H

University of
HUDDERSFIELD

University of Huddersfield Repository
Nikolaidis, Konstantinos

An Investigation of an Optical Multiple Pulse Position Modulation Link over a Dispersive Optical
Channel

Original Citation

Nikolaidis, Konstantinos (2008) An Investigation of an Optical Multiple Pulse Position Modulation
Link over a Dispersive Optical Channel. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/6980/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and

* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

An Investigation of an Optical Multiple Pulse
Position Modulation Link over a Dispersive
Optical Channel

Copyright © 2008

By Konstantinos Nikolaidis

Beng (Hons) in Electronic and Communication Engineering
University of Huddersfield 2003

§

University of

HUDDERSFIELD

A dissertation submitted in part fulfillment for the degree of Doctor of
Philosophy in Electronic and Optical Communication Engineering

November 2008

ABSTRACT

Digital Pulse Position Modulation (digital PPM) is a modulation format that codes
n bits of PCM into a single pulse that occupies one of 2" time slots. Various studies over
the last three decades have shown that such a scheme can offer an improvement in
receiver sensitivity of 5-11 dB when compared to Pulse Code Modulation (PCM). Such
an increase in sensitivity can be exploited beneficially in both long haul applications and
the multi-user environment. However, this improvement results in a considerable increase

in the final data rate of the original PCM, and this makes implementation difficult.

Alternative methods have been proposed, such as multiple PPM, dicode PPM,
differential PPM and overlapping PPM, that reduce transmission bandwidth while
maintaining an increased sensitivity. Dicode and multiple PPM (MPPM) are the most
bandwidth efficient of these formats and MPPM, the subject of this thesis, offers the best
sensitivity without the large bandwidth increase. In this scheme, multiple pulses per

frame are used, with the pulse positions being determined by the original PCM word.

The main concern of this thesis is a full and detailed investigation of an Optical

X
MPPM link operating over a dispersive optical channel. As the analysis of any (Yj

multiple PPM system, in which X denotes the number of data slots and Y the number of
pulses, is extremely time-consuming, a novel automated solution was designed to predict

the equivalent PCM error rates of specific sequences and simplify the task. An original

PhD Thesis

mathematical formulation is developed using the Maximum Likelihood Sequence
Detection (MLSD) scheme. Using the equivalent PCM error rates of specific sequences
generated from software, a full simulation of an MPPM optical link can be produced and
the results show the effectiveness of the MPPM format over PPM. A measure of coding

quality is proposed that accounts for efficiency of coding and bandwidth expansion.

12
Original results are presented for a (Y J MPPM system, considered as very efficient and

examined by many authors, showing that the most efficient systems are in the middle of
the family. A methodology to predict the Bit Error Rate (BER) of any MPPM system is
also proposed. The results obtained confirmed the results obtained from the full

mathematical analysis.

The effects of linear increment, linear decrement, Gray code and random mapping

of data on the performance of a (Y] multiple PPM system are also examined.

Simulations show that the Gray code is the most effective as it minimizes the Hamming

distance between adjacent multiple PPM words.

Further experiments showed that system performance can be obtained exclusively
with the use of software making the analysis simpler and minimizing the time
consumption. A novel algorithm is presented and results obtained using this method,

agree with those obtained using a full mathematical model.

PhD Thesis

Certain mappings can either enhance or degrade the final total error probability of
the system and hence affect the sensitivity of the MLSD scheme. In this thesis the author
also suggests a methodology of how to predict and generate an optimum or close to
optimum mapping. The methodology is based on minimizing the occurrence of dominant

error sequences. Detailed results show the effectiveness of this mapping routine.

For the first time also, high order MPPM codes are considered for analysis. All

12
the experiments completed for the [YJ MPPM system are repeated for a range of

MPPM systems (with 4, 7, 15, 17, 22, 28 and 33 slots operating over a plastic optical
fibre (POF) channel showing again that the most efficient systems are in the middle of
the family. Close to optimum mappings are also presented for these MPPM systems. The
estimated mappings were found to be far superior to the efficient Gray codes, linear
coding and a series of random mappings. To measure these optimum mappings a very
efficient mapping is also considered. This mapping minimises the Hamming distance
between all MPPM codewords. This mapping allows repetitions of MPPM codewords
and cannot be used in a MLSD scheme. Therefore, it is only used for comparisons with
the (close to) optimum mappings. It is shown that the optimum mappings are close to

1deal.

Other correlation techniques are also considered for optimised detection in the
MLSD scheme. Results obtained showed that raised cosine filtering can enhance

detection.

PhD Thesis

Acknowledgements

The author wishes to thank, “a beautiful mind”, the director of studies, Dr M.J.N.
Sibley, for his valuable support throughout the PhD completion and especially for his

editing reviews.

Many thanks also to my second supervisor, “a true mentor”, Dr P.J. Mather, for

his support, goodwill and help when needed, especially with the first publication.

Vicky, for her love, support and understanding all these years.

Dedicated to my parents.

PhD Thesis

Report Organization

In this thesis, a detailed analysis of the MPPM format is presented when operating
in a highly dispersive optical channel. Chapter I presents the background and motivation
of this work. Chapter 2 shows the necessary theory used for this project (error types,
error probability and MLSD). Chapter 3 demonstrates the design of the software solution.
A modified traditional methodology is applied. The requirement analysis is done through
scenarios and diagrams to determine the needs or conditions to meet for the new software
solution. The implementation phase of the software is also presented. The software is
implemented through an Object Oriented Programming Language (C++). The main
algorithms are described and test results are also demonstrated. The program is split into
three main areas (interface, main body, functions). The main body consists of seven
algorithms which are explained from data flow diagrams. Testing results obtained from
the software alongside test patterns used to verify the software are also presented.
Chapter 4 discusses the mathematical models used to simulate a MLSD scheme used in
an optical MPPM link with the use of a matched filter. The mathematical models use
error rates from specific sequences calculated from the software solution. An original

method of predicting the sensitivity of any MPPM system, and results, are presented for a

12
(Y j MPPM scheme. A methodology to predict the Bit Error Rate of any MPPM system

12
is also proposed and results obtained for a [Y] MPPM system are compared with the

results obtained from the mathematical models. Chapter 5 discusses the effects of data

PhD Thesis

mapping on the overall sensitivity of a MPPM system and results from mapping

12
experiments are presented for a (Y] MPPM scheme. Chapter 6 describes a simplified

fully automated (software) solution to predict the sensitivity of any MPPM system
without the use of complex mathematical models. Also, a new methodology is proposed

of how to obtain an optimum or close to optimum mapping for any MPPM system.

12
Results are presented for a (Y j MPPM system. Chapter 7 presents a full analysis with

experimental results of high order MPPM systems and discusses and demonstrates
optimum (without redundancy) mappings for higher order MPPM systems. Chapter 8

demonstrates other correlation techniques used in a MLSD scheme alongside results for a

(Y j MPPM scheme. Chapter 9 presents a discussion of the main points of the research

and Chapter 10 presents the conclusions of this project and outlines possible further

work.
Several appendices are also included, after the references section, to present

figures, tables, software printouts, mathematical models, publications and the project

plan.

PhD Thesis

Table of Contents

FAY o 1 o =Tt SN 2
Y Yol [o NV 1=To Fod o g 1T o | S 5
REPOIT OFGaNIZAtiON ..uuuiiiiiiiiiiiiiii et e e e e e e e et e eeeeeeeeeaeeaeaaeaeeeeeesaeeeseeeesaseeanens 6
1] o1 (=0T B 00T 1] =] 0 £ 8
I o] T TSP 11
[Ty o 1 1= o L= PPN 14
List of Notations and ADDIreVIatioNSeeeuiiiiiiiiiiiiiiiiiiiiiiriee e e e e e eeeeeeeeeeeseseeeees 18
A [0 4 o Yo [ot f o o ISR 24
1.1 Background and MOtiVatioNnceeiioicciiiiiiec ettt e e e e e e e rrra e e e e e e e eanes 24
R R T Y R 25
R > 5 1Y TR 25
O R 3 > 1V 26
R > |V 27
R I X Y 1Y TR 28
R O] 01 TR 29
0 A > 1 1 TR 30
L PPV e —————— 30
1 APPIM e ———————— 39
LTI O 12\ P 41
LAV (0 > > |V 41
L1 12 1Y PP PPRPRPRPRRRRRTRRN 42
Vi DIPPIV ettt et e et tbtaa et b ebabeeeeeebaneeebereteetteaaeaaaes 47

8

PhD Thesis

1.1.8 Maximum Likelihood Detection, Error Probability and Avalanche Photodiodes.....48

1.2 Introduction to the Problem ... 50
1.3 RESEAICN ODBjJECLIVES .uveiiieiicceee e e e e e e e st e e e e e e s s abreeeeeeesennannns 53
B 1 =TT VPRSP 55
2.1 PUISE DEEECTION EITOIS..uuiiiieieieiiiiiieeieeeeeecittree e e e e esestbreeeeeeeessbareeeeeeeeessbrsaeeseseesssssreseeaesans 58

B B N =3 T TP PP OPPPPPPPTN 58

P A o | K\ - [o PP PRSPPI 61

B e BNV o ¥ =] 1o 1 RPN 63
P A N I T oL I o =Y T ot 4RSI 67
Design, Implementation and TESTINGcccuiiiiciieie ettt e et e e estre e e seataeeesraaeeeans 69
I Yo Y= T 1T = o RS 69

N B A Y N S T 4 o] USRI PPPPPPPTON 83

3.1.2 FalS@ ALGIM EITOIS eiiii ittt ettt st e e st e e s sree e e s sbee e s ssnbee e s sneeeeenares 91

N G BNV oY ¥ =] [Tl = o) USRS 94
3.2 T OSHINE ettt e et et e et e e et e e e e et e e e e e et e e et aaaaaaaaaeaaeeaaaeaaaeaaaaaaaasanns 96
Mathematical ANAIYSIS.....uuiiiii i e et e e e e e s et e e e e e s e esnntaneeeeeeenannnns 101
4.1 Receiver CoONfIGUIATIONSciiiciiiie it ettt ettt ettt e e e e tte e e e ete e e e sareeeeebaeeeeentaeaesans 101
V- ol a =T o I 1T PP PPOTPSRRN 103
T I - [4= AN} =] o HO OSSOSO RO PO PP PP PP PPPPPPPPPPPPPPPRE 104
4.4 Sensitivity Results and Coding QUAlitycueeeieciiiiiiiiieccee e 109
Theoretical Investigation into the Effects of Data Mapping......cccccevecieeeeiiieeevcieee e 120
Optimum Mapping in an Optical Multiple PPM link using a MLSD Scheme.........cccccceeuveee.. 124
6.1 Dominant Error sequences in MUltiple PPMccooiiiiiiiiiei e 124
6.2 Optimum mapping in MUIIPIE PPM.....coco ittt eetree e e e e e 129

9

PhD Thesis

7. Higher Order multiple PPM systems and their Optimum Mappingc.ccceveeeevvieeeeecieeeennne 140

8. Decoder Optimization using other Correlation TechniquUEeSccceeveecciiiieiee i 147
1S O B ol U 1Y o] s I T T T T U TR 152
10. Conclusion and FUIthEr WOrKooiieeiiieiie ettt s s saee e s sbeeenaee s 159
2] =T T o o] YR TPPRP 164
211 o] [ToT={ = o] o 1V 25 SRS 184
APPENAIX A FIGUIES ..ciiiiieieiieeee et e e e e e e e s e e e nttee e e e e e e s e nsreaeeeeeesesnnnsrtaneeeaeeas 188
APPENAIX B TADIES ..ooiiieeeeeeee e e e e e e e e e e e s e rraraaeaeean 206
Appendix C Software PrintOUL ... e e e e 251
Appendix D Mathematical Analysis (Matched Filtering)ccocceeeeeiveeiccieee e, 345
Appendix E Mathematical Analysis (Raised Cosine Filtering)ccccoceeeeciiieeeeciieeeenee. 392
AppendixX F PUDBIICAtioNSooeiiiiii e e 407
APPENIX G ProjeCt Plan ...ccocuiiiiiiiiee ettt s 481
10

PhD Thesis

List of Figures

Figure 1.1:

Figure 1.2:

Figure 1.3:

Figure 1.4:

Figure 1.5:

Figure 1.6:

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

PAM, PEM, PPM @nd PDM ...ccuiiiiiiiiiiienieeeiee ettt sttt ettt e bt e e sabeesaneeens 26

AN OPtical PPIM frameeeiiiiiee ettt ettt e e e e trae e e e e e e e e snaae e e e e e e e ennrasaeeeeeeenannes 31

Conversion of PCM data to multiple PPM.......ccccueiiiiiiii ittt 44

Conversion of PCM data into diCOde.......couvviiiiiiiiiiiiiiiiiiiieieeeee 48

Two frames of a 12-1 PPM and 12-2 MPPM SYStEMSccuuvviieeeeeieciiieeeeeeeeeciveeeeee e 51

An Optical MIMPM frameoeiiieiiie ettt e st e e ebae e e s arae e e 56

The optical fibre digital MPPM system featurescccceeeeciiieeicieee e 57

F Yl = = S L= =1 o] SR 59

J N =N AN 1 1 W =T] ST O TP 62

F T o T o) ff =T o o] U URRTN 64

The Waterfall and Modified Waterfall Design Modelscccccveeeieecciiiieeeee e, 189
A level-0 Use Case DIagramccccueeeiiiieeeiiiieeeeiteeeesieeeeesnteeeesvaeesssssaeessnsseeessnsessesns 190
Alevel-1 Use Case DIagrami.. .. ccuiiieeeeeeeciiiieeee e e eeeiirineeeeesessanveaeeeesssesnssseneeessesanns 191
A SEQUENCE DIQGIAM ..uvvivieiiiiiieieieieieieieteeerereeeeererreeeeerrererrreerrrrrererereaeeeeereeeeeeeaeeeeaaaeanes 192

PhD Thesis

Figure 3.5: The software processing for an ER @rTOr.........ooocciieieciiiee et 193

Figure 3.6: A CoNSOle-32 INtEITACE ..ot e e e et rre e e e e e e nnre e e e e e e s 194
Figure 3.7: A VisUal MFC INTEITACE ..vviiieiiiei ittt ettt e et saree e e sbae e e s snbaeeeeans 195
Figure 3.8: AN X-Y IMPPIM SYSTEIM ...uuuuiiiiiiiiiiiriiiiiitriiereterereerrerrrerereeeeeeeereeeeeeereeeeeeeeeeeeeeeeeeeeeeesaaeeees 196
Figure 3.9: The X-Y MPPM mapping algorithm ..ottt e e 197
Figure 3.10: The Decimal-to-Binary CONVEIrSION........cccccuiieiicieeeeiireeeecireeeeciree e eseaeeeeseraeeseaveeeean 198
Figure 3.11: The ER MILSD algOrithmeeeviieeeiii et e e e re e e 199
Figure 3.12: The ER PCM error algorithMi. ...ttt 200
Figure 3.13: The ER sequence detection algorithmcccccovveiiiiiiiiciiee e 201
Figure 4.1: A received pulse for a normalized bandwidth of 10cccceeeeciieiiiiiieecceeeee, 106
Figure 4.2: MUILIPIE PPVl SEQUENCESvviiiieiieeeeetieeesciteeeeeiteeessteeessvteeessseeeesassaeesssseeessnssesenns 108
Figure 4.3: Efficiency plot of a 12-Y multiple PPM SySte€mMccccciuieeiviieeeeiiee e 119
Figure 6.1: Data flow diagram of the optimization routingcccceeeeeieeeciieeeccee e, 202
Figure 6.2: Data flow diagram of the maximum permutations algorithmccccevvcnvennnnnnn. 203
Figure 7.1: Efficiency plot of a 4-Y, 7-Y, 12-Y and 15-Y MPPM SYyStemS.........cccceeevvrveeeecureeesnnnnnnn. 141
Figure 7.2: Efficiency plot of a 17-Y, 22-Y, 28-Y and 33-Y multiple PPM systems...........cccuvveee... 142
12

PhD Thesis

Figure 7.3: The methodology used to obtain optimum mapping in a 33-2 MPPM system......... 204

Figure 7.4: Percentage change in error rate for a range of multiple PPM systems 205
Figure 8.1: 1110, 110 and 1101 multiple PPM sequences with f,=1.2......ccccccovviviiiiiiiiieeeciinenn, 148
13

PhD Thesis

List of Tables

Table 2.1:

Table 2.2:

Table 2.3:

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

Table 3.5:

Table 3.6:

Table 3.7:

Table 3.8:

Table 3.9:

Decoding for ER error USIiNG IMILSDuuiiiiiiiiei ettt s steee s e e s svae e s sntaeeeeanes 60
Decoding for FA error USiNg IMLSDooiiiiiiie ittt etee e et e 63
Decoding for WS error USiNg MILSDouiieii ittt e e e e erare e e e e 66
Testing results from the MPPM mapping algorithmcccooeeiiieeiiniien e, 79
Testing results from the Data Mapping algorithmcccovieiiiiiicci e, 81
Testing results from the encoder algorithm ..., 82
A sample Of ER COURWOIAScooeuiiiiiciiiie ettt et sree e e are e e e 85

A sample of results of the ER PCM register for a 12-2 MPPM systemccccccvveeennes 87

Erasure Error Sequences considered by a MLSD in a 12-2 MPPM system.................... 88

Erasure Sequences considered from the simplified algorithmcccccoveiiiiiiiiinnnes 91

A sample of results of the FA MLSD register in a 12-2 MPPM systemccccccuveeenne 92

A sample of results of the FA PCM register in a 12-2 MPPM systeM..........cccccvvveeeeennn. 93

Table 3.10: FA Sequences considered from the simplified algorithm..........cccooviiiiiiiiiienns 94
Table 3.11: A sample of results of the WS PCM register for a 12-2 MPPM system..........cccccuveee.. 95
14

PhD Thesis

Table 3.12:

Table 3.13:

Table 3.14:

Table 3.15

Table 3.16:

Table 3.17:

Table 3.18:

Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 5.1:

Table 5.2:

Table 5.3:

Table 6.1:

Table 6.2:

WS Sequences considered from the simplified algorithmcccccoeeeiiiiiiienn e, 96
TESE PAtLOINS et 207
Sequence Error Rates in @ 12-2 MPPM SYStemccoovviiiiiiiiiiiiicee e 98
: Full analysis of ER Sequences in @ 12-2 MPPM SYSteMcceeeeeevciivieeeeeeeiccniieeeeeenn, 212
Full analysis of FA Sequences in @ 12-2 MPPM SYStE€Mccceeevviveeeicieeeeiireeeeeeeeann 214
Full analysis of WS Sequences in @ 12-2 MPPM SyStemccccecvveeeecieeeeccineeeeeeeenn. 236

Time and space analysis for the software solution and the two main algorithms......99

Best and WOrst Case SENSItIVITYcuviiiiciiiie ettt 110
BER calculation in @ 12-Y MPPM SYSTEM ..cccoiiiiciiiiieee ettt eeeveeee e 114
Normalized sensitivity, BE and optimum coding level of a 12-Y MPPM system 115
Efficiency map for a 12-Y multiple PPM SyStemccoccuveeeeiiieiiiiee et 117
Sensitivity in photons/PCM bit of @ 12-Y MPPM SYSte€Mc.ccovveeiiieecreeeceeecreeeneens 120
Maximum improvement of sensitivity in photons/PCM bit compared to Ll............... 121
Variation in optimum mapping using the s/w model......c...cccceceveiiiiiiiiiecieccee e, 122
Sensitivity results (in photons/PCM bit) for a 12-2 MPPM systemcccceeeeveeeevenenns 125
Sensitivity results (in photons/PCM bit) for a 12-Y MPPM systemcccceeeeveeeneeene 126

15
PhD Thesis

Table 6.3:

Table 6.4:

Table 6.5:

Table 6.6:

Table 6.7:

Table 6.8:

Table 6.9:

Table 7.1:

Table 7.2:

Table 7.3:

Table 7.4:

Table 7.5:

Table 7.6:

Table 7.7:

Table 7.8:

Table 7.9:

Variation in optimum MapPiNg......ccooeeiiiiiee e 127
Time needed to predict the efficiency of the 12-Y system.......ccoceeeecieeiiiiieeecciieeeens 128
THD and AHD for LI, GC and OPT mapping of the [1,?] ER /W .cc.ooovevevvieeieecreecine 131
Erasure averaged codewords for a 12-Y multiple PPM system........cccccccceeeeecvrinenn.n. 132
The estimated “optimum” mapping for the 12-2 multiple PPM system..................... 134
THD and AHD for LI, GC and OPT mapping of the [1,2,?] ER ¢/W. ..cccvveevvreereeereeeienen, 136
Percentage change in error rate for a 12-2 and a 12-3 multiple PPM system............ 138
The estimated “optimum” mappings for the 7-2 multiple PPM systems 238
The estimated “optimum” mapping for the 7-3 and 7-4 multiple PPM system 239
The estimated “optimum” mapping for the 15-3 multiple PPM system..................... 240
The estimated “optimum” mapping for the 33-2 multiple PPM system..................... 242
Percentage change in error rate for a range of multiple PPM systemes. 246
Percentage change in error rate for a range of multiple PPM systemsc......... 247
THD for “Optimum” and “ldeal” MappPinNg......cccccvveeeiiiiee i 248
Ideal mapping for the 7-4 multiple PPM SYStemcccccveeeeciieeicieee e 249
Percentage change in error rate for a range of multiple PPM systems.cc......... 250
16

PhD Thesis

Table 8.1: Sensitivity results for a 12-1 and @ 12-2 MPPM SYStemccccveeeviiieeeiiieeeeciiee e 150

17
PhD Thesis

List of Notations and Abbreviations
(In alphabetical order)

ADPCM Adaptive Differential Pulse Code Modulation

AFE Analogue Front-End

AHD Averaged Hamming Distance

a; the minimum amount of photons

b the received pulse energy in photons per bit
BE bandwidth expansion

BE, i the normalized bandwidth expansion

BER Bit Error Rate

bps bits per second

B; the MPPM slot rate

cceeePM Colour Coded Pulse Position Modulation

CPU Central Processing Unit
aw Codeword
dBm decibel referenced to ImW
DE Digital Equalizer
dPPM differential Pulse Position Modulation
DFE decision-feedback equalizer
ER Erasure Error
erfc the complementary error function
18

PhD Thesis

FA

Jn
Gjeo)
(0

Hy(w)

I;

Ic

IFI

IST

K

KHz
Kbit/sec
L

Ly

Mb
MFC
MLSD
Mp
MPPM

MSB

False Alarm

the normalised fibre bandwidth to the PCM data rate

is the transfer function of the equalising filter

received pulse shape

the complex conjugate of the received pulse
bit

shape of the output pulse

Integrated Circuit

Inter Frame Interference

Inter Symbol Interference

number of pulses

Kilo Hertz

Kilo Bits per second

the frame bits

the known bits

the unknown bits

bits

the number of PCM codewords

Microsoft Foundation Class Library
Maximum Likelihood Sequence Detection
the number of MPPM codewords

Multiple Pulse Position Modulation

Most Significant Bit

19

PhD Thesis

o/P

OPPM
PAM

P,

Perasure

Py

Prasse atarm
PCM
PCM_BITS
PFM

PM

ph PCM norm

POF

PPM

/s

PSE

PTM

number of slots

number of slots

number of encoded PCM bits
Output

Overlapping Pulse Position Modulation
Pulse Amplitude Modulation
the erasure error probability

the erasure error probability

the false alarm error probability
the false alarm error probability
Pulse Code Modulation
encoded PCM bits

Pulse Frequency Modulation

Pulse Modulation

the normalized sensitivity in photons per PCM bit

Plastic Optical Fibre

Pulse Position Modulation
pulses per second

the wrong slot error probability
Probability of Symbol Error
Pulse Time Modulation

20
PhD Thesis

Prorar

PWM

P, wrong_slot

Q.

Oy

0,

rms

ROM

Ry

slope(ty)

THD

the total error probability
Pulse Width Modulation

the wrong slot error probability
Vpk V4

(n,)

fraction defined as

Via~Vo (td)

(n,%)

fraction defined as

fraction defined as & slop—\/ei(zd)
(n,”)

root mean square

Read Only Memory
is the mid-band transimpedance
the slope of the received pulse at the threshold

crossing instant #4

preamplifier (double sided) noise at input
Software

the PCM bit time

the threshold crossing time

frame period

Total Hamming Distance

21
PhD Thesis

Ts

I

weight

sens

wcCs

ws

the slot width

the frame period

the MPPM slot period

the threshold parameter

the receiver output at the threshold crossing #;
Very High (Speed) Description Language

the voltage level of the slot

the peak receiver output

the peak receiver output

the bandwidth weighting, 1- weight

sens

the sensitivity weighting, 0 to 1, in steps of 0.1

Worst Case Scenario

Wrong Slot

number of slots

number of pulses

a dominant transimpedance pole

the mean square receiver output noise

the number of uncorrelated samples/time slot

22
PhD Thesis

pulse (variance) shape
pulse (variance) shape
efficiency factor

is the -3 dB bandwidth of the preamplifier

23

PhD Thesis

Chapter 1

Chapter 1

Introduction

1.1 Background and Motivation

Electronic information may be transmitted from one point to another using either
analogue or digital communication techniques [1]. In analogue communications the three
key parameters of a carrier signal are its amplitude, phase and its frequency, all of which
can be modified (modulated) in accordance with a low frequency information signal to
obtain the modulated signal. In analogue modulation, the modulation is applied

continuously in response to the analogue information signal.

In digital modulation, an analogue carrier signal is modulated by a digital bit
stream. The modulation of pulses is called Pulse Modulation (PM) [2]. PM is the process
of using some characteristics of a pulse (amplitude, width, position) to carry a
narrowband analogue signal over an analogue lowpass channel as a two-level quantized

signal, by modulating a pulse train. Common modulation formats are:

i) Pulse Amplitude (PAM)
ii) Pulse Density (PDM) or Width (PWM)
i) Pulse Frequency (PFM)

iv) Pulse Code (PCM)

24
PhD Thesis

Chapter 1

v) Sigma-delta modulation (XAM)
vi) Continuously variable slope delta modulation (CVSDM), also called
Adaptive-Delta Modulation (ADM)

vii) Pulse Time or Position (PTM)

1.1.1 PAM

In PAM (presented in figure 1.1 - A) the amplitude of the pulses carries the
information. This basic scheme can be made more sophisticated by using several
amplitude levels. For example, signal bits can be grouped into twos, i.e. 00, 01, 10 and 11
and four different amplitude levels can be used for each of these groups. This scheme is
known as Quadrature Pulse Amplitude Modulation (QPAM or QAM). Direct-sequence

spread spectrum (DSSS) is based on pulse-amplitude modulation

1.1.2 PDM

PDM, is another form of modulation used to convert an analogue signal into a
digital signal. In a PDM signal, the relative density of the pulses is proportional to the
magnitude of the analogue (input) signal. Pulse-width modulation (PWM) is a special

case of PDM. It is widely used in motor control.

25
PhD Thesis

Chapter 1

1.1.3 PFM

PFM (figure 1.1 - B) is a method of pulse modulation in which the modulating
wave is used to frequency modulate a pulse-generating circuit. For example, the pulse
rate may be 8000 pulses per second (p/s) when the signal voltage is 0. The pulse rate may
step up to 9000 p/s for maximum positive signal voltage, and down to 7000 p/s for
maximum negative signal voltage. This method of modulation is not used extensively
because the PFM generation circuitry is complicated. It requires a stable oscillator that is
frequency modulated to drive a pulse generator. Unlike PDM (and PWM), in which the
width of square pulses is varied at constant frequency, PFM is accomplished using fixed-

duration pulses and varying the repetition rate.
- - TR~ -
2| I A
PAM ﬁ n e - 'ﬁ_ A

PFM _’IUUUT ﬂ“"*-: :-"” ‘”_ B

eev U JUHHUI L
PDMl_l H”H_D

Figure 1.1: PAM (4), PFM (B), PPM (C) and PDM (D) (www.iec.org).

26
PhD Thesis

Chapter 1

1.14 PCM

PCM (figure 1.2) is a general scheme for transmitting analogue data in a binary
form independent of the complexity of the analogue waveform. With PCM all forms of
analogue data such as video, voice, music and telemetry can be transferred. To obtain
PCM from an analogue waveform at the source (transmitter), the amplitude of the
analogue signal is sampled at regular time intervals. The sampling rate, is several times
the maximum frequency of the analogue waveform (Nyquist rate). The amplitude of the
analogue signal at each sample is rounded off to the nearest binary level (quantisation)
and represented by a binary word of two, three or more binary bits. At the receiver, a
pulse code demodulator converts the binary numbers back into pulses having the same
quantum levels as those in the modulator. These pulses are further processed to restore

the original analogue waveform.

[=JE N SIVFRS SERT - R =)

Figure 1.2: PC Modulation (www.iec.org).

27
PhD Thesis

Chapter 1

Adaptive Differential Pulse Code Modulation (ADPCM) is a technique defined by
the International Telecommunication Union (ITU) for converting sound or analogue
information to binary information by taking frequent samples of the audio signal and
expressing the value of the sampled audio modulation in binary terms. This produces a
lower bit rate and is sometimes used to effectively compress a voice signal, allowing both
voice and digital data to be sent where only one would normally be sent. ADPCM is a
variation of pulse code modulation (PCM) that only sends the difference between two
adjacent samples. ADPCM is used to send audio on fiber-optic long-distance lines as well
as to store audio along with text, images, and code on a data storage medium. It is also

used in digital cordless telephones and radio/wireless local loop.

1.1.5 XAM

The Sigma-Delta (£A) modulation is a method for encoding high resolution
signals into lower resolution signals using pulse-density modulation. This technique has
found increasing use in a range of modern electronic components, such as analogue-to-
digital and digital-to-analogue converters, frequency synthesisers, switched mode power
supplies and motor controls. One of the earliest and most widespread uses of delta-sigma
modulation is in data conversion. An ADC or DAC circuit which implements this
technique can easily achieve very high resolutions while using low-cost CMOS
processes, such as the processes used to produce digital integrated circuits; for this

reason, even though it was first presented in the early 1960s, it is only in recent years that

28
PhD Thesis

Chapter 1

it has come into widespread use with improvements in silicon technology. Almost all

analogue integrated circuit vendors offer delta sigma converters.

1.1.6 CVSDM

Continuously variable slope delta modulation (CVSD or CVSDM) is a voice
coding method. It is a delta modulation with variable step size (i.e. special case of
adaptive delta modulation), first proposed by Greetkes and Riemens in 1970 [3]. CVSD
encodes at 1 bit per sample, so that audio sampled at 16 KHz is encoded at 16 Kbit/s. The
encoder maintains a reference sample and a step size. Each input sample is compared to
the reference sample. If the input sample is larger, the encoder emits a 1 bit and adds the
step size to the reference sample. If the input sample is smaller, the encoder emits a 0 bit
and subtracts the step size from the reference sample. The encoder also keeps the
previous N bits of output (N =3 or N = 4 are very common) to determine adjustments to
the step size; if the previous N bits are all Is or Os, the step size is doubled. Otherwise, the
step size is halved. The step size is adjusted for every input sample processed. The
decoder reverses this process, starting with the reference sample, and adding or
subtracting the step size according to the bit stream. The sequence of adjusted reference
samples are the reconstructed waveform, and the step size is doubled or halved according
to the same all-1s-or-Os logic as in the encoder. Adaptation of step size allows one to
avoid slope overload (step of quantization increases when the signal rapidly changes) and

decreases granular noise when the signal is constant (decrease of step of quantisation).

29
PhD Thesis

Chapter 1

CVSD is sometimes called a compromise between simplicity, low bitrate, and quality.

Bitrates are 9.6 to 128 Kbit/s.

1.1.7 PTM

The time characteristics of pulses may also be modulated. Two time
characteristics may be affected, the time duration of the pulses and the occurrence

(position) of the pulses. The main PTM techniques are:

i) Pulse Position Modulation (PPM)

In 1949, Golay [4] published a paper that considered the use of digital PPM
(referred as QPPM) as the practical way of approaching the Shannon limit. Many other
authors after him [5]-[66] continued his research on QPPM (referred to as PPM). Optical
Digital PPM (referred in some papers as ODPPM) is an early form that codes n bits of
PCM data into a single, narrow, high-energy pulse which occupies one of n=2" (where M
is the number of encoded PCM bits) allowed pulse positions or slots in a frame of
duration 7, (as presented in figure 1.3). A guard band is left at the end of each frame and
this defines a modulation depth, m. The first level of PPM synchronisation consists of
identifying the slot boundaries and frequency. The second level consists of identifying
the frame frequency. The last and most important part in synchronizing PPM signals is

the establishment of the proper frame phase from the incoming data stream. Thus

30
PhD Thesis

Chapter 1

synchronizing a PPM system is quite complicated. Generally it can be stated that

efficiency improves with increasing the number of slots because more bits are being

conveyed.
T T T T
Yl
‘\f"u:.(tpkj s s s e e LT DL LETEE TR TR Rt
“decision /1'\
.y
i
1}
i \
/I \\T"-q
O O R
5l 0 1 2 3 4
E Th

Figure 1.3: An Optical PPM frame encoding 2 PCM bits. Note the guard interval at the

end of the frame.

McAulay and Sakrison, [5] developed a hybrid PPM/PM modulation system.
They showed that for a fixed signal having a specified bandwidth the PPM/PM
modulation can perform significantly better than straight PPM at higher values of the
input SNR. Karp and Gagliardi, [6] considered some design aspects of an optical M-ary
PPM communication system using photon counters at the receiver. The system
considered transmits monochromatic optical energy in one of M time intervals, and the

receiver determines the photon count in each interval and performs a maximum-

31
PhD Thesis

Chapter 1

likelihood test to determine which signal has been received. Blachman, [8] studied the
spectrum of a time-division-multiplexed (TDM) pulse-position-modulated (PPM) signal.
The spectrum consists of three parts - the continuous part, which is simply the sum of the
continuous parts of the spectra of the separate channels; the lines and harmonics of the
maximum overall pulse-repetition frequency (PRF). Simple expressions were found for
all three parts under the assumption that N-M channels are empty (input lines have no
data to send). NV are unmodulated and the remaining M contain independent, identically
uniformly distributed pulse positions. A complicated expression was also found for the
variances of the lines in the last part of the spectrum under a random choice of the
modulated and unmodulated channels, and a simple approximation was presented for it.
The author also obtained the signal’s continuous spectrum, which was simply the sum of
the continuous parts of the spectra of the individual modulated channels and was

independent of which channels they were.

The same author also studied [9] the signal-to-noise-ratio (SNR) performance of a
pulse-position-modulation (PPM) receiver when the input SNR exceeded the threshold,
but below it the output SNR deteriorated on account of false pulses due to noise. A
formula was obtained for the output SNR as a function of the input SNR that was valid
below as well as near and above the threshold. From it the threshold was easily
determined, and it was found to be higher than previously indicated. The paper concluded
with a new, simpler derivation of Rice’s result as well as a resolution of the demodulator
output into its various components. The relation between the time-bandwidth (TB)

product and the threshold peak SNR was also obtained. The latter turned out to be about

32
PhD Thesis

Chapter 1

17 dB for values of TB in the range of 10-15. Thus, the SNR threshold was found in PPM

reception to be considerably higher.

Muoi and Hullett, [10] developed an optimum receiver structure for an optical
PPM system and from this a simple sub-optimum receiver was proposed which offered
significant SNR improvement and yet required few circuit changes. For a FET
preamplifier, the SNR improvement was 10.8 dB with a p-i-n photodiode and 4.7 dB with
an avalanche photodiode. For a BJT preamplifier, the SNR improvement was 3.1 dB and
2.3 dB with the p-i-n and avalanche diodes, respectively. Garrett, [14] analysed the
receiver sensitivity of an optical PPM system over a slightly dispersive channel, where
both “wrong slot” and “false alarm” errors are important. It was shown that receiver
sensitivity of better than 100 photons per binary bit-time was theoretically possible using
direct detection and un-coded PPM. Ideal heterodyne detection could reduce this to
below 5 photons per binary bit-time. Timing extraction and a digital modulation method

were discussed.

Gagliardi and Prati, [15] investigated laser pulse stretching in optical PPM
formats in terms of performance degradation and decoder design alternatives. Several
methods were considered for combating the pulse stretching, including pulse
equalization, extended pulse integration, and pulse shape matching. Performance of these
methods was compared for the case of exponential stretching and Gaussian statistics. The
methods included pulse equalization, and spread pulse energy integration and matching.

Optimal performance, therefore minimum PSE (probability of symbol error), occurred

33
PhD Thesis

Chapter 1

only if the pulse shape was exactly matched, but the performance can be approached by a

piece-wise (logarithmic and exponential function) integrate-and-correlate decoding.

Prati, [16] examined the maximum probability decoding for a stretched-pulse,
PPM, direct-detection optical communication system when the spreading factor of the
received laser pulse was unknown. Based on a discrete count model, joint pulse spreading
estimators and decoders were derived for both Poisson and avalanche photodetection
(APD) cases. Performance was evaluated in terms of probability of error for pulse

decoding.

Ling and Gagliardi, [18] examined the slot clocking design associated with a
direct detection, photodetecting optical PPM system. Several types of practical slot
synchronizers were also considered. A basic design involving analogue correlators and
slot gating was presented, along with an indication of its performance. Several alternative
designs were also presented, including digital synchronizers in which time samples were
used for loop control. The advantage in digital systems is that more extensive processing
could be handled in software, allowing the loop to perform closer to the ideal. Design
procedures for digital clocking were presented, and optimal laser pulse shaping and
filtering were discussed. Performance in terms of loop models and tracking error variance
was included. It has been shown that accurate, reliable, and implementable slot clocking
tracking loops can be designed for PPM decoder processors. These loops can be designed
without the necessity of decoding decision feedback, thereby eliminating delay lines and

complicated storage hardware. The primary disadvantage was to make binary slot

34
PhD Thesis

Chapter 1

decisions fairly accurately, which produced slightly poorer performance then predicted
by idealized tracking theory. Some alternative designs were possible, eliminating the
binary decision making, but they became noisier and generally had limited linear tracking
range. An alternative digital design was also considered, in which the early-late gate
integrators were replaced by A/D conversion, and sample differencing was used to
generate error voltages. The digital system can be optimised by properly designing the
preloop filter and shaping the transmitted laser pulse so as to minimize tracking variance.
The use of software processing made it easier for the digital clock loop to be decision-
directed by the PPM decoding, whereas an equivalent analogue loop would require

accurate delay lines to achieve the same performance.

Charbit and Bendjaballah, [20] calculated the capacity for a Poisson channel with
a source noise as modeled by Pierce by bounding the error probability. Based on
Chernoff’s bound properties, a more general method was developed, yielding a formula

for the channel capacity.

Cryan et. al, [28] investigated the PPM potential for coherent optical fibre
communications channel. They presented a thorough performance and optimisation
analysis. Comparisons, at a wavelength of 1.5 um, were made with shot-noise limited
coherent PCM (homodyne and heterodyne ASK, FSK, and PSK) over a range of fibre
bandwidths and varying PPM word size. They concluded that, for moderate to high fibre
bandwidths, homodyne digital PPM could achieve an improvement in sensitivity of

typically 5 dB over homodyne PSK PCM. Cryan [29] also considered the simplification

35
PhD Thesis

Chapter 1

of the receiver structure, and an algorithm was developed for calculating the receiver
sensitivity when sub-optimum pre-detection filters were employed. Original results were
presented for the sub-optimum detection of heterodyne n-ary PPM, and they illustrated
that the receiver complexity can be significantly simplified at a cost of only 0.9 dB
degradation in sensitivity. Finally, the algorithm was used to model an experimental 16-
ary heterodyne PPM system, predicting a sensitivity of -65.5 dBm when operating with a
slot duration of 20 ns. This is within 2.8 dB of that measured practically, and 5.6 dB short
of the shot noise limit due to a limited local oscillator power of 14 uW. This represents

an improvement of 18.2 dB over an equivalent direct detection 16-ary PPM system.

Advani and Georghiades, [30] demonstrated jointly optimal receivers that make
decisions in the absence of symbol synchronisation and analysed a pulse-position
modulation, optical direct-detection channel. It was seen that jointly optimal receivers
were superior to conventional receivers that had separately designed synchronisation and
decision subsystems. However, their performance advantage was significant only at very
low signal levels. Simulation results indicated that the much less complicated receivers
that observed histogram data performed as well as receivers that observed the complete

sample-path at a rather small number of bits per slot.

Cryan et. al, [33] showed from experiments that the optimum sensitivity in a PPM
system occurs when the contributions from the error sources are equal. Above this

optimum, sensitivity is maximised by balancing False Alarm errors with Wrong Slot

36
PhD Thesis

Chapter 1

errors. Below the optimum, it is maximised by balancing Erasure with False Alarm

CITors.

The use of coding techniques (Reed-Solomon, [41] Viterbi, [42] Trellis, [43] and
convolutional codes [44]) for an optical fibre PPM channel was considered by Garrett
[45] in 1981. RS and convolution coding were discussed by McEliece [46]-[47] for free
space optical communications. Divsalar and Gagliardi [48] considered an optical-RF
relay deep space communication link that transmits optical PPM data from spacecraft to
an optical relay that then retransmits the data via microwave to ground. It was generally
advantageous to use Reed-Solomon encoding over the PPM optical link for improved
error correction. Several demodulating schemes were also considered. Yichao et al [51]
discussed repeatered optical fibre communication with line-coded digital PPM in 1985.
Since then several papers [52]-[64] have been published in the area of line, RS and
convolution coding for direct and coherent detection of digital PPM over optical fibre
channels. The conclusions from these papers are that RS coding offers increased receiver
sensitivity, and that there exists an optimum code rate for a particular system. Combining
RS and convolution coding to form an inner and outer code system, also yields

advantages in system performance.

Cryan et. al [58] also presented a performance and optimisation analysis for both
uncoded homodyne digital PPM and digital PPM employing Reed-Solomon error-
correction codes. The system performance for a range of fibre bandwidths and PPM

symbol sizes was analysed, and it was shown how the predetection filter may be

37
PhD Thesis

Chapter 1

configured in order to minise the three error sources and achieve maximum transmission
efficiency (nats/photon). Results were presented at a bit rate of 565 Mbit/s and a
wavelength of 1.5m, comparing both uncoded and coded homodyne digital PPM with
shot-noise-limited coherent PCM. It was shown that there are optimum PPM symbol
sizes, fibre bandwidths and Reed-Solomon code rates at which to operate. The conclusion
was that uncoded digital PPM offers an improvement of 5 dB over homodyne PSK PCM,

and that the Reed-Solomon error-correction coded system offered a 4 dB improvement

over uncoded PPM, when operating at the optimum 3/ code rate.
p 4

Cannone et. al, [59] studied the performance of convolutionally coded pulse
position modulation (PPM) systems in the presence of slot synchronisation errors, for the
shot-noise-limited photon-counting receiver and the avalanche photodetection (APD)
receiver. Both hard and soft (J-max) demodulation results were given, and two soft-
decision metrics were investigated. The effect of slot synchronisation errors on the
performance of an interleaved PPM system, where the pulses are arranged in a non-
contiguous way in order to increase performance, using convolution was evaluated for
both photon counting and APD receivers with hard and soft demodulation and Viterbi
decoding. The results indicated that the performance of coded PPM systems with hard
demodulation is in general significantly affected by imperfect slot synchronisation unless

the value of the normalized loop bandwidth is less than 10,

In 1992 Massarella and Sibley completed experimental work [61] in the area of

IFI and Reed-Solomon code error correction for an optical PPM channel. This work has

38
PhD Thesis

Chapter 1

shown that the effects of IFI in the first time slot can be completely eradicated. The use of
RS coding has also been experimentally investigated with conclusions drawn on the

random and burst error correction ability of such codes with PPM channels.

