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Abstract 

In biomedicine, titanium materials with specific surface textures (for example, those produced using consecutive 

polishing, sandblasting and acid etching) are widely used to facilitate osseointegration of human/animal tissue 

with implant surface structures. The surface texture has a critical role on the material‟s functionality in terms of 

cellular adhesion and proliferation. However, conventional surface topography characterisation parameters 

pertinent to cellular attachment such as Sds (density of summits of a surface) and Ssc (arithmetic mean summit 

curvature of a surface) are liable to be influenced by low amplitude high spatial frequency components or 

measurement noise. In this research, a novel feature characterisation, based on pattern recognition techniques is 

implemented on specially processed titanium surfaces. The mean dimensions and densities of the micro-scale 

features of the surfaces are extracted. The statistical analysis results demonstrate the efficiency and stability of the 

feature analysis compared to the use of conventional surface texture parameters. Additionally, potentially efficient 

parameters for characterisation of biomedical surfaces are indicated through the use of a one-way analysis of 

variance. As a case study, from the point of view of surface metrology, limited experimental data is presented; the 

intention of the authors is to give a guide to innovative use of the novel surface characterisation techniques. A 

large amount of biomedical experiments would be needed in the future to fully validate the correlation between 

the surface texture parameters and its biomedical functions but the present work provides a useful start point for a 

larger study.  
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1. Introduction 

 

Surface topography analysis plays an important role in the functional prediction of properties such as friction, 

wear, lubrication and adhesion for engineered surfaces. In biomedicine, roughened titanium surfaces have also 

proved beneficial to the adhesion and growth of human or animal osteoblast cells [1, 2], leading to rapid 

biological fixation for implants. Typically the roughened titanium surfaces which promote rapid osseointegration 

are fabricated by consecutive polishing, sandblasting and acid etching [1]. The surface topography produced by 

such processes is multi-scale in nature and consists of large scale (hundreds of micrometres) and micro-scale 

(several micrometres) surface features. Significantly, these micro-scale geometric features influence osteoblast 

proliferation and differentiation in cell culture. For example, Hatano‟s results [3]show that cellular proliferation 

levels increase in response to the increase in the degree of surface roughness up to 0.8 μm (Ra) and then decrease 

to the level observed for the smooth surface. The conclusions of Mustafa [4] indicate that the proliferation and 
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differentiation of cells can be enhanced by increasing the particle size up to 300 m used in the blasting process. 

However, the accurate role of surface topography on osseointegration remains poorly understood.  

 Conventional surface texture characterisation parameters such as Ra, Rt and Rz [3] of a surface profile or Sa, 

Sds and Sdr [4, 5] on an areal surface have been used to ascertain the functionality of titanium surfaces and have 

been proven to be of limited use. However, surfaces are complex entities which cannot be described completely 

by a single or even a few numerical descriptors [6]. Numerous numerical parameters have been proposed in the 

past most of which are now redundant [7]. For example, Sa and Sq are a pair of highly correlated parameters. 

Only one of them should be selected for use in most applications. Choosing a set of significant parameters which 

are functionally correlated is a notoriously difficult topic. The solutions in engineering are usually based on a 

large amount of empirical experimental data [8]. Very little progress has been made in this area except where  a 

excellent correlation model has been developed, by which the functionalities and the surface geometric 

characteristics are connected. In the recent few years, some generic methods have been suggested or used, such as 

parameter classification [6, 8], Analysis of Variances (ANOVA) and correlation analysis [9]. In this case study, 

the ANOVA method is adopted as a tool to show functional correlation. 

 Specifically when considering the surface topography of titanium bio-implants, one of the main elements is 

the micro-scale concave pore features generated by acid etching, which lay on the relatively large scale 

sandblasted areas (see Fig 1a). Clearly, conventional profile (two-dimensional) or even areal (three-dimensional) 

statistical based parameters are deficient in separating and quantifying these multi-scale geometrical features. It is 

considered that multi-scale roughness descriptors quantifying the mean spacing between the micro-features, mean 

depth or their densities would provide improved tools for predicting the surface functionality.  

 The draft standard ISO/FDIS 25178-2 [10] provides a robust solution for this type characterisation challenge. 

