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ABSTRACT 

The requirement for improved dimensional accuracy to achieve ever tightening 

tolerances in manufactured parts increases the need for high precision machine tools. 

Machine tool accuracy is affected by various errors from which thermal errors have been 

identified as one of the largest contributors. These are primarily caused by heat generated 

by the machine as it operates and exogenous influences, mainly in the form of varying 

environmental temperature, that result in deformation of the machine structure.  

There is a complex interaction between the structural components having different 

heat sources, thermal time constants and thermal expansions and therefore the combined 

effect on tool position accuracy is often non-linear and difficult to correct easily. There 

has been considerable research effort to model this behaviour, usually based on 

temperature information, to compensate the induced errors. The methods and techniques 

have proved their capabilities with excellent thermal prediction and compensation results 

but they often require significant effort for effective implementation constraints for 

complexity, robustness, cost and time consumption.  

One of the most significant resources required is thermal testing on the machine and 

can be the main obstacle for the implementation of many of such methods for industries 

where production machine availability cannot be compromised. 

This research provides a method where the machine downtime can be reduced 

significantly using offline simulation techniques for extended and complex real world 

machine operations. In this research FEA is used to simulate the thermal behaviour of the 

entire structure of a small milling machine using Abaqus/CAE Standard FEA software. 

In order to ensure accurate simulations, heat source parameters need to be obtained for 

which an efficient methodology was created to calculate body heat flux values from a 

short test. Additionally, a study was conducted to understand the heat flow mechanism 

across structural joints requiring Thermal Contact Conductance (TCC) values. This 

research contributes experimentally obtained, and therefore accurate, TCC values for 

structural interface conditions compatible with CNC machine tool joints not previously 
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available. This was followed by the investigation of the thermal behaviour of the machine 

due to both internal heat and external environmental fluctuations 

A broad range of operating and static stability tests were conducted to validate the 

FEA modelling strategy for simulating the thermal behaviour of the machine for internal 

heating and environmental temperature fluctuations. The simulated and experimental 

movement of the tool matched by more than 60% in all cases; and by more than 70% in 

most cases. The most significant cost benefits from this project may result from 

understanding behaviour during the long and very long term simulations that are 

impractical or unfeasible to complete experimentally. This information facilitates 

capability assessment and model development. 

Within this research, simple linear models compatible with existing compensation 

capabilities in modern NC systems was targeted. Extracted FEA data is used to identify 

temperature-displacement sensitive areas within the full machine structure.  The 

identification method locates structural nodes whose temperature change correlates with 

error at the tool to effectively install temperature sensors permanently at those positions 

for simple linearly correlated thermal error compensation.  
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CHAPTER - 1  

1 INTRODUCTION 

CNC machine tools have been used for many years due to the continuing high demand 

for high volume automated production with reduced time scales and cost from the 

precision engineering industry. The requirement for improved dimensional accuracy to 

achieve ever tightening tolerances in manufactured parts increases the need for high 

precision machine tools. This has driven machine tool manufacturers to characterize 

production machine tools with their ability to deliver high accuracy, long term stability 

and repeatability. These characteristics deliver the following advantages; 

- Greater interchangeability with the reduction of hand fitting of mating parts. 

- Long term machine operations which allow components to be rough machined and 

finish machined in one production cycle. 

- Increased precision and accuracy resulting in reduced component tolerances. 

- Cost reduction due to reduction of scrap and rework of out of tolerance components 

Over the years, CNC machine tools have proved their significance in terms of reduced 

manufacturing timescales, scrap and cost causing and upsurge in CNC machine tool 

production. Jablonowski [1] conducted a survey of 28 countries indicated production of 

CNC machine tools rose to an estimated $81.5 billion in 2008, rising by 15% despite a 

widespread recession in the latter part of the year. The top five countries include Japan, 

Germany, China, Italy and Taiwan. The survey elaborates the importance of CNC 

machine tools which are used widely in the automotive and aerospace industries. Due to 

the increasing trend for manufacturing enhancements and efficiently designed products 

into the international markets, machine tools are expected to have an efficient, accurate 

and reliable behavior. Large scale production, with reduced manufacturing timescales, 

requires machine tools to be stable, repeatable and less susceptible to the volumetric 

errors which build-up during the machining operations. Machine accuracy is affected by 

structural geometry, thermal instability, non-rigid and dynamic effects.  
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1.1 Machine tool errors 

Machine tool accuracy is affected by errors which lead to dimensional errors in the 

manufactured components. During the machining process, the dimensional accuracy of 

the component is dependent upon the accuracy of the relative position between the 

cutting tool and the work piece.  The error in the relative positional accuracy is produced 

by the volumetric error. 

1.2 Volumetric error 

Volumetric error is termed as a combination of errors affecting relative positional 

accuracy of the tool and the work piece. This overall variability in positioning capability 

is caused by a number of errors, including: 

- Geometric errors 

- Non-rigid or loading errors 

- Thermal errors  

- Cutting forces induced errors  

- Tool wear 

- Fixturing errors 

- Servo errors  

Geometric, thermal and non-rigid errors fall into the category of significant 

contributors in machine tool deformation. The remaining errors strongly depend upon the 

setup procedures, work load and life of the equipment used in the manufacturing process. 

Several systems have been developed in light of resolving these errors. Tool wear is 

generated by erosion during the cutting process and its effect can be avoided or controlled 

by periodic inspection and replacement. Fixturing errors can have many causes including 

variable setting-up procedures, errors in probing, inaccuracies in the geometric tolerances 

and misalignments of the fixture and can often be avoided or controlled by careful fixture 

design and careful setup procedures. Servo errors are caused by the mismatch between 

the applied controller feed rates and the limited servo response or holding capacity which 
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can be manually controlled by the careful selection of feed rates and synchronizing the 

controller and servos. 

1.3 Geometric errors 

Geometric errors assume the structural elements to be rigid bodies. Fundamental, 

built-in errors are caused by dimensionless inaccuracies in the structural geometry of the 

machine tool. Mechanical imperfections such as misalignments of the structural members 

result in non-linear movements of the axes. These imperfections change over time by 

continuous usage, for example moving an axis towards a point and back over the lifetime 

of the machine will exhibit mechanical settling and wear which create changes in surface 

properties and shape. Imperfect axis movement results in six unwanted degrees of 

freedom associated to that axis which remains throughout the machine volume distorting 

the tool position relative to the work piece. Possible 6 degrees of freedom associated to 

an axis is shown in Figure 1-1. 

 

Figure 1-1:  Possible 6 degrees of freedom for translation along an axis 

The degrees of freedom are categorized as three translational i.e. linear positioning, 

horizontal and vertical straightness and three rotational i.e. roll, pitch and yaw associated 

to an axis. Normally for a 3 axis machine, these degrees of freedom add up to 18. 

Erroneous orthogonal movement of the axes or squareness also exist. Three squareness 

errors make the total of 21 possible geometrical error components associated with a 3 

axis machine tool. 
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Postlethwaite [2] shows that geometrical error components have two main 

constituents; these are systematic or repeatable and random or non-repeatable errors. 

Systematic errors are dominant in machine tools and may be measured to quantify the 

accuracy of a machine tool. Due to its repeatable nature, these errors can be eliminated 

using compensation techniques such as, changing the part program or in-built NC 

functions. The systematic errors can be broken down further into 1) Non-cyclic or 

progressive error, 2) Cyclic error, and 3) Backlash error. 

Random or non repeatable constituent cannot be measured directly however can be 

analyzed and expressed statistically. The non-repeatable nature of these errors restrict 

elimination using compensation techniques, however the information obtained from these 

errors can be utilized as a guide to improve the degree of accuracy used in compensation 

systems.  

White [3] has summarized various methods that can be used to reduce geometric errors 

such as  

- Mechanically resetting/correcting the machine. 

- Modifying the part program. 

- Positioning the workpiece in a part of the machine volume that exhibits less error. 

- Orientating the workpiece such that critical dimensions are affected by an axis or axes 

that exhibits less error. 

- Correcting the effects of the geometric error during machining by forcing the 

machine’s axes to re-position. 

- On and off line probing or measurement and correction. 

- Geometric error compensation systems 

A geometric compensation system was created by Postlethwaite [2] and proved this 

method’s success in reducing geometric errors exhibited on a wide variety of machines, 

in some cases the achieved accuracy was observed to be 20:1 on a larger axis travel 

machines. Research by Longstaff et al [4] revealed even greater success achieving up to 
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97% reduction of the measured geometric errors. The results have shown that an 

excellent understanding among engineers has been gained towards reduction of 

geometrical effects through the implementation of the compensation systems.  

1.4 Non-Rigid Errors  

Geometric errors are also known as rigid body errors as they are assumed to be applied 

without any specified loading conditions. Lack of rigidity in the machine tool structure 

can lead to non rigid effects or load induced errors. These result from factors such as 

inertia, own and workpiece mass or cutting forces. These errors vary with different speed, 

cutting and loading conditions. [3, 5-8]. The overall effect of these errors is generally 

small compared to geometric errors but can become significant if those have been 

compensated or due to: 

- Machine axis movement  

Movement of the machine axis causes a new mass distribution on the machine 

structure, resulting in deformation and an effective change in the geometric 

error components. 

- Mass of the work piece  

Adding a component to the machine table produces a change of loading of the 

machine structure, movement of the axis during machining will cause a change 

in deformation. 

- Cutting loads 

Forces present during the cutting process introduce loading into the machine 

structure. Taking deep cuts into the workpiece can produce large errors, 

however high accuracy is not normally required during heavy cuts. 

- Cutting tool mass 

Single tool mass should not provide excessive loading of the structure, 

however, multiple tool turrets introduce concentrated loading onto the 

headstock, causing extra loading close to the point of machining. 
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- Fixture stiffness 

The stiffness of fixtures is usually relatively high compared to the more 

complex machine tool structure. However, this may not true, as work holding 

and fixture design becomes increasingly complex and less material is used for 

clamping. 

There are a number of methods which can be used to eliminate these errors, better 

selection of the cutting speeds, feed rate and depth of cut can reduce cutting load errors. 

Mechanical adjustments and pre-loading of the structural elements could reduce 

excessive and uneven loading problems by even distribution of the mass. Fixture stiffness 

relies on good design as well as cutting parameters.  The other three are fundamental to 

the operation of the machine tool and cannot be greatly influenced by the user. Some 

prevention can be achieved by controlling mass distribution such as keeping workpiece 

and fixture mass in the middle of the table to minimise cantilever effects. 

Non-rigid errors manifest themselves as small angular errors that change as a result of 

one or more axes moving. These angular changes might be small in comparison with 

some of the other errors experienced on a machine but they can become more significant 

on larger machines. How angular errors affect volumetric accuracy is sometimes 

misunderstood. Figure 1-2 shows that as the headslide of a machine moves away from the 

table, the resultant error ‘ ‘ increases. The distance from the centre of rotation to the 

tool/workpiece interface is called the ‘Abbe’ offset. 

 

Figure 1-2: Effect of angular rotation of a machine tool table 

 

The effect described can be represented by the simple equation 1.1 

 

Resulting position 

error,  

Angular error,  

Headslide 

X 

Z 

 Table 

Y Abbe offset 
Workpiece 
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ZYXx )(  ................. (1.1)  

Using this equation, a 5 arc-second pitch error (rotation of the X axis about the Y axis) 

will result in 24 m of error over 1m. On large machines, the angular effects can be 

magnified considerably. 

Comparatively, non-rigid errors are considered as one of the smallest contributor 

towards inaccuracy of the machine tool, consequently there has been limited research in 

reducing or compensating non rigid. 

1.5 Thermal errors  

Thermal errors in machine tools are produced due to temperature changes in the 

structure. Variations in the temperature arise from heat sources which can be categorized 

into internal heating, external environmental variations and radiation. Temperature 

gradients lead to non-linear thermal expansion of structural elements and ultimately a 

complex interaction between the tool and workpiece.  

Each thermal source can be further categorized:  

1.5.1 Internal heat sources 

Internal heat sources are produced by machine structural elements that self generate 

temperature gradients across the machine tool structure. They are the most influential 

source of temperature excitation as they due to the movement of machine axes, spindle 

bearings etc. Typical internal heat sources are motors, spindle bearings and belt drives 

where friction is a significant cause of temperature rise. Other contributors to internal 

heat include transmission systems such as gear boxes; friction from axes drive systems 

and seals; and viscous hydraulic systems. The generated heat flows through the machine 

structure in the form of temperature gradients and disseminates throughout structure 

volume resulting in thermal expansions of structural components. The heat flow also 

depends on the machine operating conditions such as hard machining process where 

spindle operates at high speeds, can produce severe distortions if temperature variations 

are significant. 
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1.5.2 External heat sources 

External heat sources, in general, are creators of the change in temperature around the 

machine vicinity. There are various sources which cause environmental temperature to 

vary in a typical workshop environment for example, a natural temperature fluctuation 

that arise from the day and night transitions. Fletcher [9] has discussed other sources as  

- Opening and closing of workshop doors  

In workshops, doors are used for people access, deliveries of the goods etc. 

which creates draughts and variations in ambient temperature. 

- Heat generated by the machining process 

During machine cutting operations heat generates due to localised friction 

between the tool edges and the work piece. This heat then flows through the 

tool to into the machine structure. 

-  Heat gain from the machine control system 

This heat comes from the electrical compartments and the associated cabling 

passing through the structure inducing localised variation in environmental 

temperature conditions.  

- Heat generated by other machines in the vicinity 

Other machines operating in parallel within a shop floor cause an 

environmental temperature rise. The fluctuations in the environmental 

temperature affect machine tool structural behaviour.     

- Workshop heating 

There are several factors which are responsible for workshop temperature rise. 

For example, outside temperature, long term openings of the doors for 

deliveries, heating and cooling systems within building etc. can result in 

producing vertical thermal gradients in workshop.  
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- Direct sunlight 

Positioning the machine under direct sunlight coming through windows change 

the temperature of the directly exposed structure. 

1.5.3 Radiation sources 

Radiation originates from special heat sources. In a typical workshop it may come 

from the warmth of the sun and other hot surfaces to which the machine tool surfaces are 

exposed. Radiative sources other than the sun are generally much lower in energy transfer 

due to the low temperature ranges experienced in machines. 

Each error discussed contributes within the machine tool working volume resulting in 

the distortion of positional accuracy between the cutting tool and the work piece. The 

compound effect of the errors is termed as the machine tool volumetric error. Bryan 

discussed that thermal error can represent 70% of the total volumetric error [10] which is 

a significant proportion. Research undertaken at the University of Huddersfield 

(GR/R13401/01) used a NAS-979 (circle-diamond-square) component to validate 

geometric and thermal. Three test pieces were produced from aluminium under similar 

test conditions: with an uncompensated machine; with geometric compensation only; 

with both geometric and thermal compensation.  Figure 1-3 shows one such component. 

Some representative dimensions, which were measured on a CMM, are:  

- Size of square (D1, D2) 

- Size of diamond (D3, D4) 

- Diameter of circle 

Figure 1-4 shows the errors for the three samples and highlights the significant 

contribution from thermal errors. . For example feature D1 (square) shows the machine 

error of approximately 38µm. The geometric compensation was first applied which 

achieved approximately 40% reduction of the error to 23µm. With thermal compensation 

also applied the error was further reduced to approximately 3µm. This shows that thermal 

error alone represented more than 50% of the error. Similarly with the feature D3 

(diamond), geometric compensation reduced the total error of approximately 37µm to 

approximately 31µm (15%). The remaining error was then further reduced to 
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approximately 3µm by the application of thermal compensation, representing 75% of the 

total error.  

  

 

Figure 1-3: A NAS-979 component 

  

Figure 1-4: Levels of remaining error after applying geometric and thermal compensation  
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High importance was therefore given to evaluate and quantify the significance of 

thermal errors in order to reduce their effect within machine tools by development of 

efficient thermal compensation techniques. 

1.6 Categorizing thermal errors 

Thermal error sources fall into two categories. Allen [11] has discussed these 

categories to be 

- Position dependant thermal errors (PDTE) 

- Position independent thermal errors (PITE) 

1.6.1 Position dependant thermal errors (PDTE) 

PDTE produce changes in the linear positioning of the machine which occur due to 

thermal expansions of machine structure and position feedback systems. PDTE change 

with temperature and with position of the axes. For example PDTE will occur if the 

coefficient of thermal expansion of the machine does not match that of component. 

1.6.2 Position independent thermal errors (PITE) 

PITE produce drift in the offsets of the machine which occurs due to changes in 

temperature and are which are independent of the position of the machine axes.   The 

effect of PITE on component accuracy is strongly dependent on the rate of change of 

PITE relative to the time taken to produce the component. Even large changes in PITE 

may result in little error if there is no significant time taken to machine a component. 

Slowly changing PITE can, however, be particularly significant if the component is 

rotated as part of the manufacturing process and the distance between cuts made before 

and after rotation is critical. Any offset that exists between the tool and workpiece will be 

reproduced on the component and if the component is reversed then the total error will be 

double the offset. If the component is not moved then, although the offset will appear on 

all the machined surfaces, the distances between surfaces should be accurate. 
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1.7 Thermal error effects on the machine (internal and environmental)  

Machine tools behave differently when subjected to internally generated heat or 

external temperature variations. Internal heat distribution involves heat flow within the 

main structural elements and associated complex discrete structures often producing 

significant temperature gradients.  Combined with different thermal time constants of the 

materials and elements, this complex interaction produces non linear thermal deformation 

of the machine. The total deformations or the error produced is the compound effect of 

the linear and non linear behaviour of the structural elements due to uneven heat 

distribution mainly across the joints.  

Unlike machine internal heat distribution and the deformations where structural 

elements respond to minor temperature changes, external temperature variations affect 

larger areas of machine structure where a group of structural elements expands and 

contracts according to the fluctuating environment. The deformations produced in this 

case again can be linear or non linear due to the uneven temperature gradient distribution 

within the structure mainly produced by fluctuating temperature magnitudes. 

Temperature gradients produced by the internal and external heat sources cause 

expansions, contractions and bending of the structure. Figure 1-5 and Figure 1-6 show the 

typical behaviour of a machine tool. 

 

Figure 1-5: Expansion and contraction of the structural elements 
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Figure 1-6: Bending of the structural elements 

Figure 1-7 shows measured thermal error magnitude of approximately 20µm exhibited 

by the machine under research in the Y axis direction during one hour spindle heating 

followed by the cooling period; and Figure 1-8 (cited from Longstaff et al [12]) shows 

typical thermal error magnitudes exhibited by a machine due to environmental 

fluctuations over 50 hours period exhibiting approximately 40µm error at the spindle 

boss.  

 

Figure 1-7: Thermal error in a machine axis due to internal heating 
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Figure 1-8: Typical thermal error in a machine due to environmental fluctuations 

1.8 Thermal error significance and its control 

Thermal errors have been a major issue for achieving tighter tolerances in 

manufactured parts. A machine tool has to be reliable and stable in order to drive through 

the demands of accomplishing higher accuracy goals, to achieve this a machine tool has 

to acquire thermal stability i.e. be less susceptible to internal and external temperature 

effects.  

Control of temperature and its effects in machine tools has been an important research 

area that has been conducted for a number of decades. Postlethwaite and Ramesh [13, 14] 

has carried out thermal error reviews and appraisals in which significance of thermal 

problems were highlighted which followed by another state of the art review by Li et al 

[15]. From the reviews it can be elaborated that thermal error is considered a significantly 

important factor where internal heat and external temperature variations act as major 

threats to machine tool accuracy. 

Several methods have been discussed in the reviews [13-15] in view for controlling 

internal and external temperature as follows: 

1.8.1 Internal temperature control 

Friction is widely recognized as a major source of elevating temperature in spindle 

bearings and contacting seals. Temperature rise can be reduced by using proper 

lubrication and by replacing the bearing type for example heat generated by the plain 

bearings could be reduced by replacing them with angular contact ball bearings. Spindle 
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cooling systems can significantly reduce the excess heat produced by the bearing friction. 

Heat produced by friction in contacting seals could be reduced by using less number of 

seals with minimum oil lubrication.  Coolant systems are very effective when it comes to 

reduce the heat generation in the tool due to friction produced during the cutting process. 

Kaminski [16] has discussed a possible way to reduce tool tip temperatures by spraying 

the coolant straight onto the tool tip which sees highest temperatures during cutting. 

1.8.2 External temperature control 

External temperature variation in a typical workshop can be controlled by the 

installation of a temperature control system. This will reduce the uncertainty of thermal 

error contribution from the natural day and night temperature fluctuations. Temperature 

rise due to other machining operations around the machine’s vicinity also contributes in 

the total thermal error and a crucial element. Locating machine tools at a suitable distance 

will reduce the possibility of the temperature rise that varies the machine structural 

temperature. Temperature variations incurred by opening and closing the doors can be 

controlled by placing the machine tools away from doors. Radiation effects can be 

controlled by locating the machine tool in areas where direct sunlight can be avoided.  

1.9 Cost: A major issue 

‘It is very common for manufacturers to unknowingly expend significant resources 

and costs’ (quoted from [17]). Cost is a significant factor and a major concern among 

industry when controlling the sources of errors to reduce their effects. Costs related to 

rescheduling, reworking and reproducing the out of tolerance parts are sometimes beyond 

the scope for such industries where production timescales are critical and cannot be 

compromised over remanufacture. Furthermore it is often the case that an industrial 

problem will be neglected because the relative cost of assigning time and resources to 

analysis and rectification will exceed the perceived benefits of reduced reworking and 

scrap etc. Pascual et al [18] has discussed a general approach in effectiveness with 

respect to expected life cycle cost rate. The paper classifies the cost in two categories, 

intervention costs and machine downtime costs. 
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1.9.1 Intervention costs 

Intervention costs relate to a system where a problem such as equipment failures can 

be rectified by involving labour and material. Intervention costs can be easily quantified 

as standard accounting procedures. 

1.9.2  Machine downtime 

Pascual [18] highlighted the complexities involved with overcoming downtime issues 

for companies as it depends on several external factors such as production rates, stock 

prices and system design parameters. Both categories discussed can be translated to a 

machine tool manufacturer.  

A machine tool could be out of production due to a number of reasons such as 

maintenance, testing, calibration, analysis of the error sources and procedures for 

compensating errors. If a machine tool fails to achieve its required accuracy during 

production, the costs associated with the labour and material required for machine check-

up and rectification respectively falls into the category of intervention costs; and the time 

taken by the machine to resume with its normal schedule falls into the category of 

machine downtime costs. Both intervention and downtime adds to define the global cost.  

1.10 Global challenges and requirements  

The goal for any manufacturing industry is to produce parts within the required 

accuracy. The increasing trends for higher accuracy among industries such as Aerospace 

have ramped up extreme quality controls for the manufactured parts. In order to meet 

industrial quality control requirements, machine tool manufacturers aim to deliver 

competitively functional, robust, reliable and efficient machine tools. ‘The ideal case for 

a machine tool would be for every axis to be perfectly straight and square’ [17]. 

However, continuous usage of the machine increases its sensitivity to errors and 

decreases its reliability. This in turn increase the risks involved in achieving required 

tolerances on finished parts resulting in scrap and waste. 

 As a challenge, machine tool builders aim to continually improve machine tool 

accuracy which in most cases, is not practical or cost effective to further improve 

machine accuracy through machine design modifications. Figure 1-9 shows a cost vs. 
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tolerance (precision) chart representing that the cost rises sharply with small tolerances 

i.e. increased precision. 

 

Figure 1-9: Cost vs. Tolerance 

However, for machine tool consumers, machine downtime is one of the challenges 

besides achieving the required accuracy in produced parts and greater customer 

satisfaction. As discussed by Dorf et al [19], industries are always on the risk of 

encountering machine downtime when a machine tool malfunctions, which primarily 

comes from the error sources described previously. The following discussion highlights 

the challenges associated with thermal errors. 

Thermal errors are critical because of their non-repeatable nature especially those 

caused by the varying environment. Thermal error control is a major challenge for both 

the manufacturer and the consumer of machine tools. The importance of thermal errors 

led research to be carried out into controlling thermal errors. Several techniques and 

methods were developed for thermal error reductions such as temperature control from 

heat sources, structural design changes, structural material selection and thermal 

compensation. Research into reduction techniques and methods with their applications 

will be covered in detail in chapter 2.  

1.11 Thermal error reduction: Priorities 

Issues related to costs, machine downtime, labour, maintenance and material etc. led 

industry to set priorities for selection of thermal error reduction strategy, focusing on 

utilizing a technique which is efficient, quick, robust and also a low cost solution. For 
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example, if thermal error affected a machine tool, the procedure of investigation can 

follow:  

- Experimental testing, possibly in accordance with ISO standards 

- Data manipulation 

- Thermal error estimation 

- Corrective procedures or software based compensation 

As mentioned earlier that achieving accuracy through machine structural design 

modifications is not practical or cost effective consequently software based thermal 

compensation methods have gained popularity within industries. However compensation 

methods are mostly based on the above specified online investigation procedures which 

impose significant machine downtime before a machine is fully functional and back to its 

normal production cycle. A number of thermal compensation methods are reviewed in 

chapter 2.      

Offline thermal assessments and reduction techniques are ones to which industry and 

research seek due the advantage of reduced downtime i.e. releasing the machine to work 

as normal after acquiring enough suitable data for offline assessments. This research 

focuses on dramatically reducing the costs associated with the current methods and 

procedures for thermal error reduction by creating a method for offline thermal 

assessment to predict thermal behaviour of a machine tool. Details of using this method 

and associated research will be covered in later chapters. 

1.12 Summary of the chapter 

Demands for automated productions with higher accuracy and tight tolerances have 

led CNC machine tools to be used extensively. Automated production increases 

productivity and flexibility while reducing manufacturing time and labour costs. 

Volumetric error is a combination of errors affecting machine tool accuracy; it 

constitutes errors such as geometric, thermal, non-rigid, wear, servo, cutting forces, 

fixturing etc. Thermal errors can be the most significant contributor to the overall 

capability. 
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 Geometric errors can be controlled or corrected through various methods but 

primarily, and most cost effectively, through the use of software error compensation 

systems. Non-rigid errors are often the smallest contributor in overall volumetric error 

and consequently there has been limited research into non-rigid error reduction and 

compensation. Thermal errors are complex and can have the greatest influence on the 

accuracy of the part but be the most difficult to solve due to the complex non-linear and 

non repeatable affect on the tool workpiece interface. They become more vital when 

higher accuracies with tight tolerances are required. 

Thermal errors are produced by heat generated internally and environmental 

temperature fluctuations within the machine vicinity. Dominant internal heat sources are 

bearings, motors and belt drives. Transmission systems such as gear boxes, hydraulics 

systems etc. also cause structural temperature rise. Dominant sources that contribute 

towards environmental changes i.e. the shop floor temperature fluctuations are opening 

and closing of the doors, machining processes around the machine vicinity, workshop 

heating, direct sunlight etc. and radiation.  Both internal and external sources cause 

temperature gradients in machine structural elements resulting in structural expansion and 

bending. Thermal errors fall into two categories which are  

- Position dependant thermal errors (PDTE)  

Change in linear positioning error of the machine due to position and 

temperature 

- Position independent thermal errors (PITE).  

Change in machine offsets due to changes in temperature 

Thermal error reduction and control is a major challenge accepted worldwide. There 

have been requirements and priorities set by industry over control and reduction of 

thermal errors. One of the highlighted priorities is reducing machine downtime associated 

with machine testing and corrective procedures. Cost is a significant factor associated 

with machine downtime resulting in loss of production. Cost and machine downtime 

issues have led industries to seek reliable and efficient offline methods for thermal 

assessments and reduction.   
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CHAPTER - 2  

2 LITERATURE REVIEW 

The previous chapter discussed the significance of machine tool thermal errors. It has 

been identified that thermal effect can often represent the largest proportion of errors 

within the machine tool. Thermal errors are complex, non-repeatable and in most cases 

produce non- linear deformations due to uneven temperature gradients through machine 

structural elements. Each constituent element of the assembly is likely to behaviour 

possess differing characteristics such as thermal expansion coefficient, thermal time 

constant and heat distribution leading to complex non-linear deformations.  

Identifying error components through appropriate measurement in a machine tool 

helps provide a platform where the machine can be checked against acceptable tolerance 

and specification bands.   

2.1 Machine tool calibration 

Wang [9, 20] highlighted that regular calibration can provide an early warning for 

detection and prediction when a machine tool is likely to need attention. Calibration 

provides a means of characterising machine performance, diagnosing specific accuracy 

problems and providing raw data for error compensations. 

Calibration requires robust testing regimes which can deliver useful data required for a 

specific error measurement. ISO 230 Part 3 [21] provides a test code for machine tool 

thermal error measurements and standardizes testing regimes applicable to most of the 

machine tool types, however to make it universally applicable, compromises may be 

required.  Longstaff et al [12] discussed the practical experience of testing with reference 

to ISO 230 Part 3. Different machines were tested in differing environments while 

working to the basic principles of this standard. It was suggested that the reason for 

testing should be determined first as it may modify or deviate from the standard 

applicable to the machine requirement and environment. 

Standardizing testing methods have simplified calibrations of machine tools for 

identifying errors. Measurement standards help selection of suitable error identification 



21 

 

techniques whilst ensuring which, where and how to use the technique is essential, 

especially when it comes to extensive industrial applications. Knowledge and expertise in 

understanding the machine behaviour and requirements is critical before a technique is 

selected and as previously mentioned, the procedure may require to be modified specific 

to the machine application for calibrating and retrieving error data.  

Suitable calibration technique will identify one or more thermal errors. Once 

identified, error reduction strategies can be deployed to ovoid, reduce or compensate 

using various commercially available techniques. This will be discussed in later sections, 

to review the work carried out to date in reduction of thermal errors.   

2.2 Thermal error consideration and avoidance 

Industries have concerns over the reduction of thermal errors; however careful 

selection of reduction strategy is critical considering the cost associated with factors such 

as the efficiency and machine downtime required for successful application.  

In order to reduce thermal errors it is necessary to determine possible sources which 

contribute to generation of the thermal errors. Error avoidance is a technique which is 

effectively used to reduce or eliminate the sources of errors or their effects.  Avoiding 

common sources such as unnecessary use of workshop lighting, varying workshop 

temperature, excess frictions etc may decrease the uncertainty of their contribution in the 

total magnitude of thermal error, consequently leading to better control on thermal error 

reduction. 

Thermal error reductions are possible by 

- Reducing structural temperature change 

- Reducing the effect of structural temperature change 

2.3 Reducing structural temperature change 

Reducing structural temperature change can be achieved in a number of ways. Heat 

from the sources internal to the machine and external temperature variations must be 

controlled to reduce inevitable structural distortion. There are many possible methods that 

could be applied that aid structural temperature control and reduction. These methods 
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may be categorized by their application during and after machine design stages which 

follows:- 

a) Control by the machine manufacturer during design stages 

- Controlling temperature from primary heat sources 

- Controlling temperature from secondary heat sources 

- Controlling the rate of heat flow from heat sources to the structure 

- Controlling the heat magnitude by applying cooling medium  

b) Control by the machine User   

- Warm-up cycles to reduce gradients 

- Controlling environment and external temperature  

- Controlling workpiece temperature through flood cooling 

2.3.1 Control by the machine manufacturer during design stages 

2.3.1.1 Controlling temperature from primary heat sources 

Primary heat sources can significantly affect machine structure due to the higher 

magnitude of the resulting temperatures. Suitable measures must be applied during the 

machine design stages in order to control the energy transfer.  

- Efficient motors and converters can significantly reduce the risk of excess 

temperature generation by having better control on energy losses [22]. 

- Temperature rise in bearings can be controlled by replacing traditional constant 

pressure preload with variable preload technology. Jiang et al [23] investigated and 

showed that varying preload at high spindle speeds produces less temperature rise 

compared with traditional constant pressure preloads.  

- Corning [24] highlighted that proper bearing lubrication provides a means to restrict 

excess heating problems. Loss of lubricant, grease incompatibility, incorrect grease, 
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grease degradation and excess lubrication are some typical causes of bearing 

temperature rise and bearing failure. 

- Electrical servo drives can significantly produce less heat compared to hydraulic 

servo drives. 

- Motors on vertical axes are constantly energised to hold against gravity. Mechanical 

counterweight or over specifying the motor power can reduce the heat generated. 

2.3.1.2 Controlling temperature from secondary heat sources 

Secondary heat sources produce lower temperature magnitudes and have a less 

significant affect on the machine structure as heat disseminates gradually causing 

structural temperature rise to occur more uniformly which in turn produce more linear 

deformations. Methods can be used to avoid the effect of these heat sources such as:- 

- Electrical cabinets can be located at a suitable distance from the structure so that the 

heat generated from the electrical power systems is not transmitted to the structure.  

