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Introduction 

The route for the delivery of drugs that is still the most popular with medical staff and 

patients alike is through the mouth and down the alimentary tract: the oral route. The 

major site for drug absorption by this route is the small intestine which offers ≈ 100 m2 of 

surface epithelia across which transfer can at least in principle take place. If the drug is 

poorly soluble, or is in the form of a controlled release dosage form, significant 

absorption of the drug may also occur in the large intestine (Davis, 1989). However, the 

clearance time through the whole alimentary tract is generally too short (4–12 h), 

rendering oral drug administration a very inefficient process, with much of the drug 

unabsorbed. More recently interest has focused on drug absorption through nasal 

epithelia, where again clearance problems are an issue. Consideration is also given to 

other delivery routes (e.g. vaginal and ocular). Other important issues are the degradation 

of peptide-based drugs in the gastrointestinal tract and low trans-mucosal permeability. 

Macromolecular based carrier and mucoadhesive systems have been considered for 

several years and two polysaccharide based systems have emerged as particularly 

promising: chitosans (cationic) and low-methoxy pectins (anionic).  

 

Chitosan 

Chemical Structure 

Chitosan is the generic name for a family of strongly polycationic derivatives of poly-N-

acetyl-D-glucosamine (chitin) it is found in the exoskeletons of crustaceans such as crabs 

and shrimps, but can also be found in the cell wall of fungi and bacteria (Tombs and 

Harding, 1998; Rinaudo, 2006; Yen and Mau, 2007).  In chitosan (Figure 1) the N-acetyl 

group is replaced either fully or partially by NH2 therefore the degree of acetylation can 

vary from DA = 0 (fully deacteylated) to DA = 1 (fully acetylated i.e. chitin).   Acetylated 

monomers (GlcNAc; A-unit) and deacteylated monomers (GlcN; D-unit) have been 

shown to be distributed randomly or block wise (Vårum, et al., 1991a, 1991b).  

 

Chitosan is biodegradable, non-toxic, non-immunogenic and biocompatible (Terbojevich 

and Muzzarelli, 2000) and as the only naturally occurring polycationic polymer chitosan 

and its derivatives have received a great deal of attention from, for example, the food, 
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cosmetic and pharmaceutical industries.  Important applications include water and waste 

treatment, antitumor, antibacterial and anticoagulant properties (Illum, 1998; Rinaudo, 

2006; Muzzarelli, 2009).   

 

Physical properties 

Chitosan is a semi-crystalline polymer (solid), which exhibits a degree of polymorphism 

(Ogawa and Yui, 1994). In an aqueous acidic environment, chitosan is promptly 

solubilised, as a result of the removal of the acetyl moieties present in the amine 

functional groups.  This solubility is limited, however, in inorganic acids compared to its 

solubility in organic acids. Solubilisation occurs as a consequence of the protonation of -

NH2 functional groups on the C-2 position of D-glucosamine residues.  Chitosan is a 

weak base with pKa values ranging from 6.2 to 7 and at physiological pH 7.4 or higher, 

low solubility is shown (Park, et al., 1983). However, chitosan’s solution properties are 

dependent on the distribution of its acetyl groups and the molecular weight of the 

polymer (Kubota and Eguchi, 1997). The solubility of chitosan in water increases with 

increasing DA (Vårum et al., 1994). With the addition of electrolytes to the solution, the 

aqueous solubility of chitosan is affected and salting out of chitosan can be seen as in the 

case of excessive hydrochloric acid use, and the resulting formation of chitosan 

chlorhydrate (Rinaudo, 2006).  Salting out can also be used to recover chitosan from 

solution and salting out efficiency of anions follows the Hofmeister series SO4
2- > H2PO4

 

≈ HPO4
2- > NO3

- (LeHoux and Depuis, 2007). With an extended chitosan conformation, 

due to the repelling effect of each positively charged deacetylated unit, the addition of 

electrolytes reduces the inter-chain repulsion and induces a more random coil-like 

conformation in the molecule (Terbojevich and Muzzarelli, 2000). 

