
University of Huddersfield Repository

Jiang, Xiang, Lou, Shan and Scott, Paul J.

Morphological method for surface metrology and dimensional metrology based on the alpha shape

Original Citation

Jiang, Xiang, Lou, Shan and Scott, Paul J. (2011) Morphological method for surface metrology and 
dimensional metrology based on the alpha shape. Measurement Science and Technology, 23 (1). 
015003. ISSN 0957-0233 

This version is available at http://eprints.hud.ac.uk/id/eprint/12177/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



Morphological Method for Surface Metrology and 

Dimensional Metrology Based on Alpha Shape 

 

Xiangqian Jiang*, Shan Lou, Paul J. Scott 

EPSRC Centre for Innovative Manufacturing in Advanced Metrology, University of 

Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK 

E-mail: x.jiang@hud.ac.uk 

 
Abstract. Morphological filters are useful tools as they are commonly employed in surface 

metrology and dimensional metrology, serving for surface texture analysis and data smoothing 

respectively. Compared to the mean-line filtering techniques, such as the Gaussian filter, 

morphological filters have the merits of compact support, no need to remove form, and being 

relevant to geometrical properties of surfaces. This paper proposes a novel morphological 

method based on the alpha shape. The proposed method has the advantages over the traditional 

methods that it runs relative fast, enables arbitrary large ball radii, and applies to freeform 

surfaces and nonuniform sampled surfaces. The theory of basic morphological operations and 

the alpha shape are introduced and the theoretical link between the alpha hull and the 

morphological closing and opening operation is presented. A practical algorithm is developed 

that corrects possible singularities caused by data spikes and reduces the amount of calculation 

for open profiles/surfaces. Computer simulation is used to compare the results from the 

traditional algorithm and the proposed one. Experimental studies are conducted to demonstrate 

the feasibility and applicability of using the proposed method. 

1.  Introduction  

Surface metrology and dimensional metrology have profound influences on product manufacturing. 

Surface metrology inspects small scale geometrical features on product surfaces while dimensional 

metrology measures form and size in relative large scale. They work in a complementary manner to 

ensure the good quality and a satisfactory performance. 

Filtration is a technique that separates the desirable features from other features in the data set. It is 

commonly used in surface metrology and dimensional metrology. In dimensional metrology, filtration 

plays a role of data smoothing while in surface metrology it usually serves as part of the analysis of 

the surface topography. Conventionally, there are two filtering systems: M-system (Mean-line 

filtering system) and E-system (Envelope filtering system). The mean-line filtering techniques 

decompose the surface signal into differing components according to their bandwidth in the frequency 

domain and thus extract the components of interest within the given wavelength bandwidth. The 

envelope filtering system is an alternative method depending on the geometrical structures of 

surfaces. The envelope filtration is achieved by rolling a ball of the selected radius over the surface 

(Von Weingraber 1956). 

The Gaussian filter, the most typical representative of the M-system techniques, is the standardized 

filter both for surface metrology and dimensional metrology (ISO 11562 1994). It is based on the 

time-frequency analysis technique, which convolves the signal with the weighting function (Gaussian 

function) to obtain the weighted average value. In surface metrology, the Gaussian filter is employed 



 

to decompose the primary surface into different scale-limited surface components (If we take a 

traditional approach, it means to separate the primary surface into roughness and waviness 

components) (Whitehouse 1994). In dimensional metrology the Gaussian filter serves as a smoothing 

method for linear and roundness data. However, the Gaussian filter has several limitations. First, 

before filtering, the irrelevant form needs to be removed from the measured data to obtain the residual 

surface on which the Gaussian filter is performed. Otherwise the form will cause distortions. Second, 

the Gaussian filter is sensitive to outliers. Third, the Gaussian filter takes the pre-requisition that the 

residual surface can be broken down into a series of harmonic components. 