It retains the most typical conventional parameters but also proposes several novel solutions such as pattern 

recognition techniques. Two parameter sets are defined as “field parameters” and “feature parameters”. The field 

parameter set applies statistics to the continuous point cloud of the areal surface data [11] which contains the 

majority of the conventional areal surface texture parameters. The “feature parameters” apply statistics  to a 

subset of predefined topographical features [12] such as significant peaks  yielding parameters such as Spd 

(density of peaks of a surface), S5v (five point pit height of a surface), Spc (arithmetic mean peak curvature of a 

surface). The basic philosophy behind feature parameters is to treat a surface as a collection of features (edge and 

facet features or Maxwellian features: hills, dales saddle points, ridge lines and course lines) [13]. A surface is 

segmented into a series of regions that containing individual topographically significant features. The segmented 

surface geometrical features can then be analyzed individually or statistically. A feature characterisation toolbox - 

“five steps to a feature parameter” - has been defined [10]. 

 In this research, advanced parameter sets [10] are utilized to characterize the micro-features that are 

generated mainly by the acid etching process of titanium bio-implant surfaces. The densities and dimensions of 

the micro-pores generated are calculated innovatively by means of the feature characterisation toolbox. Based on 

a one-way analysis of variance (ANOVA) [14], the potential significant parameters are indicated. The higher 

significance of the feature parameters is demonstrated compared to the field parameters. It should be borne in 

mind that selection of significant parameters that are functional correlated requires a large amount of experiments 

and empirical data.  

 As a case study, from the point of view of surface metrology, limited experimental data is presented here; the 

intention of the authors is to give a guide to innovative use of the novel surface characterisation techniques. A 

large amount of biomedical experiments would be needed in the future to fully validate the correlation between 

the surface texture parameters and its biomedical functions but the present work provides a useful start point for a 

larger study.  

  

2. Measurement conditions  

 

Three representative titanium surface samples processed by the National Physical Laboratory (NPL), which are 

coded as S1, S2 and S3, were used for this study. The surfaces were fabricated by polishing, sandblasting, 

followed by acid etching. A stereo scanning electron microscope (SEM) and an atomic force microscope (AFM) 

were used to measure the three sample surfaces at the micrometre scale. An image captured by the SEM of the 



etched surface is shown in Figure 1(a). The numerous micro-pores generated mainly by the acid etching process 

are clearly resolved. The AFM was then used to measure the geometric form of the micro-cells. Due to the re-

entrant and relatively rough nature of the surface features, a sharp tip used in tapping mode (cantilever 910M-

NSC15) was implemented to minimise the smoothing effect due to tip geometry. Two repeated measurements 

were carried out for each sample. A typical AFM measurement result (wavelengths over 8 m filtered out) is 

shown in Figure 1(b).  

 The protocol used for choosing the sampling conditions was as follows. Firstly, the instrument capability and 

the size of the features to be measured determine the sampling area. For example, for a particular micro-scale 

geometric structure, the minimum sampling area should cover at least a representative number of critical features. 

In order to make full use of the bandwidth and band resolution of the instruments employed, the maximum 

sampling size was chosen which was 256 by 256 points. To obtain statistically significant data, several continuous 

features should be covered within a sampling area. If the sampling area is too small it may not contain enough 

information and have less statistical significance. Thus the sampling area in this work was set as 10 m  10 m 

(the scale of the micro-features was around 2 m from visual examination of the SEM images and from previous 

experience). 

 

3. Field parameters  

 

 The field parameters comprise of a number of different groupings: „height parameters‟, „spatial parameters‟, 

„hybrid parameters‟, „functional parameters‟ and others. After form removal by sequential levelling and 8 m L-

filtering [15] large scale components of the AFM measurement results are removed as in Figure 1(b). Then the 

field parameters, listed in Table 1, were calculated. Also in Table 1, the F-test of the one-way ANOVA [14] is 

given.  

 One-way ANOVA is an efficient approach to test for differences among sample variances – it is usually 

applied to three or more groups of samples. For example, I groups of samples, each group having J test values, are 

chosen randomly from the same population. The statistical significance is tested by comparing the F statistic of 

the selected samples, thus: 
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MS2 is the within-group variability, i.e. the mean of the within-group variances, 
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STD is the standard deviation of the overall samples, 
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The F statistic reflects the differentiation of the parameters among the groups of samples. If the F value is greater 

than the critical value 
1 2( , )f fF  which is 49.8 under the significance level = 0.005 in this study, there is 

significant difference among the selected groups. In contrast if the F value is less than the critical value, the 

selected parameter can be seen as of potential significance. This does not indicate the significant parameters must 

be efficient for analysis of the current biomedical compliant surfaces, rather that they are statistically stable.  