 

Molecular weight, pH, ionic strength, and temperature are all factors which affect the 

viscosity of chitosan. Hydrodynamic studies based on intrinsic viscosity ([η]), 

sedimentation coefficient (s0
20,w), radius of gyration (rg) and weight average molecular 

weight (Mw) have focussed on qualitative/ semi-quantitative methods of estimating the 

conformation based around “power law” Mark-Houwink-Kuhn-Sakurada relations 

(Tombs and Harding, 1998) which link intrinsic viscosity, sedimentation coefficient and 
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radius of gyration with molar mass [η] ∝ Ma, s0
20,w ∝ Mb and rg ∝ Mc, where a, b and c 

have defined values for specific conformation types (Table 1). The translational frictional 

ratio, f/fo (Tanford, 1961), sedimentation conformation zoning (Pavlov, et al., 1997; 

1999), the “Wales-van Holde” ratio, ks/[η] (Wales and van Holde, 1954) and the 

persistence length, Lp (Kratky and Porod, 1949) have also been used to estimate dilute 

solution conformation (Table 2). 

 

This has resulted in chitosan being reported to have either a rigid rod-type structure 

(Terbojevich, et al., 1991; Errington, et al., 1993; Cölfen, et al., 2001; Fee, et al., 2003; 

Kasaai, 2006; Morris, et al., 2009a) or a semi-flexible-coil (Rinaudo, et al., 1993; Berth, 

et al., 1998; Brugnerotto, et al., 2001; Schatz, et al., 2003; Mazeau and Rinaudo, 2004; 

Vold, 2004; Lamarque, et al., 2005; Velásquez, et al., 2008).  It has also been shown that 

flexibility (in terms of persistence length) is moderately influenced by DA (Terbojevich, 

et al., 1991; Mazeau and Rinaudo, 2004).  

 

Chitosan complexation 

The ability of chitosan to complex with other ligands, metals for example, is well known 

(Rhazi, et al., 2002a,b).  The proclivity for chelation is dependent on physical state, -NH2 

content and distribution of chitosan, degree of polymerization, pH and cation content. It 

has been shown that following a higher degree of deacetylation, there is a characteristic 

increase in the degree of chelation.  The chelation takes place in chitosan with a degree of 

polymerization greater than 6 monomeric residues (Rhazi, et al., 2002b). In addition, the 

intensity of chitosan chelation is governed by nature of cation in solution. Studies have 

shown that the affinity of chitosan for divalent and trivalent cations of chloride salts 

shows selectivity in the following order: Cu2+ >> Hg2+ > Zn2+ > Cd2+ > Ni2+ > Co2+
> 

Ca2+, Eur3+ > Nd3+ > Cr3+
> Pr3+ (Rhazi, et al., 2002b).  

 

Usage in Drug Delivery 

Chitosan is of great interest to the pharmaceutical industry in drug delivery and the 

number of publications on this subject has increased by almost an order of magnitude in 

the last decade (Figure 2).  Many aspects including biodegradation, biodistribution and 
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toxicity (Kean and Thanou, 2010); formulations for delivery of DNA and siRNA (Mao, et 

al., 2010); delivery systems for protein therapeutics (Amidi, et al., 2010); hydrogels for 

controlled, localized drug delivery (Bhattarai, et al., 2010); nanostructures for delivery of 

ocular therapeutics (de la Fuente, et al., 2010) and the targeted delivery of low molecular 

drugs (Park, et. al., 2010) have been reviewed in the most recent volume of Advanced 

Drug Delivery Reviews (Volume 62). 

 

The mucoadhesive properties of chitosan play an important role in its usage in oral, nasal 

and ocular drug delivery (Harding, et al., 1999; Illum, 2002; Harding, 2006).    

 

Mucoadhesion 

Mucoadhesion is the specific term for adhesion when one of the surfaces is mucus 

(Harding, et al., 1999). Mucus consists largely of water (> 95 %) and the high molecular 

weight glycoprotein mucin (Harding, et al., 1999; Harding, 2003; Harding, 2006).  The 

key sugar residues for mucoadhesive interaction are the acidic ones (N-acetyl neuraminic 

acid or “sialic acid”, and some sulphated galactose) and the hydrophobic methyl 

containing fucose.  Despite the polydispersity of these molecules compared to 

unglycosylated proteins, their structural hierarchy is also well understood.  They consist 

of M ~ 500 000 g/mol basic units linked linearly into “subunits” of M ~ 2 500 000 g/mol.  