The envelope filter, regarded as the complement to mean-line filters, has merits against the 

limitations mentioned above. It is relative to the geometrical properties of surfaces and thus gives 

better results on the functional prediction of surfaces. It has compact support, taking care of both 

amplitude and spatial information. Furthermore, it does not require the form to be removed. With the 

introduction of mathematical morphology, morphological filters emerged as the evolution of the 

envelope filtering system (Srinivasan 1998; Scott 2000). Morphological filters are essentially the 

superset of the early envelope filter, offering more tools and capabilities. They are carried out by 

performing morphological operations on the input signal (profile/surface) with the circular or flat 

structuring element, usually circular. Over the last decade, morphological filters have found many 

applications in practice. The morphological closing filter was utilized to approximate the conformable 

interface of two mating surfaces (Malburg 2003). The morphological alternating symmetrical filter 

was employed to decompose the surface topography of an internal combustion engine cylinder 

(Decenciere & Jeulin 2001). ISO 16610 (2010) illustrated an example of detecting the defective 

milling mark from a milled surface using the morphological scale-space technique. 

Although morphological filters are useful and generally accepted, existing algorithms (Shunmugan 

& Radhakrishnan 1974; ISO 16610 2010; Scott 1992) have some drawbacks. For one thing, these 

methods are either time-consuming, especially for large data set and large structuring element, or hard 

to extend to areal data. Further, the maximum ball radius is limited in practice due to the huge 

computational requirement, while for many real applications they may desire ball (disk) radii much 

larger than the signal length, particularly for surfaces with the form attached. What’s more, these 

methods are restricted to “planar” surfaces, namely two-dimension manifolds embedded in the 

Euclidean spaces R
3 

(Jiang et al. 2010). With the advancement of the modern manufacturing 

techniques, more complex surfaces emerge. These complex surfaces have no rotational or 

translational symmetry, and are referred to as freeform surfaces (Jiang et al. 2007). For freeform 

surfaces, the data might be specified by coordinate pairs/triplets rather than regular surface heights, 

thus these methods do not work. 

In this paper, we propose a novel morphological method which is based on the alpha shape. The 

alpha hull is theoretically linked to the morphological operations. It provides a feasible tool to 

compute morphological filters. The proposed method works for both profile and areal data with 

relative fast speed over the traditional methods for area data. Arbitrary large ball radii are available, 

bringing more applicability to morphological filtering. Another merit derived from the proposed 

method is that it applies to the freeform surfaces and the nonuniform sampled surfaces. The 

nomenclature used in this paper is given in the Table 1. 

 



 

 

 

 

 

 

 

Table 1. Nomenclature. 

A B⊕  The dilation of A  by B  

    A B  The erosion of A  by B  

A B•  The closing of A  by B  

B
∨

 The reflection of B  through the origin of B  

dS R⊂  Point set S  in 
dR  

b∂  The boundary of b  

Sα  The alpha shape of the point set S  with the alpha ball radius α  

T
σ  k-simplex where 1T k= +  

( )DT S  Delaunay triangulation of the point set S  

( )C Sα  The alpha complex of the point set S  with the alpha ball radius α  

B
�

 
The interior of B  

cX
 

The complement of X  

( )H Xα  The alpha hull of X  

2.  Basic morphological operations 
Mathematical morphology is a mathematical discipline established by two French researchers Jorge 

Matheron and Jean Serra in the early the 1960s (Serra 1982). The central idea of mathematical 

morphology is to examine the geometrical structure of an image by matching it with small patterns at 

various locations in the image. By varying the size and the shape of the matching patterns, called 

structuring elements, one can exact useful information about the shape of the different parts of the 

image and their interrelation (Heijmans 1995). There are four basic morphological operations, namely 

dilation, erosion, opening and closing, which form the foundation of mathematical morphology. 

2.1.  Dilation and Erosion 

Dilation combines two sets using the vector addition of set elements. The dilation of A  by B  is 

( , )D A B A B
∨

= ⊕ .                                                    (2.1) 

It is defined on the basis of vector addition, also known as the Minkowski addition, which was first 

introduced by Minkowski (1903). The Minkowski addition of two input sets A and B  is the set: 

{ | ,  & }A B c c a b a A b B⊕ = = + ⊆ ⊆ .                                       (2.2) 

Erosion is the morphological dual to dilation. It combines two sets using the vector subtraction of 

set elements. The erosion of  A  by B  is 

( , )     E A B A B
∨

= ,                                                     (2.3) 

where 

( )    
c

cA B A B= + .                                                      (2.4) 

Dilation and erosion are two elementary operations of mathematical morphology. Dilation expands 

the input set by the structuring element, while erosion shrinks the input set by the structuring element. 