- Movements between mechanical components such as axes over guide ways, ball 

screws and support bearings etc generate heat due to friction. This heat can be 

controlled by reducing friction between the surfaces using manufacturer 

recommended lubrication methods or by applying cooling systems. 

- Careful selection of feed rates and coolant to reduce the heat generated during the 

cutting process itself. 

- Heat generated by coolant pumps and other external systems can be controlled by 

isolating the equipment away from the machine structure so that the heat convected 

does not cause a temperature rise in to the structure. 

2.3.1.3 Controlling the rate of heat flow from heat sources to the structure 

- Postlethwaite [13] discussed that the easiest way for the manufacturer is to place the 

motors outside of the machine structure so that the heat drawn from the motors can be 

directly convected away without passing through the structure which would otherwise 

cause an increase in the structure temperature. 
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- Thermal insulations can be applied to prevent conductive heat flow from the heat 

sources mounted on the structure. 

- Kushnir [25] discussed a way to control the heat flow by the use of low conductivity 

materials such as polymer composites for manufacturing machine tool structural 

components. 

- Swarf left over from the cutting operation contains high temperature and its contact 

with the machine structure should be avoided. Swarf removal systems and coolant 

reduce this problem. 

2.3.1.4 Controlling the heat magnitude by applying cooling medium 

Abele et al [26] has discussed methods such as channelling coolant flow through the 

structural loop local to heat sources and spraying mechanisms are considered at design 

stages of a machine tool. The main heat sources such as spindles are often equipped with 

internal cooling systems by spindle manufacturers. 

Machine tool ballscrews are sometimes cooled in a similar way by applying coolant 

mechanisms within their structure such as hollow shaft ballscrews. Chang et al [27] 

discussed a cooling system for ballscrews equipped with an external chiller unit which 

circulates chilled oil or water through the screw to maintain a constant temperature.  

Cooling mechanisms described above can provide significant control of the heat 

dissipation and are well considered at design stages, however such systems are often 

expensive due to their design requirements and hardware/maintenance costs [27].   

2.3.2 Control by the machine User   

2.3.2.1 Warm-up cycles to reduce gradients 

Warm-up cycle is a time period during which a machine tool retains its thermal 

stability when it is used after periods of standing idle for hours. A common way to 

achieve is by de-activating the E-Stop which activates axis drives and motors which are 

used to hold structural parts in position. The activation causes them to warm up due to 

which heat disseminates into associated structures and continues until a state of thermal 

equilibrium is achieved.       
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2.3.2.2 Controlling external temperature changes  

Previous sections detailed how machine tools are affected by external heat sources 

followed by the discussion on controlling techniques. As a machine tool user, control 

should be considered for the environment where the machine will be used. Sagar [28] has 

discussed and highlighted the importance of controlling long term temperature variations 

in order to achieve required accuracy and true process capability.  Seasonal changes, day 

and night transitions, machine location, workshop location, thermal characteristics of the 

machine shop, sunlight exposures, opening and closing the doors for material delivery are 

few of the contributing sources of external temperature change, often producing very 

large temperature variations of more than ±5°C experimentally shown by Longstaff et al 

[12] Sagar et al [28] and Weck et al [29].  

Shop floor temperature control can assure temperature stability for such industries   

where long term production cycles take place. The machines structure and the 

components waiting to be machined will be safe from temperature variations. Although 

temperature control is effective, it is often a very expensive solution and few industries 

can justify implementation, however few practical alternatives exist to avoid 

environmental temperature variations such as those caused by the natural day and night 

or seasonal transitions.    

Previously discussed external sources such as opening and closing of the doors and 

workshop lighting are areas where a machine tool user is responsible. Even a temperature 

controlled environment does not work if there are significant interruptions due to 

unnecessary or frequent localised disturbances.  

2.3.2.3 Controlling swarf temperature 

  The swarf from the cutting process contains heat generated by friction between the 

cutting tool and the work piece surface. If not managed this can raise the temperature of 

the machine structure and/or the workpiece leading to distortion. Swarf temperature may 

be reduced through the use of coolant which can also aid swarf removal from the cutting 

zone. 
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2.3.2.4 Controlling workpiece temperature through flood cooling 

2.3.2.4.1 During cutting 

Continuous coolant spray may prevent temperature increase due to the fluids high heat 

capacity. There have been many aspects and issues related to the use of the flood cooling 

mechanisms. Hoff  [30]  highlighted issues regarding coolant mechanisms such as chip 

build-up blocking free flow of coolant, time consuming and laborious removal of sump 

cleaning, contamination with lubricants, chemical reactions issues with hydraulic hoses 

and electrical cables and environmental health and safety hazards. Fluid disposal, 

toxicity, filterability, misting, staining and surface cleanliness are areas where coolants 

acts as environmental hazards.  

Compared to flood cooling Boelkins [31] discussed that Minimum Quantity 

Lubrication (MQL) or near dry machining is one of the methods which have gained 

popularity in an effort to minimize environmental effects. In this method, minute amount 

of high efficiency lubricant is applied precisely to the cutting tool and workpiece 

interface. The most common lubricants used in MQL are biodegradable vegetable oils 

due to their polarity, exhibiting extensive friction reducing properties. 

Sreejith [32] considered environmentally safe cutting or green cutting and dry 

machining as valuable solutions towards environmental hazards.  Sharma [33] suggested 

air, water vapours and environment-friendly gases as better solutions for green cutting. 

Donmez et al [34] avoided liquid cooling and showed a novel technique using Coanda-

Effect tubing, achieved 30% reductions in spindle thermal drift using compressed air. 

However it was not stated how to implement such method for reducing temperatures 

from major heat sources such as belt drives i.e. complexities involved in wrapping up 

tubing around those sources and further discussions would have benefitted the approach. 

Similarly the heat dissipated by the compressors may eventually cause the overall 

temperature rise around vicinity of the machine which will affect the structure thermally.  

2.3.2.4.2 Before machining 

Workpieces ready or waiting to be machined are susceptible to the varying 

environmental temperature which adversely changes their thermal state. To prevent this, 

parts should be placed in temperature controlled environments. Workpiece temperature 
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control can also be achieved by soaking workpieces for hours up to a known thermal state 

such as, at or near, the coolant temperature before machining which may differ from the 

ambient temperature. 

As mentioned, there have been several suggested workpiece cooling methods using 

cooling mediums. Coolant issues are also resolved by MQL utilizing biodegradable 

lubricants. This research deals with the analysis of the machine structure affected by the 

internal heating and varying environmental effects. Research and methods have been 

applied to the cooling of spindles and ball screws which are expensive methods to 

employ. Application of the cooling techniques to the machine structures such as 

channelling, hollowing the structures for the cooling medium to flow is often a 

compromise with arising structure stiffness problems and these can also be expensive and 

therefore rarely implemented. 

2.4 Reducing the effect of structural temperature change 

Controlling or reducing structural temperature change has been discussed in the 

previous section. The practical limitations of this design effort result in inevitable adverse 

temperature profiles requiring effort to be made also in reducing the effect of structure 

temperature change to minimize thermal error.  

- Design changes  

o  Machine tool spindles: Utilizing one moving bearing support ensure 

constant axial load in a spindle bearing set despite machine tool heating. This 

prevents bearing overloading and problems due to thermal expansions of the 

spindle [35, 36]). Elastic preloading mechanism keep the bearing preload 

constant even when thermally induced relative movements between the 

spindle and the housing takes place [26].     

o Low coefficient of thermal expansion: Using low thermal expansion 

materials such as Zerodur, Invar and Carbon Fiber help reduce thermal 

expansions in machine tool. Suh et al [37] investigated the thermal 

characteristics of reinforced composite sandwich structure consisting of 

compounding layers of steel and carbon epoxy composites with fibre honey 

comb cores in between. The sandwich composite structure was used in the 
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manufacturing of X axis slide for a machine tool. It was found that the 

material exhibited less thermal deformations than expected due to the heat 

input by the linear motor. The fiber honey comb acted as insulation decreasing 

the heat magnitude from 50°C to approximately 30°C.  

o Ball screws: To minimize the effect of ball screw thermal expansion, linear 

scales are fitted to remove the ball screw from the positioning loop [9, 35, 38]. 

Design changes applied to reduce structural temperature rise (section 2.3.1.3) and its 

effect particularly in the areas explained above can be successful in minimizing thermal 

errors however they can be costly methods with regard to the efforts required for the 

significant redesigning of major structural elements and their implementation time scales. 

It is also the fact that despite all design efforts such as applying cooling jackets to the 

spindles, most machines still exhibit errors from main heat sources such as spindles [39]). 

These issues have drawn research attentions towards utilizing alternative methods i.e. 

compensation.   

2.4.1 Thermal error Compensation 

Compensation is a method of correction of thermal errors present at a particular time 

by adjusting the position of the tool and workpiece. The advantage of this method is that 

significant design changes are not required and the existing axes can be adjusted for 

compensating thermal error [35].  

Several techniques have been created to compensate the effect of thermal errors. 

Potential solutions investigated can be divided into two categories: 

- Direct measurement techniques for thermal error compensation 

- Indirect modelling techniques for thermal error compensation  

2.4.1.1 Direct measurement techniques for thermal error compensation 

Direct measurement of the thermal error on the machine tool for compensation may be 

achieved using special purpose equipment such as probes and artefacts. The use of on-

machine can enable measurement of the thermal error on specific machine components or 
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specifically designed artefacts. Deviations can be corrected by the controller as standard 

offset adjustments.   

A probing method has been used for calibrating and compensating thermally induced 

error both in real time and under static conditions by Chen [40]. This was achieved in real 

time using on- machine probes and an artefact and found that thermal errors in real 

cutting were distinct from those in air cutting. Yang et al [41] proposed a method of 

measuring both geometric and thermal errors by means of on-machine measurement 

using two spherical balls and a touch trigger probe. The data was used to train a proposed 

neural network method to predict the errors. Kim et al [42] developed an on-machine 

inspection system that uses a 3D artefact for the modelling of geometric and transient 

thermal errors. Geometric errors are determined periodically by the offline calibration 

procedure and thermal errors were estimated by measuring the artefact twice when the 

on-machine measurement of a machined part is required. The total time for measuring the 

artefact was quoted to be less than 5 minutes.  Allen et al [43] developed a direct method 

to measure and correct for thermal expansion of the linear scale using a thermally stable 

invar bar equipped with a non-contact displacement transducer. The technique was 

successfully applied to a CNC lathe to measure and correct for spindle growth. After 

correction, the residual error remained within 10% of the original value. The method was 

proved to be fast; however the equipment often requires difficult physical modifications 

in order to fit onto the machine. 

The methods explained above have significantly improved the accuracy of the 

machine; however there can be complications associated with their implementation. 

Probing methods require interruptions during machining cycles for thermal checks. 

Ambiguity of temperature instability may arise if the thermal state of the machine has 

changed gradually due to the environmental changes while probing cycles are performed. 

Interruptions may also introduce issues such as machine downtime, uncertainty of the 

obtained compensation data due to the amount of cool down during the probing cycle. An 

artefact may have to loaded and unloaded adding downtime. It may be necessary for the 

artefact to be stored in a temperature controlled environment to prevent thermal 

expansion of the material. Material selection and design intent to create an artefact is 

expensive and require extra technical skills for its quick sequential implementation i.e. 
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mounting on the machine, calibration and measurement regimes and dismounting from 

the machine for accurate measurements and compensation data acquisition. 

2.4.1.2 Indirect modelling techniques for thermal error compensation 

Indirect modelling and compensation methods can avoid process intermitting however 

can be complicated to implement. The methodology employed deals with temperature 

data measurements from specific spots or thermally sensitive points on the machine that 

contribute towards thermal growth of the structure and resulting in thermal error. A 

model is required to convert the temperature information into machine error. The 

calculated error is then compensated by such methods as part program modification, 

offsets and adjustment of the machine axes. Several modelling methods for indirect 

measurement have been developed to calculate the thermal errors. These methods have 

been used as a single and in combination of more than one method. Figure 2-1shows a 

chart which gives an overview of the published research where modelling methods have 

been categorised according to their use. This has been compiled by a joint review within 

the Engineering Control and Machine Performance Group (ECMPG) of University of 

Huddersfield (UoH) to show the distribution of efforts towards compensating thermal 

errors.   

 

Figure 2-1: Modelling methods categorized according to their use 

Therefore main methods can be categorised according to their use. 
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2.4.1.2.1 Neural Networks 

Neural Networks or Artificial Neural Networks (ANN) are an empirical method of 

chain element architectures interconnected in layers with collective computational 

abilities. A typical neural network is composed of three layers, an input layer, a number 

of hidden layers and an output layer that provides correlative relationship between 

thermal error and temperatures. The input layer receives temperature measurements and 

the output layer stores the thermal errors. The hidden layers are used for data handling, 

computations and noise suppression between the temperature inputs and thermal errors 

[15]. A number of methods have been derived from the working principals of ANNs and 

used in research to overcome thermal error issues. Feed forward Neural networks (FNN), 

Integrated Recurrent Neural Networks (IRNN), hybrid networks, Back Propagation 

Neural Network (BPN) and Cerebellar Model Articulation Controller networks (CMAC) 

and are few of the most widely used techniques. Chen [44] implemented a three layer 

FNN modelled with 15 input nodes, 15 hidden nodes, and six output nodes. 540 training 

pairs made a training set that were used to train the model. Since the model produced 

valuable results with selected cutting conditions, a new cutting condition which was not 

within the collected training pairs was used to test the prediction accuracy of the ANNs 

model. Thermally induced errors of the spindle and leadscrew were measured and 

compensated. The experimental results showed that more than 85% thermal error can be 

reduced after compensation. Other research conducted by Chen [45] used a hybrid model 

composed of an FNN and Multiple Regression Analysis (MRA) to study the 

characteristics of thermal error in both air and real cutting conditions. A performance 

comparison of the hybrid model (FNN and MRA) was made with the FNN method which 

showed that FNN is more suitable for predicting thermal errors in air cutting but 

unacceptable for real machining conditions.  The hybrid model was sufficiently accurate 

for predicting thermal error induced from both air and real cutting sources with 

reasonable accuracy. Ahn et al [46] developed a compact measurement technique capable 

of measuring time variant machine tool errors. A FNN model with a new concept of input 

values was developed to estimate the thermally induced errors during cutting. The 

developed FNN model consisted of 8 input nodes, 15 hidden nodes and 5 output nodes. 

The author suggested replacing the method of inputs to the NN. The input, temperature 

distributions of the entire machine structure was suggested, replacing with the new inputs 
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i.e. the environmental temperature and the cutting conditions can significantly simplify 

the training methods and increase the estimation accuracy reasonably. Kang et al [47] 

modified FNN by utilizing the hybrid filters to increase the accuracy and reduce 

computation times. The hybrid filter was consisted of linear regression, moving average, 

and auto regression methods. Finite element model was introduced for the determination 

of error margins used for the comparison of the modified model with the traditional 

models ARMA, FNN and LR/NN. The results showed better accuracy of the modified 

model in comparison with the traditional models. The errors were reduced by a maximum 

of 48% for the Y axis and 70% for the Z axis for various experimental testing conducted 

on a grinding machine. The training time for the modified model was reduced to 8 hours 

compared with the conventional FNNs which took more than 48 hours. Other research 

conducted by Kang et al [48] proposed a hybrid model composed of auto-regressive 

moving average (ARMA) filter and a FNN to increase the prediction accuracy and to 

reduce the learning time for the estimation of thermal deformation. The ARMA model 

outputs were defined as the state variables and treated as inputs to the FNN. The FNN 

model consisted of 2 inputs nodes, 10 hidden nodes and 1 output node, 28 thermal 

sensors were used with 18 sensors placed on the machine and 10 sensors measuring 

ambient temperature. Three experiments were conducted, the first experiment was used 

to train the prediction model and the other experiments were used to evaluate the 

prediction accuracy. The comparison revealed that the hybrid model exhibited good 

accuracy compared with the ARMA and conventional FNN methods and the training 

time can be reduced to 3 hours. The comparison would have been easier if the technique 

was applied to other machines for its robustness, learning times and accuracy .Yang et al 

[49] developed a modelling  methodology to track non-linear time varying machine tool 

errors under various thermal conditions; and the dynamics i.e. non stationary nature of 

the thermo-elastic system has been modelled using a new technique, Integrated Recurrent 

Neural Network (IRNN). Compared with FNN’s unidirectional data information flow 

(forward direction), the IRNN method allows bidirectional flow, in forward and 

backward directions. Experiments were conducted for the measurement of spindle 

thermal expansions; the results were used to train the IRNN.  The model performance 

comparison of IRNN with Recurrent NN, Multi-layer FNN, and the MRA in terms of 

model accuracy and robustness yielded that IRNN is more robust in terms of relative 
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error and standard deviation testing and that the IRNN model can predict 80% of the 

maximum thermal error with the maximum residual error of less than 15 m due to 

spindle rotation.  

The research methods elaborated important aspects that need to be considered while 

modelling a NN model such as consideration of the operating conditions of the machine 

tool and carefully extracting the information to train and further develop a neural network 

model. The issue is well addressed by Ramesh et al [50] who developed a hybrid 

Bayesian Network (BN) combined with Support Vector Machines (SVM) model to 

measure thermal behaviour of the machine tool under specific operating conditions. The 

SVM model was used to predict the error after the experimental data classification using 

BN. The SVM proved to be powerful regression tool that carries out efficient mapping of 

the temperature data with error. A BN is a probabilistic representation for uncertain 

relationships such as those on a machine control; a SVM is a learning system that uses a 

hypothesis space of linear functions in a high dimensional feature space trained with a 

learning algorithm from the optimization theory. CMAC method has been used by 

researchers due to its robustness and fast learning capabilities [51]. Yang et al [52] 

proposed a CMAC neural network for modelling  spindle drift errors and found that the 

model exhibited fast learning, good modelling  capability, insensitivity to sensor 

placements and robustness to sensor failure compared with MRA and MFN. Fast learning 

capability was illustrated as per observation criteria; it would have been beneficial if the 

comparison was made with respect to the learning times.  

Neural networks with back propagation (BPNN) capability have been used extensively 

in various research activities [53, 54]. Modifications have been applied to the BPNN to 

improve accuracy. Guo et al [55] introduced Ant Colony Algorithm to the BPN (ACO-

BPN) which was applied to the NC machine tool to predict thermal errors. It was found 

that the method has reduced the input temperature variables from 12 to 4. The workpiece 

diametrical error was reduced from 33 m to 8 m after compensation. Machine 

downtime and training time required for the model is not mentioned.  Hao et al [56] 

proposed a Genetic Algorithm based BPN model for thermal error prediction of a turning 

center. The GA-BPN thermal model was based on five key temperature points. Real-time 

compensation for thermal errors was implemented and the diameter error of the 
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workpiece was reduced from 27 m to 10 m. It was stated that GA-BPN can reduce 

computational costs and increase accuracy however the training time for the NN model 

was not stated. The GA-BPN technique was further implemented by Wang et al [57] on a 

vertical machining center. The author used four key temperature points and achieved 

60% increase in the machine tool precision. The model training time was not mentioned.     

The research based on neural networks has revealed good prediction accuracy and 

creation of robust models for the validation exercises reported.  It can also be determined 

that NN models can be created by finding temperature key points without the knowledge 

of the actual structure. The computation time and hardware cost required for building a 

faster and reliable NN model has been a major constraint. Model training normally 

requires hours of learning due to the number of variable manipulations such as 

temperature and displacement data variables. Sensor locations must be well understood 

and sensors must be robust for a reliable prediction model; however that may require 

hours of machine testing under a variety of conditions and the information going through 

a large number of iterations and computations. Methods for overcoming sensor failures 

are based on value estimations which may not be accurate and it may not be straight 

forward to replace the sensor and train it again.    

2.4.1.2.2 Regression analysis methods 

Regression analysis, another empirical method, is a technique that finds relationships 

between a single variable and a dependant variable. Multi Regression Analysis (MRA) is 

one of the widely used regression methods in this field where relationships are found 

between the groups of temperature variables and a single dependant variable i.e. thermal 

error of the machine tool to predict the accuracy of the machine.  Yang et al [58] tested a 

NC twin-spindle for both geometric and thermal errors. He used MRA to form an error 

synthesis model which combines both the geometric and thermal error. Estimation of the 

slope variations enabled the separation of both errors and the experimental results 

indicated that the size variations of the workpiece could be reduced from 60 to 14 m and 

the taper could be reduced from 50 to 15 m/cm.   In another research, Yang et al [59] 

tested an INDEX-G200 turning center and used MRA technique to predict its thermal 

accuracy. The analysis result showed that the thermal error range for radius direction on 

that machine was approximately 18 m, higher than expected. 14 thermal sensors were 
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installed in groups and only one ambient sensor was used. While modelling, six 

temperature groups with variables were constructed and the model was assumed to be a 

linear function for the environmental temperature rise. The predicted thermal error 

between the spindle and the cutter revealed a residual error of 5µm from a maximum 

error of approximately 18µm for a test length of 4 hours. Modelling time was not 

mentioned. Tseng [60] used MRA to apply thermal error compensation to a vertical 

machining centre. Only one sensor was used to measure ambient temperature along with 

sensors placed at key locations and compensation revealed the displacement error 

reduced to within 4 m.  The compensation control suffered over-reaction and to 

minimize this effect, a maximum of 3°C temperature deviation within the machine tool 

structure was suggested. In other research, Tseng et al [61] proposed two regression 

models; a linear MRA model and a non-linear exponential regression model for 

predicting thermal errors of a high precision CNC lathe. Apparently, eight temperature 

sensors were placed at key locations on the structure with only one sensor for ambient 

temperature measurement.  The experimental results showed that 40% of thermal errors 

can be reduced by their linear MRA and 60% of thermal errors can be reduced by their 

non-linear model.  

Chen et al [62] employed and compared two different models (MRA and ANN) to 

predict the time variant thermal error components under different spindle speeds and 

temperature on a horizontal machining centre. Both models exhibited similar 

performance. Only one ambient temperature sensor was used for modelling the prediction 

models and the compensation showed workpiece thermal distortion reducing from 

92.4 m to 7.2 m with the spindle thermal growth reduced from 196µm to 8µm. The time 

spent on developing the models was not mentioned. Pahk et al [63, 64] modelled the 

spindle thermal error based on three different modelling techniques, MRA, NNs and 

System Identification. It was found that the system identification method exhibited higher 

accuracy than the other two. Feed axis thermal errors were also modelled and a 

Homogeneous Transformation Matrix (HTM) method was used to combine both spindle 

and feed axis thermal error models. Real time compensation was implemented by 

interfacing with the machine tool controller resulting in an accuracy improvement of 4-5 

times. One of the regression techniques known as orthogonal regression technique was 

employed by Du et al [65]. This technique was applied to more than 100 turning centers 
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of the same type and specifications. It was found that the technique was able to reduce 

the cutting diameter thermal error from 35 m to 12 m. The technique was stated as 

robust due to its year round repeatable improvement in accuracy. The accuracy is 

expected to increase if long term shop floor environmental temperatures fluctuations 

were considered. This work is also stated by Liu et al [66]. Lin et al [67] analyzed the 

issues related to the spindle thermal displacement on acceleration using MRA method. 

However it states that, since spindle thermal behaviour of every machine tool is not 

exactly the same; the developed model may not be applicable directly to other machine 

tools. Modifications and adjustments may be required according to the machine 

behaviour before implementation. Tachiya et al [68] utilized MRA technique to develop 

approximation equations for their use in the thermal compensation system. He developed 

a stochastic method that finds relationships between the thermal deformations and the 

temperature changes of plural positions of the machine tool and determines the 

appropriate temperature measuring points.  

Although regression techniques may work well for modelling , this technique requires 

various complex parameters and relationships as pre-requisites i.e. prior assumptions 

regarding functional relationships such as linear, quadratic, higher-order-polynomial and 

exponential between outputs and input decision variables [69]. Similar to NNs, sensor 

placements and sensor robustness are critical in regression techniques, incorrect sensor 

placements may result in incorrect or unreliable relationships between temperature and 

the thermal error. Sensor failure is critical which may lead to machine downtime required 

for the sensor replacement followed by repetitive iterations and computations to regain 

relationships and accuracy. Expertise is required for optimizing and adjusting a 

regression model to make it suitable to different machines tool configurations and for a 

variety of usage conditions.  Re-testing for finding key sensor locations and their 

placement on new machines is time consuming therefore the technique cannot be applied 

immediately. 

2.4.1.2.3 Other methods   

A Variety of research has been undertaken using other indirect temperature based 

modelling methods to compensate thermal errors. Yang et al  [70] employed a recursive 

model adaptation strategy based on the Kalman filter parameter estimation technique. 
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The model coefficients are modified recursively in real time by the thermal error 

parameters monitored and predicted by the process-intermittent probing and system 

identification techniques respectively. 11 thermal sensors were mounted on the machine 

tool; however no sensor was placed to measure the ambient temperature. The model 

performance was validated by testing the Z axis of the machine. Three tests were 

conducted with a variety of spindle speeds and feedrate and each test had a length of 7.5 

hours. The validation revealed averaged residual errors of approximately 12µm from a 

maximum of approximately 50µm error. Lee et al [71] developed a thermal distortion 

compensation method based on Independent Component Analysis (ICA) method. This 

method extracts thermal sources from the temperature variables for thermal model 

construction and eliminates insignificant temperature variables. The thermal sources were 

assumed to be mutually statistically independent. The thermal error in the Z axis was 

reduced dramatically from 155 m to 3.5 m after compensation but the reported time for 

the implementation of this method along with training and computation was 

approximately 28 hours (more than a day) and this method may suffer even larger 

implementation and computation time on machines with complex structures. Ambient 

conditions were neglected  

Zhu et al [72] proposed a new technique of modelling  thermal error through a thermal 

mode concept. FEA was first utilized to find dominant thermal modes on the spindle unit 

and the Z axis (column). Temperature sensors were placed at the dominant thermal mode 

locations. Regression models were utilized to find the position dependant and 

independent thermal errors. For FEA, assumed heat flux input was used to generate heat 

and an assumed convection coefficient was applied to all parts. Environmental 

temperature was kept constant at 20°C. Delbressine et al [73] modelled the thermo-

mechanical behaviour of multi axis machine tools. An Extended Lumped Capacitance 

Method (eLCM) was used to model the temperature distribution in the machine structural 

elements and the accompanying deformation was then calculated based on the 

temperature models. The structural elements of the machine tool were modelled as flat 

plate structures. Validations were carried out using new measuring equipment 

(Telescopic Double Ball Bar – TDBB) and a strategy that measures the positional 

accuracy of the machine at multiple locations within the machine working volume. The 

research revealed 60% accuracy improvements. However, the research was based on 
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several assumptions such as modelling the machine parts as a flat plate structures and 

linear temperature gradients. Yun et al [74] used Modified Lumped Capacitance Method 

(MLCM) and Genius Education Algorithm (GEA) to model the thermal behaviour of the 

ball screw, and FEA technique to model the thermal behaviour of the guide way. After 

modelling, the total thermal error was obtained by adding both. The experimental 

validation was performed by measuring the linear positioning error of the Z axis feed 

drive system using a laser interferometer, achieving approximately 90% improvement in 

accuracy when compared with the model estimations. The modelling technique should be 

useful if applied on the full machine structure. Attia et al [75, 76]  and Fraser et al [77] 

developed a generalized modelling methodology to compensate thermal errors of the 

machine tools in real time. This model, which is empirical based, used the inverse heat 

conduction problem (IHCP) in which temperature measurements are carried out at only 

two points near the heat source to estimate the time variation of the heat input in real 

time. Computations involved in obtaining the IHCP [78] include transfer functions which 

are sensitive particularly in the case of temperature sensor failure in real time. A thin flat 

plate was used as a reference for the development of generalized model. Similarly a 

simple structure was used to represent a vertical milling machine. Two types of heat 

inputs i.e. ramped and sinusoidal were used to compare the performance of both 

generalized model and FEA. The results were compared by using only two 30 minutes 

tests. Although the generalized model exhibited good accuracy and is quoted to be two 

orders of magnitude faster in comparison with FEA however validation on a real machine 

i.e. on a complex geometry would be of great interest with respect to the modelling time 

this empirical model may take. Tseng et al [79] proposed a thermal error prediction 

model derived from the neural-fuzzy theory. IC-type temperature sensors and a Renishaw 

MP4 probe system were used to measure the temperature changes and thermal 

deformations respectively. Sensors were attached to the spindle motor, spindle sleeve 

side with one sensor measuring environmental variations. The prediction model improved 

the machining accuracy from 80 m to 3 m. The prediction model was further 

compared with MRA revealing accuracy improvements of ±10 m to ±3 m.  However, 

the model training times and machine downtime are accountable issues with this 

research. Zhou et al [80] used a fuzzy-neural based hybrid approach for error 

compensation in machine tools. The fuzzy neural network error compensation model was 
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based on two variables as its input variables and its output variable for offsetting the 

relevant coordinates of the CNC machine part program. The two variables were obtained 

using a touch-trigger In-Cycle Measuring (ICM) system. Lee et al [81] presented a 

thermal error model using a fuzzy logic strategy. 14 temperature sensors were placed on 

the machine tool structure, environmental temperature was not measured. In comparison 

with the other techniques such as linear regression and engineering judgment models, it 

exhibited good accuracy whilst utilizing less number of variables. White et al [82] 

identified and studied the mechanisms of thermal errors in CNC machine tools for which 

10 different machines were tested. Testing concluded that even different machines of the 

same make and configuration exhibit different thermal behaviour. Using thermal imaging 

equipment during testing is very useful to locate even smaller temperature magnitudes 

and gradients. White also developed a thermal bending model based on breaking the 

machine into its constituent parts for measuring the thermal behaviour in a vertical 

machining centre [83, 84]. The bending model revealed the importance of the knowledge 

and magnitude of temperature gradients on machine bending for over a wide variety of 

machine usage conditions. White then developed a cost effective and easily applicable 

sensor system which required only a single heat and cooling test for calibration. 58 

sensors were placed on the machine head in two strips of 29 sensors for thermal error 

compensation. The compensation resulted in reduction by 6 times (from a maximum of 

54µm to approximately 9µm) of the Y axis thermal error and the technique is quoted to 

be applicable to a variety of machine tools due to its flexibility. More accuracy is 

anticipated if variations due to the environmental drifts were also included in the 

compensation model.  

Allen et al [85, 86] extensively used thermal imaging techniques for acquiring 

temperature data and understanding the behaviour of temperature gradients for machine 

tool thermal error compensation. He developed distortion models based on relating 

surface temperatures to the structural distortion; one was the machine head slide 

distortion model. A short term heating and cooling test revealed compensation holding 

the error within 10µm for the head slide. A long term test may have revealed a better 

evaluation of the technique where ambient conditions begin to contribute. 
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2.5 Finite element Analysis (FEA) 

Finite Element Analysis (FEA) is a computational mechanics technique to develop 

and simulate a spatially discretised mathematical model of a continuum system using a 

numerical method [87]. It is a technique where the machine structure is split into a 

number of smaller elements subjected to the heat flow. Each element, with its estimated 

thermal characteristics, exhibits effects on the neighbouring elements, leading to an 

overall estimate of the total thermal behaviour of the machine structure. The FEA utilizes 

standard heat flow equations i.e. conduction, convection and radiation to estimate the 

thermal behaviour.  

Min et al [88] used FEA for the modelling  of machine tool bearings. Thermal contact 

resistance (TCR) controls the thermal conductance between joints, has been thoroughly 

considered, along with the heat generation of the bearings during the development of the 

model. It has been concluded that simulated FEA model accuracy was significantly 

increased by considering TCR. Haitao et al [89] showed the simulation of thermal 

behaviour of a machine tool spindle. The spindle was modelled without simplifications, 

other than assumed symmetry, in order to maximise the accuracy of the simulation. 