Lee and Kahn, [64] analyzed the performance of trellis-coded pulse-position
modulation with block decision-feedback equalization (BDFE) and parallel decision-
feedback decoding (PDFD) on indoor, wireless infrared channels. They showed that the
reduced complexities of BDFE and PDFD as compared to maximum-likelihood sequence
detection allow for better codes whose increased coding gain more than compensates for
the penalty due to suboptimal detection. They also quantified these net gains in
performance over a range of dispersive channels, indicating where BDFE and PDFD
provided the best performance. Thus, for TC 16-PPM, BDFE provided the best
performance. For TC 8-PPM, BDFE provided the best performance for normalized delay
spreads D1<0.2, but because of significant penalties due to decision errors in BDFE,

PDFD provided the best performance for Dr>0.2.

ii) Differential PPM (dPPM)

The synchronisation difficulties of PPM can be solved using differential PPM
(dPPM) [67]-[70] whereby each pulse position is encoded relative to the previous pulse.
Thus the receiver must only measure the difference in the arrival time of successive
pulses. It is possible to limit the propagation of errors to adjacent symbols, so that an

error in measuring the differential delay of one pulse will affect only two symbols,

39
PhD Thesis

Chapter 1

instead of causing all successive measurements to be erroneous. dPPM was proposed by
Zwillinger [68] as a way of increasing throughput for a band-limited and average-power-
limited optical channel. Shirokov and Bukhinnik [68] also considered dPPM when
transmitted over optical fibre channels. In particular they evaluated the reliability of such
systems. Peile [69] completed a theoretical analysis for dPPM with error correcting codes

combined with interleaving techniques.

Shiu and Kahn [70], presented expressions for the error probability and power
spectral density of DPPM. They showed that for a given bandwidth, dPPM requires
significantly less average power than pulse-position modulation (PPM). They also
examined the performance of dPPM in the presence of multipath intersymbol interference
(ISI). They found that the ISI penalties incurred by PPM and dPPM exhibited very
similar dependencies upon the channel rms (root mean square) delay spread. They also
discussed the use of chip-rate and multichip-rate equalization to combat ISI. Finally, they
described potential problems caused by the nonuniform bit-rate characteristic of dPPM,
and proposed several solutions. They considered several receiver structures, including a
simple, unequalized hard-decision receiver, an MLSD, a chip-rate decision-feedback
equalizer (DFE), and a multichip-rate DFE (the MLSD comprises an Analogue Front-End
(AFE) IC and a Digital Equalizer (DE) IC which are packaged in a multichip module).
They concluded that dPPM always achieved high power efficiency and lower hardware
complexity than PPM. These made dPPM a favorable candidate to replace PPM in many
applications. Using a simple model for the indoor wireless infrared channel, they found

that the ISI penalties of dPPM were essentially determined by the ratio of the rms delay

40
PhD Thesis

Chapter 1

spread to chip duration. DFE was discovered as an effective technique to combat ISI. The
same authors derived the PSD of dPPM signals assuming that the transmit pulse shape
was rectangular. The PSD did not approach zero at dc. Thus, if highpass filtering is
employed to reduce the effect of fluorescent light noise, dPPM signals are subject to

greater distortion than PPM signals.

iii) Overlapping PPM (OPPM)

In 1984 Bar-David and Kaplan [71] and in 1999 Shalaby, [72] published some
work on Overlapping PPM (OPPM). This modulation scheme was found to allow
multiple positions per pulse width as well as fractional modulation indices (number of
pulse widths per frame). The associated theoretical analysis showed that, for low data

rates, OPPM offers a 20 percent advantage over conventional PPM in nats/photon.

iv) Colour Coded PPM (CCPPM)

Colour coded PPM (CCPPM) was proposed by Davidson and Bayoumi in several
papers [73]-[76]. This technique uses a different optical non-overlapping centre
frequency for each individual PPM data slot. It was found that this system offered higher
energy efficiency in nats per average number of received photons per pulse than an
ordinary PPM system. Gagliardi and Kim [21] also considered CCPPM combining laser
diodes, operated in different wavelengths, in conjunction with a pulse position modulated

(PPM) format (several laser diode sources that were combined into a single beam for

41
PhD Thesis

Chapter 1

digital PPM transmission). They considered three different system architectures. In the
first design a single PPM data pulse was represented by several optical frequencies which
were combined before the digital PPM modulator. The second design also used a single
beam, but each optical wavelength was modulated by digital PPM before the optical
combiner. They considered the data rate performance of the systems based on the PPM
coding level, number of wavelengths used, optical SNR and losses associated with the

beam optics.

v) Multiple PPM (MPPM)

The use of digital pulse position modulation using multiple pulses (figure 1.4) per
time frame was considered by Lee and Schroeder [77] in 1977. This paper gave analytic
and computer simulation results for a pulse-interval modulation (PIM) system that
represented a discrete PPM system. They also determined the laser power required to
achieve a given bit error rate. This modulation format was then theoretically investigated
by Gol’dsteyn and Frezinski [78] in 1978 when it was transmitted over a channel
containing regenerators. Marougi and Sayhood [79] published a paper in 1983 that had a
complete noise performance analysis and Fyath et al [80] investigated the spectral
properties for timing extraction purposes. Since then several papers have been published

in the area of Pulse Interval and Double Header PI Modulation [81]-[83].

The noise immunity of Multiple PPM (MPPM) was investigated by Yemin and

Petrich [84] when operating over a dispersive channel i.e. pulse broadening. They derived

42
PhD Thesis

Chapter 1

error probabilities for incorrect reception of the signal assuming a Gaussian received

pulse shape and threshold crossing detection. Sugiyama and Nosu [85] proposed a

12
detailed noise performance of a (2 J multiple PPM, optical fibre system in the presence

of erasure errors. A Maximum Likelihood Sequence Detector (referred as MLSD) was
used as the decoder-detector and this same scheme is also used in this thesis. They
concluded that multiple PPM is more efficient than digital PPM in terms of power and
bandwidth utilization (MPPM reduces the transmission bandwidth by half), resulting in a
best predicted sensitivity of 0.58 bits/photon compared to the 0.5 bits/photon for digital
PPM, both operating at an error rate of 1 in 10”°. They also proposed a practical method
of finding the “optimum” (equivalent PCM) mapping. By constantly changing the
mapping they recorded the final error probability. Depending on the rate of change of the
error probability, they changed the mapping until the error probability was not reduced

any more. This mapping was theoretically named as the optimum.

Majumder et al [87] considered the performance degradation of coded MPPM
systems due to slot synchronisation error for an APD type receiver, and obtained

expressions for receiver degradation with the timing jitter variance.

43
PhD Thesis

Chapter 1

P

Y

M R

Figure 1.4: Conversion of PCM data to multiple PPM.

Park and Barry [92] examined the performance of multiple PPM and its variants
PPM and OPPM on ISI channels with additive white Gaussian noise. The error
probability and channel capacity results indicated that, although PPM modulation
schemes were extremely power efficient across ISI-free channels, their power efficiency
dropped dramatically when ISI was present. The same authors also investigated the effect
of dispersion on multiple PPM [100] for indoor wireless infrared communication. They
concluded that a partial-response pre-coding at the transmitter reduces the ISI span to two
baud periods, which reduced the complexity of the receiver significantly, providing a

good balance between performance and complexity.

Velidi and Georghiades [93], investigated the synchronisation properties of slot-
synchronized multiple pulse position modulation (MPPM) sequences. They derived a
bound on the probability of MPPM symbol synchronisation and identified synchronisable
MPPM symbols, which, when periodically inserted in the data stream, can remove an

observed performance floor.

44
PhD Thesis

Chapter 1

12
Sibley [94] presented an original performance analysis of a (5] multiple PPM

system with a slope detection system coupled with a classical matched filter, MLSD
scheme, to combat inter-symbol interference. The author concluded that this multiple
PPM scheme (used in Plastic Optical Fibre - POF) had a 7.36 dB advantage over PCM
when operating under wide bandwidth conditions. When all consecutive pulses were
replaced by three-pulse sequences to reduce the effects of ISI and IFI at low bandwidths,
it was shown that such a hybrid 2/3 pulse system gave a sensitivity of -22.74 dBm at a
channel bandwidth of 0.7 times the PCM bit rate. This represented a 3.61 dB

improvement over the original two-pulse MPPM system.

Cryan and Sibley [95] simplified the receiver design by employing raised cosine
filtering to eliminate ISI. They showed that very good performance can be achieved by
using a simple first-order preamplifier in cascade with a 3 order Butterworth pre-
detection filter, both with their bandwidths set at 0.6 times the MPPM slot rate. When
operating with a POF bandwidth of 0.7 times the data rate, it was shown that both the
ideal raised cosine scheme and the simple Butterworth pre-detection filter system offered
improvements in sensitivity of 7.6 dB and 8 dB respectively over the more complex

MPPM MLD system.

The use of error reduction codes, such as Reed-Soloman (RS) to further increase
receiver sensitivity, was proposed by Atkin and Fares [96] in 1989. They analyzed the
performance of a RS coded multiple PPM system using an avalanche photodiode (APD)

45
PhD Thesis

Chapter 1

and predicted 0.1 nats/photon, compared to the 0.03 nats/photon for an equivalent (RS)
PPM system, both operating at an error rate of 1 in 10”°. Since then several papers [97]-

[103] have been published using coding techniques in MPPM.

Herro et al [97] and Takahashi et al [98], in 1989, analysed the use of error
correcting codes with MPPM modulation. The main conclusion drawn from these papers
was that a Reed-Soloman (RS) coded MPPM system achieves an energy efficiency of

more than twice that of an RS coded digital PPM system.

Park and Barry [101] presented new trellis codes based on multiple-pulse-position
modulation (MPPM) for wireless infrared communication. They assumed that the
receiver uses maximum-likelihood sequence detection to mitigate the effects of channel
dispersion, which were modeled using a first-order lowpass filter. Compared to trellis
codes based on PPM, they concluded that the new codes were less sensitive to multipath

dispersion and offered better power efficiency when the desired bit rate was large,
.) , 17

compared with the channel bandwidth. Thus, for the trellis-coded [2j MPPM (where

the bit rate equals the bandwidth), required 1.4 dB less optical power than trellis-coded
: : 12

16-PPM having the same constraint length. They also concluded and showed that a 5

combination is particularly efficient.

Garrido-Balsells, Garcia-Zambrana and Puerta-Notario [102] presented a novel

rate-adaptive transmission scheme using block coding of variable Hamming weight. This

46
PhD Thesis

Chapter 1

coding scheme is based on the MPPM modulation technique, where codewords with
different Hamming weight are allowed (vw-MPPM), including the all-zero one and
providing better performance in terms of bit error rate (BER) if compared with other
transmission methods, specially with Infrared Data Association (IrDA) standards. They
also studied [103] the spectral characterisation of the vw-MPPM. The spectral evaluation
was realised using codeword correlation matrices, obtaining an expression including the
continuous and discrete parts of the spectrum. Additionally the existence of an oscillating
behavior was showed, having a lower relevance as the output codeword length n was

increased, and providing a smoother power spectral density.

vi) Dicode PPM (DiPPM)

In dicode signaling, proposed by Sibley [104]-[105], data transitions from logic
zero to logic one are coded as +V and transitions from logic one to logic zero are coded
as —V. As shown in figure 1.5, a zero signal is transmitted if there is no change in the
PCM signal. The positive pulse can be regarded as setting the data to logic one (pulse
SET), whereas the negative pulse resets the data to logic zero (pulse RESET). In dicode
PPM, these SET and RESET signals are converted into two pulse positions in a data
frame. Thus a PCM transition from zero to one produces a pulse in slot R. If the PCM
data is constant, no signal is transmitted (although two guards slots have been used in this
system, to reduce the effects of Inter-Symbol Interference — ISI - this depends on the
channel characteristics. If there is minimal ISI, zero guard slots could be used). In this

particular system, four slots are used to transmit one bit of PCM, and so the line rate is

47
PhD Thesis

Chapter 1

four times that of the original PCM: a considerable reduction in speed compared to digital
PPM. As the bandwidth requirement is much smaller then digital PPM, dicode PPM

could be used in dense wavelength division multiplexing (DWDM) systems.

+V _ —
0 . —
' i
"~ | | ! ! ! :,
+V | ;
. i SET SET
‘Hh‘s&f f RESET RESET| f
v | ; ! !
| l
i ; i !
+V | | i
o H H+t+- e
SRGG SAGG :

Figure 1.5: Conversion of PCM data (top trace) into dicode (middle trace) and dicode
PPM (bottom trace) [104].

1.1.8 Maximum Likelihood Detection, Error Probability and Avalanche

Photodiodes

Many authors, [6], [7], [64], [85] and [101], considered a Maximum Likelihood
Detector as a decoder. Mohanty, [106] in 1974 derived the maximum likelihood detector
for pulse-position-modulated (PPM) signals in Laguerre communications. A decision-
directed maximum likelihood estimator for the delay of PPM signals was discussed. An

adaptive estimator based on decision criteria was also derived on the assumption of very

48
PhD Thesis

Chapter 1

high SNR. A minimum mean-square estimator was also derived. A Maximum Likelihood

Sequence Detector (MLSD) was also used in this work.

The performance analysis of a digital optical encoding scheme is done by
calculating or estimating the error probabilities in the digital optical receiver. Mansuripur
and Goodman, [107] applied the Gram-Charlier series method to the calculation of error
probabilities in digital optical receivers. This method allowed the calculation of “exact”
error probabilities including the effects of avalanche noise, thermal noise, and arbitrary

post-detection processing filter.

Gagliardi and Prati, also investigated [108] the output voltage of an optical
receiver which is statistically a mixture random variable, composed of the sum of a
discrete count variable and a continuous Gaussian thermal noise variable. Based on some
computers analyses, it was shown that threshold crossing probabilities using the mixture
density can be reliably approximated by integrations of an equivalent continuous
Gaussian density. The conclusions applied in optical communication receivers with APD
where such mixture densities arose. The validity of being able to use tabulated Gaussian
density integrals (erf functions) greatly aided communication analysis in on-off keyed
and pulse position modulated encoding where error probabilities appeared as such

integrals.

Hayat et al [109] computed bit-error rates for an on-off keying optical

communication system using avalanche photodiodes (APD). Using an exact analysis they

49
PhD Thesis

Chapter 1

showed that the presence of dead space (minimum distance that a newly generated carrier
must travel in order to acquire sufficient energy to become capable of causing an impact
ionization in the multiplication region of the APD) enhances the performance at relatively
low data rates. Using a Gaussian approximation technique with the exact mean and
variance, they demonstrated that dead space degrades the performance at high rates, since
it is responsible for longer tails in the impulse response function of the APD, which, in

turn, increased the effect of intersymbol interference.

1.2 Introduction to the Problem

This thesis is looking at MPPM for two reasons. The first one is because the
MPPM format remains the most efficient of all the modulation formats proposed [94].
MPPM combines the advantages of the PPM format as far as the receiver sensitivity is

concerned, but without the big bandwidth expansion as shown in figure 1.6.

50
PhD Thesis

Chapter 1

12_1 PPM

v

12_2 MFFM

L I A B
T O O O O I A
T I O O O I A
T I O O O I A
LI rrd LT
T T O O O I A
L I O B
T I O O O I A
0 Y I O | L1 |1

LT |
L] |
N |
L] |
RN |
N |
ol] |
L] |
I) |

| |
| |
| |
| |
| |
| |
| |
| |
l |

.
L

Figure 1.6: Two (2) frames of a 12-1 PPM ([1] and [2] frame) and 12-2 MPPM ([1,2]
and [1,3] frame) systems. The MPPM system can encode 6 PCM bits (66 possible pulse
combinations) instead of 3 (12 pulse combinations) being encoded by the PPM format
(50% better encoding capability). Thus, to encode 6 PCM bits using a PPM format a 64-

1 PPM system should be used (5.33 times more bandwidth expansion/frame).

The second reason is that although various authors [77]-[103] worked with the
MPPM format, many issues have not yet been fully explored. One of these issues is the
complexity for a performance analysis of MPPM systems (they suffer from the same
error sources as PPM). This, alongside the geometrical increase in the MPPM data range

(referred to here as codewords), makes the investigation of this format difficult,

16
especially for large MPPM systems. For example, a [1 j MPPM system can encode 4

16
PCM bits, whilst the (6] MPPM system can encode up to 12 PCM bits (4096 different

MPPM codewords need to be considered, and a much larger number of error sequences,

for a full analysis). This problem can be overcome with the design and development of an

51
PhD Thesis

Chapter 1

automated (software) solution where sensitivity can be predicted (simulated) in a time

efficient way, even for high order MPPM systems.

Another issue is the performance analysis considered so far. Some authors, [84]-
[93] and [96]-[103], considered only the receiver sensitivity (without considering the
bandwidth expansion) as the efficiency factor, whereas others considered only some
types of errors [85]. This work presents, for the first time, a full and detailed analysis. All
types of errors are considered, ISI and IFI (inter-frame interference) are also considered
and the manner in which the erasure, wrong-slot and false-alarm errors affect system
performance. Also, in this performance analysis, the methodology proposed considers
both sensitivity and bandwidth expansion. This helps to choose the most efficient system

(from the same or different system families) according to link specifications.

Several authors also considered the use of redundancy to enhance receiver
sensitivity [96]-[103]. Nevertheless, redundancy comes with a cost in bandwidth
expansion (especially when redundancy is used for Error Correction). Redundancy can be
ignored if there is a mapping (referred here as optimum) where it is more immune (or less
sensitive) to errors and thus decreases the final error probability. A main concern of this
research was the development of a methodology to obtain an optimum mapping that
decreases the error probability and hence increases receiver sensitivity. The results of this
research aid in the prediction of an optimum mapping (automatically and time efficiently)
for any MMPM system and consequently the use of redundancy may not be necessary

limiting the bandwidth expansion. The finding of this optimum mapping is very

52
PhD Thesis

Chapter 1

complicated, considering the vast amount of possible mappings a MPPM system can

12
have. For example, a (2] MPPM system can encode 6 PCM bits (2°=64 MPPM

codewords) meaning a total of 64 factorial, 64!, different mappings.

1.3

Research Objectives

Below is a list of objectives set prior and during the research period.

1)

2)

3)

4)

5)

Investigate an Optical MPPM link over a dispersive optical channel. The
effects of receiver noise and channel dispersion should be accounted for and
the manner in which the erasure, wrong-slot and false-alarm errors affect
system performance should be studied. The receiver/decoder should use slope
detection (i.e. a classical matched filter) and a Maximum Likelihood Sequence
Detector (MLSD).

Propose a performance analysis generated from this investigation.

Develop a novel automated solution to predict (the equivalent PCM error rates
of specific MPPM sequences and therefore) the performance of any MPPM
system. This objective was set because the investigation of MPPM systems is
extremely time-consuming.

Simulate an MPPM decoder through the use of mathematical models.
Investigate the effects of various mappings, without the use of redundancy,

like linear, random and Gray Codes.

53
PhD Thesis

6)

7)

8)

Chapter 1

Propose a methodology to be able to measure the (Bit) Error Probability of
any MPPM system.

Investigate other correlation techniques (i.e. raised cosine filtering) in the
decoder.

Propose an optimum mapping that will minimize the total error probability.

The work has led to the following publications (presented in appendix F):

1)

2)

3)

4)

“Investigation of an Optical Multiple PPM Link over a Highly Dispersive
Optical Channel”, K.Nikolaidis, M.J.N.Sibley, IET Optoelectronics, June
2007, Volume 1, Issue 3, p. 113-119.

“Theoretical Investigation into the Effects of Data Mapping in an Optical
multiple PPM Link”, K.Nikolaidis, M.J.N.Sibley, Electronics Letters,
September 2007, Volume 43, Issue 19, p. 1042-1044.

“Optimum Mapping in an Optical Multiple PPM link using a Maximum
Likelihood Sequence Detection Scheme”, K.Nikolaidis, M.J.N.Sibley, IET
Optoelectronics, February 2009, Volume 3, Issue 1, p. 47-53.

“Investigation of Higher Order Optical Multiple PPM Links over a Highly
Dispersive Optical Channels”, K.Nikolaidis, M.J.N.Sibley, accepted IET

Optoelectronics paper.

54
PhD Thesis

Chapter 2

Chapter 2

Theory

As previously described Pulse Position Modulation is a form of signal modulation
in which M message bits are encoded by transmitting a single pulse in one of 2" possible
time-shifts. This is repeated every T seconds, such that the transmitted bit rate is M/T bits

per second.

As shown in figure 2.1 for MPPM, if k pulses are transmitted in a timeframe of n

n !
slots, the number of combinations are (kj :ﬁ compared to PPM (where there
I(n—k)!

n
are no combinations of position). Ideally, [kj should be a power of two to ease

12
implementation but for £ > 1 this is rarely the case. For example, a [2 j multiple PPM

system uses a 12-slot frame with 2 data pulses to code 6 bits of PCM data. This gives 64
valid multiple PPM frames instead of the available 66. If linear mapping is used, the
PCM word 000000 is translated to a codeword with pulses in slots 1 and 2 (referred as

[1,2] MPPM codeword) and the PCM word 111111 is translated to the [10,11] codeword.

55
PhD Thesis

Chapter 2

12
If higher order codes are used, such as (6 j, further reductions in bandwidth can be

12
achieved because it becomes possible to encode up to 9 bits ([6 j =924 ~2° =512).

Yalt] [f A
Woltpk) f | J \

VTN § 1, 1 L ".:

- i %I"“--__._..F-'/ i
-1 1at =slat i} 2ndd =lot 1 3rd =lot 2 4th slot 3

t

Figure 2.1: An Optical MPPM frame with pulses in slots I and 3 [1,3].

The general features of an optical fibre system employing MPPM are shown in
figure 2.2. A PCM source of information provides the input to the system. The PCM
input of M bits in a frame of duration 7. A PCM to MPPM coder converts these M
information bits into & pulses in a timeframe of # slots. A guard interval can be left at the

end of each frame to allow for fibre dispersion and hence avoid inter frame interference.

56
PhD Thesis

Chapter 2

.| PCMto MPPM .| Laser Pulsing

FCM Data Coder Circuit

A

RECEIVER

v

MPPM to PCM
Pre-detection Filter p{ Threshold Detection |—w Decader &
Synchronisation

Pre Amplifier Post Amplifier

PCM OQUT

Figure 2.2: The optical fibre digital MPPM system features.

Error Probability (or Probability of Error) is a term used in mathematics and
statistics. In electronics the error probability is the ratio of the number of bits, elements,
characters, or blocks incorrectly received to the total number of bits, elements, characters,
or blocks sent during a specified time interval. The most commonly encountered error
ratio is the bit error rate (BER) which is the number of erroneous bits received divided by

the total number of bits transmitted.

Maximum likelihood estimation (MLE) is a popular statistical method used for
fitting a mathematical model to data. Maximum Likelihood Detection (MLD) is a (hard)
detection scheme used to minimise ISI. In this research a Maximum Likelihood Sequence
Detection (with threshold crossing) scheme is used (as demonstrated below). In this hard

decision decoding scheme, the decoder detects all the threshold crossings as the MPPM

57
PhD Thesis

Chapter 2

word to be decoded. If the number of the detected pulses is less than the number of pulses
of the MPPM system (erased pulse) then the word is decoded according to the MLSD
output. The average binary error probability due to an erasure can be determined by
mapping the impact of all possible erasures and averaging over all of the MPPM frames.

The rest error types are treated accordingly.

2.1 Pulse Detection Errors

As with digital PPM, multiple PPM systems suffer from three types of error,
erasure, false alarm and wrong-slot. The following three sections present expressions for

their respective error probabilities [13]-[14].

2.1.1 Erasure

Erasure errors (ER), presented in figure 2.3, are generated by noise present at the
decision (sampling) time causing the amplitude of the pulse to fall below the threshold

voltage. The probability of this occurring, Pe, is given by (1):

_ Q.
P. O.Serfc(ﬁj (1)

where Qe is given by (2):

VokVd

Q.= m 2)

where the symbols have the following meanings:

Vo= the voltage level of the slot

58
PhD Thesis

Chapter 2

Voke = Voltor) the peak receiver output,
Va=Vy(ty) the receiver output at the threshold crossing time tg,
<ny’> the mean square receiver output noise.
T T T T
“actualit))
“nominal i) |- : 4
“olecision :: .';
:: i)
T I T
|:_'I Il'.I .|
.:!'l 4

Figure 2.3: An Erasure error.

When an Erasure error occurs, one pulse is removed from the multiple PPM

12
frame. Thus, if the frame has only 2 pulses, as with (5] multiple PPM, only one pulse is

present (only one threshold crossing). In this case the number of resultant PCM errors is
found (as described by Sibley [94] and shown in table 2.1) by summing the logic 1s for
each individual bit and averaging over the number of code-words. A PCM bit is assigned
to logic one if its weighting is greater than 0.5, a logic 0 if it is less than 0.5, or undefined

‘U’ for worst case scenarios (WCS) when equal to 0.5. The bit-by-bit comparison

59
PhD Thesis

Chapter 2

between the original code-word and the averaged MLSD codeword gives the average
error per PCM bit for a specific multiple PPM sequence. For example, consider the
codeword [1,3] which decodes to the 000001 equivalent PCM word (if a linear mapping
is used). If an ER error occurs on the second pulse of the code-word caused by noise
present at the decision (sampling) time the MLSD will detect the [1,?] codeword.
Averaging all the codewords with a pulse in slot 1 (as shown in table 2.1) the MLSD will
decode the [1,?] codeword to 000000. This generates 1 error between the original
codeword [1,3] and the averaged [1,?] codeword. Considering that 6 PCM bits can be

encoded the average error/PCM Bit for this MPPM sequence is 0.17.

PCM bits [1,?] Bit5S Bit4 Bit3 Bit2 Bitl Bit0 Errors/PCM

Bit

[1,2] 0 0 0 0 0 0

[1,3] 0 0 0 0 0 1

[1,4] 0 0 0 0 1 0

[1,5] 0 0 0 0 1 1

[1,6] 0 0 0 1 0 0

[1,7] 0 0 0 1 0 1

[1,8] 0 0 0 1 1 0

[1,9] 0 0 0 1 1 1

[1,10] O 0 1 0 0 0

[L,11] O 0 1 0 0 1

[1,12] O 0 1 0 1 0

AVERAGE 0/11 o/11 3/11 4/11 5/11 5/11
0 0 027 036 045 045
Average PCM [1,7] 0 0 0 0 0 0
(MLSD O/P)
Original Word [1,3] 0 0 0 0 0

Error Bits XOR 0 0 0 0 0 1 1/6
0.17

Table 2.1: Decoding for Erasure error using MLSD.

60
PhD Thesis

Chapter 2

2.1.2 False Alarm

For the False-Alarm Error (FA), in figure 2.4, noise in an empty slot could cause a
threshold violation and so a pulse could be detected in an empty slot. The probability of

this occurring is given by (3):

Pr= £O.Serf(%) 3)
Tx V2
where,
ViVo (td)
= 4
Qf <n0 2> ()
and
V,= the voltage level of the slot,
T,)
— = the number of uncorrelated samples/time slot,
z-R
R= the time at which the autocorrelation function of the filter has become
small,
Vo(ts) = the signal voltage in the slot considered, which can be non-zero due to the
effects of ISI,

61
PhD Thesis

Chapter 2

“actualt)

*omiral) [

*decision

b
f
/

\
N
1

1

Figure 2.4: A False Alarm error.

In the case of a FA error, an extra pulse is detected in a frame. The treatment is

identical to that used by Sibley [94] (presented in table 2.2). For example, consider again

the codeword [1,3]. If a FA error occurs (three threshold crossings are detected) in an

empty slot between the pulses the MLSD will detect [1,2,3]. Averaging all the codewords

with two pulses in any of the slots 1, 2 and 3 (as shown in table 2.2) the MLSD will

decode the [1,2,3] codeword to 000001. This generates 0 errors between the original

codeword [1,3] and the averaged [1,2,3] (and O errors/PCM Bit for this MPPM

sequence).

62

PhD Thesis

Chapter 2

PCM bits [1,2,3] Bit5 Bit4 Bit3 Bit2 Bitl Bit0 Errors/PCM
Bit
[1,2] 0 0 0 0 0
[1,3] 0 0 0 0 0 1
[2,3] 0 0 1 0 1 1
AVERAGE 0/3 0/3 1/3 0/3 1/3 2/3
0 0 0.33 0 0.33 0.67
Average PCM [1,23] O 0 0 0 0 1
(MLSD O/P)
Original Word [1,3] 0 0 0 0 0 1
Error Bits XOR 0 0 0 0 0 0/6

Table 2.2: Decoding for False Alarm error using MLSD.

2.1.3 Wrong-Slot

Noise on the leading or falling edge of a pulse can cause it to appear either before

or after the current slot (figure 2.5). To minimize this error, detection should occur at the

centre of the current slot. Hence the probability of a Wrong-Slot error (WS), Ps, is given

by (5):
0,
P, =0.5erfc(=
(7)
with Os defined by (6):
T. slope(t
Q.= % p (Zd)
2 Jin,?
where,

63

)

(6)

PhD Thesis

Chapter 2

Is= the slot width,
slope(ty) = the slope of the received pulse at the threshold crossing instant ¢,
“actual (i) : ._
Vl?;nal(t) B 3/’\\ / /’\ |
“Wdecizion / v \".
/ \s
=
)Xf G
1 0 1 @ 3 4

Figure 2.5: A Wrong Slot error cause by left dispersion of the pulse.

When a WS error occurs, a pulse can be detected immediately before or after the
correct slot depending on the size of the dispersion and receiver noise as described by
Garrett [13]-[14]. For example, consider the codeword [3,5] which decodes to the 010110
equivalent PCM word (if a linear mapping is used). If a WS error occurs on the first pulse
of the code-word causing it to appear too early, the detected code-word will be [2,3,5]. If
the noise and dispersion causes the pulse to appear one slot later, the code word [4,5]
results. Similarly, if the WS error occurs on the 2™ pulse, the possible detected code-

words might be [3,4,5] or [3,6]. Thus four possible PCM words result as shown in table

64
PhD Thesis

Chapter 2

2.3. The output of the MLSD is treated as described by Sibley [94]. The bit-by-bit
comparison between the original code-word and the averaged MLSD codeword gives the
average error per PCM bit for a specific multiple PPM sequence and the total wrong slot
error is found by averaging all possible WS code-words. A problem occurs in
characterising an error as a WS error when IFI occurs on the first or last pulse in a
multiple PPM frame. If a WS error occurs on a pulse in the first slot of the frame, a false
pulse could occur in the last slot of the preceding frame. This would appear to give a
False-Alarm error in the frame before the one under consideration. If a WS error occurs
on a pulse in the last slot of the frame, the pulse could effectively move into the first slot
of the following frame. Thus, the original pulse is lost and the treatment is similar to an

Erasure error.

65
PhD Thesis

Chapter 2

PCM bits BitS Bit4 Bit3 Bit2 Bitl Bit0 Errors/PCM
Bit
First Pulse Left [2,3] 0 0 1 1 1
Error (2,3,5) [2,5] 0 0 1 1 1
[3,5] 0 1 1 1 0
AVERAGE 0/3 /3 23 273 2/3 2/3
0 0.33 0.66 0.66 0.66 0.66
Average PCM [2,3,5] O 0 1 1 1
Original Word [3,5] 0 1 1 0
Error Bits XOR 0 1 1 1 3/6
First Pulse Right | [4,5] 0 1 1 1 1 0
Error (4,5)
Original Word [3,5] 0 1 0 1 1 0
Error Bits XOR 0 0 1 0 0 0 1/6
Second Pulse Left | [3.4] 0 1 0 1 1
Error (3,4,5) [3,5] 0 1 1 1 0
[4,5] 0 1 1 1 1 0
AVERAGE 0/3 3/3 1/3 3/3 2/3 1/3
0 1 0.33 1 0.66 0.33
Average PCM [3.45] O 1 0 1 1 0
Original Word [3,5] 0 1 0 1 1 0
Error Bits XOR 0 0 0 0 0/6
Second Pulse [3,6] 0 1 0 1 1 1
Right Error (3,6)
Original Word [3,5] 0 1 0 1 1 0
Error Bits XOR 0 0 0 0 0 1 1/6

Av. Error/PCM
Bit for [3,5]

Table 2.3: Decoding for Wrong-Slot error using MLSD.

66

5/24=0.20833

PhD Thesis

Chapter 2

2.2 ISI and IFI effects

In order to calculate the error probability and the effects of ISI and IFI, Sibley
[94] considered specific pulse sequences such as 0 and / (called standard error) and 10,
110, 11, 11, 101, 101 and 1071 caused by ISI or IFI of adjacent slots with the symbol in
error being represented in ifalics. The error probability was determined by applying the

MLSD decoding and then weighting by the probability that the particular sequence

: 12
occurs. This process can be very tedious and time consuming. For example, in a (2]

multiple PPM system, 12 erasure, 220 false alarm and 232 wrong slot errors need to be

22
considered. This becomes even worse if the system is large such as [5 j)

Therefore, an automated analysis is needed (referred to as complete analysis
because it considers every possible error sequence). However, if this methodology is
expanded to larger systems, a very large number of sequences need to be considered so
making this analysis again very prolonged. The solution was the development of a new

analysis (referred as simplified analysis) that only considers the most important and

X
common sequences in any (Y} multiple PPM system. This simplification can be

achieved because some particular sequences rarely occur and so have a negligible effect
on the equivalent PCM error rate. Some sequences can be further grouped and so only

few sequences (discussed in the next chapter) need to be considered to predict the

67
PhD Thesis

Chapter 2

X
performance of any (Y j multiple PPM system, even when the effects of ISI and IFI are

accounted for.

68
PhD Thesis

Chapter 3

Chapter 3

Design, Implementation and Testing

One of the deliverables of this research was an automated solution that can
calculate the PCM error probabilities of specific error sequences taking into account
inter-symbol (ISI) and inter-frame interference (IFT) using a MLSD scheme. A hardware
solution was investigated first using a Higher (Abstract) Description Language (like
VHDL) because of the high speed performance of hardware. Unfortunately, a total
generic hardware design [114]-[115] cannot be developed using a hardware approach
(inputs and outputs need to be clearly stated beforehand). Attempts to implement smaller
generic hardware designs for a range of values (i.e. for 100<X<2, where X is the number
of slots) failed in the synthesis process (topology problems cause of space shortage in the
FPGA solution, and vast synthesis and implementation time). Hence, the development of

a generic and more versatile implementation was only through software.

3.1 Software Design

In order to design a complicated software solution, a design methodology [116]-
[124] should be chosen first. A modified waterfall design methodology, as shown in
figure 3.1 (appendix A), was adopted. The simplicity of this methodology and the fact
that the software is mainly algorithmic (no use of classes and objects), with low

probability of concept or vast design changes, makes this choice the most appropriate.

69
PhD Thesis

Chapter 3

The main difference with the traditional waterfall design methodology is that testing is
implemented for every part (algorithm) of the software, instead of just at the end of the

implementation phase, to minimize the possibility of failure.

The requirement analysis is implemented through possible scenarios and different
software diagrams. Therefore, a possible scenario (showing the specifications of the
solution) for the software is: “The user will be able to find the equivalent PCM error rates
of specific or generic sequences of any MPPM system that affect the final error
probability in a MLS Detection scheme. The user will enter the characteristics of the
MPPM system: 1) the number of slots (X), 2) the number of pulse(s) (¥), 3) the error type
(Erasure, False Alarm, Wrong Slot), 4) the choice of mapping between Linear
Increment\Decrement, Gray Codes, Random mapping and other predefined mappings (in
some cases the range or starting data are needed), 5) the choice of the MLS Detection
algorithm (to consider specific or generic error sequences). The generated results (error
rates or MPPM/PCM codewords/mappings referred as statistics) will be displayed or
saved. The user can exit the program at any time by entering the “escape sequence” (-1)
at any time. The program will check the validity of the user inputs and will display error
messages and instructions. For some data (like Pascal’s Number, encoded PCM bits) the
program will automatically generate results but the user will have to enter them manually

for lower risk of failure.”

A top-down analysis was followed for the design phase and a bottom up for the

implementation phase. A Use Case (level-0 and 1 detail) and Sequence diagrams were

70
PhD Thesis

Chapter 3

developed using MagicDraw©. The diagrams presented in figures 3.2, 3.3 and 3.4
(presented in appendix A), are implemented using the Unified Modeling Language
(UMLO©) [125]-[126] to identify the complete (and any hidden) functionality of the

program. From the diagrams the user should be able to:

1) Choose Error Type:
1) Erasure.
i1) False Alarm.
ii1) Wrong Slot.
2) Choose Performance Algorithm:
1) Complete (complete analysis).
i1) 2-Pulse (simplified analysis).
3) Choose Mapping:
1) Linear Increment\Decrement.
i) Gray Codes.
1) Random.
v) Read (a predefined user) Mapping.
4) Other:
1) Enter MPPM System\Mapping\Performance Algorithm Details.
i1) Enter Number of Slots\Pulse(s)\encoded PCM Bits.
1i1) Enter Number of Erasure\False Alarm\Wrong Slot Sequences.

1v) Enter Range of Data or Start Number.

71
PhD Thesis

Chapter 3

The program should be able to:

1) Create Success/Failure Messages.
2) Display or Save various Statistics (PCM equivalent error rates).
3) Produce Instructions.

4) Check Input Data.

Where, level-0 detail is represented by decimal and level-1 by Latin numbering.

From the sequence diagram the user:

1) First enters the MPPM System Details:

1) X (Number of Slots), ¥ (Number of Pulses), Error Type, number of
encoded PCM bits, number of Erasure\False Alarm\Wrong Slot
Sequences

2) then chooses mapping and
3) enters range or starting data
4) and finally chooses action:

1) display\save Sequences\Rates (Statistics).

The main purpose of the software (s\w) is to simulate a MPPM optical link with

the use of a MLSD. The software solution (presented in appendix C) is implemented

72
PhD Thesis

Chapter 3

through algorithms as presented in figure 3.5 (appendix A). PCM data words generated
from different mapping algorithms are encoded into MPPM code-words. If an error
occurs in the MPPM code-words, the MLSD algorithm generates all possible error
codewords alongside the averaged (MLSD) data. The straight comparison between
(MLSD) averaged and original data generates the number of equivalent PCM errors for
specific error sequences. These numbers, expressed as probabilities (equivalent PCM
error rates), are used in mathematical models to find the (total) error probability of a

system.

The software was developed as a Windows32© application (to ease
implementation of interface) using Visual C++© version 6. The software program is

divided into 3 main parts:

1) Interface (a console and a visual interface were implemented).
2) Main Program (where the main algorithms and processing are implemented).

3) Functions (Printing Functions).

The program can theoretically calculate the equivalent PCM error rates of any

X
(Y] MPPM system. But, for large X, ¥ numbers (or large X-Y difference), the limitation

is the computer memory, the software data types (numbers up to 32 binary bits can only
be used) and the processing time (all these are affected by the PC characteristics).
Therefore, all algorithms are time and space (memory usage) analyzed [127]-[131] and

then, (if possible) optimised [127]. The program is very versatile i.e. it can be easily

73
PhD Thesis

Chapter 3

changed for calculating error rates for more than one error per frame (error/frame) or to
detect new error sequences. The possibility of more than one error/frame is very small,

and that is why it was neglected in this research.

The implementation and testing of the program was carried out on a Personal

Computer (PC) with the following characteristics:

1) AMDO 32-bit 2GHz CPU.
2) 1GB of RAM.

3) 1 TB of hard drive disc space.

If a PC with better characteristics (especially in CPU and RAM memory) is used a
better performance will be achieved. The Console32 Interface is presented in figure 3.6
(appendix A) and the Visual Interface (implemented as a Microsoft© Foundation Class
Library-MFC- application) is presented in figure 3.7 (appendix A). The two Interfaces are

totally (function) equivalent, despite some small differences in the design.

The software simulates a MLS Detection scheme. In this system, registers are
created according to the multiple PPM system using Dynamic Memory Allocation [127]

(generic registers and arrays without predefined size can be created) and every possible

X
code-word of the system is generated. The size of the [YJ MPPM system will be given

by Pascal’s Number. This number gives the maximum number of combinations between
two numbers. Thus,

74
PhD Thesis

Chapter 3

X X!
()ran)
(X - Y)!

where,
X X (X —1) % (X —=2)%(X =3)...%1
X - (T *@@ =1)* (¥ =2) % (Y =3). 5) * (X —Y)*(X =¥ 1) *(X =Y —2)...%1)

MPPM systems with encoding capabilities above 32-bits (2% = 4,294,967,296
data range) are ignored, as this is considered to be a hardware implementation limit. A
function was constructed to generate Pascal’s Number. If Pascal’s Number is above 12!
(factorial) because of the bit overflow there isn’t a software data type that can describe a
number greater than 32-bits. Recursion was always a problem in the software because it
can easily get out of hand in terms of memory-space. A more efficient way to achieve
recursion is through iteration, but that can also fail if X and Y can be any integer. The
(time and space) optimization of the algorithm was solved by canceling common

factorials. More details are:

i) IfY<X-Y.

X) (X=X -Y+D)*(X-Y+2)..%X _((X—Y+1)*(X—Y+2)...*X)
Y| (Y(X =Y)! - Y!

i1) Else Y>X-Y.

75
PhD Thesis

Chapter 3

X\ (Yo +D) (Y +2).xX) (Y +1)* (Y +2)..% X
Y| (Y(X —Y)! - (X -Y)!

The only possibilities now that the function will fail are:

i) IfY!>120or (X =Y +1)*(X —Y +2)..% X >121.

ii) If (X-Y)!>12! or (Y +1)# (Y +2)..% X >121.

In a software program the compiler reads a program line by line (multithreading
programming is still not popular because of the complexity involved). This is also the
case why hardware solutions are faster. If for every line of code the compiler needs T
seconds (where 7T is the CPU clock time) the previously described function (algorithm)

has the following characteristics:

Algorithm 1: Pascal’s Number Calculation

Time Estimation:

Best Case: (4+2*Y)D*T Worst Case: (4+2*(X-Y))*T

where T is the CPU period, X the number of slots and Y the number of pulses

Space Estimation: 240 bits used

More details for the time and space analysis of the software are presented in the

software printout (comments) in appendix C.

76
PhD Thesis

Chapter 3

n
Ideally, the size of the [kj MPPM system should be a power of two to ease

implementation but for £ > 1 this is rarely the case. Therefore, the predefined (power)

function can be used to generate the correct MPPM system size (where PCM_BITS is the

12
encoding capability of the system). For example, a (5 j multiple PPM system uses a 12-

slot frame with 2 data pulses to code 6 bits of PCM data. This gives 64 valid multiple
PPM frames (calculated with the predefined function) instead of the available 66

(calculated with the user defined function previously described).

X
Having the size of the [Yj MPPM system (27““-2T5 * x), registers are created

according to the multiple PPM system and every possible code-word of the system is

generated, where digital 1s and Os represent occupied and empty multiple PPM slots as

12
showed in figure 3.8 (appendix A). As an example, the [1,2] code-word in a [2J

multiple PPM system is represented as 110000000000. The rest of the code-words are
represented accordingly. The algorithm created to generate the MPPM mapping is

showed in figure 3.9 (Data Flow diagram - appendix A). The algorithm inputs are:

1) X, Y (number of slots and pulses).

i1) Size (of the MPPM array-Pascal’s Number or QPCMBITS) |

77
PhD Thesis

Chapter 3

X
For the [Yj MPPM system (with PCM_BITS encoding capability) the algorithm

will have the following steps:

1)
2)
3)

4)

5)

6)

7)

PCM BITS -
X * QPCMBIIS 14 oreated.

An array of size

The first Y slots are set to 1 (to represent the 1* row).

The last two pulses (named Y2 and Y7) are pointed.

If Y1 is not in the last slot (X):

1) All the slots until pulse Y2 are copied in the next row and Y/ is Serial
Right Shifted (SRS) by one slot.

i) Step 4-1) is repeated until Y/ is on slot X (last slot).

If Y1 cannot be shifted further, all the slots before Y2 are copied, Y2 is SR Shifted

and a pulse is added on the slot right of Y2.

Steps 3 to 5 are repeated (increasing the number of pulses added when step 5 is

repeated) and

exit when there is no possible shifting operation (all pulses are shifted at the end

of the row without any empty slots between the pulses).

The algorithm has the following characteristics:

78
PhD Thesis

Chapter 3

Algorithm 2: MPPM Mapping

Time Estimation: 2°M B'TS%(X+2)*T

where PCM BITS is the number of encoded PCM bits

Space Estimation: 256 bits used

A sample of testing is presented in table 3.1 for a variety of MPPM systems.