Figure 1 shows examples of the dilation and erosion of a square by a disk. 



 

 

 

 

 

 

 

 

 

Figure 1. Dilation and erosion of a square by a disk. (a) The dilation of the light colour square by a 

disk results in the dark colour square with round corners. (b) The erosion of the light colour square by 

a disk generates the dark colour square. 

2.2.  Opening and Closing 

Opening and closing are dilation and erosion combined pairs in sequence. The opening of A  by B  is 

obtained by applying the erosion followed by the dilation, 

( , ) ( ( , ), )O A B D E A B B
∨

= .                                                    (2.5) 

Closing is the morphological dual to opening. The closing of A  by B  is given by applying the 

dilation followed by the erosion, 

( , ) ( ( , ), )C A B E D A B B
∨

= .                                                    (2.6) 

Opening and closing are two secondary operations of mathematical morphology. The result of 

applying opening and closing is an elimination of specific features whose size are smaller than the 

structuring element. Figure 2 shows examples of the opening and closing of a square(s) by a disk. 

 

 

Figure 2. Opening and closing of a square(s) by a disk. (a) The opening of the light colour square by a 

disk generates the dark colour square with round corners.  (b) The closing of the light colour shape 

(union of two squares) by a disk results in the union of the light colour shape and the dark colour 

areas. 

 

3.  Alpha shape for shape description 
The alpha shape was introduced by Edelsbrunner in the 1980’s aiming to describe the specific “shape” 

of a finite point set with a real parameter controlling the desired level of details (Edelsbrunner & 

Muche 1994). Conceptually the alpha shape is a generalization of the convex hull of a point set. 

Imagine a huge block of styrofoam making up the space containing some solid particles. To use a 

spherical eraser of radius α  to carve out all the styrofoam blocks from inside and outside without 

bumping into the solid particles (See figure 3), it will eventually end up with an object with arcs, caps 

and points. The boundary of the resulting object is called the alpha hull. If the round faces of the 



 

 

 

 

 

 

 

object are straightened by line segments for arcs and triangles for caps, another geometrical structure, 

the alpha shape, forms (Fischer 2000). 

 

 

Figure 3. Alpha hull and alpha shape of planar points (Fischer 2000). 

3.1.  Alpha shape 

In the context of the alpha shape, the sphere eraser in the above example is called the alpha ball. It is 

formally defined as an open ball of radius α . Given a point set 
dS R⊂ , a certain alpha ball  b  is 

empty if b S = ∅∩ . With this, a k-simplex 
T

σ  ( 1T k= + ) is said to be α-exposed if there exists an 

empty alpha ball b with T b S= ∂ ∩  where b∂  is the surface of the sphere (for d=3) or the circle (for 

d=2) bounding b , respectively. 

For 0 α≤ ≤ ∞ , the alpha shape of S , denoted by Sα , is defined as the complement of the union 

of all empty α-balls. Sα∂ , the boundary of the alpha shape of the point set S ,  consists of all k-

simplexes of S  for 0 k d≤ <  which are α-exposed,  

{ | , 1,  }T TS T S T k exposedα σ σ α∂ = ⊂ = + −                                   (3.1) 

3.2.  Delaunay triangulation and alpha complex 

The computation of the alpha shape is based on the Delaunay triangulation which is one of the most 

exhaustively examined problems in computational geometry (O'Rourke 1994). Given a point set 
dS R⊂ , the Delaunay triangulation is a triangulation ( )DT S  such that no point in S  is inside the 

circumsphere of any d-simplexes 
T

σ  with T S⊂ . The relationship between the Delaunay 

triangulation and the alpha shape is that the boundary of the alpha shape Sα∂ is a subset of the 

Delaunay triangulation of S , namely 

( )S DT Sα∂ ⊂ .                                                      
 
(3.2) 

3.3.  Alpha complex 

The relationship (3.2) means all the simplexes in ( )DT S  are candidates for the alpha shape.  In order 

to further find which simplex in ( )DT S  belongs to Sα∂ , another concept, alpha complex ( )C Sα , 

was introduced. 

Set 
T

ρ  the radius of the smallest circumsphere 
T

b  of 
T

σ . For 3k = , 
T

b  is the circumsphere; For 

2k = , 
T

b  is the great circle; And for 1k = , the two points in T  are antipodal on 
T

b . 



