

#### **University of Huddersfield Repository**

Parkinson, Simon, Longstaff, Andrew P., Fletcher, Simon, Crampton, Andrew, Allen, Gary and Myers, Alan

Cryptographic Techniques in Metrology Software

#### **Original Citation**

Parkinson, Simon, Longstaff, Andrew P., Fletcher, Simon, Crampton, Andrew, Allen, Gary and Myers, Alan (2011) Cryptographic Techniques in Metrology Software. In: University of Huddersfield Annual Research Festival School of Computing and Engineering 12th March 2010, Friday 12th March 2010, University of Huddersfield. (Submitted)

This version is available at http://eprints.hud.ac.uk/id/eprint/10418/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



# Cryptographic Techniques in Metrology Software



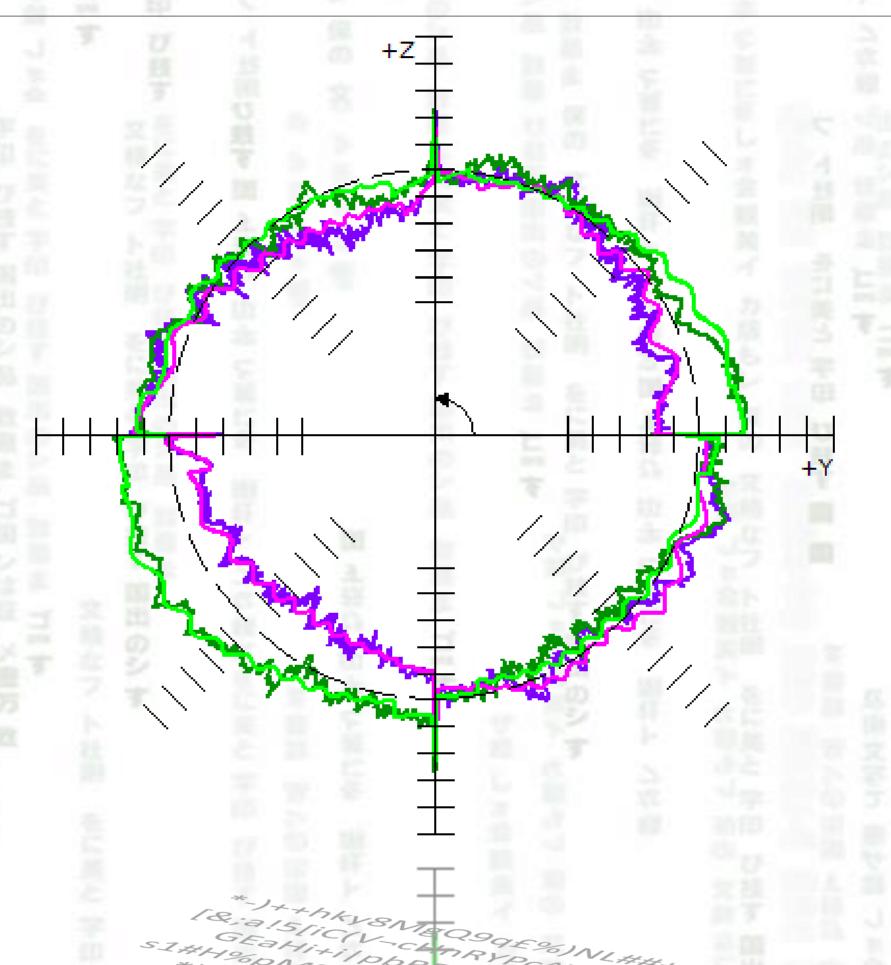
Engineering Control and Machine Performance Group, School of Computing and Engineering University of Huddersfield

# S. Parkinson, PhD Student. Supervisors: A. P. Longstaff, S. Fletcher, G. Allen, A. Crampton, A. Myers

## 1. Challenges

### Security

- Metrologists capture large quantities of sensitive data.
- The data will often be transferred through the public domain. Currently little effort is taken as standard to ensure its privacy and authenticity.


### Validility

- Good metrology analysis requires the use of verifiable and traceable data.
- Once processed, the data will be stored, but it is likely that it will be required for future use, so it should be stored in such a way to maintain its integrity.

### 2. Aim

- This investigation aims to explore problems that a software engineer or a metrology specialist can eradicate through the novel implementation of cryptographic techniques within their software to improve:
  - Data Security
  - Data Integrity
  - Identification
  - Authentication
  - Data Traceability

# Is enough being done to protect commerically sensitive data?



# 3. Methodology

- This study adopts a hybrid approach between a theoretical investigation of cryptographic techniques and empirical observations to their advantages if implemented within metrology software.
- The cryptographic functions that hold the greatest theoretical advantage will then be verified by implementing the techniques within metrology software, which in this case is used for machine tool calibration.

## 4. Research Impacts

- Commercially sensitive data would be protected so that only the authorised persons can view it.
- The validity and authenticity of the data can be verified helping to eradicate the large financial implications of assessing the metrological data incorrectly.
- A high degree of confidence can be established within the data's integrity allowing for easy detection of data modification.