
University of Huddersfield Repository

Klaib, Ahmad and Osborne, Hugh

A New String Matching Algorithm for Searching Biological Sequences

Original Citation

Klaib, Ahmad and Osborne, Hugh (2009) A New String Matching Algorithm for Searching
Biological Sequences. In: 2009 Conference Proceedings International Conference on Information
and Communication Systems (ICICS 2009). ICICS, Amman, Jordan, pp. 75-80.

This version is available at http://eprints.hud.ac.uk/id/eprint/9868/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

A New String Matching Algorithm for Searching Biological Sequences

Ahmad Fadel Klaib and Hugh Osborne
Informatics Department, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK

E-mail: {a.klaib/ h.r.osborne} @hud.ac.uk

Abstract

String matching algorithms play a key role in many
computer science problems, and in the implementation of
computer software. This problem has received, and
continues to receive a great deal of attention due to
various applications in text manipulation, information
retrieval, speech recognition, image and signal
processing and computational biology. In this study, we
propose a new algorithm called the Odd and Even
algorithm (OE). OE combines an enhanced preprocessing
phase from the Berry Ravindran algorithm with our
proposed new searching phase procedure. This variety of
searching order allows our proposed algorithm to reduce
the number of comparison characters and enhances the
searching response time. Experimental results show that
OE algorithm offers a smaller number of comparisons
and offers improved elapsed searching time when
compared to other well-known algorithms for searching
any length of alphabets and patterns. The proposed
algorithm is applicable to searching protein sequence
databases as well as any other string searching
applications.

1. Introduction

Protein data can be found in many different forms such
as sequences data, structure data, microarray data, and
image data. Proteins are fundamental to the structure and
the function of all living cells and viruses. Protein
compounds are made of 20 different amino acids
arranged in a linear chain. They are “complex organic
compounds that consist of amino acids joined by peptide
bonds" [1]. Computational biology and chemistry that use
computational methods handle large amount of data.
Protein sequence technologies have produced many
extremely large sets of biological data which need faster
techniques to process them.

The Swiss-Prot database is one of the main protein
sequence databases containing descriptions of protein
functions, domain structures, post-translational
modifications and variants with a low level of redundancy
and a high level of integration with other databases [2].

String-matching algorithms aim to find all occurrences
of a given pattern P= p1p2…pm in a text T=t1t2…tn. They
work as follows: they first align the left ends of the

pattern and the text, then compare text characters with
pattern characters and after a mismatch between the
pattern and the text or a whole match between them they
shift the pattern to the right. This procedure is repeated
until the right end of the pattern reaches the right end of
the text.

Most string-matching algorithms consist of a
preprocessing phase and a searching phase to search for
the pattern in the given text. The preprocessing phase
analyses the characters in the pattern in order to use this
information to determine the pattern shift in case of a
mismatch or a whole match, with the aim of reducing the
total number of character comparisons, while the
searching phase defines the order of comparison of
characters in each attempt between the pattern and the
text. The main aim in algorithm development is to
decrease the searching phase during each attempt and to
increase the shifting value of the pattern.

String matching algorithms can be classified into
seven categories according to the preprocessing function
in the algorithm [3]. The first category, e.g. the Brute
Force algorithm (BF) [4], shifts the pattern only one
position at each attempt. The second category, which
includes the Boyer-Moore algorithm (BM) [5]-[7] and the
Fast Search algorithm (FS) [8], uses two preprocessing
functions. The third category, a good example of which is
the Boyer Moore Horspool algorithm (BMH) [9]-[11],
uses one preprocessing function based on the rightmost
character in the current window. The fourth category, e.g.
the Quick Search algorithm (QS) [12], uses one
preprocessing function based on the character next to the
current window. The fifth category, such as the Berry–
Ravindran algorithm (BR) [13], uses one preprocessing
function based on the next two characters to the current
window. The sixth category, e.g. the Karp-Rabin
algorithm (KR) [14] and the Zhu Takaoka algorithm (ZT)
[15], uses a preprocessing hashing function. The final
category uses hybrid algorithms and includes the SSABS
[16], TVSBS [17], ZTMBH [18], BRFS [19], BRBMH
[20] and the BRQS [3] algorithms.