 

 

 

 

 

 

 

For a given point set 
dS R⊂ , the alpha complex ( )C Sα  of S  is the following simplicial 

subcomplex of ( )DT S . A simplex ( )
T

DT Sσ ∈  ( 1T k= + , 0 k d≤ ≤ ) is in ( )C Sα  if: 

•  
T

ρ α<  and 
T

ρ -ball is empty, or 

•  
T

σ  is a face of other simplex in ( )C Sα . 

The link between the alpha complex and the alpha shape is: the boundary of the alpha complex 

makes up the boundary of the alpha shape, i.e. 

( ) ( ) ( )C S S S DT Sα α∂ = ∂ ∈ .                                                 (3.3) 

4.  Link between the alpha hull and morphological operations 
The boundary of the alpha hull is obtained by rolling the alpha ball over the point set. By intuition the 

alpha hull seems very similar to the secondary morphological operations, opening and closing, as the 

alpha ball acts as a circular structuring element and the input set as the points set. In fact a theoretical 

link exists between the alpha hull and morphological opening and closing, as proved by Worring and 

Smedulers (1994). They extended Edelsbrunner’s work, proposed the alpha graph and utilized it to 

describe the boundary of the point set. They also found the relationship between the alpha graph and 

the opening scale space from mathematical morphology, which is given by equation (4.1): 
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c
c

S X X B B

X B B

X B

α αα

α α

α

− −

− −

−

  = ⊕ ⊕  
  

 = ⊕ 
 

= •

� �

� �

�

      .                                (4.1) 

Equation (4.1) proves that the alpha hull is equivalent to the closing of X  with a generalized ball 

of radius 1 α− . Hence from the duality of the closing and the opening, the alpha hull is the 

complement of the opening of 
cX  with the same ball as the structuring element. 

5.  Proposed algorithm based on alpha shape 
In surface metrology and dimensional metrology, surfaces are measured by measurement instruments. 

The measured points are a discrete representation of the surface. Viewing this sampled data as a finite 

point set in the context of the alpha shape and according to the link between the alpha hull and 

morphological operations, we employ the alpha shape to compute morphological filters for surfaces. 

5.1.  Spike detection and points interpolation 

In practical measurement of surfaces, it may happen that sharp spikes exist in sample data. Sometimes 

the space between the peak point and the pit point is quite large that the ball will run into the interior 

of the profile/surface. This is not allowed in reality because the real surface is physically continuous 

and won’t allow the ball to enter. The difference between the physical continuity of the surface and the 

discrete representation of the sample data is the quintessence of this problem. 

To correct these singularities, sharp spikes should be detected and enough points linearly 

interpolated on the ridge of the spike to prevent the ball from passing through. The whole process is 

elaborately depicted in figure 4 for the case of profile data.  For areal data, surfaces can degenerate to 

profiles if considering them as the composition of parallel profile sections. There is a trivial difference 

between the closing envelope and the opening envelope in their spike detection. For the closing 

envelope, it suffices to detect peak spikes in that the closing envelope is only determined by peaks, 

and valleys could be ignored. As opposed it is enough to search valleys for the opening envelope 

because the opening envelope is only affected by valleys. 



 

 

 

 

 

 

 

 

 

Figure 4. Spikes detection in measured data following by linear interpolation of points. 1p , 2p , …, 

10p  are the sample points on the original profile. 3 4 5p p p  forms a local peak. 3p  and 4p  are spacing 

far from each other that the ball could roll into the profile interior. In this case the additional points 1i , 

2i  (and more if needed) are linearly interpolated to reduce the gap between 3p  and 4p . 

5.2.  Alpha shape computation 

With the justified data, the next step of the computation is to triangulate the data set by the Delaunay 

triangulation and subsequently obtain the facets of the boundary of the alpha shape, which are also 

contained in the boundary of the alpha complex Cα∂  according to the section 3. 

