H

University of
HUDDERSFIELD

University of Huddersfield Repository

McCluskey, T.L.

Object Transition Sequences: A New Form of Abstraction for HTN Planners
Original Citation

McCluskey, T.L. (2000) Object Transition Sequences: A New Form of Abstraction for HTN
Planners. In: 5th International Conference on Al Planning and Scheduling (AIPS-2000), April 2000,
Breckenridge, Colorado, USA.

This version is available at http://eprints.hud.ac.uk/id/eprint/8143/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and

* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Object Transition Sequences: A New Form of Abstraction for HTN
Planners

T. L. McCluskey
Department of Computing Science
University of Huddersfield,
West Yorkshire, UK
email: lee@zeus.hud.ac.uk

Abstract

This paper presents EMS, an implemented HTN plan-
ning algorithm using a novel form of abstraction. A
plan is viewed as a set of dynamic objects taking part
in sequences of transitions. EMS builds up plans us-
ing an Expand then Make-Sound cycle: a plan is built
up by constructing and expanding a tree of networks
at different levels of abstraction, where a network con-
tains object transition sequences. A network is made
sound by adjusting the pre and postconditions of all
the object transition sequences it contains, and prov-
ing the sequence in between is sound. As new objects
are discovered in the detailed levels of the hierarchi-
cally developing plan, the pre and postconditions of
their transition sequences are passed up to a parent
network in the hierarchy which must then be made
sound. The main benefits of EMS are that it processes
an expressive, declarative input language based on ob-
ject hierarchies; it is efficient in its reasoning, in that
object transition sequences can be manipulated inde-
pendently of objects of unrelated sorts, and reasoning
about condition achievement is performed locally in a
network; and it provides a clear, sound algorithm with
the potential of application to complex applications.

Introduction

One major goal of work in Hierarchical Task Network
planning appears to be the creation of efficient gen-
eral purpose algorithms that process expressive domain
model languages, where both the algorithm and the do-
main modelling language are soundly based, yet have
the potential to be applied to complex knowledge-based
applications. In a sense this boils down to the problem
of the split between elegant impractical algorithms, and
ad hoc practical programs, as pointed out in reference
(McDermott & Hendler 1995). Encoding non-trivial do-
mains in HTN languages, and designing sound planning
algorithms to efficiently solve tasks in such domains has
long been recognised as an important yet complex task,
not least because of the success of HTN planners in
some fielded applications.

This paper presents EMS, an implemented HTN
planning algorithm that inputs a domain model in an

Copyright © 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

expressive, object-based language called OCL;, (Mc-
Cluskey & Kitchin 1998). A model’s main components
are its dynamic objects, which go through sequences of
transitions during execution of a plan. Object transi-
tion sequences offer another form of abstraction in ad-
dition to the abstraction offered by the hierarchy in
HTN planning, in that reasoning about goal achieve-
ment can be limited to objects in related object classes
(here called sorts). Also, information about transition
sequences in detailed parts of the hierarchy can be rea-
soned with on a higher level using the pre and postcon-
ditions of the sequence alone.

EMS builds up hierarchical plans in terms of a tree
of networks. It uses an Ezxpand then Make-Sound cy-
cle: it expands out a level of networks where expanding
one network N means creating a new network for each
non-primitive step that N contains. The algorithm then
makes the new networks sound. This is done by reason-
ing about each object transition sequences in turn, and
making it sound in the sense that any object which sat-
isfies the precondition of the sequence, will after taking
part in the transition sequence satisfy the postcondi-
tion (the pre and postconditions are called ‘guards’ of
the sequence). As new objects are discovered in the
detailed levels of the tree as a result of compound op-
erator expansion, their transition sequences are made
sound and their guards are passed up the tree, requir-
ing some or all of the network’s ancestors to be re-made
sound. A hierarchical plan contains a solution when all
its leaves are primitive operators, and every network
has been made sound.

The main benefits of EMS are that (a) it processes
an expressive, declarative input language based on the
specification of dynamic object hierarchies which im-
plicitly define the possible object transition sequences;
(b) it is economical in its use of reasoning, in that rea-
soning about object transition sequences within a net-
work N is restricted to objects of sorts related in the
sort hierarchy; and reasoning about an object in other
networks higher up the tree than N uses the pre and
postconditions of that object’s transitions. (c¢) it con-
tains a clear algorithm which can be subject to analysis.
In this paper we show the design of our algorithm to be
sound but not complete.

The Input Language OCL,

Objects in an OCLj, planning application are viewed
as changing entities, going through sequences of transi-
tions during plan execution. A domain modeller using
OCL;, aims to construct a model in terms of objects,
a sort hierarchy, predicate definitions, substate speci-
fications, invariants, and operators. A tool-supported
methodology has been designed to guide the develop-
ment of models and is described in references (Mc-
Cluskey & Porteous 1997; McCluskey & Kitchin 1998).
Predicates and objects in a model are classed as dy-
namic or static as appropriate - dynamic predicates are
those that may have a changing truth value throughout
the course of plan execution, and dynamic objects are
each associated with a changeable state. Below we de-
fine P as the set of all predicate structures, and O as
the set of all objects in a domain model. Each object
in O belongs to a unique primitive sort. We will use a
transport logistics model based on Translog (Andrews
et al. 1995) as a running example. A sort hierarchy
is shown in Example 1, containing 4 dynamic primitive
sorts truck, package, train, traincar.