System MPPM Register (maximum response<lsec)
Codeword Software Representation
12-1 [1] 100000000000
[7] 000000100000
12-2 [1,4] 100100000000
[2,8] 010000010000
[10,11] 000000000110
12-5 [1,2,3,4,5] 111110000000
[2,3,5,6,7] 011011100000
[6,7,8,9,10] 000001111100
[7,8,9,10,11] 000000111110
4-2 [1,2] 1100
[1,4] 1001
[3,4] 0011
7-5 [1,2,3,4,5] 1111100
[2,3,4,5,7] 0111101
22-11 [1,2,3,4,5,6,7,8,9,10,11] 1111111111100000000000
[2,4,6,9,10,11,12,16,19,21,22] | 0101010011110001001011
[3,4,5,7,9,10,11,15,17,18,19] | 0011101011100010111000

Table 3.1: Testing results from the MPPM mapping algorithm.

From table 3.1 it is clear that the algorithm generates accurate and time efficient

results (below<lIsec). The next step was to create the data mapping algorithm (with range

79
PhD Thesis

Chapter 3

of numbers between 0 and 2"“™-P'") All mappings are without redundancy and the final

numbers are converted into binary form. More details are:

1) Linear Increment/Decrement is implemented by a simple Up/Down software
counter (user enters the starting value-default is zero).

i1) The random mapping is generated using the predefined random function that
generates totally random numbers (the Windows® clock is used as a “seed”
value to the function for totally random values). Every random number is
checked for repetition (if the number is repeated, it is then discarded and a
new number is generated).

ii1) The program can read a predefined user mapping (using a pointer) in the
(Windows®) notepad.

iv) Gray Codes are created using the algorithm where bit / of a Gray Code is 0 if
bits / and /41 of the corresponding binary codeword are the same, or bit / is 1
(when [is the Most Significant Bit (MSB), bit /+1 of the binary codeword is

considered to be 0).

The decimal to binary conversion algorithm is presented in figure 3.10 (appendix
A). The algorithm uses successive divisions and modulus divisions of powers of 2. The

algorithm has the following characteristics:

80
PhD Thesis

Chapter 3

Algorithm 3: Decimal to Binary Conversion

Time Estimation: 3*PCM BITS*2P M BITS«

Space Estimation: 48 bits used

A sample of test results obtained from the Data Mapping (register with size

QPCMBITS « pCM - BITS) algorithm is presented in table 3.2.

Codeword Data Register (maximum response<lsec)

Linear Linear Random User Gray

Increment | Decrement Defined | Codes

Mapping

[1,2] 000000 111111 000001 010100 | 000000
[1,3] 000001 111110 000010 100101 | 000001
[1,4] 000010 111101 010001 101101 | 000011
[1,5] 000011 111100 011000 110101 | 000010
[1,6] 000100 111011 100001 011101 | 000110
[1,7] 000101 111010 101000 011111 | 000111
[1,8] 000110 111001 100000 010011 | 000101
[1,9] 000111 111000 010000 010101 | 000100
[1,10] 001000 110111 001000 010100 | 001100
[1,11] 001001 110110 000100 100101 | 001101
[1,12] 001010 110101 000000 101101 | 001111
[2,12] 010100 101011 100100 100010 | 011110
[3,5] 010110 101001 101100 110011 | 011101
[3,8] 011001 100110 110100 101011 | 010101
[4,7] 100000 011111 111100 111011 110000
[8,11] 111010 000101 111101 100011 100111

Table 3.2: Testing results from the Data Mapping algorithm.

Therefore, a new register (referred as encoder) is created integrating the PCM

data and MPPM mapping (with size equal to the sum of the two integrated registers). As,

81

PhD Thesis

Chapter 3

12
an example consider the [1,2] codeword of a [2} MPPM system if a linear increment

(starting from =zero) mapping was used. The encoder mapping will be

110000000000/000000 where the first 12 digits represent the MPPM word [1,2], and the
last 6 digits represent the encoded PCM data. Thus, the encoder register was created to

simulate “a real” MPPM encoder where PCM data are encoded to the transmitted MPPM

data.

Table 3.3 demonstrates a sample of test results of the encoder register (with size

QPCMBITS 5 (x+ PCM_BITS)) using three different mappings.

Codeword Decoder Register (maximum response<lsec)
Linear Linear Gray Codes
Increment Decrement
[1,2] 110000000000]000000 | 110000000000]111111 | 110000000000/000000
[1,3] 101000000000000001 | 101000000000[111110 | 101000000000/000001
[1,4] 100100000000/000010 | 100100000000[111101 | 100100000000[000011
[1,5] 100010000000j000011 | 100010000000]111100 | 100010000000/000010
[1,6] 100001000000]000100 | 100001000000[111011 | 100001000000/000110
[1,7] 100000100000j000101 | 100000100000[111010 | 100000100000[000111
[1,8] 100000010000j000110 | 100000010000[111001 | 100000010000[000101
[1,9] 100000001000j000111 | 100000001000[111000 | 100000001000]000100
[1,10] 100000000100j001000 | 100000000100]110111 | 100000000100/001100
[1,11] 100000000010j001001 | 100000000010[110110 | 100000000010[001101
[1,12] 100000000001j001010 | 100000000001]110101 | 100000000001]001111
[2,3] 011000000000[001011 | 011000000000/110100 | 011000000000/001110
[2,4] 010100000000[001100 | 010100000000]/110011 | 010100000000/001010
[2,5] 010010000000[001101 | 010010000000/110010 | 010010000000]/001011
[2,7] 010000100000[001111 | 010000100000/110000 | 010000100000/001000
[3,5] 001010000000[010110 | 001010000000/101001 | 001010000000]011101

Table 3.3: Testing results from the encoder algorithm.

82

PhD Thesis

Chapter 3

The total error probability (Prorar) is given by the sum of the error probabilities

(8) of the three error types. Thus, the three error types should be analyzed first.
P TOTAL = P, erasure +P false_alarm +P wrong_slot (8)

3.1.1 Erasure Errors

The analysis of the ER error prerequisites the creation of the ER averaged

X
(MLSD) mapping. This register (with size of (Y 1] *(X+PCM_BITS)) contains all

possible erasure code-words with the corresponding average data. As an example,

12
consider again the (2) MPPM system using a Linear (starting from 0) mapping for

12
PCM data. This system has 12 (({]) possible erasure code-words (from [1,?] to [12,7]).

For the [1,?] codeword all code-words with a pulse in slot 1 are averaged. The MLSD for
the [1,?] codeword is 000000 (the treatment is similar to that presented in chapter 2.2.1).
Thus, in the ER (averaged) mapping the first row of the register is
100000000000[000000, where the first 12 bits represent the [1,?] erasure MPPM
codeword (with only one pulse in slot 1) and the rest of them the averaged PCM data. As
previously described a PCM bit is assigned to logic one if it’s weighting is greater than
0.5, a logic 0 if it is less than 0.5, or undefined ‘U’ for worst case scenarios (WCS) when

equal to 0.5. In this case the maximum number of errors is generated from the MLSD.

&3
PhD Thesis

Chapter 3

The algorithm that implements the ER MLSD register is presented in figure 3.11

(appendix A). The algorithm can be described through the following steps:
. X :
1) An array of size [Y J *(X+PCM_BITS) is created.

2) Every MPPM codeword (from the encoder register) is scanned from every ER
MPPM codeword (from the ER averaged register).

3) If the two codewords are similar to X-1 slots (1 error bit per frame) the PCM
equivalent data of the MPPM codeword are stored.

4) If X-Y+1 MPPM codewords are found (scanned) then every PCM bit of the
ER averaged register (MLSD) is averaged (weighted) according to PCM data
from the scanned MPPM codewords.

5) Steps 2 and 3 are repeated for every ER averaged codeword and

6) Exit if all the codewords are averaged.
The algorithm has the following characteristics:

Algorithm 4: ER MLSD

Time Estimation:

(PASC2*(2*X) + 2 + (2*PASC2) + (PCM BITS*PASC2))*T

where PASC?2 is the number of erasure combinations

Space Estimation: 208 bits used

A sample of tests is showed in table 3.4.

&4
PhD Thesis

Chapter 3

ER BIT POSITION Averaged
C/W PCM
Data
11 10 9 8 7 6 5 4 3 2 1 0
[1,?] 1 0 0 0 0 0 O O O O o0 o 000000
[2,7] o 1 0 O O O O O O o0 o0 o 000000
[3,?] o o 1 0 O O O O O o0 o0 o0 011001
[4,7] o o0 o 1 0 O O O O o0 o0 o0 100100
[5,7] o o o0 o 1 O O O O 0 o0 o0 101110
[6,7] o o o o0 o 1 o0 O O 0 o0 o0 100110
[7,7] o o o0 o0 o o 1 O O 0 o0 o0 110101
[8,7] o 0o o0 o0 o0 o o0 1 0O o0 o0 o0 111000
[9,?7] o o o0 o0 o o0 O O 1 0 o0 O 111100
[10,?] o o o o o o o0 o o 1 o0 o0 111022
[11,7] o o o0 o o o O o o o 1 o0 111221
[12,7] o o o o0 o0 o O o o o0 o0 1 111110
[1,2,7] 1 1 0 0 0 0 0 O O O 0 O 0000002
[3,5,7] o o 1 0 1 O O O O 0 o0 o0 1101200
[7,8,7] o o o0 o o o 1 1 O 0 o0 O 1111001
[1,2,3,7] 1 1 1. 0 0 0 O 0O O O 0 0 00000000
[79,10,11,217) 0 0 O O O O 1 O 1 1 1 O |101000001

Table 3.4: A sample of ER codewords alongside the averaged data from the MLSD in a

12 12 12 12
(2} [3), (4} and [SJ systems. Number (2) in italics symbolizes Worst Case

Scenario (WCS).

Therefore, the software so far has created 2 registers: 1) a MPPM (encoder)
register (that holds the MPPM code-words plus the equivalent PCM data) and 2) the
averaged ER MLSD register (that holds all the ER MPPM code-words plus the averaged
PCM data. The only thing missing is the number of generated (PCM) ER errors (between
averaged and original PCM data). Thus, a new register was needed called ER PCM error

(with size of ((X+27M-BI1S1yy * pPCMBIIS)) ‘The last ¥ digits represent the ER equivalent

85
PhD Thesis

Chapter 3

PCM errors (the algorithm that implements this register is presented in figure 3.12 -
: 12 : : :
appendix A). For example, for the 5 system (using a Linear Increment mapping) the

first row of the corresponding register is 110000000000000000 0 0. The first 12 digits
represent the MPPM codeword [1,2] (2 pulses and 10 empty slots), the following 6 digits
represent the encoded PCM data, and the last two digits represent the number of errors
between original data and averaged data from the MLSD. Hence, for the [1,2] codeword
the last two digits show that there are no errors generated if an erasure error is generated
in the first, [1,?], or the second, [?,2], pulse. The algorithm (which is implemented in
parallel with the previous algorithm for time optimization) can be illustrated through the

following steps:

1) Every MPPM codeword (from the encoder register) is scanned from every ER
MPPM codeword (from the ER averaged register).

2) If the two codewords are similar to X-1 slots (1 error bit per frame) the PCM
equivalent data of the MPPM codeword are compared (X-OR) with the
averaged data of the ER MPPM codeword.

3) The number of the generated (error) bits is stored in the correct position in an

QPCM_BITS.) % QPCM_BITS,

array of size (X+

4) Exit if all the codewords are compared.

The algorithm has the following characteristics:

86
PhD Thesis

Chapter 3

Best Case:

Algorithm 5: ER PCM

Time Estimation:

(6+(2*PASCAL2))*2 M BITSwp

Worst Case: (6+(2*PASCAL2)+(3*PASC2*PCM BITS)) *2"M P18+

Space Estimation: 368 bits used

A sample of test results of the ER PCM error register, are presented in table 3.5.

Codeword ER PCM error Register Error in the 6-Bit PCM
[x,yl (maximum response<lsec) word if Pulse 1 or 2 is
ERASED
1 2
[?,y] [x,?]

[1,2] 110000000000000000 0 0 0 0
[1,3] 101000000000000001 2 1 2 1
[1,4] 100100000000000010 3 1 3 1
[1,5] 100010000000000011 4 2 4 2
[1,6] 100001000000000100 2 1 2 1
[1,7] 100000100000000101 2 2 2 2
[1,8] 100000010000000110 5 2 5 2
[1,9] 100000001000000111 5 3 5 3
[1,10] 100000000100001000 4 1 4 1
[1,11] 100000000010001001 4 2 4 2
[1,12] 100000000001001010 3 2 3 2
[2,3] 011000000000001011 2 3 0 0
[2,4] 010100000000001100 2 2 2 1
[2,5] 010010000000001101 3 3 3 1
[2,7] 010000100000001111 4 4 4 2
[3,5] 001010000000010110 3 4 2 1
[10,11] 000000000110111111 2 3 2 2

Table 3.5: A sample of results of the ER PCM register for a 12-2 MPPM system.

87

PhD Thesis

Chapter 3

As a threshold crossing detector is assumed, erasure errors can only occur in the
slot containing the pulse. Static noise (and left-dispersion) can make a single pulse to be
erased (right dispersion is considered as a Wrong Slot error). This error, referred to as a

standard error, occurs when the adjacent slots of an optica | pulse are empty (00100). The

12
other error sequences are caused by ISI and IFI. Therefore, for a [5 j MPPM system the

possible erasure sequences are demonstrated in table 3.6.

System | ER Error Sequences

12 1
9 11
111

11
111
101
1107
101071
1071
1011
1101
10107

Table 3.6: Erasure Error Sequences considered by a MLSD in a 12-2 MPPM system with

the symbol in error being represented in italics.

It is also evident that if a larger MPPM system is examined, a larger number of
error sequences is needed. The algorithm (presented in figure 3.13 - appendix A) referred

to as original, or complete (because most of the error sequences are considered), locates a

88
PhD Thesis

Chapter 3

possible ER sequence and calculates the equivalent PCM error rate of the sequence, by

dividing the total number of PCM error bits and then weighting by the probability that the
. 12
particular sequence occurs. Therefore, for the 5 MPPM system, every ER error

sequence should be divided by 64 (valid MPPM codewords) and then by 6 (number of
encoded PCM bits) to obtain the equivalent error rate per PCM bit of the sequence. The

complete algorithm is illustrated in the following steps:

1) For every row of the ER PCM register, pulses are located (possible erasure
errors).

2) For every pulse, the distance of the pulse from the previous or the next frame
is checked (for IFT).

3) If the pulse is isolated, the error is a standard error, otherwise other pulses are
located (for ISI) and the correct sequence is detected.

4) The number of PCM errors for every sequence is stored.

5) When all ER PCM rows are scanned the total error sum of every sequence is
then weighted by the probability that the particular sequence occurs.

6) These probabilities are stored and the algorithm exits.

The algorithm has the following characteristics:

89
PhD Thesis

Chapter 3

Algorithm 6: ER Sequence Complete

Time Estimation:

Best Case: ~ 64*T Worst Case: ((64*DH((4*2*YH3I)D+2*Y*T)*N

where N is the number of erasure sequences

Space Estimation: (240+(32*Y+3))*N bits used

The complete algorithm is followed by a full mathematical analysis. This process

can be very tedious and time consuming (924 combinations need to be considered just for

2
ER errors in a [7j multiple PPM system). The solution is that a number of sequences

can be neglected, while others can be grouped with other sequences. For example, 101/
is considered as 17, 1/1 as 1/ or /1 (depending on ISI or IFI) and 10/1 is considered as
11 (1011 is considered as a Wrong Slot sequence only). These sequences are grouped
because they have a very low probability to produce an Erasure error (right dispersion of
a pulse) and grouped with more common sequences, or they have a small impact on the
final error probability. Furthermore, sequences with trailing pulses are even more
simplified. As a result, error sequences like 111117, 11117 and 111/ can be grouped and
considered as 11/. This is due to the fact that the impact of more than two pulses (in this
case in an erased pulse) is equivalent to the impact generated by two adjacent pulses.

Because of this characteristic, the simplified algorithm is called a 2-pulse algorithm.

Considering grouping and the low error probability of some sequences, only 7

sequences (for an ER error for MPPM systems that can encode 32 PCM bits) shown in

90
PhD Thesis

Chapter 3

X
table 3.7 need to be considered to predict the ER performance of any (Y] multiple PPM

system, even when the effects of ISI and IFI are accounted for.

Erasure Error 2-Pulse
Sequences 1
11
11
111
101
1101
10101

Table 3.7: Erasure Sequences considered from the simplified algorithm for an X-Y
MPPM system with symbol in error being represented in italics (1 alone is called a

standard error).

3.1.2 False Alarm Errors

False alarm errors can only occur in the time (empty) slots preceding the pulse.
The treatment for False Alarm Errors is identical to that used for an ER error (same
algorithms are used). The only differences are:
1) in the FA MLSD Register (table 3.8) where every possible FA code-word
is generated, an extra pulse is added and not deleted, and,
i) in the FA PCM error register, errors are generated for every empty slot

and not for every pulse of the frame (table 3.9).

91
PhD Thesis

Chapter 3

Original | FA Codewords | FA MLSD Register (maximum response<lsec)
Codeword
[1,2] [1,2,3] 111000000000]000001
[1,2,4] 110100000000[000000
[1,2,5] 110010000000]000001
[1,2,6] 110001000000]000100
[1,2,7] 110000100000]/000101
[1,2,8] 110000010000]000000
[1,2,9] 110000001000/000001
[1,2,10] 110000000100{000000
[1,2,11] 110000000010]000001
[1,2,12] 110000000001]/000000

Table 3.8: A sample of results of the FA MLSD register in a 12-2 MPPM system.

12
Therefore, as an example, consider the [1,2] codeword of a [2] MPPM system

where 10 possible FA codewords can be generated. For a FA error in slot 3, the [1,2,3]
codeword is received. The MLSD register for this codewordis 111000000000 0
0 0 0 0 1, where the first 12 bits represent the [1,2,3] MPPM (FA) codeword, and the 6
remaining bits the MLSD (averaged) data. In the FA PCM register, the same codeword
[1,2] is representedas 110 000000000 000000 101120101 0. The first
12 bits represent the MPPM codeword, [1,2], the following 6 bits represent the encoded
PCM data of the [1,2] MPPM codeword and the rest of the bits represent the PCM FA
errors generated between original and (averaged) MLSD data. Hence, for a FA error in
slot 3, the [1,2,3] codeword is received, generating 1 PCM error. The rest of the bits are

represented accordingly.

92
PhD Thesis

Chapter 3

Codeword FA PCM error Register FA PCM errors for a FA error in
[x,y] (maximum response<lsec) the Empty Slot
11234 5[6[7[8[9]10
[1,2] 110000000000000000/1011201010 | 1|0 (1|1 |2 |O|J1[O|1] O
[1,3] 101000000000000000[0011001111 |O[{O |1 |1] O (O[1 |1 |1] 1
[1,4] 100100000000000000{1201100010 | 1{2 0|11 0[O |O[1] O
[1,5] 100010000000000000[1012110212 [1|0 |1 |2 1 [1 (0|2 |1 | 2
[1,6] 100001000000000000[0111112122 [O[1 |1 |1 [1 |1 |2]1|2] 2
[1,7] 100000100000000000[0121010001 |0 1 |2 (1] 0 [1]0]J0]O0] 1
[1,8] 100000010000000000[2311010322 [2{3 |1 |1 [O |1]O[3|2] 2
[1,9] 10000000100000000012121011322 [2{ 1 [2 |1 |0 |1 [1]|3|2]| 2
[1,10] 100000000100000000{1121130111 | 1|1 |2 |11 (3|0 |1]1] 1
[1,11] 100000000010000000[1021122102 [1|0 |2 |1 [1 |2]|2]|1|0] 2
[1,12] 100000000001000000[2210130112 [2]2 |1 (0| 1 [3 |01 |1] 2

Table 3.9: A sample of results of the FA PCM register in a 12-2 MPPM system.

12
For the (2j MPPM system, every FA sequence should be divided by 10

(number of possible FA codewords for every MPPM codeword), then by 64 (valid
MPPM codewords) and finally by 6 (number of encoded PCM bits) to obtain the
equivalent error rate per PCM bit of the sequence. The sequences considered for FA

errors using the simplified algorithm are demonstrated in table 3.10.

93
PhD Thesis

Chapter 3

False Alarm 2-Pulse
Error 0
Sequences 10
110
101
1101

Table 3.10: False Alarm Sequences considered from the simplified algorithm for an X-Y
MPPM system with symbol in error being represented in italics (0 alone is called

standard error).

3.1.3 Wrong Slot Errors

When a WS error occurs, a pulse can be detected immediately before or after the
correct slot depending on the size of the dispersion and receiver noise as described by
Garrett [3, 4]. A problem occurs in characterising an error as a WS error when IFI occurs
on the first or last pulse in a multiple PPM frame. If a WS error occurs on a pulse in the
first slot of the frame, a false pulse could occur in the last slot of the preceding frame.
This would appear to give a False-Alarm error in the frame before the one under
consideration. If a WS error occurs on a pulse in the last slot of the frame, the pulse could
effectively move into the first slot of the following frame. Thus the original pulse is lost

and the treatment is similar to an Erasure error.

Therefore, a WS error can be treated as Erasure (ER MLSD register is needed),
False Alarm (FA MLSD register is also needed) or as a “normal” WS error (where the

treatment is the straight comparison between original and received data). The WS PCM

94
PhD Thesis

Chapter 3

1
register is presented in table 3.11. As an example consider the [1,2] codeword of a [2}

MPPM system where 4 different WS errors can occur. The [1,2] codeword is represented

in the WS MLSD registeras 1 10000000000 000000 000 1. The first 12

bits represent the [1,2] MPPM codeword, the following 6 bits represent the encoding

PCM data and the rest of the bits represent the PCM errors generated from the 4 possible

WS errors. Therefore, only the right dispersion of the second pulse generates 1 PCM

erTor.
Codeword WS MLSD Register WS PCM Errors for a WS
[x,y] (maximum response<lsec) error in the Pulse
1 2
Dispersion Dispersion
Left | Right | Left | Right
[1,2] 110000000000000000]0001 0 0 0 1
[1,3] 101000000000000000(0202 0 2 0 2
[1,4] 100100000000000000]0321 0 3 2 1
[1,5] 100010000000000000]0313 0 3 1 3
[1,6] 100001000000000000]0211 0 2 1 1
[1,7] 100000100000000000(0202 0 2 0 2
[1,8] 100000010000000000]0311 0 3 1 1
[1,9] 100000001000000000]0314 0 3 1 4
[1,10] 100000000100000000]0311 0 3 1 1
[1,11] 100000000010000000]0302 0 3 0 2
[1,12] 100000000001000000]0422 0 4 2 2

Table 3.11: A sample of results of the WS PCM register for a 12-2 MPPM system.

The sequences considered for WS errors using the simplified algorithm are

demonstrated in table 3.12.

95

PhD Thesis

Chapter 3

Wrong Slot 2-Pulse
Error 1
Sequences 11
11
111
101
1101
1071
10711
11071
110711
111
1711
11171
11711

Table 3.12: Wrong Slot Sequences considered from the simplified algorithm for an X-Y
MPPM system with symbol in error being represented in italics (1 alone is called a

standard error).

12
For the [ZJ MPPM system, every WS sequence should be divided by 64 (valid

MPPM codewords) and then by 6 (number of encoded PCM bits) to obtain the equivalent

error rate per PCM bit of the sequence.

3.2 Testing

The testing strategy as previously stated was to test the software during

implementation (every algorithm, functionality, of the software was tested separately)

96
PhD Thesis

Chapter 3

using test patterns (presented in table 3.13 - appendix B). The test patterns [127]

considered were in the following sections:

1) Interface / Control of Inputs
2) Data Inputs / Outputs

3) Result Handling

However, the software was tested thoroughly at the end of the implementation

phase and account taken of any different results (deviations) between the two algorithms

12
used for the MLSD scheme. Table 3.14 presents results for a [zj MPPM system using

both software algorithms alongside results taken without the use of software (complete
analysis presented in tables 3.15, 3.16 and 3.17 - appendix B). From the results obtained
it is clear that both algorithms give correct and similar results. In addition, the time taken
for a complete non-automated analysis is now dramatically reduced using the

computerized method.

Although the processing time between the two algorithms (complete and
o : 12 : :
simplified) is almost the same for the systems of the v family, the difference becomes
apparent when larger systems of the family are examined. For example, for the largest
system [6]’ 188 different sequences are considered in the complete algorithm, in

contrast to 26 needed from the simplified.

97
PhD Thesis

Chapter 3

ERASURE
Sequences SOFTWARE ALGORITHMS Non Automated Analysis
(maximum response<lsec) (max response<15min)
Complete Simplified (2-Pulse)
Pe 0.634 0.634 0.639
Pell 0.0593 0.0582 0.0593
Pel01 0.0716 0.0716 0.0709
Pell07 0.000366211 0.000366211 0.000366211
Pell 0.004923502604166 | 0.004923502604166 0.00501869
Pel0107 0.0004069 0.0004069 0.0004069
FALSE ALARM
Sequences SOFTWARE ALGORITHMS Non Automated Analysis
(maximum response<lsec) (max response<30min)
Complete Simplified (2-Pulse)
Pf 0.205 0.205 0.2049
Pf1110 0.0000366 0.0000366 0.00003672
Pf110 0.00293 0.00293 0.00293
Pf10 0.0311 0.0303 0.0311
Pfl101 0.00268 0.00268 0.00268
WRONG SLOT
Sequences SOFTWARE ALGORITHMS Non Automated Analysis
(maximum response<lsec) (max response<45min)
Complete Simplified (2-Pulse)
Ps 0.844 0.844 0.844
Psl1 0.0479 0.0479 0.0479
Psll1/ 0.00146 0.00146 0.00146
Psl1 0.0996 0.0996 0.0996
Ps101 0.0801 0.0801 0.0801
Ps1107 0.000732 0.000732 0.000732
Ps1071 0.00146 0.00146 0.00146

Table 3.14: Sequence Error Rates in a 12-2 MPPM system using both software and non

software analysis.

As there is little difference between the two analyses, the simplified version was

used in the simulations. In table 3.18, time and space analysis is presented for the whole

software solution (alongside some important characteristics) and the two main

98

PhD Thesis

Chapter 3

algorithms. As it can be seen, the simplified algorithm is much faster and at the same

time uses less memory. The data processing in the registers is done serially for memory

usage reasons. If speed is the key issue, then the register processing can be turned to

parallel easily. Therefore, adding a parallel process always results in halving the

processing time.

Software Characteristics Complete 2-Pulse
Algorithm Algorithm
Lines of 7325 2262 870
Code
No. of 20 20
functionality
points
No. of 10 10
algorithms
No. of 10 10
functions
Space Best Case Worst Case 92 Integers 92 Integers
Analysis 92 Integers 11 Registers 21 Floats 21 Floats
21 Floats 5 Files 4 Chars 4 Chars
4 Chars 11 Reg 11 Reg
5 Files 5 Files
99

PhD Thesis

Chapter 3

Time

Analysis

(4+2*N)* T+
((6*T)*X* PASC+Q2*T))+
((PASC*(X*T+T))+T)+
(X*T+T)*PASCY+Q2* T))+
(A*THR*(X-Y)* T))HA* T+2* Y* T))+
("M X 2)* Ty+
((3*PCM_BITS)*(2"MPy* 1)+
((PASC2*(2*X) + 2 + (2*PASC2) +
(PCM_BITS*PASC2))*T)+
((6+(2*PASCAL2))* (2" MBS y*)+

64*T

(240+(32*Y+3))*4N

(23*T)H(3*Y+2)*4T)

Table 3.18: Time and space analysis for the software solution and the two main
algorithms (where N is the number of error sequences, and T is the clock period of the

CPU).

100

PhD Thesis

Chapter 4

Chapter 4

Mathematical Analysis

4.1 Receiver Configurations

In order to evaluate the error probabilities, the output voltage, V,(?), and the mean
square receiver output noise <n,(#)°> are required, and these, in turn, depend upon the
received pulse shape, the type of preamplifier employed, the associated noise power

spectral density, and the type of equalisation filter employed.

Let the received pulse shape, /,(t), have the following property (rectangular pulse) [95]:

jz h(t)dt =1 (9)

The transmission medium in an optical link is the optical fibre. Plastic optical
fibre (POF) is an optical fibre which is made out of plastic (in contrast to glass the more
difficult to use fibre). POF is usually used in small scale networks because the high loss
property limits the transmission distance to short value. Two basic forms of plastic
optical fibre are currently available — step-index POF and graded-index POF (GI-POF).
Of these, GI-POF offers the highest bandwidth and is used in this scheme. The impulse

response of a GI-POF can be approximated to a Gaussian [13]-[14] and so

101
PhD Thesis

Chapter 4

e 2a
h ()= 10
with a Fourier transform of [95]
_(aa))2
H,(0)=e ? (11)

Note that the received pulse variance is linked to the fibre bandwidth by [132]

\2In27,

aszn (12)

where T} is the PCM bit-time, and f, is the fibre bandwidth normalised to the PCM data
rate. In this research a dominant pole transimpedance preamplifier is assumed (stable

operation), with transfer function, Zz(jw), given by [132]

Z, (jo)=—2 (13)
1+j{wJ
a)P

where R7 is the mid-band transimpedance and w, is the -3 dB bandwidth of the

preamplifier.

102
PhD Thesis

Chapter 4

In order to make comparisons it is assumed that both the PCM and MPPM
systems are operating at a data rate of 1 Gbit/s. For received pulse energy b the receiver

output voltage is [132]
bR (= . o e
vo(t)=Z'[_pr (jo)Z,(jo)G(jo)e”dw (14)
where G(jw) is the transfer function of the equalising filter.

4.2 Matched Filter

In the case of the classical matched filter, the equaliser response has the form

[132]

G(jo)=H (o) (15)

where Hp(co)* is the complex conjugate of the received pulse and represents the matched

filter. By substituting (15) to (14) the output voltage is then given by [132]

103
PhD Thesis

Chapter 4

e’ dw

Iw(lﬂ-w] (16)

@,

V{, (t) — banT
2

b C()P (awp)z —a)p[t
= UqRTTB e "erfc aa)p—z

and the noise at the filter output is given by [132]

<n0(t)2> = RS, a;" =) erfc(aa)p) (17)
4.3 Target System

12
As a (general) target system the [Y] MPPM family is selected. It is selected

because systems of the family are already used (and considered very efficient) from
several authors ([85], [94] and [100]). As a family it can encode from 3 to 9 PCM bits
and considers all the error sequences presented above (for other systems a larger or
smaller number of error sequences can be considered). The specifications of the target
system are: a 1.2 GHz bandwidth PINBJT receiver is assumed (Philips TZA 3043) with a
low frequency input equivalent noise current spectral density of 16x107* A*/Hz

(double-sided). An operating wavelength of 650 nm [94] and an ideal photodiode

quantum efficiency of 100% were taken (a typical efficiency is around 70%).

104
PhD Thesis

Chapter 4

In the mathematical analysis a classical matched filter was used in combination
with slope detection and maximum likelihood detection (MF-MLD). The final error
probability is equal to the sum of all error probabilities (erasure, false alarm and wrong
slot). The bit rate is set to 10° in bits per second (bps) and the PCM bit time to 107

seconds. The slot time is given by the multiplication of the PCM bit time and the number

12
of PCM bits (PCM_BITS) divided by the number of slots (X). Therefore for the £2j

MPPM system the slot time is equal to 5*10° (seconds). The number of like symbols in
PCM is set to 10. The quantum energy is given by 1.6 * 10" (atoms) and the wavelength

of operation A is equal to 1.55 *10°° (meters).
For a given set of parameters (figure 4.1), the pulse shapes, derivates (slopes) and

the noise were found and the number of photons per bit, b, calculated. A threshold

parameter, v, was defined as

v=— (18)

where the symbols have the following meanings:

Vok the peak receiver output,

V, the receiver output at the threshold crossing time tg.

105
PhD Thesis

Chapter 4

a
Voft) 410
Wpo .
Vi 9 i
oftd Zw10 J
0 _— == - = — - =
=05 = 0 3 =] ol 03 05 o7 (55" 11
i
2552
3650 []
ai 3548 L]
3546 |
asaal L L1 || P 1 1L 1Ll
o0 = 3 4 5 & 7 B % 1011 12 13 14 15 14 17 18 1%

Figure 4.1: A received pulse for a normalized bandwidth of 10, where V), is the peak
receiver output, Vi, V,(ty) is the receiver output, V,, at the threshold crossing time td.
The threshold parameter, v, is set to (.5, and a; is the minimum amount of photons (in this

case 3545) needed for a pulse detection for the specific MPPM system.

The threshold parameter, v, is nominally set to 0.5 (threshold voltage of half the
peak amplitude). The pulse should be located in the centre of the slot (to minimise WS

and ER errors) and so the boundaries of the slot will be (—% ,%). Note also that, for

consecutive pulses, #, is defined as

106
PhD Thesis

Chapter 4

lasn = (N-1)*T (19)

where N is the number of pulses (N>1). For low normalised bandwidth values (f,) the
threshold parameter (v) and the decision time (#;) are changed. It is clear that by changing
the threshold parameter some errors are minimized. Thus, Erasure errors can be
minimized by lowering the threshold point of detection. Alternatively, False Alarm errors

can be minimized by increasing the threshold point of detection.

All the experiments (implemented using MATHCAD®© Professional) considered
transmission through plastic optical fibre with a Gaussian impulse response [13]-[14].
The channel bandwidth was normalised to the PCM bit-rate and varied between 100 and
1.2. Operation below 1.2 was impossible (a; is huge) due to the high levels of ISI and IFI
causing sequences such as 110, 1101 and 1110 to be received as 10, 101 and 10

respectively as shown in figure 4.2.

107
PhD Thesis

Chapter 4

Vo101)

Figure 4.2: 1110, 110 and 1101 multiple PPM sequences with f,=1.

As can be seen, there is significant ISI between adjacent slots and so, in order to
detect the slopes correctly (no clear peaks of adjacent pulses), the average power must be
increased, especially at low bandwidth. The level of dispersion is dependent upon the
type of equalisation filter employed, and, although matched filtering is optimal at high

fibre bandwidths where ISI is not a problem, it gives poor performance at the low fibre
: N e : 12 :
bandwidths due to ISI. The simplified sensitivity analysis for a 5 multiple PPM

system is presented in appendix D.

108
PhD Thesis

Chapter 4

4.4 Sensitivity Results and Coding Quality

Table 4.1 details the variation in the number of photons per multiple PPM pulse,
for a PCM bit error rate of 1 in 10°, as the channel normalised bandwidth, f,, varies from
100 to 1.2. All the systems of the 12-Y MPPM family are presented at a particular
bandwidth, and each set compares results from the complete and simplified analyses. As
can be seen, there is little difference between the two analyses and so the simplified
version was used in the simulations. It is apparent from the table that the optimum coding
level ranges from 12-2 for high bandwidths, to 12-1 for low bandwidths. It is also
apparent that, as the number of pulses increases sensitivity is degraded (more errors are
generated). Another observation is that the difference between best and worst sensitivity

is not very large until very low normalized bandwidth (f,) values.

109
PhD Thesis

Chapter 4

Best sensitivity Optimum Worst sensitivity Worst

fn (photons per pulse) coding (photons per pulse) coding

Simplified Complete level Simplified Complete level

100 2763 2763 12-2 2845 2853 12-10
80 2782 2782 12-2 2868 2871 12-10
60 2821 2821 12-2 2933 2935 12-10
40 2903 2903 12-2 2989 2993 12-10
20 3103 3103 12-2 3204 3205 12-10
10 3501 3501 12-2 3621 3622 12-10
5 4257 4257 12-2 4411 4413 12-10

4 4642 4642 12-2 4810 4812 12-10

3 5312 5312 12-2 5500 5504 12-10

2 6994 6994 12-2 7232 7237 12-10

1.8 7744 7744 12-2 8006 8010 12-10
15 10030 10030 12-1 11910 11910 12-10
1.2 42380 42380 12-1 101000 101000 12-10

Table 4.1: Best and worst case sensitivity (using the simplified and complete models) and

corresponding coding level for varying normalised channel bandwidth.

Bit Error Rate (BER) is also a factor of efficiency in an MPPM system. Sugiyama

and Nosu [85] developed a methodology to predict the BER of an MPPM link when

erasure errors occurred. The author also suggests a methodology that can be expanded to

False Alarm and Wrong Slot errors to predict the total BER of an MPPM link when all

types of error are considered. The methodology is based on the number of known and

unknown (MPPM) bits when an error occurs. Hence, if the number of bits restored from

one signal is L, then L, (fixed number) of these bits are always known, and the remainder

L,, remain unknown because of an optical pulse error. Considering that a pulse and an

empty slot are equal probable, the error probability of an erasure error is given by (20)

110

PhD Thesis

Chapter 4

Pa=0.5(L%)

(20)

N
When an erasure error occurs in an (Kj MPPM link, the number of known bits is

L, = K-1. Hence, the number of unknown bits L, can trigger M, = N-K+1 MPPM

sequences. The L, bits can trigger M, = 2" PCM sequences. Because, M, = M,,

2M = N-K+1
Thus,
L, = logy(N-K+1)

By substituting (22) to (20)

P. =05 (logz(N-K+1%)

N
L bits can trigger 2" sequences or else [KJ . Therefore,

21)

(22)

(23)

(24)

PhD Thesis

Chapter 4

and accordingly
N
L=1 25
ng(Kj (25)

As aresult, (23) can be written as

P, =05 (108 (N-K+1) NJ) (26)

log, K

N
For a False Alarm error in an (Kj MPPM link, K+1, pulses are detected. Consequently,

log,(K+1)

Pr=0.5((27)

N)
log, %

For a Wrong Slot (left dispersion) error of an MPPM link the treatment is the

same as a false alarm error (an extra pulse is generated). Hence,

log,(N-K+1)

P 1=0.5((28)

N)
log, P

112
PhD Thesis

Chapter 4

For a Wrong Slot (right dispersion) error of an MPPM link L = K and L, = log,K. Thus,

P »=0.5(log, (K) Nj) (29)

log, K

The total BER is equal to the sum of all error probabilities (30) weighted to the

2
occurrence of each error type. As an example, consider the erasure, Per, for the [2)

MPPM system. This error probability should be weighted with 128 (2 pulses/MPPM
frame * 64 MPPM frames). For the False Alarm error the error probability should be
weighted with 640 (10 slots/frame * 64 frames). Finally, for the wrong slot error (both
left and right dispersion) the error probability should be weighted with 256 (2

pulses/frame * 2 errors-left and right dispersion- * 64 frames).

BER =P, er_weighted + P, fa_weighted + P ws_l_weighted + P, ws_r_weighted (30)

12
The BER results in a[Y)MPPM system are presented in table 4.2. From the

results obtained it is clear that the most efficient systems are in the middle of the family.

113
PhD Thesis

Chapter 4

WEIGHTING

Systems Per Pra Pwsi1 | Pusr ER FA WS Total BER
12 1 0.5 10.139 | 0.139 0 8 88 2 0.134
12 2 0.286 | 0.131 | 0.131 | 0.083 128 640 4 0.056
12 3 0.213 | 0.129 | 0.129 | 0.102 | 384 1152 6 0.039
12 4 0.177 | 0.13 | 0.13 | 0.112 | 1024 | 2048 8 0.03
12 5 0.156 | 0.134 | 0.134 | 0.121 | 2560 | 3584 10 0.026
12_6 0.142 | 0.142 | 0.142 | 0.131 | 3072 | 3072 12 0.023
12 7 0.134 | 0.156 | 0.156 | 0.146 | 3584 | 2560 14 0.022
12 8 0.13 | 0.177 | 0.177 | 0.168 | 2048 1024 16 0.022
12 9 0.129 1 0.213 | 0.213 | 0.204 | 1152 384 18 0.024
12 10 0.131 | 0.286 | 0.286 | 0.275 | 640 128 20 0.03
12 11 0.139 | 0.5 0.5]0.482 88 8 22 0.109

Table 4.2: BER calculation in a 12-Y MPPM system.

These representations of the data do not take into account the coding efficiency of

12 12
the systems — a (1 j system can code up to 3 PCM bits while a (2 j system can code

12
up to 6 PCM bits. Thus the [2 j system could be regarded as more bandwidth efficient.

In order to explore this, a bandwidth expansion, BE, parameter is defined
BE=— (31)

where X is the number of multiple PPM slots in a frame and » is the number of PCM

BITS encoded.

114
PhD Thesis

Chapter 4

A process of normalisation is now applied to the sensitivities and bandwidth
expansion so that all values are expressed between 0 and 1. To achieve this, the number
of photons required for each coding level are divided by the largest number of photons
per pulse for that particular bandwidth (worst case sensitivity of the 12-10 system - table
4.1), and all bandwidth expansions are divided by the largest BE (12/3 = 4 for all f,).

These normalized results are shown in table 4.3.

Normalised | Normalised Coding
fn sensitivity BE level
100 0.971 0.5 12-2
80 0.970 0.5 12-2
60 0.962 0.5 12-2
40 0.971 0.5 12-2
20 0.969 0.5 12-2
10 0.967 0.5 12-2
5 0.965 0.5 12-2
4 0.965 0.5 12-2
3 0.966 0.5 12-2
2 0.967 0.5 12-2
1.8 0.967 0.5 12-2
15 0.842 1 12-1
1.2 0.420 1 12-1

Table 4.3: Normalized sensitivity, BE and optimum coding level of a 12-Y MPPM system.

A weighted sum approach (used when performing a sum, integral, or average in
order to give some elements more of a "weight" than others) can now be applied [110] to
the multiple PPM systems (at every value of f,) in terms of sensitivity and bandwidth
expansion, with a range of weights between 0 and 100% in steps of 10%. A weighting of
0% means bandwidth expansion is the most important parameter (and hence power can

be spared) while a weighting of 100% means sensitivity is more important (and hence

115
PhD Thesis

Chapter 4

bandwidth can be spared). A 50% weighting is where the two parameters are equally

important and is a key point of interest. Thus, using (32), an efficiency factor, #, can be

defined as

n= 1- (phPCM norm X Weightsens + BEnorm X WeightBE) (32)

where,

Phpemnom 18 the normalized sensitivity in photons per PCM bit
BE, ., 1s the normalized bandwidth expansion
weight . is the sensitivity weighting = 0 to 1 in steps of 0.1, and

weight g is the bandwidth weighting = 1- weight

sens

A system is considered to be 100% efficient if it has the best sensitivity and the

lowest BE (coding 9 PCM bits). On the other hand, a system is 0% efficient if it has the
e : : 12 :
lowest sensitivity and the bandwidth expansion of the 1 system (only 3 PCM bits can

be encoded). Table 4.4 shows the efficiency map for a 12-Y multiple PPM system across

the range of f,.

116
PhD Thesis

Chapter 4

Equal
BE is more important Weight Sensitivity is more important

f, | 0-100 | 10-90 | 20-80 | 30-70 | 40-60 | 50-50 | 60-40 | 70-30 | 80-20 | 90-10 | 100-0

100 | 12-6 | 12-6 | 12-6 | 12-6 | 12-6 12-6 126 | 126 | 12-6 | 12-6 | 12-2

80 | 126 | 126 | 126 | 12-6 | 12-6 12-6 12-6 | 126 | 12-6 | 12-2 | 12-2

60 12-6 | 12-6 | 12-6 | 12-6 | 12-6 12-6 12-6 | 126 | 12-6 | 12-2 | 12-2

40 12-6 | 12-6 | 12-6 | 12-6 | 12-6 12-6 12-6 | 12-6 | 12-6 | 12-2 | 12-2

20 12-6 | 12-6 | 12-6 | 12-6 | 12-6 12-6 12-6 | 126 | 126 | 12-2 | 12-2

10 | 126 | 12-6 | 126 | 126 | 12-6 12-6 126 | 126 | 12-6 | 12-2 | 12-2

12-6 | 12-6 | 12-6 | 12-6 | 12-6 12-6 12-6 | 126 | 12-6 | 12-2 | 12-2

12-6 | 12-6 | 12-6 | 12-6 | 12-6 12-6 12-6 | 126 | 12-6 | 12-2 | 12-2

5
4
3 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
2 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2

1.8 | 12-6 | 126 | 12-6 | 12-6 | 12-6 12-6 12-6 | 126 | 12-6 | 12-2 | 12-2

15 | 12-5 | 125 | 12-5 | 12-5 | 12-5 12-5 12-5 | 12-2 | 12-2 | 12-2 | 12-1

1.2 | 12-5 | 12-5 | 12-5 | 12-5 | 12-5 12-5 12-1 | 12-1 | 12-1 | 12-1 | 12-1

Table 4.4: Efficiency map (as defined by equation 11) for a 12-Y multiple PPM system.