Thermal key points were obtained by undertaking a sensitivity analysis, rather than the 

empirical use of a thermal imaging camera. Simulation of a four hour test was run and 

compared to validation data from the modelled machine. It has been reported that the 

finite element method used in this research gave promising simulated results of the 

spindle and suggestions were made for replacement of experiments with simulations. The 

time spent on the modelling and testing phase is not mentioned. Jedrzejewski et al [90] 

tested a 3 axis machine and presented a method of combining FEA and the Finite 

Difference Method (FDM) into one hybrid model to simplify geometry by avoiding 

excessive meshing techniques. Three types of different headstocks were analysed; an 

electrospindle on rolling bearings, a conventional spindle and an electrospindle on 

aerostatic bearings. Promising results were presented, such as an improvement from 

100μm to 20μm for a 50,000rpm machining centre headstock. No figure is given for the 

time required for the simulation time. Creighton et al [91] tested a high speed micro-

milling spindle for analysis of the thermal errors at a variety of operating speeds (10,000 

rpm to 50,000 rpm). A simplified CAD model of the spindle, motor and housing structure 
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was created using ANSYS FEA software. Thermal errors were well predicted using FEA 

and led to compensation accuracy of 80% under a random stepped speed test.  Wu et al 

[92] showed a systematic method to investigate the thermal characteristics of a feed drive 

system. A ballscrew was analysed at different preloads using nine thermal sensors. The 

ballscrew was operated at a selected feedrate but due to the complexity involved in 

attaching sensors, temperatures were noted after stopping the ball screw rather than 

during rotation. Displacements were monitored using capacitance probes and laser 

interferometer. A simplified FEA model of the ball screw was developed and the heat 

fluxes were adjusted until a proper thermal distribution was achieved. The paper shows a 

simple approach of using FEA to predict thermal behaviour of a ball screw and achieved 

a good agreement between measured (269µm) and predicted (240µm) results revealing 

10.8% deviation at 20m/min feedrate. The results were better at lower feedrates of 

10m/min and 15m/min revealed deviations of -2% and 9.5% respectively. The modelling 

time was not mentioned as it is suspected that the numerical approach may have taken 

excessive time. The FEA results obtained were based on several assumptions. The results 

may improve if the actual environmental boundary conditions and flux inputs were 

selected. Kim et al [93] analysed a ball screw system for two dimensional temperature 

distributions both in real time and steady state using FEA. The proposed FEM model was 

based on the assumption that the screw shaft and the nut are solid and hollow cylinders 

respectively. The convective coefficient was also assumed to be constant. Temperature 

distribution at the tool tip and within the workpiece resulting from cutting, milling and 

hard turning operations; and thermo-mechanical behaviour of the structural parts during 

machining has been successfully investigated and predicted using FEA in various 

research activities [37, 94-97]. 

In an attempt to analyze temperature distribution across the full machine structure, 

Kim et al [98] investigated a machine tool equipped with high speed linear motors. A full 

machine CAD model was created using SolidWork2001/CosmosWorks and investigated 

for thermal deformations particularly due to the internal temperature distribution due to 

axes movements.  For FEA, assumed parameters such as boundary conditions were 

applied. Heat flux was only calculated using the measured temperature for the primary 

part of the linear motor however assumed for the roller bearings of all three axes that 

generate heat into the linear motion guide ways during axis travel. Experiments were 
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conducted by operating machine axes at various feedrates. The Z axis exhibited 17µm of 

thermal error which was predicted as 15.48µm revealing an 8.9% prediction error. . 

Denkena et al [99] presented a finite element method to compensate thermal errors in a 

machine tool. Internal and environmental effects were considered along with position 

dependent and independent errors. The results were presented only for the Z-axis 

direction. The carriage was moved back and forth for approximately 4 hours between Z 

positions 10mm and 700mm which showed an error of approximately 15µm and 55µm 

respectively. Three sensors were used to measure temperature drifts and the results 

showed a good correlation between the measured and simulated results, the remaining 

error reduced to below ±5 m for both positions. Jedrzejewski et al [100] discusses the 

complexities involved with improving the design of a machine tool when considerations 

of reducing thermal error are in focus. A highly accurate thermal model of the machine is 

presented and consideration of various parameters contributing to the thermal behaviour. 

For example, the design criteria considered the effects of environmental variations for 2.5 

days, thermal effects arose due to the presence of guarding and bearing sets of high speed 

spindles. Quartz straight edges were modelled for environmental effect after mounting on 

the machine centre support beam. It was found that the straight edge fixed on the left side 

produced the lowest error of the other three locations tested. It would be of great interest 

if simulation time was mentioned. Huo et al [101] carried out an FE analysis on a 

grinding machine aimed to integrate the effects of thermal deformation of the machine 

structure and the heat produced by the machining process. At first, FEA was conducted to 

simulate the temperature distribution following validations by the on-machine 

measurements. The temperature information was then used to estimate the thermal 

deformation. The machining process was also simulated to obtain the temperature 

distribution within the cutting zone and its effect on the machine. This temperature 

information was used as an input heat source to the FEA model. The preliminary results 

for simulated temperature distribution and displacements, only in Z axis direction, are 

shown for 3.6 minutes, quoted as promising. Environmental effects were not considered. 

Mayr et al [102] used an integrated FDM-FEA method to compare the thermo-

mechanical behaviour of two (old and new) frame designs of a machine tool. The FDM 

was used to calculate the temperature distribution at discrete time points and used as the 

input temperature field for the FEA. It is quoted that, with a standard PC, it takes less 
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than 5 minutes to carry out full simulation over 24 hour simulation time. This approach 

suits the application well in terms of quick application towards the prediction of thermo-

mechanical behaviour at the machine design stage. Mayr et al [103] conducted another 

research exercise using the FDM in which a high speed precision machining centre 

headstock was investigated to determine its optimal operating characteristics in detail. 

The FDM was used to calculate the temperature distribution at discrete time points and 

used as input to the FEA. The TCP (Tool Centre Point) displacements were calculated 

using a 3D space lattice technique and tested on a three axis milling machine. During 

testing, the procedure considered measurements of the TCP displacements and boundary 

conditions in the operating time for a 6 hour machining trial.  The comparison between 

the calculated values and the values measured at 5 different locations in the work space 

shown a good correlation that resulted in 50% reduction in the maximum TCP 

displacements after compensation. However, it is reported that the method requires 

improvements in terms of detailed modelling and further considerations for the 

introduction of internal heat sources, boundary conditions, temperature dependent 

component properties and the influence of cooling lubricant. The nodal compatibility 

between the FDM and the FEM may be an issue particularly if the FEA is modelled from 

a complex geometry. It was not mentioned if the model can robustly handle the nodal 

mismatch.        

FEA techniques have proved promising in predicting temperature distributions 

and thermal deformations and are used widely in a variety of research activities for 

predicting thermal deformations in machine tools. There have been significant reductions 

in the time required to model thermal deformations compared with the empirical 

methods, however most FEA models lacked detailed analysis of the long term 

environmental effects over the full machine tool. Also, most FEA models were based on 

assumed heat flux values as inputs to simulate temperature distribution in the structure.   

2.6 Concluding past research 

It has been observed that significant research has been conducted and various 

strategies and methods developed and implemented with regard to the control, modelling 

and compensation of thermal errors in machine tools. Several methodologies for 

structural temperature control are discussed which can be applied at the design stage of 
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the machine such as primary and secondary heat sources, selection of low thermal 

expansion materials, application of cooling mediums by channelling through the structure 

where heat is dominant. These techniques if implemented will have significant control on 

the structural temperature rise of the machine however they are generally expensive and 

difficult to implement, particularly as a retrofit solution. Machine tool performance 

depends heavily on the operating environment where there are issues such as temperature 

control of the workpiece, swarf and external temperature control that are critical and need 

to be addressed when precision machining takes place. Environmental friendly coolants 

such as bio-degradable coolants are an efficient solution to control the localized 

temperature rise during cutting. Temperature controlled factory floors eliminate 

uncertainties involved with varying environment conditions that inevitably changes the 

thermal state of the machine structure and workpieces. Environmental temperature 

control can be very effective but expensive to implement and maintain particularly where 

large machines or a large number of small machines require control. 

Methods used to compensate the effect of temperature change i.e. the thermal error, 

are categorized as direct and indirect. Direct methods provide means of accurate 

detection of the thermal error in machine tools using special, purpose made, equipment 

such as artefacts and probes. The material used to develop them may benefit from being 

thermal stable in order to cope with the environmental changes, particularly if fitted 

permanently. For instance, Zerodur is one of the materials with negligible thermal 

expansion coefficient but it can be prohibitively expensive. Direct measurement 

techniques are difficult to implement due to the required modifications to the machine 

structure to fit the equipment permanently. Mechanical and space constraints sometimes 

restricts the capability for the probe to reach a certain target. This could result in 

inaccurate measurements or a proportional measurement of the total thermal error that is 

not sufficient for the compensation. Physical constraints may cause restricted mechanical 

movements which can increase the risk of impacts. Damage or contamination of sensors 

in the hostile machining environment is another prime issue which can seriously 

deteriorate the performance of a direct measurement system.  

Indirect thermal error measurement and compensation methodologies are the most 

widely researched using a variety of advanced modelling techniques to predict thermal 
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errors in a machine tool. ANNs revealed good prediction accuracy however a reliable NN 

can require from several hours to days of machine downtime to train the model under 

various working conditions which is not practical. The temperature sensor locations are 

of prime importance and the reliability of a NN is always questionable if sensor failure 

occurs and replacing a temperature sensor or refurbishment of parts of the machine may 

result in re-training of the model.  Regression techniques provide good prediction 

accuracy but require several hours of training and computations resulting in longer 

machine downtimes. Prior to the creation of a regression model the relationship between 

the input and output variables needs to be defined. The relationship may be, for example, 

linear, quadratic or exponential. Skills are required for efficient implementation of the 

technique on different machine tools with different working conditions. Sensor 

placements are again very crucial in order to efficiently train the regression model. FEA 

technique have proven promising and shown good prediction accuracy. The development 

of an FEA model can be quicker in comparison with the empirical approaches. Most FEA 

research reviewed has involved assumed thermal parameters such as heat fluxes, 

boundary conditions and varying environment which have restricted confidence in FEA 

for thermal error predictions under varying operating conditions. A variety of other 

efficient thermal error prediction methods have also been addressed but they lack 

consideration of the main issues such as machine downtime,  considerations of varying 

environmental conditions and their modelling times which restrict them to be successful 

candidates for practical and broadly applicable machine tool thermal compensation.  

2.7 Research Aims  

The review of past research has revealed a variety of highly capable modelling 

methodologies. Despite the potential accuracy improvements, certain issues remain that 

preclude industrial implementation. It is thought that the most dominant of these is the 

required downtime for testing and implementation, secondly the complexity of the 

methodologies and thirdly the lack of consideration of effect of environmental 

temperature change which may be perceived as the most difficult to solve by other error 

reduction strategies. There is a requirement for an efficient thermal modelling technique 

that is offline, simple to implement, applicable to other machine tools, robust and 

accurate. It must be an efficient and intelligent system addressing and considering the 
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main issues that are currently lacking. This research will deal with all those issues in 

detail. The project aims are, 

- To create an efficient technique to measure the temperature flow and spatial thermal 

gradients in a machine tool during short term internal heating trials and to optimize 

the modelling technique that is fully applicable to the long term extended machining 

operations based on short term testing therefore dramatically reducing machine 

downtime  

- To provide an understanding of local ambient temperature conditions specifically 

termed as ‘air pockets’ and their effect on the machine during machining operations.   

- To provide a method for effectively determining the heat inputs for the heat sources 

based on the measurements to simulate internal heat flow replicating real world 

machine operations.   

- To measure the influences of the long term environmental variations in a machine 

tool such as shop floor temperatures.   

- To develop an offline and quick modelling technique that is able to predict the 

thermal behaviour of the machine tool with good accuracy. 

- To locate thermal sensitive points within the machine tool structure that will allow 

permanent temperature sensor installation for simplified compensation ideally 

utilising where possible existing facilities within modern NC systems. 
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CHAPTER - 3  

3 THERMAL STUDY OF THE MACHINE TOOL 

There are three basic mechanisms of heat transfer within the machine structure, 

conduction, convection and radiation. This chapter details the study of the thermal 

processes that occur in a machine tool subjected to internal and external heat sources. As 

explained in earlier chapters, internal heat is mainly generated by the excitation of 

various machine elements such as spindle bearings, motors, hydraulics and belt drives 

etc. External heat sources refer to the change in environment effects around the vicinity 

of the machine and the workshop, which generate temperature variations and gradients 

within the structure. Both sources result in the inevitable non-linear deformations and 

affect the machine accuracy.  

3.1 Conduction 

Conduction takes place in the machine structure where the heat generated flows 

through a series of interconnected surfaces via interfacial gaps. Conduction varies from 

one metal to another due to the differences in their thermal characteristics such as thermal 

conductivity and specific heat capacity.  It is well known that Fourier’s first law of heat 

conduction explains the heat transfer mechanism; the expression formulated by Fourier 

explains the relationships between the temperature gradient, rate of heat flow and the 

medium through which the heat flow occurs. The expression is shown in equation 3.1  

dx

dT
kAqcond

…………………….  (3.1) 

where qcond is the heat transfer rate in the x direction (Watts), k is the thermal 

conductivity of the medium (W/m/°C), A is the area over which conduction is taking 

place (m
2
), and dT/dx is the temperature gradient in the x direction (°C /m). Figure 3-1 

illustrates heat transfer through a block due to conduction, the negative sign shows that 

the heat is transferred in the direction of decreasing temperature.  
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Figure 3-1: Heat transfer in a medium by conduction 

Thermal conductivity of a material is a temperature dependent property for example 

carbon steel experiences a decrease in the thermal conductivity at the temperature range 

of 400°C to 1000°C. However for a standard machine tool application, the temperature 

magnitudes are less significant and this variability can be neglected.   

3.1.1 Heat flow mechanism within the machine structure through conduction 

A machine tool assembly comprises of a series of interconnected metallic components. 

The majority of the machine structural components are manufactured from steel or cast 

iron; the geometries are often very complex due to the addition of cast or machined 

features to comply with the design requirements. The addition of features such as 

apertures, voids, protrusions, holes, ribs, chamfers and fillets result in complex geometric 

assemblies through which the heat experiences a non-uniform flow with each 

interconnected component offering inconsistent thermal properties. Figure 3-2 shows an 

example of features incorporated in the design of a typical machine column. The non-

uniformity refers to, for example, (Attia [104] cited in White[4])  the heat flow 

mechanism that will be completely different through a steel component (k=52W/m/°C) 

and the adjoining aluminium part (k = 237 W/m/°C). Typical materials associated with 

machine tools are listed in Appendix A along with their range of conductivity values. 

These values however can have a high level of uncertainty due to small variations in the 

material actual properties and non-homogeneity in the material which may affect the heat 

conduction through the full machine structural loop. Conduction is also affected by the 

qx 

dT 
T1 

T2 

dx 

Area 
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local configurations of the structural joint interfaces that alter the heat flow 

characteristics. This will be covered in more detail in section 3.5. 

 

Figure 3-2: A sectioned view of a typical machine tool column showing design features 

3.2 Convection 

Convection is a mode of heat transfer which occurs when the heat energy is 

transferred between solids and fluid layer (oil, coolant, air) due to temperature gradients. 

Figure 3-3 shows the generic illustration of the convection process. Once the heat is 

transferred, the remaining process of heat transfer within the solid and fluids is through 

conduction. It is well known that Newton’s law of cooling defines the heat transfer 

through convection and states that the rate of change of the temperature of an object is 

proportional to the difference between its own temperature and the relative fluid 

temperature. Newton formulated the basic rate equation as (equation 3.2) 

 )( fluidsurfconv TThAq ……………………. (3.2) 

where qconv is the rate of convective heat transfer (Watts), h is the coefficient of 

convective heat transfer (W/m
2
/°C), A is the surface area over which the convection is 
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taking place (m
2
), Tsurf is the temperature of the surface (°C), Tfluid is the temperature of 

the fluid (oil, coolant, surrounding air or ambient) (°C).  

Note: Tfluid is denoted as Tair to represent ambient air temperature. 

 

 

Figure 3-3: Convection: The heat transfer between the fluid passing over and the surface 

In a machine tool application, convection occurs in various modes for example the 

heat transfer between the cutting tool/workpiece and the coolant where the heat drawn 

from the motors/belt emanates into the surrounding environment by natural (free) 

convection and forced convection phenomena. Natural (free) convection is a process 

where a heat source releases its energy to the surrounding without any externally applied 

force. Forced convection is a process where the heated surface releases its energy 

proportional to the pressure applied by the moving fluid over the surface. The value of 

convection ‘h’ is higher in forced convection due to the fact that the energy release is 

higher in proportion with the fluid flow rate. Finding ‘h’ is critical as it strictly depends 

on various parameters such as fluid velocity, type of fluid, laminar or turbulent flow, and 

surface geometry and roughness. Common values of the convection heat transfer 

coefficient have been given by Incropera [105] and are shown in Table 3-1. 
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Mechanism Coefficient of convective heat 

transfer h (W/m
2
/°C) 

Natural (Free) convection 

 Gases 

Liquids 

 

2 – 25 

50-1000 

Forced convection 

Gases 

Liquids 

 

25-250 

100-20,000 

Table 3-1: Convection values commonly used 

Since the values of the convection coefficient (h) vary significantly for gases and 

liquids in both mechanisms (Table 3-1) it is therefore necessary to obtain the convection 

coefficient experimentally in accordance with the parameters described above, even from 

a machine tool point of view where forced convection takes place in the form of coolant 

spray over the cutting tool/workpiece area and in the form of air circulating across 

rotating parts such as cutting tool. 

3.3 Radiation 

Thermal radiation is a process where a body at a finite temperature emits thermal 

energy. Unlike conduction and convection, radiation requires no medium to transmit 

thermal energy as the energy travels through electromagnetic waves which can travel 

even through a vacuum. All objects with a temperature above absolute zero radiate 

thermal energy. Figure 3-4 shows an illustrative view of a radiation process. 
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  Figure 3-4: A hot object radiating to cold surroundings [106] 

An ideal radiator and absorber of thermal energy is termed as a black body, the name 

refers to the characteristic of non-reflecting light as being a perfect absorber.  The 

thermal energy released through radiation emission or gained due to radiation absorption 

is given by: 

)( 44

surfsrad TTAq ……………………. (3.3) 

where  

- qrad is the radiant emission (W),  

- A is the area of the emission (m
2
), 

- Ts is the temperature of the surrounding (°C),  

- σ is the Stefan-Boltzmann constant (5.676 x 10
-8

 W/m
2
/°C

 4
).  

- ε is the emissivity (dimensionless) 

3.3.1 Emissivity 

Emissivity is a radiation property that allows comparison of a real surface with 

reference to a black body and therefore it is a ratio of the radiation emitted by a real 

surface to that of a black body.  Emissivity depends of various factors such as surface 
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A, ε, Tsurf 

Ts 

Surroundings 
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Vacuum 



53 

 

temperature, surface finish, the type of surface and the wavelength and direction of the 

emitted radiation. 

The emissivity varies from material to material and surface to surface. In case of 

machine tools, structural elements will have a range of emissivities values that are 

dependent on their material and surface finish. Table 3-2 gives a list of emissivities for 

common materials [106].  

Material Emissivity 

Aluminium (heavily polished) 0.038 – 0.06 

Aluminium (heavily oxidised) 0.28 - 0.31 

Cast Iron (oxidised at 1100°C) 0.64-0.78 

Cast Iron (rough, strongly oxidised) 0.95 

Steel (roughly oxidised) 0.81 

Oil Based Paint – all colours 0.92 – 0.96 

Water 0.96 

Masking tape 0.96 

Table 3-2: Emissivities of various materials found in machine tools 

For example an oil based painted large cubic machine tool structure with surface area 

of  0.054m
2 

(L=0.3m, B=0.15m, H=0.2 ) and high emissivity of 0.96 heats up to 50°C 

with surrounding temperatures of 25°C during a machining operation. Using equation 

3.3, the radiation energy generated by that surface can be calculated as 0.017W (17mW) 

which is a negligible parameter to have any significant effect on the thermal behaviour of 

the machine as the working temperature ranges are not very high in machine tools. 

The discussion has looked into various modes through which heat transfer occurs 

within a machine tool i.e. through conduction, convection and radiation in response to 

various internal and external heat sources. In reality, the amount of radiated heat is 

negligible unless from direct sunlight striking the surface of the machine. However, it 

plays a very important part for thermography and the parameters must be understood for 

accurate measurement of temperature using this method. This research uses 

thermography to measure temperature flow in the machine structure using a thermal 
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imaging camera; and uses high tack masking tape on reflective surface for measurement 

accuracy. The remaining heat transfer modes result in the development of thermal 

gradients across the machine structure resulting in structural deformations. It may be 

difficult to obtain the accurate heat transfer measurements due to the complexity of 

machine tool structure since a smaller region may exhibit complex thermal characteristics 

depending on the part geometry and its surface finish and nature of temperature gradients 

around it. 

3.4 The effect of temperature gradients 

3.4.1 Linear thermal expansion 

The change in linear dimension of a material can be obtained by using equation 3.4. 

 .)( 12 LTTL ……………………. (3.4) 

where ΔL is the change in length due to temperature change ΔT. The coefficient of 

thermal expansion (α) does not vary significantly with temperature unless a material is 

subjected to higher temperatures (for materials relevant to this research). For instance, a 

commonly found material in machine tools is cast iron, this has a stable thermal 

expansion coefficient of 9µm/m.°C over temperature range of  21°C to 100°C, however 

the coefficient value increases to 11µm/m.°C for higher temperature ranges. Since limited 

differential temperature changes are encountered in machine tool applications, the 

coefficient of thermal expansions for materials are assumed to be constant in this 

research. Appendix A gives the list of the coefficient of thermal expansion of various 

metals found in machine tools. An Invar test mandrel and test stand was used in this 

research, this material may not be common in conventional machine tools due to its cost. 

3.4.2 Non-linear thermal distortions 

Complex material geometry such as fillets and protrusions behave differently to the 

heat flow which leads to the formation of local temperature gradients resulting in local 

distortion. This may also result in an angular error which may be amplified by large Abbe 

offsets. Figure 3-5 shows an illustration of an ideal machine tool component distortion 

when subjected to a heat input. This caused temperature gradients in the structure that led 

it to distort (bend and expand) while supported from the top surface.  
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Figure 3-5: An illustration of temperature gradients distorting a machine component 

Machine tools are constructed from a variety of materials and in response to 

temperature gradients (local or global), thermal characteristics of materials and interfacial 

thermal characteristics at structural joints may exhibit non-linear thermal behaviour. 

3.5 Thermal Contact Resistance (TCR): 

TCR is the phenomenon of resistance to conductive heat transfer through the interface 

of two solid surfaces in contact that results in a sudden temperature drop across the 

interface.  Figure 3-6 illustrates a microscopic view of two surfaces in contact shows 

areas of intimate contact and voids [106]. The interfacial resistance is a function of 

interfacial parameters that can alter the heat flow through the interface.  

 

Figure 3-6: General overview of a thermal resistance across joints 

These main parameters include contact pressure, number of contact points, size and 

shape of contact points, size of voids, type of interfacial fluid in voids, pressure of 

Distorted (bent) machine component 

due to temperature gradients 
Ideal machine component 



56 

 

interfacial fluids, hardness, flatness, modulus of elasticity, average surface finish and 

surface cleanliness of contacting surfaces. Similar case is of machine tools where the heat 

generated in the machine flows through mechanical joints and structural linkages which 

involve contacting surfaces. The combination of the parameters described above causes 

variation in the interfacial surface film characteristics which in turn produces resistance 

to the heat flowing across mechanical joints. [14, 104]. So far the TCR has been the term 

most appropriate to describe the phenomenon of how machine tool joints reduce heat 

flow, however the formulae for calculating heat flow use conductive heat transfer or 

Thermal Contact Conductance (TCC) which is the inverse of TCR. 

TCC is a complex phenomenon due to its dependence on various parameters therefore 

it is necessary to develop an understanding of the thermal behaviour across structural 

joints of the machine to improve modelling accuracy. Considerable amount of 

experimental and theoretical work has been reported in the literature for obtaining 

thermal contact conductance, however it is also reported that experimentally obtained 

results have been the most reliable [107]). Heat conduction across joints has been 

identified by Attia et al ([104] cited in white [3]) as being important in the role of heat 

flow from one machine tool structural element to another. Attia showed that the 1.5 metre 

long arm of a horizontal milling machine exhibited significantly different temperature 

gradients, and hence thermal deflection, according to the contact pressure distribution of 

the joint which is dependent on the parameters such as material properties, surface finish 

of the joint interface, machining type of the joint interface, flatness deviations at the joint 

interface, initial loading type (tightness of fixing bolts, and force applied to the joint), 

type of relative movement between the contacting components. 

This range in contact pressure was entered into a model calculating temperature 

differences using a finite difference method. The thermal deformation of the arm was 

then calculated using the finite element method. The range of thermal deformations 

resulting from varying distributions of the contact pressure was found to be at least 50µm 

for extension of the arm along its length, and approximately 60µm for vertical 

deformation due to bending. 

This result showed that the heat transfer across a machine tool joint cannot easily be 

predicted by viewing or testing the external attributes of the joint. Indeed, Attia ([104] 
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cited in white [3])  states that the range of heat flow across a joint in a machine tool can 

vary between 3.5 and 9.5 kW/m
2
/°C.   

Özişik [107] showed graphically the relationship between contact pressure, contact 

temperature, and surface roughness on the interface conductance of two stainless steel 

plates in contact from many empirical tests on heat exchangers. The graph in Figure 3.2 

has been reproduced and represents the contact conductance when two stainless steel 

plates are in contact ([Ozisik [107]  cited in White [3]). 

 

Figure 3-7: Effects of contact pressure, contact temperature and surface roughness on 

interface conductance n in stainless steel 

Figure 3-7 shows that surface roughness of the joint interface significantly affects heat 

conduction across a stainless steel joint. 

Thermal conductance across a joint can also vary significantly depending on the 

interface pressure. Tirovic et al [108] conducted a study of interface pressure 

distributions and thermal contact resistance of a large automotive bolted joint to 

determine the conductive heat dissipation accurately from a commercial vehicle disc 

brake. Tirovic tested the effect of the interface pressure at two positions, in the bolt 

proximity and between the bolts using same interface pressure and surface parameters. 
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The tests were conducted on the interface of a disc made of gray cast iron and the wheel 

carrier made of spheroidal graphite iron with surface roughness of Ra ranging from 1µm 

- 3.3µm.  The testing revealed that for an averaged interface pressure from 10MPa to 

55MPa, the thermal contact conductance varied from 3700W/m
2
/°C to 10200W/m

2
/°C 

respectively in the bolt proximity and from 2900W/m
2
/°C to 6350W/m

2
/°C respectively 

between the bolts. The result confirmed that the thermal conductance is much higher in 

the proximity of the bolt than between the bolts despite of same interface pressure and 

surface characteristics.  

This result confirmed that bolt pressure distribution along with surface parameters can 

cause a variable thermal conductance across the joint and that experiments should be 

conducted in order to have confidence in obtaining values for specific task. Since the 

studies that were conducted to obtain thermal conductance values are limited to the 

selected material and specific type of interface characteristics, the values are not readily 

transferable. Therefore experiments were conducted to obtain the thermal conductance 

values for the structural joints of the machine. 

The conductance values for the joints were obtained from materials that are commonly 

used in machine tools. Steel plates were used so that the values can be used for cast iron 

joints or steel-cast iron joints since the conductivity values for both steel and cast iron are 

very close (steel- 51.9 W/m/°C and cast iron – 52.329 W/m/°C). The clamping force data 

range used for the assembly joints was obtained from the machine drawings provided by 

the manufacturer. The TCC range obtained can be varied using curve fitting and 

extrapolation techniques for suiting them to most machine joints.       

3.5.1 TCC testing 

Experiments were carried out using two rectangular steel plates. Both plates had the 

same dimensions of 

Length = 0.0235m , Width = 0.145m , Height = 0.092m 

 The surface finish and flatness of the plate’s interfacing surfaces were given prime 

importance to ensure the reliability of the contact. This in essence can replicate machine 

tool joints where surface finish is given importance to increase precise assembly. The 

interface of the steel plates has an average surface finish value Ra of 2µm. Due to the 
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unavailability of the surface finish values from the engineering drawings of the machine 

under research, this value was selected from the machine engineering drawings from an 

Italian machine manufacturer. They use a surface finish of 3.2µm to assemble large 

structure such as column to the base. Ra of 0.8µm is used for the sliding joints and Ra of 

2µm is used for smaller high presicion joints. Therefore the selected value (Ra of 2µm) 

represents more appropriate for the joints of machine under research.  

 Surface flatness was measured at 14µm which is eliminated with standard clamping 

force and therefore has negligible effect on the heat flow. Four digital temperature 

sensors were embedded into the plates to ensure high accuracy measurement of the core 

temperatures. Figure 3-8 shows the test setup with two horizontally placed steel plates. 

Details of the temperature sensors will be addressed in Chapter 4. 

Figure 3-9 and Figure 3-10 show the surface flatness of both plates measured by a 

Ziess Coordinate Measuring Machine (CMM). 

:  

Figure 3-8: Test setup 

Interface 

Temperature sensors 
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Figure 3-9:  Surface flatness (Top plate)                      

   

Figure 3-10: Surface flatness (Bottom plate)  

The experiments were carried out in two phases, firstly with cleaned dry plates and 

then with oiled plates. In the first phase, plate-1 was heated to approximately 52˚C and 

plate-2 clamped immediately onto the heated plate-1 using four M14 bolts. The heater 

was turned off immediately after clamping plate-2. Contact pressure at the joint was 
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varied by using torque values ranging from 35Nm to 85Nm, which was considered 

typical for machine tool joints, applied to the fastening bolts to evaluate the effect of 

increasing contact pressure or clamping force on the thermal conductance value across 

the joint.  

The aim is to measure temperature during the very initial phase when the heat energy 

from the bottom plate starts to propagate into the top plate through the interface to cause 

an increase in the temperature of the top plate. Figure 3-11 is the illustration of sensor 

positions within the plates and shows the pictorial view of the testing procedure.  Figure 

3-12 shows the temperature profiles measured at both plates when the torque of 55Nm 

was applied.   

 

Figure 3-11: Testing procedure to obtain TCC 

 

Figure 3-12: Test conducted for 55Nm torque 

 The heat energy flowing from the lower plate to the top plate was calculated 

transiently using the heat transfer equation (3.5). This can be explained as the heat energy 

required by a body of a given mass and specific heat capacity to a temperature rise in a 

given time period.    
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tTTmCpQ /)( 12
………  (3.5) 

Where Q is the heat energy input in Watts, m is the mass, Cp is the specific heat 

capacity of the steel, (T2 – T1) is the change in temperature of the top plate and t is the 

time for the testing period. 

Prior to the experiments, it was important to obtain the convective heat transfer 

coefficient or heat loss to the air during heating and cooling phases of the body. This has 

influence on the surface of the body and results in decreasing the surface temperature.  

3.5.1.1 Testing procedure and calculations for the convection 

In order to obtain the convection coefficient value, one plate was heated up to 50˚C 

and suspended horizontally and allowed to cool to room temperature of 20˚C in a free 

convection mode. Figure 3-13 illustrates the testing procedure for the convection where 

the heated plate was allowed to cool down in a natural convection mode. Three 

temperature sensors were used. The sensor inside the plate and on the surface were used 

to obtain an average temperature of the body. The ambient sensor was placed adjacent to 

the plate to monitor ambient temperatures.  

Equation 3.5 was used to calculate the transient energy release Q (W) from the plate to 

the ambient. After obtaining the energy release, equation 3.2 was solved and used to 

calculate the convection coefficient h (equation 3.11). The calculations were performed 

transiently. The final convection coefficient value of 6W/m
2
/°C was obtained after 

averaging. This value was assumed to be constant through all transient TCC calculations.       

 

Figure 3-13: Testing procedure for the convection (h)   

As convection is always taking place, the total heat energy Q’ (equation 3.6) was 

obtained by adding equations 3.5 and 3.2. 
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)(/)(' 12 airsurf TThAtTTmCpQ ………… (3.6) 

Equation 3.6 is then used to calculate the energy transfer rate from the bottom plate to 

the top plate. Tsurf  in this case is the temperature from the top plate. The heat transfer 

through conduction does not affect the energy balance for the calculation of the heat flux 

and is therefore not required. The approach of temperature change that is dependent on 

the specific heat capacity of the material along with the energy released through 

convection was considered in equation 3.6. It should be noted that the equation 3.6 is 

used throughout the thesis with the similar approach as explained above. More details on 

the use of this equation can be found in chapter 4.  

After determining the heat energy transfer through the plates, the conductance through 

the joint was calculated using the approach of one dimensional steady conduction in a 

composite wall with contact resistance at the interface [106] 

Ak
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tpbp

2

2

1

1 1

)(
' .................... (3.7) 

Where Q’ is the energy in Watts, Δx1 and Δx2 are the length of wall 1 and wall 2 

respectively. k1 and k2 are the conductivities of bottom and top plate respectively and hc is 

the thermal conductance through the joint. Tbp  is the temperatures obtained from the 

sensor placed in the bottom plate and Ttp is the temperature obtained from the sensor 

placed in the top plate. All calculations were performed transiently (10s) for the time 

span shown in Figure 3-12 to account for the non-linear propagation of the energy from 

the bottom plate to the top plate.  

Both plates (Figure 3-8) have the same dimensions and are made of same material, 

therefore the value of conductivity and the length were considered to be the same.  