sorts(physical-obj, [vehicle, package])
sorts(vehicle, [railv, roadv])
sorts(roadv, [truck])

sorts(railv, [train, traincar))

(

(

(
sorts(location, [city-location, city])
sorts(city-location, [tcentre, not-tcentre])
sorts(tcentre, [train-station))
sorts(not-tcentre, [clocation, post-office])
sorts(route, [road-route, rail-route])
objects(train-station, [cityl-ts1, city2-tsl, city3-tsl])
objects(clocation, [cityl-cll, cityl-cl2, city2-cll, city3-clil])
objects(post-office, [posti])
objects(city, [city1, citys, citys])

objects(train, [traini])

objects(road-route, [road-router, road-routesz, road-routes))
objects(rail-route, [rail-routes, rail-routes, rail-routes))

(
(
(
(
objects(traincar, [traincar])
(
(
objects(truck, [truck: , trucks, trucks))
(

objects(package, [pki , pk2])

Example 1: a simple sort hierarchy

OCLy is based on the assumption that the state
of the world in a planning application can be decom-
posed into the state of each object in that world -
these object states are called substates to empha-
sise the fact they represent a part of the total world
state. A ground, dynamic object description is speci-
fied as a tuple (s, 14, e), where i is the object’s identi-
fier, s is the primitive sort of 4, and e is its substate,
a set of ground dynamic predicates that all refer to
1. All predicates in e are asserted to be true under a

locally closed world assumption. For example in the
logistics domain, the predicates that refer to a train
may be at(train,location), attached(train,traincar),
unattached(train), in-service(train), available(train).
An object description is:

(train, trainy, [at(traing, cityl-tsl),
in-service(trainy), attached (trainy , traincary)))

Example 2: an object description

Here the local closed world assumption tells us that,
for example, the train is not available, and it is not
attached to other traincars apart from traincar-1.

Given an object identifier ¢, the set of legal substates
that ¢ might occupy is called substates().

Object Expressions

Crucial to OCLy, is the idea of an object expression.
Goals and operator preconditions are written as collec-
tions of object expressions. An object expression is a
generalisation of a object description, and is specified
using dynamic and possibly static predicates.

To define object expressions we need to introduce
some notation that will be used throughout the paper.

e A legal substitution is a sequence of replacements,
where each replacement substitutes a variable of sort
s by a term which has s as either its primitive sort
or its supersort.

e A set of static predicates are consistent if there is
a legal substitution that instantiates them to facts
asserted as true in the OCL;, domain model.

e If p C P then let dyn(p) and stc(p) be the dynamic
and static predicates in p, respectively.

If oe C P, then (s, i, oe) is called an object expres-
sion if there is an ss € substates(j) for some object
identifier j of primitive sort s’, and a legal substitution
t such that

— =]

— dyn(oe); C ss

— §' = s or ¢ is a subsort of s

— ste(oe); is consistent

In this case object (s', 7, ss) is said to satisfy (s, i, oe).
Since 4 could be a dynamic object identifier or variable,
we refer to it as an object term. Example 3 is an object
expression as it is satisfied by an least one object de-
scription - that of Example 2. (in Example 3 and the
following examples we single capital letters inside predi-
cates represent variables). In this case train is a subsort
of railv, t = [trainy /T, cityl-ts1/ Y] and in-city(cityl-
ts1, cityl) is consistent with the domain model (it is
actually an atomic invariant).

(railv, T, [at(T, Y), in-service(T), in-city(Y, cityl)])

Example 3: an object expression

Class Expressions

In OCLy, developers specify all the legal substates that
a typical object of a sort may occupy at the same time
as developing the operator set. This helps in the under-
standing and debugging of the domain model, as well
as contributing to the efficiency of planning tools. The
specification is written implicitly as a list of predicate
expressions such that any legal ground substitution of
one of the expressions will be a hierarchical component
of a substate. The legal substates of identifier ¢ are
thus all ground expressions having a component from
exactly one of the predicate expressions at each level in
the hierarchy.

The substate in Example 2 actually has three hier-
archical components - at, relating to physical objects,
attached relating to rail vehicles, and in-service, relat-
ing specifically to trains. Objects of sort train are de-
scribed by predicates through their primitive sort but
they also inherit the dynamic predicates from super-
sorts ratlv and physical_obj.

(physical_obj, T, [[at(T, L), is-of-sort(L, train-station)]])
(railv, T, [[unattached(T)],
[attached(T, V1), is-of -sort(V1, traincar)]])
(train, T, [[out-of -service(T)], [in-service(T)],
[in-service(T), available(T)]])

Example 4: hierarchical substate specification for trains

Example 4 implicitly specifies the substates of the
train. If there are n stations, m traincars, and ¢ trains
then this implicitly defines all ¢ * (n * (m + 1) * 3) sub-
states. Static predicates are used to capture the exact
set required.

We define a class expression (s, 4, ce) in much the
same way as an object expression except that when
ground ce must equate to one or more hierarchical com-
ponents of an object’s substate. Class expressions are
important because we want to specify deterministically
how classes of objects change using a parameterised no-
tation. Hence the output of a parameterised operator
(defined below) will be in terms of class expressions,
which when instantiated will specify hierarchical com-
ponents of an object description uniquely.

In a sense, an object description is a class expression
that (a) is fully ground (b) contains a substate contain-
ing all hierarchical components.

Hence class expressions may satisfy object expres-
sions under the same conditions that an object descrip-
tion satisfies an object expression.