12
As can be seen, the (6] multiple PPM system is generally the most efficient

system. It is only when the bandwidth is extremely low that the coding level changes to

12
[5] . Both systems code 9 bits of PCM data but the normalised bandwidth expansion for
12 L e o
the 5 code is slightly lower. When the sensitivity weighting is greater than 90%, the

12
optimum coding level is generally (2 j In this situation, bandwidth expansion is not

important and so the higher sensitivity, lower codes can be used. The simulation predicts

12
that (1) (i.e. digital PPM) should be used at very low bandwidths. This is because there

is a very high level of pulse dispersion leading to an increased level of ISI and IFI and, as

117
PhD Thesis

Chapter 4

digital PPM only has one pulse in a frame, it will not be affected in the same way as a

two pulse frame.

Figure 4.3 shows a surface plot for a 12-Y multiple PPM system operating with a

normalized bandwidth of 30. In this figure, the efficiency factor, #, has been plotted on

12
the vertical axis to demonstrate the optimum. This figure clearly shows that the [6 j

coding system is the most efficient except at the extremes, when sensitivity is more

important than operating speed (above 80-20 weighting). In this instance smaller systems

12
are more efficient, such as [2 j)

118

PhD Thesis

Chapter 4

EFFICIENCY OF A 12-Y MPPM SYSTEM

50
Weight (yy')

12-Y Systems (xx')

Figure 4.3: Efficiency (surface weighted sum) plot of a 12-Y multiple PPM system for a
normalized bandwidth of 30 (in the yy’ axis from 0 to 49, bandwidth expansion is

dominant from 51 to 100 sensitivity is dominant with equality in 50).

119
PhD Thesis

Chapter 5

Chapter 5

Theoretical Investigation into the Effects of Data
Mapping

Table 5.1 details the variation in the number of photons per PCM bit as the

12
normalised channel bandwidth, f;, varies from 100 to 1.2 for (Y} systems using Linear

Increment (LI) coding.

Linear Increment mapping

Sensitivity (photons/PCM bit)

Fn 12 1 | 12 2 12 3 12 4 12 5 12 6 12 7 12 8 12 9 12 10 12 11

100 930 921 1199 1401 1567 1877 2190 2802 3610 4740 10234

80 938 927 1207 1411 1579 1891 2207 2823 3637 4777 10314

60 952 940 1224 1431 1601 1917 2238 2863 3689 4843 10457

40 979 968 1260 1473 1648 1973 2303 2947 3797 4985 10762

20 1047 1034 1348 1576 1764 2113 2466 3155 4065 5340 11528

10 1180 | 1167 1522 1780 1993 2387 2786 3565 4594 6035 13020

1435 1419 1854 2168 2429 2909 3395 4342 5595 7352 15833

1790 | 1771 2315 2706 3032 3629 | 4237 | 5415 6975 9167 19657

5
4 1565 1547 2023 2365 2650 3173 3703 4735 6101 8017 17237
3
2

2356 | 2331 | 3047 3561 3993 | 4775 | 5575 | 7119 9162 12053 25663

1.8 | 2608 | 2581 3373 3941 4421 5285 6173 | 7880 | 10140 13343 28347

15 | 3347 | 3533 | 4766 5665 6433 | 7793 | 9170 | 11650 | 14953 19850 37547

1.2 | 14127 | 27390 | 39450 | 47555 | 54461 | 66327 | 78167 | 99250 | 126900 | 168333 | 316653

Table 5.1: Sensitivity in photons/PCM bit of a 12-Y MPPM system using a Linear

Increment mapping for a target (PCM) error probability of Pe = 107,

120
PhD Thesis

Chapter 5

Tests [111] were carried out to examine the effects of data mapping for four

different mappings — Linear Increment, Linear Decrement, Gray Code and Random — that

12
operate without redundancy for every version of the [Y] family. The results are shown

in table 5.2, which details the improvement in sensitivity (photons/PCM bit) obtained

over Linear Increment mapping (taken as the reference).

Maximum improvement in sensitivity (photons/PCM bit)

fn 1211122123 |12 4|12 5|12 6| 127 |12 8| 129 | 1210 | 12 11
100 -2 0 -2 -2 -1 -4 0 0 -3 -18 -18
80 -2 0 -2 -2 -1 -5 0 0 -3 -18 -22
60 -2 0 -1 -2 -1 -5 0 0 -3 -18 -22
40 -2 0 -2 -2 -1 -5 0 0 -3 -18 -22
20 -3 0 -2 -2 -1 -5 0 0 -4 -20 -22
10 -4 0 -2 -2 -1 -6 0 0 -4 -23 -26
5 -7 0 -2 -2 0 -7 0 0 -4 -30 -48
4 -9 0 -3 -3 -2 -8 0 0 -5 -33 -55
3 -10 0 -3 -3 -2 -9 0 0 -5 -38 -88
2 -12 0 -4 -3 -3 -12 0 0 -4 -55 -187
1.8 -13 0 -5 -3 -3 -13 0 0 -5 -62 -220
15 0 -30 -26 -95 0 -20 -8 -10 -26 -133 0
1.2 0 -793 | -321 | -1630 -6 -173 | -156 -80 -450 | -1500 0

Table 5.2: Maximum improvement of sensitivity in photons/PCM bit compared to Linear
Increment mapping (improvement implies reduction in the number of photons/PCM bit).

A zero number means that Linear Increment remains the most efficient mapping.

Table 5.3 presents an efficiency map as the channel normalised bandwidth, f,,

varies.

121
PhD Thesis

Chapter 5

12-Y multiple PPM EFFICIENCY MAP

fn 121 1122 |12 3|12 4|12 5|12 6| 12 7 |12 8| 12 9 | 12 10 | 12 11
100 | GC LI GC GC GC GC LI LI GC RD GC
80 GC LI GC GC GC GC LI LI GC RD GC
60 GC LI GC GC GC GC LI LI GC RD GC
40 GC LI GC GC GC GC LI LI GC RD GC
20 GC LI GC GC GC GC LI LI GC RD GC
10 GC LI GC GC GC GC LI LI GC RD GC
5 GC LI GC GC LI GC LI LI GC RD GC
4 GC LI GC GC GC GC LI LI GC RD GC
3 GC LI GC GC GC GC LI LI GC RD GC
2 GC LI GC GC GC GC LI LI GC RD GC
18 GC LI GC GC GC GC LI LI GC RD GC
15 LI GC GC RD LI GC GC RD RD RD LI

1.2 LI GC GC RD RD GC GC RD RD RD LI

Table 5.3: Variation in optimum mapping as the channel normalised bandwidth, f,,

varies from 100 to 1.2 for a 12-Y MPPM system. The mappings considered are Linear

Increment, LI, Linear Decrement, LD, Gray Code, GC, and Random, RD.

12 12 12
From these results it is evident that eight systems (from [1 jt0[6 Jand [9 J and

12
(1 lj) enhance their sensitivity if Gray Codes are used (although the percentage changes

12 12
are small). Two systems ((7 jand[g]) enhance their sensitivity if Linear

Increment/Decrement is used (the LI and LD mappings gave almost the same sensitivity)

12
and Random mapping was most efficient only for (1 0]. Thus it can be seen that Gray

12
Codes are the most efficient mapping for most systems of the (Y j family. This can be

122

PhD Thesis

Chapter 5

explained from the fact that Gray Codes minimize the Hamming distance between
adjacent multiple PPM words, and MLSD is used. Hence, if the Hamming distance is

kept to minimum, there are minimum errors between the decoded word and the original

12
data (as shown in Chapter 3). As an example, consider the codeword [2,4] of the [2 j

MPPM system, which decodes to the 001100 equivalent PCM word (if LI mapping is
used). If a WS error occurs on the first or second pulse of the codeword, 7 error bits are
generated. This means an average error/PCM bit for [2,4] of 0.29. With Gray coding,
[2,4] decodes as 001010 and the number of errors is reduced to 6. The average error/PCM
bit is reduced to 0.25. Other results were generated for the rest of the sequences and the

other error types in a similar fashion.

123
PhD Thesis

Chapter 6

Chapter 6

Optimum Mapping in an Optical Multiple PPM
link wusing a Maximum Likelihood Sequence
Detection Scheme

The previous chapter has shown how coding can alter the performance of an
MPPM link. It has also been shown that the performance of an MPPM link can be easily
predicted by identifying certain sequences. In this chapter, this work [112] is extended so
that the original methodology described here identifies dominant errors which are then
used in another algorithm that determines the optimum coding technique for a particular
multiple PPM system. The reduction in processing time that comes from this

methodology is significant.

6.1 Dominant error sequences in multiple PPM

Figure 6.1 (appendix A) is a data flow diagram showing how the dominant error
sequences are identified. Each error sequence is isolated in turn by setting its equivalent
PCM error rate to one while the other sequences are set to zero (or very close to zero).
Thus only one error source contributes to the system performance at any one time. The
software previously described is then used to find the resulting photons/bit for the desired

error rate. This is then multiplied by the probability of the particular error sequence

124
PhD Thesis

Chapter 6

occurring to give the “sequence sensitivity”. By considering each error sequence in turn
and summing the sequence sensitivities, the total number of photons per bit can be found
and the sensitivity of the system can be easily calculated. Comparisons (table 6.1) with

the full mathematical model show that this method is accurate.

12-2 MPPM System Sensitivity (in photons/PCM bit)

fn MATHEMATICAL ANALYSIS ONLY S/W
100 921 870

80 927 875

60 940 887

40 968 912

20 1034 974

10 1167 1098

5 1419 1331

4 1547 1448

3 1771 1649

2 2331 1767
1.8 2581 2567
15 3533 3529
1.2 27390 27389

Table 6.1: Sensitivity results (in photons/PCM bit) for a 12-2 MPPM system using the full

mathematical model and the s/w model.

12
Tests on other [Y] systems (table 6.2) have shown that the dominant error

sources and sequence sensitivities are the same in these other systems and so this

methodology can be applied to multiple PPM systems in general.

125
PhD Thesis

Chapter 6

SENSITIVITY ANALYSIS
(in photons/PCM bit)
SYSTEM
MATHEMATICAL
ONLY S/'W

ANALYSIS
12-1 930 903
12-2 921 870
12-3 1199 1141
12-4 1401 1342
12-5 1567 1509
12-6 1877 1828
12-7 2190 2146
12-8 2802 2743
12-9 3610 3560
12-10 4740 4678
12-11 10234 10168

Table 6.2: Sensitivity results (in photons/PCM bit) for a 12-Y MPPM system using the

full mathematical model and the s/w model for a normalized bandwidth of 100.

Even when other mappings are used (as in table 5.3) with the software model, the
same efficiency map is generated as shown in table 6.3 (except from some exceptions

represented in bold-italics).

126
PhD Thesis

Chapter 6

12-Y multiple PPM EFFICIENCY MAP

fn 121 1122 |12 3|12 4|12 5|12 6| 12 7 |12 8| 12 9 | 12 10 | 12 11
100 | GC LI GC GC GC GC LI LI GC RD GC
80 GC LI GC GC GC GC LI LI GC RD GC
60 GC LI GC GC GC GC LI LI GC RD GC
40 GC LI GC GC GC GC LI LI GC RD GC
20 GC LI GC GC GC GC LI LI GC RD GC
10 GC LI GC GC GC GC LI LI GC RD GC
5 GC LI GC GC GC GC LI LI GC RD GC
4 GC LI GC GC GC GC LI LI GC RD GC
3 GC LI GC GC GC GC LI LI GC RD GC
2 GC LI GC GC GC GC LI LI GC RD GC
18 GC LI GC GC GC GC LI LI GC RD GC
15 LI GC RD L1 L1 GC GC L1 RD RD GC
1.2 LI GC GC LI LI GC GC RD Ll RD GC

Table 6.3: Variation in optimum mapping (using the s/w model) as the channel

normalised bandwidth, f,, varies from 100 to 1.2 for a 12-Y MPPM system. The mappings

considered are Linear Increment, LI, Linear Decrement, LD, Gray Code, GC, and

Random, RD.

This method of identifying the dominant error sequences and determining the

subsequent sequence sensitivity means that the simulation time is reduced considerably

as shown in table 6.4. Thus the effects of different mappings can be determined very

rapidly so making analysis much faster.

127

PhD Thesis

Chapter 6

SENSITIVITY ANALYSIS SCHEMES
SYSTEM NO S/W AND
ONLY S/'W
MATHEMATICAL ANALYSIS
12-1 <30 min <1 sec
12-2 <110 min <1 sec
12-3 <140 min <1 sec
12-4 <200 min <1 sec
12-5 <380 min <3 sec
12-6 <380 min <3 sec
12-7 <380 min <3 sec
12-8 <200 min <1 sec
12-9 <140 min <1 sec
12-10 <110 min <1 sec
12-11 <30 min <1 sec
TOTAL <2100 min <18 sec

Table 6.4: Time needed to predict the efficiency of the 12-Y system using non-automated

methods and only software.

The most significant error sequences were found to be those involving an erasure
with the next being those with a false alarm. The wrong slot sequences are only
significant when there is considerable pulse dispersion caused by a normalised fibre

128
PhD Thesis

Chapter 6

bandwidth, f,, of less than 2. As erasure sequences are the most dominant sequences, the
next section describes how to find an optimum, or close to optimum, mapping that

minimises their effect.

6.2 Optimum mapping in multiple PPM

To find the optimum mapping until now two approaches were developed. The
first approach was to automatically generate (through software) all available mappings of
a MPPM system. An algorithm that calculates all the available permutations between a
set of numbers (PCM codewords) was required. Various algorithms were developed to

generate the maximum number of permutations as shown below:

1) A recursive permutation algorithm by Alexander Bogomolny (www.cut-

the-knot.org/do_you_know/AllPerm.shtml)

2) A permutation algorithm based on a string permutation algorithm from the

University of Exeter (newton.ex.ac.uk/teaching/resources/jmr/recursion.html)

A new algorithm was developed based on Martin Gardner's Scientific American
article [133]. This algorithm gives the fastest known method of listing all permutations.

The algorithm is presented in figure 6.2 (appendix A). The software solution is presented

2
in appendix C. However, permutations are geometrically increased. Thus, for a [j

129
PhD Thesis

Chapter 6

multiple PPM system, 6 PCM bits can be encoded. That means 720 (6!) different

mappings. This number becomes larger as the size (X, Y) of the MPPM system increases.

12
Therefore a new approach had to be developed based on prediction. In a [2 j

multiple PPM system, 6 PCM bits can be encoded. In order to minimise the error
probability, the Hamming Distance (HD) between all equivalent PCM code-words,
referred to as the Total Hamming Distance (THD), should be minimised. Taking the all

zero code-word as reference, the PCM codewords have the following properties:

1) 6 codewords with HD of 1
i1) 15 codewords with HD of 2
ii1) 20 codewords with HD of 3
1v) 15 codewords with HD of 4
V) 6 codewords with HD of 5
vi) 1 codeword with HD of 6
The mapping of PCM codewords onto the multiple PPM codewords must be

chosen to minimise the THD. The three sources of error need to be considered in turn,

and their effects on the THD minimised by reducing their individual HD.

12
Consider the (2 jdetected sequence [1,x] where 12 > x > 2. Erasure of any of the

second pulses will cause the MLSD detector to receive only the pulse in slot 1 so giving
the [1,?] condition. The received codeword could have been any of the 11 codewords in
the [1,x] sequence and so the MLSD will average the equivalent PCM data of these

codewords to give a PCM word of 000000. Taking this as the reference, table 6.5, shows

130
PhD Thesis

Chapter 6

that the Erasure Sequence Hamming Distance, ESHD, is equal to 17 for both linear

increment and Gray coded data.

Erasure Error Mapping
[1,?] Linear Increment | Gray Codes | Optimum
[1,2] 000000 000000 000000
[1,3] 000001 000001 000001
[1,4] 000010 000011 000010
[1,5] 000011 000010 000100
[1,6] 000100 000110 001000
[1,7] 000101 000111 010000
[1,8] 000110 000101 100000
[1,9] 000111 000100 000011
[1,10] 001000 001100 000101
[1,11] 001001 001101 001001
[1,12] 001010 001111 010001
Averaged [1,?] codeword 000000 000101 000000
Total Hamming Distance 225 225 224
Averaged Hamming Distance 17 17 14

Table 6.5: Total (THD) and Averaged (AHD) Hamming Distance (Number of PCM
Errors) of Linear Increment, Gray Codes and “Optimum” mapping of the [1,?] ER

averaged codeword.

131
PhD Thesis

Chapter 6

To obtain the optimum coding regime for this [1,?] condition, PCM codewords
should be chosen and assigned to the multiple PPM codewords so that the ESHD, and
hence the THD, are minimised. If [1,2] is assigned to 000000, there are 6 other
codewords with HD of 1 and a possible 4 out of 15 other codewords with HD of 2. Table
6.5 shows the resulting “optimum” mapping for this particular sequence. The ESHD is
now reduced to 14 which is an 18% reduction compared to linear mapping. The erasure
sequences [1,?] to [6,?] can also have an ESHD of 14; however the ESHD increases for

codes above [6,?], as shown in table 6.6.

Erasure Averaged Number
of ESHD

sequence | codeword codewords
[1,?] 000000 11 14
[2,?] 001011 11 14
[3,?] 010101 11 14
[4,?] 011110 11 14
[5,?] 100110 11 14
[6,?] 101101 11 14
[7,?] 110011 11 16
[8,?] 11100 0 11 20
[9,?] 110010 11 22
[10,?] 000000 10 21
[11,?] 101001 10 24
[12,?] 011101 9 22

Table 6.6: Erasure averaged codewords for a 12-Y multiple PPM system.

132
PhD Thesis

Chapter 6

This is because the choice of remaining PCM code-words is limited due to the
fact that the lowest HD ones have already been allocated. Thus the MLSD must average
the remaining PCM code-words, which have a higher HD, and this results in a large HD
for the erasure codewords [7,?] to [12,?]. A complication occurs with the erasure
codewords [10,?] and [11,?]. Below [10,?] the number of code-words to be averaged is 11
(table 6.6) and so the MLSD has an odd number of 1s or Os to consider when making a
decision and there is no ambiguity in the result. However, when [10,?] and [11,?] are
received, the MLSD will randomly allocate a 1 or a 0 to a data bit because the number of
Is and Os is the same. This random allocation will generate a large number of errors, and

so the optimum mapping should avoid this.

Minimisation of the ESHD means that the errors from some false alarm and
wrong-slot sequences will also be reduced. Consider the sequence [1,2]. A false alarm
will generate a sequence [1,2,x], where 12 > x > 2. The output of the MLSD will be the
average of three PCM codewords corresponding to [1,2], [1,x] and [2,x]. If 8 > x > 2, the
code-words [1,2] and [1,x] will have a HD of 1 and so only the [2,x] code-word will have
to be chosen (preferably with a HD of 2). If 12 > x > 8§, only the code-word [1,2] has a
HD of 1 while the other two code-words [1,x] and [2,x] have a HD of 2. In general, for
[1,x,y] code-words, where 11 >x > 1, 12>y > 2 and x > y, two out of three codewords
have a maximum HD of 2. The missing codewords are allocated to minimise the ESHD.
As regards wrong-slot errors, some are already optimised because they appear to be pulse

erasures (right shift wrong-slot to adjacent pulse for instance). For the others, Gray codes

133
PhD Thesis

Chapter 6

are very efficient because a wrong-slot error causes the next codeword to be chosen and,
in Gray coded data, the resulting error will be one bit. However, wrong-slot errors are
only significant over a small range of low bandwidths and so minimising their effect is

not as important as minimising the effect of erasures.

A mapping such as this that targets erasure errors and affects a large number of
false alarm and wrong-slot sequences is optimum, or very close to optimum, and table 6.7

shows the mapping generated.

Optimum mapping for the 12-2 MULTIPLE PPM System

c/w PCM c/w PCM c/w PCM c/w PCM

[1,2] | 000001 | [2,8] | o11011 | [4,7] | 111110 | [6,10] | 101100

[1,3] | 000100 | [2,9] | 001010 | [4,8] | 011010 | [6,11] | 101101

[1,4] 011000 [2,10] | 000011 [4,9] 011110 [6,12] 001101

[1,5] | 000110 | [2,11] | 001001 | [4,10] | 010110 [7,8] | 110001

[1,6] | 001100 | [2,12] | 001011 | [4,11] | O11111 [79] | 110010

[1,7] | 110000 | [3,4] | 010100 | [4,12] | 011100 | [7,10] | 010011

[1,8] | 100000 | [3,5] | 000111 | [5,6] | 101111 | [7,11] | 110011

[1,9] | 010000 | [3,6] | 111101 | [5,7] | 100010 | [7,12] | 110111

[1,10] | 000000 | [3,7] | 110101 | [5,8] | 101110 8,9] | 111010

[1,11] | 001000 | [3.,8] | 010001 | [5,9] | 110110 | [8,10] | 101000

[1,12] | 000010 | [3,9] | 010111 | [5,10] | 100100 | [8,11] | 111000

23] | 011001 | [3,10] | 000101 | [5,11] | 100110 | [8,12] | 111001

[2,4] | oo1111 | [3,11] | o1oi01 | [512] | 100111 | [9,10] | 010010

[2,5] | 100011 | [3,12] | o11101 | [6,7] | 111111 | [9,11] | 101010

[2,6] | 101011 | [4,5] | 001110 | [6,8] | 101001 | [9,12] | 110100

[2,7] | 111011 | [4,6] | 111100 | [6,9] | 100101 | [10,11] | 100001

Table 6.7: The estimated “optimum” mapping for the 12-2 multiple PPM system.

134
PhD Thesis

Chapter 6

This mapping can also be adapted for larger systems. For example the mapping
. , 12
generated for the erasure codeword [1,?], as shown in table 6.6, can be used in a 3
multiple PPM system to generate the mapping for the erasure codeword [1,2,?] as shown

12
in table 6.8. Here the [2 j mapping forms the basis of the expanded mapping with the

12
extra bit, the Most Significant Bit (MSB), set to 0. This same (2 Jmapping can be used

to generate the mapping for the [2,3,?] erasure sequence, but this time the MSB is set to
1 for all codewords. By using this technique, 12 erasure codewords will be generated
with a minimum ESHD, and a large number will be generated that are close to minimum.

The remaining codewords are selected to minimise the HD as before.

135
PhD Thesis

Chapter 6

Erasure Error Mapping
[1,2,2] Linear Increment | Gray Codes | Optimum
[1,2,3] 0000000 0000000 0000001
[1,2,4] 0000001 0000001 0000100
[1,2,5] 0000010 0000011 0011000
[1,2,6] 0000011 0000010 0000110
[1,2,7] 0000100 0000110 0001100
[1,2,8] 0000101 0000111 0000010
[1,2,9] 0000110 0000101 0100000
[1,2,10] 0000111 0000100 0010000
[1,2,11] 0001000 0001100 0000000
[1,2,12] 0001001 0001101 0001000
Averaged [1,2,?] codeword 0000000 0000101 0000000
Averaged Hamming Distance 15 17 12

Table 6.8: Total and averaged Hamming distance for Linear Increment, Gray Code and
“Optimum” mapping of the [1,2,?] ER averaged codeword in a 12-3 multiple PPM

System.

To demonstrate the importance of mapping in the final error rate table 6.9 shows

12 12
the percentage change in error rate for a (2 jand[3 j multiple PPM system, using

136
PhD Thesis

Chapter 6

linear increment as a base with a PCM error rate of 1 bit in 10° bits, at normalised
channel bandwidths of 100, 50, 10 and 1.2. It was not possible to obtain results for
fn < 1.2, due to excessive ISI and IFI. For normalised bandwidths greater than 10, it can

be seen that there is little to be gained by using linear decrement or Gray code. However,

12
if the mapping is random, there is a large deterioration in error rate for both the [] and
12 : o
3 systems. The effect of the optimum code can be clearly seen, with significant drops

12 12
in error rate particularly for the (3 J system. This is because the [3 J system has 220

possible codewords to code only 128 PCM codewords. Thus, there is an element of
redundancy in the code which means that the optimisation routine has a larger range of

codewords available to it, and this increases performance.

137
PhD Thesis

Chapter 6

fa 100 50 10 1.2
12
) 0.0 0.0 -0.2 -0.2
LD
12
3 2.8 0.0 -1.3 0.0
12
) 2.2 0.2 0.8 -50.1
GC
12
3 -2.4 -5.1 -5.6 -21.8
12
) 12.2 12.3 12.6 74.8
RD1
12
3 13.6 12.5 11.0 -1.3
12
) 11.3 10.0 11.7 24.6
RD2
12
3 10.3 10.6 9.2 5.0
12
) 4.4 7.0 6.5 -0.3
RD3
12
3 18.0 15.2 13.7 -6.4
12
) -20.3 -19.1 -17.0 -24.8
OPT
12
3 -23.32 -25.3 -26.0 -30.0

Table 6.9: Percentage change in error rate for a 12-2 and a 12-3 multiple PPM system
using linear increment mapping as the reference and a PCM error rate of 1 bit in 109
pulses. The mappings considered are Linear Decrement (LD), Gray Code (GC), Random

(RD1, RD2, RD3) and Optimum (OPT).

138
PhD Thesis

Chapter 6

When operating with £, < 10, there is a large degree of pulse dispersion and this
leads to ISI/IFI and an increase in erasure and wrong-slot errors. Indeed, when f, = 1.2,

wrong-slot errors are dominant, and so the Gray code offers the best performance for the

12 12
[2] system. As discussed in the previous paragraph, the (3 j system has some unused

codewords which can be used to combat ISI/IFI, and this leads to better performance.

139
PhD Thesis

Chapter 7

Chapter 7

Higher Order multiple PPM Systems and their
Optimum Mapping

12
Thus far, only the [Y j MPPM family has been considered and the effectiveness

of coding demonstrated. Here, original results obtained from mapping experiments [113]

)) . 4 7 15 17 22 28 33
on the following multiple PPM families: s s s , s and
Y Y Y Y Y Y Y

are presented. The PCM equivalent data mapping considered for all systems was the Gray

code because

4 7 12 15
Figure 7.1 shows a surface plot for| |, , and multiple PPM
Y Y Y Y

systems operating with a normalized bandwidth of 30. This bandwidth was chosen
because the dispersion associated with it lies midway between the dispersion, due to the
100 and 1.2 normalized bandwidths. In this figure, the efficiency factor, #, has been
plotted on the vertical axis to demonstrate the optimum, and it is clear that the middle
coding systems are the most efficient (especially for the 50-50 point of interest where
sensitivity is equally weighted with bandwidth expansion). This optimum partly occurs

because the middle systems in the families can code more bits and so are considered

140
PhD Thesis

Chapter 7

4 4
more efficient. The exception to this is the (Yj family, where the (1) system is the

most efficient system of the family. This is because all systems in this family can only
code 2 bits of PCM and so the most efficient system is the one with the lowest number of
pulses. When the sensitivity weighting is greater than 80%, the optimum coding level is

generally found in smaller systems.

80_20
Weight (yy') . / 40_60 Weight(yy')

73, 33 oa 0_100
2

3 5
S LS g

7-Y Systems [xx')

0_100

50_50 1 Y/ 60_40

Weight (yy') = N == " Weight (yy')

Figure 7.1: Efficiency (surface weighted sum) plot of a 4-Y, 7-Y, 12-Y and 15-Y multiple
PPM systems for a normalized bandwidth of 30 (in the yy’ axis from 0 to 49, bandwidth

expansion is dominant, between 51 to 100, sensitivity is dominant with equality of 50).

141
PhD Thesis

Chapter 7

: 17 22 28 _
Figure 7.2 shows the surface plot for the v I ly I ly and v multiple

PPM families. Again it is clear that the most efficient systems are those in the middle of
the family. A comparison test was also performed for multiple PPM systems using linear
mapping. The results showed that, as before, the middle systems were the most efficient.
In general, Gray codes gave better sensitivities than Linear, except from some systems

4 17 22 22

commonly the smaller or greater systems of the family such as 11 P el L0)
28) (28) (33) (33 33 33
, , , and from to
1 4 1 8 28 31

90_10
60_40 © Weight (yy')
Weight {yy'}

0_100
0_100 -

22-Y Systems (xx')
17-¥ Systems [xx")

- _ 90_10

— — i g S

Ty e)/ Weight (yy')
20 oo 1 — ¥ ~

RS 0_100 : { =@

= = i a Ba g

- MR o m om

s 8@

TR
NRa g
o om x
o WIEmm

28-Y Systems [xx') 33-Y Systems (yy')

Figure 7.2: Efficiency (surface weighted sum) plot of a 17-Y, 22-Y, 28-Y and 33-Y
multiple PPM systems for a normalized bandwidth of 30.

142
PhD Thesis

Chapter 7

Nikolaidis and Sibley [112] described a methodology of how to obtain an
optimum or close to optimum mapping for any MPPM system. The methodology is based
on minimising the effects of erasure errors, because these error rates have the greatest
impact on the final error probability. Starting from the all zero codeword, the mapping
should try to minimise the erasure errors between the weighted codewords and the
erasure MLSD weighted codeword. Therefore, the choice of suitable erasure MLSD

codewords is vital and very time consuming.

To simplify this process (and fully automate it through software), a practical
methodology of finding suitable erasure MLSD codewords that will generate a minimum
amount of erasure errors, and hence keep the THD close to minimum, has been suggested

[113]. The data specimen of the MPPM system should be divided according to the

codewords used from each erasure MLSD codeword. As an example, consider the [2 J

MPPM system. This system can have 33 erasure MLSD codewords (from [1,?] to [33,7]).
Therefore, [1,?] uses 32 codewords, [2,?] 31 codewords, [3,?] 30 codewords, etc. As a
result, starting from the all zero codeword, the (number of) codewords used are chosen as
the erasure MLSD codewords. So, the [1,?] will have as erasure weighted codeword the
all zero codeword (000000000), the [2,?] will have the 32 (000100000), [3,?] the 31

(000011111) and so on.

143
PhD Thesis

Chapter 7

If the MPPM system has more than 2 pulses, a similar approach is followed. As

7
an example, consider the (4) MPPM system. The system can encode 5 PCM bits and

generates 35 erasure MLSD codewords ([1,2,3,?], [1,2,4,7], [2,3,4,?] etc). From these 35
erasure MLSD sequences, six (6) codewords are generated from codewords used by other
erasure MLSD codewords. Thus, dividing the data specimen of 32 by 26 (ignoring the 6
erasure MLSD sequences), gives a result of 1.23. Rounding the numbers the erasure
MLSD codewords are generated. This approach gave optimum results to the tested

systems (as shown in tables 7.5 and 7.6), and was easy to follow. Figure 7.3 (appendix A)

33
shows a part from the methodology used in a (2 j MPPM system. Tables 7.1 to 7.4
. . : : 7 7Y (7)) (15
(appendix B) demonstrate estimated “optimum” mappings for the L , ,

3 4) (3

33
and [2] MPPM systems (encoding 4, 5, 8 and 9 PCM bits).

Tables 7.5 and 7.6 (appendix B) show the percentage change in error rate for a
7Y (7Y (7Y (12 (12 (12) (15) (15) (15) (17 (17 (17) (22) (22
2 b 3 b 4 b 2 2 3 b 6 b 2 2 3 b 7 b 2 b 3 b 8 2 2 2 3 b
22 22 28 28 28 33 33 33 33 33 .
)) 5) , , , , and multiple PPM
8 11 2 9 14 2 3 9 12 16

system, using linear increment as a base and a PCM error rate of 1 bit in 10° bits, at

normalised channel bandwidths of 100, 50, 10 and 1.2. It was not possible to obtain

results for f, < 1.2 due to excessive ISI and IFI. For normalised bandwidths greater than

144
PhD Thesis

Chapter 7

10 it can be seen that there is little to be gained by using linear coding or Gray codes. The
effect of the optimum code can be clearly seen with significant drops in error rate (in
some cases above 30%) especially for large MPPM systems. This is because the large
MPPM systems have a large number of possible codewords to code the PCM codewords.
Thus there is an element of redundancy in the code which means that the optimisation
routine has a larger range of codewords available to it and this increases performance.
Even when a series of random mappings were tested there was a large deterioration in

error rate for most MPPM systems.

When operating with f, < 10 there is a large degree of pulse dispersion and this
leads to ISI/IFI and an increase in erasure and wrong-slot errors. Indeed, when f, = 1.2,
wrong-slot [10] errors are dominant and so the Gray code offers the best performance for

the MPPM systems.

To measure the efficiency of these mappings an “ideal” mapping is proposed.
This mapping is referred as ideal because the THD is minimized. This mapping allows
repetitions of MPPM codewords as it is presented in tables 7.7 and 7.8 (appendix B) and
cannot be used in a MLSD scheme and therefore, it is only used for comparisons with the

(close to) optimum mappings. Table 7.9 and figure 7.4 (appendix B and A respectively)

i 7 7 7 12 12 12 15
shows the percentage change in error rate for a , , , , , ,
2 3 4 2 3 6 2

15 17 28 33 . L .
13 Pl) ls and 5 multiple PPM system, using linear increment as a base and

a PCM error rate of 1 bit in 10° bits, at normalised channel bandwidths of 100, 50, 10 and

145
PhD Thesis

Chapter 7

1.2 using optimum and ideal mappings. The optimum mappings were generally found to

have 30% to 50% lower efficiency from the ideal mapping.

146
PhD Thesis

Chapter 8

Chapter 8

Decoder Optimization wusing other Correlation
Techniques

Rather than use the slope detection normally employed in pulse position
modulation systems, Cryan and Sibley [95] proposed a central decision detection with
raised cosine filtering in order to eliminate both intersymbol interference and interframe
interference. Taking this approach means that the MPPM pulses can spread into adjacent
time slots without degrading performance, since the decision point is at the centre of the
slot rather than it being a threshold crossing anywhere within the slot. The use of raised
cosine filtering ensures that the voltage level due to adjacent pulses is zero at the decision
instant, so eliminating ISI. In this case, the output voltage of the ideal raised cosine filter

is [95]:

(33)

In figure 8.1, three MPPM patterns were plotted. The same patterns are plotted in

figure 4.2 using a raised cosine filtering and, as can be seen, at the central decision points

147
PhD Thesis

Chapter 8

the contribution from adjacent pulses is zero so eliminating ISI and offering improved

performance.

leﬂg T T T T T

gx10°F

Wp110(t)

#a11100 1) 4x1|35'_

¥a11010 1)

2107

Figure 8.1: 1110, 110 and 1101 multiple PPM sequences with f,=1.2.

The mean-squared noise voltage using raised cosine equalisation is given by [132]

=—L| S d 34
2 9o 0‘ _(0(2”))2 ‘ @ ()
e
=S,R}1,B,

148
PhD Thesis

Chapter 8

where By = l is the MPPM slot rate and
t

N

2

1veo(3)

(')

e 2

127r
L:;L dx (35)

Note that the Gaussian pulse variance is normalised to the slot rate such that

a'=alt, (36)

The I; (shape of output pulse) integral is thus independent of the slot time and
depends only on the shape of the input pulse that in turn depends upon the normalised

fibre bandwidth.

From the results obtained by Cryan and Sibley [95] at the lower fibre bandwidths,
where ISI is prevalent, show that the simplified central decision detection combined with
raised cosine filtering, gave superior performance from the matched filter scheme. For
example, at f,=0.7 the sensitivity was —26.8 dBm compared to the —19.2 dBm for the
more complex Matched Filter-MLD system, representing an improvement of 7.6 dB. As

fibre bandwidth increases, the received pulse became narrower and narrower and

149
PhD Thesis

Chapter 8

eventually it behaved as an impulse. Increasing the bandwidth beyond this point, in this

case, f,=2, led to little further benefit in receiver sensitivity.

Similar results were obtained also from a raised cosine filter combined with a
MLSD decoder, as can been seen in table 8.1. For high f, values, there is little benefit in
receiver sensitivity. However, for low f, values, the improvement is significant. In
addition to this, sensitivity results can now be obtained for very low f, values (below 1.2),

in contrast to the Matched filter scheme.

System Sensitivity (in photons/PCM bit)
Matched Filter Raised Cosine Filter
fn 12 1 12 2 12 1 12 2
100 | 930 921 918 899
80 938 927 928 915
60 952 940 939 930
40 979 968 965 960
20 | 1047 1034 1028 993
10 | 1180 1167 1167 1155
5 1435 1419 1399 1388
4 1565 1547 1515 1508
3 1790 1771 1720 1704
2 2356 2331 2288 2271
1.8 | 2608 2581 2578 2548
1.5 | 3347 3533 3282 3418
1.2 | 14127 | 27390 | 12155 15645
1 X X 13147 17188
0.8 X X 15111 22188
0.7 X X 22135 37897
0.5 X X 34567 49872

Table 8.1: Sensitivity results for a 12-1 and a 12-2 MPPM system using a Matched and a

Raised Cosine filter.

150
PhD Thesis

Chapter 8

12
The simplified sensitivity analysis for a [2} multiple PPM system is presented

in appendix E.

151
PhD Thesis

Chapter 9

Chapter 9

Discussion

This thesis has presented the results of an investigation of a MPPM links over a
highly dispersive optical channel. The primary objective was to investigate the effects of
receiver noise and channel dispersion and the manner in which the erasure, wrong-slot
and false alarm errors affect system performance. Three error types (erasure, false alarm
and wrong-slot) were considered, caused by noise (ISI and IFI). It was shown from
experiments that erasure errors have a greater impact on system sensitivity. Erasure errors
can be minimized by lowering the threshold point of detection. Alternatively, False
Alarm errors can be minimized by increasing the threshold point of detection. The Wrong
Slot errors are only significant in small normalized bandwidth values (f, below 1.2) and
can be neglected. This is logical for a threshold detection scheme because these errors

start to occur when the risetime of the pulse is a significant proportion of the slot width.

Another primary objective was to propose a performance analysis. The
performance analysis proposed is a Maximum Likelihood Sequence (threshold) Detection
scheme. This scheme is based on calculating the probability of specific error sequences.
These error sequences are then weighted with the PCM equivalent error rates generated
from a software solution that simulates the MLSD scheme. MLSD is generally the

optimum detector to recover signals in the presence of ISI, but the complexity of the

152
PhD Thesis

Chapter 9

MLSD grows exponentially with the channel memory. In this situation, the problem was
the large number of sequences to be considered (although it has been shown that erasure
errors are the dominant errors the MLSD analysis was implemented so that all error types
are analysed and their impact to the final error rate measured. With the MLSD also the
importance of the PCM mapping in the final error rate is verified). This made the analysis
difficult and time consuming. To overcome this problem a simplified methodology was
developed. The methodology is based on grouping similar error sequences and neglecting
other error sequences that rarely occur (starting from a 2 pulse system which consist the

simplest form of a MPPM system). More detailed the rules used for the grouping are:

1) A pulse (1) can only affect adjacent slots. Therefore, the 1001 (with the
symbol in error being represented in bold italics) can be considered as a
standard error.

2) If consecutive empty slots (more than one) exist, a possible error is only a
standard error.

3) An Erasure error can only occur in a pulse (1). In contrast, a False alarm error
can only occur in an empty slot (0). A Wrong Slot error can occur either in an
empty slot (0) or a pulse (1).

4) The influence of multiple pulses can be approximated with the influence of
two consecutive pulses. Therefore error sequences like 11117 can be

considered (grouped) as 111.

153
PhD Thesis

Chapter 9

5) Some error sequences can be neglected because they rarely occur. As an
example, consider the 117 sequence in a 12-2 MPPM system (caused by IFI in

the [1,2] codeword).

The software was built with an Object Oriented Programming Language but the
software was mainly algorithmic. Hence, no Object Oriented Design was needed. As a
result, the traditional (modified) waterfall model was chosen as a software development
methodology. UML was used for requirements analysis. The software uses Dynamic
Memory Allocation to generate the MPPM/PCM/error codewords. Serial processing is
used in the algorithms for memory usage reasons. For MPPM systems that encode more
than 12 PCM bits, more parallel processes are needed (can be added). Every parallel
process added (thread) halves the processing time. The software has a processing limit of

MPPM system that can encode up to 32 PCM bits.

From the proposed performance analysis, it was shown that the most efficient
systems, if the bandwidth expansion is not considered, are the smaller systems of the
MPPM family. This is logical because as the number of pulses is increased, the number
of errors generated is also increased. If the bandwidth expansion is considered more
important or equally important then the most efficient systems are found in the middle
(more bandwidth efficient) systems of the family. To prove this, a methodology referred
to as quality factor was developed. This methodology was based on the construction of a
(inverse) bath-tube curve combining two different quantities: i) efficiency (measured

in photons/detected PCM bit) and ii) bandwidth expansion. From this curve a user can

154
PhD Thesis

Chapter 9

see the total efficiency of a system referred to as quality. BER is a performance factor
used in communication. A methodology to predict the BER of MPPM systems has been
also proposed. The results from the BER confirmed, the quality factor, that the systems in

the middle of the MPPM systems are more immune to errors.

From the same performance analysis it was also evident about the effectiveness of
the MPPM format over the PPM format. In almost every MPPM system examined, the
format was superior to the equivalent PPM system (for a 2 pulse MPPM system without

even considering the bandwidth expansion).

The effect of data mapping is also considered to this investigation. Experiments
showed that Gray codes were very efficient because they minimise the Hamming distance
between adjacent codewords (and the probability of a generated error). To be able to
minimise the error probability even more, a data mapping that minimises the Hamming
distance between all weighted codewords in the MLS Decoder was needed. A
methodology (generated from the MLSD algorithm) was described of how to achieve
such a mapping. An algorithm identified the dominant error sequences (by isolating the
impact of every error sequence), that if minimised, an optimum or close to optimum
mapping is obtained. The same algorithm was used with a range of experiments that
measured in detail the impact of every error sequence. Doing this, the mathematical
models could be substituted by software generating similar results for a certain MPPM

system. Therefore, the time consumption for analysis is radically decreased.

155
PhD Thesis

Chapter 9

Most sensitivity and mapping experiments were done in the efficient 12-2 MPPM
system. To generalise the conclusions obtained from this investigation, smaller and
higher MPPM codes were also considered. From the experiments, the results obtained
showed almost the same pattern (results) as in the 12-Y MPPM family. Again, the middle
systems are the most efficient if bandwidth expansion is considered. Some minor
exceptions were found in systems were bandwidth expansion does not severely affect the

final sensitivity results.

The methodology of how to obtain an optimum or close to optimum mapping has
been described in detail. An issue that was not addressed was how to simplify this
process (or even automate it) by selecting the correct erased (weighted) MPPM
codewords. The solution was the design of a new algorithm that can generate the
weighted erased codewords that produce minimum or close to minimum Hamming
distances with all the MPPM codewords. The algorithm is simple, by generating the

erased codewords according to the data specimen of a specific MPPM system.

To measure these optimum mappings, a bound limit should have been generated
(the so called “optimum” mapping was found to be optimum in contrast to the other
tested mappings). To verify that these mappings are very efficient a “pseudo”-mapping
was generated referred as ideal. The mapping is only generated for comparison reasons
with the optimum mappings and cannot be used in a MLSD scheme because they allow
repetition of certain codewords. Basically, the idea behind the ideal mapping is that this

mapping uses only the all zero codeword, the codeword with only one pulse and

156
PhD Thesis

Chapter 9

codewords with the one pulse being shifted left or right. This sets the Hamming distance
between all codewords (and for every type of error) to 1 (or sometimes to 2). Results
obtained showed that the optimum mappings have a 30 to 50% less efficiency from the

ideal. This is evidence that the optimum mappings are very efficient coding.

A matched filter has also been selected to be used in the MLSD scheme in the
mathematical models. A raised cosine filter was tested for optimisation in a 12-Y MPPM

family. In this instance, the system has been shown to offer a sensitivity improvement.

