].   

 

In the pharmaceutical industry, electrostatic particle charging is a common nuisance as it can cause 

segregation, dust explosions; Nomura et al., [5], adhesion and deposition or blockage of pipelines; 

Matsusaka et al., [4], leading to loss of powder and difficulties controlling the powder flow. The 

ability to control the charging of pharmaceutical powders is essential in improving the quality of the 

end product and minimising deposition and powder loss. 

 
2. EXPERIMENTAL 
 

To investigate the tribo-electrification of bulk powders due to multiple contacts, a Retsch MM200 

shaking machine has been modified at the University of Leeds (Fig.1), where a small sample of 



 

 

powder is placed inside a shaking container of 10 ml in volume. The container performs reciprocal 

vibrations in a horizontal direction. Due to the inertia of the tribocharging container, the sample 

material inside is thereby impacted alternately against the rounded ends of the container. The 

containers made of Stainless Steel, PTFE, Perspex or glass, can be easily replaced to test the surface 

effect on tribo-electrification of pharmaceutical powders. The intensity can thereby be set precisely 

between 3 and 30 vibrations per second and a speed control keeps this value constant during the 

tribo-charging process. The tribo-charging time can be digitally preset from 10 seconds up to 99 

minutes. The arm, 8.4 cm in length, rotates 6.12° resulting in an amplitude of the vibrations of 0.89 

cm.  

 
 

Figure 1. Retsch Shaking Machine and Containers.  

 

To measure the electrostatic charge of the bulk powders, a Faraday cup (Fig. 2) was used which 

consists of two stainless steel cups isolated from each other by a PTFE spacer.  The inner cup is 

connected to an electrometer (Keithley Model 6514) via a BNC cable, and the outer cup is earthed. 

The electrometer is connected to a computer and data is recorded using Test Point v6 software. The 

inner cup can be easily removed to measure weight of the sample poured into the cup.  A stainless 

steel lid, fitted to the outer cup, is used to reduce electric noise.  The resolution of the charge 

measurement is in nano-Coulombs (nC) order of magnitude.  

 

 
 

Figure 2. Faraday Cup and an Electrometer. 

 

In order to control the environmental conditions during the test, a Microflow-CIT isolator system of 

approximately 0.6 m
3
 volume capacity was used (Fig. 3). All of the test equipment, including the 

tribocharging device, electrometer, Faraday cup, humidity, temperature meters and the test 

materials were placed inside the isolator and sealed. Nitrogen can be supplied through an aperture 

on the side of the isolator to control the humidity. The edges of the isolator were reinforced using 

insulating tape to minimise any nitrogen leakages.  



 

 

The test materials are placed inside the isolator via the side chamber. The humidity and temperature 

inside the isolator is monitored using a HydroPalm device. By adjusting the amount of gas coming 

into the isolator, the humidity can be reduced to below 5 %. Another added advantage of a tightly 

closed system for tribo-charging of pharmaceutical material is the ability of the operator to work 

with active ingredients with a reduced risk of exposure to dust and associated toxic hazards.     

 

Figure 

3. Experimental Set-up of the Bulk Charging Tests. 

 
3. RESULTS AND DISCUSSION 
 

3.1 Equilibrium Charge 
 

In Figure 4, the amount of time that it takes for each powder to reach its maximum charge in a 

PTFE container is shown. The shaking time for each powder thereby varies depending on how long 

it takes each powder to reach its maximum charge. It can be seen that HPC and α-lactose 

monohydrate reached their peaks at 1 and 45 minutes, respectively. The resulting peak charge time 

for the 50:50 binary mixture is 20 minutes, which is between that of α-lactose monohydrate and 

HPC (as expected).  
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Figure 4. Charge to Mass Ratio at 20 Hz frequency as a function of shaking time for Three Powders 

against PTFE. 

3.2 The Effect of Shaking Frequency 
 

Using the results from Figure 4, the effect of frequency has been studied.  Figure 5 show the results 

of the mechanical shaking tests of α-lactose monohydrate, HPC and a 50:50 binary mixture of the 

two powders in a PTFE container. The powders were vibrated at a constant frequency of 20 Hz for 

45, 1 and 20 minutes, respectively. The vertical axis in Fig. 5 represents the charge-to-mass ratio (in 

nC/g), and the horizontal axis the shaking frequency. The data are shown as an average values from 

tests repeated a minimum of three times.  The results show higher charge levels against the PTFE 

surface at a 20 Hz frequency for all three powders, as compared to those generated at 10 and 30 Hz. 