Delaunay triangulation results in a series of k-simplexes σ  ( 2k =  for profiles, which are 

triangles, and 3k =  for surfaces, which are tetrahedrons). These k -simplexes can be categorized into 

two groups:  k -simplexes 
p

σ  whose circumsphere radius is larger than the radius of the rolling ball 

α , and k -simplexes 
np

σ  whose is no larger than α . 

p
σ  consists of two parts: the ( 1)k − -simplexes 

int
σ  interior to 

p
σ , and the ( 1)k − -simplexes 

reg
σ  that bounds its super k -simplexes 

p
σ . We called 

reg
σ  the regular facets. 

np
σ  is comprised of 

three components: the ( 1)k − -simplexes 
ext

σ  out to Cα , part of the regular facets 
'

regσ  shared by both 

p
σ and 

np
σ , and the  ( 1)k − -simplexes 

sing
σ  that is the other part of Cα∂ . We call  

sing
σ  the 

singular facets.  
sing

σ  differs from 
reg

σ  in that it does not bound any super k -simplexes.
sing

σ  

satisfies two conditions as follows: 

• The radius of its smallest circumsphere is smaller than α . 

• The smallest circumsphere is empty. 

The regular facets 
reg

σ  and the singular facets 
sing

σ  form the whole boundary of the alpha 

complex, i.e. the boundary of the alpha shape, as the equation (5.1) presents. 

reg sing
S Cα α σ σ∂ = ∂ = +                                 (5.1) 

 



 

 

 

 

 

 

 

 

Figure 5. Skeleton of the algorithm to compute the facets of the boundary of the alpha shape. The 

DelaunayTri operation generates a list of k-simplex σk+1 (k=2 for profile data and k=3 for areal data). 

The algorithm loops to check if each (k-1)-simplex σk is the regular facet σreg or the singular facet σsing. 

The CircumSphere operation computes the radius of the circumsphere of σk+1. SmallCircumSphere 

operation calculates the radius of the smallest circumsphere of σk. The Unique operation checks if σk’s 

super simplexes σk+1 with their circumsphere radius larger than α are unique. The IsSphereEmpty 

operation detects if the circumsphere of σk is empty. 

 

The skeleton of the algorithm for computing the regular facets and the singular facets of Sα∂  is 

given by figure 5. The algorithm integrates the search of the facets of Sα∂  in a loop and outputs the 

regular facets and the singular facets separately so that they could be handled respectively by later 

manipulations. Aiming to improve the algorithm efficiency, a useful property of the alpha shape is 

applied to speed up the IsSphereEmpty operation, i.e. empty ball testing. The property is to test 

whether the circumsphere of a facet is empty it suffices to check whether the opposite vertices of its 

super simplexes are out to the circumsphere boundary. It is much more efficient than checking all 

other points, which could be huge in the case of areal data. Figure 6 illustrates an example of the 

sample points of a surface along with the facets of Sα∂ . In fact, the vertices of these boundary facets 

are the points on the surface that contact the ball (disk) as it is rolling over the surface all around. 

 

Procedure AlphaShape (S, α) 

{Given a justified data set S and the chosen ball radius α, computes} 

{two lists σreg, σsing  of the regular facets and the singular facets } 

{of the boundary of the alpha shape of S.} 

Begin 
σk+1 =DelaunayTri(S); 

i=1; j=1; 

for each σk do 

r=CircumSphere(σk+1); 

if r<α 

if Unique(σk) 

σreg(i)= σk; 

i=i+1; 

end if; 

continue; 

end if; 

r=SmallCircumSphere(σk); 

if r<α 

if IsSphereEmpty(σk) 

σsing(j)= σk; 

j=j+1; 

continue; 

end if; 

end if;  

end for; 

return (σreg, σsing); 

end AlphaShapes; 
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Figure 6. Areal sample points of a surface and the facets of the boundary of the alpha shape. 

5.3.   Facets reduction 

Having the facets of Sα∂ , opening and closing envelopes could be calculated. For open 

profiles/surfaces, not all but part of the facets of Sα∂
 
is needed for the computation of a certain 

envelope. For closing envelopes, only the upper part of the regular facets is of interest, and vice versa 

for opening envelopes. Therefore the number of the regular facets used for the envelope computation 

could be reduced by extracting those facets which are possible candidates for the computation. 

 

 

Figure 7. Determination of the normal of a regular facet. 1 2p p  is one of the regular facets. 
o

p  is the 

opposite vertex of its super simplex 1 2 o
p p p . The facet 1 2p p  has two possible normal vectors, 

1n pointing outward, and 2n  pointing inward. The vector e  which is from 
o

p  to one of the facet 

vertices ( 1p  or 2p ) determines the outward direction. Being consistent with the orientation of e , 1n  

is chosen as the normal of the facet 1 2p p .  