The practical significance of this research is that a designer is able to:

1) Predict the efficiency of any MPPM system.

2) Predict the most efficient system of a MPPM family.

3) Use the most efficient MPPM family or the most efficient system in a MPPM
family according to specifications. As an example consider the following: A

designer needs to encode 6 PCM bits. Several MPPM systems can encode 6

) 12 13 14 15)
PCM bits such as: [2J , (2} (2] , and (2J . Which system has the best

sensitivity can be easily predicted now through the software solution. On the

other hand if the designer wants to encode from 3 up to 9 PCM bits using a

12
specific MPPM family like the (Y] the designer can easily predict which is

the most efficient system if bandwidth can be spared (sensitivity is more
important) or if sensitivity can be spared (bandwidth is more important) or if

both sensitivity and bandwidth are equally important.

157
PhD Thesis

Chapter 9

4) Measure the BER of any MPPM system.

5) Improve the final error rate of any MPPM system by changing the PCM
mapping (and generating the “optimum”) and measure this improvement by
using the “ideal” mapping.

6) Enhance the efficiency of the MLSD by using a raised cosine filter (especially

in very low normalized bandwidths).

158
PhD Thesis

Chapter 10

Chapter 10

Conclusion and Further Work

The main conclusions of this project are:

» A detailed investigation of an Optical MPPM link operating in a highly disperse

optical channel was implemented.

» A novel automated solution designed to predict the equivalent PCM error rates of
specific sequences simplified the task (using a full or a simplified analysis). An
original mathematical formulation was developed using the Maximum Likelihood
Sequence Detection (MLSD) scheme. Using the equivalent PCM error rates of
specific sequences generated from software, a full simulation of an MPPM optical

link was produced.

> The results indicated the effectiveness of the MPPM format over PPM.

» A measure of coding quality was proposed that accounts for efficiency of coding

and bandwidth expansion. This quality factor is a performance factor that can be

used in any MPPM system.

159
PhD Thesis

Chapter 10

12
» Original results presented for a (Y} MPPM system showed that the most

efficient systems were in the middle of the family. Only for very low normalized

bandwidths, lower coding was efficient.

» A methodology to predict the Bit Error Rate of any MPPM system was also
proposed. The results from the BER confirmed that the systems in the middle of
the MPPM systems are the most efficient in terms of sensitivity and bandwidth

expansion.

» The effects of linear increment, linear decrement, Gray code and random mapping

12
of data on the performance of a (Y j multiple PPM system were also considered.

Simulations using showed that the Gray code was the most effective, although the
improvement was not so significant, as it minimizes the Hamming distance

between adjacent multiple PPM words.

» Further experiments showed that sensitivity prediction can be obtained
exclusively with the use of software, making the analysis simpler and minimizing
the time consumption. This prediction was based on the measured impact of every

error sequence to the total error probability, and hence to the system’s sensitivity.

160
PhD Thesis

Chapter 10

» A methodology of how to predict the optimum or close to optimum mapping was
proposed. The mapping can be reproduced easily for larger systems. The
methodology was based on minimizing the (Total) Hamming Distance between
the Erased words. Simulations demonstrated the suggested mapping as optimum

or close to optimum.

» High order MPPM codes were considered for analysis. The results obtained
showed that in most families the most efficient systems were in the middle of the

families.

» Close to optimum mappings were presented for high order MPPM systems. The
results showed that the estimated mappings were found to be far superior to the

efficient Gray codes, linear coding and a series of random mappings.

» An ideal mapping is also proposed. This mapping is referred as ideal because the
Hamming Distance (HD) between all code-words is minimized. This mapping
allows repetitions of MPPM codewords and cannot be used in a MLSD scheme
and therefore, it is only used for comparisons with the (close to) optimum
mappings. It was found that the percentage change in error rate of the optimum
mappings in contrast to linear coding, are an average of 50% less to the

percentage change in error rate of the ideal mappings in contrast to linear coding.

161
PhD Thesis

Chapter 10

That means that the optimum mappings are (an average) close to the half of the

efficiency of the “ideal”.

» Other correlation techniques were considered for optimised detection. Results

12
obtained for the (Yj multiple PPM system showed that raised cosine filtering

enhances detection.

The author has achieved his objective to investigate MPPM systems on dispersive
optical channels. A computerized solution was developed to measure the equivalent PCM
error rates of specific MPPM sequences. Using the equivalent PCM error rates of these
specific sequences generated from software, a full simulation of an MPPM optical link
can be produced. In order to validate the computerized (theoretical) model, this needs to

be demonstrated practically.

A methodology, and an algorithm, was proposed of how to predict the optimum
or close to optimum mapping. A computerized solution should be produced that could
easily generate these mappings for a range of MPPM systems. Other coding techniques
[134] should also be considered, and the results obtained should be compared with that

obtained from the optimum mapping.

An optimised receiver was tested using a Raised Cosine filter. The results

obtained showed that this scheme can give a significant improvement in receiver

162
PhD Thesis

Chapter 10

12
sensitivity for low f,, values. The systems tested were from the (Y j MPPM family. The

scheme should be tested for various MPPM systems and different mappings in order to

fully validate this new scheme.

163
PhD Thesis

References

REFERENCES

. CALVERT, N.: “Digital Pulse Position Modulation”, PhD Thesis, C.N.A.A,

1988.

. MASSARELLA, A.J.: “An experimental investigation into the detection of
optical digital pulse-position modulation”, PhD Thesis, University of

Huddersfield, Octob.1992.

. GREEFKES, J. A., and RIEMEN, K.: "Code Modulation with Digitally
Controlled Companding for Speech Transmission," Philips Tech. Rev., pp. 335-

353, 1970.

. GOLAY, M.J.E: "Note on the theoretical efficiency of information reception with

PPM" PIRE, vol. 9, page 1031, 1949.

. McAULAY, RJ., and SAKRISON, D.J.: “A PPM/PM Hybrid Modulation

System”, IEEE Trans. Commun., vol.17, no.4, pp.458-468, 1969.

164
PhD Thesis

6.

10.

11.

References

KARP, S. and GAGLIARDI, R.M.: “The design of a Pulse-Position Modulated
Optical Communication System”, IEEE Trans. in Communications, vol. com -17,

Number 6, pp 670-676, December 1969.

FORNEY G.D.: “Maximum-Likelihood sequence estimation of digital sequences
in the presence of intersymbol interference”, IEEE Trans. Inform. Theory, vol.18,

pp.363-378, 1972.

BLACHMAN, N.M.: “The Spectrum of a TDM PPM Signal”, IEEE Trans.

Commun., vol.22, no.6, pp.864-866, 1974.

BLACHMAN, N.M.: “The SNR Threshold in PPM Reception”, IEEE Trans.

Commun., vol. com-22, Number 8, pp.1094-1098, August 1974.

MUOI, T.V., and HULLETT, J.L.: “Receiver Design for Optical PPM Systems”,

IEEE Trans. Commun., vol.26, no.2, pp.295-299, 1978.

PRATI, G., and GAGLIARDI, R.M.: “Decoding with Stretched pulses in laser

PPM communications”, vol.31, pp.1037-1045, 1983.

165
PhD Thesis

12.

13.

14.

15.

16.

17

References

GARRETT, I.: “Digital pulse-position modulation for transmission over optical
fibre channels with direct and heterodyne detection”, IEEE Trans. Commun.,

vol.31, pp.518-527, 1983.

GARRETT, I.: “Digital pulse-Position Modulation over dispersive optical fibre
channels”, Presented at Int. Workshop on Digital communications, Tirrenia, Italy,

15-19 August 1983.

GARRETT, I.: “Digital pulse-position modulation over slightly dispersive optical
fibre channels”, International symposium on Information theory, pp.78-79, St.

Jovite, 1983.

GAGLIARDI, R.M., and PRATI, G.: “Decoding with Stretched Pulses in Laser
PPM Communications”, IEEE Trans. Commun., vol.31, no.9, pp.1037-1045,

1983.

PRATI, G.: “Joint Pulse Spreading Estimation and Decoding in Stretched Pulse

PPM Optical Channels”, IEEE Trans. Commun., vol.33, no.8, pp.760-766, 1985.

. CHEN, C., and GARDNER, C.S.: “Performance of PLL synchronized optical

PPM communication system”, IEEE Trans. Commun., vol.34, pp.988-994, 1986.

166
PhD Thesis

18.

19.

20.

21.

22.

23.

References

LING, G., and GAGLIARDI, R.M.: “Slot Synchronization in Optical PPM

Communications”, IEEE Trans. Commun., vol.34, no.12, pp.1202-1208, 1986.

PIRES, J.J.O., and J.R.F. da ROCHA: “Digital pulse position modulation over
optical fibers with avalanche photodiode receivers”, IEEE Proc. J., pp.309-313,

1986.

CHARBIT M., and BENDJABALLAH, C.: “Probability of Error and Capacity of
PPM Photon Counting Channel”, IEEE Trans. Commun., vol.34, no.6, pp.600-

605, 1986.

GAGLIARDI, R.M., and KIM, Y.: “System design for optical PPM
communications with diode combining” IEEE Trans. Commun., vol. COM-36,

n0.2, pp.186-190, 1988.

CALVERT, N.M.,, SIBLEY, M.J.N., and UNWIN, R.T.: “Experimental optical
fibre digital pulse-position modulation system”, Electron.Lett., 24, pp.129-131,

1988.

GARRETT, I., CALVERT, N.M,, SIBLEY, M.J.N., UNWIN, R.T., and CRYAN,
R.A.: “Optical Fibre digital pulse position modulation”, Br.Telecom. Technol. J.,

vol.7, no. 3, pp.5-11, 1989.

167
PhD Thesis

24.

25.

26.

27.

28.

29.

References

DAVIDSON, F., and SUN, X.: “Slot clock recovery in optical PPM
communication systems with avalanche photodiode photodetectors”, IEEE Trans.

Commun., vol.37, pp.1164-1172, 1989.

GEORGHIADES, C.N.: “On the synchronizability and detectability of random

PPM sequences”, IEEE Trans. Inform. Theory, vol.35, pp.146-156, 1989.

CALVERT, N.M,, SIBLEY, M.J.N., UNWIN, R.T., GARRETT, I., and CRYAN,
R.A.: “Optimal filtering of digital PPM transmitted over optical fibre channels”,

Presented at IEE Colloqium on Electronic Filters, 1989.

CRYAN, R.A., UNWIN, R.T., GARRETT, 1., SIBLEY, M.J.N., and CALVERT,
N.M.: “Optical Fibre digital pulse-position modulation assuming a Gaussian

received pulse shape”, IEE Proc.J., vol. 137, no. 4, pp.8§9-96, 1990.

CRYAN, R.A., UNWIN, R.T., MASSARELLA, A.J., SIBLEY, M.J.N., and
GARRETT, I.: “Coherent detection: n-ary PPM vs. PCM”, SPIE Proceedings on

Coherent Lightwave Communications, San Jose, California, 1990.

CRYAN, R.A., UNWIN, R.T., MASSARELLA, A.J., and SIBLEY, M.J.N.:
“Performance analysis of a homodyne digital PPM system”, IEE 2" Bangor

Communications Symposium, 1990.

168
PhD Thesis

References

30. ADVANI, M.P., and GEORGHIADES, C.N.: “Jointly Optimal Receivers for the

31.

32.

33.

34.

Optical Pulse-Position Modulation Channel”, IEEE Trans. Commun., vol.38,

10.2, pp.179-186, 1990.

MASSARELLA, A.., and SIBLEY, M.J.N.: “Experimental results on sub-
optimal filtering for optical digital pulse-position modulation”, Electron. Lett.,

pp.574-575, 1991.

CRYAN, R.A., UNWIN, R.T., MASSARELLA, A.J.,, SIBLEY, M.J.N.,
GARRETT, I., and CALVERT, N.M.: “Optical fibre digital PPM: Theoretical and
experimental results”, Presented at UK-USSR Symp. On Communications and

Applications, 1991.

CRYAN, R.A., UNWIN, R.T., MASSARELLA, A.J., and SIBLEY, M.J.N.: “A
Comparison of Coherent Digital PPM with PCM”, European Trans. Telecomm.,

pp.331-340, 1992.

SIBLEY, M.J.N., and MASSARELLA, A.J.: “Detection of digital pulse position
modulation over highly/slightly dispersive optical channels”, Presented at SPIE

Conf. on Video Communications and Fiber Optic Networks, Berlin, 1993.

169
PhD Thesis

35.

36.

37.

38.

39.

40.

References

CRYAN, R.A., and UNWIN R.T.: “Optimal and sub-optimal detection of optical

fibre digital PPM”, IEE Proc. J. Optoelectron., pp.367-375, 1993.

SIBLEY, M.J.N.: “Design implications of high-speed digital PPM”, Presented at

SPIE Conf. on Gigabit Networks, San Jose, CA, 1994.

BARRY, J.R.: “Sequence detection and equalization for pulse-position
modulation”, in Proc. IEEE Int. Conf. Communications (ICC’94), New Orleans,

LA, pp.1561-1565, May 1-5, 1994.

CRYAN, R.A.: “Optimum and Sub-optimum Detection of Optical Heterodyne n-

ary PPM”, Journal of Optical Communication, pp.164-169, 1994.

AUDEH, M.D., KAHN, J.M., and BARRY, J.R.: “Performance of pulse-position
modulation on measured nondirected indoor infrared channels”, IEEE Trans.

Commun., vol.44, pp.654-659, 1996.

AUDEH, M.D., KAHN, JM. and BARRY, JR.: “Decision-feedback
equalization of pulse-position modulation on measured indoor infrared channels”,
Proc. IEEE Int. Conf. Communictions (ICC’96), Dallas, TX, vol.2, pp.1220-1226,

June 23-27, 1996.

170
PhD Thesis

41.

42.

43.

44,

45.

46.

47.

48.

References

REED, LS., and SOLOMAN, G.: “Polynomial codes over certain finite fields”, J.

Soc. Ind. Appl. Math., vol.8, pp.300-304, 1960.

VITERBI, A.: “Classification and evaluation of coherent synchronous sampled-

late telemetry systems”, IRE Trans. on SET, No.1, page 13, 1962.

WOLF, J.,, and UNDERBOECK, G.: “Trellis Coding for Partial-Response

Channels”, Univ. of California at San Diego, La Jolla, CA, 1986.

HAGENAUER, J.: “Rate-compatible punctured convolutional codes (RCPC

codes) and their applications”, IEEE Trans. on Commun., vol.36, Iss.4, 1988.

GARRETT, I.: “Receivers for optical fibre communications”, Radio and Elec.

Eng., vol.51, pp.349-361, 1981.

MCcELIECE, R.J.: "Coding for photon channels", IEEE Proc. National Telecomm.

Conf., pp.23.3.1-3, 1979.

MCcELIECE, R.J.: "Practical codes for photon communications", IEEE Trans.

Inform. Theory., vol.IT-27, pp393-398, 1981.

DIVSALAR, D., and GAGLIARDI, R.M.: “Demodulation of PPM for Reed-
Solomon coded optical space channel”, in Proc. IEEE Global Telecommun. Conf.,

Miami, FL, 1982.

171
PhD Thesis

49.

50.

51.

52.

53.

54.

References

DIVSALAR, D., and GAGLIARDI, R.M.: “PPM Performance for Reed-Solomon
Over an Optical-RF Relay Link”, IEEE Trans. Commun., vol.32, no.3, pp.302-

304, 1984.

O'REILLY, J.J., and YICHAO, W.: “Line code design for digital pulse-position

modulation”, IEE Proc., pt.F, vol.132, no.6, pp.441-446, 1985.

YICHAO, W., and O'REILLY, J.J.: “Repeatered optical fibre communication

based on line-coded digital PPM transmission”, IEEE Conf., 1985.

YICHAO, W., O'REILLY, J.J.:"Syncronisation of line-coded digital PPM in
repeatered transmission systems", IEE Proceedings F (Communications, Radar

and Signal Processing), vol. 134, no.4, pp.377-382, 1987.

ATKIN, G.E., LU, M.H., and FUNG, K.S.: “Performance analysis of Reed-
Solomon codes in a slightly dispersive optical PPM system”, MILCOM, vol.L,

pp.7-12. 1988.

ATKIN, G.E., and CORRALES, H.P.: “A concatenated coding alternative for the
optical PPM channel”, 8" Annual International Phoenix Conference on

Computers and Communications, pp.155-159, 1989.

172
PhD Thesis

55.

56.

57.

58.

59.

References

FORESTIERI, E., GANGOPADHYAY, R., and PRATI, G.: “Performance of
convolutional codes in a direct detection optical PPM channel”, IEEE Trans.

Commun., vol.37, pp.1303-1317, 1989.

ATKIN, G.E., and FUNG, K.S.: “Performance analysis of coded optical PPM

system using direct and coherent detection”, IEEE Proc. J., pp.226-232, 1990.

CRYAN, R.A., and UNWIN, R.T.: “Heterodyne n-ary PPM employing Reed-
Soloman codes”, IEEE GLOBECOM ’90, San Diego, California, pp.789-793,

1990.

CRYAN, R.A., and UNWIN, R.T.: “Reed-Soloman coded optical fibre digital
PPM: Approaching Fundamental Limits”, IEEE International Conference on

Communication Systems, Singapore, vol.1, 1990.

CANNONE, G., MAJUMDER, S.P., GANGOPADHYAY, R., and PRATI, G.:
“Performance of Convolutionally Coded Optical M-PPM Systems with Imperfect
Slot Synchronization”, IEEE Trans. Commun., vol.39, no.10, pp.1433-1437,

1991.

173
PhD Thesis

60.

61.

62.

63

64.

65.

References

CRYAN, R.A., and UNWIN, R.T.: “Reed-Solomon coded homodyne digital
pulse position modulation”, IEE PROCEEDINGS -I, vol.139, no.2, pp.140-146,

1992.

MASSARELLA, A.J., and SIBLEY, M.IN.: “Optical digital pulse-position
modulation: Experimental results for heterodyne detection using sub-optimal

filtering”, Electron. Lett., pp.574-575, 1992.

LEE, D.C., AUDEH, M.D., and KAHN, J.M.: “Performance of pulse-position
modulation with trellis-coded modulation on nondirected indoor infrared
channel”, in Proc. IEEE Global Telecommunications Conf., Singapore, pp.1830-

1834, 1995.

.LEE, D.C., KAHN, J.M., and AUDEH, M.D.: “Trellis-coded pulse-position

modulation for wireless indoor infrared communications”, IEEE Trans. Commun.,

vol.45, pp.1080-1087, 1997.

LEE, D.C.M., and KAHN, J.M.: “Coding and Equalization for PPM on Wireless

Infrared Channels”, IEEE Trans. Commun., vol.47, no.2, pp.255-260, 1999.

CRYAN, R.A.: “High sensitivity digital pulse position modulation systems”, PhD

Thesis, University of Huddersfield, Sept.1992.

174
PhD Thesis

66.

67.

68.

69.

70.

References

ELMIRGHANI, J.M.H.M.O.: “Frame and Slot Synchronization for Optical Fibre
Digital Pulse Position modulation”, PhD Thesis, University of Huddersfield,

Dec.1993.

ZWILLINGER, D.: “Differential PPM has a higher throughput than PPM for the
bandlimited and average power limited channel”, IEEE Trans. of Inform. Theory,

vol. IT-34, Issue 5, Pt.2, pp.1269-1273, 1988.

SHIROKOV, G.A., and BUKHINNIK, A.: “Evaluation of the reliability of signal
transmission along digital optical fibre channels with differential pulse position
keying”, Telecommunications and Radio Engineering,Pt 2, vol. 39, no. 7, pp.109-

111, 1984.

PEILE, R.E.: “Error correction, interleaving and differential pulse position
modulation”, International Journal of Satellite Communications, vol.6, no.2, pp.

173-187, 1988.

SHIU, D., and KAHN, J.M.: “Differential Pulse-Position Modulation for Power-
Efficient Optical Communication”, IEEE Trans. Commun., vol.47, no.8, pp.1201-

1210, 1999.

175
PhD Thesis

71.

72.

73.

74.

75.

76.

References

BAR-DAVID, 1., and KAPLAN, G.: “Information rates of photon-limited
overlapping pulse position modulation channels”, IEEE Trans. Commun. pp.455-

464, 1984.

SHALABY, HM.H.: “A performance analysis of optical overlapping PPM-
CDMA communication systems”, IEEE Journal of Light. Tech., vol. 17, no. 3,

pp.426-434, 1999,

DAVIDSON, F.: “Free-space direct detection optical communications with color

coded PPM signalling”, IEEE GLOBECOM 84, vol.2, pp.944-948, 1984.

BAYOUMI M., and DAVIDSON, F.: “Performance characteristics of laser diode
communication systems with APD receivers and color-coded PPM signalling”,
Proceedings of the 23™ Conference on Communication, Control and Computing,

IL, USA: Univ. Illinois, pp.388-389, 1985.

DAVIDSON, F.: “Direct detection optical communication with color coded pulse
position modulation signalling”, TEEE Trans. Commun., vol.33, pp.273-276,

1985.

DAVIDSON, F., and BAYOUMI M.: “Theoretical performance of direct

detection optical communication with AlGaAs laser transmitters, avalanche

176
PhD Thesis

77.

78.

79.

80.

81.

References

photodiode detectors and color-coded PPM signalling”, Journal of Lightwave

Technology, vol.LT-5, no.11, pp.1574-1583, 1987.

LEE, G.M., and SCROEDER, G.W.: “Optical Pulse Position Modulation with
Multiple Positions per Pulsewidth”, IEEE Trans. Commun.., vol. COM-25,

pp.360-365, 1977.

GOL’DSTEYN, A. and FREZINSKIY, B.: “An Investigation of the Transmission
of a Multi-Position PPM Optical Signal Through a Communications Line

Containing Repeaters”, Radio. Eng. Electron Phys., vol.24, pp.65-71, 1978.

MAROUG]I, S.D., and SAYHOOD, K.H.: “Noise performance of pulse interval
modulation systems”, International Journal of Electronics, vol.55, no. 4, pp.603-

614, 1983.

FYATH, R.S., et al: “Spectrum investigation of pulse-interval modulation”,

International Journal of Electronics, no. 5, pp.597-601, 1985.

GHASSEMLOOQY, Z., HAYES, AR., SEED, N.L., and KALUARACHCHI,
E.D.: “Digital pulse interval modulation for optical communications”, IEEE

Communications Magazine, vol.36, Iss.12, pp.95-99, 1998.

177
PhD Thesis

82.

83.

84.

85.

86.

References

ALDIBBIAT, N.M., GHASSEMLOOY, Z., and McLAUGHLIN, R.:
“Performance of dual header pulse interval modulation (DH-PIM) in optical

wireless communications”, IEE Proceedings Optoelectronics, vol.13, Iss.5,

pp-138-142, 2001.

ALDIBBIAT, N.M., GHASSEMLOOQOY, Z., and McLAUGHLIN, R.: “Indoor
optical wireless systems employing dual header pulse interval modulation(DH-

PIM)”, International Journal of Communication Systems, 2005.

YEMIN, V., 1., and PETRICH, A., V.: “Noise immunity of the reception of
optical multiposition pulse-time modulated signals under intersymbol noise

conditions”, Radiotekhnika, no.7, pp.86-87, 1984.

SUGIYAMA, H., and NOSU, K.: “multiple PPM: A Method for Improving the
Band-Ultilization Efficiency in Optical PPM”, Journal of Lightwave Technology,

vol. 7, no.3, pp.465-472, 1989.

ELMIGHANI, J.M.H., CRYAN, R.A., and CLAYTON, F.M.: “Optical fibre
multiple PPM frame synchronization”, Microwave and opt. Tech. Lett., vol.6,

no.14, pp.800-804, 1993.

178
PhD Thesis

87.

88.

89.

90.

91.

92.

References

MAJUMDER, S., P., and GANGOPADHYAY, R.: “Performance of
convolutionally coded OOK and PPM signaling in a direct detection optical

communication”, IETE Technical Review, vol.7, Iss.3, pp.194-197, 1990.

BUDINGER, J., M., VANDERAAR, M., WAGNER, P., and BIBYK, S.:
“Combinatorial pulse position modulation for power-efficient free-space laser

communications”, in Proc. SPIE, Los Angeles, CA, Jan. 20-21, pp.214-225, 1993.

FARES, D.A.: “Heterodyne detection of multipulse signaling in optical
communication channels”, Microwave Optical Technology Letter, vol.9, no.4,

1995.

VELIDI, R., and GEORGHIADES, C.N.: “Frame synchronization for optical
multi-pulse pulse position modulation”, IEEE Trans. Commun. vol.43, pp.1838-

1843, 1995.

PARK, H., and BARRY, R.: “The performance of multiple-pulse-position
modulation on multipath channels”, IEE Proc. Optoelectron., vol.143, no.6,

pp.360-364, 1996.

PARK, H., and BARRY, R.: “Performance analysis and channel capacity for

multiple-pulse position modulation on multipath channels”, IEEE International

179
PhD Thesis

93.

94.

95.

96.

97.

References

Symposium on Personal, Indoor and Mobile Radio Communications, pp.247-251,

1996.

VELIDI, R., and GEORGIADES, C.N.: “On Symbol Synchronization of MPPM

Sequences”, IEEE Trans. Commun., vol.46, no.5, pp.587-589, 1998.

SIBLEY, M.J.N.: “Analysis of multiple pulse position modulation when operating
over graded-index, plastic optical fibre”, IEE Proc.-Optoelectron., vol.151, no.6,

December 2004.

CRYAN, R.A., and SIBLEY, M.J.N.: “Multiple pulse position modulation
employing raised cosine filtering”, IEE Proceedings Optoelectronics, vol.153,

Iss.4, pp.205-211, 2006.

ATKIN, G.E., and FARES, D.A.: “Coded multipulse position modulation in a
noisy channel”, Microwave and Optical Technology Letters, vol.2, no.9, pp.336-

340, 1989.

HERRO, M.A., HU, L.: “Multi-pulse PPM and a new look at coding for direct
detection optical channels using APD receivers”, Proceedings of the 23"
Conference on Communication, Control and Computing, IL, USA: University of

[linois, pp 401-410, 1989.

180
PhD Thesis

98.

99.

100.

101.

102.

References

TAKAHASHI, M., et al: “Capacity and effects of reed-solomon codes on multi-
pulse PPM in optical communications”, IEICE Trans., vol.E-72, pp.1198-1203,

1989.

ATKIN, G.E. and FUNG, K.S.: “Coded multipulse modulation in optical
communication systems”, IEEE Trans. in Communications, vol. com-42, Number

3, pp 574-582, March 1994,

PARK, H., and BARRY, R.: “Partial-response precoding scheme for multiple

pulse-position modulation”, IEEE Proc. Opto., vol. 150, no. 2, pp.133-137, 2003.

PARK, H., and BARRY, R.: “Trellis-Coded Multiple-Pulse-Position Modulation
for Wireless Infrared Communications”, IEEE Trans. Commun., vol. 52, no. 4,

pp.643-651, April 2004.

GARRIDO-BALSELLS, JM., GARCIA-ZAMBRANA, A., and PUERTA-
NOTARIO., A.: “Novel block coding method for rate-adaptive optical wireless
communications systems” in Proc. IEEE Global Telecommunications Conference

(Globecom 05), St. Louis, Nov. 2005.

181
PhD Thesis

103.

104.

105.

106.

107.

108.

References

GARRIDO-BALSELLS, JM., GARCIA-ZAMBRANA, A., and PUERTA-
NOTARIO., A.: “Variable weight MPPM technique for rate-adaptive optical

wireless communications” IEE Electronics letters, 2006.

SIBLEY, M.J.N.: “Dicode pulse-position modulation: a novel coding scheme for
optical-fibre communications”, IEE Proc. Optoelectronics, vol.150, no.2, pp.125-

132, April 2003.

SIBLEY, M.J.N.: “Analysis of dicode pulse position modulation using a PINFET
receiver and a slightly/highly dispersive optical channel”, IEE Proc.

Optoelectronics, vol.150, no.3, pp.205-209, June 2003.

MOHANTY, N.,C.. “Estimation of Delay of M PPM signal in Laguerre

Communications”, IEEE Trans. Commun., vol.22, no.5, pp.713-714, 1974.

MANSURIPUR, M., and GOODMAN, J.W., RAWSON, E.G., and NORTON,
R.E.: “Fiber Optics Receiver Error Rate Prediction Using the Gram-Charlier

Series”, IEEE Trans. Commun., vol.28, no.3, pp. 401-407, 1980.

GAGLIARDI, R.M., and PRATI, G.: “On Gaussian Error Probabilities in Optical

receivers”, IEEE Trans. Commun., vol.28, n0.9, pp.1742-1746, 1980.

182
PhD Thesis

References

109. HAYAT, M.M., SALEH, B.E.A., and GUBNER, J.A.: “Bit-Error Rates for
Optical Receivers Using Avalanche Photodiodes with Dead Space”, IEEE Trans.

Commun., vol.43, no.1, pp.99-105, 1995.

110. NIKOLAIDIS, K., and SIBLEY, M.J.N.: “Investigation of an Optical Multiple
PPM Link over a Highly Dispersive Optical Channel”, IET Optoelectronics,

Volume 1, Issue 3, p. 113-119, June 2007.

111. NIKOLAIDIS, K., and SIBLEY, M.J.N.: “Theoretical Investigation into the
Effects of Data Mapping in an Optical multiple PPM Link”, Electronics Letters,

Volume 43, Issue 19, p. 1042-1044, September 2007.

112. NIKOLAIDIS, K., and SIBLEY, M.J.N.: “Optimum Mapping in an Optical
Multiple PPM link using a Maximum Likelihood Sequence Detection Scheme”,

IET Optoelectronics, Volume 3, Issue 1, p. 47-53, February 2009.

113. NIKOLAIDIS, K., and SIBLEY, M.J.N.: “Investigation of Higher Order Optical
Multiple PPM Links over a Highly Dispersive Optical Channels”, submitted IET

Optoelectronics paper.

183
PhD Thesis

Bibliography

BIBLIOGRAPHY

114.

115.

116.

117.

118.

119.

ASHEDEN, PJ.: “The Designer’s Guide to VHDL”, Morgan Kaufmann

Publications, ISBN 1-55860-270-4, 1996.

PERRY, D.L.: “VHDL: Programming By Example”, Morgan Kaufmann

Publications, ISBN 1-58751-311-7, 2002.

JAWADEKAR, W.: “Software Engineering: Principles and Practice”, McGraw

Hill, ISBN 0070583714, 2004.

GHEZZI, C., JAZAYERI, M., and MANDRIOLI, D.: “Fundamentals of Software
Engineering”, 2" Edition, Pearson Education (Addison Wesley) ISBN 0-13-

099183-X, 2003.

VLIET, H.: “Software Engineering: Principles and Practice”, 2" Edition, John

Wiley and Sons, ISBN 0-471-97508-7, 2002.

BRAUDE, E.J.: “Software Engineering: An Object-Oriented Perspective”, John

Wiley and Sons, ISBN 0-471-32208-3, 2001.

184
PhD Thesis

120.

121.

122.

123.

124.

125.

126.

Bibliography

PARNAS, D.L., WEISS, D.M. and HOFFMAN, D. M.: “Software Fundamentals:

Collected Papers”, Addison-Wesley, ISBN 0-201-70369-6, 2001.

PRESSMAN, R.S.: “Software Engineering: A Practicioner's Approach”, 5™

Edition, McGraw Hill, ISBN 0-07-365578-3, 2001.

SOMMERVILLE, I.: “Software Engineering”, 6" Edition, Pearson Education

(Addison Wesley), ISBN 0-201-39815-X, 2001.

PFLEEGER, S.L.: “Software Engineering: Theory and Practice”, Prentice Hall,

ISBN 0-13-624842-X, 1998.

RANDELL, B. and BUXTON, J.N.: “Software Engineering Techniques”, report
of a conference sponsored by the NATO Science Committee, Rome, Italy, 164pp,

Scientific Affairs Division, NATO (1970), Brussels 27-31 Oct. 1969.

BOOCH, G., RUMBAUGH, J. and JACOBSON, I.: “Unified Modeling Language

User Guide”, 2nd Edition, Prentice Hall Publications, ISBN: 0321267974, 2005.

MILES R.: “Learning UML 2.0”, O’REILLY Publications, ISBN: 0596009828,

2006.

185
PhD Thesis

127.

128.

129.

130.

131.

132.

133.

Bibliography

DEITEL, and DEITEL: “C++ How to Program”, Chapter 9, “Test Patterns”, 4h

Edition, Prentice Hall Publications, ISBN 918-114-123941-1, 2007.

SCHACH, S.R.: “Object Oriented Software Engineering”, McGraw Hill, ISBN

978-007-125941-5, 2008.

BRUEGGE, B. and DUTOIT, A.H.: “Object-Oriented Software Engineering:

Using UML, Patterns and Java”, Pearson Education, ISBN 0-13-191179-1, 2004.

LETHBRIDGE, T.R. and LAGANIERE, R.: “Object-Oriented Software
Engineering: Practical Software Development using UML and Java”, McGraw

Hill, ISBN 0-07-709761-0, 2001.

BRUEGGE, B.: “Object-Oriented Software Engineering: Conquering Complex

and Changing Systems”, Prentice Hall, ISBN 0-13-489725-0, 1999.

PERSONICK, S.D.: ‘Receiver design for digital fiber optic communication

systems, I, II’, Bell Syst. Tech. J., 52, pp. 843-886, 1973.

HARDY, G. and WRIGHT, E.: “An introduction to the theory of numbers”, 5t

ed., Oxford Univ. Press, 1979.

186
PhD Thesis

Bibliography

134. SWEENEY, P.: “ERROR CONTROL CODING: FROM THEORY TO

PRATICE”, WILEY Publications, ISBN 9-780470-844567, 2002.

187
PhD Thesis

Appendix A

APPENDIX A

Figures

17 FIGURES

188
PhD Thesis

Figures

WATERFALL MODIFIED WATERFALL
CONCEPT COMCEPT
v r
DESIGN DESIGN
¥
IMPLEMENTATION
IMPLEMENTATION

USE

Figure 3.1: The Waterfall and Modified Waterfall Design Methodologies.

189
PhD Thesis

Figures

Enter MPPM System Details
.,—'—'—'__'__'_'_'__ - e, —
— Ch Error T A

==includes=_
Choose Performance Algorithm i

-
-~

o
—~ Z=include=>
- -

B .
Choose Mapping <#include==

-
Ghnuse AmiuD

Figure 3.2: A level-0 Use Case Diagram of the software.

190

= —=singlude>>" ~

= @f Messages

e — e — ==include==__ -

PhD Thesis

Figures

Continue / Exit

Display Data

Store Data

N
- N
-~ N
S ~
S
< w ==includes=
~ ~ A

i ~ N
oy
False Alarm ~ ceincludess N
~ ~ N

Erasure

Wrong Slot

seinelude=, S ™
~ N
~ ~ 5
Choose Performance Algorithm s
- ~

Instructions Statistics

Data Arrays

Linear IncrementDecrement Gray Codes Other

Figure 3.3: A level-1 Use Case Diagram of the software.

191
PhD Thesis

Figures

Choose Error Type ‘ ‘E

Write/Continue

] |
I

»

a

a

gl

|

nter ER, FA, PCM Bits, Pascal's ‘ ‘ChnnseMapging | ‘Chonse range or s1arl‘ |Chunse Algorithm | ‘@m_ay_ ‘ ‘Input Arrm| ‘
T T I I T T

]

a

‘ ‘Disglynaﬁ Output Arrays ‘ ‘\MneJCuminueJExil ‘
T T

S |

Figure 3.4: A Sequence Diagram of the software.

192

PhD Thesis

Figures

MPPM Tx

110000000000{000000
101000000000{000001
100100000000]000010
100010000000{000011
100001000000{000100
1000001 00000{000101
100000010000{000110
100000001000{000111
100000000100{001000
100000000010/001001
100000000001/001010
011000000000/001011

0000000001011 1114

100000000000
010000000000
001000000000
000100000000
G001 0000000
CO0a01000000
C00000100000
000000010000
QROQ00001000
0O0a00000100
CO0000000010
CO0000000001

000000
Qoaon1
00ac10
aoao11
Qooi00
Qo101
000110
0Qo111
001000
001001
01010
ag10i1

I1“1‘.1! 1.1

PCM DATA

Figure 3.5: The software processing for an Erasure error in a

MPFM Mapping Algorithm
(Encoder) with aquivalant

PCM Data

PCM Data Mapping Generation

and

Binary to Decimal conversion

Algorithms

Onginal Codewords
and
PCM Data

Erasure Eror Sequence

Equivalent PCM Error Rates

:

Generation of every possible

Erasure Codeword

MLSD Rx

110000000000|000000
101000000000|000001
100100000000|000010
100010000000{000011
10000 1000000/000100
100000100000|000101
10000001 0000|0001 10
100000001 000|000 11
1000000001 060/001000
100000000010|001009
100000000001 001010
011000000000|001011

0000000001071141111

Erasure MLSD Algorithm

001000000000[011001
D001 00000000} 100100
0000 C0A00001101110
DDO001 000000} 100110

XOR

‘000D00100000(1 10101
0ODDOGO 10000} 111000
DOOO0C0A1000] 111100
DOODOC000100(1 11022
000000000010(111221
000D00000001|111110

Erasure PCM

Error Algerithm

110000000000000000 0 O
101000000000000000 2 1
100100000000000000 3 1
10001 DO00D00000000 4 2
100001 D0000RI000000 2 1
1000001 00000000000 2 2
100000010000000000 5 2
100000001 000000000 & 3
100000000100000000 4 1
100000000010000000 4 2
100000000001000000 3 2

0000000001 10000000 2 3

Generation

Sequence
and

and @—P Equivalent PCM error Rate

Algorithm

Probabilities
Generation

193

MPPM system.

PhD Thesis

Figures

0 0
1
OR
ROR
1
R REMEN
N T
R I REM
L) .I)
14 L
EAD I
0
OR
0
[¥

Figure 3.6: A Console-32 Interface.

194

=

PhD Thesis

Figures

§ MPPM INPUT CHARACTERISTICS

Humber of Slots <) | I
Mumbes of Pulses [v) ﬁ
Mumber of encoded PCM Bis |
Erazure Mumber l—

AUTOMATED MPPM CHARACTERISTICS

Murber of encoded PCM Bits | |

Erasure Mumber I:I
Falze Alsirn Munnbser | |
Pascal's Mumber |

Fatze Alasm Mumnbes |
Pazcals Number |
ERROR TYPE MLSD ALGORITHM
 ERASURE 1 FALSE ALARM " WRONG 5LOT | © COMPLETE i~ 2PULSE
MAPPING ARRAYT RESULTS AND RATES
™ LIMEAR INCREMENT ™ DATA ARRAY
™ LIMEAR DECREMENT T MPPM-DATA ARRAY
" GRAY CODES " ERASURE WEIGHTED ARRAY
™ READ MAPPING ™~ FALSE ALARM WEIGHTED ARRAY
Start from l— " ERASURE PCM ERROR

i~ FALSE ALARM FCM ERROR
™ RANDOM " WRONG SLOT PCM ERROR

RAMGE
From | To | ACTION [CSTATISTICS AND MESSAGES
TOTAL NUMBER '
SAVE RESULTS | [OF PCM ERRORS I:I
[~ ACCEPT AND CLEAR INPUTS COMNTIMUE
CLEAR IMPUTS ACCEPT INPUTS EXT
Figure 3.7: A Visual MFC Interface.
195

PhD Thesis

Mumber of Pulses (Y}
L 4 L
T Row *
2™ Row 1 1 1 AT]] 0.0
3" Row 1 1 1 1..20..9 i} a 0.0
4" Row 1 1 1 1.1] a 0.0
Pascal's R,
Murnber o 1] 1]] 1 1. 11
Row o
&
Number of Slots (X)
] X
Figure 3.8: An v MPPM system.
196

Figures

PhD Thesis

Figures
Create
a Dynamic Array of Size
o B
Set the first ¥ slots equal
{of the 1 row) 1o 1
Use 4 variables M, M, ¥'1 and Y2
M initlalized ta 1
M initialized to 1

Scan X-N+1 slots of the M
row {frame) and detect the
last 2 pulses ¥'1 and ¥2

Step 1

2™ pulse (¥2) is not in the final

position (X-MN) cupymaat tha
elements until the 1% pulse
PONon o1 i {¥1) in the next frame (M-+1
1 and serial right shift the il

pulse (Y2) in the (M+1) frame
Increament i

Step 2

pulse?
o

-

Scan X-N slots of the M row
[frame) and detect the last
pulse ¥2

Step 3

¥2 Is not in the penuliimate
position (new X-M position)
Repaat Step 2

Repeat Step 2 and add M
pulses to the right of the Y2
pulse, If N 1= (¥-1}, and
increment M
Else EXIT

Figure 3.9: The

MPPM mapping algorithm.

197

PhD Thesis

Figures

Create a Dynamic Array of
size chM_Ens*zm’"-z“)

Decimal Mumber (N}
generated according to the
Mapping used
Step 1

MNumbert2=Remainder

Mumber/2=MNumber
Stap 2

Bit=Remainder
Store the Bit o the Mapping
Register
Step 3

Figure 3.10: The Decimal-to-Binary Conversion.

198
PhD Thesis

Figures

Figure 3.11: The ER MLSD algorithm.

199

PhD Thesis

Figures

Create the ER PCM En‘ormlsﬂm of size
‘-{x_'fEM_EITE+Y:I.2 _Erra:I
Copy every row of the MPPM register {in the first
X shots of every row of the) ER PCM armor register
Initighize M to 1
Initialize N 1o 1
Initialize all counters tc 0

I

Far tha M row of the ER PCM
Error register scan the N row
» ofthe Averaged ER MLSD |e
register
Step 1

Compare (X-0R) all the PCM
bits of the M (orginal data)
and N (averaged MLSD data)
row. Store (in the comect slot)
the total number of errors in
the M row.

Step 3

IsM=Y7 Faise

Trua

Incremeant i

False

Figure 3.12: The ER PCM error algorithm.

200
PhD Thesis

Figures

Scan the M row of the ER PCM Emor register
Use two variables M and N
Initialize M to 1
Initiglize M to 1
Step 1

Detect the N pulse
Step 2

Is the pulse
distance from the ™, False
first or the last
slog=2 7%
1

True

IFl exisls. Pulsas from
previous or next frama
should be considered
(counted)
Slep 4

Detect the N+1 pulse
Step 5

The arror s not a standard error. Detect adjacent
pulzes. Increment M

Step 6

The error is 8 standard emor. Count the number
of gererated PCM errors, Increment M.

Is M equal to Y 7
Step 7 Q3

Initialize M to 1

Figure 3.13: The Erasure error sequence detection algorithm.

201

PhD Thesis

Figures

Wrong Slot on First

False Alarm between
Pulse*D

Erasure of First Pulse*0 Pulses'q

rong Slot on Second

Standard Erasure*| Erasure of Second False Alarm between Standard Pulse™

Pulse*d Double Pulses*d Wrong Slof*0

Standard
False Alarm*0

A 4

AN Lea)

Erasure Error

>\ / Ermor \ Erm/r‘/
- _,/ Repeat for 'ﬂ'ron&a .

Repeat for Every Erasure |~ | Repeat for Every Falsa N [
Sequence making the / Alarm Sequence when iﬁiggfg?igﬁ,:'hee
prabability of the agor impact of every Erasure Alarm Sequence is -
sequence oceuring equal | Sequence is measured q d
to 1 and every other measure
sequence setto 0
»{ Every Error |«
| epeat for Every Error
k Sequence
Save he Impacts of every Eror Sequence in ECM EQUIVALENT ERROR RATES
phatens/pulse or as Eror Rate GENERATED EROM SOFTWARE

1) Multiply PCM Equivalent Error
Rate of Standard Erasure Error of the
X-Y MPPM SYSTEM with the Impact

of 3tandard Erasure Error
2) Repeat for the next Error

/' Sequence
. | / :

|Repeat Until the Final f '

| Repeat Uniil the Fin$|
, |
\QQSM Sequence \ Wrong Slof Sequenge

1) Impact of Standard Erasure Error In Tolal (e
Error Rate
2) Repeat for next Error Sequence

Figure 6.1: Data flow diagram of the optimization routine.