Transitions

If (s,4, 0e) and (s, 1, ce) are an object expression and a
class expression respectively, then oe = ce is called an
object transition. A transition of i is applicable to a
class expression (s',4’, ce') if under a legal substitution
t ce' satisfies oe. The transition changes (s', 4, ce') to
(s', 1, cer).

Predicates in the hierarchy of the substate specifica-
tion that are not mentioned in the left hand side of the
transition are assumed to persist when it is applied. For
example, the transition of package P

[waiting (P), certified(P)] = [loaded(P, V'), certified(P)]
changes the class expression:

(package, pki, [at(pki, L), waiting(pk1), certified(pki)]
to:

(package, pki, [at(pki, L), loaded (pk1, V'), certified(pk1)]

when this transition is applied. Here t = [pki/P],
and the predicate at(pki, L) persists as it is specified
at a higher level in package’s hierarchy than the other
predicates.

Transition Sequences

Let two sorts s, s’ be related if either s = s', s is a
subsort of s’ or s’ is a subsort of s. A useful abstrac-
tion of a plan is to consider the transitions of a certain
object independently of any objects of unrelated sorts.
A guarded transition sequence (or guarded trace) for
object term 7 of sort s is written

(s, 14, oer, [oer = cex, ..., oen = cen], cer)

where the expressions oe; = ce; are transitions of
any object term (including i) of a sort related to s.
(s,1,0er) and (s,1,cer) are object and class expres-
sions respectively (se; and serp can be thought of as
the guards, or pre and postconditions of the sequence).
For object term ¢, the transition sequence within this
structure we call simply the trace(i). A guarded trace
extracted from our test runs in the transport logistics
model is shown in Example 5. It shows the transitions
of a truck as it moves from some city location C to
city3-cll, then is involved in transporting a package on
to cityl-cll.
(truck, T, [at(T, C), movable(T), available(T)]
[[movable(T), available(T)]) =
[movable(T), busy(T, pk2)]
[at(T, C), movadle(T)] =
[at(T, city3-cil)]
[at(T, city3-cll), movable(T)] =
[at(T, city3-cll), movable(T), busy(T, pk2)]
[at(T, city3-cll), movable(T)] =
[at(T, cityl-cil)]
[at(T, cityl-cll), movable(T), busy(T, pk2)] =
[at(T, cityl-cll), movable(T'), available(T)]]
[at(T, cityl-cll), movable(T), available(T)])

Example 5: a guarded transition sequence

A guarded trace(7) is sound if for any object descrip-
tion (s,14',ss) that satisfies (s,4,0er), the transitions

can be applied sequentially on (s,i',ss) and result in
an object (s, i, ss’) that satisfies (s, 4, cer). Likewise,
a partially ordered set of transitions is called linearly
sound if all sequences of transitions (being guarded
by ser and ser) that conform to the partial order are
sound. Partially ordered transitions can be constrained
to be linearly sound in a way similar to that in partial
order planning, by the addition of temporal constraints
and binding constraints. What makes the abstraction
useful is that if an object goes through a linearly sound
trace in an abstracted plan, the trace will still be sound
in the presence of all other transitions. Although such
sequences are not independent of other dynamic ob-
jects (for instance pks here), they are good abstractions
that are central to the power of our hierarchical plan-
ner described below (and have been used previously in
the specification of preprocessing tools as described in
(McCluskey & Porteous 1996)).

Primitive Operators
An action in a domain model is represented by either
a primitive or compound operator. Primitive operators
specify under what conditions objects may go through
single transitions; compound operators specify under
what conditions objects go through whole transition se-
quences. A primitive operator schema O has compo-
nents (Nm, Prevail, Index, Conditionals, Statics), such
that Nm is the operator’s name followed by its param-
eters and Prevail are the prevail conditions consisting
of a set of object expressions that must be true before
the operator can be executed and remain true during
execution. Index is a set of necessary object transi-
tions, Conditionals is a set of conditional transitions,
and Statics is a set of static predicates acting as con-
straints. A primitive operator specifying the movement
of trucks between different cities is shown in Example 6.
Nm: move(V,O0,L R),
Prevail - [],
Indez :
[[at(V, O), movable(V)] = [at(V, L)]],
Conditionals :
[[loaded(P, V), at(P, O)] = [loaded(P, V), at(P, L)])],
Statics :
[is-of-sort(R, road-route), in-city(O, City),
wn-city (L, Cityl), City # Cityl,
connects(R, City, Cityl)]
Example 6: a primitive operator

A primitive operator O can be applied to a state S if
there is a grounding substitution ¢ for Index and Prevail
such that each transition in Index; can be applied to
an object description in .S, and each object expression
in Prevail; is satisfied in S. Further, Statics; must be
consistent. The new world state is S with

e the changes made to a set of objects as specified in
the necessary transitions

e all other objects not affected by the necessary tran-
sitions, but which satisfy the LHS of a transition in
Conditionals, changed according to that transition.