The paper is organized as follows: section II includes a
survey of the main string-matching algorithms. Section III
describes the proposed algorithm and its two main phases.
Section IV provides a working example. Section V
includes the experimental results with an evaluation of
our new algorithm comparing it to other common string-

matching algorithms. Finally the conclusion is presented
in section VI.

3. Proposed algorithm

3.1. Preprocessing phase

In this phase, the proposed algorithm uses our
enhanced brBc preprocessing function by counting the
shifting values for each character in the pattern and
storing them in the one-dimensional brBc array [20]. Fig.
1 shows the pseudo code for the pre-processing phase.

3.2. Searching phase

After implementing several algorithms, we found out
that the best order in the searching phase is to compare
the pattern and the text window characters from right to
left.

 Our proposed algorithm searches the pattern from
right to left with new order. It starts with the last
character of the text window and the pattern, and after a
match, it moves backward to compare the odd index
positions of pattern and text window characters. If all
these characters match, it will return and compare whole
even index pattern and text window characters. In case of
a mismatch or whole match during the comparison in odd
or even positions it uses our enhanced brBc pre-
processing function to shift the pattern. Fig. 2 shows the
pseudo code for the searching process phase.

4. Working example
A sample file has been taken from the Swiss-Prot

database which consists of 8740 proteins [23]. The
following example illustrates our proposed algorithm:

Given:
Pattern(p)=“LAVKLATAIVLA”, length (m) =12

Text(n)=“KRFDSLYKQILAMGIFSIANQHIVLAVK

LATAIVLATHTSPVVPVTTPGTKPDLNASFVSANAE
”, length(n)=64

4.1. Preprocessing phase

The shift values for the pattern characters are

calculated according to Fig. 1. Table 1 shows the brBc
one-dimensional array for the pattern characters.

4.2. Searching phase

The searching phase in this example is implemented

according to Fig. 2. The following tables illustrate the
searching phase for the given pattern (p) in the sample
text (t).

/*Pre-Processing Phase*/
FOR i=0 TO m-2

SET brBcShiftArray[i] TO m-i

END FOR

IF t[end]+1 = p[end] THEN

SET shiftvalue to 1

ELSE IF t[end]+2 = p[start] THEN

COMPUTE shiftvalue AS m+1

ELSE

COMPUTE shiftValue AS m+2

END IF

Fig. 1 OE Pre-processing Phase

/*Searching Phase*/
WHILE odd>=t[start] AND p[odd]=t[odd]

DECREMENT odd - 2

ENDWHILE

IF odd > t[start] THEN

WHILE even>=t[start] AND p[even]=t[even]

DECREMENT even – 2

ENDWHILE

ELSE

SET notMatch TO true

SET textPortion TO(t[end] +1) + (t[end] +2)

CALL brBcShiftArray WITH textPortion

END IF

IF wholeMatch = true THEN

CALL brBcShiftArray WITH textPortion

END IF

END WHILE

/*Searching in the brBcShiftArray*/
FOR i=0 TO m

IF p[i] = textPortion THEN

SET shiftValue TO brBcShiftValue

END IF

END FOR

Fig. 2 OE Searching Phase

LA AV VK KL LA AT TA AI IV VL LA
12 11 10 9 8 7 6 5 4 3 2

Table 1: The preprocessing phase

4.2.1. Attempt 1: in this attempt, Table 2 shows that t0
– t11 is the current text that is compared with the pattern
p0 – p11. The t11 comparison with p11 has matched, so
the algorithm will move backward to the next odd index
which compares t9 to p9 which causes a mismatch. The

pattern will be shifted to the right according to the pre-
counted shifting value for the next two characters of the
current window which are t12 and t13 (MG) and in this
attempt will shift by 14 positions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
K R F D S L Y K Q I L A M G I F … …
 2 1
L A V K L A T A I V L A

Table 2: Attempt 1 in searching phase

4.2.2. Attempt 2: in this attempt, Table 3 shows that t14
– t25 is the current text which is compared with the p0 –
p11. The t25 comparison with p11 has matched, so the
algorithm will move backward to the next odd indices
which are t23 and p9 which match. The next comparison

is between t21 and p7 which causes a mismatch. The
pattern will be shifted to the right according to the pre-
counted shifting value for the next two characters of the
current window which are t26 and t27 (VK) giving a shift
of 10 positions.