These subunits are further linearly arrayed into macroscopic structures (M between 5 and 

50 000 000 g/mol) seen under the electron microscope (Harding, et al., 1983) or using 

atomic force microscopy (Deacon, et al., 2000).  Chitosan interacts strongly with the 

negatively sialic acid residues (Fiebrig, et al., 1994a,b; 1995a,b; Anderson, et al., 1989; 

Deacon, et al., 1999; Rossi, et al., 2000; 2001; Dodou, et al., 2005) although hydrogen 

bonding and hydrophobic interactions are also important (Deacon, et al., 1999; Qaqish 

and  Amiji, 1999; Dodou, et al., 2005; Sogias, et al., 2008).  The different theories 

explaining mucoadhesion and the properties of mucoadhesives are shown in Figure 3 

(Dodou, et al., 2005 and references therein).   The chitosan/ mucin interaction depends on 

the zeta potential of the mucin (Figure 4) (Takeuchi, et al. 2005) and this change in zeta 

potential is related to the concentration, molecular weight and charge of the chitosan 

(Figure 5) and to the pH (Takeuchi, et al. 2005; Sogias, et al., 2008). This change in zeta 
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potential is associated with a change particle size (Fiebrig, et al., 1994a,b; 1995a,b; 

Anderson, et al., 1989; Takeuchi, et al. 2005; Sogias, et al., 2008) (Table 3).   As a 

consequence the degree of chitosan/ mucin interaction is also dependent on the biological 

source of mucin (Figure 6). Drug delivery systems involving chitosan, therefore, show 

great potential and the use of encapsulation technology involving chitosan nano- or 

microparticles are increasing in populararity. 

 

Nanoparticles 

Chitosan has been widely used in the preparation of nanoparticles for drug delivery (Dyer 

et al., 2002; Fernández-Urrasuno, et al., 1999; Gan and Wang, 2007; Gan, et al., 2005; 

Luangtana-anan, et al., 2005; Shu and Zhu, 2000; Tsai, et al., 2008; Xu and Du 2005). 

Chitosan nanoparticles can be prepared by at least three different methods (Kumari, et. 

al., 2010): 

 

1. Electrostatic interaction and resultant ionotropic gelation between chitosan and 

the for example tripolyphosphate (TPP) polyanion (He, et al., 1998, 1999; Dyer, 

et al., 2002; Luangtana-anan, et al., 2005; Janes, et al., 2001; Shu and Zhu, 2000; 

Gan, et al., 2005; Morris, et al., 2010a) (Figure 7).   

2. Micro-emulsion for preparation of chitosan – glutaraldehyde complexes for 

example (Genta, et. al., 1998; Dhawan, et al., 2004).  

3. Polyelectrolyte complex (PEC) formation with for example pectin (MacLeod, et 

al., 1999; Ofori-Kwakye and Fell, 2001) or hyaluronic acid (Lim, et al., 2000; 

Kim, et al., 2004; Kujawa, et al., 2007).  This is of particular importance when a 

constant drug release profile is not desired (MacLeod, et al., 1999; Ofori-Kwakye 

and Fell, 2001). 

 

The size of the nanoparticles depends on the molecular weight of the chitosan polymer 

and higher molecular weight chitosans produce larger nanoparticles (Luangtana-anan et 

al., 2005; Morris, et al., 2010a). The method of cross-linking affects the mucoadhesive 

strength and stability of the nanoparticles (Genta, et. al., 1998; Dhawan, et al., 2004). 
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Stability 

The stability (shelf-life) of chitosan in terms of molar mass, viscosity and conformation is 

very important to pharmaceutical industry as these properties play an important role in 

the function of chitosan in formulations (Skaugrud, et al., 1999; Terbojevich and 

Muzzarelli, 2000). Chitosan storage conditions and particularly temperature may be 

important but whether or not chitosan depolymerisation will be detrimental to its intended 

application will depend on the functional significance of the changes that occur.  

Depolymerisation of chitosan in both the polymeric and nanoparticle form is temperature 

dependent (Nguyen, et al., 2007; Morris, et al., 2009b; Morris, et al., 2010a). For 

example it has been reported that low molar mass chitosans can cause more cell damage 

(Aspden, et al., 1996), although they may also prevent diabetes mellitus progression in 

mice to a greater extent than high molar chitosans (Kondo, et al., 2000), show greater 

antibacterial activity compared with high molar mass chitosans (Lui, et al., 2001) and 

whilst the high viscosities of high molar mass chitosans limit its biological usefulness, 

low molar mass chitosan is more soluble at neutral pH and therefore potentially more 

available in vivo (Harish Prashanth and Tharanathan, 2007).  However, it has also been 

reported that high molar mass chitosans show greater antibacterial activity compared with 

low molar mass chitosans (No, et al., 2006), that nasal insulin delivery (Aspden, et al., 

1997; Davis and Illum, 2000) is more effective with chitosan of molar mass greater than 

100000 g/mol and the reversibility of transepithelial chemical resistance (TEER) values 

decrease with decreased chitosan molar mass (Holme, et al., 2000). 