Compound and Method Operators

(Nm, Pre, Index, Bodies) defines a compound oper-
ator C if Nm is the operator’s name followed by its
parameters, and Pre is a set of object expressions that
must be true before C' (unlike the prevail in a primitive
operator objects in Pre may be affected by the opera-
tors in the expansion of C). Indez is a set of necessary
state transitions (possibly null) similar to Indez in the
primitive operator case. Bodies is a list of n conditional
expansions of the form (Statics;, Temps;, Body;), where
i = 1 to n. Here Statics; and Temps; are static con-
straints on the parameters in the operator, and tempo-
ral constraints on the enumerated nodes in the Body;,
respectively. If a Statics; can be satisfied, the com-
pound operator can be expanded into the network as
specified in Body; (the Statics; need not be mutually
exclusive). Body; contains nodes in the usual HT'N fash-
ion: a node is either the name of a primitive operator,
the name of a compound operator, or an expression of
the form ‘achieve-goal(@)’, where G is a class expres-
sion.

Compound operators can be split into n methods of
the form (Nn, Pre, Indez, Statics;, Temps;, Body;). Ex-
ample 7 shows an example of a method for carrying a
package from one location to another within the same
city. Number n in a ‘before’ relation refers to the nth
component of the method’s body list.

Nm : carry-direct(P, O, D),

Pre:],

Index :
[(package, P,[at(P, O), waiting(P), certified(P)] =
[at(P, D), waiting(P), certified(P)])]

Statics :
[is-of -sort(P, package), is-of -sort(V , truck),
wmn-city(0, CY), in-city(D, CY)],

Temps :
[before(1, 3), before(2, 3), before(3, 4), before(4, 5)],

Body :
[commission(V, P), achieve((truck, V,[at(V, O)])),
load-package(P, V, 0), move(V, O,D, R1),
unload-package(P, V, D)]

Example 7: a method operator

An OCLj, compound operator (in comparison with
operators used in other HTN planner such as UMCP
(Erol, Hendler, & Nau 1994)) has no achievable condi-
tions on intermediate nodes in its body. This is because
constraints on the persistence of facts (e.g. using a ‘be-
tween’ constraint) throughout a sequence of nodes in
compound operator bodies can be represented within

the substate specification of each sort, making the con-
straints implicit as discussed in reference (McCluskey
& Kitchin 1998).

Whenever a method has been fully expanded to prim-
itive operators, the resulting plan must effect the tran-
sitions given in the Index. A method may, however,
change other objects in ways conditional on its expan-
sion into more detailed task networks (such as the ve-
hicle V in the example above). The property that
methods decompose into networks that guarantee the
transitions specified in a method’s index we have called
transparency. Earlier work discussed the design and
use of a tool for checking the transparency of a domain
model (McCluskey & Kitchin 1998).

The EMS Algorithm

EMS inputs a model in OCL;, containing transparent
operators. It searches a space of hierarchical plans
(Networks, Statics), where Networks is a set of networks
(elements of Networks are structured as a tree which
has networks as nodes and leaves). Object and class
expressions in the elements of Networks contain only
dynamic predicates - all the static predicates are col-
lected together in Statics. A complete hierarchical plan
is one in which all its networks are linearly sound, and
all its leaf networks contain primitive operators. We
will define these concepts in more detail below.

If (Id, Pre, Post, Steps, Temps) is a network, then
Id is the network’s identifier, and Pre and Post are
the input and output conditions on objects necessarily
changed by the steps in the network. If the network was
created using a method C, then Pre would initially! be
the set of object expressions formed from the object
expressions in C.Pre and the left hand side of all the
transitions in C.Indezx (we use the ‘dot’ notation here to
refer to components of a tuple). Similarly, Post would
initially be the set of class expressions formed from the
right hand side of the transitions in C.Index.

Steps is a set of steps under temporal constraints
in Temps. Each step has the form (Id, Nm, Pre, Post)
where Id is the Step’s identifier and Nm is the name of
the originating operator or achieve-goal. Pre and Post
have the same format and are formed in the same way
as a network’s Pre and Post conditions. For example,
Figure 1 contains two abstract networks, N1 and N3.
N1 can be represented as follows (although we have
omitted the names of the steps):

Id: N1,

Pre: [A0, PO, BO],

Post - [A5, P3],

Steps : [(N2,_,[B5, P1],[P2]), (N3,_,[Al, B1],[A2]),
(N4, [A3],[A4])],

Temps : [before(N 3, N4)])

!The Pre and Post of a network may change during plan-
ning as discussed later

N1 contains 3 steps, N2,N3 and N4.
A0, PO, BO, B5, P1, A1, B1, A3 are object expressions,
and A2, P2, A4, A5, P3 are class expressions.

SOUND NETWORK N1

B5
P2
P3
PO /
B0 \ A4
A A2

EXPANDED NETWORK N3

V3 V4
B1 \ _—

A6 A7
V1 V2
B2 B3

Figure 1: Expansion of a Network

Figure 2 details the top level of the EMS algorithm.
In line 1, an initial plan is formed containing only a root
network using the initial state and the task. A task
is of the form (Body, Temps, Statics), where Body is a
collection of operator names or achieve-goals, Temps is
an ordering on the members of Body, and Statics is a
set of binding constraints on variables with members of
Body.

For example, the task ‘transport package pk; from
city3-cll to location C'1 then transport package pkso
from cityl-cll to location C2, where C1 and C2 are
in the same city’ would be represented as follows:

Body : [transport(pk:, city3-cll, C1),
transport(pks, cityl-cll, C2)],

[before(1,2)],

[in-city(C1, X), in-city(C2, X)]

Temps :
Statics :

The initial plan that EMS constructs for this task is
shown below. It contains only one network (root). root
contains three steps and empty pre and postconditions.