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
I F S I A N Q H I V F A V K L A … …
 3 2 1
L A V K L A T A I V L A

Table 3: Attempt 2 in searching phase

4.2.3. Attempt 3: in this attempt, Table 4 shows that t14
– t25 is the current text that is compared with the p0 –
p11. The first comparison between t35 and p11 produces a
match, so the algorithm will move backward to the next
odd indexes which are t33 and p9 which produces a
match again. The next comparison is between t31 and p7
which also produces a match. Then the same procedure
is repeated until the all the odd indices match. It will

then go back to the first even indexes (from the right)
which they are t34 and p8. This produces a match also
and it will proceed to move back to compare further
even indices. After a whole match between pattern and
text it shifts the pattern to the right according to the pre-
counted shifting value for the next two characters to the
current window which are t36 and t37 (TH). In this
attempt it will be 14 positions.

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
L A V K L A T A I V L A T H T S … …
12 6 11 5 10 4 9 3 8 2 7 1
L A V K L A T A I V L A

Table 4: Attempt 3 in searching phase

4.2.4. Attempt 4: in this attempt, Table 5 shows that t38
– t49 is the current text that is compared with the p0 –
p11. The comparison of t49 with p11 causes a mismatch.
The pattern will be shifted to the right according to the
pre-counted shifting value for the two characters next to

the current window which are t50 and t51 (KP) and in this
attempt it will be 14 positions. But in this case the
algorithm will cancel the pattern shifting since the
length of the remaining text is 13 which is less than the
pattern length.

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
T S P V V P V T T P G T K P D L … …
 1
L A V K L A T A I V L A

Table 5: Attempt 4 in searching phase

6. Experimental results

To evaluate our new algorithm, we implemented it

based on the code in Fig.1 and Fig.2. Additionally, we
implemented six other algorithms; two of them are our
previous algorithms using the enhanced brBc
preprocessing phase; two developed in 2008 using the
original BR as the fastest algorithms to search the
proteins; one of them using the rightmost character in
the current window and the last one using only one
character next to the current text window.

The performance of the algorithm proposed in this
research is evaluated using the number of comparison
between the pattern and the text and the elapsed time of
searching.

A sample file has been taken from the Swiss-Prot
database which consists of 8740 proteins to test the
efficiency of our algorithm compared to other
algorithms. Table 6 below shows the number of
comparison and Fig. 3 below shows the average elapsed
time (s.) for searching different length of patterns in the
protein sample file.

OE

0

50

100

150

200

250

300

350

32 64 128 256 512 1024

Pattern Length

El
ap

se
d

Ti
m

e
(s

ec
on

ds
) BMH

QS
BRFS
TVSBS
BRBMH
BRQS
OE

Fig. 3 average elapsed time (s.) for searching different length of patterns

Pattern
Length OE BRQS BRMH BRFS TVSBS QS BMH

32 95384 95498 95595 96356 95682 172936 161089

64 50973 51171 51202 52101 51258 133723 113597

128 26985 27099 27180 27388 27214 87426 59229

256 10012 10040 10058 11925 10075 45394 38005

512 2950 2978 2987 3186 2997 16120 8502

1024 1233 1235 1239 1282 1243 2647 2186

Table 6: Number of comparison

Table 6 and Fig. 3 show that the number of
comparisons and the elapsed searching time between the
pattern and the text using our proposed algorithm is
better in all cases than other algorithms.

7. Conclusion

In this paper, we have presented a new algorithm.
The OE algorithm is a fast string matching algorithm. It
combines our enhanced preprocessing phase from the
Berry Ravindran algorithm with our new searching
phase procedure. Experimental results show that our
algorithm uses fewer comparisons to perform searches
and has a shorter elapsed searching time. Our proposed
algorithm is therefore suitable for searching the protein
sequences in the Swiss-Prot database as well as in any
other string searching applications.

References

[1] V. Kurt, “Protein Structure Prediction using Decision

Lists,” M.S thesis, Sch. Sci. Eng., Koç Univ., Istanbul,
Turkey, 2005.

[2] A. Bairoch and R. Apweiler, “The SWISS-PROT protein
sequence database and its supplement TrEMBL in 2000,“
Nucl. Acids Res, vol. 28, no. 1, pp. 45-48, Jan. 2000.