 The analysis results are listed in Table 1. By using the one-way ANOVA method, the highlighted parameters 

(F > 49.8 under the significance level, = 0.005) are unstable for characterisation of the biomedical titanium 

surfaces. The remaining parameters could potentially be significant.  

 

As presented earlier, surface roughness has proved indicative of surface functionality by other authors [3, 5]. 

However, conventional analysis methods (which use all the data at all scales) may be deficient if only the 

functionally significant topographic features need to be characterised. For example, to evaluate functionally 

significant attributes, such as the area and peak curvature of micro-scale cells caused solely by the etching 

process, the feature parameters should be used.  

 

4. Feature parameters 

4.1. Five steps to a feature parameter 

 

The conventional surface texture parameters do not take individual surface features into consideration. Alongside 

the development of computing techniques and pattern recognition techniques, many groups [16-18] have 

combined the technologies to investigate novel characterisation techniques based on feature recognition. With this 

approach, a surface is considered as a stochastic or deterministic assembly of different scale features. Pattern 

recognition techniques such as „edge recognition‟ and „Wolf pruning‟ [19] are utilized to carry out topology 

analysis. These methods provide a stable approach for extracting features of functional interest by accurately 

excluding insignificant geometrical features that are induced, such as measurement noise.  

  Feature characterization analyzes a discrete surface that is generated by finite point sampling in accordance 

with a continuous surface in topology: for any continuous surface, the number of different features – peaks, pits, 

and saddle points – satisfies the Euler characteristic:   

 

Number of peaks + Number of valleys – Numbers of saddles = Euler characteristic. 

 

For example the Euler characteristic for a plane is two [16]. Another very important point is that all the critical 

geometrical features of a surface are connected by the so-called “change tree” [17]. Based on the Wolf pruning 

principle, the unwanted features are eliminated sequentially in the light of their insignificance degree. 

 Feature parameters are not specifically defined by an equation, as are field parameters but rather use a 

toolbox of pattern recognition techniques. The characterisation consists of five steps [12]: (1) selection of type of 

texture feature, (2) segmentation, (3) determine the significant features, (4) selection of feature attributes, and (5) 

quantification of feature attribute statistics. A full description can be found elsewhere [10, 11]. Based on the 

above five steps, the calculation of feature parameters is highlighted in the following sections. 



 

4.2. Parameters calculation  

 

By selecting “hill” as the feature type and 5 % Sz as the Wolf pruning threshold the sample surfaces were 

segmented into a series of significant hills. The segmentation illustration of an AFM image is shown in Figure 2.  

 Five selected feature parameters Spd, Spc, S10z (ten point height of a surface), S5p (five point peak height of 

a surface) and S5v, which are defined in [10] and the other two user-defined parameters Svd (density of pits of a 

surface), Svc (arithmetic mean pit curvature of a surface), were calculated. These parameters reflect the basic 

geometric information of the micro-features. Complying to the feature characterisation convention [10], the two 

user-defined parameters are expressed as follows: 

 

Svd = FC; D; Wolfprune: 5 %; All; Count; Density, 

 

Svc = FC; V; Wolfprune: 5 %; All; Curvature; Mean. 

 

 A stability comparison is presented below for Spd and Spc as compared with their corresponding 

conventional versions – Sds and Ssc – which were previously defined in the “Birmingham 14” parameters [20]. 

The ANOVA analysis results are given in Table 2. 

 

 Taking sample S3 as an example, the calculated summit density Sds based on the 8-nearest neighbour 

method [17] gave a value of 3.28  10
6
 mm

-2
, while the peak density Spd based on feature characterization by 

Wolf pruning at 5 % Sz was only 2.22  10
5
 mm

-2
. Over 90 % of insignificant features (or noise) have been 

eliminated. The visual effect of the stabilization mechanism can be observed by comparing Figure 2(b) and 2(c).  

 According to Table 2, it can be seen that all the selected feature parameters, with the exception of Spd and 

S5v (highlighted), have F values lower than the critical F statistic of 49.8. As mentioned earlier, these parameters 

would be potentially efficient for geometrical analysis of the biomedical implant surfaces. Note that the F values 

of the Spd and the Spc are less than the Sds and Ssc respectively. Although the value is higher than the critical F 

statistic, it can be understood that the feature parameters Spd and Spc are more robust than their conventional 

versions Sds and Ssc. An intuitive understanding of the stability can be found in a comparison graph of the four 

parameters. In Fig 4(a), Sds has a big variation among the three group means compared to Spd. Thus it can be 

thought that Sds displays a lack of robustness since the three samples have the same surface treatment. As for Ssc 

and Spc in Fig 4(b), although both the parameters have large variations among the group means, large variations 

within each group for Spc also exist which suggests instability. The instability in induced by overestimation of the 

noise peak points which has been discussed elsewhere [17, 21].  