 

Pectin 

Chemical Structure 

Pectins are a complex family of heteropolysaccharides that constitute a large proportion 

of the primary cell walls of dicotyledons and play important roles in growth, development 

and senescence (van Buren, 1991; Tombs and Harding, 1998; Ridley, et. al., 2001; 

Willats, et. al., 2001).  Pectic polysaccharides are made of several structural elements the 

important of which are the homogalacturonan (HG) and type I rhamnogalacturonan (RG-

I) regions often described in simplified terms as the “smooth” and “hairy” regions 

respectively (Figure 8).  The HG region is composed of (1→4) linked α-D-GalpA 
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residues that can be partially methylated at C-6 (Pilnik and Voragen, 1970) and possibly 

partially acetyl-esterified at O-2 and/or O-3 (Rombouts and Thibault, 1986).  The degree 

of methylation (DM) and the degree of acetylation (DAc) are defined as the number of 

moles of methanol or acetic acid per 100 moles of GalA.  The degree of methylation in 

native pectins is generally in the order of DM ≈ 70-80; whereas degree of acetylation is 

generally much lower e.g. DAc ≈ 35 for sugar beet pectins (Rombouts and Thibault, 

1986).  Theoretically the degree of methoxyl esterification (DM) can range from 0-100 

%.  Pectins with a degree of esterification (DM) > 50% are known as high methoxyl 

(HM) pectins and consequently low methoxyl (LM) pectins have a DM < 50% (Walter, 

1991).  The RG-I region consists of disaccharide repeating unit [→4)-α-D-GalpA-(1→2)-

α-L-Rhap-(1→]n with a variety side chains consisting of L-arbinosyl and D-galactosyl 

residues (Voragen, et. al., 1995).  It has been reported that GalA residues in the RG-I 

region are partially acetylated (Ishii, 1997; Perrone, et. al., 2002) but not methylated 

(Komalavilas and Mort, 1989; Perrone, et. al., 2002).  In the case of sugar beet pectin the 

neutral side chain sugars are substituted with ferulic acid (Fry, 1982; Rombouts and 

Thibault, 1986) and there is evidence indicating that pectin chains can be dimerised via 

diferulic bridges (Levigne, et. al., 2004a,b).  There are a number of different ways in 

which ferulic acid can dimerise the most common being: 5-5’; 8-O-4’; 8-5’ cyclic and 8-

5’ non-cyclic dimers (Micard, et. al., 1997).   

 

Physical Properties 

The degree of esterification and therefore the charge on a pectin molecule is important to 

the functional properties in the plant cell wall.  It also significantly affects their 

commercial use as gelling and thickening agents (Lapasin and Pricl, 1995; Tombs and 

Harding, 1998).  HM pectins (low charge) form gels at low pH (< 4.0) and in the 

presence of a high amount (> 55 %) of soluble solids, usually sucrose (Oakenfull, 1991).  

HM pectin gels are stabilised by hydrogen-bonding and hydrophobic interactions of 

individually weak but cumulatively strong junction zones (Figure 9) (Oakenfull, 1991; 

Lopes da Silva and Gonçalves 1994; Pilnik, 1990; Morris, 1979).  Conversely, LM 

pectins (high charge) form electrostatically stabilised gel networks with/ or without sugar 

and with divalent metal cations, usually calcium in the so-called “egg-box” model 
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(Figure 10) (Morris, et. al., 1982; Pilnik, 1990; Morris, 1980; Oakenfull and Scott, 1998; 

Axelos and Thibault, 1991), which also depends on the distribution of negative 

carboxylate groups and structure breaking rhamnose side chains (Powell, et. al., 1982; 

Axelos and Thibault, 1991). A similar “egg-box” model has been proposed for alginate 

gels (Wang, et. al., 1994; Morris, 1980) from the results of circular dichroism (CD), 

small angle X-ray scattering (SAXS) and X-ray fibre diffraction respectively, it is thought 

that in both pectin and alginate the “egg-box” is formed in a two-step process – 

dimerisation followed by aggregation of the preformed “egg-boxes” (Thibault and 

Rinaudo, 1986). 