It can be seen that α-lactose monohydrate has the highest magnitude of charge at all three 

frequencies compared to the other two powders. 
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Figure 5. Charge to Mass Ratio at 10, 20 and 30 Hz Frequencies for Three Powders against a PTFE 

Surface. 

 

3.3 The Effect of Particle-Wall Adhesion 
 

Figure 6 shows the mean percentage of mass loss during tests at three different frequencies within a 

PTFE container. This was measured by tapping the container several times which dislodged the 

charged powder into an empty Faraday cup. Figure 6 shows that α-lactose monohydrate has the 

highest mass loss across the frequencies tested. HPC has the smallest mass loss at all three 

frequencies and a very low adhesion of particles to walls. The mass loss is thereby the result of 

powder adhering to the walls of the shaking containers which does not empty into the Faraday cup 

by gentle tapping on the outside of the container; neither could they be scraped into the Faraday cup 

as this would additionally charge the powder. The adhesion of particles to walls can have a 

significant effect on the generated charge. The current hypothesis is that particles which adhere to 

the wall surfaces may change the charging process from particle-wall contacts to particle-particle 

contacts which may result in the change of polarity of the overall powder sample.  
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Figure 6. Percentage of Mass Loss During Tests against a PTFE surface at three different 

frequencies. 

 

3.4 The Effect of Surface Material 
 

During powder handling in the pharmaceutical industry, the powder makes contact with a variety of 

solid surfaces namely PTFE, stainless steel and glass. It is therefore important to investigate the 

polarity and level of the charge during tribo-electrification of powders and their surfaces. Figure 7 

shows the results of α-lactose monohydrate tested for 2 minutes at 20 Hz against PTFE, glass and 

stainless steel surfaces. Figure 7 shows that α-lactose monohydrate is charged positively against 

PTFE surface, whilst it is charged negatively against glass and stainless steel containers.  
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Figure 7. Triboelectrification of α-Lactose Monohydrate against a PTFE, Stainless Steel and Glass 

Surfaces. 

 

Furthermore, the charging behaviour of a binary mixture is very complex, as our current state of 

understanding on the charge distribution of each component is simply non-existent. The charge on 

the blend measured here is obviously the net charge. It may be reasonable to consider in the first 

instance that the charge on the blend is additive, hence explaining the specific charge on the blend 

being lower than pure α-lactose monohydrate at all frequencies.   



 

 

4. CONCLUSIONS 
 

The triboelectrification propensities of α-Lactose monohydrate, HPC and the corresponding 50:50 

binary mixture have been characterised by a mechanical shaking test method. The results show that 

α-Lactose monohydrate has the highest magnitude of charge against a PTFE container at all three 

frequencies tested.  

 

All three powders tested charge positively against the PTFE container at all frequencies. All sample 

powders tested have highest powder adhesion and the net charge at the intermediate frequency of 20 

Hz. The charge to mass ratio obtained from particles of α-Lactose monohydrate left on the inner 

wall of the PTFE shaking container carry a much higher magnitude of charge as compared to binary 

formulation and HPC.   

 

The results also show that it took α-Lactose monohydrate, HPC and the corresponding 50:50 binary 

mixture approximately 45, 20 and 1 minute, respectively, to attain equilibrium charge at 20 Hz.  

 

The charge generation of α-Lactose monohydrate against PTFE, stainless steel and glass as a result 

of the tribocharging process was investigated. The results show that α-Lactose monohydrate is 

charged positively against PTFE and negatively against stainless steel and glass. The magnitude of 

charge is highest against PTFE and lowest against stainless steel. 

 

The charging processes for the systems investigated in this work are very complicated, as they 

include multiple particle-wall and inter-particle interactions and space charge effects hence they are 

difficult to analyse.  The knowledge obtained from these multiple particulate systems is useful for 

comparative evaluations, but lacks generality.  Nevertheless, it is reasonable to conclude that the 

binary formulation tested here becomes charged to a sufficiently high level to cause problems such 

as the segregation of the components and upset the formulation balance. In future work, a DEM 

simulation will be used to provide a more detailed and systematic study that is needed to elucidate 

the mechanisms involved in the process. 
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