 The F statistics of Spc and Svc, which are close to unity indicate that the two parameters may be promising as 

the new surface descriptors from the viewpoint of characterising functional attributes of implant surfaces.  

 Based on the stable parameter estimations, the overall arithmetic mean values for each feature attribute are 

calculated: the peak density Spd = (1.97  0.82)  10
5
 mm

-2
; the peak curvature Spc = 32.6  14.6 m

-1
; the pit 

curvature Svc = 43.8  14.7 m
-1

 and the ten point height S10z = 1.57  0.23 m (at a confidence level of 68 %). 

Thus the micro-feature‟s area S and equivalent diameter D (assuming each feature is a circle) can be estimated as 

 

1/S Spd  = 5.08 m
2
, 

 

2
S

D


  = 2.54 m. 

 



 

 

4.3. Stability on sampling conditions 

 

It is known that different sampling conditions (sampling area, size and interval) lead to different characterization 

results and the measurement results vary when different instruments are employed even using the same sampling 

conditions [20]. Roughness parameters are non-intrinsic parameters [22] and as a consequence they vary when the 

sampling conditions change. However, feature characterization exhibits its stability as shown in this section.  

 Sampling areas of 2 m by 2 m, 5 m by 5 m and 10 m by 10 m were sequentially tested on sample S1 

in the same area. Each area was measured twice. To ensure that all the samples have the same maximum spectral 

components, all the samples are filtered by 2.5 m L-filtering [15]. Surface segmentation by Wolf pruning with 

thresholds at 7.44 %, 7.56 %, 6.85 %, 7.76 %, 5.22 % and 5 % Sz were implemented respectively to keep the 

pruning thresholds for all the samples the same. Thus the noise of the same altitude difference can be eliminated 

in different samples. In Figure 3, a segmentation illustration is shown.  

 Table 3 lists the ANOVA analysis results. Also an intuitive presentation of the statistic data is sketched in 

Fig 5. The high F statistic values of Sds and Ssc show significant differences among the three groups of data. This 

is understandable to some degree because they are captured using different sampling settings. However, the 

surprising F values of Sds and Ssc would make one to give an obvious conclusion that the three groups of data are 

significantly different. Since the three groups of data come from the same sample, the F statistics of Spd and Spc 

have indicated that they are a stable test. In particular, Spc (F value is less than 49.8) is believed to be distributed 

normally among the three surface samples, which indicates its significance.  

 Moreover, compared to the former results in Table 2 which come from the same sampling setting for 

different samples, it can be found the F statistic of Sds and Ssc have an illogical increase while the contrast of Spd 

and Spc is far more rational. Because of the limitation of the number of samples used in the present work it is 

considered that the results presented provide a simple practical demonstration of the stability of the feature 

parameters.  

 

5. Conclusions 

 

Surface topographies of three titanium samples fabricated by consecutive polishing, sandblasting and acid etching 

have been investigated. Feature parameters, based on pattern recognition techniques, have been used to uniquely 

characterize the micro-scale pores. Geometric parameters of the samples, such as the cell density, the mean cell 

diameter, the peak curvature and the pit curvature, have been extracted.  

 Based on a one-way ANOVA statistical analysis, the parameters such as Sdq, Vvv and most of the feature 

parameters such as Spc, Svc and S10z etc are highlighted as being statistically stable and hence promising for 

characterisation of functional features on biomedical titanium surfaces. However, it should be borne in mind that 

selection of significant parameters that are functionally correlated requires a large amount of experiments and 

empirical data. The techniques presented in the present study are thought to provide a general guide to the use of 

the advanced surface characterisation techniques. However, much more experimental data would need to be tested 

to fully validate the functional relevance of the approach.  

 Simultaneously, the efficiency and stability of the advanced parameter sets has been demonstrated based on 

ANOVA. It can be seen that most of the feature parameters have sound statistical stability compared with the 

more generally used field parameters. Based on statistical evidence, novel surface feature parameters can be 

assumed to be more effective in predicting functionality of bio-implant surfaces.  
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        (a)          (b) 

 

Figure 1. (a) Stereo SEM image of a representative titanium sample surface. (b) AFM image of sample S3 (form removal by levelling and 

8 m L-filtering). 