Δx1 and Δx2=Δx  

k1 and k2=k 

Solving for the thermal conductance across the joint (hc), the equation can be 

represented as equation 3.8.  
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'
 ………  (3.8) 

Calculations for the first two out of 12 iterations are presented. Ambient temperature 

during the test was 24°C. Calculations were performed using SI (m) units system. When 

considering convection during each iteration, an average of the start and end temperatures 

are used.   

1) Q’ = (2.45*473*(34.22-32.91))/10 + 6*0.01334*(33.57-24) 

Q’ = 153 W 

This (Q’) value is then used to obtain the thermal conductance value using 

equation 3.8. 

01175.0*153*2)91.3292.44(*52*01334.0

52*153
ch  

This gives hc = 1674 W/m
2
°C 

2)  Q’ = (2.45*473*(35.32-34.22))/10 + 6*0.01334*(34.77-24) 

Q’ = 127 W 

This (Q’) value is then used to obtain the thermal conductance value using 

equation 3.8. 

01175.0*127*2)22.3495.43(*52*01334.0

52*127
ch  

This gives hc = 1765 W/m
2
°C 
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Figure 3-14: TCC graph obtained for the test conducted with 55Nm torque 

Figure 3-14 shows the graph of the obtained values of the TCC for the test conducted 

for 55Nm torque. The plot shows a fluctuating trend of TCC values, the variation of 

which is suspected to be due to small local thermal stresses such as bending of plates 

resulting in variation in pressure and therefore the conductance. These transiently 

obtained TCC values were averaged to obtain a single value of 1956W/m
2 

°C (for 55Nm 

clamping force) for use during modelling the machine (Chapter 4) 

Clamping forces were calculated using equation 3.9 (Euler [109]).  

KDTPi / …………………….  (3.9) 

Where Pi is the clamping force, T is the torque applied, K is the torque coefficient and 

D is the bolt nominal diameter. The range of torque values were obtained from machine 

assembly drawings. K can be calculated using equation 3.10, [109] 

DcDpDtpK /]}625.0[]sin/)sin75.0(5.0[]/5.0{[  …….. (3.10) 

Where 

- D  Bolt nominal shank diameter 

- p Thread pitch (bolt longitudinal distance per thread) 

- α Thread profile angle = 60°/2 

- µt Thread coefficient of friction 

- µc Collar coefficient of friction 
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3.5.1.2 Data used for calculating the clamping force 

The data used to obtain the torque coefficient (K) is shown below. (Euler [110]). The 

value of K was calculated as 0.24 using equation 3.10. 

D = 13.026 mm 

P = 1.5mm (fine thread) 

α = 30° = 0.52 rad 

π = 3.142 

The thread coefficient of friction was assumed to be  [111] 

µt = 0.14 for dry conditions (averaged)  

0.12 for oiled conditions (averaged) 

The collar coefficient of friction was assumed to be  

µc = 0.20 for dry conditions (averaged) 

0.14 for oiled conditions (averaged) 

 

In phase 2, the test was repeated with oil applied to the plate’s contacting surfaces and 

bolt threads to modify the condition from dry to wet or from clean to contaminated. As 

expected, an increased trend of conductance was observed with increasing torque and 

from dry to oiled conditions. After calculating the torque coefficient for both dry and 

oiled conditions, the clamping force (Pi) was calculated using the equation 3.9. Figure 

3-15 shows the clamping force and thermal conductance profiles in dry cleaned and oiled 

conditions.  

 

Figure 3-15: Clamping force and conductance values in cleaned dry and oiled conditions 

Table 3-3 show the values obtained in dry conditions and oiled conditions for  thermal 

conductance values and the clamping forces across the joint. 
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Torque 

 

Clamping forces Pi (KN) for 

four M14 bolts 

 

Thermal conductance 

(W/m
2
/°C) 

T cleaned dry Oiled cleaned dry Oiled 

35Nm 44 56 1367 2061 

45Nm 57 73 1653 2490 

55Nm 70 89 1956 2746 

65Nm 82 105 1990 2800 

75Nm 95 121 2134 3049 

85Nm 107 137 2231 3106 

Table 3-3: Experimental values for clamping forces and conductance values at different 

torque ranges  

The increasing trend of the thermal conductance values sees a sudden drop at the 

torque of 65Nm and since this behaviour is repeated in both conditions (dry and oiled) it 

is considered to be the slip of the bolt threads. The approximated value at 65Nm can 

however be obtained using curve fitting and extrapolation techniques. Figure 3-16 and 

Figure 3-17 shows two curve fits techniques (pure and double exponential) to predict 

values beyond the tested range due to exponential nature of the curves. A value can be 

selected as an average of both.  The decrease in the thermal conductance values with the 

increasing torque was expected as the state of the heat flow stabilization was achieved. 

 

Figure 3-16: Clamping force and thermal conductance values with curve fits (dry) 
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Figure 3-17: Clamping force and thermal conductance values with curve fits (oiled) 

This discussion has given an understanding of the structural joints characteristics on 

which the heat transfer depends. In this research, the obtained thermal conductance 

values will be applied at the joining surfaces of the machine CAD model assembly for 

FEA. The application will be detailed in chapter 5.  

3.6 Determination of convective heat transfer coefficients during tool rotation (h)  

To ensure the accuracy of the FEA simulation results it was necessary to devise an 

effective strategy to calculate the convective heat transfer coefficient (h) due to airflow 

across test mandrels or generic tooling during spindle rotation. This convection 

coefficient was used during heating cycle simulations to represent the temperature loss at 

the rate expressed by the coefficient value. A thermal imaging camera was used to view 

the surface temperature variation around the spindle housing and test mandrel. 

3.6.1 Testing procedure 

The thermal imaging camera was placed at a position where the test mandrel and other 

machine structure were visible (see Figure 3-18). Masking tape was applied to the 

mandrel to increase the emissivity to a known value of 0.96. A temperature sensor was 

positioned adjacent to the test mandrel to measure the ambient temperature change during 

heating and cooling phases.  The spindle was rotated at 8000 rpm for one hour and 

stopped for a cool down period.  The heating and cooling cycle data was recorded with a 

thermal imaging camera (1Hz);  

Figure 3-19 shows a thermal image of the temperature distribution during spindle 

rotation. 
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Figure 3-18: Thermal imaging of spindle 

and carrier 

 

 

 

Figure 3-19: Thermal imaging of rotating 

spindle 

 

 

Figure 3-20: Temperature measured at the test mandrel upper surface 

Figure 3-20 shows the temperature from the surface of the test mandrel against time. 

The plot shows two perspectives; the first is targeted towards the cause of the temperature 

rise at the test mandrel’s upper area as explained in section 4.3.3.2.1.  The other 

perspective is to specifically target the convection procedure. The heat convects at a high 

rate during the tool rotation which limits the increase in test mandrel temperature. It can 

be seen that the temperature starts to increase after the spindle is stopped due to the 

reduced convective heat loss. It is assumed that the actual heat flow into the mandrel is 

the same for a short duration after stopping the spindle to enable a calculation of the 

change in convection coefficient.  

Thermal imaging camera 

Temperature 

measured at the 

Test mandrel 

upper area 

 

Spindle stop 
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3.6.1.1 Calculations for convective heat transfer coefficient 

Figure 3-21 shows the selected section of the test mandrel model. The energy entering 

the test mandrel from the spindle was calculated using equation 3.5 transiently using the 

surface temperatures from the test mandrel rotating at 8000rpm.   

tTTmCpQ /)( 12 .............. (3.5) 

The test mandrel was made of the material Invar The selected section had the volume 

of 162573 mm
3
 that revealed the mass of 0.0013tonnes. After obtaining the energy (Q) in 

Watts, this energy can be related to the energy (qconv) in equation 3.2 therefore equation 

3.2 can be transformed for calculating convection h as shown in equation 3.11  

)11.3(..............................
)( airsurf

conv

TTA

q
h

 

Where A is the exposed area of the test mandrel (13987mm
2
). Tfluid in this case is the 

temperature of the air circulating across the test mandrel (Tair). Again the values of h 

were averaged from which a value of 92W/m
2
/ C was obtained for the spindle running at 

8000rpm which was applied to the test mandrel during the heating cycle simulations 

conducted for the 8000rpm. 

 

Figure 3-21: Test mandrel selected area for convection calculations 

Although the convective heat transfer coefficient of 6W/m
2
/ C was obtained using 

steel plates, a separate test was conducted as a secondary validation for calculating h on a 

complicated geometry i.e. the machine structure in static conditions (i.e. during the 

Selected area 
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cooling cycle) for which an additional ambient sensor was placed adjacent to the column. 

The spindle and carrier structures used the same ambient sensor discussed in the previous 

section. The machine was run for a heating cycle and then stopped for a cool down and 

‘h’ values were calculated for the cooling cycle. The convection values of approximately 

9W/m
2
/ C and 2W/m

2
/ C were obtained for the spindle and carrier respectively, averaged 

to 6W/m
2
/ C. This value was also considered for the test mandrel for the cooling phase 

simulations. The lower value obtained for the carrier corresponds to the slower cooling 

process which is suspected to be due to the presence of air pockets within the complex 

geometry where heat confinement causes lower cooling rate of the structure. Separate 

calculations were performed to obtain the ‘h’ value for the column using the column 

ambient sensor. The average of two surface sensors on the column revealed a value of 

5.7W/m
2
/°C which was rounded up to 6W/m

2
/ C and applied to the column. Since the 

secondary validation confirmed the value of ‘h’ therefore the base and table structures 

were also applied the similar ‘h’ value. Figure 3-22 shows the positions of the surface and 

ambient sensors used to calculate the ‘h’ values for the spindle, carrier and column 

structures. The base sensor shown is used  

 

Figure 3-22: Position of the surface and ambient sensors around the machine 

3.6.2 Summarizing convective coefficient ‘h’ tests 

Various tests for the convective heat transfer coefficient ‘h’ were conducted. Firstly 

‘h’ was calculated for the rotating spindle. The testing at 8000rpm revealed convection 
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value of 92W/m
2
/°C. A separate test was also conducted to determine the convection 

value for the rotating test mandrel at 4000rpm using the same procedure which revealed 

the convection value of 58W/m
2
/°C (chapter 4). These values are only used at the test 

mandrel selected area shown earlier and during the heating cycle simulations only 

(chapter 4).  

Convection values were also calculated for the machine in a static mode. Various tests 

revealed an overall value of 6W/m
2
/°C. This value is applied to the full FEA model 

during both heating and cooling cycles apart from the test mandrel where two different 

‘h’ values were applied only during the heating cycle. 

It should be noted that these convection values were applied to the FEA model as a 

uniform parameter i.e. the convection was assumed to be constant throughout the 

simulation time. 

3.7    Implementation of the research 

This research aims to study the thermal behaviour of the machine tool followed by the 

software based FEA, an offline method to predict the thermal deformations in the 

machine tool structure. The Computer Aided Drawing (CAD) models of the machine tool 

structural components were created from manufacturer’s 2D engineering drawings using 

the FEA software to avoid importing models from other CAD packages due to problems 

such as geometrical incompatibility issues. The research was carried out on a three axis 

Cincinnati Arrow 500 Vertical Machining Centre (VMC) located at the University of 

Huddersfield shown in Figure 3-23.  
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Figure 3-23: Cincinnati Arrow 500 Vertical Milling Machine  

The machine CAD assembly was generated and used as a virtual machine and 

simulated using FEA software subject to internal and external temperature sources to 

increase modelling accuracy. The obtained TCC values were applied at the model joint 

surfaces. The machine dynamics is not considered in this research therefore the sliding 

surfaces of the machine were applied an averaged TCC value of approximately 2000 

(W/m
2
/°C) and is an assumption based on the contacting surface area of the bearings with 

pre-load and small amount of lubrication. The magnitude of the heat flowing across these 

joints is small and therefore inaccuracy in the assumed value can be tolerated for this first 

phase of the work. The affect of varying TCC across a joint is shown in assembly 

benchmark conducted in chapter 4. However in future experimental work may be needed 

to obtain accurate TCC values for sliding joints.  Chapter 4 details the modelling 

approach used during the development of the individual CAD models and the final 

assembly of the machine. The following chapters detail the practical study conducted on 

the machine when subject to internal and external environmental temperature 

fluctuations. The online test results were then used to obtain the required parameters for 

the offline simulation. 

Internal heating tests were carried out at different spindle speeds during which the 

machine thermal behaviour was investigated. The spindle, associate bearings, spindle and 

axis hold motors; and belt drive are the primary internal heat sources on this machine. 

Dynamic movement of machine axes is not considered in this research activity primarily 

because most precision machine tools employ linear scales for position feedback, 
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eliminating the mechanical drive elements from the feedback loop dramatically reducing 

associated thermal errors. The rolling element guide ways were modelled to complete the 

main machine structure but similarly, negligible heat is generated by them.. The heat 

dissemination through the structure due to spindle heating is of prime importance; 

however an additional issue is the structural temperature increase due to the increase in 

local ambient temperature caused by the machine operation.  

3.8 Summary of the chapter 

This chapter looked at the various modes of heat transfer mechanisms that occur in a 

machine tool structure i.e. conduction, convection and radiation. The major heat transfer 

mode is through conduction where the heat flow occurs internally. Convection is 

associated with the bi-directional heat flow between the machine structure and external 

fluid, in this case the surrounding air. Convection is a complex process and is dependent 

on various factors. Radiation can be considered to be negligible in the context of energy 

flow but the associated parameters are important for thermography.  

Temperature gradients in machine tool structures depend on various factors that 

include properties of the material, modes of heat transfer and thermal characteristics of 

structure joints. Temperature gradients result in thermal distortions of the structure which 

may be linear or non-linear depending on various parameters.  Non-linear distortions 

occur when uneven local temperature gradient occur due to a variety of structural and 

joint thermal characteristics such as TCR that is responsible for controlling the heat flow 

across joints.  Thermal contact conductance values, convective heat transfer value for the 

rotating tool and for static machine were experimentally obtained. 

The scope of the research has been presented along with the procedure that will be 

followed to carry out tasks. Typical internal heat flow through a 3 axis VMC has been 

illustrated and the importance of ambient temperature rise has been discussed. Similarly 

the existence and importance of external environmental fluctuations are given and the 

illustration of the environmental heat flow directions is shown. The creation of the 

machine structural components CAD models for FEA and the experimental thermal error 

testing and offline error predictions using FEA are detailed in chapter 4.  
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CHAPTER - 4  

4 MACHINE TOOL INTERNAL THERMAL TESTING AND OFFLINE 

MODELLING  

The previous chapter discussed the various modes of heat transfer mechanisms used in 

this research which are present in a machine tool. This chapter will discuss the CAD 

modelling of the VMC to perform a FEA. This is followed by the experiments conducted 

to obtain the thermal behaviour of the machine due to the excitation of internal heat 

sources. The behaviour of the machine was monitored using standard precision metrology 

equipment and methods described in the ISO 230 part 3 standard for thermal testing. The 

experimental data was then used to obtain the required parameters to conduct FEA 

simulations and analyze the thermal behaviour.    

Dassault Systemmes Simulia Abaqus/CAE 6.7-1 FEA [112] simulation software was 

selected due to its ability to handle large geometrically complex problems. It allows 

development of user programmable subroutines for carrying out analyses with complex 

boundary conditions such as programming temperature dependent heat fluxes and spatial 

boundary conditions that includes varying environmental temperatures [113] 

4.1 Benchmarks 

Benchmark simulations were completed to validate the correct application of the 

thermal parameters and determine the accuracy of the thermal simulations compared to 

hand calculations for different mesh types and densities. 

4.1.1 Abaqus heat transfer benchmarks 

4.1.1.1 Benchmark (Single Block) 

Part of this research deals with the prediction of thermal behaviour in a 3 axis VMC 

using FEA software. It is necessary to qualify the best parameters settings and simulation 

methodology using the proposed FEA software to get an optimised prediction capability 

and accuracy of the analysis therefore benchmark tests and trials are undertaken to use as 

points of reference. A model of a steel block with dimensions of 100mm x 40mm x 
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40mm was created to compare the behaviour of a block in the FEA software when 

subjected to a calculated heat flux input.  

The heat transfer was simulated to confirm the mathematical relationship explained in 

chapter 3, equation 3.6. 

)(/)(' 12 airsurf TThAtTTmCpQ …….  (3.6) 

The software provides the heat transfer feature where an object is simulated for its 

thermal behaviour. Abaqus provides three types of heat loads to an object. 1) Surface heat 

flux is the input applied to a surface of a given area. 2) Body heat flux is the input flux 

applied to a body disseminating heat within itself or to the other material attached to it. 

For example bearings can be considered as a body of a given volume that disseminates 

heat into the spindle. 3) Concentrated heat flux is the input flux targeted to specific 

points. Body heat flux (BHF) was used throughout this research as a convenient way to 

represent the machine tool heat sources based on the measured surface temperatures.  

Two benchmarks were conducted using a single block. In the first benchmark, 

transient analysis was performed using a constant BHF value to predict the required 

temperature increase for the steel block that is expected to rise its surface temperature by 

at least 5°C (from 20°C to 25°C) over a one hour period. The first benchmark assumes 

that no convection is taking place. In the second benchmark, transient analysis is 

performed with a constant BHF value and with natural convection and ambient 

conditions considered. The first benchmark will confirm the capability of the 

mathematical relationship shown in equation 3.6. The second benchmark will represent 

the real testing condition where boundary conditions such as surface convection and 

ambient temperatures vary surface temperatures.           

4.1.1.2 Software modelling and FEA 

This section will detail the FEA heat transfer benchmark methods used. The material 

properties of the steel block are listed in Appendix A.  

A transient heat transfer FEA simulation was setup with the total simulation time set 

to 1 hour (3600s) with one second increments. Boundary conditions were not considered.  
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Equation 3.6 is the main equation used to obtain BHF values. The total heat energy Q’ 

is first calculated in Joules which is then converted into Watts by dividing with the 

analysis time. After obtaining the value of Q’ in Watts, the value is divided by the 

volume of heat source to obtain BHF (W/m
3
) for a particular heat source which in this 

case is the block itself.  The calculations performed were based on the SI (mm) units 

system of Abaqus. 

4.1.1.2.1 Body Heat Flux (BHF) calculations (Single Block) 

Equation 3.6 is the main equation used to obtain BHF values.  

)(/)(' 12 airsurf TThAtTTmCpQ ………  (3.6) 

For the first benchmark the calculations data used is shown below.  

Mass of block    = 0.001249 tonnes 

Temperature difference (T2-T1)  = 5°C 

Total time     = 3600s 

Exposed area of the block  = 19200 mm
2
 

By applying these values in equation 3.6, the value for the Q’ can be calculated. 

Calculations for the first two out of 3600 iterations are presented. 

1) Q’ = (0.001249*473000000*(20.00139-20))/3600 + 0.006*19200*(20-20) 

Q’ = 820.39 mW 

To obtain the BHF value that could raise the body temperature to 5°C, the value of Q’ 

is required to be divided by the volume of the heat source which in this case is the 

volume of the block itself. Therefore using Q’ from the first iteration the value of BHF 

can be obtained as 

 = 820.48 mW / 160000 mm
3 

which gives the BHF value as  

Q’ = 0.005127451 Q’ = 0.005127 mW/mm
3
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The second benchmark calculation was performed using the similar method however 

this time the boundary conditions in terms of surface convection and ambient conditions 

were considered. Ambient temperature around the block was assumed to be constant at 

20°C over the period of 1 hour simulation. The convection from the surface of the block 

was considered 6W/m
2
/°C as previously calculated (Chapter 3). Calculation for the first 

out of 3600 iterations is shown below. 

1) Q’= (0.0012*473000000*(20.00278-20.00139))/1 + 0.006*19200*(20.00139-20) 

Q’ = 820.6 mW 

Following the similar approach as used in the previous benchmark, the value of Q’ 

was divided by the volume of the heat source i.e. the block itself.  

 = 820.48 mW / 160000 mm
3 

which gives the BHF value as  

Q’ = 0.005127451 

Since the BHF values were expected to vary, an averaged value of the BHF was 

obtained. 

 

4.1.1.2.1 FEA benchmark simulation (Single block) 

For first benchmark simulation, the BHF value was applied to the FEA model for 

transient analysis. An initial temperature of 20°C was applied to the block, boundary 

conditions were not considered.  Figure 4-1 shows the temperature through the block. 

The graph in Figure 4-2 shows temperature from the selected node which confirms the 

temperature increase from 20°C to 25°C and therefore validates the mathematical 

approach. NT11 refers to the nodal temperatures and indicates the temperature increase 

of the block from 20°C to 25°C over a one hour period. 

Q’ = 0.00513 mW/mm
3
 

Q’ = 0.0069 mW/mm
3
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Figure 4-1: Simulated temperature for the first single block benchmark 

 

Figure 4-2: Nodal temperature showing temperature increase from 20°C to 25°C 

For the second benchmark simulation, the BHF value was applied in to the FEA 

model for transient analysis. Boundary conditions were applied to the model in the 

software. An initial temperature of 20°C was applied to the block and after defining the 

parameters the FEA simulation was carried out. Figure 4-3 shows the temperature 

through the block with gradients. These gradients are present due to convection from the 

surface of the block. Figure 4-4 shows the temperature profile with an exponential decay 

trend. The temperature increased from 20°C to 24.84°C. This benchmark confirms that 

the expected final temperature is predicted with over 99% accuracy and therefore 

validates the use of equation 3.6 for obtaining required BHF values for simulations.   

Selected node 

Total simulation time 
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Figure 4-3: Simulated temperature for the second single block benchmark 

 

Figure 4-4: Nodal temperature showing temperature increase from 20°C to 24.84°C with an 

exponential decay trend 

4.1.1.3 Benchmark (Assembly) 

This benchmark is aimed for two objectives,  

1) Confirming the reliability of the mathematical relationship used to calculate 

BHF values for predicting temperature flow in an assembly and to simulate 

heat distribution originating from those complex or rotating structures where 

thermal sensors are difficult to install. For example, spindle bearing 

temperature cannot easily be measured directly therefore the data has to be 

obtained from the external surface of the spindle carrier/housing.  

2) To observe the behaviour of the TCC on the heat flow across the joint. 
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The assembly benchmark simulation was carried out using the steel blocks, as shown 

in Figure 4-5. The middle block had the dimensions of 40mm x 40mm x 40mm. Both 

attached blocks had dimensions of 40mm x 40mm x 20mm.  

 

 

  

Figure 4-5: Created assembly in Abaqus 

New body heat flux values were calculated for the middle block which is considered 

as a heat source and is expected to raise the temperature of the attached blocks by at least 

5°C. Similar procedure was used to calculate the BHF as used for the single block i.e. the 

boundary conditions (convection coefficient of 6W/m
2
/°C and ambient temperature of 

20°C for all blocks) followed by the use of equation 3.6. Since similar conditions are 

used as used for the second single block benchmark, the BHF value is expected to raise 

the temperature of side blocks with the target magnitude of 24.84°C.   

4.1.1.3.1 Body Heat Flux (BHF) calculations (Assembly) 

The energy required to raise the temperature of side blocks was calculated using the 

full volume i.e. all three blocks. To obtain the BHF, the volume of the heat source which 

in this case was the middle block was used to divide the obtained energy (Q’) to represent 

the BHF generated by the middle block. The calculation data and calculations for the first 

iteration are shown below. 

Mass of blocks   = 0.000999 tonnes 

Temperature difference (T2-T1) = 5°C (00139°C for the first iteration) 

Total time     = 3600s (for the first iteration, the time is 1s) 

Convection coefficient (h)  = 0.006 mW/mm
2
/°C 

Attached 

blocks 
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Exposed area of the middle block = 6400 mm
2 

Ambient air temperature  = 20°C 

Exposed area of side blocks  = 4800 x 2 = 9600 mm
2
 

Total area of blocks   = 16000 mm
2
 

By applying these values in equation 3.6, the value for the Q’ is 

Q’ = 656.3804 mW 

To obtain the BHF value, the value of Q’ is required to be divided by the volume of 

the heat source (middle block). 

 = 656.3804 mW / 64000 mm
3
 which gives a body heat flux value of  

 

Using the similar approach as used in single block benchmark, an averaged BHF value 

was obtained. 

 

For this benchmark a very large TCC value was assumed and applied across the joint 

surfaces (1.e
8  

W.m
2
.°C) in order to achieve negligible resistance to the heat flowing 

through the assembly joints to observe if the calculated heat load can generate the 

targeted temperature of 24.84°C. 

 

 

Figure 4-6: Simulated temperatures in assembly with very large TCC (1.e
8 
W/m

2
/°C) 

 = 0.010256 mW/mm
3
 

 mW/ mm
3
 

 

Attached 

blocks 

Q’ = 0.014 mW/mm
3
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The result (Figure 4-6) confirmed the application of the simulation technique to 

thermal assemblies giving a good correlation within 0.04°C. This relates to a thermal 

expansion error of just 0.4µm/m which is negligible for this application.  

4.1.1.3.2 Effect of thermal contact conductance 

The initial assembly benchmark had a large TCC value therefore additional 

benchmarks were conducted to observe the behaviour of the assembly with the lowest 

measured contact conductance value (1300W.m
2
.°C - Chapter 3)  and a higher assumed 

value (10000W.m
2
.°C) applied to the joints. These benchmarks were specifically targeted 

towards those machine joints where the contact conductance value is not known with a 

high level of certainty. The simulated temperature drop due to both contact conductance 

values at the joint were observed to ensure the level of achievable accuracy prediction 

based on the calculated body heat flux value. The results are shown in Figure 4-7 and 

Figure 4-8. Same constant BHF value was used in this benchmark as used previously for 

the assembly benchmark. Selected node locations are visible in Figure 4-7. Table 4-1 

shows the temperatures at selected middle and corner nodes obtained at different values 

of TCC. The predicted surface temperature on the attached blocks was found to be within 

0.1°C of the expected 24.84°C. This is also shown graphically in Figure 4-9. Although a 

slightly larger error, the effect on distortion is still negligible being just 1µm/m. 

  

Figure 4-7: Simulated temperatures in assembly with lowest contact conductance 

(1300W/m
2
/°C) 

Corner node 

Middle node 
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Figure 4-8: Simulated temperatures in assembly with an assumed higher contact conductance 

(10000W/m
2
/°C) 

Thermal contact conductance 

(W/m
2
/°C) 

Middle node temperature 

(°C) 

Side node temperature 

(°C) 

1300 24.94 24.75 

10000 24.89 24.80 

1.e
8
 24.88 24.80 

Table 4-1: Temperature at selected nodes of the model simulated with different values of 

thermal contact conductance 

 

Figure 4-9: Temperature trend comparison between the middle and side nodes at different 

TCC values   

This section detailed heat transfer benchmarks where the method of calculating body 

heat flux value is confirmed. Assembly benchmarks confirmed the compromise on the 

1300 10000 1e
8
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accuracy of thermal contact conductance value will still result in more than 90% 

temperature correlations.    

4.1.2 Abaqus mesh benchmark testing 

This benchmark aims to compare the results of two type of meshing which Abaqus 

normally uses to discretize a structure in order to have confidence in the accuracy of the      

predicted results based on the fact that hexahedron (linear brick) elements are well known 

to reveal better FEA accuracy. A linear brick hexahedron element has all surfaces at 90° 

angles (right angles) and this cause them to be evenly distributed within structure 

compared to other element types which may have surfaces at angles other than 90° and 

may have a risk of element surfaces being skewed. It is anticipated that both meshing 

techniques will give similar results, however due to the above explained reasons, the 

prediction accuracy may differ and therefore this benchmark must compare them. A 

negligible difference will justify that it may not be required to simplify complex 

geometry by re-sectioning in order for it to be able to mesh using hexahedron elements as 

this is a time consuming procedure and can be difficult to apply on imported models from 

CAD packages. This research aims to maintain simplicity in the method for thermal error 

prediction. 

Two popular meshing techniques, 8-node linear brick (hexahedron) and a 4-node 

linear tetrahedron were compared in this benchmark. Hexahedron meshing is a default 

selection in Abaqus CAE and is mainly applied to mesh simple models, however the 

tetrahedron meshing technique is used for structures with complex geometries where 

hexahedron meshing is not applicable or often fails. By default the software selects the 

meshing method for a model; therefore both meshing techniques can be used to mesh the 

machine models where applicable. A simple block was used to perform benchmark tests 

to compare the performance of both meshing techniques to predict the thermal error and 

review the error difference. 

4.1.2.1 Hexahedron meshing 

The same steel block model with dimensions of 100mm x 40mm x 40mm was 

simulated after discretizing using the hexahedron meshing technique. Approximate 

element size was chosen to be 4mm (seeding) that discretized the structure into 2500 
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linear hexahedral elements. The block was allowed to displace in only one axial direction 

therefore all other axial movements and rotational movements were constrained. The 

same thermal data was used in this benchmark as previously used i.e. thermal 

displacements of the block were monitored when subjected to a 5°C change over an hour. 

Thermal expansion of 5.85µm is expected for this block which is calculated using the 

equation 3.4.  Figure 4-10 shows the thermal deformation of the block when subjected to 

5°C temperature change.  A corner node was selected to measure the overall 

displacement of the block and was observed to be 6.073 m revealing a difference of 

0.223µm from the expected which is considered negligible for this research. This value 

will be compared with the displacements shown by the tetrahedron meshing method.  

 

 

Figure 4-10: Thermal deformation of the block (Hex meshing) 

4.1.2.2 Tetrahedron meshing 

Using the similar method, the block was simulated with the tetrahedron meshing 

technique.  The approximate element size was also chosen to be 4mm (seeding) in this 

benchmark that discretized the structure into 17814 linear tetrahedral elements. Figure 

4-11 shows the thermal deformation of the block when subjected to 5°C change. The 

overall displacement at the corner node was measured to be 6.113 m revealing a 

negligible difference of 0.263µm compared from the expected.  

 

 

Constrained 

face 

Selected node 
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Figure 4-11: Thermal deformation of the block (Tetrahedral meshing) 

The displacements shown by both hexahedron (6.073µm) and tetrahedron (6.113µm) 

methods were then compared with each other and found to be very close in prediction 

with a negligible difference of just 0.04 m which justifies the confidence to use both the 

default meshing techniques in Abaqus and can avoid time consuming structural 

simplifications to achieve hexahedron meshing. 

In this section the heat transfer benchmarks confirmed the applicability and accuracy 

of the approach to individual models and assemblies resulting in temperatures within the 

accepted correlation ranges. The following sections detail the experimental testing and 

FEA simulations.  

4.2 Machine CAD modelling  

Computer resource usage, modelling time and the time required for the analyses 

(simulation time) were given a high priority when creating models. Complex geometry 

details of machine structural elements such as chamfers, fillets, bolt holes etc, which do 

not contribute significantly to the overall thermal behaviour were either simplified or 

removed where necessary. Contrary to modifying existing 3D models, in this case where 

2D drawings were being interpreted to generate the 3D models, this can reduce modelling 

effort.  These simplifications help reduce computer analysis time. 
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face 

Selected node 
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4.2.1 Symmetry 

The machine structure was found to be symmetrical in the X axis direction, further 

inspection revealed that the internal heat sources such as bearings, motors and belt drives 

were also symmetrical. This allowed the creation of a halved CAD model assembly as the 

temperature gradients have the tendency to evenly disseminate into the structure in this 

direction.  

The assembly of the machine is shown in Figure 4-12 and Figure 4-13. Structural parts 

are annotated where easily visible. Symmetry can be easily identified. The created 

individual CAD models are presented in Appendix B. 

 

Figure 4-12: Assembly of the machine (view 1) 

Spindle belt 

drive section 

Carrier head 

Bearings 

Test mandrel 

Table 

Saddle 

Bed 

Spindle 
Column 

Z  axis motor bracket 

X Y 

Z 

Symmetry 



89 

 

 

Figure 4-13: Assembly of the machine (view 2) 

4.2.2 Machine FEA modelling setup 

4.2.2.1 Meshing and applied constraints 

The model was meshed using tetrahedral, hexahedron and hexahedron dominated 

(hexahedron/wedge) elements where applicable. A higher density mesh was chosen for 

the spindle and carrier compared to the rest of structure to ensure sufficient nodes for data 

extractions and comparisons which is discussed in chapter 7. 

The machine model was applied with the symmetry constraint at surfaces from where 

the machine was halved. The base was fixed from the bottom of the supports using 
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displacement constraint. Boundary conditions were applied with measured initial and 

ambient (sink) temperatures explained in later sections. Figure 40 shows the meshed 

assembly of the machine. The meshing information is given in Table 4-2. Figure 4-15 and 

Figure 4-16 shows the information about the applied symmetry and displacement 

constraints position respectively. 