 

Solution properties such as viscosity also depend on degree of esterification, solvent 

environment (i.e. salt concentration, sugar concentration and pH) together with 

temperature (Oakenfull, 1991).  Hydrodynamic studies based on intrinsic viscosity ([η]), 

sedimentation coefficient (s0
20,w), radius of gyration (rg) and weight average molecular 

weight (Mw) have focussed on qualitative/ semi-quantitative methods of estimating the 

conformation based around “power law” Mark-Houwink-Kuhn-Sakurada relations 

(Tombs and Harding, 1998) which link intrinsic viscosity, sedimentation coefficient and 

radius of gyration with molar mass [η] ∝ Ma, s0
20,w ∝ Mb and rg ∝ Mc, where a, b and c 

have defined values for specific conformation types (Table 1). The translational frictional 

ratio, f/fo (Tanford, 1961), sedimentation conformation zoning (Pavlov, et al., 1997; 

1999), the “Wales-van Holde” ratio, ks/[η] (Wales and van Holde, 1954) and the 

persistence length, Lp (Kratky and Porod, 1949) have also been used to estimate dilute 

solution conformation (Table 2). A picture of a semi-flexible conformation for pectins 

irrespective of degree of esterification (and charge) has emerged from these studies 

(Anger and Berth, 1985; Axelos, et al., 1987; Axelos and Thibault, 1991, Berth, et al., 

1977; Harding, et al., 1991; Garnier, et al., 1993; Malovikova, et al., 1993; Cros, et al., 

1996; Tombs and Harding, 1998; Braccini, et al., 1999; Morris, et al., 2000, 2002, 2008; 

Fishman, et al., 2001, 2006; Noto, et al, 2005).  Pectin molecular weight and chain 

flexibility is important in mucoadhesive interactions (Nafee, et al., 2007).  
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Usage in Drug Delivery 

Pectins have been used is a gelling agent for a large number of years, however there has 

been recent interest in the use of pectin gels in controlled drug delivery (Sungthongjeen, 

et al., 2004; Lui, et al., 2003; Lui, et al., 2006).  This is in part due their long standing 

reputation of being non-toxic (GRAS – generally regarded as safe) (Lui, et al., 2003; Lui, 

et al., 2007; Watts and Smith, 2009), their relatively low production costs 

(Sungthongjeen, et al., 2004) and high availability (Beneke et al., 2009).  It is proposed 

that pectin could be used to deliver drugs orally, nasally and vaginally (Figure 11) 

(Peppas, et al., 2000; Sinha and Kumria, 2001; Lui, et al., 2003; Nafee, et al., 2004; 

Valenta, 2005; Lui, et al., 2007; Chelladurai, et al., 2008; Thirawong, et al., 2008), which 

are generally well accepted by patients (Lui, et al., 2003; Lui, et al., 2007; Yadav, et al., 

2009).   

 

Oral Delivery 

The oral route is of particular interest as in general oral drug administration results in less 

pain, greater convenience, higher compliance and reduced infection risk as compared to 

subcutaneous injections (Chen and Langer, 1998, Yadav, et al., 2009).  However, there 

are disadvantages associated with this route of administration such as low bioavailability 

due to relatively low passage of active agents across the mucosal epithelium, rapid 

polypeptide degradation due to action of digestive enzymes in the GI tract, enzymatic 

proteolysis and acidic degradation of orally administered drugs in the stomach (Lui, et 

al., 2003; Lin, et al., 2007). Various approaches have been made to increase the buccal 

penetration using permeation enhancers (Mesiha, et al., 1994; Carino, et al., 2000), 

protease inhibitors (Yamamoto, et al., 1994), enteric coatings (Morishita, et. al., 1993) 

and (bio)polymer micro-/ nano-sphere formulations (Sarmento, et al., 2007; Jain, et al., 

2005).  However, protein drugs are essentially free from enzymatic proteolysis and acidic 

degradation in the colon which has resulted in a concentrated effort to target their 

delivery to this organ (Sinha and Kumria, 2001; Lui, et al., 2003; Chambin, et al., 2006).  