 

 
(a)       (b)      (c) 

 

Figure 2. (a) 2D view of sample S3. (b) Hill segmentation before Wolf pruning. (c) Hill segmentation with 5 % Sz Wolf pruning. 

 

 



 
 

Figure 3. Hill segmentation of 2 m  2 m, 5 m  5 m and 10 m  10 m (from left to right) sized AFM measurement results of 

sample S1. 

 

 
(a)          (b) 

Figure 4. Comparison of means and variations of Spd and Sds, Spc and Ssc for the three titanium samples 

 

 
(a)          (b) 

Figure 5. Comparison of means and variations of Spd and Sds, Spc and Ssc for stability tests using different sampling settings. 

 
Table 1. ANOVA analysis of the field parameters for titanium samples which have been fabricated by consecutive polishing, sandblasting 

and acid etching. Two repeated measurements were carried out for each sample, for example, sample S1 was measured two times which 

were individually coded as S1.1 and S1.2.(Sa: arithmetic mean height; Sq: root mean square height; Sp: maximum peak height; Sv: 

maximum pit height; Sz: maximum surface height; Ssk: skewness; Sku: kurtosis; Sal: autocorrelation length; Str: texture aspect ratio; Sdq: 

root mean square gradient; Sdr: developed interfacial area ratio; Smr: areal material ratio at 1 m under the highest peak; Sdc: height at the 

material ratio 10 %; Sxp: height difference between the material ratio 50 % and 97.5 %; Vvv: dale void volume at the material ratio 80 %; 

Vvc: core void volume between the material ratio 10 % and 80 %; Vmp: peak material volume at the material ratio 10 %; Vmc: core 

material volume between the material ratio 10 % and 80 %. Sk family can be referred to ISO 13565-2 [23]. The highlighted parameters are 

those where F is greater than 49.8) 

 