 

Figure 4-14: Meshed model of the machine 
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Structural part Elements  Nodes Meshing type 

Column 11110 3496 Tetrahedron 

Carrier 16040 4113 Tetrahedron 

Spindle 16488 3772 Tetrahedron 

Base 10238 3155 Tetrahedron 

Bearings 432 760 Hexahedron 

Table 6186 1735 Tetrahedron 

Saddle 774 267 Tetrahedron 

Test mandrel 351 560 Hexahedron 

Belt drive section 622 195 Tetrahedron 

Carrier belt drive 66 208 Hexahedron 

Spindle belt drive 222 532 Hexahedron 

Guideway 208 477 Hexahedron 

Motor support 20 66 Hexahedron 

Carriages 352 648 Hexahedron 

Motor heat plate 40 126 Hexahedron 

Total 49919 20418  

Table 4-2: Machine FE model meshing information 

       

 

Figure 4-15: Location of the applied symmetry constraint  

Symmetry constraint 
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Figure 4-16: Location of the applied displacement constraint 

4.2.2.2 Location of modelled heat sources in the FE model 

Figure 4-17 shows main regions of the FE model considered as heat sources for 

applying body heat fluxes defined in later sections. 

 

Figure 4-17: location of modelled heat sources in the FE model 
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4.2.2.3 Computer specifications 

All simulations are performed as transient thermal simulations. The computer used to 

perform them had main specifications as follows 

Processor   = AMD Phenom 9950 Quadcore 2.60 GHz 

RAM   = 4.00GB 

Graphics  = NVIDIA GeForce 9400 GT 

Operating system = Windows XP 32bit  

4.3 Thermal study of the machine 

The study commenced by monitoring thermal behaviour of the machine by rotating 

the spindle at its maximum speed of 8000rpm for a pre-determined time period. The 

maximum speed was selected to exhibit the machine’s maximum thermal behaviour. The 

data was recorded using the metrology equipment as follows:     

- Dallas DS18S20 temperature sensors 

Unlike thermocouples, these temperature sensors have an advantage of 

communicating serially on a 1-wire bus system which significantly reduces the cabling 

and interface effort. These sensors can be applied individually but in this work also on a 

unique flexible circuit board, shown in Figure 4-18, enabling a convenient application of 

many sensors at a minimum spatial resolution of 15mm while handling surface 

irregularities with bend radii as little as 1mm. The sensors have a measuring range from -

55°C to +125°C, an accuracy of ±0.5°C from -10°C to 85°C and resolution of 0.063°C.  

[3, 114]. 

 

Figure 4-18: Temperature sensors with flexible circuit board 
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- Flir ThermaCAM S65 Thermal Imaging Camera 

Thermal imaging is a non-contact measuring technique effectively used for measuring 

temperatures of rotating parts and coverage of large surface areas as well as providing 

much greater detail of thermal gradients. The camera used in this research has a thermal 

sensitivity of 0.08°C and a quoted accuracy of ±2°C however, much higher accuracy 

approaching ±0.2°C can be achieved with careful set-up [114]. Figure 4-19 shows the 

thermal imaging camera. 

 

Figure 4-19: ThermaCAM S65 thermal imaging camera 

- Non Contact Displacement Transducers (NCDTs) 

These sensors works on the eddy current principal which enables non-contact and 

therefore vibration and wear free measurement of rotating objects that can be either 

ferromagnetic or non-ferromagnetic. This sensor is ideal for harsh industrial 

environmental due its immunity to dirt, oil, dust, moisture, interference fields etc. The 

sensor has the measurement range of 0-1mm and resolution of 0.1µm.  

4.3.1 Machine testing 

The machine was tested for a one hour heating and one hour cooling cycle. This was 

chosen to allow thermal error to occur but short enough to represent an efficient test for 

the project. This test is referred to as Basic Machine Operation in this thesis.  
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4.3.2 Basic machine operation at 8000rpm 

The machine was tested for three hours incorporating one hour stabilization, followed 

by one hour heating cycle and one hour cooling cycle. The stabilization period was 

performed in order to achieve stabilized initial thermal state before the actual testing to 

reduce thermal error uncertainties. Stabilization was achieved by de-activating the E-

Stop, this causes axis motors and drives which are used to hold structural parts in position 

to activate, for example for the machine under research, the Z axis motor serves to hold 

the vertical Z axis in position causing the Z axis motor to heat up and heat to flow into 

the column resulting in column bending.  

Thermal data was recorded using 65 temperature sensors located in strips at the 

surface of the carrier and spindle boss considered as thermal key points explained by 

White [3]. An additional surface sensor was placed attached on the upper surface of the 

spindle carrier adjacent to the upper spindle bearing, 7 surface sensors positioned to 

measure the column temperature and one surface sensor was placed inside the base to 

measure the base temperature shown in Figure 4-61.  Discussion about the placements of 

ambient temperature sensors is presented in section 4.3.6 

 

Figure 4-20: Thermal sensors location on the machine 

Thermal imaging was also used to observe the spatial temperature distribution within 

the structure and to locate the heat sources. Figure 4-21 is a thermal image showing the 

thermal distribution and thermal gradients in the spindle/carrier structures. Figure 4-22 

shows the top view of the carrier head where rotating heat sources are visible. The 

Sensor strips on 

the carrier head 

Sensor strip on 

the spindle boss 
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spindle belt drive is at a higher temperature due to the heat generated by friction, the heat 

disseminates into the carrier as well as the spindle structure over which the belt rotates 

and is a significant additional heat source to the lower and upper spindle bearings.   

 

Figure 4-21: Thermal image of machine head after one hour heating (8000rpm)  

 

Figure 4-22: Top view thermal image of the machine (8000rpm) 

4.3.2.1 Displacement monitoring  

A nest of six NCDTs were placed around the test mandrel (Figure 4-23) to monitor the 

displacement of the tool in X, Y and Z and tilt about X and Y due to the thermal effects 

produced during the one hour spindle heating and cooling test. Figure 4-24 shows the 

placement and arrangement of NCDTs nest on the machine table. The lower spindle 

bearings are fixed axially as well as radially so the thermal datum is near to the cutting 

tool. The movement of the tool should in theory be synchronised with the movement of 

Spindle 

motor 

Carrier head 

Spindle  

Belt drive 

Belt drive heat 

source at spindle 
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the structure, however the complexities associated with the spindle mechanism, such as 

bearing preloads, tool taper movement and tension of the belt driving the spindle, often 

result in spindle movement unsynchronised with the tool movement. To check this the Z 

axis was measured at the test mandrel as well as at the spindle boss (lower spindle 

bearing housing). When correlating measured and simulated results, the displacements 

obtained from the bottom NCDTs are used. The NCDTs placed at the top are for 

monitoring the tilt of the test mandrel which is further discussed in chapter 8. 

 

Figure 4-23: NCDTs located around the test mandrel 

 

Figure 4-24: Position of the NCDT nest located on the table 

During the initial stabilization period an error range of approximately 1.3 µm in Y and 

3 µm in Z were measured and suspected to be caused by column bending. Figure 4-25 
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and Figure 4-26 shows the displacement profiles in Y and Z axes respectively, and Figure 

4-27 shows the pictorial representation of the machine behaviour.  

 

Figure 4-25: Movement of the machine in 

Y direction during one hour stabilisation 

period 

 

Figure 4-26: Movement of the machine in 

Z direction during one hour stabilisation 

period     

 

Figure 4-27: Machine behaviour during one hour stabilisation test  

During the one hour heating and cooling test, the machine was observed to exhibit a 

displacement error of 70µm in Y, 23µm in Z (test mandrel) and negligible error of 2µm 

in X. The graph in Figure 4-28 shows the measured temperature near the lower spindle 

bearings and Figure 4-29 and Figure 4-30 shows the level of displacement error. The 

stabilization period was omitted however its effect i.e. the error was not subtracted. 

Higher errors in Y and Z axes caused them to be given high priority to correlate with 
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offline simulations whereas X axis was considered negligible due to the small error 

magnitude. 

 

Figure 4-28: Measured temperature at Spindle Boss (Basic machine operation) 

 

Figure 4-29: Y axis error (approx. 70µm) 

 

Figure 4-30: Z axis error (approx. 23µm) 

The displacement monitored at the spindle boss and the test mandrel is plotted in 

Figure 4-31. The profiles confirm unsynchronized movement with an error difference of 

approximately 6µm. As explained earlier, the error difference may be due to the 

complexities involved with spindle pre-load which are not modelled in this research. 

However, the difference is not a significant parameter for this machine compared to the 

main structural errors. The priority was given to the Z axis movements obtained from the 

test mandrel to compare the simulated results for all testing regimes because the test 

mandrel (tool) is a critical component for machining operations and fits with the ISO 

standard test.  
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Figure 4-31: Measured Z displacements at the Spindle boss and the test mandrel 

4.3.3 FEA modelling and transient simulations 

A method was needed to reduce the uncertainties associated with simulating heat 

sources. Using the spatially detailed temperature information in thermal imaging small 

structures around the heat sources can be selected and considered separately and by using 

equation (3.6 - chapter 3) the energy output or BHF can be estimated by balancing the 

energy loss. These uncertainties are generally smaller because of the mechanical 

information known and the other parameters such as convection and thermal contact 

conductance obtained experimentally. 

Thermal data obtained from the basic operation test was analyzed and applied to the 

FEA simulation model for offline transient thermal behaviour assessment. The 

temperature data obtained from the machine surface sensors were converted into thermal 

loads i.e. body heat flux values for the heat sources. An average of the spindle boss 

sensors was used to calculate the BHF for the lower bearing. The two carrier head strips 

have 62 temperature sensors. The sensors closest to the relevant heat source were selected 

for calculating the BHF. Selection of structural volumes to obtain body heat fluxes are 

discussed in the following section. 

4.3.3.1 Volume selections to obtain BHF values  

 The thermal image data revealed the interaction of the heat sources within the carrier 

head assembly (Figure 4-20, Figure 4-21 and Figure 4-22). Based on the methodology 

stated previously, the BHFs were calculated by discretizing the machine structure into 

specific volumes representative of temperature rise by the induced heat from sources 

housed inside or near to them. Only heating cycle data was considered for calculating 
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BHF values. Figure 4-32 and Figure 4-33 shows the positions of the surface sensors and 

heat sources on the carrier head and spindle assembly respectively. Their positions are 

utilised to select the structure volumes as shown in Figure 4-34 for calculating BHFs 

generated from the heat sources.  

 

Figure 4-32: Carrier head model surface 

sensor strips 

 

Figure 4-33: Carrier head model showing 

location of possible heat sources 

  

Figure 4-34: Overview of structure volume selection procedure for calculating BHFs   

The machine under research has three major materials i.e. steel, cast iron and an invar 

test mandrel therefore the selected volumes for BHF calculations used their respective 

material properties. The material properties of cast iron and invar are presented in 

Appendix A. These material properties were also used in the FEA simulations to 

represent the structural models i.e. cast iron was applied to the Carrier head; steel was 
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applied to the Spindle, bearings, column, guide ways, carriages, base, saddle and table 

and invar applied to the test mandrel. 

4.3.3.1.1 Spindle (bearings and spindle belt drive heat sources) 

The spindle structure was divided into three sections, the top section is the volume 

representing the structure affected by the heat generated by the belt drive, the middle 

section is the volume affected by the heat generated by the upper bearing and the lower 

section is the volume affected by the heat generated by the lower bearings set as shown in 

Figure 4-35, Figure 4-36, Figure 4-37 and Figure 4-38. The remaining volume was 

excluded as being a central part of spindle where heat flow vectors are expected to be in a 

state of equilibrium. This approach may be of critical importance in spindles where heat 

flow is not stable. (Further discussion is in chapter 8). Separate BHF calculations were 

performed for each selected volume of the spindle. Heat sources were treated as integral 

parts to the structure therefore BHF values also included heat source volumes. BHF 

calculations for the lower bearing is shown in section 4.3.3.2.1 where as BHF 

calculations for other heat sources are presented in Appendix C.  

 

Figure 4-35: Volume selection (Spindle) 
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Figure 4-36: Selected 

volume for the upper 

bearing   

 

Figure 4-37: Selected 

volume for lower bearings 

set 

 

Figure 4-38: Selected 

volume for the spindle 

belt drive heat source 

4.3.3.1.2 Carrier head (belt drive and spindle motor mount plate heat 

sources) 

The extracted temperature data and careful observations of thermal images revealed 

possible heat sources in the carrier head. The belt drive is another significant heat source 

which resides inside the carrier head structure (see Figure 4-22). The final main heat 

source is the main spindle motor which is clamped on a steel plate through which heat 

disseminates into the carrier head structure. Calculations are shown in Appendix C. 

Figure 4-43 shows the obtained temperature data from the carrier head sensors. 

 

Figure 4-39: Volume selection (Carrier) 

  

 

Figure 4-40: Temperature sensor strip 

location

Carrier head selected volume 

Selected volume 
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Figure 4-41: Selected volume for the belt 

drive heat source 

 

Figure 4-42: Selected volume for the 

spindle motor mount plate heat source 

 

 

Figure 4-43: The temperature data was selected from this set for BHF calculations

4.3.3.1.3 Z axis motor bracket 

As discussed earlier in section 4.3.2, the Z axis motor heats up after de-activating the 

E-Stop, this heat flows into the column which results in producing temperature gradients. 

Thermal imaging was used to monitor the temperature from the Z axis motor. 

Temperatures were obtained from two points on the thermal image shown in Figure 4-45. 

In Figure 4-46 a temperature rise of approximately 1.7°C was observed in both profiles 

within 25 minutes which followed a stabilized trend in the end. Therefore both 

temperature change magnitudes were taken from that period of 25 minutes and averaged 

to 1.6°C for BHF calculations. The area up to the two points was used to calculate the 

BHF value from the Z motor bracket over a 1500 seconds (25 minutes) period. 

Calculations are shown in Appendix C. 
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Figure 4-44: Machine column (back side) 

 

Figure 4-45: Thermal image of machine 

column (back side) 

 

Figure 4-46: Temperature data obtained 

from inserted points

Inserted 
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Approximate 
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Figure 4-47: Volume selection (Column) 

 

Figure 4-48: Selected volume for the Z axis motor heat source 

4.3.3.1.3.1 Conduction across guideways 

The heat flows across guideways through carriages. On this machine rolling element 

guideways are used which has relatively small contacting areas; it was assumed that the 

conduction will occur at a lower rate. It was not within the scope of this research to 

model the thermal behaviour across guideways in detail therefore an averaged value of 

the  thermal conductance  of approximately 2000 W/m
2
/°C (Chapter 3 - Table 3-3) was 

applied to the interfacing surfaces of guideways for FEA. Further detail can be found in 

chapter 8. 

Selected volume 



107 

 

4.3.3.2 BHF results 

The following shows a brief overview of the procedure used to calculate BHF values. 

The calculations involved obtaining the energy required for a temperature change using 

the specific heat capacity of the associated material in each volume. 

4.3.3.2.1 BHF calculations for the lower bearing 

For the lower bearing BHF, the lower selected volume (Figure 4-32) of the spindle 

was taken. Using the similar approach for the assembly benchmark, the volume of the 

heat source which in this case is the lower bearing, was used to divide the total energy Q’ 

obtained to obtain the BHF value for the lower bearing.  

The heating data from the spindle boss sensor was used.  Figure 4-49 is a trend line 

that was plotted to refine the sensor data. Table 4-3 shows the data of the lower bearing 

used to calculate the BHF value.  

 

Figure 4-49: Trend line plotted on the spindle boss sensor data 

    Lower bearing Value Units 

Volume of the lower spindle housing 7.35E+05 mm
3
 

Volume of the lower bearing 116490 mm
3
 

Total volume 8.51E+05 mm
3
 

Area of the lower spindle bearing 3.69E+04 mm
2
 

Total mass 6.65E-03 tonnes 

Density of Steel 7.81E-09 tonne/mm
3
 

Cp of Steel 4.73E+08 mJ/tonnes/°C 
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Time 10 s 

h 0.006 mW/mm
2
/°C 

Initial ambient temperature 24.438 °C 

Table 4-3: Lower bearing data used for BHF calculations 

Calculations for the energy (Q’) were performed transiently. The main iteration that 

obtained the BHF for the lower bearing is presented.  

Total volume    = 8.51E+05 mm
3
 

Total mass    = 6.65E-03 tonnes 

Temperature difference (ΔT) = 0.12°C (first 10 seconds – see page 111 for 

explanation) 

Total time     = 3600s (10s is used for calculations) 

Convection coefficient (h)  = 0.006 mW/mm
2
/°C 

Exposed area    = 3.69E+04 mm
2  

(see Figure 4-50) 

Ambient temperature change = Varied from 24.438°C to 25.563°C during the 

heating cycle – Used transiently during 

calculations 

By applying these values in equation 3.6, the value for the Q’ is 

Q’ = 37320.06 mW 

The value of Q’ is required to be divided by the volume of the heat source which in 

this case is the volume of the lower bearing. 

 = 44438.3 mW / 116490 mm
3
 which gives the BHF value as 

 

 

 

 

 = 0.38 mW/mm
3
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Figure 4-50: Exposed area of the lower spindle housing 

To calculate the total BHF value generated by the lower bearing, the thermal image 

(Figure 3-19) and the plot in Figure 3-20 were carefully observed which shows the 

temperature rise at the upper area of the test mandrel. This temperature rise is due to the 

heat flow into the test mandrel during the heating cycle from the spindle and is 

considered in the energy loss from the spindle for calculating BHF value and added to the 

calculated lower bearing BHF. 

This BHF for the test mandrel was obtained by extracting temperature data from the 

thermal imaging (Figure 3.18- Chapter 3) and applying to the upper and lower halves of 

the test mandrel (Figure 4-51). Each half was treated as a separate heat source that can 

increase its own volume temperature (though the heat was coming from the spindle) i.e. 

similar to the single block benchmark where the full volume was considered as the heat 

source itself. The test mandrel data is given in Table 4-4. 

 

Figure 4-51: Test mandrel selected areas 

Upper half 

Lower half 

Exposed area 

(highlighted) 



110 

 

   Test mandrel (Upper and lower half) Value Units 

Volume of the test mandrel (upper half) 81284 mm
3
 

Total volume 81284 mm
3
 

Area of the test mandrel (upper half) 6502 mm
2
 

Total mass 6.67E-04 tonnes 

Density of Invar 8.20E-09 tonne/mm
3
 

Cp of Invar 525000000 mJ/tonnes/°C 

Time 3600 s 

H 0.092 mW/mm
2
/°C 

Ambient temperature 24.438 °C 

Table 4-4: Test mandrel data used for BHF calculations 

The test mandrel is considered as a neighbouring heat source that contributes a 

relatively small amount towards the total thermal deformation of the machine compared 

to the main heat sources. Therefore for simplification, a non-transient calculation was 

performed using the full analysis time. 

Total volume    = 81284 mm
3
 

Total mass    = 6.67E-04 tonnes 

Temperature difference (T2-T1) = 3.7 °C 

Total time     = 3600s 

Convection coefficient (h)  = 0.092 mW/mm
2
/°C (during rotation) 

Ambient temperature change  = 1.125°C (during the heating cycle) 

Exposed area    = 6502 mm
2
 

By applying these values in equation 3.6, the value for the Q’ is 

Q’ = 2.57E+03 mW 

The value of Q’ is divided by the volume of the heat source which in this case is the 

test mandrel upper half itself. 

 = 1.03E+03 mW / 81284 mm
3
 which gives the BHF value as 

 = 0.013 mW/mm
3
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In the case of test mandrel lower half, the temperature difference was 1°C which 

revealed the BHF values as  

 

After adding all obtained BHF values, the total BHF value for the lower bearing was 

obtained as      

 

 

Unlike the benchmarks where an averaged BHF value was applied to generate the 

required temperature increase, the BHF obtained from the initial data of the heating cycle 

(first 10s data) was considered for the simulations. This initial period the temperature 

difference, and therefore heat transfer, is at its greatest and gives a good BHF value. This 

was done to account for the complexities in machine tools bearings such as variation in 

pre-load, viscosity of lubrication etc which varies the BHF over time. Figure 4-52 

confirms graphically that the temperature difference at very initial stage of 0 to 10s is 

higher than the temperature difference between 2000s and 2010s 

.  

Figure 4-52: Measured spindle boss temperature at 8000rpm 

 = 0.009 mW/mm
3
 

 

 = 0.40 mW/mm
3
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Similar approach is used for the other heat sources using the measured temperature 

data and selected volumes. Calculations for the other heat sources are shown in Appendix 

C. The calculated BHF values for 8000 rpm spindle speed are shown in Table 4-5.  

 Body heat flux (mW/mm
3
) 

Lower bearings 0.40 

Upper bearing 0.49 

Carrier belt drive 1 

Spindle belt 0.56 

Z axis motor bracket 0.23 

Spindle motor mount plate 0.14 

Table 4-5: Calculated body heat flux values at 8000rpm spindle speed 

It should be noted that the use of a single BHF value for heat sources was desirable for 

long term simulations where the actual temperature data will not be readily available to 

predefine BHF values for generating required temperature profiles. Single BHF values 

for each heat source based on a short term test should ideally be able to predict 

temperatures for long term real world testing regimes. 

To validate the use of single BHF value, a separate test was conducted where the 

machine spindle was operated at 4000rpm for one hour. Using the similar approach 

explained above, the BHF value for the lower bearing was calculated as 0.06mW/mm
3
. 

Figure 4-53  shows the comparison between the measured and simulated profiles where 

both profiles matched to reveal 83% correlation and validates the use of a single BHF 

value.  

 

Figure 4-53: Initial test at 4000rpm to validate the use of a single BHF value  
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As a secondary validation was completed using the single BHF value obtained for 

8000rpm to simulate and compare the machine behaviour. Figure 4-54 shows the 

correlation plot of simulated and measured temperature at the spindle boss which 

revealed a shorter exponential time constant in the experimental data.  

 

Figure 4-54: Initial stage temperature profiles correlation (8000rpm) 

It has been discussed earlier that the spindle bearings are suspected to exhibit a 

complex thermal behaviour. This may be the cause of one or the combination of several 

factors such as the change of bearing preload over time and the behaviour of the friction 

in the bearings due to lubrication viscosity change. The BHF plot (Figure 4-55) showed 

variation with an exponential relationship with time which is evidence that the heat 

generated in the bearing is not constant.  

 

Figure 4-55: Heat flux obtained for the lower bearing at 8000rpm 

Since the complexities of the individual components such as rolling element bearings 

or the spindle behaviour are not modelled in this research, and that it was intended to use 

single BHF values for simulations, a method had to be found to effectively change the 

heat flux in the model as an alternate, for which, temperature based specific heat capacity 
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(Cp) values (Figure 4-56) were obtained and applying them to the bearings to simulate 

the physical effects occurring in the real spindle. A method was then investigated in the 

Abaqus simulation software to generate exponential temperature behaviour in the spindle 

bearings.    

 

Figure 4-56: Cp based on the temperatures at 8000rpm

Abaqus provides the feature for manual programming. This was considered as a 

simple method to modify the specific heat capacity (Cp) of the spindle bearing. A high 

value of Cp relates to an increased temperature input for a degree change. Using this 

approach, Cp values were calculated iteratively as function of temperature from the 

spindle temperature data. A dummy material named ‘Artificial’ was created where the 

calculated Cp values were defined. New Cp values were applied to the bearings and 

programmed to be active only during the heating cycle to achieve the exponential heat 

input.  The calculations and Cp values are shown in Appendix C.  

4.3.3.2.2 Abaqus Keywords Editor programming 

This Abaqus Keyword Editor programming aims to use new Cp values during the 

heating cycle to achieve a shorter exponential time constant for the simulated spindle 

boss temperature.  Once this is done, the standard Cp property is called during the 

cooling cycle using the Editor.   

The procedure is shown in Appendix C. Two separate bearing sets were created in 

Abaqus, the first bearing set was created with new Cp values defined in the Field ‘1’ and 

the second bearing set was created with the Cp value defined in the Field ‘2’. Using the 

Abaqus Keywords Editor ‘SetSteel 1.0’ (bearing set with the Field ‘1’ Cp values) is 

called using the ‘Predefined Fields’ for using it during the heating cycle simulation.  
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The model was simulated again with the newly defined ‘Artificial’ material. The 

correlation results are shown in Figure 4-57, it can be observed that the simulated 

temperature profile shows an exponential form with improved correlation (81%) with the 

measured temperature.  The temperature difference of 2°C was considered low and 

progressive in nature. The approach of using Cps was then followed during all 

simulations conducted at 4000rpm and 8000rpm. 

 

Figure 4-57: Correlations for temperature profiles (8000rpm/programmed) 

4.3.3.3 Application of TCC values to the structural joints 

The previously obtained thermal contact conductance values (chapter 3) were applied 

at the model joint surfaces. The applied torque values to the fastening bolts were 

identified from OEM engineering drawings. In case of a torque value not in range, the 

thermal contact conductance value was extrapolated, for example, from machine 

manufacturer data the spindle is clamped to the carrier using 6 bolts tightened to 70Nm in 

dry conditions. Contact conductance value of 2520 W/m
2
/°C was extrapolated using 

exponential curve fitting technique and used at the carrier/spindle interface.  

4.3.3.4 Application of ambient temperatures to the FEA model 

Figure 4-58, Figure 4-59 and Figure 4-60 show highlighted structures where 

convection and sink temperatures are applied. The test mandrel (Figure 4-61) was kept 

separate for applying convection due to variable convection coefficient, however the sink 

temperature obtained from the inside air sensor was applied. 
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Figure 4-58: Convection 

applied to the base and 

table  

 

Figure 4-59: Convection 

applied to the spindle and 

carrier  

 

Figure 4-60: Convection 

applied to the column 

 

Figure 4-61: Convection applied to the test mandrel  

The obtained convection value of 6W/m
2
/ C was applied to the full machine structure 

during simulations apart from the test mandrel which was applied with 92W/m
2
/°C 

during the 8000rpm heating cycle as explained in chapter 3 section 3.6.1 The sink 

temperatures (Abaqus ambient film conditions) represent the ambient temperature to 

which structural surfaces are exposed.  The values applied to these exposed surfaces in 

the software were selected from the experimentally measured ambient temperatures. 

Figure 4-62, Figure 4-63 and Figure 4-64 show the temperature measured by the inside 

ambient sensor, column ambient sensor and base ambient sensor respectively. It should 

be noted that since this research aims to provide a simple and easy method for thermal 

behaviour predictions, the constant convection value of 6W/m
2
/ C was applied to the full 

structure, however it is possible to apply different heat transfer coefficient values to the 

surfaces by selecting them individually in the software using the similar method shown 

above which may be difficult and complex in terms of selecting a specified area where 

partitioning may be required. On this machine the test mandrel is the area where 
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convection coefficient can significantly change and this is experimentally proved in 

section 3.6 – Chapter 3.      

 

Figure 4-62: Ambient temperature 

measured inside the machine (8000rpm) 

 

Figure 4-63: Ambient temperature 

measured at machine column (8000rpm) 

 

Figure 4-64: Ambient temperature measured at table and base structures (8000rpm) 

The values of the ambient temperatures can be applied as a transient function in the 

software using tabular amplitude technique (as it is used in chapter 6 for long term 

environmental simulations). Since the variations in the temperatures during this short 

term test were not significant, it was decided to use single averaged values to define sink 

temperatures in the software. This simplifies simulation setup and helps reduce 

simulation times. The temperature data from the inside ambient sensor was applied to the 

column/carrier face with 25°C. The temperature data from the column ambient sensor 

was applied to the column with 24°C. The temperature data from the base ambient sensor 

(Figure 3-22 – chapter 3) was considered applied to the base/table face with 24.5°C.   

4.3.4 Correlations (Stabilization period) 

The first step was to correlate the simulated stabilization period result with the 

experimental stabilization period result. The simulated data was extracted from the nodes 
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located at the actual displacement sensor locations used to monitor Y and Z axes as 

shown in Figure 4-65.  

 

Figure 4-65: Nodes used to extract displacement data for both axes 

The error difference range in Figure 4-66 and Figure 4-67 was observed to be less than 

a micron and therefore considered negligible. The axis scale was increased to observe the 

profile shape. Figure 4-68 shows the simulated temperature gradients and thermal 

bending caused by the Z axis motor heating. NT11 refers to nodal temperatures. 

 

 

Figure 4-66: Z-axis movement during the 

stabilization period 

 

Figure 4-67: Y-axis movement during the 

stabilization period  

 

Y axis node 

Z axis node 
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Figure 4-68: Column bending resulted in machine deformations in Y and Z axes 

4.3.5 Correlations (Machine thermal behaviour) 

The calculated heat fluxes were fed into the FEA model for a simulation period of 

three hours. The simulation for temperature and displacement analyses took 

approximately 18 and 12 minutes respectively (total 30 minutes). It was important to 

obtain an acceptable match between the experimental and simulated temperature 

gradients across the structure, in this case the carrier head. Figure 4-69 and Figure 4-70 

show the experimental and simulated temperature gradients at one instance in time. The 

change in the temperature gradients, showing the heat flow,  were considered similar for 

the duration of the test which confirmed the location and magnitude of the artificial heat 

sources responding to the calculated BHF values. 

 

Figure 4-69: Thermal image showing 

temperature gradients across the carrier 

head 

 

Figure 4-70: Simulated temperature 

gradients across the carrier head  

 

 

Z axis 

motor 
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4.3.5.1.1 Calculating correlations 

Correlations were obtained using the measured, simulated and the error difference 

data. The error difference data is first obtained by subtracting the transient simulated data 

from the transient measured data. Then the overall magnitude range of the measured data 

and the error difference data is obtained. This overall error difference magnitude range is 

then divided by the overall magnitude range of the measured data to obtain a number 

which is subtracted from 1 to finally obtain the correlation value and shows the 

percentage of the simulated profile matching with the measured data profile.  The 

correlation value is then multiplied by 100 to obtain the percentage correlation. For 

example the displacement correlations of 88% was obtained for the Y axis which was 

calculated as follows 

Maximum range of the measured data = 72.9µm 

Maximum range of the error difference data = 8.67µm 

Dividing reveals (8.67µm/72.9µm = 0.118) 

Percent Correlation = 1- 0.118 reveals 0.88 which is multiplied by 100 to finally 

obtain 88%. 

 Using the same method, the correlation for the Z axis was obtained as 50%. The 

graphs are shown in Figure 4-79 and Figure 4-80 (section 4.3.6) for direct comparison 

with other results.  The low correlation and lack of profile convergence in the Z axis 

direction was investigated. A brief discussion was outlined earlier about the presence of 

air pockets that reduce the cooling rate on the surrounding surfaces. The experimental 

results show a faster Z axis stabilisation which could be a result of additional carrier and 

column bending caused by unstable ambient temperatures due to the aforementioned air 

pockets. Similarly the drift in the simulated Y axis and consequential error progression 

from the measured error is also suspected to be due to the slow rate of change of 

structural ambient temperature due to air pockets within the carrier head. For simplicity 

in this initial simulation, the measured ambient temperatures were applied as a single 

value to each structure and the values kept constant during both heating and cooling cycle 

simulations. This potentially underestimates the slow rate of change of the actual ambient 
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temperature around local structure air pockets and resulted in a higher simulated cooling 

rate compared with online measurements. 

4.3.6 Re-testing the machine 

The number of ambient temperature sensors was increased and placed in proximity to 

the main identified air pockets. Figure 4-71 shows the location of the new sensors. The 

front of the column is close to the carrier head and the gap between the column and the 

carrier head serves to be a potential air pocket. The column itself is a hollow structure 

used to route machine cables which also generate a localised heat source. Figure 4-72, 

Figure 4-73, Figure 4-74 show the local ambient changes detected by these new 

temperature sensors. The original measured column ambient temperature is also plotted 

in each to observe the differences between ambient temperatures. 

 

Figure 4-71: Position of the ambient sensors around the machine 
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Figure 4-72: Measured ambient 

temperature between column and carrier 

(8000rpm) 

 

Figure 4-73: Measured ambient inside the 

column (8000rpm)

 

Figure 4-74: Measured ambient temperature between column and electrical cabinet (8000rpm) 

Previously the whole column was applied a constant ambient (sink) temperature, 

however the above plots confirm that ambient temperature around the column is not 

constant. The local temperature change was selected from each plot and applied to the 

respective column sides as sink temperature. The column/carrier face was applied a 

temperature of 25.538°C considering approximately 1.6°C temperature change occurred 

at that face from the start of the test (23.938°C surface temperature measured at the 

column). Similarly the inside face of the column was applied 25.438°C considering  

approximately 1.5°C temperature change and the column/Electrical cabinet face was 

applied with 27.438°C considering  approximately 3.5°C temperature change from the 

initial column temperature of 23.938°C.  Figure 4-75, Figure 4-76, Figure 4-77 and 

Figure 4-78 show the column faces where ambient magnitudes obtained from the new 

test were applied.  
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Figure 4-75: Column sink temperature (1) 

  

Figure 4-76: Column sink temperature (2) 

  

Figure 4-77: Column sink temperature (3) 

  

Figure 4-78: Column sink temperature (4) 

The simulation was repeated and Figure 4-79 and Figure 4-80 show the correlation 

results for Y and Z axes respectively where a comparison can be made between the 

profiles with and without considerations to airpockets.  