Therefore a number of different polymers including pectin have been identified as 

protective agents against enzymatic proteolysis (Lui, et al., 2003; Sriamornsak, 2003; 

Pourjavadi and Barzegar, 2009).  The pectin-stabilised polypeptide drug therefore mains 
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intact in the stomach and small intestine prior to pectin digestion by the colonic 

microflora resulting in the release of drug molecule (Sinha and Kumria, 2001; 

Vandamme, et al., 2002).  The susceptibility of pectin to enzymatic attack is increased in 

the presence of calcium ions (Miler and MacMilan, 1970) and decreased by methyl 

esterification (Ashford, et al., 1993).  One problem with pectin formulations is that they 

can swell under physiological conditions which may result in premature drug release 

(Semdé, et al., 2000; Lui, et al., 2006), the effect can be minimised by the use of pectin in 

combination with other polymers: cellulosic or acrylic polymers (Semdé, et al., 2000); 

chitosan (Macleod, et al., 1999); hydroxypropylmethyl cellulose (Ofori-Kwakye and Fell, 

2001) and zein (Lui, et al., 2005; 2007). 

 

Nasal Delivery 

However, the clearance time through the whole alimentary tract is generally too short (4–

12 h), rendering oral drug administration a very inefficient process, with much of the 

drug unabsorbed. More recently interest has focused on drug absorption through nasal 

epithelia, which results in very rapid absorption ~ 15 minutes (Jabbal-Gill, et al., 1998). 

Other important issues are the degradation of peptide-based drugs in the gastrointestinal 

tract and low trans-mucosal permeability. Macromolecular based carrier and 

mucoadhesive systems have been considered for several years and pectin based systems 

have emerged as particularly promising.  Low methoxyl pectins are strongly polyanionic 

polyuronides from fruit used traditionally in jams and jellies (Rolin, 1993) and can also 

form weak gels in the presence of Ca2+ ions (8 meq/L), which occur naturally in nasal 

secretions (Chang and Su, 1989; Illum, 2000), and their texture makes them patient 

friendly in nasal delivery formulations (Dale, et al., 2002; Yadav, et al., 2009). These 

gels are pseudoplastic (Sriamornsak, 2004; Thirawong, et al., 2008; Chelladurai, et al., 

2008) and drug release is diffusion controlled at low pectin concentrations (Lui, et al., 

2007; Chelladurai, et al., 2008) and determined by gel dissolution at higher pectin 

concentration (Lui, et al., 2007) (Figure 12). In addition, this may hold an incorporated 

drug substance in the nasal cavity for a prolonged period and thereby modulate its rate of 

systemic absorption.  Pectins do not act as an absorption enhancer, however they cause 

tight junctions to open and therefore alter drug release characteristics due to the chelation 
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of calcium (Charlton, et al., 2007; McConaughy, et al., 2009). They are also highly 

mucoadhesive (Nafee, et al., 2004; Lui, et al., 2007; Thirawong, et al., 2008), although 

less mucoadhesive than chitosan (Nafee, et al., 2004).  Their mucoadhesive power 

depends on molecular weight, viscosity, the local pH and pectin functional groups (Lui, 

et al., 2007; Thirawong, et al., 2008). 

 

Nasal drug delivery is limited by the small sample volume that can be delivered ~ 150 µl, 

which is important in drug formulations especially if the drug is sparingly soluble or if a 

drug has to be delivered over prolonged period (Lui, et al., 2007). 

 

Vaginal Delivery 

Like the nose the vagina is another potential site for drug delivery due to its rich blood 

supply, large surface area (Vermani and Garg, 2000) and well understood microflora 

(Valenta, 2005).  Drug delivery release rates may vary during the menstrual cycle and 

this is especially important at the menopause (Valenta, 2005).  Drug delivery systems are 

based on mucoadhesion (Harding, et al., 1999; Harding, 2003; 2006). The vaginal route 

has been demonstrated to be favourable in the delivery of many drugs e.g. propranolol, 

human growth hormone, etc. (see Valenta, 2005 and references therein).  Furthermore it 

might be expected the vaginal delivery of hormonal contraception may be more efficient 

than the oral route (Valenta, 2005).  The vaginal route offers many of the advantages of 

the nasal route with main disadvantage being it is only available to females.  Pectin-based 

formulations have demonstrated highest mucoadhesive strength, highest swelling volume 

and lowest pH reduction in a trial (Baloĝlu, et al., 2003; 2006). 