Networks :

Id: root,
Pre: [],
Post: [],
Steps :

[(n1, indt, [], [initial-state]),
(n2, transport(pki , city3-cll, C1),
[(package, pk1, [at(pk:, city3-cll)])],
[(package, pk1, [at(pki, C1), delivered (pk1)])]),
(n3, transport(pks, cityl-cll, C2),
[package, pks, [at(pks, cityl-cll)])],
[(package, pkz, [at(pk2, C2), delivered (pk2)])])],
Temps :
[before(nl, n2), before(nl, n3), before(n2, n3)])],
Statics :
[in-city(C1, X), in-city(C2, X)]

Here initial-state represents the set of object descrip-
tions in the initial state.

The main loop (line 2 to line 14) involves examining
plans and expanding them out if they are ‘sound’ but
not fully expanded, or making them sound if they are
not so. In overview, the algorithm expands out a com-
plete level of networks in the hierarchy. Then, if any
of these new networks cannot be proved to be sound,
conditions are passed back up to networks higher in the
hierarchy and these networks must be re-made sound.
This continues until all the networks are made sound,
or this is found to be impossible, in which case the hi-
erarchical plan is abandoned. In the next two sections
we explain this technique in detail.

Network Expansion

The expansion of a network N; in plan P (line 6) is car-
ried out by expanding all its non-primitive steps. For a
non-primitive step S in the network, we have two cases
to consider:

CASE A: This is the case where S.Nm is the name
of a compound operator occurring in plan P. Let Op-
Cons be the set of constraints formed from all primitive
operators in a method C-:

Op-Cons = {0.Statics | O € C.Body, O is primitive}

We need to consider the constraints occurring in prim-

itive operators at this stage since once they appear in

a hierarchical plan, they will not be expanded further.
Consider a method C such that

(a) C.Nm unifies with S.Nm under substitution ¢;

(b) (P.Statics U C.Statics U Op-Cons), is consistent.

When (a) and (b) are true, we can expand step S
into a new network

Ny, = (8.1d, S.Pre, S.Post, X, C. Temp);

algorithm EMS
In OCLy, model, a task T
initial state of dynamic objects I
Out A Solution to T
Types Task = (Body, Temps, Statics)
Plan = (Networks, Statics)
Network = (Id, Pre, Post, Steps, Temps)
Step = (Id, Name, Pre, Post)

1. create and store initial plan using I and T;
2. REPEAT
3. remove a plan P from the store;
4. IF VN € P.Networks, sound(N) A
AN € P.Networks : — expanded(N) THEN
5 repeat for all unexpanded N € P.Networks;
6. expand(N, P, NewPs);
7. store NewPs ;
8. ELSEIF 3N € P.Networks : - sound(N)
9 repeat for all unsound N € P.Networks

10. make-sound(N, P, NewPs);
11. store NewPs

12. end repeat

13. ELSE

14. extract solution from P

15. END IF;

16. UNTIL a solution has been found,
or there are no nodes left
17. end.

Figure 2: The EMS Algorithm

where X is a set of steps

(Idj,]VIj,Pre,Post)t,n zjz21

Here Id; is a unique identifier and M; is the jth of n
node names in C.Body. If M; is the name of an operator
then Pre = M.Pre and Post = M.Post. If M is of the
form achieve-goal(G), then Pre = null and Post = G.
The new hierarchical plan is then

(P.Networks U Ny, P.Statics U C.Statics U Op-Cons);

CASE B: We consider the case where S was formed
from an achieve-goal G. In this case a method or prim-
itive operator C is chosen from the model with a class
expression (s,14, ce) in C.Post such that G; C ce; for
some legal substitution ¢. S is transformed into a new
step (S.Id, C.Nm, C.Pre, C.Post), then expanded into
a network using CASE A above. As a special case of
this we can let C' be the no-op, the identity operator.
In this case S.Pre = S.Post = G.

Figure 1 gives an abstract example of network expan-
sion. Here step N3 has been expanded into network N3
containing two steps N5 and N6.

Making Networks Sound

After a network has had all its steps expanded out into
new networks, giving a new layer of detail, all of these
networks must be made sound. We define the external
objects of a network N to be ext-objs(N), the set of
dynamic object terms i of sort s such that (s, i, e) ap-
pears in N.Pre or N.Post. Likewise, int-objs(N) is the
set of 1’s such that (s, 7, €) appears only within the Pre
and Post of the steps in N i.e. not in N.Pre or N.Post.
For the abstract networks in Figure 1, assume class or
object expressions A0, A1, .. etc describe object term a,
those with B describe object b, and so on. Assume the
sort of a is A etc. Then:

int-objects(N1) = [
ext-objects(N1) = [a, p, b]
int-objects(N3) = [v]
ext-objects(N3) = [a, b]

Next, we describe a structure (a network or step, for
example) as being sort abstracted with respect to sort
s, if that structure has been stripped of any object or
class expressions referring to an object term of an unre-
lated sort to s. We use the notation X° to denote any
structure X that has been sort-abstracted. Informally,
we prove a network sound by considering each object
term ¢ in turn. The network is sort abstracted so that
it only contains objects in a related sort. For an exter-
nal object term ¢, the steps in the network are viewed
as transitions, and the object and class expressions in
N.Pre and N.Post for i are the pre and postconditions
of the trace(i). Hence, to make a network sound, we
have to form the guarded transition sequence:

(s, 1%, N.pre, trace(i), N.post)®

and for all internal and external objects ¢, make it
linearly sound. Making a transition sequence sound in-
volves a form of goal achievement and ‘de-clobbering’
similar to that found in conventional partial-order plan-
ning. The procedure is based on the truth criterion for
object-centred planning is given in (McCluskey, Jarvis,
& Kitchin 1999). Two object terms 1 and j may codes-
ignate during this process if they are of related sorts
- the resulting sort of the unified term being the most
specialised of the two. Goal achievement is in a sense
harder, however, than the ‘literal-based’ form in that
each of the hierarchical components of an object ex-
pression need to be proved separately, and may have to
have more than one achiever. On the other hand de-
clobbering of the achievement of an object expression
for i is made easier: consider, in the sort-abstracted
network, there is another term j # 4 that may codesig-
nate with . If the transitions of i and j affect different
parts of the sort hierarchy, then the transitions of j
will not affect the soundness of i. Otherwise, we must
add constraints to either (a) use demotion/promotion
so that the steps involved are temporally separated or

(b) separate the objects with a single binding constraint
i # j. There are some special cases:

(a) The algorithm may have to resort to conditional
transitions to prove a trace is sound. If a conditional
transition is required, then that transition is taken from
the primitive operator’s conditional slot and put into
the step’s Pre and Post. An example illustrating this
occurs in our worked example below.

(b) For an external object i, N.post may not con-
tain a reference to #, as is the case for object b in N1
and N3 of Figure 1. For N1, this is fine as there are
no class expressions in postconditions involving b (that
is, object b is not changed within N1 at this level of
abstraction). For N3, b is changed by N5, hence a
postcondition needs to be formed before this net can
be made sound.

(¢) For an internal object 4, suitable object expres-
sions must be put into N.Pre and N.Post to form the
guards of the trace. In many cases, the guards may sim-
ply be the beginning an end of the trace (for example
in Figure 3 it may be that VO = V1 and V4 = V5) but
in practice the use of hierarchical objects entails that
the trace may not be totally ordered and, for example,
the postcondition may contain a class expression for %
containing components achieved by more than one step.

Passing up altered pre and postconditions

In the example of Figure 3, let us assume that the fol-
lowing guarded traces have been made sound in N3:

(4, a,[A1, A6 = AT, A2))
(B,b,[B1, B2 = B3, B4))
(V,v,[VO, V1= V2 V3= V4, V5))

Assume we have a network N with a parent network
N' (hence N.Id is the name of a step in N'). As well as
having the effect of adding constraints to a network, the
process of making traces sound may have the effect of
changing N.Pre and N.Post. In this case step N.Id in
N' must have its Pre and Post conditions augmented,
and N' must be re-made sound. This process we call
‘passing up’. Assuming network N1 was made sound in
Figure 1, then with the new conditions passed up from
step N3 it must be re-made sound. As illustrated in
Figure 3, this may have the effect of changing the par-
ent network’s external conditions, in which case N1’s
parent must be re-made sound, and so on. Also inter-
nal constraints may be added such as the new temporal
constraint between steps N3 and N2.

Notice that the augmented postcondition plays a part
in that it may be used to satisfy preconditions. For ex-
ample, in the transport problem when transporting sev-
eral packages, the pre and postconditions of the carry
steps will eventually include object expressions describ-
ing the the vehicle used. After all lower level networks

NETWORK N1 RE-MADE SOUND

@ P2
AO P3
PO \ / B6
V7 P
A
BL B4
Vo Vs
NETWORK N3 MADE SOUND
V3 V4
Al —
A2
BL| L 7 B4
Vo
A6 A7 V5
Vi V2

Figure 3: Making a Network Sound

are sound, re-making this network sound may then in-
volve using the same truck to carry more than one pack-
age. In Figure 3, expansion of step N4 may entail that
N4’s pre and postconditions are augmented with expres-
sions V'1 and V'2, describing object term v’. If v and
v’ are of related sorts, then they may unify, possibly
allowing V'5 to achieve V'1. In this case the postcondi-
tion of the network would have to be adjusted accord-

ingly.

A Translog Example

To further illustrate the EMS algorithm, we will use
parts of the workings on a transport-package task. Note
that plans contain a set of constraints as well as net-
works - for brevity we leave out this component. Ex-
ample 8 is an example of a network identified as n6.
It was created through the expansion of step n6 in its
parent network, using a carry-direct method operator
similar to the one shown in Example 7.

n6 contains one internal dynamic object identifier -
T. Calculating the guarded trace for T results in the
expression:

truck

(truck, T', n6.pre, trace(T), n6.post)

where trace(T) is identical to trace(T) shown
in Example 5. The guarded trace evaluates to
(truck, T[], trace(T),[])- The pre and postconditions
of the trace are empty because no information is given
on the desired status of the truck in the network’s ex-
ternal conditions. The make-sound procedure in fact
extracted the relevant pre and postconditions and pro-
duced the sounded guarded trace shown in Example 5.
These pre and postconditions were passed up to n6’s
parent, which was re-made sound.