SAMPLES S 1.1 S 1.2 S 2.1 S 2.2 S 3.1 S 3.2   STD MS1 MS2 F  

Amplitude  



Sa (m)  0.3 0.303 0.465 0.474 0.394 0.401 0.390 0.075 0.014 2.3E-5 613 

Sq (m) 0.381 0.389 0.563 0.57 0.488 0.494 0.481 0.082 0.017 2.5E-5 670 

Sp (m)  1.256  1.303  1.534  1.594  1.572  1.554 1.468 0.149 0.054 1.0E-3 52.6 

Sv (m)  1.318  1.478  1.671  1.741  1.060  1.056 1.387 0.295 0.21 5.1E-3 41.3 

Sz (m)  2.575  2.781  3.205  3.334  2.632  2.610 2.856 0.330 0.258 9.9E-3 26.0 

Ssk 0.339 0.176 0.08 0.082 0.528 0.556 0.294 0.215 0.108 4.6E-3 23.7 

Sku 3.136 3.399 2.457 2.402 2.968 2.957 2.887 0.389 0.360 0.0121 29.9 

Spacing  

Sal (m) 0.994 0.976 0.976 0.953 1.00 1.00 0.983 0.018 6.4E-4 1.4E-4 4.47 

Str 0.433 0.42 0.707 0.677 0.427 0.392 0.509 0.143 0.050 3.8E-4 131 

Hybrid  

Sdq 1.315 1.266 1.338 1.378 1.419 1.429 1.358 0.063 8.9E-3 6.8E-4 13.0 

Sdr (%) 67.55 65.76 75.01 78.25 83.98 84.55 75.85 7.99 156.0 2.338 66.7 

Functional  

Smr (%) 26 21.1 19.8 17.1 12.8 13.8 18.43 4.923 52.53 5.383 9.76 

Sdc (m) 0.491 0.481 0.734 0.740 0.636 0.652 0.622 0.113 0.032 6.5E-5 493 

Sxp (m) 0.712 0.782 1.01 1.02 0.776 0.758 0.843 0.136 0.045 8.9E-4 50.2 

Functional -  Sk family 

Spk (m) 0.375 0.4 0.392 0.373 0.505 0.518 0.427 0.066 0.011 1.9E-4 55.5 

Sk (m) 0.943 0.913 1.667 1.726 1.358 1.362 1.328 0.345 0.297 7.3E-4 405 

Svk (m) 0.414 0.477 0.489 0.463 0.259 0.259 0.394 0.107 0.028 7.7E-4 35.7 

Smr1 (%) 11 10.3 6.5 5.9 9.4 9.7 8.8 2.095 10.7 0.157 68.6 

Smr2 (%) 89.6 87.2 93.2 93.8 94.1 94.3 92.03 2.938 20.0 1.027 19.5 

Functional - Volume related  

Vvv ( 10
4  

m
3
/mm

2
) 3.93 4.29 4.72 4.76 3.50 3.42 4.10 0.587 0.819 0.023 35.7 

Vvc ( 



m
3
/mm

2
) 4.54 4.38 6.83 6.92 6.00 6.12 5.80 1.10 3.01 8.0E-3 377 

Vmp ( 



m
3
/mm

2
) 2.16 2.34 2.43 2.40 3.18 3.30 2.63 0.480 0.56 8.0E-3 70.8 

Vmc ( 



m
3
/mm

2
) 3.35 3.45 5.60 5.66 4.61 4.62 4.55 0.999 2.49 2.3E-3 1091 

 

Table 2. ANOVA analysis of feature parameters Spd, Spc, Svd, Svc, S10z, S5p, S5v and the conventional “Birmingham 14” parameters Sds, 

Ssc for titanium sample images (pre-processed by levelling and 8 m L-filtering to remove large scale components; brief explanations of 

the parameters can be found above; The highlighted parameters are those with F greater than 49.8). 

 

SAMPLES S 1.1 S 1.2 S 2.1 S 2.2 S 3.1 S 3.2   STD MS1 MS2 F  

Feature parameters  

Spd (1  10
5
 mm

-2
) 2.62 2.82 0.907 1.01 2.22 2.22 1.97 0.815 1.65 8.4E-3 195 

Spc (m
-1

) 24.9 45.9 27.3 55.7 21.8 20.2 32.6 14.6 221.6 208.3 1.06 

Svd (1  10
5
 mm

-2
) 1.71 1.51 0.907 0.605 1.81 2.02 1.43 0.553 0.721 0.029 24.7 

Svc (m
-1

) 70.3 46.2 28.4 44.1 32.6 41.0 43.8 14.7 314.8 149.6 2.10 

S10z (m) 1.38 1.19 1.66 1.62 1.78 1.77 1.57 0.234 0.128 6.3E-3 20.3 



S5p (m) 0.771 0.633 0.747 0.727 1.06 1.06 0.833 0.182 0.078 3.2E-3 24.0 

S5v (m) 0.605 0.559 0.909 0.890 0.711 0.711 0.731 0.144 0.051 4.1E-4 123 

“Birmingham 14” parameters  

Sds (1  10
6
 mm

-2
) 1.98 1.87 6.78 7.23 3.28 2.95 4.02 2.38 14.1 0.054 261 

Ssc (m
-1

) 27.0 22.5 33.9 38.6 19.4 19.4 26.8 7.97 148.2 7.06 21.0 

 

 

Table 3. Comparison of the feature parameter Spd, Spc and their conventional “Birmingham 14” parameter Sds, Ssc for different sampling 

conditions using sample S1 (pre-processed by 2.5 m L-filtering to retain the same maximum spectral components; explanations of the 

selected parameters can be found above; The highlighted parameters are those with F greater than 49.8). 

 

SAMPLES 2 2 

m.1 

2 2 

m.2 

5 5 

m.1 

5 5 

m.2 

10 10 

m.1 

10 10 

m.2 

  STD MS1 MS2 F  

Pruning conditions  

Sz (m) 1.097 1.079 1.191 1.051 1.563 1.632      

Wolf pruning 

thresholds (%) 
7.44 7.56 6.85 7.76 5.22 5.00      

Feature parameters  

Spd (1  10
5
 mm

-2
) 7.56 7.56 4.03 3.63 5.24 4.74 5.46 1.72 7.29 0.068 107 

Spc (m
-1

) 86.3 114 58.8 59.7 36.7 38.3 65.6 29.8 2024 128.4 15.8 

“Birmingham 14” parameters  

Sds (1  10
6 
mm

-2
) 188 196 18.3 18.6 4.02 4.04 71.5 93.6 21887 10.7 2049 

Ssc (m
-1

) 95.4 95.9 38.5 35.5 24.1 19.5 51.5 34.9 3042 5.07 600 

 