Regular facets can be separated according to their normals. We define the normal of a facet as the 

vector that is perpendicular to the facet and pointing from the interior of boundary shape to its outside. 

The regular facet has an unique super simplex. The opposite vertex in its super simplex could help to 



 

 

 

 

 

 

 

justify the normal vector from two possible candidate perpendicular vectors. Figure 7 illustrates how a 

facet normal is achieved for profile data. This method could be also reasonably extended to areal data. 

Once the normals of the regular facets are settled, the separation of the upper part and lower of 

regular facets is available. The regular facets are connected and their normals are oriented consistently. 

As to the upper part of the regular facets, their facet normals are oriented upward, and vice versa. Thus 

this property could be used to separate the upper part and lower part of the regular facets. Figure 8 

demonstrates the separation of the upper regular facets and the lower regular facets. For the singular 

facets, this idea does not make sense for two reasons. On one hand, the singular facet may have more 

than one super simplex, therefore unable to determine its normal. On the other hand, even though a 

singular facet only has one super simplex, it is still hard to determine the normal because the singular 

facets could be disconnected and the vector e  used in figure 7 cannot indicate the outward or inward 

orientation.  

 

 

Figure 8. Separation of the upper regular facets and the lower regular facets. 1f , 2f , ⋯ , 5f  are part 

of the regular facets of the boundary of the alpha shape, with 1n , 2n , ⋯ , 5n  being their normals 

respectively. Suppose the ball are rolling from 1f  to 5f . The normal of first three facets 1n , 2n , 3n  

are oriented consistently (all of them are pointing upward). Then the ball continues to roll to the facet 

4f , the facet normal 4n  turns to orient downward, and 5n  keep consistent with 4n , orienting 

downward also. Hence the facets can be separated into two parts: 1f , 2f , 3f  are the upper facets, and 

4f , 5f  are the lower facets. For the computation of the closing envelope, the lower facets 4f , 5f  are 

neglected because they have no impact on the computation of the closing envelope. 

5.4.  Envelope point calculation 

The final step is the calculation of the envelope points. For each sample point, there is a one-to-one 

corresponding point on the envelope. These points form a discrete representation of the envelope. 

Each facet of the boundary of the alpha shape determines its counterpart on the alpha hull. Due to the 

fact that the target envelope is contained in the alpha hull, we project the sample points onto the alpha 

hull in the direction of the local gradient vector and record the extreme project coordinates, namely the 

envelope point for this sample point.  

For “planar” open surfaces, all of the local gradient vectors are supposed to be perpendicular to the 

reference plane, i.e. the amplitude direction. Figure 9 illustrates the acquisition of the closing envelope 

points by projecting them onto the alpha hull for the planar open profile data (a) and areal data (b) 

respectively. We recorded the extreme projection heights for all the sample positions (Highest heights 

for the closing envelope and lowest heights for the opening envelope). These extreme projection 

coordinates are the final results for the target envelope. 



 

 

 

 

 

 

 

 

 

Figure 9. The acquisition of the closing envelope points by projecting onto the alpha hull for the 

planar open profile (a) and open surface (b). (a) The facet f  determines an arc �1 2p p  from the point 

1p  to 2p , which is a part of the alpha hull. The sample point p has its sampling position s  between 

the sampling position 1s  and 2s  for 1p  and 2p  respectively. p is projected to the arc �1 2p p  in the 

amplitude direction to obtain the envelope point v . (b) The facet f  determines a cap �1 2 3p p p  as a 

part of the alpha hull. The sample point p has it sampling position s  inside the triangle area 1 2 3s s s∆ . 

1s , 2s  and 3s  are the sampling position for 1p , 2p  and 3p  respectively. p is projected to the cap 

�
1 2 3p p p  in the direction of amplitude to obtain the envelope point v . 