Importantly, the correlation in the Z axis revealed an improved correlation of 62% 

from the original 50%. The Y axis remained the same. The residual errors for both axes 

were less than 10µm which represents the total range of the error difference data or the 

range of the data left unpredicted.  

These correlation improvements and profile convergences are significant for a 

machine with high error ranges specifically during the heating cycle which occurs during 

the cutting process which is a crucial phase. Hence this test revealed the significance of 
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considering air pockets where confined ambient temperatures are critical towards the 

overall thermal behaviour of the machine.  

  

Figure 4-79: Y-Displacement profiles correlation (8000rpm) 

  

Figure 4-80: Z-Displacement profiles correlation (8000rpm) 

For a short term test, the behaviour of the machine is subjected to various ambiguities 

such as an immediate structure response to quickly changing local temperature gradients 
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and concentrations which start to build up instantly after excitations of the heat sources. 

Structural constituents start to respond according to those gradients until a state of 

thermal equilibrium is achieved. Similar behaviour can be observed in Figure 4-80 where 

the Z axis behaviour shows a lack of convergence during the very initial phase of the 

heating cycle and starts to converge later. It is suspected that these ambiguities may also 

be the cause of a lower predicted magnitude of the temperature (approximately 2°C) at 

the spindle boss. The movement at the spindle boss was also plotted against the 

simulated, the results also revealed very good correlation of 76% with the maximum 

residual error of 6.8µm. shown in Figure 4-81. Figure 4-82 shows the visual 

representation of the simulated deformation of the machine.  

     

Figure 4-81: Spindle boss Z-Displacement profiles correlation (8000rpm) 
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Figure 4-82: Simulated visual representation of deformation of the machine due to internal 

heating   

4.3.7 Basic machine operation at 4000rpm  

A new test was conducted where the machine was operated for an identical duty cycle 

i.e. basic machine operation at 4000rpm spindle speed. The same procedure was followed 

for calculating new BHF values for 4000rpm using the information obtained from the 

surface sensors.  Calculations are presented in Appendix C, the calculated BHF values for 

4000rpm spindle speed rpm are shown in Table 4-6. Similarly using similar procedure 

(section 3.6.1 - Chapter 3) new averaged convection coefficient ‘h’ of 58W/m
2
/C was 

obtained for the rotating test mandrel during the heating cycle at 4000rpm and applied to 

the test mandrel during the heating cycle simulations conducted. 

 Body heat flux (mW/mm
3
) 

Lower bearings 0.06 

Upper bearing 0.11 

Carrier belt drive 0.37 

Spindle belt 0.33 

Z axis motor bracket 0.23 

Spindle motor mount plate 0.08 

Table 4-6: Calculated body heat flux values for 4000rpm spindle speed 

It should be noted that BHFs calculated for 4000rpm have shown to have a non-linear 

reduction in magnitude as the spindle speed was halved from 8000rpm for example with 

lower bearings. The value for the lower bearing at 8000rpm and 4000rpm were obtained 

to be 0.42mW/mm
3
 and 0.06W/mm

3
 respectively. Since the BHFs were obtained using 

the temperature information which can be viewed in Figure 4-83 (both temperatures 

profiles were intentionally caused to start from the same point), this shows a non-linear 

relationship of temperature increase between both speeds.  This explains the non-linearity 

of bearing behaviour at both speeds and is suspected to be due to the reasons explained 

earlier i.e. bearing preload, friction levels etc. Similar case can be observed with other 

heat sources BHF values.  
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Figure 4-83: Comparison of the spindle temperature at 4000rpm and 8000rpm speeds 

 

Figure 4-84 and Figure 4-85 shows the temperature measured by the inside ambient 

sensor and the column ambient temperature sensor respectively.  

 

Figure 4-84: Ambient temperature measured inside the machine 

 

Figure 4-85: Ambient temperature measured at the column

The base and table ambient temperatures were expected to be stable even for longer 

test periods (Chapter 5) because these structures are far from the heat sources i.e. the 

spindle and the carrier. Figure 4-87 shows the obtained ambient temperature measured 

for a long term testing regime. The plot shows a stable ambient during the heating cycle 
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with a negligible change of approximately 0.2°C. Since the ambient temperature has not 

changed significantly during the heating cycle, the overall change of approximately 0.5°C 

was applied in the simulations for all testing regimes conducted at 4000rpm.  

 

Figure 4-86: Ambient temperature measured at table and base structures 

The information of ambient temperatures and BHF values were applied to the FEA 

model as shown previously in section 4.3.3.4. The transient simulation for temperature 

and displacement analyses took approximately 8 and 11 minutes respectively (total 19 

minutes). The results revealed good correlations of 85% for the full temperature profile, 

75% for the Y axis and 73% for the Z axis profiles with non-significant convergence 

lacks. The results are presented later for direct comparison with the second set of results 

from the simulation using the new arrangement of ambient temperature sensors.  Figure 

4-87, Figure 4-88 and  

Figure 4-89 shows the ambient information obtained at suspected air pockets from the 

basic machine operation. The original measured column ambient temperature is also 

plotted in each to observe the differences between ambient temperatures. The plots 

clearly show that ambient conditions around the column also differ at lower speeds. 

These ambient temperatures were applied to the column faces as they were applied for 

the 8000rpm repeated test in section 4.3.7. 

 

Heating cycle 
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Figure 4-87: Measured ambient 

temperature between column and carrier 

(4000rpm) 

 

Figure 4-88: Measured ambient inside the 

column (4000rpm) 

 

Figure 4-89: Measured ambient temperature between column and electrical cabinet (4000rpm) 

The displacement correlations are 71% and 77% for the Y and Z axes respectively and 

83% for the spindle boss temperature.  Importantly the residual errors are just 6µm for 

the Y axis and less than 2µm for the Z axis. Figure 4-90, Figure 4-91 and Figure 4-92 

show the comparison of correlations obtained for Temperature, Y axis and Z axis 

respectively. 
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Figure 4-90: Temperature profiles correlation (4000rpm) 

 

Figure 4-91: Y-Displacement profiles correlation (4000rpm) 
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Figure 4-92: Z-Displacement profiles correlation (4000rpm) 

It can be elaborated that unlike high spindle speed test where the consideration of air 

pockets significantly improved the results, air pockets do not have a major affect on the 

correlations and error residuals during a short term slower spindle speed operation. 

Nevertheless the significance of air pockets is expected to be higher for long term 

machining operations at a low spindle speed. 

It should be noted that simulation times for both basic machine operations (8000rpm 

and 4000rpm) differs. 8000rpm simulation took a longer time due to the use of variable 

Cp values which caused Abaqus to take a relatively longer time to carry out numerical 

calculations.    

4.4 Summary of the chapter 

This chapter has presented an approach to conduct quick and efficient parameter 

identification exercise and FEA to analyse the thermal behaviour of a 3 axis VMC when 

running the main spindle. To validate the potential approach, benchmarks were 

conducted which not only confirmed the approach but also confirmed that the obtained 

accuracy was within the required range. The new approach is to calculate Body Heat Flux 

(BHF) values for the potential heat sources using descretization of the surrounding 

structure and spatially detailed surface temperature measurement. 

Initially the machine spindle was rotated at its highest speed of 8000rpm for obtaining 

its maximum thermal behaviour. The temperature information was used to calculate BHF 

values for the heat sources which were applied in the FEA software. Simulations were 
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then conducted to obtain the thermal behaviour offline. Initially the temperature profile at 

the spindle boss was correlated but revealed a lack of convergence. This problem was 

solved after using a software programming feature to include non stable energy output 

from the spindle bearings. The results then revealed very good correlations for 

temperature and Y axis movement profiles, however Z axis results did not correlate as 

well. This led to the consideration of suspected air pockets around the carrier and column. 

A further test revealed that the ambient temperature varies around the column. The data 

obtained from air pockets were applied in the simulation which revealed improved 

correlation in Z movement confirming the significance of air pockets.  

The approach of calculating BHF values and the findings of 8000rpm test were 

validated by operating the machine at 4000rpm. Excellent correlations of over 70% were 

obtained. It was found that for a short term lower speed test, the thermal air pockets did 

not have such a significant effect; however it is suspected that air pockets will have a 

contribution at lower spindle speed if the machine is operated for long term. 

It should be noted that the most significant benefits from this project are from long 

and very long term simulations that are impractical or unfeasible to complete 

experimentally. The effort applied to concentrate on maximising the short term 

correlation in the Z axis was not a priority once the target correlation of 60% was 

achieved.  
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CHAPTER - 5  

5 VALIDATION OF THE APPROACH WITH LONG TERM TESTING  

The previous chapter presented an approach to conduct quick and efficient thermal 

parameter identification and FEA for analyzing the thermal behaviour of a 3 axis VMC. 

Two short term tests were conducted at different spindle speeds and simulated. The 

correlation results revealed the applicability of calculated BHF values and also 

highlighted the significance of the air pockets for accurate simulations.    

This chapter will focus on maximising the reduction of the machine downtime 

associated with the long term machine testing. This will be achieved by simulating the 

machine for long term tests and obtaining a correlated thermal behaviour while validating 

the BHF calculation approach and confirming modelling priorities such as air pockets 

that affect the overall thermal behaviour of the machine over long durations.     

5.1 Long term operation 

Extended thermal trials on production machine tools necessitates expensive or 

impractical machine down time, therefore, one of the greatest advantages of improving 

offline simulation capability is to enable characterization of the machine to an acceptable 

accuracy over such medium and long term periods. The anticipation was to use the same 

BHF values listed in (Table 4-6 - Chapter 4) for extended long term simulations and to 

correlate them with experimental results.        

It was shown in the previous chapter that for a basic machine operation test, the 

behaviour of air pockets was significant at high spindle speeds and less critical at lower 

spindle speeds. Therefore a long term operation was carried out to first validate the BHF 

values calculated using the basic machine operation test. The validation will confirm the 

ability to dramatically reduce machine testing and therefore downtime. Secondly the tests 

will confirm the significance of modelling the air pockets during the longer tests. The 

same procedure was followed with the simulation conducted in two phases, the first 

simulation included the ambient temperature information obtained from only three 
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sensors (Figure 3-22– Chapter 3) and the second simulation added the ambient 

information obtained from the new sensor arrangement (Figure 4-71– Chapter 4).  

The machine was tested over a period of 6 hours involving 1 hour stabilization, 3 

hours heating and 2 hours cooling. The spindle was rotated at 4000rpm and the data was 

recorded using the same sensor arrangement as used in the basic machine testing. The 

BHF values listed in (Table 4-6 - Chapter 4) were used in the simulation along with the 

same method and same convection parameters such as 58W/m
2
/°C for the rotating test 

mandrel during the heating cycle and 6W/m
2
/°C during the cooling cycle. Figure 5-1 and 

Figure 5-2 show the ambient temperatures monitored inside the machine and at the 

column respectively. The ambient temperature obtained from the bed sensor is shown in 

section 4.3.7 of chapter 4. This temperature information was applied to the FEA model as 

shown previously in section 4.3.3.4 of chapter 4. The transient simulation for temperature 

and displacement analyses took approximately 12 and 15 minutes respectively (total 27 

minutes). 

 

Figure 5-1: Measured ambient temperature 

inside the machine (long-term 4000rpm) 

 

Figure 5-2: Measured ambient temperature 

at the column (long-term 4000rpm)

The predicted spindle boss temperature was slightly higher (1.5°C) as well as the 

predicted Y axis displacement (approximately 4µm) during the heating cycle, 

nevertheless  66% correlations were achieved for the full temperature profile, 81% for the 

displacement profile in the Y axis direction and 74% correlation for the Z axis direction. 

The residuals error was approximately 6 m for the Y axis and 3µm for the Z axis. The 

results are presented later in this section (Figure 5-7 and Figure 5-8) for direct 

comparison with other obtained results. The excellent correlations clearly show the 

compatibility of the calculated BHFs with extended thermal testing and simulations. This 

is an achievement towards reducing machine downtime where the machine behaviour can 
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be predicted by using only the data obtained from a basic and short term machine 

operation test. 

A good correlation percentage may not sometimes represent a good profile match i.e. the 

Z axis response lacked convergence during the heating cycle even with a good correlation 

percentage.  Therefore additional simulations were undertaken after including the 

ambient data obtained from the air pockets. The data was applied to the column surfaces 

as previously explained in section 4.3.6 of chapter 4. Figure 5-3, Figure 5-4 and Figure 

5-5 shows the obtained ambient temperatures from the air pockets. The original measured 

column ambient temperature is also plotted in each to observe the differences between 

ambient temperatures. 

 

Figure 5-3: Measured ambient temperature 

between column and carrier (4000rpm) 

 

Figure 5-4: Measured ambient inside the 

column (4000rpm)

 

Figure 5-5: Measured ambient temperature between column and electrical cabinet (4000rpm) 

The effect of the model changes was mostly negligible for this test and the residual 

errors remain at a very low 6µm for the Y axis and less than 4µm for the Z axis. Figure 

5-6, Figure 5-7 and Figure 5-8 shows the comparisons of correlations obtained for 

Temperature, Y axis and Z axis respectively. As previously explained (section 4.3.5.1.1 – 

chapter 4), the drift in the simulated Y and Z axis profiles from the measured error is 
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suspected to be due to the slow rate of change of structural ambient temperature due to air 

pockets which may have reduced the natural convection within the carrier head as the 

measured ambient temperatures and the convection coefficient of 6W/m
2
/°C were applied 

as single values to each structure and the values kept constant during both heating and 

cooling cycle simulations. 

 

Figure 5-6: Temperature profiles correlation (4000rpm) 

 

Figure 5-7: Y-Displacement profiles correlation (4000rpm) 
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Figure 5-8: Z-Displacement profiles correlation (4000rpm) 

5.1.1 Complex duty cycle operation 

This section validates the methodology against a long term complex duty cycle using 

the already established coefficients.. The duty cycle was 9 hours and composed of 1 hour 

stabilization, two 2 separate 1 hour heating cycles with 1 hour cooling gap and 3 hours 

cooling at the end. As usual, the transient simulation was conducted twice; first with the 

ambient temperature information obtained from only three sensors (Figure 3-22 – 

Chapter 3) whereas the second simulation added the ambient information obtained from 

the new arrangement of ambient sensors (Figure 4-71– Chapter 4).  The simulation used 

the same parameters from the 4000rpm BHF values, convection values and the ambient 

information obtained from the long term ambient testing. After simulations, the machine 

was then tested for the same duty cycle at the spindle speed of 4000rpm.  

The initial simulation results revealed very good correlations of  66% for the full 

temperature profile, 81% for the displacement profile in the Y axis direction and 66% 

correlation for the Z axis direction. The simulation for temperature and displacement 

analyses took approximately 16 and 17 minutes respectively (total 33 minutes). The 

quality of the correlations have again confirmed the compatibility of BHF values 

obtained for the 4000rpm and in addition confirmed the applicability for reducing 

machine testing. The model was re-simulated with the new ambient temperature sensors 

arrangement. A better convergence of profiles was observed with improved correlations 

of 82% for the Y axis and 70% for the Z axis, the residual errors were less than 7µm for 

both axes. The correlations are presented in Figure 5-9, Figure 5-10 and Figure 5-11.   
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Figure 5-9: Correlations for temperature profiles (complex duty cycle) 

 

Figure 5-10: Correlations for Y axis displacement profiles (complex duty cycle) 
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Figure 5-11: Correlations for Z axis displacement profiles (complex duty cycle) 

The results obtained from all testing regimes were shown to have a well matched 

profile with overall correlations well above the desired 60%. Therefore it can be 

concluded that the technique of obtaining BHF values from a short term test can predict 

thermal behaviour of a machine when operated for a long term. Long term use can either 

be a simple heat and cool operation or a complex duty cycle. Thermal error predictions 

using Abaqus FEA technique were quick to run. The maximum time taken by any 

simulation did not exceed 33 minutes and can therefore be used to run various operating 

scenarios to maximise the return on the initial investment made to create the models and 

obtain the parameters from the short term tests. The offline thermal behaviour 

assessments will benefit industries where machine availability is not compromised over 

extended thermal trials.  
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5.2 Assumptions made for calculations and internal heating simulations 

Sections and Topics Assumptions made Explanation 

Thermal Contact Conductance 

(TCC) - Section 3.5.1.1 

 

Calculations for using equation 3.6
 

)(/)(' 12 airsurf TThAtTTmCpQ  

 

 

 

Convection coefficient  

h=6 W/m
2
/°C 

 

-This value was experimentally 

obtained. 

 

-Secondary validations were 

also conducted for that value 

 

-Used as a constant value during 

calculations. 

Clamping force - Section 3.5.1.1 

 

KDTPi /  

 

 

 

-Thread coefficient of 

friction (µt) 

0.14 for dry conditions   

0.12 for oiled conditions 

 

-Collar coefficient of 

friction (µc) 

0.20 for dry conditions  

0.14for oiled conditions 

 

- For calculating K, collar and 

thread coefficients were used as 

averaged. 

 

TCC - Section 3.7 and Section 

4.3.3.1.3 

 

Sliding surfaces / guideways 

  

 

TCC=2000 W/m
2
/°C 

The machine dynamics was not 

considered in this research 

therefore an averaged value of 

the experimentally obtained 

TCC was used in FEA 

simulations. 

 

Benchmarks - Section 4.1 

 

Equation 3.6 

)(/)(' 12 airsurf TThAtTTmCpQ  

 

-Energy balance 

 

 

 

-Constant ambient 

temperature  

Tair = 20°C 

 

- Convection coefficient  

h=6 W/m
2
/°C 

 

 

 

 

-TCC values 

1300 W/m
2
/°C 

10000 W/m
2
/°C 

1.e
8
 W/m

2
/°C 

 

-Energy balance equation 

therefore conduction was not 

considered 

 

-In benchmark calculations, the 

ambient temperature was kept 

constant at 20°C.  

 

-Value of h was used as a 

constant value for calculating 

BHFs in benchmarks and all 

other calculations using 

equation 3.6. 

 

-TCC values were used in 

benchmarks for testing the 

effect of them on the 

temperature values. 
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FEA simulations (Abaqus) 

Section 4.3.3.4 

 

 

 

 

-Sink temperatures 

Spindle/Carrier = 25°C 

Column = 24°C 

Base  = 24.5°C 

 

 

 

 

 

Ambient temperature change 

was not significant therefore 

averaged values were 

considered from the ambient 

temperature profiles for using 

them as sink temperatures 

during simulations. 

 

5.3 Summary of the chapter 

This chapter presented the validation of the BHF values that were calculated from a 

short term basic operation test, by application on long term machine thermal trials thus 

extending the potential for educing machine downtime. The chapter also focussed on the 

significance of air pockets around the machine structure and the behaviour of machine 

during long term operations at low spindle speeds. 

The spindle was operated at 4000rpm for long term using two types of duty cycles; the 

first represented a simple but long heat and cool operation and the second used multiple 

cycles over an even longer period.  

Very good correlations were achieved between the simulated and measured results for 

both tests which confirmed that the BHF values can be used for long term tests.  

Considerations of air pockets improved convergences of the profiles, specifically for the 

Z axis movement.  

It can be concluded that a short term basic machine operation test should be enough to 

obtain the required parameters for an FEA simulation to be able to predict long term 

thermal behaviour of a machine tool thereby avoiding potentially significant machine 

downtime while increasing the potential for exploring varying operation scenarios. 

The short run time should not preclude running multiple simulations with the axes re-

positioned to pick up position dependent thermal errors, for example, the effect of 

column bending.    
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CHAPTER - 6  

6 MACHINE TOOL ENVIRONMENTAL TEMPERATURE TESTING AND 

OFFLINE MODELING  

Previous chapters detailed the effects of internal heating of a machine tool structure 

which was analysed and predicted using FEA simulations. This chapter discusses the 

importance of considering environmental temperature fluctuations that produce thermal 

errors in machine tools. A number of external sources have already been discussed that 

cause temperature changes around the vicinity of machine.    

Machine tools are susceptible to environmental temperature changes the most 

significant and common of which is usually the day and night transitions. The 

temperature swings generate thermal gradients and result in structural deformation 

whether the machine is in operation or not. These environmental effects add to the 

thermal errors caused by internal heating often resulting in a higher magnitude of total 

error during extensive long term machining regimes.  

This chapter looks into two online testing regimes conducted on the VMC to monitor 

the thermal error produced by long term environmental temperature variations. The first 

test was conducted in summer and the second in winter to observe seasonal effects on the 

machine behaviour. The experiments were followed by FEA simulations for prediction of 

the thermal error.   

6.1 Long term environmental testing (summer) 

In order to avoid axis movements caused by detected drifts in the linear scale feedback 

devices, the machine was set on emergency stop prior to the test to measure only the 

structural drifts caused by the environmental temperature changes. The machine was 

tested in summer for three days with temperature data recorded using three ambient 

sensors placed at the column, base and inside the machine (Chapter 3). The 

displacements between tool and workpiece were recorded using the NCDT nest as 

explained in chapter 4. This time the machine carrier head was moved up in the Z 

direction to give a change in the machine position used previously for internal testing. 
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This was done to have conditions with different machine orientation. A longer sensor 

post was needed therefore it was made of invar which is a steel alloy with a very low 

thermal expansion coefficient (Appendix A) to avoid the uncertainties involved with the 

post being affected by the changing environment. Figure 6-1 shows the model of the 

machine with carrier head in its raised position.  

 

Figure 6-1: Model of the machine with carrier head moved upward 

Figure 6-2 shows the measured ambient temperatures around the machine over the 

three day period. Figure 6-3 and Figure 6-4 shows the machine movement in Y and Z 

direction plotted against the temperature measured by the inside ambient sensor. The 

overall temperatures varied by 4˚C inside the machine and approximately 2˚C at the base 

during the 3 day period. A vertical temperature gradient averaging about 1°C can be 

observed between the base ambient sensor and the column ambient sensor. The overall 

movement varied by 12µm in the Y axis direction and 28µm in the Z axis direction. The 

variations are relatively small, primarily because the machine is small yet the results give 

a clear picture of machine sensitivity to environmental variations. Both axis movements 

followed the profile of the temperature variation however the Z axis displacement lags 

behind. This lag is due to the low response time of the structural components affecting 

this direction. The results confirm that the environmental temperature variations exist and 

play an important role in producing thermal drifts over longer production periods.  
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Figure 6-2: Temperature profiles obtained over 3 days period 

 

Figure 6-3: Measured movement in Y 

 

Figure 6-4: Measured movement in Z 

6.2 FEA simulations (summer test) 

Temperature information obtained during the environmental test was extracted and 

applied into the FEA simulation. Intuitively the data from the base temperature sensor 

was applied to the base of the FEA model, the column sensor to the column and inside 

sensor data applied to the carrier/spindle/tool and the table. The model surfaces were 
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applied with the 6W/m
2
/ C convective heat transfer coefficient previously measured in 

chapter 3.  

6.2.1 Setup of FEA initial conditions 

Prior to the start of experimental tests, the machine elements exhibit variations in 

temperature due to the existence of vertical temperature gradients and memory from 

previous conditions. It was not possible to accurately set initial temperatures of the 

components in the Abaqus software using ‘Predefined Fields’ to match this condition, 

therefore the average of the initial measured temperature magnitudes of 24°C was 

selected and applied as a uniform parameter to the full model of the machine as a 

‘Predefined Field’. The effect of this is to cause an error in the simulation where the 

model absorbs the ambient temperature to settle down or synchronize with the applied 

sink temperatures. The settling down time is termed as the settling zone. After this 

settling, the error in the FEA model diminishes enabling it to be used to simulate the 

machine behaviour. Figure 6-5 shows the plot of Y axis movement where both profiles 

were found similar but offset from each other. 

 

Figure 6-5: Axis offset is caused by the use of constant temperature values 

6.2.2 Determination of the settling zone 

To account for the problem of setting initial conditions in the simulation, a new 

technique of a two-step simulation was applied. The first step determines the time span to 

achieve a required thermal state of the machine model. This will enable the selection of 

the measured initial temperature data for the first step and to approximately replicate the 

model’s thermal state with the measured thermal state after the end of the first step 

Simulation error 

Similar trend 
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simulation. This time span will represent the settling zone of the machine model. This is 

followed by the second step of normal environmental simulation with the remaining data 

i.e. excluding the relatively small data set used for the settling zone. 

6.2.2.1 Application of the technique 

The simulation was set up with an applied initial temperature of 24°C (Predefined 

Field). To estimate the time, the model was simulated for it to achieve a temperature 

change indicative of the variation between the global assumed 24°C and measured 

temperatures of the main structural components previously mentioned. A change of 1°C 

was selected and for which the simulation revealed the time span requirement of 

approximately twelve and half hours to achieve 25°C. This suggests that because the 

machine initial thermal state was unknown at the start of the simulation, the machine 

model requires twelve and half hours to absorb the applied sink temperatures to represent 

a realistic thermal state. Therefore this scientific estimation has enabled the selection of 

the settling zone of twelve and half hours for this machine model. It is anticipated that 

this approach will estimate the surface temperatures within an accepted ±0.2°C range.  

This approach may not only achieve the initial thermal state of the machine but may 

also generate more realistic temperature gradients in all structures, therefore may be a 

convenient way of achieving an initial thermal state of the machine. 

6.2.3 Use of real sink temperatures for the first step 

The first step must provide not only the correct temperature profile but also the correct 

thermal memory to match the starting condition of the real machine, therefore measured 

data for the identified time period of twelve and half hours must be used. Data from the 

column ambient sensor, inside ambient sensor and the base ambient sensor was applied to 

the respective structures as transient sink temperatures in the first step. This was followed 

by the creation of the second step with the remaining measured environmental data i.e. 

excluding the first twelve and half hours of data, using the output from the first step as 

the initial conditions. Figure 6-6 shows the temperature gradients and profiles using the 

new method. 

Initial surface temperature magnitudes were compared with the measured data and 

shown in Table 6-1 and revealed to be within ±0.2 °C range which confirms it to be a 
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reliable approach towards eliminating the ambiguity one might have with the uncertainty 

of setting up initial temperatures for simulations. The simulation for temperature and 

displacement analyses took approximately 30 and 40 minutes respectively (total 1 hour 

10 minutes).  

  

Figure 6-6: Thermal state of the machine after first step (summer test)  

Structure Measured temperature (°C) Simulated temperature (°C) 

Spindle Boss surface 24.125 23.96 

Column surface 24.063 23.94 

Base surface 23.938 24.03 

Table 6-1: Comparison of measured and simulated surface temperatures after twelve hours 

(summer test) 

6.2.4 Summer test correlations 

The measured and simulated profile results were plotted for the main second step 

simulation. Compared to the measured results, the correlations were 60% for the Y 

movement profiles (Figure 6-7) and 63% for the Z movement profiles (Figure 6-8). The 

residual errors were less than 5µm for the Y axis and less than 11µm for the Z axis.  

 

Measurement 

points 
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Figure 6-7: Correlation between the measured and simulated Y axis movement with settling 

zone removed 

 

Figure 6-8: Correlation between the measured and simulated Z axis movement with settling 

zone removed 

6.3 Long term environmental testing (winter) 

This test was carried out to observe the machine behaviour in a winter season. The 

machine was monitored for 3 continuous days to highlight thermal behaviour during 

normal 24 hour periods experiencing single shift workshop heating patterns often 

encountered to maintain environmental temperature for the machine operators. The 

machine under test had winter environment control using heaters in the day time while 

turned off during the night. The machine orientation and setup was used in this test as 

used during the summer environment test. 

The temperature information obtained from the ambient sensors and the spindle boss 

surface sensors are shown in Figure 6-9. An average vertical temperature gradient of 1°C 

can be observed between the base sensor and the column sensor. The spikes are suspected 

to be from the short periods for opening of workshop doors for deliveries which caused 

the shop floor environmental temperature to decrease.    
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Figure 6-9: Temperature data obtained over 3 days period 

Figure 6-10 and Figure 6-11 show the measured inside air temperature and 

deformation of the machine in Y axis and Z axis respectively. The movement of both 

axes followed the temperature variation while the Z axis displacement followed with a 

lag similar to the summer test. The overall movement is 18 µm in the Y axis and 35 µm 

in the Z axis for an overall temperature swing of approximately 5°C over the 3 days.  

 

Figure 6-10: Measured movement in Y 

 

Figure 6-11: Measured movement in Z 
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As expected, the overall machine movement and temperature swing were higher than 

measured in summer due to the workshop heating in the day time and cold nights..    

6.4 FEA simulations (winter test) 

A similar procedure was followed for simulating the model using the average initial 

temperature for the entire model as predefined field and consideration of the settling 

zone.   

6.4.1 Setup of initial conditions and time span selection 

The average of the initial temperature magnitudes (22.5°C) was applied as a 

‘Predefined Field’ prior to the creation of the two separate steps. For the first step, twelve 

and half hours of the measured data was used for the settling zone as before followed by 

the creation of the second step. Figure 6-12 shows the thermal state of the machine after 

the first step. Initial surface temperature magnitudes were compared and shown in Table 

6-2 which again revealed to be within ±0.2°C range. 

 

Figure 6-12: Thermal state of the machine after first step (winter test) 
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Structure Measured temperature (°C) Simulated temperature (°C) 

Spindle Boss surface 21.688 21.65 

Column surface 21 20.90 

Base surface 21.938 21.90 

Table 6-2: Comparison of measured and simulated initial surface temperatures (winter test) 

6.4.2 Winter test correlations 

The simulated results showed similar profile behaviour of the machine compared with 

the measured profile.. The results revealed very good correlations of 63% for the Y 

movement profiles (Figure 6-13) and 67% for the Z movement profiles (Figure 6-14). 

The residual errors were less than 7µm in Y and less than 12µm in Z. 

 

Figure 6-13: Correlation between the measured and simulated Y axis movement with settling 

zone removed 

 

Figure 6-14: Correlation between the measured and simulated Z axis movement with settling 

zone removed 

Both environmental experiments were found well correlated with the simulated FEA 

results which have validated the fact that environmental fluctuation causes thermal 
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distortions in machine structure which deteriorates the overall thermal accuracy of 

machine tools throughout the year. It was identified that vertical temperature gradients in 

a shop floor vary with height which can be critical to large or tall machines. A procedure 

is suggested to track vertical temperature gradients by measuring ambient temperatures at 

a vertical distance of at least 500mm apart so that detailed sink temperatures can be 

obtained and applied to individual components of the machine for an increased FEA 

modelling accuracy. Similarly due to vertical temperature gradients it was impossible to 

accurately apply initial temperatures to individual structural elements of the machine for 

FEA. To solve this problem, a new method of two-step simulation was developed in this 

chapter where the first step considers the settling zone for the machine model allowing it 

to achieve a thermal state and thermal memory. This is followed by the creation of 

second step to simulate the machine for the environmental behaviour potentially over 

long periods of time with a high degree of accuracy. This method has eliminated the 

ambiguity of applying initial temperatures to the individual machine structure for 

modelling.       

6.5 Summary of the chapter 

It has been observed that the accuracy of a machine tool can be adversely affected by 

environmental temperature variations. Experimental and simulated movements between 

the tool and workpiece during summer and winter environmental tests, each lasting 3 

days, have correlated well. 

Temperature data obtained from the ambient temperature sensors was applied to the 

FEA simulations as time variable sink temperatures. Initial temperatures of the machine 

structure in the simulation do not match the initial conditions of the actual machine due to 

vertical temperature gradients and long term thermal memory. This creates an error in the 

simulation that can be removed by creating an initial simulation step that allows the 

determination of settling zone for the machine model.  

In this research the machine was tested while static in order to get displacement data 

for validation, however temperature measurement can be implemented easily on a 

production machine tool by placing additional ambient temperature sensors to record 

during machining operations; which means no machine downtime is required during the 

measurements, and the data obtained from the machine vicinity and that particular shop 
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floor could be added to thermal compensation models. This will increase the accuracy of 

the machine tool by eliminating the deformation uncertainty that varying environments 

impose on the machine structure during long term machining operations. 
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CHAPTER - 7  

7 FEA NODAL MANIPULATIONS 

Previous chapters have presented simulated machine tool behaviour, when subjected 

to internal and environmental heat sources that correlate well with experimental results. 

This method therefore provides a platform to use FEA modelling as an offline tool to 

determine not only machine behaviour, but also help with the development of 

compensation models.  In this chapter it is used for determining the location of nodes 

whose displacements are sensitive to a temperature change. This is the most common 

form of modelling method available in modern controllers. Typically they are limited to 

spindle growth compensation using a linear relationship between a motor or bearing 

sensor and expansion. Other modelling methods are discussed in Chapter 2. 