202
PhD Thesis

Figures

Enter the number
of MPPRM
codewords M
(Pascal's Number)

A
Start with n =2
codewords
Create
permulations by
swapping the
codewords
Step 1

-+

FALSH
Check if n=M

Add naw
permutations. The
n number is
inseried serially
(shifted) to the
mapping
Step 3

L

Increment N

TRUE
L J

Save the
permutations
(mapping)in a file

EXIT

Figure 6.2: Data flow diagram of the maximum permutation algorithm.

Usea the n=2
mapping. Repeaat
the permutations

according ton
Step 2

203

STEF 1
Mapping n=2
1 2
2 1

STEP 2
Mapping n=3
Repeat the permutations
of n=2 three (3) times

B A R b b b
N]

STEFP 3
Mapping n=3
Add three (n) as
demonstrated below

(SR SEXTXI
S LIRS o LA R
L= R R W

STEFP 2
Mapping n=4
Repeat the mapgping
(permutaticns) in Steg 3

four (4) times
1 2 3
1 2 3
1 2 3
1 2 3
1 3 2
1 3 2
1 3 2
1 3 2
3 1 2
3 1 2
3 1 2
3 1 2
3 2 1
3 2 1
3 2 1
3 2 1
2 3 1
2 3 1
2 3 1
2 3 1
2 1 3
2 1 3
2 1 3
2 1 3
STEP 3
Mapping n=4

Add four (4) as demonstrated below

MM AEENROMOOE &P QW= = b e

B L O A B O L I e U]
L) B b o G) e o e O R = e RO RS B L G0 R RS L

PRWW =SS Ah S NNEBNNNWDWW A

PhD Thesis

Figures

33-2 MPPM systam
4 PCM bits encoded
33 Erasure codewords

2%=512 codewords

[4.7]=83
[5.7)=122%
38
[6.7]=150 &
by
[7.7=177 &
bg
[8.7]=20% &
25
[o.71=228 %
34
[10,7}=2524
23
[11.7]=275&
o2
[12 7l=2o74
21
[13.7]=318%
20
[14.7]=3004"
9
[15.7]=3574
i8
[16.7]=375%
17
[1?,?]=3924; ~
[18.?]=408€1 s
|‘|s3|.'.=]=42ﬁ1 s
[20,?]=43?é:|3
-
[21.7)=4507,
[22.?]=452Q; :
.
[23.7]=4735
[24,?]=433<9
[25,?]=492"fﬂ
[26,71=500%,,
[2?,?]:50%5
[28 7)=512%
[28,7]=X
[30.7]=X
[31.9]=X

[32,7]=X
[33.7]=X

Figure 7.3: The methodology used to obtain optimum mapping in a

000000001 DODOOG0T0 DON000100
A 'y

.

00010000 — D00D000 — - Q0000 1000

0001 DRk
" L

r

r L4
P00 10000000

000100010
'

0001 10000 0114
"

r

100100000

204

1 00 D 000 DO ———— 0001 001 0D

r
Q000 010100000

MPPM system

PhD Thesis

Figures

—$—12_6_ideal —8—7_4_ideal

i 24 P) ") , 7 7 7 12 12 12
igure 7.4: Percentage change in error rate for a P lallal o) ls P le)

15 15 17 28 33
sl ls b o) s and 5 multiple PPM system using linear increment

mapping as the reference and a PCM error rate of 1 bit in 10° pulses. The mappings

considered are Optimum (OPT) and Ideal (IDEAL).

205
PhD Thesis

Appendix B

APPENDIX B

Tables

13 TABLES

206
PhD Thesis

Tables

Test | Section Test Description Results Results Any
No. Expected Obtained Remarks
1 Interface Y>X X cannot be X cannot be Correct

less than Y less than Y
2 Interface X=0 X cannot be X cannot be Correct
Zero Zero
3 Interface Y=0 Y cannot be Y cannot be Correct
Zero Zero
4 Interface X<0 X cannot be X cannot be Correct
negative negative
5 Interface Y <0 Y cannot be Y cannot be Correct
negative negative
6 Data Data Mapping <1 | Linear, Gray, Incorrect Correct
Random, Selection
Predefined
7 Data Data Mapping > 5 | Linear, Gray, Incorrect Correct
Random, Selection
Predefined
8 Data Range <0 Range > 0 Incorrect Correct
Data
9 Data Range > 2 PCMBITS Range < Incorrect Correct
5 PCMBITS Data
207

PhD Thesis

Tables

10 | Processing Algorithm Complete or 2- Incorrect Correct
Selected < 1 Pulse Selection

11 | Processing Algorithm Complete or 2- Incorrect Correct
Selected > 2 Pulse Selection

12 | Sequences | Display Sequences Yes or No Incorrect Correct
>2 Selection

13 | Sequences | Display Sequences Yes or No Incorrect Correct
<1 Selection

14 Results | Result Handling < | Display, Write, Incorrect Correct
1 Continue, Exit Selection

15 Results | Result Handling > | Display, Write, Incorrect Correct
9 Continue, Exit Selection

16 EXIT Press -1 at any Exit Exit Correct

time
17 Data Data Mapping = 1 Linear 0 to 2 FMBITS Correct
Mapping
18 Data Data Mapping =2 Linear 0 to 2 FMBITS Correct
Mapping

19 Data Data Mapping = 3 Gray Codes 0 to 2 FMBITS Correct

20 Data Data Mapping = 4 Random 0 to 2 PMBITS Correct

21 Data Data Mapping =5 Read 0 to 2 PMBITS Correct

22 Error Error Type <1 Erasure, False Incorrect Correct
Type Alarm, Wrong Selection

208

PhD Thesis

Tables

Slot

23 Error Error Type > 1 Erasure, False Incorrect Correct

Type Alarm, Wrong Selection
Slot

24 Error Error Type =1 Erasure Correct Correct
Type Selection

25 Error Error Type =2 False Alarm Correct Correct
Type Selection

26 Error Error Type =3 Wrong Slot Correct Correct
Type Selection

27 | Processing Algorithm Complete Correct Correct
Selected = 1 Selection

28 | Processing Algorithm 2-Pulse Correct Correct
Selected = 2 Selection

29 Data Data Mapping = 1 Linear Correct Correct
Selection

30 Data Data Mapping =2 Linear Correct Correct
Selection

31 Data Data Mapping = 3 Gray Correct Correct
Selection

32 Data Data Mapping = 4 Random Correct Correct
Selection

33 Data Data Mapping =5 Read Correct Correct

209

PhD Thesis

Tables

Selection

34 | Sequences | Display Sequences Yes Correct Correct
=1 Selection

35 | Sequences | Display Sequences No Correct Correct
=2 Selection

36 Results | Result Handling = Display Correct Correct
1 Selection

37 Results | Result Handling = Display Correct Correct
2 Selection

38 Results | Result Handling = Display Correct Correct
3 Selection

39 Results | Result Handling = Display Correct Correct
4 Selection

40 Results | Result Handling = Display Correct Correct
5 Selection

41 Results | Result Handling = Display Correct Correct
6 Selection

42 Results | Result Handling = Display Correct Correct
7 Selection

43 Results | Result Handling = Display Correct Correct
8 Selection

44 Results | Result Handling = Display Correct Correct
9 Selection

210

PhD Thesis

Tables

45 Results | Result Handling = Save Correct Correct
1 Selection
46 Results | Result Handling = Continue Correct Correct
3 Selection
Table 3.13: Test Patterns.
211

PhD Thesis

Tables

Detect 1% pulse Detect 2" pulse
(erasure error in 2™ pulse)
[1,2] 0 0
[1,3] | 1X[10/64xXPe1010779/64XPe1101t45/64xPe101] | 2X[10/64xPe10119/64XPe1 1+45/64%P,]
[1,4] 1xP. 3x[10/64xPe10;19/64XPe1 +45/64XP,]
[1,5] 2xP. 4x[10/64XPe107+9/64xPe1 ;+45/64%P,]
[1,6] 1xP, 2x[10/64xP¢107+9/64xPe1 +45/64xP,]
[1,7] 2xP, 2x[10/64xPe107+9/64xPe1 +45/64xP,]
[1,8] 2xP, 5x[10/64xPe101t9/64xP,1 1 +45/64xP,]
[1,9] 3xP, 5%[10/64xPe101t9/64xP.11+45/64xP,]
[1,10] 1xP, 4x[10/64XPe107+9/64xPe1 ;+45/64%P,]
[1,11] 2xP, 4x[10/64xPe10+9/64xPe1 1 +45/64xP,]
[1,12] 2x[11/64xP;1+53/64xP,] 3x[10/64xP¢10;19/64xP.; +45/64xP,]
[2,3] 3x[9/64xP1011+55/64xPe11] 2x[9/64xPe101+55/64xP,]
[2,4] 2xPe101 2X[9/64XPe10r+55/64xP,]
[2,5] 3xP, 3x[9/64xP107+55/64xP;]
[2,6] 3xP 2x[9/64xPe101+55/64xP]
[2,7] 4xP, 4x[9/64xP101+55/64xP.]
[2,8] 1xP, 2x[9/64xP101t55/64xP]
[2,9] 2xP. 4x[9/64xP.1011t55/64xP,]
[2,10] 2xP, 4x[9/64xPe101t55/64xP]
[2,11] 3xP, 4x[9/64xP101+55/64xP,]
[2,12] 2x[9/64xPe101t55/64xP,] 3x[9/64xP101+55/64xP;]
[3,4] 2xPe11 3xP.
[3,5] 4xPe101 3xP,
[3,6] 3xP, 3xP.
[3,7] 1xP, 4xP,
[3,8] 0 2xP,
[3,9] 2xP. 3xP,
[3,10] 1xP, 3xP.
[3,11] 2xP, 4xP,
[3,12] 1x[11/64xP;1+53/64xP,] 3xP.
[4,5] 4xPe1; 2xP.
[4,6] 5xPeio1 4xP,
[4,7] 1xP, 3xP,
[4,8] 2xP. 3xP,
[4,9] 2xP. 4P,
212

PhD Thesis

Tables

[4,10] 3xP. 2xP,
[4,11] 0 5xP.
[4,12] 1x[11/64xP;1+53/64xP,] 4xP,
[5,6] 1xP.1; 0
[5,7] 2xPe101 2xPe
[5,8] 2xP. 1xP.
[5,9] 3xP. 3xP.
[5,10] 1xP. 3xP.
[5,11] 2xP. 3xP.
[5,12] 1x[11/64xP;11+53/64xP,] 2xP,
[6,7] 3xPeis 2xP.
[6,8] 1xPeioz 3xP,
[6,9] 2xP. 3xP.
[6,10] 3xP. 3xP.
[6,11] 4xP, 3xP.
[6,12] 2x[11/64xP;1+53/64xP,] 2xPe
[7,8] 2xP.1; 3xP.
[7,9] IXPel()I 1XPe
[7,10] 0 4xP,
[7,11] 2xP. 4xP,
[7,12] 1x[11/64xP;11+53/64xP,] 2xP,
[8,9] 0 1xP.
[8,10] 1xPe107 2xP.
[8,11] 1xP. 3xP.
[8,12] 2X[11/64xP;11+53/64xP,] 2xP,
[9,10] 0 3xP.
[9,11] IXPel()I 2XPe
[9,12] 1x[11/64xPe;1+53/64xP,] 0
[10,11] 3xP.1; 2xP,
Total 243.456 Pe + 22.7712 Pell + 27.4944 Pel01 + 0.141 Pel101 + 1.891 Pell +

0.156 Pel0101

Table 3.15: Full analysis of Erasure Sequences in a 12-2 MPPM system.

213
PhD Thesis

Tables

[1,2] 0 0 0 0 0 0
[1,2,3] 0 0 0 0 0 1 1 x [9/64 x Ppi119 + 55/64 x Pri1g]
[1,2,4] 0 0 0 0 0 0 0
[1,2,5] 0 0 0 0 0 1 1 x P¢
[1,2,6] 0 0 0 1 0 0 1 x P¢
[1,2,7] 0 0 0 1 0 1 2x Pr
[1,2,8] 0 0 0 0 0 0 0
[1,2,9] 0 0 0 0 0 1 1 x Py
[1,2,10] 0 0 0 0 0 0 0
[1,2,11] 0 0 0 0 0 1 1 x P;
[1,2,12] 0 0 0 0 0 0 0

[1,3] 0 0 0 0 0 1
[1,2,3] 0 0 0 0 0 1 0
[1,3,4] 0 0 0 0 0 1 0
[1,3,5] 0 0 0 0 1 1 1 x Py
[1,3,6] 0 0 0 1 0 1 1 x Py
[1,3,7] 0 0 0 0 0 1 0
[1,3,8] 0 0 0 0 0 1 0
[1,3,9] 0 0 0 0 1 1 1 x P;
[1,3,10] 0 0 1 0 0 1 1 x Py
[1,3,11] 0 0 1 0 0 1 1 x Py
[1,3,12] 0 0 1 0 0 1 1 x Py

[1,4] 0 0 0 0 1 0
[1,2,4] 0 0 0 0 0 0 1 X [9/64xPg114+55/64xPs 4]
[1,3,4] 0 0 0 0 0 1 2x P¢
[1,4,5] 0 0 0 0 1 0 0
[1,4,6] 0 0 0 1 1 0 1 x P;
[1,4,7] 0 0 0 0 0 0 1 x Ps
[1,4,8] 0 0 0 0 1 0 0
[1,4,9] 0 0 0 0 1 0 0
[1,4,10] 0 0 0 0 1 0 0
[1,4,11] 0 0 0 0 0 0 1 x Ps
[1,4,12] 0 0 0 0 1 0 0

214

PhD Thesis

Tables

[1,5] ol o] o] o1 1
[1,2,5] o o] o] o] o] 1 1 X [9/64xPs119 + 55/64xPg1]
[1,3,5] ool o] o1 1 0
[1,4,5] ol oo o 1] o 1 x P
[1,5,6] oo o1 1 | o 2x Pry
[1,5,7] 0| o] o | 1 1 1 1 x P
[1,5,8] o o o] o] 11]o 1 x P
[1,5,9] oo o] o1 1 0

ns10] | o | o | 1t [o 1| o 2x P;
51 | o0 | o | 1 | o | 1 1 1x Py
5121 | o | o | 1 [o [1] o 2x Ps

[1,6] ool o] 1] oo
[1,2,6] ol oo 1[0 o0 0
[1,3,6] o o] o 1] o1 1 x P
[1,4,6] 0| o] o | 1 1 | o 1 x P
[1,5,6] o] o o] 1 1 | o 1 x P
[1,6,7] ol oo 1 [o1 1 x Py
[1,6,8] 0] o] o 1 1 | o 1 x Ps
[1,6,9] 0| o] o | 1 1 1 2x Ps

e10] | o0 | o | o | o | o | o 1 x P
meil] | o | o | o [o | o | 1 2x P;
6121 | o | o [o [o[1 | o 2x P;

[1,7] o o] o 1] o1
1,2,7] ool o 1[0 1 0
[1,3,7] ol o o] o o1 1x Py
[1,4,7] o o] o] o] o] o 2 x Ps
[1,5,7] 0| o] o | 1 1 1 1 x P
[1,6,7] o | o] o 1] o1 0
[1,7,8] 0] o o] 1 1 1 1x Pry
[1,7,9] ol o o 1 [0 |1 0

7,000 | o | o [o [1 | o | 1 0

711 | o | o | o [1 | o | 1 0

1,721 | o [o | o | 1 1 1 1 x P
215

PhD Thesis

Tables

[1,8] o] o] o] 1 1] o
[1,2,8] o | o] o] o] o] o 2 X [9/64xPy119 + 55/64xPg1]
[1,3,8] o ol o] o] o1 3 x P;

[1,4,8] ol oo o 1] o 1 x P
[1,5,8] ol oo o[1o 1 x P
[1,6,8] 0| o] o | 1 1 | o 0

[1,7,8] 0| o] o | 1 1 1 1 x P
[1,8,9] o] o o] 1 1 | o 0

810 | o | o | 1t [o] o | o 3 x Py
ns1] | o | o | 1t [o | 1] o 2x P;
8121 | o | o | 1 [o [1] o 2x P;

[1,9] 0] o o] 1 1 1
[1,2,9] ol o o] o o1 2 X [9/64xPs 19 + 55/64xPs1g]
[1,3,9] 0| o] o] o1 1 1 x P
[1,4,9] o o o] o] 11]o 2x P;

[1,5,9] oo o] o1 1 1 x P
[1,6,9] oo o1 1 1 0
[1,7,9] o o] o] 1] o1 1 x P
[1,8,9] 0| o] o | 1 1 | o 1 x P
19100 | o | o | 1 1 [o] o 3 x Pry
911 | o | o | 1 1 | o | 1 2x P;
1,912 | o | o | 1 1 1 | o 2 x Pf
[1,10] o | o] 1] 0o o] o
210 | o [o [o [o[o | o 1 X [9/64xPs19 + 55/64xPr1q]
3,00 | o | o | 1t [o | o | 1 1 x P
4100 | o | o | o [o [1] o 2x P;
ms100 | o | o | 1 | o [1] o 1 x P
e10] | o | o | o | o | o | o 1 x P
7,000 | o | o | o | 1 | o | 1 3 x Ps
8100 | o | o | 1 [o [o | o 0
19100 | o | o | 1 1 [o] o 1 x P
mioa1] | o | o [1 [o | o | 1 1 x Prig
1,012 | o | o | 1 | o | 1 | o 1 x P
216

PhD Thesis

Tables

[1,11] ol o 1[]o] o1
m211] | o | o | o [o | o | 1 1 X [9/64xPqi19 + 55/64xPrg]
3111 | o | o [1 [o | o | 1 0
4111 | o0 | o [o [o [o | o 2x P;

51 | o | o | 1 | o | 1 1 1 x P

me11] | o | o | o [o | o | 1 1 x P

711 | o | o | o | 1 | o | 1 2x P;

ns1] | o | o [1t [o[1] o 2 x P;

911 | o | o | 1 1| o | 1 1 x P

mioa1] | o [o [1 [o | o | 1 0

LiL12] | o [o [1 [o | 1 1 2 X [11/64xPy1g1 + 53/64xPs10]

[1,12] oo | 1o 1o
2121 | o | o [o [o] o | o 2 X [9/64xPs 19 + 55/64xPs1g]
3,121 | o | o | 1 [o | o | 1 2x P;

N4121 | o | o | o | o | 1 | o 1 x P
ms121 | o [o [1 [o [1] o 0
6121 | o | o [o [o | 1 | o 1 x P
7,121 | o [o [o [1 1 1 3x P;
8121 | o | o | 1 [o [1] o 0
1912 | o | o | 1 1 1 | o 1 x P
10,21 | o | o | 1t [o [1 | o 1 x Pf
mi,121 | o | o | 1 | o | 1 1 2x P;
2,3] o | o 1] o1

[1,2,3] ool o] o] o1 2 X [9/64xPgg1 + 55/64xPy]

2,3,4] 0| 0o | 1 1| o | 1 2x Prg

2,3,5] 0 | o | 1 1 1 1 1 x P

2,3,6] 0 | o | 1 1 1 1 1 x P

2,3,7] o | o] o 1] o1 0

2,3,8] 0 | 1 1 | 0o o |1 2 x P;

2,3,9] 0 | 1 1 | 0o | 1 1 1 x P
23,100 | 0 | 1 1 [o |1 1 1 x P
23,111 | 0 | 1 1| o | 1 1 1 x P
23,12] | 0 | 1 1 1 | o | 1 3 x Ps

217

PhD Thesis

Tables

2,4] o] o0 [1 1 [oo
[1,2,4] o | o] o] o] o] o 2 X [9/64xPrig1 + 55/64xPy]
2,3,4] 0| o | 1 1 | o | 1 1 x Prgi
[2,4,5] 0] o | 1 1 [o[o 0
2,4,6] o | o | 1 1 1 | o 1 x P
2,4,7] 0 | o | 1 1 [o] o 0
2,4,8] o | o] o] o] o] o 2x P;
[2,4,9] o ol o] o] ol o 2 x P;
24,00 | 0 | 0o | o [o [1] o 3 x Py
2411 | 0 | 0 | o | 1 | 0 | o 1 x P
24121 | 0 | 0 | o | 1 [0o | o 1 x P

2,5] 0| o | 1 1 | o | 1
[1,2,5] ol o o] o o1 2 X [9/64xPgg1 + 55/64xP;]
2,3,5] 0 | o | 1 1 1 1 1 x Prig
2,4,5] 0 | o | 1 1 [o] o 1 x P
2,5,6] 0| o | 1 1 1 | o 2 x Pry
2,5,7] o | o | 1 1 1 1 1 x P
2,5,8] o | o 1] o] o] o 2x P;
2,5,9] o | o] 1] o] o] 1 1 x P
25100 | 0 | o | 1 | o | 1 | o 3 x Ps
2511 | 0 | o | 1 | o | 1 1 2x P;
25121 | 0 [o | 1 1 [o[o 1 x P

2,6] 0 | o | 1 1 1 | o
[1,2,6] o] oo 1] o] o 2 X [9/64xPgg1 + 55/64xPy]
2,3,6] o | o | 1 1 1 1 1 x Py
2,4,6] 0 | o | 1 1 1 | o 0
2,5,6] 0 | o | 1 1 1 | o 0
2,6,7] 0 | o | 1 1 1 1 1 x Prig
2,6,8] 0| o | 1 1 1 | o 0
2,6,9] o | o | 1 1 1 1 1 x P
26100 | 0 | 1 | o | o [1] o 3x P;
26111 | 0 | 1 | o | o | 1 1 4x P;
2612] | 0 | 1 [o | 1 1 | o 2 x P;

218

PhD Thesis

Tables

2,7] o] o0 [1 1 1 1
[1,2,7] o | o] o 1] o1 2 X [9/64xPgig1 + 55/64xPy]
2,3,7] ool o 1] o1 1 x Prig
2,4,7] o | o | 1 1 [o[o 2x P;

2,5,7] o | o | 1 1 1 1 0

2,6,7] 0 | o | 1 1 1 1 0

2,7.8] o | 1] 0] o1 1 3 x Pry

12,7,9] o | 1 o 1 [o1 3 x Ps

27,000 | 0 | 1 | o | 1 1 1 2x P;

2711 | 0 | 1 | o | 1 1 1 2x P;

27,121 | o [1 [o | 1 1 1 2 x [11/64xPs + 53/64xPq]

2,8] o 1] o] o] o] o
[1,2,8] o] o] o] o] o] o 1 X [9/64xPr1g1 + 55/64xP]
2,3,8] 0 | 1 1] o] o |1 2 x Pry
2,4,8] o | o] o] o] o] o 1 x P
2,5,8] ool 1] o] ol o 2x P;

2,6,8] o | o | 1 1 1 | o 4x P;
2,7,8] o | 1] 0] o] 1 1 2x P;
2,8,9] o | 1] 0] o] o] o 0
28100 | 0 | 1 | o | o | o | o 0
2811 | o | 1 [o[o[1] o 1 x P
28121 | o | 1 | o [o | o | o 0

2,9] o | 1] 0] o] o] 1
[1,2,9] ool o] o] o1 1 X [9/64xPs1g1 + 55/64xP]
2,3,9] 0 | 1 1 | 0o | 1 1 2x Pry
2,4,9] o o] o] o] o] o 2x P;

2,5,9] o | o] 1] o] o] 1 2x P;
2,6,9] 0 | o | 1 1 1 1 4x P;
12,7,9] o | 1 o 1] o1 1 x P
2,8,9] o | 1] o] o o] o 1 x P
29,00 | o | 1 | o | o | o | o 1 x Prig
2911 | o | 1 | o | o | o | 1 0

29121 | o | 1 | o | 1 [o | o 2 x P;

219

PhD Thesis

Tables

[2,10] ol 1o o[1T]o
m2100 | o | o | o | o | o | o 2 X [9/64xPrig1 + 55/64xPy]
23,00 | 0 | 1 1 | 0o | 1 1 2 x Pry
2400 | 0 | o | o [o [1] o 1 x P
25100 | 0 | 0 | 1 | 0o | 1 | o 2x P;
26100 | 0 | 1 | o | o [1] o 0
27,000 | o | 1 [o | 1 1 1 2x P;
28100 | o | 1 [o [o] o | o 1 x P
29100 | o | 1 | o [o] o | o 1 x P
210111 | 0 | 1 | o | o | 1 1 1 x Py
2,012 | 0 | 1 [o | 1 1 | o 2x P;
[2,11] o | 1| o] o1 1
m211] | o | o [o [o | o | 1 2 X [9/64xPgg1 + 55/64xP;]
23,111 | 0 | 1 1 | o | 1 1 1 x Prig
24111 | 0 | 0 | o | 1 [o | o 4x P;
2511 | 0 | o | 1 | o | 1 1 2x P;
2611 | 0 | 1 | o | o | 1 1 0
27,111 | o [1 [o | 1 1 1 1 x P
28111 | 0 | 1 | o | o | 1 | o 1 x P
2911 | o0 | 1 | o | o | o | 1 1 x P
210111 | 0 | 1 | o | o | 1 1 0
21,121 | o | 1 | o | 1 1 1 3 x [11/64xPrg1 + 53/64%Prig]
[2,12] o | 1] o] 1] o] o
2121 | o [o [o[o] o] o 2 X [9/64xPgg1 + 55/64xPy]
23,12] | o | 1 1 1| o | 1 2x Pry
24121 | 0 | 0 | o | 1 [0o | o 1 x P
25121 | 0 | o | 1 1 [o] o 2x P;
2612] | 0 | 1 [o | 1 1 | o 1 x P
27,12] | 0 | 1 | o | 1 1 1 2 x P;
2812 | 0 | 1 | o | o 0o | o 1 x P
29121 | o | 1 | o | 1] o] o 0
20012 | 0 | 1 | o | 1 1 | o 2x P;
211,12 | 0 | 1 | o | 1 1 1 3 x Ps
220

PhD Thesis

Tables

3,4] o 1]o] 1o/
[1,3,4] o o] o] o] o] 1 2 X [9/64xPr1g + 55/64xPy]
2,3,4] 0| o | 1 1 | o | 1 2 x P;

3,4,5] o | 1 | 0 | 1 1 | o 2x Prg
3,4,6] 0o | 1] 0 | 1 1 1 1 x P
3,4,7] o | 1] 0] o] o] o 2x Ps
3,4,8] o | 1] 0] o] o1 1 x P
3,4,9] o | 1 o] o 1o 3 x Ps
34000 | 0 | 1 | o | o | 1 1 2x P;
Ba11] | 0 | 1 | o | 1] 0] o 1 x P
B412] | 0 | 1 [o [1] 0o | 1 0

3,5] o | 1 | o0 |1 1 | o
[1,3,5] ol o o] o1 1 3 X [9/64xPpy + 55/64xP;]
2,3,5] 0 | o | 1 1 1 1 3x Pr
3,4,5] o | 1 [o0 |1 1 | o 0
3,5,6] o | 1 | o0 |1 1 | o 0
3,5,7] o | 1 | 0 | 1 1 | o 0
3,5,8] 0 | 1 1o oo 3x Ps
3,5,9] 0 | 1 1o 1o 2x Ps

35100 | 0 | 1 1 | o[1] o 2x Ps
3511 | 0 | 1 1 1 1 | o 1 x P
35121 | 0 | 1 1 1 [o[o 2 x [11/64xP;+ 53/64xPy]

3,6] o | 1] o0 |1 1 1
[1,3,6] ool o 1[0 1 2 X [9/64xPsg + 55/64xP(]
2,3,6] o | o | 1 1 1 1 2x Py
3,4,6] o | 1] o0 |1 1 1 0
3,5,6] o | 1] o0 |1 1 | o 1 x P
3,6,7] 0 | 1 1 1 | o | 1 2x Prig
3,6,8] 0 | 1 1 1 1 1 1 x Py
3,6,9] 0 | 1 1 1 1 1 1x Py

36100 | 0 | 1 [o | o | 1 1 1 x P

B611] | 0 | 1 | o [1 | o | 1 1 x P

3612 | 0 | 1 [o | 1 1 1 0
221

PhD Thesis

Tables

13,7] 0 | 1 1 [o] oo
3,71 | o | o [o [0o | o | 1 3 X [9/64xPr1g + 55/64xPy]
2371 | o [o | o[1] o |1 3 x Py
3,4,7] o | 1o o o] o 1 x Py
3,5,7] o 1 o0 |1 1 | o 3x Py
3,671 | 0 | 1 1 1 | o | 1 2x Ps
3781 | 0 | 1 1 | o | o |1 1 x Pry
3791 | 0 | 1 1 o] oo 0
37,100 | o | 1 1 | o[o |1 1 x P
37,01 | o | 1 1 1 | 0o | o 1 x P
37,121 | o | 1 1 1 | o | 1 2 x [11/64xP; + 53/64xPy]
3.8] 0 | 1 1 | o[o
[1,3,8] ol o o] o o1 2 X [9/64xPs g + 55/64xP(]
2381 | 0 | 1 1] o] o |1 0
348 | 0 | 1 | 0 [0 | 0 | 1 1 x Prig
358 | 0 | 1 1 o] oo 1 x P
3,6,8] 0 | 1 1 1 1 1 2x Py
3781 | 0 | 1 1] o] o] 1 0
3891 | 0 | 1 1o oo 1 x Pry
38100 | 0 | 1 1 | o | o |1 0
38111 | 0 | 1 1 o] oo 1 x P
3812] | 0 | 1 1 | o[o |1 0
3,9] 0 | 1 1 | o | 1
39 | o | o | o | o | 1 1 3 X [9/64xPyy + 55/64xPs]
2,3,9] 0 | 1 1 [o [1 1 1 x P
349 | 0 | 1 | o[o | 1] o 1 x Prig
3591 | 0 | 1 1o 1o 0
3,691 | 0 | 1 1 1 1 1 2x P;
3791 | 0 | 1 1 o] oo 1 x P
3,8,9] 0 | 1 1 o] oo 1 x P
39,100 | 0o | 1 1o 1o 0
39,11 | 0 | 1 1 1 [o] o 2x P;
39,121 | o | 1 1 1 1 | o 1 x [11/64xP;+ 53/64xPy]
222

PhD Thesis

Tables

[3,10] 0 | 1 1 [o | 1 1
3,100 | o | o | 1 [o | o | 1 2 X [9/64xPr1g + 55/64xPy]
23,00 | 0 | 1 1 [o |1 1 0
34000 | 0 | 1 | o | o | 1 1 1 x Py
35100 | 0 | 1 1o | 1o 1 x P
36100 | 0 | 1 [o | o | 1 1 1 x P
37,000 | o | 1 1 | o | o |1 1 x P
38,101 | 0 | 1 1 | o] o |1 1 x P
39,100 | 0 | 1 1o | 1o 1 x P

3,10,11] | 0 | 1 1 1 1 1 1 x Py
3,10,12] | 0 | 1 1 1 1 1 2x P;

[3,11] 0 | 1 1 1 [o[o
3111 | o | o | 1 [o | o | 1 3 X [9/64xPpy + 55/64xP;]
23,111 | 0 | 1 1 | o | 1 1 3x P;

B411] | 0 | 1 | 0o | 1 [0o | o 1 x Prig

3511 | 0 | 1 1 1 1 | o 1 x P

Be11] | 0 | 1 [o | 1 [o0 |1 2x P;

37,11 | 0 | 1 1 1 [o] o 0

38111 | 0 | 1 1o oo 1 x P

39,11 | 0 | 1 1 1 [o] o 0

310,111 | 0 | 1 1 1 1 1 2x P;

311,12] | 0 | 1 1 1| o | 1 1 x [11/64xPs191 + 53/64xPs4]

3,12] 0 | 1 1 1 | o | 1
n3121 | o | o | 1 [o | o | 1 2 X [9/64xPsg + 55/64xP(]
23,12] | o | 1 1 1| o | 1 0
B412] | 0 | 1 [o [1] o | 1 1 x Prig
35121 | 0 | 1 1 1 [o] o 1 x P
3612] | 0 | 1 [0o | 1 1 1 2 x P;

37,121 | o | 1 1 1 [o [1 0

3812] | 0 | 1 1 | 0o | o |1 1 x P

39,12] | o | 1 1 1 1 | o 2x P;

3,10,12] | 0 | 1 1 1 1 1 2x P;

B11,12] | 0 | 1 1 1 | o | 1 1 x P
223

PhD Thesis

Tables

[4,5] 0 | 1 1 1 1] o
N45 | 0 | o | o | o | 1] o 3 X [9/64xPr1g + 55/64xPy]
245 | 0 | 0 [1 1 [o | o 2 x P;

3,4,5] o | 1| o0 |1 1 | o 1 x P
[4,5,6] 0 | 1 1 1 1 | o 0

[4,5,7] 1 [o] o |1 1 | o 3x Pr
[4,5,8] 1 o] 1o oo 4x P;
[4,5,9] 1L o[1o 1o 3 x Ps
45100 | 1 | o | 1 [o | 1 | o 3 x Py
4511 | 1 | 0 | 1 1 1 | o 2x P;
45121 | 1 | o | 1 1 [o] o 3x Pr

4,6] 0 | 1 1 1 1 1
[1,4,6] oo o1 1 | o 3 X [9/64xPpy + 55/64xP;]
246] | 0 | 0 | 1 1 1 | o 2x Ps
B346] | 0 | 1 | 0 | 1 1 1 1 x P
456] | 0 | 1 1 1 1 | o 1 X Prior
4,6,7] 1 [o |1 1 [o [1 3 x Pry
[4,6,8] 1 | o | 1 1 1 1 2x Ps
[4,6,9] 1 | o | 1 1 1 1 2x Ps

[4,6,10] | 1 1 [o] o |1 1 3x Py
[4,6,11] | 1 1 [o[1 o1 3 x Ps
[4,6,12] | 1 1 | o |1 1 1 2x Py

[4,7] 1 o] oo oo
471 | o [o [o[o] o] o 1 X [9/64xPs1g + 55/64xP(]
2,4,7] o | o | 1 1 [o [o 3 x Pr
3471 | 0 | 1 [o[o] o] o 2 x Ps
[4,5,7] 1 [o] o |1 1 | o 2x Prig
[4,6,7] 1 | o | 1 1 | o | 1 3x Py
[4,7,8] 1 ol o o] o1 1 x Prig
4,7,9] 1 ol o] o] ol o 0

47,000 | 1 | o [o [o | o | 1 1 x P

47111 | 1 | o | o | 1 [o | o 1 x P

47021 | 1 | o | o [1 | o | 1 2x P;
224

PhD Thesis

Tables

[4,8] 1L oo o] ol 1
[1,4,8] o o o] o] 11]o 3 X [9/64xPr1g + 55/64xPy]
2,4,8] ool o] o] ol o 2 x P;

3,4,8] o | 1] o] o o1 2x P;
[4,5,8] 1L ol 1] o0 oo 2x Pry
[4,6,8] 1 | o | 1 1 1 1 3x Pr
[4,7,8] 1 [o] o] o] o] 1 0
[4,8,9] 1 ol o] o] ol o 1 x Prig
48100 | 1 | o | o | o | o | 1 0
4811 | 1 | 0 | o [o | 0o | o 1 x P
48121 | 1 | o | o [o | o | 1 0

[4,9] 1 ol o] o1
[1,4,9] ol oo o[1o 1 X [9/64xPr1y + 55/64xP{]
2,4,9] o | o] o] o] o] o 2x P;

3,4,9] o | 1] o] o] 17]o 2x Ps
[4,5,9] 1 o 1o 1o 1 x Prig
4,6,9] 1 [o |1 1 1 1 3 x Py
[4,7,9] 1 o] oo ol o 1 x Ps
[4,8,9] 1 o] oo oo 1 x P
49100 | 1 | o | o | o [1 | o 0
4911 | 1 | o [o [1 [0o | o 2x P;
4912] | 1 | o | o | 1 1 | o 1 x P
[4,10] 1 [o] o] o1 1
4,100 | o [o [o [o [1] o 2 X [9/64xPsg + 55/64xP(]
24100 | 0 | 0 | o | o | 1 | o 2x P;
B4100 | 0 | 1 [o | o | 1 1 2x P;
45100 | 1 | o | 1 [o [1] o 2 x Pry
[4,6,10] | 1 1 [o] o |1 1 1 x P
47,000 | 1 | o | o | o | o | 1 1 x P
48100 | 1 | o | o [o | o | 1 1 x P
49100 | 1 | o | o [o [1 | o 1 x P
410111 | 1 | o | o | 1 1 1 1 x Prig
41012 | 1 | o | o | 1 1 1 2 x P;
225

PhD Thesis

Tables

[4,11] 1T oo 1[oT] o
4111 | 0 | o | o | o | o | o 2 X [9/64xPr1g + 55/64xPy]
24111 | 0 | 0 [o | 1 [o0 | o 1 x P
Ba11] | 0 | 1 [o 1] 0] o 2x P;
4511 | 1 | 0 | 1 1 1 | o 2x Pry
[4,6,11] | 1 1o 1] 0] 1 2x P;
47111 | 1 | o | o | 1 [o | o 0
4811 | 1 | o [o [o[0o | o 1 x P
49111 | 1 | o [o | 1 [o | o 0
410111 | 1 | 0 | 0 | 1 1 1 2x Pos
415,121 | 1 | o [o [1 | o | 1 1 x [11/64xPgg; + 53/64xPr1g]
[4,12] 1L oo 1[0 1
4,121 | o [o [o [o [1] o 4 X [9/64xPry + 55/64xP(]
24121 | 0 | 0 | o | 1 [o | o 2x P;
B412] | 0 | 1 | o [1 | 0o | 1 2x P;
4512] | 1 | o | 1 1 | o | o 2 x Pry
[4,6,12] | 1 1 | o |1 1 1 2x P;
47,021 | 1 [o [o [1] o | 1 0
48121 | 1 | o | o [o | o | 1 1 x P
4912] | 1 | o | o | 1 1 | o 2x P;
410,121 | 1 | 0 | o | 1 1 1 2x P;
41,21 | 1 | o [o | 1 [o | 1 1 x P
[5,6] 1 [o] o[1 1 | o
[1,5,6] 0| o] o 1 1 | o 1 X [9/64xPs1g + 55/64xP(]
2,5,6] o | o | 1 1 1 | o 2x P;
3,5,6] o | 1] o0 |1 1 | o 2x P;
[4,5,6] 0 | 1 1 1 1 | o 3x P;
[5,6,7] 1 [o | o |1 1 1 1 X Priig
[5,6,8] 1 [o[o |1 1 | o 1 x P
5,6,9] 1 [o[o |1 1 1 2x P;
5600 | 1 | o | o | o [1] o 1 x P
56111 | 1 | o | o | o | 1 1 2x P;
5612] | 1 | o | o | 1 1 | o 0
226

PhD Thesis

Tables

5,7] 1 [o o1 1 1
57 | 0 | o | o | 1 1 1 1 X [9/64xPgig + 55/64xP]
2571 | 0 | 0 [1 1 1 1 2x P;

3571 | 0 | 1 | o | 1 1 | o 3x Pr
[4,5,7] 1 [o[o |1 1 | o 1x Py
5,6,7] 1 [o[o |1 1 1 0

5,7,8] 1 oo o1 1 1 x Pry
5,7,9] 1L oo 1] o1 1 x Py

57,000 | 1 | o | o | 1 1 1 0

57,1 | 1 | o | o | 1 1 1 0

57121 | 1 | o | o | 1 1 1 0

5.8] 1 ol 1] o] oo

M58 | 0 | o | o | o | 1 [0 3 x [9/64xPry + 55/64xPy]
258 | 0 | o | 1 | 0 | o [o 1 x P

358 | 0 | 1 1 oo o 2x Ps

[4,5,8] 1 ol 1] o] oo 0

5,6,8] 1 [o[o |1 1 | o 2x Prig

5,7,8] 1 [oo o] 1 1 3x Ps

5,8,9] 1 o[100/ o 0

58100 | 1 | 0 | 1 | o | 0 | © 0

5811 | 1 | o [1 [o[1 | o 1 x Py

5812 | 1 | o | 1 [o o | o 0

5,9] Lo 1o o1
59 | 0 | o | o | o | 1 1 3 x [9/64xPr1y + 55/64xPy]
259 | 0 | o | 1 [0o | o |1 1x Py
3591 | 0 | 1 1 o[1o 4x P;
[4,5,9] 1L o[1o 1o 2x Ps
5,6,9] 1 [o[o |1 1 1 2x Prig
5,7,9] 1ol o 1[0 1 2x Pr
5,8,9] 1L ol 1] o0 oo 1x Py

59100 | 1 | o | 1 | o | 0 | o 1 x Pry

911 | 1 | 0o | 1 | o | 0o | 1 0

5912] | 1 | 0 | 1 I [o[o 2x P;

227

PhD Thesis

Tables

5,10] 1L ol 1]o] 1o
ms100 | o | o | 1 | o [1 | o 1 X [9/64xPgig + 55/64xP]
25100 | 0 | o | 1 [o | 1] o 1 x Py
35100 | 0 | 1 1o | 1o 2x Py
45100 | 1 | o | 1 | o | 1 | o 0
56,00 | 1 | o | o | o [1] o 1 x Pry
57,000 | 1 | o | o | 1 1 1 3x Py
58100 | 1 | o | 1 [o | o | o 1 x P
59,100 | 1 | o | 1 [o | 0o | o 1 x P

510111 | 1 | o | 1 | o | 1 1 1x Pry
510,12] | 1 | o | 1 1 1 | o 2x Ps

[5,11] 1 [o[1] 0 |1 1
51 | o | o | 1 | o | 1 1 1 X [9/64xPr1y + 55/64xP{]
2511 | 0 | o | 1 | o | 1 1 1 x P
3511 | 0 | 1 1 1 1 | o 4x P;

4511 | 1 | o | 1 1 1 | o 2x Pr

56111 | 1 | 0 | o | o | 1 1 1x Pay

57,111 | 1 | o | o | 1 1 1 2x Ps

58111 | 1 | o | 1 | o [1 | o 1 x P

5911 | 1 | o | 1 [o | o | 1 1 x P

5100111 | 1 | o | 1 | o | 1 1 0

511,121 | 1 | o | 1 1 1 1 3 x [11/64xPrg1 + 53/64%Prig]

5,12] 1| o [1 1 [o [o
N5121 | o | o [1 [o 1] o 3 X [9/64xPyy + 55/64xPs]
2512 | 0 | 0 | 1 1 | 0o | o 1x Py
35121 | 0 | 1 1 1 [o[o 2 x Ps
4512] | 1 | 0 | 1 1 [o [o 0
5612] | 1 | o | o | 1 1 | o 2x Prig
57,02 | 1 | o | o | 1 1 1 3x Pp
58121 | 1 | o | 1 [o | 0 | o 1 x P
59,121 | 1 | o | 1 1 [o[o 0

510,12] | 1 | o | 1 1 1 | o 2x Ps
511,21 | 1 | 0 | 1 1 1 1 3x Py
228

PhD Thesis

Tables

16,7] 1 [o [1 1 [o [1
[1,6,7] o | o] o 1] o1 2 X [9/64xPr1g + 55/64xPy]
2,6,7] 0| o | 1 1 1 1 2x P;

3,6,7] 0 | 1 1 1| o | 1 2x P;

4,6,7] 1 [o [1 1 [o [1 0

5,6,7] 1 [o] o |1 1 1 2x Ps

6,7,8] 1 | o | 1 1 1 1 1 X Priig

16,7,9] 1 [o |1 1 [o [1 0

[6,7,10] | 1 1 o[1] 0|1 2x P;

[6,7,11] | 1 1 o[1] 0 |1 2x P;

[6,7,12] | 1 1 | o | 1 1 1 3 x [11/64xP; + 53/64xP{]

6,8] 1 [o |1 1 1 | o
[1,6,8] oo o1 1 | o 2 X [9/64xPs g + 55/64xP(]
2,6,8] 0 | o | 1 1 1 | o 1 x P
3,6,8] 0 | 1 1 1 1 1 3x Py
4,6,8] 1 [o |1 1 1 1 1 x Py
5,6,8] 1 [o[o |1 1 | o 0
[6,7,8] 1 | o | 1 1 1 1 1 X Prror
[6,8,9] 1 | o | 1 1 1 | o 0