 

Stability 

However, as yet pectin has not fulfilled its potential as drug delivery system this is due 

variability in pectin formulations and question marks over formulation stability (Lui, et 

al., 2003; Lui, et al., 2006). According to Morris, et al. (2010b) the viscosity of pectin 

solutions decrease significantly after 6 months storage at 25 ºC and 40 ºC respectively, 

and this is reflected by a decrease in gel strength upon addition of calcium ions.  This is 

explained by a depolymerisation of pectin over time (Figure 13).  However, it has been 
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shown that decreases in viscosity of this magnitude do not significantly change the drug 

release rates from pectin gels in vitro (Nessa, 2003; Chelladurai, et al., 2008).  In calcium 

pectate based tablet formulations drug release time is increased with lower degree of 

methyl esterification, but higher levels of calcium ions can lead to disintegration of the 

tablet and increased drug release (Sungthongjeen, et al., 2004).  

 

Conclusions 

In the last decade there has been a great deal of interest in the use of polysaccharides and 

particularly chitosan and pectin in drug delivery systems. It is clear that both the 

polysaccharides either individually or together show great potential, however, many 

important issues still remain to be resolved fully. With chitosans, these include (i) their 

stability, with the important constraint that they are soluble only at pH < 6. (ii) their 

construction into microparticles capable of surviving the large environmental variation 

between mouth and intestine for oral drug delivery.  In addressing (i) and (ii) issues 

concerning the optimal degree of acetylation and molecular weight of the chitosan need 

to be addressed. With low methoxy-pectin systems issues include: (i) optimal molecular 

weight and degree of esterification (ii) drug diffusivity (iii) interactions with mucosal 

tissues, (iv) stability (molecular weight/viscosity/gelation). 
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Table 1. The Mark-Houwink-Kuhn-Sakurada (MHKS) power law exponents (a, b and c), 

and the Wales – van Holde (ks/[η]) for the conformations described by sedimentation 

conformation zoning. 

 

Zone A 

Extra-rigid rod 

Zone B 

Rigid rod 

Zone C 

Semi-flexible coil 

Zone D 

Random coil 

Zone E 

Spherical 

a > 1.4 0.8 – 1.4 0.5 – 0.8 0.2 – 0.5 0.0 

b < 0.2 0.2 – 0.4 0.4 – 0.5 0.5 – 0.6 0.67 

c > 0.8 0.6 – 0.8 0.5 – 0.6 0.4 – 0.5 0.33 

ks/[ηηηη] < 0.2 0.2 – 0.4 0.4 – 1.0 1.0 - 1.4 1.6 
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Table 2. Estimations of the dilute solution conformation of pectin  

a 0.62 – 0.94 0.77 – 1.1 

b 0.17 0.24 – 0.25 

c 0.57 0.55 – 0.56 

ks/[ηηηη] 0.10 – 0.85 0.16 – 0.73 

f/f0 7 – 10 11 - 16 

Lp (nm) 10 - 15 4 - 35 

Zone A/B/C B/C 

References 

Anger and Berth, 1985; Axelos, et 

al., 1987; Axelos and Thibault, 

1991, Berth, et al., 1977; Harding, 

et al., 1991; Garnier, et al., 1993; 

Malovikova, et al., 1993; Tombs 

and Harding, 1998; Morris, et al., 

2000, 2002, 2008; Fishman, et al., 

2001, 2006 

Terbojevich, et al., 1991; Errington, 

et al., 1993; Ottøy, et al., 1996; Berth, 

et al., 1998; Cölfen, et al, 2001; 

Brugnerotto, et al., 2001; Fee, et al., 

2003; Schatz, et al., 2003; Mazeau 

and Rinaudo, 2004;  Vold, 2004; 

Lamarque, et al., 2005; Rinaudo, 

2006; Kasaai, 2006; Velásquez, et al., 

2008; Morris, et al., 2009 
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Table 3. Mucoadhesive analysis. The sedimentation coefficient ratio (scomplex/smucin) as an 

index of (muco)adhesiveness (from Fiebrig, et al., 1994a,b; 1995a,b; Anderson, et al., 

1989) (adapted from Table 1 in Harding (2003)). 

Mucoadhesive scomplex/smucin Conditions 

DEAE-dextran 1.1–1.9a pH 6.8, 20 ºC 

 1.2–1.4a pH 6.8, 37 ºC 

Chitosan (FA ≈≈≈≈ 0.11) 48 pH 6.5, 20 ºC 

 15 pH 4.5, 20 ºC 

 22 pH 2.0, 20 ºC 

 12 pH 2.0, 37 ºC 

 26 pH 4.5, 20 ºC + 3 mM bile salt 

 35 pH 4.5, 37 ºC + 3 mM bile salt 

 18 pH 4.5, 20 ºC + 6 mM bile salt 

 14 pH 4.5, 37 ºC + 6 mM bile salt 

Chitosan (FA ≈≈≈≈ 0.42) 31 pH 4.5, 20 ºC 

 44 pH 4.5, 37 ºC 

aDepends on the mixing ratio 
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Figure 1. Schematic representation of the structure repeat units of chitosan, where R = 