This chapter details a method and software for the offline assessment of the FEA data 

and help determine the temperature-displacement sensitive nodes based on search 

parameters and their physical locations within the FEA model. These will contribute for 

the development and enhancement of new and existing thermal error compensation 

methods respectively by updating them with the location information. The information 

can be used to retrofit sensors for compensation; however there can be practical 

limitations to their attachment. It will also help at the machine design and build stages by 

advising where to install temperature sensors within the machine structure. 

7.1 Nodal data extraction 

The Abaqus simulation software provides the facility to extract surface and sub-

surface nodal data within the FEA model. The extracted nodal data can then be used to 

find nodes of interest. In this case the dependant parameters are slope and hysteresis. 

The slope is simply the magnitude of displacement for any given change in 

temperature ( C/µm). Hysteresis is caused by the time lag involved with typical surface 

temperature measurement which is proportional to the distance between the temperature 

sensor and the true effective temperature which is causing the distortion. A node location 

with high slope sensitivity and with the lowest hysteresis will represent that area that 



155 

 

relates well to thermal displacement but also responds quickly whether the machine is 

being heated or cooled.  

Nodal data is extracted in two phases, first the temperature is extracted for all nodes 

and secondly the displacement data from the test mandrel nodes. Abaqus saves nodal 

information as a report file with file extension of ‘.rpt’. These files are converted and 

imported into Matlab software. Matlab functions were written to calculate the slope and 

hysteresis for each node and feed back the good ones with respect to an axis.  

7.2 Internal heating test - Carrier sensitivity against the Y axis displacement 

Nodal data extraction was applied to the simulation of spindle carrier to locate nodes 

that are sensitive to Y axis movement during internal heating. Temperature data for all 

the spindle carrier nodes were used from the 8000rpm simulation as shown in Figure 7-1. 

This shows the spindle carrier with all nodes selected and the Abaqus dialog box 

indicating the nodes selected.   

 

Figure 7-1: Temperature data extraction for spindle carrier 

7.2.1 Matlab program routines 

Two Matlab functions were written (Appendix D) to manipulate the nodal data for the 

sensitivity analyses. The first imports the nodal data and calculates the slope and 

hysteresis for the selected nodes. Figure 7-3 shows an example of the plot of slope and 

hysteresis for two randomly selected nodes (1499 and 2508) shown in Figure 7-2. 

 

Selected nodes 
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Figure 7-2: Slope and hysteresis plot for 

two random nodes 

 

Figure 7-3: Node locations on the carrier 

 A linear hysteresis curve corresponds to a sensitive response of the structure to a 

temperature change and the variation in relationship between heating and cooling 

conditions. The above figures show the time taken by each structural node in response to 

temperature change. Node 2508 shows a linear hysteresis indicating a high sensitivity to a 

temperature change however node 1499 has a response lag which results in a non-linear 

curve which demonstrates that the structure where that node is located possesses high 

thermal memory characteristics and therefore the displacement response is slower to a 

temperature change compared with the node 2508. This explains that a node location with 

a faster thermal response will have a quicker impact on the workpiece error than a node 

with a slower response. Therefore nodes with faster response are targeted for the 

development of simple linear compensation models to compensate for the error arising 

from that area with an approach of, the better the node the better will be the 

compensation. This Matlab program therefore enables an understanding of the thermal 

behaviour of individual nodes. 

The second Matlab function imports the nodal data and calculates the slope (°C/µm) 

using a least square fit and hysteresis (µm), using deviation from the straight line, for all 

nodes. These are compared against a predefined set of ranges to filter out acceptable 

structural nodes. The range may be set based on the resolution of the temperature sensors 

and required accuracy for compensation. If no nodes are found then the range must be 

widened. For example, the program first searches the node with the highest slope 

sensitivity within the slope sensitivity array and similarly searches for the node with the 

Node 1499 

Node 2508 

 

Node 1499 

Node 2508 
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minimum hysteresis value within the hysteresis sensitivity array. These values are used to 

set the maximum limit for the slope range and minimum limit for the hysteresis range and 

then each parameter range is widen to filters out sensitive node numbers. The code then 

compares both filtered node number arrays to further match nodes numbers to finally 

obtain node numbers that are within the given ranges of the slope sensitivity and 

hysteresis. This two stage method was used to maintain flexibility so that different nodes 

can be used for different jobs, not always both. The final filtered node numbers are then 

used to locate their positions in the FEA simulation of the carrier. Figure 7-4 shows the 

function calls where comparison takes place using a specified range, in this case the 

range for the slope sensitivity is from 0.17 to 0.2046 (max) and 5.446 (min) to 8 for the 

hysteresis. The first and second lines filter out node numbers for the slope sensitivity and 

hysteresis respectively using the range. The third line is then used to match node numbers 

in both arrays (chkSlope and chkHyst) and obtain the matched nodes numbers. Figure 7-5 

shows the Matlab array editor displaying 8 nodes filtered out from the total of 4113. The 

first column shows node number, the second column shows slope sensitivities and the 

third column shows the hysteresis values. These 8 nodes have shown to have the highest 

slope sensitivities (Figure 7-6) and the lowest hysteresis values and will effectively be 

used to place permanent temperature sensors for use in the error compensation system.  It 

can also be observed that nodes 738 and 739 posses the highest slope sensitivity among 

the other filtered nodes and a slightly high hysteresis values relative to other filtered 

nodes, however an agreement was obtained to prioritize the selection of nodes that were 

located at the surface for practical installation of temperature sensors. This priority may 

not be the case if slope sensitivities and hysteresis values are significant at node positions 

inside the structure.   

   

Figure 7-4: Part of Matlab program code for assigning range (8000rpm-Y axis) 
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Figure 7-5: Filtered nodes (8000rpm-Y 

axis) 

 

 

Figure 7-6: Slope and hysteresis plot 

(8000rpm-Y axis) 

Figure 7-7 shows the location of the eight filtered nodes on the carrier model. It can be 

observed that out of eight nodes, two were found on the outer surface of the carrier, three 

were located within the solid structure and the other three located at the spindle carrier 

interface, therefore the outer surface nodes would be the most convenient to use.  Using 

the Abaqus GUI, the outer surface node numbers were found to be 519 and 2513. The 

nodes 737, 738 and 739 were found at the carrier/spindle interface and the others were 

found inside the structure. An alternative selection criterion is simply to provide the ‘n’ 

best. 
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Figure 7-7: Y axis carrier node location - 8000rpm 

7.3 Internal heating test- Carrier sensitivity against the Z axis displacement 

A similar procedure was used to locate nodes sensitive to the Z movement. Both 

Matlab program routines were used to observe the behaviour of nodes and determine 

nodal slopes and hysteresis. Using the given range (Figure 7-8), the second Matlab 

program filtered 7 nodes sensitive to the Z movement of the machine and are shown in 

Figure 7-9 with slope and hysteresis curves (Figure 7-10), again the priority was given to 

locate the surface nodes.        

 

Figure 7-8: Part of Matlab program code for assigning range (8000rpm-Z axis)
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Figure 7-9: Filtered nodes (8000rpm-Z 

axis) 

 

Figure 7-10: Slope and hysteresis plot 

(8000rpm-Z axis)

 

 

Figure 7-11: Z axis carrier node location - 8000rpm 

Figure 7-11 shows the location of the 8 filtered nodes on the carrier. Within the given 

range, no surface node were obtained, however it can be noticed that nodes 737, 738 and 

739 were found common for both Y and Z axes. These nodes may therefore be given 

higher priority for sensor installation because one temperature sensor can be used for 

compensation of both Y axis and Z axis errors. If considered at the design and build 

stage, this would be practical, otherwise a compromise may be needed for retrofit onto an 

existing spindle. 
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7.4 Environmental test –Sensitivity against the Y axis displacement 

In this case, the simulated environmental data was used to locate sensitive node 

positions. Main structural elements of the machine i.e. carrier head, column, base and 

table were analysed for their temperature sensitivity against Y axis movement of the test 

mandrel. Similar procedure was followed to extract temperature information from 

structures and displacement data from the test mandrel. 

7.4.1 Carrier head 

The carrier head nodes were analysed for their temperature sensitivity against Y axis 

movement of the test mandrel. Figure 7-12 shows the specified range to filter nodes 

sensitive to the Y movement of the machine due to environmental temperature 

fluctuations. Figure 7-13 shows the six filtered nodes and Figure 7-14 shows the plot of 

the slopes and hysteresis obtained from them. 

 

Figure 7-12: Matlab function calls for assigning filter range (Env-Y axis carrier head) 

 

 

Figure 7-13: Filtered nodes (Env-Y axis 

carrier head) 

  

Figure 7-14: Slope and hysteresis plot 

(Env-Y axis carrier head) 
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Figure 7-15: Y axis carrier node location - Environment 

Figure 7-15 shows the location of the six filtered nodes on the carrier; all sensitive 

nodes were found on the surface of the carrier elaborating the most affected sensitive 

structural area within the carrier.  

7.4.2 Column 

The column nodes were analysed for their temperature sensitivity against Y axis 

movement of the test mandrel. Figure 7-16 shows the specified range to filter nodes 

sensitive to the Y movement of the machine due to environmental temperature 

fluctuations. Figure 7-17 shows the seven filtered nodes and Figure 7-18 shows the plot 

of the slopes and hysteresis obtained from them.  Figure 7-19 shows the location of the 

seven filtered nodes on the column. 

 

Figure 7-16: Matlab function calls for assigning filter range (Env-Y axis column)
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Figure 7-17: Filtered nodes (Env-Y axis 

column) 

 

Figure 7-18: Slope and hysteresis plot 

(Env-Y axis column) 

 

Figure 7-19: Y axis column node location - Environment 

7.4.3 Base  

The base nodes were analysed for their temperature sensitivity against Y axis 

movement of the test mandrel. Figure 7-16 shows the specified range to filter nodes 

sensitive to the Y movement of the machine due to environmental temperature 

fluctuations. Figure 7-21 shows the nine filtered nodes and Figure 7-22 shows the plot of 
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the slopes and hysteresis obtained from them. Although the nodes were found with the 

minimum hysteresis however the plot showed that the hysteresis was still large and have 

shown a non-linear relationship with the temperature change. Therefore these nodes may 

not be considered for temperature sensors however the software (Abaqus) has given the 

possibility to obtain the knowledge of the location of these nodes. Figure 7-23 shows the 

location of the nine filtered nodes on the base. 

 

Figure 7-20: Matlab function calls for assigning filter range (Env-Y axis base) 

 

Figure 7-21: Filtered nodes (Env-Y axis 

base) 

 

 

 

Figure 7-22: Slope and hysteresis plot 

(Env-Y axis base) 

 

Figure 7-23: Y axis base node location - Environment 
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7.4.4 Table 

The table nodes were analysed for their temperature sensitivity against Y axis 

movement of the test mandrel. Figure 7-16 shows the specified range to filter nodes 

sensitive to the Y movement of the machine due to environmental temperature 

fluctuations. Figure 7-25 shows the five filtered nodes and Figure 7-26 shows the plot of 

the slopes and hysteresis obtained from them.  Figure 7-27 shows the location of the five 

filtered nodes on the table. 

 

Figure 7-7-24: Matlab function calls for assigning filter range (Env-Y axis table) 

 

Figure 7-25: Filtered nodes (Env-Y axis 

table) 

 

Figure 7-26: Slope and hysteresis plot 

(Env-Y axis table) 

 

Figure 7-27: Y axis table node location - Environment 
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7.5 Environmental test –Sensitivity against the Z axis displacement 

The main structural elements of the machine were also analysed for their temperature 

sensitivity against Z axis movement of the test mandrel. 

7.5.1 Carrier head 

A similar procedure was followed to locate nodes on the carrier head sensitive to the Z 

movement due to environmental fluctuations. Eight nodes sensitive to the Z movement of 

the machine were filtered using the given range shown in Figure 7-28 and are shown in 

Figure 7-29 with slope and hysteresis plots (Figure 7-30).        

 

Figure 7-28: Part of Matlab program code for assigning range (Env-Z axis carrier head) 

 

Figure 7-29: Filtered nodes (Env-Z axis 

carrier head) 

 

 

Figure 7-30: Slope and hysteresis plot 

(Env-Z axis carrier head) 
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Figure 7-31: Z axis carrier head node location - Environment 

Figure 7-31 shows the location of the eight filtered nodes on the carrier. Only one 

node (2381) was found on the surface of the carrier and its location may be used for 

temperature sensor installation.  

7.5.2 Column 

The column nodes were analysed for their temperature sensitivity against Z axis 

movement of the test mandrel. Figure 7-32 shows the specified range to filter nodes 

sensitive to the Z movement of the machine due to environmental temperature 

fluctuations. Figure 7-33 shows the six filtered nodes and Figure 7-34 shows the plot of 

the slopes and hysteresis obtained from them.  Figure 7-35 shows the location of the six 

filtered nodes on the column. 

 
Figure 7-32: Part of Matlab program code for assigning range (Env-Z axis column) 
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Figure 7-33: Filtered nodes (Env-Z axis 

column) 

 

Figure 7-34: Slope and hysteresis plot 

(Env-Z axis column) 

 

Figure 7-35: Z axis column node location - Environment 

7.5.3 Base 

The base nodes were analysed for their temperature sensitivity against Z axis 

movement of the test mandrel. Figure 7-7-36 shows the specified range to filter nodes 

sensitive to the Z movement of the machine due to environmental temperature 

fluctuations. Figure 7-37 shows the six filtered nodes and Figure 7-38 shows the plot of 

the slopes and hysteresis obtained from them.  Figure 7-39 shows the location of the six 

filtered nodes on the base. 
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Figure 7-7-36: Part of Matlab program code for assigning range (Env-Z axis base) 

 

Figure 7-37: Filtered nodes (Env-Z axis 

base) 

 

Figure 7-38: Slope and hysteresis plot 

(Env-Z axis base) 

 

Figure 7-39: Z axis base node location - Environment 

7.5.4 Table 

The table nodes were analysed for their temperature sensitivity against Z axis 

movement of the test mandrel. Figure 7-40 shows the specified range to filter nodes 

sensitive to the Z movement of the machine due to environmental temperature 

fluctuations. Figure 7-41 shows the six filtered nodes and Figure 7-42 shows the plot of 

the slopes and hysteresis obtained from them.  Figure 7-43 shows the location of the six 

filtered nodes on the table. 

 

Figure 7-40: Part of Matlab program code for assigning range (Env-Z axis table
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)  

Figure 7-41: Filtered nodes (Env-Z axis 

table) 

 

Figure 7-42: Slope and hysteresis plot 

(Env-Z axis table) 

 

Figure 7-43: Z axis table node location - Environment 

 

7.6 Summary of the chapter 

It has been observed that the FEA simulation builds up a solid platform for offline 

assessment of the machine behaviour. The correlations of the simulated results with the 

online measurements (both internal heating and environmental temperature fluctuations) 

are greater than 60%, and in most cases greater than 70%. 

This chapter has looked into exploiting the detailed data obtainable from the FEA 

simulation by locating nodes whose change in temperature relates to the error at the tool. 

The nodes are obtained using the criteria of lowest hysteresis value i.e. linear with the 

same profile whether heating or cooling with the lowest thermal memory and with the 

highest slope i.e. temperature change to error ( C/µm). 
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FEA results from both internal heating and environmental temperature fluctuation 

simulations were used to locate nodes in the carrier head and in main structural elements 

respectively that were sensitive to the movement of machine structure in Y and Z axes. 

The simulation temperature data from all nodes and displacement data for both Y and Z 

axes from the test mandrel were extracted. Two Matlab functions were written to 

manipulate the data; the first function plots the hysteresis and slope for any given node 

and the second node filters out sensitive node locations by using a range of highest slope 

sensitivity and lowest hysteresis value. The location of the filtered nodes were analysed 

using the Abaqus GUI. The priority is given to surface nodes rather than the internal 

nodes for the real practicality of temperature sensor installation on the machine. By 

determining the best linear relationships, simple models are available and compatible 

with the common thermal compensation methods available in most modern NC 

controllers. 

 

 

 

 

 

 

 

 

 

 

 

      

  



172 

 

CHAPTER - 8  

8 Conclusions and suggestions for future work  

This research into FE based simulation of thermal errors on CNC machine tools has 

provided a novel and efficient strategy for practical implementation and comprehensive 

validation. This contributes signifcantly towards assuring the future of efficient thermal 

model development to facilitate widespread industrial application of thermal 

compensation. 

Industry strives to produce high volumes of components with high precision and CNC 

machine tools are most commonly chosen due to their ability to automate production 

with reliability, stability and repeatability. The volumetric accuracy of these machines 

depends primarily on the magnitude of the geometric, non-rigid and thermal errors. 

Machine thermal instability is dependent on a variety of internal and external heat 

sources and their overall affect results in machine structural deformation that often 

occurs in a complex manner due to the non-linear behaviour and interaction of the 

machine structural elements. 

Pre-calibrated compensation has gained popularity among machine tool builders and 

users as a cost effective method for reducing the affect of geometric errors and modern 

NC systems have this facility as standard. The existing thermal compensation is usually 

limited to simple linear relationships to compensate, for example, spindle growth based 

on a motor or bearing sensor. Both of these standard compensation methods, despite their 

established nature are rarely fully utilised because of the effort or inconvenience, 

particularly machine down time, required to obtain the pre-calibrated data. The cost of 

reducing thermal errors or their effect by design can escalate significantly with 

increasing accuracy requirement, particularly environmental temperature control and 

therefore significant research has been done over the last few decades into more 

advanced compensation methodologies.  This research reviewed a number of 

sophisticated techniques for modelling, estimation and compensation of thermal errors 

such as neural networks and regression techniques. The review revealed that these 

methods can be complicated and often required a significant amount of training time to 
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calibrate and can be sensitive to changes in the way the machine is used and to the 

location and performance of temperature sensors. These issues have a considerable 

contribution towards machine downtime therefore cost which, combined with the 

inherent complexity of some of the methods, has meant that comprehensive thermal 

compensation is mostly absent within manufacturing industry. The majority of the 

reviewed work has also been concentrated on solving internally generated heat related 

problems therefore costly temperature controlled environments are often still as the only 

solution to counter the adverse effects of environmental temperature fluctuations.  

To overcome downtime issues, Finite Element Analysis (FEA) has been applied, 

primarily within research, due to proven capabilities for offline prediction of thermal 

errors. The published literature revealed a number of successful applications of FEA but 

in most cases it has been used as part of the research as a validation tool on discrete 

structural elements of the machine.  

In this research FEA is used to simulate the thermal behaviour of the entire structure 

of a small milling machine using Abaqus/CAE Standard FEA software. The model of the 

machine assembly was generated using the CAD facility in the software. A study was 

conducted to understand the heat flow mechanism across structural joints requiring 

Thermal Contact Conductance (TCC) values. This research contributes experimentally 

obtained, and therefore accurate, TCC values for structural interface conditions 

compatible with CNC machine tool joints not previously available. These ensure a 

realistic thermal behaviour across assembly joints.  This was followed by the 

investigation of the thermal behaviour of the machine due to both internal heat and 

external environmental fluctuations. 

The research first investigated the thermal behaviour of the machine due to internal 

heating at two spindle speeds of 8000rpm and 4000rpm. In accordance with the aim of 

the research, only a short term test for a selected spindle speed was sufficient to obtain 

the required parameters for the FEA software to simulate and predict the thermal 

behaviour of the machine for short and, critically, even for long term tests and therefore 

provides a validated method where offline simulations can replace long term machine 

thermal trials that will reduce significant amount of machine downtime while enhancing 

the available data. 
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Key to this accuracy and efficiency is the novel method of calculating the body heat 

flux (BHF) values using carefully sectioned structural volumes surrounding the heat 

source and balancing the energy equation. This method can be further enhanced, in terms 

of accuracy; in the future using an identified technique involving contour matching 

described in the future work section.  

The BHF calculation method also identified a variable and non-linear heat output 

from the bearings. A solution was found using the programming capabilities of the 

Abaqus FEA software to simulate the effect of changing the body heat flux value in the 

simulation by changing the Cp based on the temperature. 

The work has provided an efficient method to calculate the convective heat transfer 

coefficient (h) due to airflow across test mandrels or generic tooling during spindle 

rotation. The method uses thermal imaging and a temperature sensor to obtain required 

paramters for calculations of ‘h’, and apply to the rotating tools in the software to 

accurately simulate thermal behaviour across rotating parts.    

This research has validated the importance of identifying and including air pockets in 

the simulation. Air pockets were found to be local areas within the structure where 

normal convective flow is restricted and which reduce the cooling rate of the affected 

machine surfaces. The air temperature within those localized areas remains relatively 

high compared with the bulk ambient which effectively causes the associated structures 

to respond differently. It was also found that the effect of air pockets grows in 

significance with heat input i.e. higher spindle speeds in this case, and length of test.  

The information obtained from internal heating tests was used for FEA thermal 

simulations. All required parameters i.e. body heat fluxes, convection coefficients and 

sink (ambient) temperatures were fed into the FEA software. The simulations results 

were found to be well correlated with the experimental results obtained from all internal 

heating trials, with an average residual error of less than 7µm. 

The most significant cost benefits from this project may result from the long and very 

long term simulations that are impractical or unfeasible to complete experimentally. The 

effort applied to concentrate on maximising the short term correlation in the Z axis was 
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not a priority once the target correlation of 60% was achieved. In fact, in most cases the 

simulated movement matched the experimental by more than 70%. 

This work has validated the FEA modelling strategy for simulating the thermal 

behaviour of the machine during environmental temperature fluctuations. The machine 

was tested in two seasons i.e. summer and winter, both tests were conducted for three 

continuous days. It was found that the overall temperature fluctuation was approximately 

4°C in summer and approximately 5°C in winter and caused significant thermal 

deformations in the machine. This is often much higher and depends on the building 

susceptibility and climate A vertical temperature gradient was found to be approximately 

1°C/m which causes each structural element to have a different initial temperature.   

The complexity for defining initial temperatures to individual structural elements in 

the software was solved in this research by using a constant temperature for the full 

machine model followed by utilizing a new method of two-step simulation. In this 

method, the first step is used to determine the settling zone for the machine model to 

represent initial thermal state. This is followed by the second step of normal 

environmental simulation. The results of the environmental FEA simulations were also 

well correlated with the experimental results and revealed an average residual error of 

less than 8µm.  

Well achieved correlations provided an offline platform to further assess FEA models 

and results. The assessments were carried out on the spindle carrier for internal heating 

simulations and on the main machine structural elements for environmental simulations 

to locate nodes and their positions whose displacements were sensitive to temperature 

change to effectively install temperature sensors permanently at those positions for 

simple linearly correlated thermal error compensation for compatibility with the existing 

capability within modern NC system but enhance the scope of the error being 

compensated. Two Matlab programs were written with an approach to find nodes with 

the highest slope sensitivity and with lowest hysteresis. The programs successfully found 

the nodes; and the Abaqus GUI was used to determine their position in the FEA model, 

effectively showing the importance of the software to visualize the location of the nodes.      
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This work targeted Abaqus as a standard commercially available FEA package to 

ensure the overall methodology was practical and available. The maximum time taken by 

any individual FEA simulation (internal and environmental) did not exceed more than 60 

minutes. This enables multiple simulations to be completed for a variety of conditions. 

To further conclude, machine downtime is a dominant issue within manufacturing 

industries that prevents testing and implementation for compensation. This research 

provides a method where the machine downtime can be reduced using offline simulation 

techniques for extended and complex real world machine operations. Rapid CAD model 

development; testing of the machine for a small period and the use of the calculated 

parameters at a selected spindle speed are efficient and all that is required to then run 

extended simulations without further testing on the machine. From such detailed data, 

new models can be created and tested offline. In this work, the linear compensation 

capabilities of existing NC system have been targeted by finding the best nodes that 

indicate where to physically place temperature sensors and their model coefficients.  

8.1 Suggestions for future work 

8.1.1 Contour plotting 

Preliminary work has been completed to analyse thermal images using a Matlab 

program written to plot contours on identified isotherms calculated from thermal images 

to observe the dissemination of the heat flow. This provides an additional facility to 

locate heat sources in machines tools by analysing heat concentrations, temperature 

gradients and flow direction. The future application is to use the directional flow of the 

isotherms to further optimize the body heat flux values calculated for the heat sources. 

An example is determining the structural areas where contours are in a state of 

equilibrium indicating negligible conduction. Figure 8-1 shows the thermal image of the 

spindle and carrier head. Figure 8-2 shows the plotted contours on isotherms showing 

heat concentrations. 
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Figure 8-1: Thermal image 

 

Figure 8-2: Contours plotted 

A further important advancement will be the calculation of similar contours from the 

surface nodes of the FEA model to enable a contour matching algorithm to optimise the 

heat flux and FE model to optimise the accuracy of modelling complex distortions in 

highly complex areas such as the carrier of this machine. This will improve the shape/tilt 

accuracy as discussed in the following section. 

8.1.2 Y axis tilt 

Although the bottom part of the tool (test mandrel) is the most crucial area responsible 

for cutting, complex spindle thermal behaviour often produces a tilt in cutting tools 

which is of prime importance especially with cutting tools varying in length significantly 

Heat 

concentrations 

Contours 
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or large diameter tools. Figure 8-3 shows an illustration of a tilt in the tool caused by the 

thermal distortions.  

 

Figure 8-3: Cutting tool tilt 

8.2 Workpiece modelling 

Workpiece accuracy is further hindered by the increase in machining of thermally 

sensitive materials such as aluminium which can produce significant differential 

expansion between the machine and workpiece as well as non-uniform distortion within 

the workpiece itself. Detailed CAD models of the workpiece are becoming increasingly 

applied within Computer Aided Manufacturing (CAM) systems and these can be added 

into the simulation to enhance the accuracy simulating the real tool to workpiece 

interface in a relatively simple way. 

 

 

 

 

 

Deformed structure 

Ideal structure Tilt 
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APPENDIX A - MATERIAL PROPERTIES AND BENCHMARK CALCULATIONS 

Properties of materials 

 

 

 

 

 

Table A-1: Thermal conductivity values for common machine tool associated materials 

Material Coefficient of thermal 

expansion ( ) in m/m°C 

Aluminium  22 

Cast Iron  9 

Invar 1.2 

Steel  11.7 

Table A-2: List of thermal expansion coefficients for common metals 

 Steel Cast iron Invar Units (mm) 

Conductivity (k) 51.9 52.329 15 mJ/mm°C 

Density 7.805 x 10
-9

 7.2 x 10
-9

 8.20 x 10
-9

 tonne/mm
3
 

Specific heat capacity (Cp) 473 x 10
+6

 506 x 10
+6

 525 x 10
+6

 mJ/tonne/°C 

Modulus of elasticity 205000 124000 145000 N/mm
2 

Coefficient of linear expansion 11.7 x10
-6

 9 x10
-6

 1.2 x10
-6

 m/m°C 

Poisson's ratio 0.3 0.24 0.3  

Table A-3: Properties of steel, cast iron and invar used in Abaqus   

 

 

 

 

Material 

 

Thermal Conductivity (W/m/°C). 

Air 0.024 

Cast iron 52.329 

Machine lubricating oil 0.15 

Steel 51.9 

Water as coolant 0.58 
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APPENDIX B - CAD MODELLING OF MACHINE STRUCTURAL PARTS 

Machine drawings in 2D format were provided by the machine tool manufacturer for 

construction of the structural parts. The models were created separately before the 

assembly took place. The parts are as follows: 

Carrier head Test mandrel 

Column Guide ways 

Table Carriages 

Base Motor support 

Saddle Motor heat structure 

Spindle Two Belt drive structures 

Bearings Z axis motor 

 

Carrier head

The carrier head was simplified by removing unnecessary details such as fillets, 

chamfers etc. The vents were considered to have a significant effect on thermal cooling 

and therefore included. Figure B-1 and Figure B-2 show the two views of the created 

model of the carrier. The model indicates the areas where symmetry constraints were 

applied. The model was halved due to symmetrical nature in X axis.  
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Figure B-1: Machine Carrier head (view1) 

 

 

Figure B-2: Machine Carrier head (view 2) 

Column 

Column was created after simplifications. Geometrical details for example filleted 

curves on the guide ways were simplified and represented as rectangular blocks. Internal 

ribs were created since these add stiffness to the tall structure. Guide ways were 

represented as rectangular blocks. Figure B-3 and Figure B-4 shows the two views of the 

created model of the column. 

 

Symmetry 

Motor housing area 

Spindle fixing area 

Outer rib 

Vents 
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Figure B-3: Machine Column (view1) 

 

Figure B-4: Machine Column (view2) 

 

Table 

Simplified CAD model of the Table was created that also includes the ribs and vents. 

The model was halved and the symmetry was applied in the software. Figure B-5 and 

Figure B-6 shows two views of the created CAD model of machine table. Internal ribs 

and symmetry are shown.  

 

Figure B-5: Machine Table (view1) 

 

Symmetry 

Vent 

Symmetry 
Vents 

Guide ways 

Internal ribs 
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Figure B-6: Machine Table (view2) 

Base 

The base was created after simplifying guide ways. Guide ways were represented as 

rectangular blocks as shown in Figure B-7. Figure B-8 shows internal ribs and the 

symmetry applied. 

 

4 

Figure B-7: Machine Base (view1) 

 

Internal ribs 

Symmetry 

Guide way 
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Figure B-8: Machine Base (view2) 

Saddle 

The saddle was created after simplifying, again the guide ways were represented as 

rectangular blocks.  Figure B-9 and Figure B-10 shows two views of the created CAD 

model of the table. 

 

Figure B-9: Machine Saddle (view1) 

 

Figure B-10: Machine Saddle (view2) 

Internal ribs 

Symmetry 

on the ribs 

Symmetry 

Guide ways 
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Spindle 

Spindle was created in two stages. The top part shown in Figure B-11 was created 

separately to specifically represent location for the belt drive. The spindle is rotated using 

the belt drive which acts as a heat source by which the heat flows into the spindle through 

the contacting areas. The belt drive section was modelled and simplified and the gear 

teeth were removed. 

The lower part shown in Figure B-12 was created separately and assembled, slots were 

created to position the bearings. Voids were created as per manufacturing diagram.  

 

Figure B-11: Machine Spindle belt drive section (Top part) 

Belt drive location 
Symmetry 
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Figure B-12: Machine Spindle (Bottom part) 

 

Spindle bearings 

Spindle bearings (main heat sources) were created and represented as annular blocks 

after simplifications as shown in Figure B-13.  

 

Figure B-13: Upper and lower Bearings 

Symmetry 

Bearing 

slots 

Voids 

Symmetry 

Symmetry 
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Test mandrel 

Test mandrel was created after simplification. Symmetry was applied as shown in 

Figure B-14.   

 

Figure B-14: Test mandrel 

Guide ways 

Guide ways were created and represented as extruded rectangular blocks after 

simplification as shown in Figure B-15. There is no symmetry associated to this structure. 

 

Figure B-15: Guide ways for Column 

 

 

 

 

 

Symmetry 
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Carriages 

Carriages were created and represented as simplified blocks as shown in Figure B-16. 

There is no symmetry associated to this structure. 

 

Figure B-16: Carriage 

Motor Support 

This is an integral part of the carrier head over which the spindle motor housing is 

fixed. It was created as a rectangular block as shown in Figure B-17. There is no 

symmetry associated to this structure. 

 

Figure B-17: Motor support structure 

 

Spindle motor mount plate 
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The heat generated by the spindle motor travels through the mounting plate and 

disseminates into the structure through the motor support structure. This plate was 

modelled and represented as a simplified rectangular structure as shown in Figure B-18. 

There is no symmetry associated to this structure. 

 

Figure B-18: Structure representing spindle motor housing mount plate 

  

Belt drive structures 

Two separate structures were created to represent the spindle belt drive which drives 

the spindle through the spindle motor. The belt drive acts as a heat source due to the 

friction with associated gear teeth. Figure B-19 shows the first structure of the belt drive 

and Figure B-20 shows the second structure of the belt drive. Symmetry was applied and 

shown.  

 

Figure B-19: Structure representing the belt drive heat source at Spindle 

Symmetry 
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Figure B-20: Structure representing the belt drive heat source inside Carrier head 

Z axis drive motor support bracket 

The Z axis drive motor support bracket provides means of supporting the Z axis drive 

motor which serves to translate and hold the axis in position. Figure B-21 shows the 

simplified CAD model representing the Z axis drive motor support bracket. There is no 

symmetry associated to this structure. 

 

Figure B-21: Structure representing Z axis drive motor support bracket 

 

 

 

 

 

 

 

 

 

Symmetry 



198 

 

APPENDIX C - BHF CALCULATIONS FOR HEAT SOURCES 

The procedure used to obtain BHF values using equation 3.6 for benchmarks (chapter 

4) is followed to obtain the BHF values for the heat sources present in the machine.  