[3] J. Mettetal. (2004, September 16). Brute Force
Algorithms: Motif Finding [Online]. Available:
http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-
417Fall-2004/8BA 92AB3-A9CD-4719-A4AC-
1AAFDB8AE5A0/0/lecture_03.pdf

[4] A. F. Klaib and H. Osborne, “BRQS Matching Algorithm
for searching Protein Sequence Databases,” unpublished.

[5] G. Plaxton, (Fall 2005). String Matching: Boyer-Moore
Algorithm. [Online]. Available:
http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/
StringMatching-4.pdf

[6] O. Danvy and H. K. Rohde, “Obtaining the Boyer-Moore
String-Matching Algorithm by Partial Evaluation,”
Information Processing Letters, vol. 99, pp. 158–162,
2006.

[7] R. S. Boyer, J. S. Moore, “A fast string searching
algorithm,” Communications of ACM, vol. 20, no. 10,
1977, pp.762–772.

[8] D. Cantone, S. Faro, “Fast-search: A new efficient
variant of the Boyer–Moore string matching algorithm”,
Lecture Notes in Computer Science, vol. 2647, pp. 47–
58, 2003.

[9] M. Régnier and W. Szpankowski, “Complexity of
Sequential Pattern Matching Algorithms” Lecture Notes
in Computer Science, vol. 1518, pp. 187-199, 2004.

[10] T. RAITA, “Tuning the Boyer–Moore–Horspool String
Searching Algorithm,” Software-Practice and Experience,
vol. 22, pp. 879-884, 1992.

[11] R. N. Horspool, “Practical fast searching in strings,”
Software-Practice and Experience, vol. 10, no. 6, pp.
501-506, 1980.

[12] Sunday, "A very fast substring search algorithm,"
CommonACM, no. 33, pp. 132–142, 1990.

[13] Berry and Ravindran, "Fast string matching algorithm
and experimental results,", Proceedings of the Prague
Stringology Club, pp. 16–26, 2001.

[14] C. Charras, T. Lecroq, Handbook of exact string
matching Algorithms. [Online]. Available: http://www-
igm.univ-lv.fr/~lecroq/string/.

[15] R.F. Zhu, T. Takaoka, “On improving the average case of
the Boyer-Moore string matching algorithm,” Journal of
Information Processing, vol. 10, no. 3, pp. 173–177,
1987.

[16] S. S. Sheik, S. K. Aggarwal, A. Poddar, N. Balakrishnan
and K. Sekar, “A fast pattern matching algorithm,”
Journal of Chemical Information and Computer Sciences,
no. 44, pp. 1251–1256, 2004.

[17] R. Thathoo, A. Virmani, S. S. Lakshmi, N. Balakrishnan
and K. Sekar, “TVSBS: A fast exact pattern matching
algorithm for biological sequences,” Current Science,
vol. 91, no. 1, pp. 47–53, 2006.

[18] Y. Huang, X. Pan, Y. Gao, and G. Cai, "A Fast Pattern
Matching Algorithm for Biological Sequences," IEEE,
pp. 608 – 611, 2008.

[19] Y. Huang, L. Ping, X. Pan, and G. Cai, "A Fast Exact
Pattern Matching Algorithm for Biological
Sequences,"International Conference on BioMedical
Engineering and Informatics, pp.8-12, 2008.

[20] A. F. Klaib and H. Osborne. “Searching Protein Sequence
Database Using BRBMH Matching Algorithm,”
International Journal of Computer Science and Network
Security (IJCSNS), vol. 8, no. 12, pp. 410-414, 2008.

[21] A. F. Klaib, Z. Zainol, N. H. Ahamed, R. Ahmad, and W.
Husain, “Application of Exact String Matching
Algorithms towards SMILES Representation of Chemical
Structures,” International Journal of Computer and
Information Science and Engineering, vol. 1, pp.235-239,
2007.

[22] A. F. Klaib, W. Husain and Z. Zainol, “Searching Similar
Antimicrobial Structures Using Quick Search and
Horspool Algorithms” International Journal: System and
Information Sciences Notes, vol. 3, pp. 95-101, 2008.

[23] Swiss Institute for Bioinformatics (SIB) and the
European Bioinformatics Institute (EBI). (2008,
November 25). UniProtKB/Swiss-Prot [Online].
Available: http://www.ebi.ac.uk/swissprot/