Id : no,

Pre : [(package, pka, [at(pk2, city3-cll),
waiting(pkz), certified(pk2)])],

Post : [(package, pk2, [at(pks, cityl-cll),

waiting (pkz), certified(pk2)])],
Steps :
[(n17, commission(T, pks),
[(truck, T, [movable(T), available(T)])],
[(truck, T, [movable(T), busy(T, pk2)])]),
(n18, move(T, C, city3-cll, R),
[(truck, T,[at(T, C), movable(T)])],
[(truck, T,[at(T, city3-cll1)])]),
(n19, load-package(pka, T, city3-cll),
[(truck, T, [at(T, city3-cll), movable(T)]),
(package, pka, [at(pks, city3-cll),
waiting (pkz), certified(pk2)])],
[(truck, T,[at(T, city3-cll),
movable(T), busy(T, pk2)]),
(package, pkz, [at(pks, city3-cll),
loaded(pks, T), certified(pk2)])]),
(n20, move(T, city3-cll, cityl-cll, R1),
[(truck, T, [at(T, city3-cll), movable(T)])],
[(truck, T,[at(T, cityl-cll)])]),
(n21, unload-package(pkz, T, cityl-cll),
[(truck, T,[at(T, cityl-cll),
movable(T), busy(T, pk2)]),
(package, pk2, [at(pks, cityl-cll),
loaded(pka, T), certified(pk2)])],
[(truck, T,[at(T, cityl-cll), movable(T),
available(T))),
(package, pka, [at(pks, cityl-cll),
waiting (pkz), certified (pk2)])])],
Temps :
[before(nl7, n18), before(nl8, nl9),
before(n19, n20), before(n20, n21)]

Example 8: network n6 containing steps n17-n21

n6 contains one external object pky. Analysis of its
sort-abstracted trace shows that it is not sound in n6
also - at(pks, cityl-cll) cannot be proved by any of the

steps postconditions that occur before n21. The intro-
duction of the conditional effects of the primitive op-
erator move (shown in Example 6) into n20’s pre and
postconditions in fact leads to the soundness of pks’s
guarded trace.

Solution Extraction

The final procedure in the algorithm, called in line 14,
extracts a solution from a completed plan P. If all P’s
networks have been made sound, and all P’s network’s
steps are primitive, then any sequence of primitive oper-
ators satisfying P.Statics and the temporal constraints
in each of the networks will be a solution.

Evaluation
Soundness

The soundness proof for EMS is given in two steps:

(a) If the trace of an object identifier i is sound in
a sort-abstracted network, then it is sound in the net-
work. This is because objects in unrelated sorts can-
not directly affect the truth of object expressions in
the trace(i). For example, detaching a train TR from
a traincar TC affects the state of both these objects,
although they are of unrelated sort (neither of their
sorts is a supersort of the other). Hence this fact is
recorded independently in the the train and traincar’s
substates, in that the traincar TC will go through a
transition making attached(TC, TR) false, and TR will
go through a transition making attached(TR, TC) false.

(b) In the final plan, all dynamic object terms
changed by network N’s steps will appear in expres-
sions in N.pre and N.post (in particular, the root net-
work will record all objects changed in the whole plan).
Extracting a solution involves the extraction of all the
primitive operators in the (sound) leaf networks of the
plan tree. Consider an object expression for object term
i that was achieved in some network, but not in the ex-
tracted solution. Then there must a ‘clobbering’ step
specifying a transition of some object identifier j, where
it is possible that ¢ = j. But there must be some net-
work in the tree (at least the root network) in which
both i and j appear together - in which case, because
they may co-designate, the (abstract) steps in which
they appear would have been temporally separated, or
the constraint 7 # j added. Hence we have a contra-
diction to the hypothesis that i is not achieved in the
extracted solution.

Completeness

With the deepening strategy described in Figure 2,
EMS is not complete. The reason is as follows. Con-
sider an unsound net N with an internal object ¢. Dur-
ing the process of making N sound, the object expres-
sion (s,1,0e) representing the precondition guard of
trace(4) is extracted and put into N.Pre. If an achiever

[Model | Objs(Dyn) | Atlnvs | OpS | Sorts |
Translogl | 31(15) 35 16 18
Translog2 | 73(38) 83 18 21
Translog3 | 109(57) 123 18 21
Translog4d | 145(76) 163 18 21

Table 1: Size of the Translog Models

[Model | Time | Plans | ASoln | MSoln |

Translogl | 0.7 39.5 194 53
Translog2 | 15.4 200.0 | 24.8 56
Translogd | 55.0 231.5 | 26.5 64
Translog4 | 88.0 247.0 | 27.2 62

Table 2: Running FMS with the Translog Models

for (s, 1, oe) is not found at a higher level in the hierar-
chy, then the node will be abandoned. Further expan-
sion of the descendents of N may eventually uncover an
internal object term j such that the derived postcondi-
tion of trace(j) would have achieved (s, 7, 0e). In this
case i = j, and another precondition guard (s, 4, oe')
would have been generated, with the possibility that
(s, 1, 0e') may be achieved in a higher network.

The EMS Implementation

EMS has been implemented in Sicstus Prolog and in-
puts models written in OCLy, version 1.1 as described in
reference (Liu & McCluskey 2000). All tests were run
on a Sun Ultra 5 with 128mb of memory and a 333-MHz
processor. We carried out experiments with OCLy, ver-
sions of Translog domains of varying complexity. This
domain provides the minimum amount of detail to take
advantage of our hierarchical, object-centred approach.

Table 1 gives a summary of the size of the models:
Objs(Dyn) is the total number of objects, with the num-
ber of dynamic objects in brackets; AtInvs is the num-
ber of explicit atomic invariants; OpS is the number of
operator schema, and Sorts the total number of sorts.
TranslogN has N regions, with regions connected by air
travel for N > 1.