6.  Computer simulation 
For the purpose of verifying the proposed method, a surface with “noise” and 100 × 100 points was 

created aiming to compare the traditional algorithm (ISO 16610 2010) and the proposed one. See 

figure 10(a). The surface is 1× 1 mm
2
 in area with sampling interval 0.01 mm. The surface was 

filtered by the morphological closing filter with ball radius 0.15 mm. Figure 10(b) presents the closing 

envelope resulting from the traditional algorithm. By comparison, the resulting envelope computed by 

the alpha shape method is illustrated in figure 10(c). Figure 10(d) presents the comparison of two 

envelopes. The comparison reveals that the two results are basically in agreement except at the 

boundary region of the surface. This is caused by the end effect of filtration on the open surface data. 

The traditional algorithm has the end effect corrected while the proposed method does not. It remains 

a research issue for the future. 

 

 



 

 

 

 

 

 

 

 

(a) 
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(d) 

Figure 10. Simulation of applying the morphological closing filter by the traditional algorithm and the 

proposed algorithm respectively. (a) Raw surface. (b) Closing envelope computed by the traditional 

algorithm. (c) Closing envelope computed by the proposed algorithm. (d) Deviation between two 

resulting envelopes. 

7.  Experimental studies 
Following the initial application of the proposed method to simulated data, the method was performed 

on real surface measurement data. The measurement data was acquired by Taylor Hobson PGI on a 

portion of a worn artificial knee replacement component. The data are composed of 236 ×  236 points 

taken on an approximately square grid. The whole area is 181.72 ×  155.76 µm
2
 with the sampling 

interval 0.77 µm on the X direction and 0.66 µm on the Y direction. See figure 11(a). Figure 11(b) 

shows the resulting morphological closing envelope by a 5mm ball. The surface presented in figure 

11(c) is the residual surface obtained by subtracting the envelope surface from the original surface. 

Wear marks are easy to detect on the residual surface, enabling further tribological analysis to the 

component. 

 

 

(a) 

 



 

 

 

 

 

 

 

 

 

(b) 

 

 

(c) 

Figure 11. Applying the morphological closing filter on a portion of a worn artificial knee 

replacement component. (a) Original surface. (b) Morphological closing envelope surface. (c) 

Residual surface. 
 

Another experiment was performed on a milled surface. The surface area is 5.11 x 5.11 µm
2
 with 

2962 sampling points. As marked by the dots in figure 12(a), these sampling points are nonuniform 

sampled on the surface. Then the morphological closing filter was performed on these nonuniform 

sampled points using the proposed approach with a 15 µm ball. The resulting envelope points are 

illustrated in figure 12(b), shown as the dots above the original surface. 
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(b) 

Figure 12. Morphological closing filter on the nonuniform sampled surface. (a) The original surface 

with the nonuniform sampled points. (b) The original surface with the closing envelope points. 

8.  Conclusion and future work 

Morphological filters, evolved from the traditional envelope filtering system, play important roles in 

surface metrology and dimensional metrology as the complementary tool to the mean-lined filters. 

Aiming to solve the limitations of existing algorithms for morphological filters, we proposed a novel 

approach based on the alpha shape, providing the merits of running relative fast, arbitrary large ball 

radii available, freeform surfaces and nonuniform sampled surface applicable. The proposed approach 

utilizes the theoretical link between the alpha hull and the morphological closing and opening 

operation. A practical algorithm was developed with the attentions to correct possible singularities 

caused by data spikes and the efforts to reduce the amount of computation for open surfaces/profiles.  

The computer simulation was performed by applying the morphological closing filter to both the 

traditional algorithm and the proposed algorithm. It revealed that the two resulting envelopes are in 

agreement except at the boundary region of the surface. Two practical examples were presented, 

which use the proposed method to perform the morphological closing filtering on the free form surface 

of an industrial component and a nonuniform sampled surface respectively. They have initially 

demonstrated the feasibility and applicability of the alpha shape method. 



 

 

 

 

 

 

 

A key area of the future research will be the correction of the end effect of this methodology. The 

end effects are common in the filtration of open profiles/surfaces, characterized by certain distortion 

within the scope of the cutoff wavelength or the ball radius around the boundary of the resulting data. 

An efficient correction method would be of interest. Another area of the future work will be the 

development of ways to speed up the algorithms. Although 3D Delaunay triangulation runs in 

( )O nlogn  time complexity which is relative faster than existing algorithms for morphological area 

filters and the triangulation data could be reused for multiple attempts on the same measured 

profile/surface, it is costly in computing time and memory in its initial generation, especially in the 

case of huge data sets of million points. 
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