)(/)(' 21 airsurf TThAtTTmCpQ …….  (3.6) 

Upper bearing (8000rpm) 

For the upper bearing BHF, the upper selected volume (Figure 4-33 – chapter 4) of the 

spindle was taken. The volume of the upper bearing was used to divide the total energy 

Q’ obtained to obtain the BHF value for the lower bearing.  

The heating data from the upper bearing sensor was used.  Similar to lower bearing, a 

trend line was plotted on the upper bearing data to refine it.  Figure C-1 shows the trend 

line plotted on the upper bearing sensor data. Table C-1 shows the data of the lower 

bearing used to calculate the BHF value.  

 

Figure C-1: Trend line plotted on the upper bearing sensor data 

    Upper bearing Value Units 

Volume of the upper spindle housing 6.73E+05 mm
3
 

Volume of the upper bearing 58240 mm
3
 

Total volume 7.31E+05 mm
3
 

Area of the upper spindle bearing 2.10E+04 mm
2
 

Total mass 5.71E-03 tonnes 

Density of Steel 7.81E-09 tonne/mm
3
 

Cp of Steel 4.73E+08 mJ/tonnes/°C 

Time 10 s 

h 0.006 mW/mm
2
/°C 

Initial ambient temperature 24.438 °C 

Table C-1: Upper bearing data used for BHF calculations 
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The main iteration that obtained the transient BHF for the upper bearing is presented.  

Total volume    = 6.73E+05 mm
3
 

Total mass    = 5.71E-03 tonnes 

Temperature difference (T2-T1) = 0.1051021°C (between two logs) 

Total time     = 10s (logging time interval) 

Convection coefficient (h)  = 0.006 mW/mm
2
/°C 

Ambient temperature change  = Varied from 24.438°C to 25.563°C during the 

heating cycle – Used transiently during 

calculations  

Exposed area    = 2.10E+04mm
2
 

By applying these values in equation 3.6, the value for the Q’ is 

Q’ = 28421.49399 mW 

The value of Q’ is required to be divided by the volume of the heat source which in 

this case is the volume of the upper bearing. 

 = 28421.49399 mW / 58240 mm
3 

which gives the BHF value as 

 

 

Carrier belt drive and spindle motor mount plate (8000rpm) 

BHF values were calculated for the two heat sources present in the carrier head, carrier 

belt drive (Figure 4-41– chapter 4) was considered as main heat source and spindle motor 

mount plate (Figure 4-42– chapter 4) was considered as a neighbouring heat source. 

Following the similar procedure, the volume of each heat source was used to divide the 

total energy Q’ obtained to obtain the BHF values.  

The heating data for the carrier belt drive was obtained from the sensor closest to the 

heat source (highest temperature magnitude) and was found to be the sensor number 3 in 

the sensor strip 1. Similarly sensor number 10 was found with the highest temperature 

 = 0.49 mW/mm
3
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magnitude as being closest to the heat source in the sensor strip 2 for the spindle motor 

mount plate.  

For the carrier belt drive BHF, a trend line was plotted on the Line 1 sensor 3 data to 

refine it. Figure C-2 shows the trend line plotted on the upper bearing sensor data. Table 

C-2 shows the data of the carrier belt drive used to calculate the BHF value.  

 

Figure C-2: Trend line plotted on the Line 1 sensor 3sensor data 

Carrier belt drive Value Units 

Volume of the selected carrier structure 3.76E+06 mm
3
 

Volume of the belt drive 54606 mm
3
 

Total volume (selected carrier structure and belt drive) 3.82E+06 mm
3
 

Total area (selected carrier structure and belt drive) 3.30E+05 mm
2
 

Total mass 2.75E-02 tonnes 

Density of Cast Iron 7.20E-09 tonne/mm
3
 

Cp of Cast Iron 506000000 mJ/tonnes/°C 

Time 10 s 

h 0.006 mW/mm
2
/°C 

Initial ambient temperature 24.438 °C 

Table C-2: Carrier belt drive data used for BHF calculations 

The main iteration that obtained the transient BHF for the carrier belt drive is shown 

below.  

Total volume    = 6.73E+05 mm
3
 

Total mass    = 5.71E-03 tonnes 

Temperature difference (T2-T1) = 0.03865036°C (between two logs) 
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Total time     = 10s (logging time interval) 

Convection coefficient (h)  = 0.006 mW/mm
2
/°C 

Ambient temperature change = Varied from 24.438°C to 25.563°C during the 

heating cycle – Used transiently during 

calculations 

Total exposed area   = 3.30E+05 mm
2
 

By applying these values in equation 3.6, the value for the Q’ is 

Q’ = 54422.21475 mW 

The value of Q’ is required to be divided by the volume of the heat source which in 

this case is the volume of the carrier belt drive. 

 = 54422.21475 mW / 54606 mm
3
 which gives the BHF value as 

 

 

Spindle motor mount plate Value Units 

Volume of the motor support and carrier side 1.29E+06 mm
3
 

Volume of the mount plate 63840 mm
3
 

Total volume (motor support and carrier side and the mount plate) 1.36E+06 mm
3
 

Total area (motor support and carrier side and the mount plate) 6.32E+04 mm
2
 

Total mass 9.78E-03 tonnes 

Density of Cast Iron 7.20E-09 tonne/mm
3
 

Cp of Cast Iron 506000000 mJ/tonnes/°C 

Time 10 s 

h 0.006 mW/mm
2
/°C 

Initial ambient temperature 24.438 °C 

Table C-3: Spindle motor mount plate data used for BHF calculations 

The spindle motor mount plate is considered as a neighbouring heat source therefore 

to simplify, these calculations were performed using the full analysis time.  

Total volume    = 1.36E+06 mm
3
 

 = 1 mW/mm
3
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Total mass    = 9.78E-03 tonnes 

Temperature difference (T2-T1) = 5.25°C 

Total time     = 3600s 

Convection coefficient (h)  = 0.006 mW/mm
2
/°C 

Ambient temperature change = Varied from 24.438°C to 25.563°C during the 

heating cycle – Used transiently during 

calculations  

Total exposed area   = 6.32E+04 mm
2
 

By applying these values in equation 3.6, the value for the Q’ is 

Q’ = 9.20E+03 mW 

The value of Q’ is required to be divided by the volume of the heat source which in 

this case is the volume of the mount plate. 

 = 9.20E+03 mW / 63840 mm
3
 which gives the BHF value as 

 

 

Spindle belt (8000rpm) 

For the spindle belt BHF, the selected volume (Figure 4-35 – chapter 4) for the spindle 

belt was taken. Using the similar approach, the volume of the spindle belt was used to 

divide the total energy Q’ obtained to obtain the BHF value.  

Thermal imaging (Figure 4-20 – chapter 4) was used to extract temperature data for 

the spindle belt.  Figure C-3 shows the trend line plotted on the temperature data from 

thermal imaging to refine it. Table C-4 shows the data of the spindle belt used to 

calculate the BHF value.  

 = 0.14 mW/mm
3
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Figure C-3: Trend line plotted on the temperature data from thermal imaging 

 

Spindle belt Value Units 

Volume of the upper belt drive structure 602712 mm
3
 

Volume of the small belt drive 27803 mm
3
 

Total volume (upper belt drive structure and small belt drive) 630515 mm
3
 

Total area (upper belt drive and lower belt drive) 3.99E+04 mm
2
 

Total mass 4.92E-03 tonnes 

Density of Steel 7.81E-09 tonne/mm
3
 

Cp of Steel 473000000 mJ/tonnes/°C 

Time 30 s 

h 0.006 mW/mm
2
/°C 

Initial ambient temperature 24.438 °C 

Table C-4: Spindle belt data used for BHF calculations  

The main iteration that obtained the transient BHF for the spindle belt is shown below.  

Total volume    = 630515 mm
3
 

Total mass    = 4.92E-03 tonnes 

Temperature difference (T2-T1) = 0.196053178 °C (between two logs) 

Total time     = 30s (logging time interval) 

Convection coefficient (h)  = 0.006 mW/mm
2
/°C 
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Ambient temperature change = Varied from 24.438°C to 25.563°C during the 

heating cycle – Used transiently during 

calculations 

Total exposed area   = 3.99E+04 mm
2
 

By applying these values in equation 3.6, the value for the Q’ is 

Q’ = 15596.73591 mW 

The value of Q’ is required to be divided by the volume of the heat source which in 

this case is the volume of the small belt drive. 

 = 15596.73591 mW / 27803 mm
3
 which gives the BHF value as 

 

 

Z-axis motor bracket (4000 and 8000rpm) 

Similar to the test mandrel and spindle mount plate, the Z motor is also considered as a 

neighbouring heat source that contributes relatively lesser towards total thermal 

deformation of the machine compared to the main heat sources. Since Z-axis motor holds 

the axis in position, the energising rate is independent of spindle speeds, therefore the 

calculated BHF was used for both tests (4000 and 8000rpm).   

For the Z-axis BHF, the selected volume (Figure 4-39 – chapter 4) from the column 

was taken and the volume of the Z-axis motor was used to divide the total energy Q’ 

obtained to obtain the BHF value. Thermal imaging (Figure 4-36 – chapter 4) was used to 

extract temperature data from the inserted points using the thermal imaging software.  

Table C-5 shows the data of the Z-axis motor used to calculate the BHF value.  

Z-axis motor bracket Value Units 

Volume of the selected column area 4.53E+06 mm
3
 

Volume of the Z-axis motor bracket 9.80E+04 mm
3
 

Total volume (selected column area and the Z-axis motor bracket) 4.63E+06 mm
3
 

Total area (selected column area and the Z-axis motor bracket) 4.82E+05 mm
2
 

Total mass 0.03612154 tonnes 

Density of Steel 7.81E-09 tonne/mm
3
 

 = 0.56 mW/mm
3
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Cp of Steel 473000000 mJ/tonnes/°C 

Time 1500 s 

h 0.006 mW/mm
2
/°C 

Initial ambient temperature 24.438 °C 

Table C-5: Z-axis motor mount plate data used for BHF calculations 

The main iteration that obtained the transient BHF for the Z axis motor bracket is 

shown below.  

Total volume    = 4.63E+06 mm
3
 

Total mass    = 0.03612154 tonnes 

Temperature difference (T2-T1) = 1.7°C 

Total time     = 1500s 

Convection coefficient (h)  = 0.006 mW/mm
2
/°C 

Ambient temperature change  = 1°C (during the stabilization cycle) 

Total exposed area   = 4.82E+05mm
2
 

By applying these values in equation 3.6, the value for the Q’ is 

Q’ = 22853.81 mW 

The value of Q’ is required to be divided by the volume of the heat source which in 

this case is the volume of the Z axis motor bracket. 

 = 22853.81 mW / 9.80E+04 mm
3
 which gives the BHF value as 

 

 

Same procedure was followed to obtain BHF values for the 4000rpm speed. Trend 

lines were plotted on the data obtained from the sensors to refine them.  

Lower bearing (4000rpm) 

Figure C-4 shows the trend line plotted on the temperature data obtained from the 

lower bearing at 4000rpm. The dimensional data for the lower bearing (chapter 4) was 

 = 0.23 mW/mm
3
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used and same calculation procedure was followed to calculate the BHF value for the 

lower bearing at 4000rpm as used for the 8000rpm BHF calculations. 

 

Figure C-4: Trend line plotted on the temperature data from lower bearing 

Temperature difference (T2-T1) = 0.02094°C (between two logs) 

Ambient temperature change  = 0.25°C (during the heating cycle) 

The BHF obtained for the lower bearing is 

 

The energy loss was calculated using the test mandrel dimensional data (chapter 4). 

The lower half of the test mandrel was neglected because of negligible temperature 

magnitude.  

Temperature difference (T2-T1) = 0.25°C 

The BHF obtained for the test mandrel upper half is 

 

 

The total BHF obtained after adding both BHFs  

 

 

Upper bearing (4000rpm) 

 = 0.06 mW/mm
3
 

 

 = 0.057518097 mW/mm
3
 

 

 = 0.001757788 mW/mm
3
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Figure C-5 shows the trend line plotted on the temperature data obtained from the 

upper bearing at 4000rpm. The dimensional data for the lower bearing (Table C-1) was 

used to calculate the BHF value for the upper bearing at 4000rpm. 

 

Figure C-5: Trend line plotted on the temperature data from upper bearing 

Temperature difference (T2-T1) = 0.063°C (between two logs) 

Ambient temperature change  = 0.25°C (during the heating cycle) 

The BHF obtained for the upper bearing is 

 

 

Carrier belt drive and spindle motor mount plate (4000rpm) 

Figure C-6 shows the obtained temperature data from the carrier head sensors. Figure 

C-7 shows the trend line plotted on the temperature data obtained from the sensor number 

4 in strip 1 (closest to the heat source with highest temperature magnitude) at 4000rpm. 

The dimensional data for the carrier belt drive (Table C-2) was used to calculate the BHF 

value for the carrier belt drive at 4000rpm. 

 = 0.11mW/mm
3
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Figure C-6: The temperature data was selected from this set for BHF calculations (4000rpm) 

 

Figure C-7: Trend line plotted on the temperature data from carrier belt drive 

Temperature difference (T2-T1) = 0.02094°C (between two logs) 

Ambient temperature change  = 0.25°C (during the heating cycle) 

 

The BHF for the spindle motor mount plate was calculated using the spindle motor 

mount plate dimensional data (Table C-3). The sensor closest to the heat source with 

highest temperature magnitude was sensor number 11 in strip 2. 

Temperature difference (T2-T1) = 2.813°C (between two logs) 

The BHF obtained for the spindle motor mount plate is 

 

 

Spindle belt (4000rpm) 

 = 0.37 mW/mm
3
 

 

= 0.08 mW/mm3 
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Figure C-8 shows the trend line plotted on the temperature data obtained from the 

spindle belt at 4000rpm using thermal imaging. The dimensional data for the spindle belt 

(Table C-4) was used to calculate the BHF value for the spindle belt at 4000rpm. Logging 

time interval of 10s was used. 

 

Figure C-8: Trend line plotted on the temperature data from thermal imaging 

Temperature difference (T2-T1) = 0.033814173°C (between two logs)  

Ambient temperature change  = 0.25°C (during the heating cycle) 

 

 

Specific heat capacity (8000rpm) 

For calculations of specific heat capacity (Cp) mentioned in section 4.3.5 of chapter 4, 

temperature data from the spindle boss sensor was used. An ‘Artificial’ material was 

defined with the defined Cp values and was applied to both upper and lower spindle 

bearings. 

The calculations were performed on the data obtained from the spindle boss sensor as 

this is the place where the temperature was measured. Using the trend lined data (Chapter 

4), Cps were calculated iteratively as a function of temperature. The values of Cps have 

shown an increasing trend which explains the stabilization of the temperature at the 

spindle boss during the test length. The values of Cp and the respective temperature data 

were averaged. The averaging was kept up to 90 points i.e. four Cp values were obtained 

to define an increasing trend. Equation 3.5 was transformed for the specific heat capacity 

as shown in equation C-1. 

= 0.33 mW/mm3 
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)(/ 12 TTmQCp .............(C-1) 

Table C-6 shows the obtained Cp values corresponding to the spindle boss 

temperature magnitudes. 

Trend lined 

spindle boss 

temperature 

(°C) 

Cp 

25.07234784 473000000 

25.19027694 474497186 

25.30783393 476003879 

25.42501882 477520172 

25.54183161 479046156 

25.65827229 480581924 

25.77434087 482127570 

25.89003735 483683191 

26.00536172 485248884 

26.120314 486824745 

26.23489416 488410875 

26.34910223 490007375 

26.4629382 491614345 

26.57640206 493231891 

26.68949381 494860116 

26.80221347 496499127 

26.91456102 498149030 

27.02653647 499809936 

27.13813982 501481955 

27.24937106 503165197 

27.36023021 504859778 

27.47071724 506565811 

27.58083218 508283413 

27.69057501 510012703 

27.79994574 511753800 

27.90894437 513506825 

28.01757089 515271901 

28.12582532 517049154 

28.23370764 518838709 

28.34121785 520640694 

28.44835597 522455241 

28.55512198 524282479 

28.66151588 526122544 

28.76753769 527975570 

28.87318739 529841695 

28.97846499 531721059 

29.08337049 533613802 

29.18790388 535520069 

29.29206517 537440004 

29.39585436 539373756 

29.49927145 541321473 

29.60231643 543283308 

29.70498931 545259414 

29.80729008 547249949 

29.90921876 549255070 

30.01077533 551274939 

30.1119598 553309719 

30.21277216 555359575 

30.31321243 557424676 

30.41328059 559505192 

30.51297665 561601297 

30.6123006 563713167 

30.71125245 565840980 

30.8098322 567984917 

30.90803985 570145162 

31.00587539 572321902 

31.10333883 574515328 

31.20043017 576725630 

31.2971494 578953005 

31.39349654 581197652 

31.48947157 583459772 

31.58507449 585739570 

31.68030532 588037253 

31.77516404 590353034 

31.86965066 592687127 

31.96376517 595039750 

32.05750758 597411124 

32.15087789 599801475 

32.2438761 602211031 

32.3365022 604640025 

32.42875621 607088693 

32.5206381 609557275 

32.6121479 612046014 

32.70328559 614555159 

32.79405118 617084962 

32.88444467 619635679 

32.97446606 622207570 

33.06411534 624800900 

33.15339252 627415938 

33.24229759 630052958 

33.33083057 632712238 

33.41899144 635394062 

33.5067802 638098717 

33.59419687 640826495 

33.68124143 643577696 

33.76791389 646352622 

33.85421425 649151580 

33.9401425 651974885 

34.02569865 654822856 

34.1108827 657695817 

34.19569465 660594099 

34.28013449 663518038 

34.36420223 666467975 

34.44789787 669444261 

34.5312214 672447248 

34.61417283 675477298 

34.69675216 678534778 

34.77895939 681620064 

34.86079451 684733534 

34.94225753 687875579 

35.02334845 691046592 

35.10406726 694246977 

35.18441397 697477142 

35.26438858 700737507 

35.34399109 704028496 

35.42322149 707350543 

35.50207979 710704089 

35.58056599 714089586 

35.65868008 717507491 

35.73642208 720958272 

35.81379197 724442406 

35.89078975 727960378 

35.96741544 731512685 

36.04366902 735099830 

36.1195505 738722330 

36.19505987 742380710 

36.27019714 746075504 

36.34496231 749807260 

36.41935538 753576535 

36.49337634 757383898 

36.56702521 761229929 

36.64030196 765115220 

36.71320662 769040375 

36.78573917 773006011 

36.85789962 777012757 

36.92968797 781061257 

37.00110422 785152165 

37.07214836 789286152 

37.1428204 793463903 

37.21312033 797686115 

37.28304817 801953502 

37.3526039 806266793 

37.42178752 810626734 

37.49059905 815034083 

37.55903847 819489620 

37.62710579 823994139 

37.69480101 828548452 

37.76212412 833153389 

37.82907513 837809800 

37.89565404 842518551 

37.96186085 847280530 

38.02769555 852096646 

38.09315815 856967827 

38.15824865 861895021 

38.22296704 866879202 

38.28731333 871921363 

38.35128752 877022523 

38.41488961 882183722 

38.47811959 887406027 

38.54097747 892690530 

38.60346325 898038348 

38.66557692 903450627 

38.72731849 908928538 

38.78868796 914473283 

38.84968533 920086093 

38.91031059 925768228 

38.97056375 931520982 

39.03044481 937345677 

39.08995376 943243674 

39.14909062 949216364 

39.20785537 955265174 

39.26624801 961391571 

39.32426856 967597055 

39.381917 973883169 

39.43919334 980251494 
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39.49609757 986703653 

39.5526297 993241313 

39.60878973 999866185 

39.66457766 1.007E+09 

39.71999349 1.013E+09 

39.77503721 1.02E+09 

39.82970883 1.027E+09 

39.88400834 1.034E+09 

39.93793575 1.042E+09 

39.99149106 1.049E+09 

40.04467427 1.056E+09 

40.09748538 1.064E+09 

40.14992438 1.071E+09 

40.20199128 1.079E+09 

40.25368607 1.087E+09 

40.30500877 1.095E+09 

40.35595936 1.103E+09 

40.40653785 1.111E+09 

40.45674423 1.119E+09 

40.50657851 1.128E+09 

40.55604069 1.136E+09 

40.60513077 1.145E+09 

40.65384874 1.154E+09 

40.70219461 1.163E+09 

40.75016838 1.172E+09 

40.79777005 1.181E+09 

40.84499961 1.19E+09 

40.89185707 1.2E+09 

40.93834243 1.21E+09 

40.98445568 1.219E+09 

41.03019683 1.229E+09 

41.07556588 1.24E+09 

41.12056283 1.25E+09 

41.16518767 1.26E+09 

41.20944041 1.271E+09 

41.25332105 1.282E+09 

41.29682958 1.293E+09 

41.33996601 1.304E+09 

41.38273034 1.316E+09 

41.42512257 1.327E+09 

41.46714269 1.339E+09 

41.50879071 1.351E+09 

41.55006663 1.364E+09 

41.59097045 1.376E+09 

41.63150216 1.389E+09 

41.67166177 1.402E+09 

41.71144927 1.415E+09 

41.75086468 1.429E+09 

41.78990798 1.442E+09 

41.82857918 1.456E+09 

41.86687827 1.471E+09 

41.90480526 1.485E+09 

41.94236015 1.5E+09 

41.97954294 1.515E+09 

42.01635363 1.531E+09 

42.05279221 1.547E+09 

42.08885869 1.563E+09 

42.12455306 1.579E+09 

42.15987533 1.596E+09 

42.1948255 1.613E+09 

42.22940357 1.631E+09 

42.26360954 1.649E+09 

42.2974434 1.667E+09 

42.33090516 1.686E+09 

42.36399481 1.705E+09 

42.39671237 1.725E+09 

42.42905782 1.745E+09 

42.46103117 1.765E+09 

42.49263241 1.786E+09 

42.52386155 1.808E+09 

42.55471859 1.83E+09 

42.58520353 1.852E+09 

42.61531636 1.876E+09 

42.64505709 1.899E+09 

42.67442572 1.924E+09 

42.70342225 1.949E+09 

42.73204667 1.974E+09 

42.76029899 2.001E+09 

42.78817921 2.028E+09 

42.81568732 2.056E+09 

42.84282333 2.084E+09 

42.86958724 2.114E+09 

42.89597905 2.144E+09 

42.92199875 2.175E+09 

42.94764635 2.207E+09 

42.97292185 2.24E+09 

42.99782524 2.274E+09 

43.02235653 2.309E+09 

43.04651572 2.345E+09 

43.07030281 2.382E+09 

43.09371779 2.421E+09 

43.11676067 2.46E+09 

43.13943145 2.502E+09 

43.16173013 2.544E+09 

43.1836567 2.588E+09 

43.20521117 2.633E+09 

43.22639353 2.68E+09 

43.2472038 2.729E+09 

43.26764196 2.78E+09 

43.28770802 2.832E+09 

43.30740197 2.887E+09 

43.32672383 2.944E+09 

43.34567357 3.003E+09 

43.36425122 3.064E+09 

43.38245677 3.128E+09 

43.40029021 3.195E+09 

43.41775155 3.264E+09 

43.43484078 3.337E+09 

43.45155791 3.413E+09 

43.46790295 3.492E+09 

43.48387587 3.575E+09 

43.4994767 3.663E+09 

43.51470542 3.755E+09 

43.52956204 3.851E+09 

43.54404655 3.953E+09 

43.55815897 4.06E+09 

43.57189928 4.173E+09 

43.58526749 4.292E+09 

43.59826359 4.419E+09 

43.61088759 4.553E+09 

43.62313949 4.695E+09 

43.63501929 4.847E+09 

43.64652698 5.009E+09 

43.65766257 5.182E+09 

43.66842606 5.368E+09 

43.67881745 5.567E+09 

43.68883673 5.782E+09 

43.69848391 6.014E+09 

43.70775899 6.265E+09 

43.71666196 6.539E+09 

43.72519283 6.837E+09 

43.7333516 7.164E+09 

43.74113827 7.523E+09 

43.74855283 7.921E+09 

43.75559529 8.362E+09 

43.76226565 8.856E+09 

43.7685639 9.413E+09 

43.77449005 1.004E+10 

43.7800441 1.076E+10 

43.78522605 1.16E+10 

43.79003589 1.257E+10 

43.79447363 1.372E+10 

43.79853927 1.51E+10 

43.80223281 1.679E+10 

43.80555424 1.891E+10 

43.80850357 2.164E+10 

43.81108079 2.53E+10 

43.81328592 3.043E+10 

43.81511894 3.818E+10 

43.81657986 5.123E+10 

43.81766867 7.783E+10 

43.81838539 1.619E+11 

43.81873 2.029E+12 

43.8187025 1.396E+11 

43.81830291 7.228E+10 

43.81753121 4.877E+10 

43.81638741 3.68E+10 

43.8148715 2.954E+10 

43.8129835 2.468E+10 

43.81072339 2.119E+10 

43.80809117 1.857E+10 

43.80508686 1.652E+10 

43.80171044 1.488E+10 

43.79796192 1.354E+10 

43.79384129 1.242E+10 

43.78934857 1.147E+10 

43.78448374 1.065E+10 

43.77924681 9.945E+09 

43.77363777 9.326E+09 

43.76765663 8.78E+09 

43.76130339 8.294E+09 

43.75457805 7.859E+09 

43.7474806 7.468E+09 

43.74001105 7.113E+09 

43.7321694 6.791E+09 

43.72395565 6.497E+09 

43.71536979 6.227E+09 

43.70641183 5.979E+09 

43.69708177 5.749E+09 

43.6873796 5.537E+09 

43.67730533 5.34E+09 

43.66685896 5.156E+09 

43.65604049 4.985E+09 

43.64484991 4.824E+09 

43.63328723 4.674E+09 

43.62135245 4.532E+09 

43.60904556 4.399E+09 

43.59636657 4.274E+09 

43.58331548 4.156E+09 

43.56989229 4.043E+09 

43.55609699 3.937E+09 

43.54192959 3.836E+09 
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43.52739009 3.741E+09 

43.51247849 3.65E+09 
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Table C-6: Obtained Cp values with spindle boss temperature 

The averaged Cp values used to define the ‘Artificial’ material are shown in Table 

C-7.  

Temperature 

(°C) 

Cp 

29.77482022 554200801.9 

37.58293333 834268351.2 

41.84681111 1749373477 

43.7162 37159431678 

Table C-7: Cp values and the corresponding temperature values (averaged to 90 points) 

 

Creating and defining  ‘Artificial’ material in Abaqus  

Figure C-9 and Figure C-10 shows creation of the ‘Artificial’ material where Cp 

values were defined as temperature dependent property in two separate ‘Fields’. The 

Field ‘1’ is defined for the heating cycle and Field ‘2’ was defined for the cooling cycle. 

Abaqus Keyword Editor was then used to call each Field during the simulation. Figure 

C-11. Figure C-12 shows the call of ‘SetSteel 2.0’ (bearing set with Field ‘2’ Cp value) 

during the cooling cycle. 
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Figure C-9: Calculated Cp values applied 

within ‘Artificial’ material 

 

 

 

Figure C-10: Method of defining material 

within Abaqus Keywords editor 

 

 

Figure C-11: Defining material for the 

heating cycle 

 

Figure C-12: Defining material for the 

cooling cycle 
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APPENDIX D – MATLAB FUNCTIONS 

PROGRAM 1 

This program imports the nodal temperature data obtained from the Abaqus output file. The program plots the 

slope and the hysteresis for a user defined node number.   

global c d 
ad=uiimport;        

% import Thermal data 

 
if isfield(ad,'datastruct')  

%read the data from structures 

 
    data1=ad.datastruct;   

% Save into data1  

 
end 

 

if ~isempty(data1)  
%check if data1 is not empty 

 

    fieldname=fieldnames(data1);  
% extract fieldnames 

 

    Th=getfield(data1,fieldname{1});  
%get the field and save into Th 

 

else 
    disp('No thermal data loaded!');  

%else show no data loaded 

 
End 

 

Th(:,1) = [];  

% remove the first (time) column 

 

ad=uiimport;  
%import Displacement data 

 
if isfield(ad,'datastruct') 

    data2=ad.datastruct; 

end 
 

if ~isempty(data2) 

    fieldname=fieldnames(data2); 
    dsp=getfield(data2,fieldname{1}); 

    dsp=dsp*1000;  

% change into microns 
 

else 

    disp('No displacement data loaded!'); 
end 

dsp(:,1) = [];  

%remove the first (time) column 
 

while (1); 

Nth = input('Enter Node Number (Thermal): ');  
% Thermal node number for data plot 

 

while (Nth<1 | Nth>size(Th([],:)))  
%Node number has to be within the size of the columns 

 

disp(['Please enter node numbers between ', int2str(size(Th([],:)))]) 
    Nth = input('Enter Node Number (Thermal): '); 

    end 

     
plot(Th(:,Nth),dsp(:,1))   

%plot given thermal node against displacment node (484 from FEA) 
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    xlabel('Temperature (\circC)') %axis labels 

    ylabel('Error (microns)') 

     
    hold on 

    input('Press Enter for the slope: '); %Slope plot 

[m,c,r,v]=linearls([Th(:,Nth) dsp(:,1)],1);  
%linearls function for slope plot 

 

    m                                            
%show slope value 

   

    hold on; 
end 

 

PROGRAM 2 

This program imports the nodal temperature data obtained from the Abaqus output file. The code filters nodes 

with the highest slope and lowest hysteresis using a range given (%range). 

clear all 

global c d 

 
ad=uiimport; 

if isfield(ad,'datastruct') 

    data1=ad.datastruct; 
end 

 

if ~isempty(data1) 
    fieldname=fieldnames(data1); 

    Th=getfield(data1,fieldname{1}); 

else 
    disp('No thermal data loaded!'); 

end 

 
Th=ref_cols(Th); 

Th(:,1) = []; 

 
ad=uiimport; 

if isfield(ad,'datastruct') 
    data2=ad.datastruct; 

end 

 
if ~isempty(data2) 

    fieldname=fieldnames(data2); 

    dsp=getfield(data2,fieldname{1}); 
    dsp=dsp*1000; 

else 

    disp('No displacement data loaded!'); 
end 

dsp(:,1) = []; 

 
%%%%%%% FOR SLOPE %%%%%%% 

for i=1:size(Th,2) % (size(Th,2)..size of Th and take second number, 0 4099)check the size of Th and range it to highest (0 4099) 

        
    [m,c,r,v]=linearls([Th(:,i) dsp(:,1)],0); 

    Slope_Sens(i,1)=i;                          % first row first column put i 

    Slope_Sens(i,2)=1/m;                        % Second row second column put 1/m for getting C/microns sensitivity 
    max_slope=max(Slope_Sens(:,2)); 

    min_slope=min(Slope_Sens(:,2)); 

    filt_slope=Slope_Sens; 
   

%     hold on; 

end 
% figure, stem(Slope_Sens(:,1),Slope_Sens(:,2)) %stem plot of m 

 

%%%%% FOR HYSTERESIS %%%%%% 
for i=1:size(Th,2)                                

% (size(Th,2)..size of Th and take second number, 0 4099)check the  
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size of Th and range it to highest (0 4099) 
 

[m,c,r,v]=linearls([Th(:,i) dsp(:,1)],0);         

% All thermal data but only one displacement data 
 

Hyst_slope=v-v; 

Hyst_curve=dsp(:,1)-v;        
%same column for displacement data 

 

rge=abs(max(Hyst_curve))+abs(min(Hyst_curve)); 
Hyst_range(i,1)=i;        

   % first row first column put i 

 
Hyst_range(i,2)=rge;     

% Second row second column put range (rge) 

min_Hyst=min(Hyst_range(:,2)); 
filt_hyst=Hyst_range; 

end 

   

chkSlope=filt_slope(:,2)< %range | filt_slope(:,2)> %range;   

%criteria for removing from Slope array (1's will be removed) only middle range is filtered 

 
chkHyst=filt_hyst(:,2)<5.446 | filt_hyst(:,2)>8;  

%criteria for removing from Sens array (1's will be removed) 

 
chk=bitor(chkSlope, chkHyst);                               

%combine the criteria 

 
rem=filt_slope(chk);                   

 

%grab all the column numbers to be removed using above  
criteria..%any one could be used either filt_hyst or filt_slope...it  

is multiplying and filtering out those nodes that multiplies with 0.  

i.e. rem will end up in those nodes that are not required or have  
values beyond the defined criteria.  

 

filt_slope(rem,:)= [];                           
 

%remove these columns from Slope array...i.e. all columns from  
filt_slope will be deleted that are in rem leaving only those which  

meets the criteria  

 
filt_hyst(rem,:)= [];                          

 %remove these columns from Sens array ...same as above 

 
filtered=filt_slope; 

filtered(:,3)=filt_hyst(:,2); 

 
 

 

 
 