Table 2 shows the results from running 80 tasks in
total, 20 tasks in each of the four models. Time is the
average CPU time in seconds used to solve each task;
Plans is the average number of hierarchical plans ex-
panded; ASoln is the average solution size in primitive
operators; and MSoln is the largest solution in that
batch. The results indicate a non-linear but manage-
able increase in resource consumption as the domain
model size, in terms of objects and atomic invariants,
increases. Test runs, sample models and test results
are available from the resource section of the ‘Planform’
web site?.

*http:/ /helios.hud.ac.uk/planform

Related Work

Tsuneto et al point out the importance of calculating
“external conditions” in HTN planning in reference (R.
Tsuneto, J. Hendler, D. Nau 1998). Object expressions
making up the preconditions of internal objects in a
network are analogous to these ”external conditions”
in that they originate from conditions about objects
which cannot be proved within the network.

SHOP (D. Nau & Munoz-Avila 1999) is a hierarchi-
cal planner which allows the modeller to create heuristic
procedural knowledge by coding up the kind of hierar-
chical plans that will lead to efficiently generated so-
lutions. This system is efficient, but is extreme in the
amount of domain-dependent heuristics that requires
encoding. Rather, EMS has been constructed from the
point of view that a domain model needs to have a
declarative semantics independent of domain heuristics
or planning algorithm, which appears to be in line with
Muscettola et al’s conclusions of their experience paper
describing a fielded planner, in reference (N. Muscet-
tola & Williams 1998). The OCL; language has been
developed independently of the EMS algorithm, and is
part of a general methodology which promotes the de-
velopment of a declarative specification of substates and
object transitions, in parallel with the development of
the domain model operators. This gives opportunities
for cross checking between these two forms of represen-
tation, and the developer gains a deeper understanding
of the domain. The concepts of achieve-goals, index,
etc have been compared to the ‘Condition Types’ of
O-Plan in (McCluskey, Jarvis, & Kitchin 1999).

Conclusions

In this paper we have introduced object transition se-
quences, a novel form of abstraction for HTN plan-
ning. We have described an implemented HTN algo-
rithm called EMS that exploits them, and performed
analysis using its current design, showing it to be sound
but not complete. The main innovation in the EMS
algorithm is the efficient form of reasoning it uses to
secure the soundness of its plans. This is because

e object transitions correspond, in general, to the se-
quential parts of a plan. This allows the pre and
postconditions of transitions in a network to be effi-
ciently computed, and these conditions can be used
as guards in reasoning within higher-level networks.

e the sort-abstraction technique means that we only
consider transitions of a related sort when reasoning
about soundness.

e reasoning about the soundness of transition se-
quences is essential done locally - at no time does
EMS have to consider the soundness of the whole
plan at a global level.

Our future work will concentrate on knowledge engi-
neering of real planning domains within the Planform
collaborative project (described in the website referred
to in footnote 2). Using the object-centred approach as

a starting point, we aim to develop a high level platform
for the systematic construction of planner domain mod-
els and abstract specifications of planning algorithms.
Our ultimate aim is to create an environment that pro-
vides tool support for the synthesis of these specifica-
tions into sound, efficient planners.

Acknowledgements I would like to thank Ron
Simpson of the Department of Computing Science at
Huddersfield University for commenting on drafts of
this paper, as well as the efforts of the anonymous re-
viewers.

References

Andrews, S.; Kettler, B.; Erol, K.; and Hendler, J.
1995. UM Translog: A Planning Domain for the De-
velopment and Benchmarking of Planning Systems.
Technical Report CS-TR-3487, University of Mary-
land, Dept. of Computer Science.

D. Nau, Y. Cao, A. L., and Munoz-Avila, H. 1999.
SHOP: Simple Hierarchical Ordered Planner. In Pro-
ceedings of the Sixteenth International Joint Confer-
ence on Artificial Intelligence.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A
Sound and Complete Procedure for Hierarchical Task
Network Planning. In Proceedings of AIPS.

Liu, D., and McCluskey, T. L. 2000. The OCL Lan-
guage Manual, Version 1.2. Technical report, Depart-
ment of Computing Science, University of Hudders-
field .

McCluskey, T. L., and Kitchin, D. E. 1998. A Tool-
Supported Approach to Engineering HTN Planning
Models. In Proceedings of 10th IEEE International
Conference on Tools with Artificial Intelligence.

McCluskey, T. L., and Porteous, J. M. 1996. Planning
Speed-up via Domain Model Compilation. In Ghallab,
M., and Milani, A., eds., New Directions in AI Plan-
ning. I0S Press. 233-244 .

McCluskey, T. L., and Porteous, J. M. 1997. En-
gineering and Compiling Planning Domain Models to
Promote Validity and Efficiency. Artificial Intelligence
95:1-65.

McCluskey, T. L.; Jarvis, P.; and Kitchin, D. E. 1999.
OCLy: asound and supportive planning domain mod-
elling language. Technical report, Department of Com-
puter Science, The University of Huddersfield.

McDermott, D., and Hendler, J. 1995. Planning;:
What it is, What it could be, An Introduction to the
Special Issue on Planning and Scheduling. Artificial
Intelligence 76:1-16.

N. Muscettola, P. P. Nayak, B. P., and Williams, B. C.
1998. Remote Agent: To Boldly Go Where No Al
System Has Gone Before. Artificial Intelligence 103(1-
2):5-48.

R. Tsuneto, J. Hendler, D. Nau. 1998. Analyzing Ex-
ternal Conditions to Improve the Efficiency of HTN

Planning. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence.