[6,8,10] | 1 1 1 | o] o] o 3x Py
[6811] | 1 1 1o 1o 2x P;
[68,12] | 1 1 1 o[1o 2 x [11/64xP;+ 53/64xPy]

[6,9] 1 | o | 1 1 1 1
[1,6,9] o] o o] 1 1 1 2 X [9/64xPsg + 55/64xP(]
2,6,9] o | o | 1 1 1 1 1x Py
3,6,9] 0 | 1 1 1 1 1 2 x Ps
[4,6,9] 1 | o | 1 1 1 1 0
5,6,9] 1 [o | o |1 1 1 0
16,7,9] 1 [o [1 1 | o | 1 1 x Prig
6,8,9] 1 [o [1 1 1 | o 1 x P

[6,9,10] | 1 1 1 1 [o] o 3 x Prig

[69,11] | 1 1 1 1 | o | 1 2x P;

[69,12] | 1 1 1 1 1 | o 2 x [11/64xP; + 53/64xPy]
229

PhD Thesis

Tables

[6,10] 1 1 oo o] o
6100 | o0 | o | o | o | o | o 2 X [9/64xPr1g + 55/64xPy]
26100 | 0 | 1 [o[o[1] o 2 x P;
36100 | 0 | 1 | o | o | 1 1 3 x Py
[4,6,10] | 1 1 | o | o | 1 1 2x P;
56,00 | 1 | o | o | o [1] o 2x Ps
[6,7,10] | 1 1 o[1] 0|1 2x Prig
[6,8,10] | 1 1 1 o o o 1 x P
[69,10] | 1 1 1 1 [o | o 2x P;
[6,10,11] | 1 1 oo o1 1 x Py
[6,10,12] | 1 1 o] o 1o 1 x [11/64xP;+ 53/64xPy]
[6,11] 1 1 [oo o1
mei] | o | o | o [o | o | 1 2 X [9/64xPs g + 55/64xP(]
26111 | 0 | 1 [o | o | 1 1 2x P;
B611] | 0 | 1 | o [1 | o | 1 2x P;
[4,6,11] | 1 1 | o[1] 0|1 1 x P
56111 | 1 | 0 | o | o | 1 1 2x P;
[6,7,11] | 1 1 o] 1] 01 1 x Prig
[68,11] | 1 1 1o 1o 3x P;
[69,11] | 1 1 1 1 | o | 1 2x P;
[6,10,11] | 1 1 [oo o1 0
[6,11,12] | 1 1 [o] o | 1 1 2 x [11/64xPrig1 + 53/64xPy1]
[6,12] 1 1 o] o 1o
6121 | o [o [o [o [1 | o 2 X [9/64xPsg + 55/64xP(]
2612] | 0 | 1 | o | 1 1 | o 2x P;
B3612] | 0 [1 [o [1 1 1 3x P;
[4,6,12] | 1 1 | o | 1 1 1 2x P;
5612] | 1 | o | o | 1 1 | o 2 x P;
[6,7,12] | 1 1 | o | 1 1 1 2x Py
[68,12] | 1 1 1o | 1o 1 x P
[69,12] | 1 1 1 1 1 | o 2x P;
[6,10,12] | 1 1 o] o 1o 1 x P
[6,11,12] | 1 1 [o] o |1 1 2 x P;
230

PhD Thesis

Tables

7.8] 1 1 [o] o] 1 1
[1,7,8] 0| o] o | 1 1 1 3 X [9/64xPr1g + 55/64xPy]
12,7,8] o | 1| o] o1 1 1 x P
3,7,8] 0 | 1 1 | o | o |1 3 x Py
[4,7,8] 1ol o] o] o1 2x P;

5,7,8] 1 [o] o] o1 1 1 x P
6,7,8] 1 | o | 1 1 1 1 3x Py
7,8,9] 1 1 ol o o] o 2x Prig
[7,8,10] | 1 1 [oo o] 1 1 x P
7.811] | 1 1 ol o 1] o 1 x P
[7.8,12] | 1 1 o] o |1 1 0

7.,9] 1 1 ol 1[0] o
[1,7,9] ol o o 1 [0 |1 3 X [9/64xPpy + 55/64xP;]
2,7,9] o | 1] o] 1] o0 2x Ps
3,7,9] 0 | 1 1 | o] o] o 3x Py
[4,7,9] 1ol o] o] ol o 2x P;

5,7,9] 1L oo 1] o1 2x P;
[6,7,9] 1 | o | 1 1 | o | 1 3x Ps
[7,8,9] 1 1] o] o oo 1 X Prror
[7,9,10] | 1 1 o 1 oo 0
[7,9,11] | 1 1 ol 1[0] o 0
[7,9,12] | 1 1 | o |1 1 | o 1 x P
[7,10] 1 1o 1] 0|1
7,000 | o | o [o [1 | o | 1 2 X [9/64xPsg + 55/64xP(]
27,000 | 0 | 1 | o | 1 1 1 2x Py
37,100 | o | 1 1] o] o] 1 3x Pr
47,000 | 1 | o | o [o | o | 1 2x Ps
57,000 | 1 | o | o | 1 1 1 2x P;
[6,7,10] | 1 1 [o[1 o0 1 0
[7,8,10] | 1 1 oo o1 1 x Py
[7.9,10] | 1 1 o] 1o o 1 x P
[7,10,11] | 1 1 | o | 1 1 1 1 x Pry
[7,10,12] | 1 1 | o | 1 1 1 1 x P
231

PhD Thesis

Tables

[7,11] 1 1 [o [1 1] o
711 | o | o | o [1 | o | 1 4 X [9/64xPig + 55/64xP]
27,01 | 0 | 1 [o | 1 1 1 2x P;

37,01 | o | 1 1 1 [o | o 3 x Py
4701 | 1 | 0o [o | 1 | 0 | o 2x P;
57,111 | 1 | o | o | 1 1 1 2x Ps
[6,7,11] | 1 1 o[1] 0|1 2x Ps
7.811] | 1 1 ol o1 1]o 1 x Prig
7.9,11] | 1 1 ol 1o] o 1 x P
[7,10,11] | 1 1 | o | 1 1 1 1x Py
[7,11,12] | 1 1 | o | 1 1 1 1 x [11/64xPs191 + 53/64xPs14]

[7,12] 1 1 | o | 1 1 1
,7,2 | 0 | o | o | 1 1 1 2 X [9/64xPs g + 55/64xP(]
27,121 | o [1 [o | 1 1 1 1 x P
37,121 | o | 1 1 1 | o | 1 3x Py
47,21 | 1 | o [o [1 | o | 1 2x P;

5702 | 1 | o | o | 1 1 1 1 x Py

[6,7,12] | 1 1 | o | 1 1 1 0

[7.8,12] | 1 1 [o] o |1 1 1 x Pry

[79,12] | 1 1 | o | 1 1 | o 1 x P

[7,10,12] | 1 1 | o | 1 1 1 1 x Py

[7,11,12] | 1 1 | o | 1 1 1 1 x Py
8,9] 1 1 1o o o

[1,8,9] o] o o] 1 1 | o 5% [9/64xPy + 55/64xPs]

2,8,9] o | 1] o] oo o 2x P;

3,8,9] 0 | 1 1o oo 1 x P

[4,8,9] 1 o] oo oo 2x Ps

5,8,9] 1 o 1o oo 1 x P

6,8,9] 1 [o [1 1 1 | o 3 x Ps

7,8,9] 1 1 ol o o] o 1 x P
[8,9,10] | 1 1 1o oo 0
89,11] | 1 1 1 | o] o] o 0
89,12] | 1 1 1 | o[1] o 1 x P

232

PhD Thesis

Tables

8,10] 1 1 1] o] o] 1
8100 | o | o | 1 | o | o | o 3 X [9/64xPr1g + 55/64xPy]
28100 | 0 | 1 | o | o [o | o 3x Py
38,101 | 0 | 1 1 | o | o |1 1 x P
48100 | 1 | o0 | o | o | o | 1 2x P;

58100 | 1 | o | 1 | o [o | o 2x P;
[6,8,10] | 1 1 1 | o] o] o 1 x P
[7,8,10] | 1 1 [oo o1 1 x P
[8,9,10] | 1 1 1 oo o 1 x Prgi
8,10,11] | 1 1 1 | 0o | 1 1 1 x Py
8,10,12] | 1 1 1 | o | 1 1 1 x P

8,11] 1 1 1 o[1o
ns11] | o | o | 1 [o [1] o 2 X [9/64xPs g + 55/64xP(]
28111 | 0 | 1 | o | o | 1 | o 2x P;

38111 | 0 | 1 1 | o] o] o 2x P;

48111 | 1 | o [o [o [o | o 3x Py

5811 | 1 | o | 1 [o 1] o 1 x P

[68,11] | 1 1 1o 1o 0

[7.8,11] | 1 1 o] o 1o 1 x P

89,11] | 1 1 1 | o] o] o 1 x Prig

8,10,11] | 1 1 1 | o | 1 1 1 x P

8,11,12] | 1 1 1| o [1 1 1 x [11/64xPs191 + 53/64xPs4]

8,12] 1 1 1 | o | 1 1
8121 | o [o [1 [o [1] o 3 X [9/64xPyy + 55/64xPs]
28121 | 0 | 1 | o | o | o | o 4x P;

3812] | 0 | 1 1] o] o] 1 2x P;
48121 | 1 | o | o [o | o | 1 3x P;
58121 | 1 | o | 1 | o | o | o 3 x Ps
[68,12] | 1 1 1o 1o 1 x P
[7,8,12] | 1 1 [oo |1 1 1 x P
89,12] | 1 1 1o 1o 1 x Prig
8,10,12] | 1 1 1| o | 1 1 1 x P
8,11,12] | 1 1 1 | o | 1 1 1 x P
233

PhD Thesis

Tables

[9,10] 1 1 1 1 [o] o
19100 | o | o | 1 1 [o] o 2 X [9/64xPr1g + 55/64xPy]
29100 | o | 1 [o [o o | o 3 x P;

39,100 | 0 | 1 1o | 1o 3 x Py
49100 | 1 | o | o | o | 1 | o 4x P;
59,100 | 1 | o | 1 [o [o | o 2x Ps
[69,10] | 1 1 1 1 [o] o 0
[7,9,10] | 1 1 o[1[0] o 1 x P
8,9,10] | 1 1 1o o o 1 x P
9,10,11] | 1 1 1 1| o | 1 1 x Pr1g
[9,10,12] | 1 1 1 1 1 | o 1 x P

[9,11] 1 1 1 0 | 1
911 | o | o | 1 1| o | 1 2 X [9/64xPs g + 55/64xP(]
29111 | o | 1 | o [o | o | 1 3x P;

39,11 | 0 | 1 1 1 [o] o 2x P;

4911 | 1 | o [o | 1 [0o | o 3 x Ps

5911 | 1 | o | 1 [o | o | 1 2x P;

[69,11] | 1 1 1 1 | o | 1 0

[7.9,11] | 1 1 o] 1 oo 2x P;

89,11] | 1 1 1 | o] o] o 2x P;

9,10,11] | 1 1 1 1 | o | 1 0

9,11,12] | 1 1 1 1 1 1 2 x [11/64xPs g1 + 53/64xPy10]

[9,12] 1 1 1 1 1 | o
912 | o | o | 1 1 1 | o 2 X [9/64xPsg + 55/64xP(]
2912 | o | 1 | o | 1] o0 | o 3 x Pr
39,12] | o | 1 1 1 1 | o 1 x P
49121 | 1 [o | o | 1 1 | o 2x P;

59,121 | 1 | o | 1 1 [o] o 2 x P;

[69,12] | 1 1 1 1 1 | o 0

[7,9,12] | 1 1 [o [1 1 | o 1 x P

89,12] | 1 1 1o 1o 1 x P

[9,10,12] | 1 1 1 1 1 | o 1 x P

9,11,12] | 1 1 1 1 1 1 2 x P;
234

PhD Thesis

Tables

(1o,11] | 1 1 1 1 1 1
mioa1] | o | o [1 [o | o | 1 4 X [9/64xPig + 55/64xP]
210111 | o0 | 1 [o [o | 1 1 3 x P;

3,10,11] | 0 | 1 1 1 1 1 1x Py
410111 | 1 | 0 | o | 1 1 1 2x P;
51011 | 1 | o | 1 | o | 1 1 2x P;
[6,10,11] | 1 1 | o] o] o1 3 x Ps
[7,10,11] | 1 1 | o | 1 1 1 1 x P
8,10,11] | 1 1 1 | o | 1 1 1x Py
9,10,11] | 1 1 1 1| o | 1 1x Py
[10,11,12] | 1 1 1 1 1 1 0

Total 787.992 Ps+ 0.141 Pg119 + 11.266 Prrig + 119.5 Pryg + 10.282 Pergy

Table 3.16: Full analysis of False Alarm Sequences in a 12-2 MPPM system.

235

PhD Thesis

Tables

Coded 1° Pulse 2" Pulse
i i-1 i+1 j-1 j+

1x[9/64%xPg; 1+
1,21 0 0 0 5[5/64XP511]
[1,3] 0 2X[9/64xP +55/64P,] 0 2"?5//661’;’:3#
[1,4] 0 3x[9/64xPy; +55/64P] 2xP, 1xP,
[1,5] 0 3x[9/64xP,, +55/64P] 1xP, 3xP,
[1,6] 0 2x[9/64xPy; +55/64P] 1xP, 1xP,
[1,7] 0 2x[9/64xP,; +55/64P] 0 2xP,
[1,8] 0 3x[9/64xPs; +55/64P] 1xP, 1xP,
[1,9] 0 3x[9/64xPs; +55/64P] 1xP, 4xP,
[1,10] 0 3x[9/64xPy; +55/64P] 1xP, 1xP,
[1,11] 0 3x[9/64xP,, +55/64P,] 0 2xP,

2x[11/64P+ | 2x[11/64Py+

[1,12] 0 4x[9/64xPy; 1 +55/64P] [5 3/64P.] [5 3/64P.]
[2,3] | 2x[9/64xPy101+55/64P] | 2x[9/64xP1011+55/64P] 0 3xPy;s
[2,4] 2x[9/64xP,10,+55/64P] 3x[9/64xPy101+55/64P,] 1xPg107 1xPg107
[2,5] 2X[9/64xPs0,+55/64P;] 4X[9/64xP101+55/64P;] 1xP, 2xP,
[2,6] 2X[9/64XP10;+55/64P;] 3x[9/64xPq10r+55/64P] 0 1xP,
[2,7] 2X[9/64xP0,+55/64P;] 4X[9/64xP101+55/64P;] 0 5xP,
[2,8] 1x[9/64xP,10,+55/64P] 2x[9/64xPy10,+55/64P;] 2xP, 1xP,
[2,9] 1X[9/64XP10;+55/64P;] 3x[9/64xPq10r+55/64P] 1xP, 2xP,
[2,10] 2x[9/64xPs0;+55/64P;] 2x[9/64xP101+55/64P;] 1xP, 1xP,
[2,11] 2x[9/64xP,10,+55/64P] 4x[9/64xP,10,+55/64P] 0 3xP,
[2,12] | 2x[9/64xP,0+55/64P,] 2x[9/64xPy10,+55/64P,] 3X[5131//66fplz 3“+ ZX[,5131//66;P1: 3“+
[3,4] 2xPg 3xPy; 0 2xPg1;
[3,5] 3xP, 1xP, 0 1xPg107
[3,6] 2xP, 1xP, 1xPg 4xP,
[3,7] 3xPy 3xPq 2xP, 1xPg
[3,8] 0 3xP, 0 2xP,
[3,9] 1xP; 3xPq 1xPg 1xPg
[3,10] 0 3xPq 1xPy 3xPy
[3,11] 3xP, 3xP, 2xP, 1xP,

1x[11/64P,;+
3,12] 0 3xPs IxPy [53/64PS]
[4,5] 1xPg 2xPgp; 0 1xP;
[4,6] 1xP; 4xP; 1xPg107 6xPg10;
[4,7] 2xP; 3xPq 3xPy 1xPy
[4,8] 2xP, 2xP, 0 2xP,
[4,9] 2xP; 3xPq 1xPg 1xPg
[4,10] 2xP; 2xP; 1xPy 3xPy

236

PhD Thesis

Tables

[4,11] 2xP; 4xP; 2xP, 1xPg
1x[11/64Pg;+ | 1x[11/64Pg;+
[4,12] 2xPs 2xPs 53/64P,] [53/64PS]
[5,6] 3xPp 0 0 1xPg;
[5,7] 1xPy 2xP; 0 4xPg101
[5,8] 0 2xP 3xP, 1xP,
[5,9] 2xP; 2xP; 1xP; 2xP;
[5,10] 0 3xPq 1xPy 1xP,
[5,11] 2xP; 3xP 0 3xP,
1x[11/64P;+
5,12] 0 4xPs 3xPs [53/64P5]
[6,7] 2xPp 2xPg;y 0 2xPg1;
[6,8] 0 4xP; 1xPg10z 1xPg10z
[6,9] 0 4xP; 1xP; 5xPg
[6,10] 2xP; 2xP 2xP; 1xP,
[6,11] 2xP; 3xP, 0 2xP;
2x[11/64Ps;+ | 2x[11/64Pg;+
[6,12] 2xPs 2xPs 53/64P,] [53/64PS]
[7,8] 3xPp 3xPgp 0 3xPgi1;
[7,9] 3xP; 2xPy 1xPy10z 1xPg10z
[7,10] 0 2xP; 1xPy 2xP;
[7,11] 2xP; 2xPy 1xPg 1xPg
1x[11/64P i+ | 1x[11/64Pg;+
0 2xP;
[7,12] 53/64P] 53/64P]
[8,9] 1xPpy 1xPgpy 0 1xPg;;
[8,10] 1xPg 2xPy 1xPg107 2xPg101
[8,11] 1xPy 3xPq 1xPy 1xPy
2x[11/64Pg;+
(8.12] 1xPy 2xP; 1xPy [5 3/64P]
[9,10] 1xPsn1 3xPsn 0 1xPg1;
[9,11] 2xP; 1xP 0 2xPg101
IXP. 0 2x[11/64Ps;+ | 1x[11/64Pg+
[9,12] 53/64P] 53/64P]
[10,11] 1xPgyy 2 xPpy 0 0
324.203 P+ 18.375 Py 7+ 0.562 Py 1+ 30.766 Pgio+ 0.281 Pgyior+ 38.25 Pyyy+
Total 0.562 P11

Table 3.17: Full analysis of Wrong Slot Sequences in a 12-2 MPPM system.

237

PhD Thesis

Tables

Optimum mapping for the 7-2

MULTIPLE PPM System

c/w PCM c/w PCM
[1,2] 0010 [3,4] 1100
[1,3] 1001 [3,5] 0100
[1,4] 0101 [3,6] 1011
[1,5] 0000 [3,7] 1010
[1,6] 0011 [4,5] 1101
[1,7] 0001 [4,6] | Notused
[2,3] 0100 [4,7] | Notused
[2,4] 1111 [5,6] | Notused
[2,5] 1110 [5,7] | Notused
[2,6] 0111 [6,7] | Notused
[2,7] 0110

7
Table 7.1: The estimated “optimum’ mapping for the (J multiple PPM system encoding

4 PCM bits.

238

PhD Thesis

Tables

Optimum mapping for the 7-3 Optimum mapping for the 7-4
MULTIPLE PPM System MULTIPLE PPM System

cw | PCM | c/w PCM c/w PCM c/w PCM
[1,2,3] | 00001 | [2,3,7] | 10000 | [1,2,3,4] | 00001 | [1,4,6,7] | 11101
[1,2,4] | 00100 | [2,4,5] | 00110 | [1,2,3,5] | 00010 | [1,5,6,7] | 11110
[1,2,5] | 00010 | [2,4,6] | 01100 | [1,2,3,6] | 00100 | [2,3,4,5] | 00100
[1,2,6] | 01000 | [2,4,7] | O1110 | [1,2,3,7] | 00000 | [2,3,4,6] | 11001
[1,2,7] | 00000 | [2,5,6] | 11010 | [1,2,4,5] | 00011 | [2,3,4,7] | 01011
[1,3,4] | 00101 | [2,5,7] | 10110 | [1,2,4,6] | 00101 | [2,3,5,6] | 11010
[1,3,5] | 00011 | [2,6,7] | 11100 | [1,2,4,7] | 01001 | [2,3,5,7] | 11011
[1,3,6] | 01001 | [3,4,5] | 10111 | [1,2,5,6] | 00110 | [2,3,6,7] | 11000
[1,3,7] | 10001 | [3,4,6] | 11111 | [1,2,5,7]| 01010 | [2,4,5,6] | 10000
[1,4,5] | 00111 | [3,4,7] | 11101 | [1,2,6,7] | 01100 | [2,4,5,7] | 10100
[1,4,6] | O1101 | [3,5,6] | 11011 | [1,3,4,5]| 00111 | [2,4,6,7] | 11001
[1,4,7] | 10101 | [3,5,7] | 11110 | [1,3.4,6] | 01101 | [2,5,6,7] | 10010
[1,5,6] | 01011 | [3,6,7] | O1010 | [1,3,4,7] | 10101 | [3,4,5,6] | 10011
[1,5,7] | 10011 | [4,5,6] | O1111 | [1,3,5,6] | 01110 | [3,4,5,7] | 11111
[1,6,7] | 11001 | [4,5,7) | Not |[1,3,5,7] | 10100 | [3,4,6,7] | Not

used used
[2,3,4] | 10100 | [4,6,7] | Not | [1,3,6,7] | 11100 | [3,5,6,7] | Not
used used
[2,3,5] | 10010 | [5,6,7] | Not |[1,4,5,6] | 01111 | [4,5,6,7] | Not
[2,3,6] | 11000 used | [1,4,5,7] | 10111 used

7 7
Table 7.2: The estimated “optimum” mappings for the [3} and [4) multiple PPM

systems encoding 5 PCM bits.

239
PhD Thesis

Tables

Optimum mapping for the 15-3 MULTIPLE PPM System

c/w PCM c/w PCM c/w PCM c/w PCM
[1,2,3] | 00000001 | [1,8,10] | 00110010 | [2,6,11] | 10011110 | [3,6,9] | 11101100
[1,2,4] | 00000100 | [1,8,11] | 00010011 | [2,6,12] | 10010110 | [3,6,10] | 11111000
[1,2,5] | 00011000 | [1,8,12] | 00110011 | [2,6,13] | 10011111 | [3,6,11] | 10101000
[1,2,6] | 00000110 | [1,8,13] | 00110111 | [2,6,14] | 10011100 | [3,6,12] | 11001000
[1,2,7] | 00001100 | [1,8,14] | 01100011 | [2,6,15] | 10101010 | [3,6,13] | 11100000
[1,2,8] | 00110000 | [1,8,15] | 01100010 | [2,7,8] | 10111111 | [3,6,14] | 01101000
[1,2,9] | 00100000 | [1,9,10] | 00111010 | [2,7,9] | 10100010 | [3,6,15] | 01001100

[1,2,10] | 00010000 | [1,9,11] | 00101000 | [2,7,10] | 10101110 | [3,7,8] | 01001101
[1,2,11] | 00000000 | [1,9,12] | 00111000 | [2,7,11] | 10110110 | [3,7,9] | 01001110
[1,2,12] | 00001000 | [1,9,13] | 00111001 | [2,7,12] | 10100100 | [3,7,10] | 01001111
[1,2,13] | 00000010 | [1,9,14] | 01111000 | [2,7,13] | 10100110 | [3,7,11] | 01010000
[1,2,14] | 01000000 | [1,9,15] | 01110000 | [2,7,14] | 10100111 | [3,7,12] | 01010001
[1,2,15] | 01000010 | [1,10,11] | 00010010 | [2,7,15] | 11101101 | [3,7,13] | 01010011
[1,3,4] | 00011001 | [1,10,12] | 00101010 | [2,8,9] | 10101111 | [3,7,14] | 01010100
[1,3,5] | 00001111 | [1,10,13] | 00110100 | [2,8,10] | 10101001 | [3,7,15] | 01110100
[1,3,6] | 00100011 | [1,10,14] | 01110110 | [2,8,11] | 10100101 | [3,8,9] | 01110111
[1,3,7] | 00101011 | [1,10,15] | 01010110 | [2,8,12] | 10101100 | [3,8,10] | 01111001
[1,3,8] | 00111011 | [1,11,12] | 00100001 | [2,8,13] | 10101101 | [3,8,11] | 01111011
[1,3,9] | 00011011 | [1,11,13] | 01000001 | [2,8,14] | 10001101 | [3,8,12] | 01111100
[1,3,10] | 00001010 | [1,11,14] | 01000100 | [2,8,15] | 11111011 | [3,8,13] | 01111101
[1,3,11] | 00000011 | [1,11,15] | 01001000 | [2,9,10] | 10110001 | [3,8,14] | 01110001
[1,3,12] | 00001001 | [1,12,13] | 01000101 | [2,9,11] | 10110010 | [3,8,15] | 11110100
[1,3,13] | 00001011 | [1,12,14] | 01100001 | [2,9,12] | 10010011 | [3,9,10] | 11110101
[1,3,14] | 01001011 | [1,12,15] | 01110001 | [2,9,13] | 10110011 | [3,9,11] | 11110110
[1,3,15] | 01010111 | [1,13,14] | 01000111 | [2,9,14] | 10110111 | [3,9,12] | 11111001
[1,4,5] | 00010100 | [1,13,15] | 01000011 | [2,9,15] | 11110010 | [3,9,13] | 11111010
[1,4,6] | 00000111 | [1,14,15] | 01100000 | [2,10,11] | 11110011 | [3,9,14] | 11111100
[1,4,7] | 00111101 | [2,3,4] | 10000001 | [2,10,12] | 11100010 | [3,9,15] | 01010111
[1,4,8] | 00110101 | [2,3,5] | 10000100 | [2,10,13] | 10111010 | [3,10,11] | 01011001
[1,4,9] | 00010001 | [2,3,6] | 10011000 | [2,10,14] | 10100001 | [3,10,12] | 01011100
[1,4,10] | 00010111 | [2,3,7] | 10000110 | [2,10,15] | 11000011 | [3,10,13] | 01011101
[1,4,11] | 00000101 | [2,3,8] | 10001100 | [2,11,12] | 11000010 | [3,10,14] | 01011111
[1,4,12] | 00010101 | [2,3,9] | 10110000 | [2,11,13] | 11001010 | [3,10,15] | 11100000
[1,4,13] | 00011101 | [2,3,10] | 10100000 | [2,11,14] | 11010010 | [3,11,12] | 11011101
[1,4,14] | 01010101 | [2,3,11] | 10010000 | [2,11,15] | 11001100 | [3,11,13] | 11011110

240

PhD Thesis

Tables

[1,4,15]

01110101

2,3,12]

10000000

[2,12,13]

11100110

[3,11,14]

11100001

[1,5,6]

00001110

2,3,13]

10001000

[2,12,14]

11010110

[3,11,15]

11100011

[1,5,7]

00111100

2,3,14]

10000010

[2,12,15]

11000111

3,12,13]

11100100

[1,5,8]

00111110

2,3,15]

11000000

[2,13,14]

11001110

3,12,14]

11100101

[1,5,9]

00011010

12,4,5]

10011001

[2,13,15]

11010111

3,12,15]

01100011

[1,5,10]

00011110

[2,4,6]

10001111

[2,14,15]

01111010

3,13,14]

01100100

[1,5,11]

00010110

[2,4,7]

10100011

[3,4,5]

01001010

[3,13,15]

01100111

[1,5,12]

00011111

[2,4,8]

10101011

[3,4,6]

01010010

[3,14,15]

01101100

[1,5,13]

00011100

12,4,9]

10111011

[3,4,7]

01011000

4,5,6]

11000001

[1,5,14]

00011110

2,4,10]

10011011

[3,4,8]

11011010

[4,5,7]

01101111

[1,5,15]

01111110

2,4,11]

10001010

[3,4,9]

01011010

4,5,8]

11110000

[1,6,7]

00101111

2,4,12]

10000011

[3,4,10]

01011011

[4,5,9]

11110001

[1,6,8]

00100010

2,4,13]

10001001

[3,4,11]

01101010

[4,5,10]

10110100

[1,6,9]

00101110

2,4,14]

10001011

[3,4,12]

01101110

[4,5,11]

10111000

[1,6,10]

00110110

2,4,15]

11011011

[3,4,13]

01001001

[4,5,12]

10111001

[1,6,11]

00100100

[2,5,6]

10010100

[3,4,14]

01100010

[4,5,13]

11001011

[1,6,12]

00100110

12,5,7]

10111101

[3,4,15]

01111111

[4,5,14]

11001101

[1,6,13]

00100111

[2,5,8]

10000111

[3,5,6]

11011111

[4,5,15]

11001001

[1,6,14]

01100110

12,5,9]

10110101

13,5,7]

11101111

14,6,7]

11011000

[1,6,15]

01000110

[2,5,10]

10010001

[3,5,8]

11110111

[4,6,8]

11011001

[1,7,8]

00111111

2,5,11]

10010111

13,5,9]

11111101

4,6,9]

11001111

[1,7,9]

00101001

2,5,12]

10000101

[3,5,10]

11111110

[4,6,10]

11010000

[1,7,10]

00100101

2,5,13]

10010101

[3,5,11]

11111111

[4,6,11]

11010001

[1,7,11]

00101100

2,5,14]

10011101

[3,5,12]

11101011

[4,6,12]

11010011

[1,7,12]

00101101

2,5,15]

11010100

3,5,13]

11101110

[4,6,13]

11010100

[1,7,13]

00001101

2,6,7]

10010010

[3,5,14]

11100111

[4,6,14]

01100101

[1,7,14]

01101101

2,6,8]

10111100

[3,5,15]

11101000

[4,6,15]

11000100

[1,7,15]

00100001

12,6,9]

10111110

[3,6,7]

11101001

14,7,8]

11000101

[1,8,9]

00110001

2,6,10]

10011010

[3,6,8]

11101010

[4,7,9]

00000000

15
Table 7.3: The estimated “optimum” mapping for the [3 J multiple PPM system

encoding 8 PCM bits (codewords below [4,7,9] are not used).

241

PhD Thesis

Tables

Optimum mapping for the 33-2 MULTIPLE PPM System

c/w

PCM

c/w

PCM

c/w

PCM

c/w

PCM

[1,2]

000100000

[5,12]

101101010

[10,15]

001100111

[16,26]

001100011

[1,3]

000000011

[5,13]

100111010

[10,16]

001000111

[16,27]

100110111

[1,4]

000000101

[5,14]

001010010

[10,17]

101101100

[16,28]

111110011

[1,5]

001000010

[5,15]

001101011

[10,18]

011111100

[16,29]

101100011

[1,6]

000010100

[5,16]

101111110

[10,19]

000000111

[16,30]

101110110

[1,7]

010000001

[5,17]

101111000

[10,20]

010111100

[16,31]

101110111

[1,8]

011000000

[5,18]

111111010

[10,21]

001000110

[16,32]

111110110

[1,9]

000000100

[5,19]

001101010

[10,22]

111111100

[16,33]

101111111

[1,10]

000011000

[5,20]

001110110

[10,23]

111110100

[17,18]

110011000

[1,11]

100000001

[5,21]

001001010

[10,24]

001100110

[17,19]

110001110

[1,12]

000001001

[5,22]

011101010

[10,25]

011011100

[17,20]

110000100

[1,13]

000001010

[5,23]

001111011

[10,26]

001110100

[17,21]

110000010

[1,14]

000010010

[5,24]

001110011

[10,27]

010101110

[17,22]

110001100

[1,15]

101000000

[5,25]

101111010

[10,28]

011111111

[17,23]

110001001

[1,16]

000000110

[5,26]

0or111110

[10,29]

000011010

[17,24]

110000001

[1,17]

100001000

[5,27]

011111010

[10,30]

001001110

[17,25]

110101000

[1,18]

010001000

[5,28]

0or111010

[10,31]

001111100

[17,26]

111001000

[1,19]

100000010

[5,29]

000111010

[10,32]

011111101

[17,27]

110001011

[1,20]

000010001

[5,30]

001011010

[10,33]

010011101

[17,28]

110001101

[1,21]

000000010

[5,31]

001110010

[11,12]

100100011

[17,29]

110000000

[1,22]

000001100

[5,32]

001111000

[11,13]

100011111

[17,30]

110001000

[1,23]

001001000

[5,33]

011111110

[11,14]

100010010

[17,31]

110010100

[1,24]

001000001

[6,7]

010010000

[11,15]

101000011

[17,32]

110001010

[1,25]

000001000

[6,8]

010011010

[11,16]

101010111

[17,33]

101001000

[1,26]

001010000

[6,9]

011000110

[11,17]

100001011

[18,19]

110111010

[1,27]

010000000

[6,10]

010111110

[11,18]

100010000

[18,20]

110111100

[1,28]

100000100

[6,11]

100010110

[11,19]

100000111

[18,21]

111011010

[1,29]

000000000

[6,12]

110110110

[11,20]

110010001

[18,22]

111011000

[1,30]

000000001

[6,13]

110011110

[11,21]

111010011

[18,23]

110011001

[1,31]

100000000

[6,14]

111010110

[11,22]

100000011

[18,24]

110011011

[1,32]

001000000

[6,15]

010010101

[11,23]

110010011

[18,25]

110111000

[1,33]

000010000

[6,16]

011110110

[11,24]

101010011

[18,26]

110011100

[2,3]

000100011

[6,17]

010001110

[11,25]

100111011

[18,27]

110011010

2,4]

000101100

6,18]

010011100

[11,26]

100010111

[18,28]

110011101

[2,5]

000111000

[6,19]

110000110

[11,27]

000010011

[18,29]

110010000

242

PhD Thesis

Tables

2,6]

000100110

[6,20]

110010111

[11,28]

100011011

[18,30]

010011000

2,7]

000110001

[6,21]

110010110

[11,29]

100010001

[18,31]

011011000

[2,8]

000101010

[6,22]

010000110

[1130]

001010011

[18,32]

100011000

2,9]

000100100

[6,23]

011011110

[11,31]

101011011

[18,33]

100011010

[2,10]

000110100

[6,24]

011010111

[11,32]

100110011

[19,20]

110100101

[2,11]

000110010

[6,25]

010011110

[11,33]

100010011

[19,21]

110100110

[2,12]

000101001

[6,26]

011010110

[12,13]

100101010

[19,22]

110100100

[2,13]

100100100

[6,27]

010010111

[12,14]

101001001

[19,23]

110101101

[2,14]

101100000

[6,28]

010110110

[12,15]

100100101

[19,24]

110100011

[2,15]

000100101

[6,29]

010010010

[12,16]

101111001

[19,25]

110100010

[2,16]

001110000

[6,30]

000010110

[12,17]

110101001

[19,26]

111100111

[2,17]

110100000

[6,31]

010010100

[12,18]

100001001

[19,27]

010100111

[2,18]

000101000

[6,32]

010010110

[12,19]

110101011

[19,28]

010000101

[2,19]

100100000

[6,33]

010010011

[12,20]

100111101

[19,29]

110000111

[2,20]

100110000

[7,8]

011110011

[12,21]

101101011

[19,30]

110100111

[2,21]

100100010

(7,91

010110100

[12,22]

100101100

[19,31]

110101110

[2,22]

100101000

[7,10]

011110000

[12,23]

100111001

[19,32]

110110111

[2,23]

010101000

[7,11]

110110011

[12,24]

101101001

[19,33]

110111111

[2,24]

001100000

[7,12]

100110001

[12,25]

111101001

[20,21]

111110000

[2,25]

001101000

[7,13]

110110000

[12,26]

100101101

[20,22]

111010101

[2,26]

010100000

[7,14]

010110010

[12,27]

100101111

[20,23]

110111101

[2,27]

010100010

[7,15]

110100001

[12,28]

100101011

[20,24]

111101101

[2,28]

001100001

[7,16]

111110001

[12,29]

100100001

[20,25]

111100001

[2,29]

000100001

[7,17]

010111000

[12,30]

100001101

[20,26]

110110100

[2,30]

000100010

[7,18]

110111001

[12,31]

100101001

[20,27]

100001111

[2,31]

010100101

[7,19]

010100011

[12,32]

100011001

[20,28]

110010101

[2,32]

001100010

[7,20]

010110101

[12,33]

110101111

[20,29]

100010100

[2,33]

000110000

[7,21]

110110001

[13,14]

111111110

[20,30]

100010101

[3,4]

001111111

[7,22]

011111001

[13,15]

101111100

[20,31]

110110101

3,5]

000111011

[7,23]

010011001

[13,16]

101101110

[20,32]

101110100

3,61

010011111

[7,24]

010110011

[13,17]

110101010

[20,33]

110000101

3,71

010110111

[7,25]

010101001

[13,18]

100111000

[21,22]

111000000

3,8]

000001111

[7,26]

011110101

[13,19]

100100110

[21,23]

111000011

[3,9]

010101111

[7,27]

010010001

[13,20]

100110100

[21,24]

111000010

[3,10]

000111100

[7,28]

010111001

[13,21]

111101110

[21,25]

111100010

[3,11]

000110011

[7,29]

010100001

[13,22]

110101100

[21,26]

111000110

[3,12]

000101101

[7,30]

010110000

[13,23]

110111011

[21,27]

010000010

[3,13]

000111110

[7,31]

010110001

[13,24]

110110010

[21,28]

111001010

[3,14]

000011011

[7,32]

001110001

[13,25]

100111100

[21,29]

101001010

243

PhD Thesis

Tables

[3,15] | 000100111 | [7,33] | 011110001 | [13,26] | 110111110 | [21,30] | 101000110
[3,16] | 001110111 | [8,9] | 011101111 | [13,27] | 100001110 | [21,31] | 011010010
[3,17] | 000111001 | [8,10] | 011101001 | [13,28] | 100111110 | [21,32] | 101100010
[3,18] | 010111011 | [8,11] | 010011011 | [13,29] | 100011100 | [21,33] | 110000011
[3,19] | 100111111 | [8,12] | 111101011 | [13,30] | 100011110 | [22,23] | 111011100
[3,20] | 010111101 | [8,13] | 101001011 | [13,31] | 100101110 | [22,24] | 111101100
[3,21] | 000110110 | [8,14] | 011010011 | [13,32] | 100110110 | [22,25] | 111001100
[3,22] | 000111101 | [8,15] | 001000011 | [13,33] | 110011111 | [22,26] | 111000100
[3,23] | 000011111 | [8,16] | 111001111 | [14,15] | 101110000 | [22,27] | 111001101
[3,24] | 001101111 | [8,17] | 011001000 | [14,16] | 101010010 | [22,28] | 111001110
[3,25] | 000101011 | [8,18] | 011011010 | [14,17] | 100001010 | [22,29] | 111010000
[3,26] | 000110101 | [8,19] | 111001011 | [14,18] | 110010010 | [22,30] | 011001100
[3,27] | 010111111 | [8,20] | 010101011 | [14,19] | 111110010 | [22,31] | 101001100
[3,28] | 000111111 | [8,21] | 011000010 | [14,20] | 100110010 | [22,32] | 111011110
[3,29] | 000011110 | [8,22] | 011001110 | [14,21] | 101000010 | [22,33] | 111010100
[3,30] | 000010111 | [8,23] | 011001001 | [14,22] | 101001110 | [23,24] | 111001001
[3,31] | 000101111 | [8,24] | 011001011 | [14,23] | 101010001 | [23,25] | 111111001
[3,32] | 000101110 | [8,25] | 011001010 | [14,24] | 111010010 | [23,26] | 111111000
[3,33] | 000110111 | [8,26] | 011000001 | [14,25] | 101011000 | [23,27] | 111011011
[4,5] | 001011110 | [8,27] | 010001011 | [14,26] | 101010100 | [23,28] | 111011111
[4,6] | 001010111 | [8,28] | 011011011 | [14,27] | 100000110 | [23,29] | 101011001
[4,7] | 001110101 | [8,29] | 011000011 | [14,28] | 101011110 | [23,30] | 111011001
[4,8] | 011001101 | [8,30] | 001001011 | [14,29] | 101010000 | [23,31] | 111010001
[4,9] | 011010101 | [8,31] | 011000111 | [14,30] | 001010110 | [23,32] | 111011101
[4,10] | 001011100 | [8,32] | 011001111 | [14,31] | 101011010 | [23,33] | 111111101
[4,11] | 001011011 | [8,33] | 011101011 | [14,32] | 101110010 | [24,25] | 111101111
[4,12] [001101101 | [9,10] | 011110100 | [14,33] | 101010110 | [24,26] | 111000101
[4,13] | 000011100 | [9,11] | 011000101 | [15,16] | 101100111 | [24,27] | 010000011
[4,14] [001011000 | [9,12] | 011101101 | [15,17] | 101001101 | [24,28] | 111111011
[4,15] | 001111101 | [9,13] | 111100110 | [15,18] | 101000100 | [24,29] | 111000001
[4,16] | 101011101 | [9,14] | 111100000 | [15,19] | 100100111 | [24,30] | 111000111
[4,17] | 001001001 | [9,15] | 111100100 | [15,20] | 100110101 | [24,31] | 111100011
[4,18] | 000011001 | [9,16] | 011100111 | [15,21] | 101000101 | [24,32] | 111101010
[4,19] | 000001101 | [9,17] | 010101100 | [15,22] | 111100101 | [24,33] | 011100011
[4,20] | 000010101 | [9,18] | 001101100 | [15,23] | 101010101 | [25,26] | 111101000
[4,21] | 011011111 | [9,19] | 010100110 | [15,24] | 101100001 | [25,27] | 010101101
[4,22] | 001001100 | [9,20] | 011100101 | [15,25] | 101101101 | [25,28] | 001001111
[4,23] | 011011001 | [9,21] | 011100010 | [15,26] | 101110101 | [25,29] | 100001100
[4,24] | 001000101 | [9,22] | 011000100 | [15,27] | 100000101 | [25,30] | 101001111
244

PhD Thesis

Tables

[4,25] | 001111001 | [9,23] | 011101000 | [15,28] | 101100101 | [25,31] | 101101000
[4,26] | 001010001 | [9,24] | 011100001 | [15,29] | 101000001 | [25,32] | 101011100
[4,27] | 011011101 | [9,25] | 011101100 | [15,30] | 001100101 | [25,33] | 010101010
[4,28] | 001011101 | [9,26] | 011100100 | [15,31] | 101000111 | [26,27] | 110001111
[4,29] | 001001101 | [9,27] | 010000100 | [15,32] | 101100100 | [26,28] | 011110111
[4,30] | 000011101 | [9,28] | 011101110 | [15,33] | 101101111 | [26,29] | 011010000
[4,31] | 001010101 | [9,29] | 001100100 | [16,17] | 101011111 | [26,30] | 011010001
[4,32] | 001011111 | [9,30] | 010100100 | [16,18] | 101110001 | [26,31] | 011010100
[4,33] | 001011001 | [9,31] | 011100000 | [16,19] | 111110111 | [26,32] | 100011101
[5,6] | 010111010 | [9,32] | 011100110 | [16,20] | 111110101 | [26,33] | 010001100
[5,7] | 011110010 | [9,33] | 001000100 | [16,21] | 111010111 | [27,28] | 010001111
[5,8] | 011111011 | [10,11] | 000001011 | [16,22] | 101100110 | [27,29] | 010001010
[5,9] | 001101110 | [10,12] | 001101001 | [16,23] | 101111101 | [27,30] | 010000111
[5,10] | 011111000 | [10,13] | 000001110 | [16,24] | 101110011 | [27,31] | 010001001
[5,11] | 101111011 | [10,14] | 001010100 | [16,25] | 11111111 | [27,32] | 010001101

Table

33
7.4: The estimated “optimum” mapping for the (2 J multiple PPM system

encoding 9 PCM bits (codewords below [27,32] are not used).