Ac or H depending on the degree of acetylation. 
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Figure 2. Number of publications on chitosan in drug delivery over the last 10 years 

(adapted from Figure 1 in Amidi and Hennink (2010)). 
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Figure 3. Theories of mucoadhesion (red circles) and material properties of 

mucoadhesives (blue circles). The overlapping areas between the circles of the material 

properties and the mucoadhesive theories indicate how and to what extent the former are 

connected to the latter (adapted from Figure 2 in Dodou, et al. (2005)). 
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Figure 6. Zeta potential of coarse mucin particles in the solutions of chitosan having 

different molecular weight with various concentrations and different pH. (a) pH 5.0, (b) 

pH 6.8, (c) pH 7.4, (d) pH 9.0, (e) Change in observed particle size of micronized mucin 

particles when mixed with the chitosan solutions. Concentration of chitosan solution: 

1.5% w/v. pH of solution: 6.8. Molecular weight of chitosan: CS-2 = 20000; CS-5 = 

50000 and CS-15 = 150000 g/mol respectively (adapted from Figures 1 and 3 in 

Takeuchi, et al. (2005)). 
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Figure 5. Dynamic light scattering size measurements of pig gastric mucin mixed with 

chitosan at pH 2.0 (1), half acetylated chitosan at pH 7.0 (2), and half acetylated chitosan 

at pH 2.0 (3) at [polymer]/[mucin] weight ratio = 0.05. Insets: pig gastric mucin at pH 2.0 

before (a) and after (b) addition of chitosan (adapted from Figure 3 in Sogias, et al. 

(2008)). 
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Figure 6. Comparison of the interaction between ‘‘SC210+’’ chitosan with three mucin 

populations purified from different regions of the porcine stomach (cardia, corpus-LD 

and antrum-LD) and one mucin population purified from the whole porcine stomach 

(PGM-MD). (a) I = 0.1 M, (b) I = 0.2 M (adapted from Figure 2 in Deacon, et al. 

(1999)). 
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Figure 7. Transmission electron microscopy image of a chitosan–TPP nanoparticle of 

diameter 140 – 250 nm (adapted from Figure 10 in Gan, et al. (2003)). Inset: particle size 

distribution measured by differential sedimentation for TPP-chitosan nanoparticles with a 

mean particle size of 141 nm (adapted from Figure 3 in Morris, et al. (2010a)).  
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Figure 8. Schematic structure for pectin: galacturonic acid (●); galactose (●); arabinose 

(▼); rhamnose () and methyl groups (■) (adapted from Figure 1 in Perez, et al. (2003)). 
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Figure 9. Representation of gelation mechanism in high methoxyl (HM) pectin gels, 

where the junction zones are indicated in red.   
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Figure 10. “Egg box” model for the gelation mechanism for low methoxyl (LM) pectin 

gels. 
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Figure 11.  Major sites for pectin drug delivery systems (adapted from Peppas, et al., 

2000; Harding, 2003; Lui, et al., 2003; Valenta, 2005) with insets showing the nasal 

cavity, vagina and GI tract. 
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Figure 12. Mass uptake by nasal cavity tissues from pectin derivative carrying a primary 

amine gel formulation: Pectin (solid bar), BSA (open bar). Study was performed under 

standard tissue culture conditions (CO2 5%, O2 95%) at 37 ºC for 4 h. The amounts of 

adsorbed pectin and BSA were determined according to Liu, et al. (2005). Nasal cavity 

tissues were harvested from a freshly slaughtered healthy adult swine from a local 

slaughterhouse (adapted from Figure 4B in Lui, et al. (2007)). 
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Figure 13. 1st order kinetic plots of (mol/g) vs. time (days) for pectin of DM ~ 19 %, 

where closed symbols represent molar masses estimated from viscometry at 4 °C (!), 25 

°C (,) and 40 °C (7) (adapted from Figure 3 in Morris, et al. (2010b)).  The kinetic rate 

constants (day-1) are (-0.8 ± 1.1) x 10-7, (5.7 ± 1.1) x 10-7 and (6.7 ± 0.2) x 10-6 at 4 ºC, 25 

ºC and 40 ºC, respectively. 

 