245

PhD Thesis

Tables

f, 100 50 10 1.2 o 100 50 10 1.2

7 15

) -13.0 | -12.8 | -13.2 | -25.6) -10.8 | -10.9 | -10.9 0.0

7 15

3 14.2 10.5 13.9 24.8 3 -1.8 -1.8 -1.0 -13.6

7 15

4 1.5 1.5 1.2 0.8 7 -4.3 -5.3 -5.6 -16.7
GC

12 17

) 2.2 0.2 0.8 -50.1) 0.0 0.3 0.0 0.0

12 17

3 2.4 -5.1 -5.6 -21.8 3 -4.8 -4.9 -5.4 -16.9

12 17

6 -10.2 -9.2 9.2 -8.9 g -11.2 | -10.2 -9.8 -19.3

7 15

5 -33.1 | -33.1 | -31.7 | -65.8 5 225 | -26.7 | 273 0.0

7 15

3 -35.2 -35 -34.7 | -23.7 3 -19.9 | -21.3 | -24.8 -4.7

7 15

4 234 | 229 | 223 | 243 . -16.6 | -16.2 | -17.1 -0.1
OPT

12 17

) -203 | -19.1 | -17.0 | -24.8) -183 | -22.6 | -25.7 0.0

12 17

3 233 | 253 | -26.0 | -30.0 3 -25.6 | -27.6 | -28.2 -7.2

12 17

6 -25.6 | 289 | -29.2 | -14.9 g -29.1 | -29.9 | -20.3 0.2

7 7 7 12 12 12
Table 7.5: Percentage change in error rate for a , , , , , ,
2 3 4 2 3 6

15 15 15 17 17 17
, , , , and multiple PPM system using linear increment
2 3 7 2 3 8

mapping as the reference and a PCM error rate of 1 bit in 10° pulses. The mappings
considered are Gray Code (GC) and Optimum (OPT).

246
PhD Thesis

Tables

f, 100 | 50 10 1.2 f, 100 | 50 10 1.2
22 28
-10.8 | -10.6 | -8.8 | 0.0 7.0 | -9.4 | -10.1 | -13.7
2 14
22 33
3 32 | S0 67 | 17| 103 | -10.6 | -9.8 | 0.0
22 33
q 87 | 90 | -103 | <112 | |} 71 | 67 | -88 | -123
GC
22 33
0 S8 | 93 | <120 | -119 | | 89 | 94 | -10.1 | -11.4
28 33
52 | 52 | 42 | 00 104 | -13.7 | -16.7 | -17.1
2 12
28 33
61 | -79 | -81 | -104 111 | 2133 | -15.7 | -19.2
9 16
22 28
) 217 | 235 | 266 | 0.0 | || |-287 | -257 | 206 | -4.7
22 33
5 26.7 | -227.1 | -283 | 0.4) 214 | 22 | 223 | 0.0
22 33
q 278 | 292 | 201 | 56 | | 22.1 | 248 | -257 | 08
OPT
22 33
]| 220 | 218 | 204 | 89 || 28.6 | -299 | -31.8 | -0.5
28 33
) 267 | 278 | 292 | 0.2 | | 312|337] 377 | s
28 33
. 20.1 | 222 | 257 | 08 | |]| -333 | 378 | -392 | 78

22 22 22 22 28 28
Table 7.6: Percentage change in error rate for a , , , , ,
2 3 8 11 2 9

28 33 33 33 33 33
, , , , , and multiple PPM system using linear increment
14 2 3 9 12 16

mapping as the reference and a PCM error rate of 1 bit in 10° pulses. The mappings
considered are Gray Code (GC) and Optimum (OPT).

247
PhD Thesis

Tables

Erasure Error Mapping
[1,2,?] Optimum Ideal
[1,2] 000001 000000
[1,3] 000100 000001
[1,4] 011000 000010
[1,5] 000110 000100
[1,6] 001100 001000
[1,7] 000010 010000
[1,8] 100000 100000
[1,9] 010000 000001
[1,10] 000000 000010
[1,11] 001000 000100
[1,12] 010000 001000
Averaged [1,?] codeword 000000 010000
Averaged Hamming Distance 13 11

Table 7.7: Total Hamming distance for “Optimum” and “Ideal” mapping of the [1,?] ER

12
averaged codeword in a (2] multiple PPM system.

248

PhD Thesis

Tables

Ideal mapping for the 7-4
MULTIPLE PPM System

c/w

PCM

c/w

PCM

[1,2,3,4]

00000

[1,4,6,7]

01000

[1,2,3,5]

00001

[1,5,6,7]

00001

[1,2,3,6]

00010

2,3,4,5]

00010

[1,2,3,7]

00100

2,3,4,6]

00100

[1,2,4,5]

01000

2,3,4,7]

00100

[1,2,4,6]

00001

2,3,5,6]

00010

[1,2,4,7]

00010

12,3,5,7]

01000

[1,2,5,6]

00100

2,3,6,7]

00001

[1,2,5,7]

01000

[2,4,5,6]

00010

[1,2,6,7]

00001

2,4,5,7]

00100

[1,3,4,5]

00010

2,4,6,7]

00010

[1,3,4,6]

00100

2,5,6,7]

00100

[1,3,4,7]

00100

[3,4,5,0]

00100

[1,3,5,6]

01000

[3,4,5,7]

10000

[1,3,5,7]

00001

[3,4,6,7]

Not
used

[1,3,6,7]

00001

13,5,6,7]

Not
used

[1,4,5,6]

00010

[1,4,5,7]

00100

[4,5,6,7]

Not
used

7
Table 7.8: Ideal mapping for the (4} multiple PPM system encoding 5 PCM bits.

249

PhD Thesis

Tables

12_2 12_3 12_6 15_2 15_3

fa OPT IDEAL OPT IDEAL OPT IDEAL OPT IDEAL OPT IDEAL

100 20.3 57.4 23.3 68.6 25.6 80.1 22.5 58.6 19.9 73.9

50 19.1 54.6 25.3 68.4 28.9 84.2 26.7 59.1 21.3 73.4

10 17 56.8 26 68.3 29.2 84 27.3 58.8 24.8 73.7

1.2 24.8 57.1 30 77.3 14.9 84.8 0 50.8 4.7 80.1

fa OPT IDEAL OPT IDEAL OPT IDEAL OPT IDEAL OPT IDEAL

100 33.1 46.4 35.2 54.4 23.4 84.4 18.3 65.4 26.7 64.3

50 33.1 46.7 35 54.2 22.9 84.2 22.6 65.2 27.8 64

10 31.7 47 34.7 54.1 22.3 84 25.7 64.8 29.2 64.4

1.2 65.8 43 23.7 49.3 24.3 84.8 0 63.8 0.2 58.9

332
f, | OPT | IDEAL
100 | 21.4 | 68.6
50 22 68.4
10 | 223 | 692

1.2 0 57.8

7 7 7 12 12 12
Table 7.9: Percentage change in error rate for a , , , , , ,
2 3 4 2 3 6

15 15 17 28 33
sl ls b o) s and 5 multiple PPM system using linear increment

mapping as the reference and a PCM error rate of 1 bit in 10° pulses. The mappings

considered are Optimum (OPT) and Ideal (IDEAL).

250
PhD Thesis

Appendix C

APPENDIX C

Software Printout

251
PhD Thesis

Software Printout

= o e 7/
Vi COMMENTS /o
e /1
//Program: MPEM PCM EQUIVALENT Error Rate Calculation IF
J/cut: Final /!
//Date: 31/08/086 I
//Buthor: Konstantinos Nikelaidis I
//Inputs: Keyboard (X-Y numbers and other i/p's) [/

//Description: The program calculates erasure, false alarm, wrong slot error rates and
display the error seguences of the MPPM system using 2 algorithms
(2-pulse and Original)

//Furthsr: Create error reduction algorithms
//Time Analysis: BEST CASE: WORST CASE:
//Space Analysis: BEST CASE: WORST CASE:

e
[=]
i
[}

ERASURE: i.e. for 12-2 er put 64 then 6 then 12 and 0 (pasc 2)
for 12-1 er put 8 then 3 then 0 and 0
for 12-11 er put 8 then 3 then 66 and 0

FALSE ALARM: i.e. for 12-2 fa put 64 then 6 then 0 and 220 (pasc 3)
for 12-1 fa put 8 then 3 then 0 and 28
for 12-11 fa put 8 then 3 then 0 and 1

WRONG SLOT: i.e. for 12-2 ws put 64 then 6 then 12 and 220
(pasc 2) -(pasc 3)
for 12-1 ws put 8 then 3 then 0 and 28
for 12-11 ws put 8 then 3 then &6 and 1

for the RANDOM mapping range i.e. for 12-2 put from 0 to 64

for the LINEAR DECREMENT mapping start from pasc-1 i.e. 12-2 put

start 63
System PCM Bits Data Range Pasc-RD-LI-LD-GC ER(pasc2)-FA(pasc3)

12-1 2 8- (0-7) 1-28 (pow(2,pcm bits) 2)
12-2 3 64-(0-63) 12-220

12-3 7 128-(0-127) 66-495

12-4 8 256- (0-255) 220-792

12-5 9 512-(0-511) 495-924

12-6 9 512- (0-511) 792-792

12-7 9 512-(0-511) 924-495

12-8 a 256- (0-255) 792-220

12-9 T 128-(0-127) 495-66

12-10 3 64-(0-83) 220-12

12-11 3 g-(0-7) 66-1

The commented areas are code used for automated calculation only
Uncomment the areas with the registers
This version is only for printing (A4)!!!!There is no indentation in the code
The indented version will be used during the viva

e e e o o e e e e e e e e e e e e e e e L L
e o o o o o o T o o T T o o o o o o T o o T o o o o T T o T o o T T e T e ™y
e e T e e e e e T e e T T T T e e e e T T e e e T T e e e e e e e e e
o o T o Ty T o o T o o o o T o o o T N o N e o o e s T T T o T T T o o T e e e e e e e e S ™

#include<iostream.h>
#include<iomanip.h>
#include<stdioc.hs
#include<stdlib.h>
#include<time.h>
#include<math.h>
#include<ctype.hs
#include<assert.h>
#include<errno.h>
#include<float.h>
#include<limits.h>
#include<locale.h>
#include<setjmp.h>
#include<sgignal .h>
#include<stdarg.h>
#include<stddetf .h>
#include<string.h>

252
PhD Thesis

Software Printout

#include<conio.hs>

#include<windows.h>
#include <wincon.hs

#include <fstream.h>

YOid gotoxy{int x, int y)

HANDLE hConsoleOutput; COORD dwCursorPosition;
dwCursorPosition.X = x; dwCursorPosition.Y = y;
hConsoleutput = GetftdHandle (STD OQUTPUT HANDLE) ;

} === T
?nt clrsecr()//all the screen

HANDLE hndl = GetStdHandle (STD OUTPUT_HANDLE) ;

CONSCLE SCREEN BUFFER INFC c¢sbi;
GetConsoleScreenBufferInfo(hndl, &csbi);

DWORD written;

DWORD N = csbi.dwsSize.X * csbi.dwCursorPosition.Y + csbi.dwCursorPosition.X + 1;
COORD curhome = [0,0};

FillconscletutputCharacter (hndl, * ', N, curhome, &written);
csbi.srWindow.Bottom -= csbi.srWindow.Top;

csbi.srWindow.Top = 0;

setConsoleWindowInfo (hndl, TRUE, &csbi.srWindow);
SetConsoleCursorPosition(hndl, curhome) ;

return 0;

} Af-eeee- 121
int clrscr2()//arrays

HANDLE hndl = GetStdHandle (STD OUTPUT_HANDLE) ;

CONSCLE SCREEN BUFFER INFC csbi;
GetConsoleScreenBufferInfo(hndl, &csbi);

DWORD written;

DWORD N = csbhi.dwSize.X * csbi.dwCursorPosition.Y + csbi.dwCursorPosition.X + 1;
COORD curhome = [10,55};

FillConsoleOutputCharacter (hndl, ' ', N, curhome, swritten);
csbi.srWindow.Bottom -= csbi.srWindow.Top;

csbi.srWindow.Top = O;

SetConsoleWindowInfo (hndl, TRUE, &csbi.srWindow);
SetConsoleCursorPosition{hndl, curhome) ;

return 0;

vold control_panel ();

void print input arrays (int #, unsigned long int, int, int, int, unsigned long int,
unsigned long int, unsigned long int, int, int, unsigned long int, unsigned long int,
unsigned long int, int, int, int, int, int, int, int);

int print error rate arrays (int *, unsigned long int, int, int, int, int, int, int,
unsigned long int, unsigned long int, unsigned long int, int, int, unsigned long int,
unsigned long int, unsigned long int, int, int, int, int, int, int, int});

void print random array (int *, unsigned leng int, int, int, int, unsigned long int,
unsigned long int, unsigned leng int, int, int, unsigned long int, unsigned long int,
unsigned long int, int, int, int, int, int, int, int});

void print random array2 (int *, unsigned long int, int, int, int, unsigned long int,
unsigned long int, unsigned leng int, int, int, unsigned long int, unsigned long int,
unsigned long int, int, int, int, int, int, int, int);

unsigned long double pascal_calc (int, int);

void £ill data (int, int, unsigned long int, unsigned long int, unsigned long int, int,

int, unsigned long int, unsigned long int, unsigned long int, int, int, int, int, int,
int, inc);//---7T

253
PhD Thesis

Software Printout

o e B S B S S T S S S 4/
7/ MAIN PROGRAM /l
T e e e e e e /

void main (void)

int X,¥;

int pressl,press?,press3,pressd,press5,pressé,erasure bits,false alarm bits,
wrong slot bits,pem bits,aut pem bits,start number,end number,extra pulses,
start, finish, remainder, number, flag,counter,bit counter,row counter,row counter2,
flag_er,flag_fa,flag_ws,limit,pulse_counter, pulse_counter2,zero_counter;

int i,3,k,1,m,w,p,n,nl,0,2,11,¢,question; //------ 47 integers
float a;

fleoat photon energy,mark space correction,pulse energy,energy_in frame,
energy_per_pem_bit,B,dBm,minimum; //-------- 9 floats

unsigned long float erasure weight,erasure weight2,false_alarm_weight,
false_alarm weight2; //------ 4 long floats

unsigned long int pasc,pasc2,pasc3;
unsigned long int aut_pasc,aut_pasc2,aut_pascd; [/--=------- 6 long integers

int *mppm, *data, *random, *mppm_data, *weighted er mppm_data, *weighted fa_mppm_data;
int *mppm_er,*mppm_fa, *mppm_ws; //----=--=--- 9 int registers
float *sequence, *sequence2; //------------ 2 float registers

fstream file op("error rates.txt",ios::out);

fstream file opl ("input arrays.txt",ios::out);

fatream file op2 ("random.txt",ics::out|ics::1in);

fstream file op3 ("random.txt", ios::in);

fstream file_opd ("sequences.txt®,ios:wout); f/----------- 5 files

//16T

//registers used for automated calculations--save the impcat of svery sequence
/*float standard [24] = [2298,2303,2312,2324,2341,2366,2405,2466,2565,2602,2676,

2783,2887,2956,3041,3150,3296,3502,3812,4348,5685,6280,
8939, 72550 ;

float standard fa [24] = {2495,2502,2512,2526,2546,2574,2617,2685,2792,2832,2911,
3024,3133,3203,3290,3400,3545,3743,4027,4473,5685, 6280,
8939,72550};

float pf 10 [24)] = {2557,2565,2575,2590,2611,2641,2687,2759,2875,2918, 3002,
3126,3245,3323,3421,3545,3711,3944,4294,4891,6336,6967,
8957,725501};

float pf 110 [24] = {2559,2566,2577,2592,2613,2642,2689,2761,2877,2920,3005,
3128,3248,3326,2424,3549,3715,3949,4301,4901,6363, 7006,
8972,725501};

float pf 101 [24] = {2557,2565,2575,2590,2611,2641,2687,2759,2875,2918, 3002,
3126,3245,3323,3421,3545,3711,3944,4294, 46891 ,6336, 6967,
8957,72550};

float pf 1101 [24] - [2559,2566,2577,2592,2613,2642,2689,2761,2877,2520, 2005,

3128,3248,3326,3424,3549,3715,3949,4301,4901,6363, 7007,
8977,72550};

float standard er [24] = {2601,2606,2617,2632,2653,2682,2728,2791,2913,2956,3041,
3165,3286,3365,3464,3591,3761,4002,4367,5006, 6640,7376, 9650,72550};

float pel 1 [24] = {2298 2303,2312,2324,2341,23662405,2466,2565,2602,2676,
2783,2887,2956,3041,3150,3296,3502,3812, 4348 5695 5280 8939, 72550}

float pe 11 f24] = {2539 2545 2556 2570 2590 2618 2662 2730,2842,2883,2965,
3034,3200,3275,3369,3490,3650,3875,4211.4780.6094,6506,8941.72550}:

float pe 111 [24] = {2537,2545,2555,2568,2588,2615,2659,2734,2840,2882,2963,
3083,3198,3273,3367,3487,3647,3871,4206,4774,6081,6589,8941,72550};

float pe 101 [24] = {2597, 2605 2516 2629 2650 26?8 2724 2798,2911,2954,3039,
3163,3284,3363,3462,3588,3756,3997,4362, 4999 6625,7356,59623, 72550}

float pe 1101 [24] = {2597 2605,2616,2629,2649,2677,2723,2804,2911,2954, 3039,
3163,3234,3353,3462,3588,3?59,399?,4350,4997,6624,7354,9622,72550};

float pe 10101 [24] = {2601,2606,2617,2632,2653,2682,2728,2791,2913,2956, 3041,
3165,3286,3365,3464,3591,3761,4002,4367,5006, 6640,7376, 9650,72550};

float standard ws [24] = [2298,2303,2312,2324,2341,2366,2405,2466,2565,2602,2676,
2783,2887,2956,3041,3150,3296,3502,3912,4348,5685,6280,8939,72550};

float psl_1 [24] = {2298,2303,2312,2324,2341,2366,2405,2466,2565,2602,2676,

3
254

PhD Thesis

2783,2887,2956,2041,3150,2296,3502,3812,4248,5685,6280, 8939,72550};

Software Printout

float ps 11 [24] = {2298,2303,2312,2324,2341,2366,2405,2466,2565,2602,2676,

2783,2887,2956,3041,3150,3296,3502,3812,4348,5685,6283,11130, 72550} ;

float ps 111 [24] = {2298,2303,2312,2324,2341,2366,2405,2466,2565,2602,2676,

2783,2887,2956,3041,3150,3296,3502,3812,4348,5685,6288,11690,102000};

float ps 101 [24] = [2298,2303,2312,2324,2341,2366,2405,2466,2565,2602,2676,

2783,2887,2956,3041,3150,3296,3502,3812,4348,5685,6280, 8939,72550};

float ps 1101 ([24] = {2298,2303,2312,2324,2341,2366,2405,2466,2565,2602,2676,

2783,2887,2956,3041,3150,23296,3502,3812,4348,5685,6280, 8939,72550};

float ps 1011 [24] = {2298,2303,2312,2324,2341,2366,2405,2466,2565,2602,2676,

2783,2887,2956,3041,3150,3296,3502,3812,4348,5685,6280,8939,72550};

float ps 10111 [24] = {2298,2303,2312,2324,2341,2366,2405,2466,2565,2602,2676,

2783,2887,2956,3041,3150,3296,3502,3812,4348,5685,6280, 8939, 72550} ;

float ps 11011 [24] = {2299,2303,2312.2324,2341,2366.2405,2466:2565,2602,26?6.

2783,2887,2956,3041,3150,3296,3502,3812,4348,5685,6280, 8939,72550};

float pg 110111 [24] = {2298,2303,2312,2324,2341,2366,2405,2466,2565,2602,2676,

2783,2887,2956,3041,3150,3296,3502,3812,4348,5685,6280, 8939, 72550},

float ps 1 1 1 [24] = [2298,2303,2312,2324,2341,2366,2405,2466,2565,2602,2676,

2783,2887,2956,3041,3150,3296,3502,3812,4348,5685,6280,8939,72550};

float ps 1 1 11 [24] = {2298,2303,2312,2324,2341,2366,2405,2466,2565,2602,3676,

2783,2887,2956,3041,3150,3296,3502,3812,4348,5685,6283, 10680, 72550} ;

float ps 11 1 1 [24] = {2298,2303,2312,2324,2341,2366,2405,2466,2565,2602, 2676,

2783,2887,2956,3041,3150,3296,3502,3812,4348,5685,6287,11170, 72550} ;

float ps 11 1 11 [24] = {2298,2303,23132,2324,2341,2366,2405,2466,2565,2602,2676,

2783,2887,2956,3041,3150,3296,3502,3812,4348,5685,6287,11170, 72550} ;*/

/l

float standard fa [24] = [0.754789272,0.756653992,0.754716981,0.753731343,
0.753676471,0.753623188,0.746478873,0,742272881,
0.727564103,0.72327044,0.714285714,0.698550725,
0.681440443,0.667567568,0.650130548, 0.6265664156,
0‘59127?076,0A539149889,0.439672802,0,226039783;
0,0,0,04;

float pf 10 [24] = {0.992337165,0.996197719,0.99245283,0.992537313,
0.992647059,0.996376812,0.992957746,0.993220339,
0.993589744,0.993710692,0.990881459,0.994202899,
0.991689751,0.991891892,0.992167102, 0,989974937,
0.990453461,0.988814318,0.985685072, 0.981916817,
0.960176991,0.944979367,0.473684211,0, };

float pf 110 [24] ={1,0.9986244604,

0.868421053,0};

float pf 101 [24] = {0.992337165,0.996197719,0.99245283,0.992537313,
0.992647059,0.996376812,0.992957746,0.993220339,
0.993589744,0.993710692,0.990881459, 0.994202899,
0.991685751,0.991891892,0.992167102, 0.989974937,
0.990453461,0.988814318,0.985685072,0.981916817,
0.960176991,0.944979367,0.473684211,0} ;

float pf_1101 [24] SR e O T 0 T O O L I O O O R 1 T O O S . 0 T T

fleoat standard er [24] = 1,1,1,
float pel 1 [24] = {0,0};
float pe 11 [24] =

1,1,1,1,1,1,1,0.961538462,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};

0.795379538,0.8019801598,0.8,0.798701299,0.728076923,

0.797468354,0.795665635,0.781065089,0.795977011,0.723785311,
0.791780822,0.787958115,0.784461153,0.7799511,0.775413712,
0.770975057,0.761250322,0.746,0.7185918919, 0.656534954,

0.428272251,0.297445255,0.00281294,0};

float pe 111 ([24] = {0.788778878,0.798679868,0.7926721311,0.792207792,0.791666667,

float pe 101 [24]

float pe 1101 [24

float pe_10101 [24]

fleat standard ws
float psl 1 [24]
float ps 11 [24

float ps 111 [24]
float ps 101 [24]
float ps_1101 [24

0.787974684,0.786277709,0.792899408, 0.790229885, 0. 790960452,
0.78630137,0.785340314,0.779448622,0.775061125,0.770685579,
0.764172336,0.75483871,0.738,0.70990991,0.647416413,
0.414659686,0.281934307,0.00281294,0};

= {0.98679868,0.99669967,0.986721311,0.99025974,0.987179487,
0.984177215,0.984520124,1,0.994252874,0.994350282,
0.994520548,0.994764398,0.994987469,0.995110024, 0.995271868,
0.993197279,0.993548387,0.99,0.987387387,0.986322188,
0.983246073,0.979927007,0.960618847,0} ;

= {0.98679868,0.99669967,0.996721311,0.95025974,0.987179487,

0.984177215,0.984520124,1,0.994252874,0.994350282,

0.994520548,0.994764398,0.994987469, 0.995110024, 0.995271868,

0.993197279,0.993548387,0.99,0.987387387,0.986322188,

0.983246073,0.979927007,0.960618847,0};
1,1;1,1,1,1,1,0.5961538462,1,1,1,1,1,1,1,2,1,2,1,1,1,:1,1,0};

{

[24] = {0,0};
= {0,0};
= {0,0.375,

0.796437659,0};
= {0,1,1,1};
= {0,0
= {0,0};

255

PhD Thesis

fleoat
float
float
float
float
float

fleat

float

ps
ps
ps
ps
s
ps

p=

ps

1011
10111
11011

[24]
[24]
[24]

110111 [24]

T Ul

[24]

11 11 [24]

11 1.1 [24]

11 1 11 [24]

/*float standard [24)

fleat standard fa [24]

float

float

float

float

float

fleoat

fleoat

float

float

float

float

pf 10 [24]

pf 110 [24]

pt 101 [24]

pL 1101 [24]

standard er [24]

pel 1

[24]

pe 11 [24]

111 [24]

101 [24]

1101

10101

[24]

[24]

CO0O0C000C0C000O0

Software Printout

WOoOWONROOOOOO

P iy

e R
cCoOOOoONOOOOOCO
L R
gl sl
B3~ wd™ = % % w o™
MOMOVOOCOO0O0O0

iRy
~“OoO~-NONhOOOOOO

g
OO0 OO0O0O

DOC0CDO0OO0O000

PEEy

= {0,0};

{0.650165017,0.656765677,0.655737705,0.655844156,0,657051282,
0.658227848,0.656346749,0.647928994,0.652298851,0.649717514,
0.643835616,0.630890052,0.616541353,0.60391198,0.588652482,
0.566893424,0.535483871,0.482,0,387387387,0.189969605,0,0,
0,0};

{0.8547685479, 0. 864686469, 0.862295082,0.863636364,
0.865384615,0.870253165,0.873065015,0.866863905, 0.890804598,
0.892655367,0.893150685,0.897905759,0.897243108,0.897310513,
0.898345154,0.89569161,0.892473118,0.884,0.868468468,
0.325227964;0.681575393,0.626824315;0.006543075,0};

{0.861386139,0.867986799,0.868852459,0.87012987,0.871794872,
0.873417722,0.879256966,0.872781065,0.896551724,0,.898305085,
0.901369863,0.903141361,0.904761505,0.904645477,0.905437352,
0.904761205,0.901075269,0.894,0.881081081,0.840425532,
0.709947644,0.662408759,0.011995638,0};

{OA354795479,0A364695469,0.362295092,0,953636364,0.365334615,
0.870253165,0.873065015,0.866863505,0.890804598,0.89226553¢67,
0.893150685,0.897905759,0.897243108,0.897310513, 0.828345154,
0.89569161,0.892473118,0.884 ,0.868468468,0.825227964,
0‘631575393.0A526324919,0.006543075,D};

{0.861386139,0.867986799,0.868852459,0.87012987,0.871794872,
0.873417722,0.879256966,0.872781065,0.896551724, 0.898305085,
0.901369863,0.903141361,0.904761905,0.904645477,0.905437352,
0.904761905,0.901075269,0.894,0.881081081,0.840425532,
0.709947644,0.663321168,0.013813159,0};

{1,1,1,1,1,1;1;0.961538462,1,1;1,2,;1;1,1,1,1,1,1,1,1;1,
0.258451472,01};
{0,0};
{0.795379538,0.801980198,0.8,0.798701299,0.798076923,
0.797468354,0.795665635,0.781065089, 0. 795277011,
0.793785311,
0.791780822,0.787958115,0.784461153,0.7799511,
0.775413712,
0.770975057,0.761290323,0.746,0.718918919,0.656534954,
0.428272251,0.297445255,0.000727008,0} 7
{0.788778878,0.798679868,0.796721311,0.792207792,
0.791666667,
0.787974684,0.786377709, 0.792899408, 0.790229885,
0.790960452,
0.78630137,0.785340314,0.779448622,0.775061125,
0.770685579,
0.764172336,0.75483871,0.728,0.70990991, 0.647416413,
0.414659686,0.281934307,0.000727008, 0} ;
{0.98679868,0.99669967,0.996721311,0.99025974,
0.990384615,
0.987341772,0.987616059,0.982248521,0.994252874,
0.994350282,
0.994520548,0.994764398,0.994987469, 0.995110024,
0.995271868,
0.993197279,0.993548387,0.9%,0.990990991,0.989361702,
0.984293194,0.981751825,0.248636859, 0} ;
{0.98679868,0.99669967,0.996721311,0.99025974,
0.987179487,
0.984177215,0.984520124,1,0.994252874,0.994350282,
0.994520548,
0.994764398,0.994987469,0.995110024,0.995271868,
0.993197279,
0.993548387,0.99,0.987387387,0.9986322188,0.983246073,
0.979927007,0.248273355,0} ;
{1.1,1.1,1,1,1,0.961533452,1,1,1.1,1,1,1,1,1,1.1,1,1,1,
0.258451472,0};

256
PhD Thesis

Software Printout

float standard ws [24] = {0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

float psl 1 [24] = {0,0};

float ps 11 [24] - {0,0.00273722¢,
0.796437659,0};

float ps 111 [24] = {0,0.00729927,1,1};

float ps 101 [24] = {0,0};

float ps 1101 [24] ={0,0¢;

float ps 1011 [24] = {0,0};

float ps 10111 [24] = {0,0};

float ps 11011 [24] = {0,0};

fleat ps 110111 [24] = 0,n.0,0,0,0.0,0,0.0,0,0,0.0,o.o.o,o,o,o.o,n,o,ol;

float ps 1 1 1 [24] = {9,0};

float ps 1 1 11 [24] = {0,0.002737226,
0.632860778,0};

float ps 11 1 1 [24] = {0,0.006386861,
0.810977826,0};

float ps 11 1 11 [24] = {0,0.006386861,
0.810977826,0};%/

/*float standard [24] = {0,0};

float standard fa [24] = {197,199,200,202,205,208,212,219,227,230,235,241,246,247,
249,250,249,241,215,125,0,0,0,0};

float pf 10 [24] = {259,262,263,266,270,275,282,293,310,316,326,343,358,367,
380,395,415,442,482,543,651,687,18,0};

fleat pf 110 [24] = {261,263,265,268,272,276,284,295,312,318,329,345,2361,370,
383,399,419,447,489,553,678,726,33,0};

float pf 101 [24] = [259,262,263,266,270,275,282,293,310,316,326,343,358,367,
380,395,415,442,482,543,651,687,18,0};

float pf 1101 [24] = {261,263,265,268,272,276,284,295,312,318,329,345,361,370,

383,399,419,447,489,553,678,727,38,0};

float standard er [24] = {303,303,305,308,312,316,2323,325,348,354,365,382,399,409,
423,441,465,500,555, 658, 955,1096,711,0};

fleat pel 1 [24] = {0,0};

float pe 11 [24] = {241,243,244,246,249,252,257, 264,277,281,289,301,313,319,

328,340,354,373,399,432,409,326,2,0};

{239,242,243,244,247,249,254,268,275,280,287,300,311,317,

float pe 111 [24]
326,337,351,369,394,426,396,309,2,0};

float pe 101 [24] = {299,302,304,305,309,312,319,332,346,352,363,380,397,407,
421,438,462,495,550,651,940,1076,684,0};
float pe 1101 [24] = {299,302,304,305,308,311,318,338,346,352,363,380,397,407,

421,438,462,495,548,649,939,1074,683,0};
float pe 10101 [24] = {303,303,305,308,312,316,323,325,348,354,365,382,399,409,
423,441, 465,500,555, 658, 955,1096,711,0};

float standard ws [24] = 0,0,o,o,o,o,o,o,o,o,o,o,o,o,0,0,0,0,0,0,0,0,0,0!;
float psl 1 [24] = {0,0%;
float ps 11 [24] = {0,3,2191,0};
float ps 111 [24] = {0,8,2751,29450};
float ps 101 [24] = {0,0};
float ps 1101 [24] = 0,0.0.0,0,0,0,0.0.0,0,0,0,0,0.0.0,0,0,0,0,0.0.0|;
fleoat ps 1011 [24] = i0,0};
float ps 10111 [24] = {0,0};
float ps 11011 [24] = {0,0};
float ps 110111 [24] = 0,0.0.0,0,0,0,0,0.0,0,0,0,0,0.0.0,0,0,0,0,0.0.0I;
float ps 1 1 1 [24] = {0,0};
fleoat ps 1 1 11 [24) = {0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1741,0};
float ps 11 1 1 [24) = {0,7,2231,0};
float ps_11_1 11 [24] = {0,7,2231,0};%/
/*float off standard fa [24] = {0.2724,0.2745,0.2761,0.2784,0.2821,0.2858,0.2926,

0.3028,0.3184,0.3241,0.3342,0.3501,0.3654,0.3742,
0.3868,0.4023,0.4227,0.451,0.4943,0.5666,0.7252,
0.7832,1.4045,2.945};

float off pf 10 [24] = {0.2662,0.2682,0.2698,0.272,0.2756,0.2791,0.2856,
0.2954,0.3101,0.3155,0.3251,0.3399,0.3542,0.3622,
0.3737,0.3878,0.4061,0.4309,0.4676,0.5248,0.6601,
0.7145,1.4027,2.945};

float off pf 110 [24] = [0.266,0.2681,0.2696,0.2718,0.2754,0.279,0.2854,
0.2952,0.3099,0.3153,0.3248,0.3397,0.3539,0.3619,
0.3734,0.3874,0.4057,0.4304,0.4669,0.5238,0.6574,
0.7106,1.4012,2,945};

float off pf 101 [24] = {0.2662,0.2682,0.2698,0.272,0.2756,0.2791,0.2856,
0.2954,0.3101,0.3155,0.3251,0.3399,0.3542,0.3622,
0.3737,0.3878,0.4061,0.4309,0.4676,0.5248,0.6601,
0.7145,1.4027,2.945};

float off pf 1101 [24] = {0.266,0.2681,0.2696,0.2718,0.2754,0.279,0.2854,
0.2952,0.3099,0.3153,0.3248,0.3397,0.3539,0.3619,
0.3734,0.2874,0.4057,0.4304,0.4669,0.5228,0.6574,
0.7105,1.4007,2.945};

257
PhD Thesis

float

float
float

float

float

float

float

fleat
fleat
fleoat

float

fleoat
fleoat
fleat
float
float
float
float
fleoat

float

float

*/

off

off
off

off

off

off

off

off
off
off

off

off
off
off
off
off

standard er [24]

pel 1 [24]
11 [24]

pe

pe

pe

standard we [24]

111

101

1101

10101

[24]

[24]

[24]

[24]

pel 1 [24)
ps 11 [24]

ps
ps

pE
ps

111 [24]

101

1101
1011
10111
11011

[24]

[24]

[24]
[24]
[24]

110111 [24)
111 [24)
11 11 [24)

off ps
off ps
off ps

off ps 11 1 1 [24]

off ps 11 1 11 [24]

/#float off standard fa [24]

float
float
float
float

float
float
fleat
float
float
float
fleatc

fleoat
float
fleat
fleat
fleoat
float
float
fleat
float

off pf 10 [24]
off pf 110 [24)

off pf 101 [24]
off pf 1101 [24]
off standard er [24]

off pel 1 [24]
off pe 11 [24]
off pe 111 [24)
off pe 101 [24]
off pe 1101 [24]
off_pe 10101 [24]

off standard ws [24]
off psl 1 [24]

off ps 11 [24]

off ps 111 [24]

off ps 101 [24]

off
off
off
off

ps
ps

ps
ps

1101
1011
10111
11011

[24]

[24]
[24]
[24]

Software Printout

[0.2618,0.2641,0.2656,0.2678,0.2714,0.275,0.2815,
0.2922,0.3063,0.3117,0.3212,0.336,0.3501,0.358,

0.3694,0.3832,0.4011,0.4251,0.4603,0.5133,0.6297,

0.6736,1.3334,2.945};
¢,0}
0.268,0.2701,0.2717,0.274,0.2777,0.2814,0.2881,
0.2983,0.3124,0.319,0.2288,0.3441,0.3587,0.367,

i

0.3785,0.2933,0.4122,0.4378,0.4752,0.5359,0.6843,

0.7506,1.4043,2.945, };
{0.2682,0.2702,0.2718,0.2742,0.2779,0.2817,0.2884
0.2979,0.3126,0.3191,0.329,0.3442,0.3589,0.3672,

il

0.3791,0.2926,0.4125,0.4382,0.4764,0.5365,0.6856,

0.7523,1.4043,2.945};
{0.2622,0.2642,0.2657,0.2681,0.2717,0.2754,0.2819
0.2915,0.2065,0.3119,0.3214,0.3362,0.3503,0.3582
0.3696,0.3835,0,4014,0.4256,0.4608,0.514,0.6312,
0.6756,1.3361,2.945};
{0.2622,0.2642,0.2657,0.2681,0.2718,0.2755,0.282,

’

0.29092,0.30685,0.3119,0.3214,0.3362,0.3503,0.3582,

0.3696,0.3835,0.4014,0.4256,0.461,0.5142,0.6313,
0.6758,1.3362,2.945};

{0.2618,0.2641,0.2656,0.2678,0.2714,0.275,0.2815,
0.2922,0.3063,0.3117,0.3212,0.336,0.3501,0.358,
0.3694,0.3832,0.4011,0.4251,0.4603,0.5133,0.6297
0.6736,1.3334,2.945}

’

0, o}
0, o,
6

0,0, 0,0,0,0,0,0, .0,
0,0, 90,0,0,0,0,0, 0,
0.2921,0.2944,0.2961,0.298
0.3247,0.3411,0.3471,0.3577,0.3742,0.39,0.3989,
0A4117,0A42?3.0‘4476,0‘4751.0,5158.0‘5791,0‘7252
0.7829,1.1854,2.945};

il 0,0,0 .0
0,0, 0,0,0 .0
292 5 9 .3

|0.2921,0.2944,0.2961,0.2986,0.3026,0.3066,0.3138,

0.3247,0.3411,0.3471,0.3577,0.3742,0.39,0.3989,
0.4117,0.4273,0. 4476,0A4751.0‘5158.0‘5791f0‘7252
0. ?824.1.1294 4]

’
.
]
]
.
]

]

MODOODDO"

NDs o mm m hw

woODoDOoOOoODDO

iy] S The
ChOoOOOOOOO

VoOOoOooO0O0oo
¢ ool

o e

hOoODDOOO0ODO

, 0
,0
R
0
, 0
.0
0
i 05

'

247,0. 3411 0.3471,0. 35?
O 4117,0.4273,0.4476,0.4751,0.5158,0. S
0.7829,1.2304,2.945};

l0.2921,0-2944.0-2951,0-2996,0.3025,0-3066.0.3139
0.3247,0.2411,0.3471,0.3577,0.3742,0.39,0.3989,

GODDDOGDD

X e o M K
BN OOCOOO0OO

M = = = o= = o=

0,0
0,0
0,0
0,0
0,0
0,0
0,0
6,0.
7,0.

WWODOOODD
WwOoOOoOOoOOoOOoOOoOoO

W
DWwOoOOoOOoOO0DOO

WH= » » = o= % o~

'
’
]
’
’
’
'
'

‘ .

A ReleReRoleRolele]

91,0.7252,

]

0.4117,0.4273,0.4476,0.4751,0.5158,0.5791,0.7252,

0.7825,1.1814,2.945};
[0.2921,0.2944,0.2961,0.2986,0.3026,0.3066,0.3138
0.3247,0.23411,0.3471,0.3577,0.3742,0.39,0.3989,

0.4117,0.4273,0.4476,0.4751,0.5158,0.5791,0.7252,

0.7825,1.1814,2.945};

= |0i0.0,0,0,0.0,0,0,0,0,0.0,0,0,0,0,0,0.0,0,0;0,
0p
{o,0
|e,0
g,0
0,0
0,0
,0
0;0,0
9,9,9,9,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0
0,0
0,0;0,0,0,0,9,0,0,0,0,0,0,06,0,0,0,0,0,0,0,0,0,0
0,0
0,0
0;0,0
9,0,0,0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
¢,0
0,0
0,0,9,0
9,0,0,0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,9,90,0
7
258

PhD Thesis

Software Printout

float off ps 110111 [24] =
float off ps 1 1 1 [24] =
float off ps 1 1 11 [24] =

float off ps 11 1 1 [24] | 1

float off ps 11 1 11 [24] { bov/

Ll mrnrr e s s e e o T e e T T s i /!
question=0;

while (questioni=-1)
clrscr();
control_panel ();//3T

%=0; ¥=0; pressl=0; pressl2=0; pressi=0; pressd4=0; presssS=0; pressé=0;
erasure bits=0; false alarm bits=0; wrong slot bits=0; pcm bits=0;

aut peom bits=0; start number=0; end number=0; extra pulses=0; start=0;
finish=0; remainder=0; number=0; flag=0; counter=0; bit counter=0;

row counter=0; row counter2=0; flag er=0; flag fa=0; flag ws=0; limit=0;
pulse counter=0; pulse counter2=0; zero counter=0; i=0; j=0; k=0; 1=0;
m=0; w=0; p=0; N=0; nl=0; o=0; zZ=0; 1l1l=0; c=0; question=0;

a=0; photon energy=0; mark space correction=0; pulse energy=0; energy in frame=0;
energy per pcm bit=0; B=0; dBm,minimum=0; erasure weight=0; erasure weight2=0;
falge alarm weight=0; false alarm_weight2=0; pasc=0; pasc2=0; pasc3=0; aut_pasc=0;
aut_pasc2=0; aut_pasci=0; //53T

do

gotoxy (19,50) ; cout<<"Enter the number of slots please recendl;
gotoxy(19,10); cinz»>¥; 1f (®==-1) break; //2T
Jwhile (x<=1);

if (X==-1) break; //T

gotoxy (19,50); cout<<"Enter the number of pulses please "ecendl;
gotoxy(20,11); cins>y; if (y==-1) break;
Jwhile ((y»x)||(y<=0));

if (y==-1) break;

gotoxy(19,50) ; cout<<"Which error rate to calculate first? "e<endl;
gotoxy (33,23); cinsspressl; //---8%T

while ((pressli=1)&&(pressl!i=2)&&(pressl!i=3)&&{pressli=-1})}

gotoxy (19,50) ;cout<<"Wrong Selection.Please try again "<<endl;
gotoxy (33,23) ;jcins>pressl;
} if (pressl==-1) break; //----4*T

if (pressi==1)
| erasure bits=1; false alarm_bits=0; wrong_slot_bits=0;
aut_pasc=pascal_calec (x,¥);

if (y!=1) [aut pascZ=pascal_calc (x,y-1);] //or erasure_bits);
else [aut_pasc2=1;}

aut pasc3=0;
erasure weight=(x-y+1)/2.0;
false alarm weight=0.0;
gotoxy (57,13) ;cout<<aut pasc<<endl;
gotoxy (56,15} ;cout<<aut pasc<<endl;
gotoxy (60, 16) ;cout<<aut pasc3<<endl;
}//end of if-else pressl (1)
Jf------ 10=*T

else if (pressla=l)
{ false alarm bits=1; erasure bits=0; wrong slot bits=0; //2*T
if ({ x==(y+1))
aut pascis=1;
aut pasc=x;

1//2%T

259
PhD Thesis

else {
aut pasc3=pascal calc (x,y+l);
aut_pascs=pascal_calc(x,y);

false alarm weight=(y+1.0)/2.0;

aut pasc2=0;

erasure weight=0.0;

gotoxy (57,13) jcoutz<aut pasc<<endl;

gotoxy (56,15) ;cout<<aut pasc2<<endl;

gotoxy (60, 16) ;coutccaut pasc3ccendl;
} //end of if-else pressi(2)

else if (pressl==3)
{ wrong slot bits=1; erasure bits=1; false alarm bits=1;
if (x==(y+1)) |
aut pasci=1;
aut pascs=x;
aut_pasc2=pascal_calc (x,y-1);

else if (y==1) |
aut pasc3=pascal calc(x,y+1};
aut pascs=pascal_calc(x.,y);
aut_pasc2s=1;

else
aut pasci=pascal calc(x,y+1);
aut pasce=pascal calc(x,v):
aut pasc2=pascal_cale (x,y-1);

false alarm weight= (y+1.0)/2.0; erasure weight= (x-y+1)/2.0
gotoxy (57,13) ; coute<aut pasc<<endl;
gotoxy (56,15) ;cout<<aut pasc2<<endl;
gotoxy (60,16) ;coutecaut pasci<cendl;
}//end of if-else pressl(3)

260

Software Printout

H

f == e /"
aut_pcm_bits=0; //T

?or (i=0; i<aut_pasc; i++)

if (pow(2,aut pcm bits)<aut pasc) {aut pem_bits++;)

else {break;]

} //2+*T*aut_pasc

gotoxy(50,14) ; cout<<aut_pcm_bits<<endl;

gotoxy (61,10); cout<<pow(2,aut_pcm_bits)<<endl;

gotoxy(72,10) ; cout<<pow(2,aut_pcm_bits)-aut_pasce<<endl;

do

gotoxy (19,50) ; cout<<"Enter the Number of PCM bits please "ecendl;

gotoxy(12,13); cins>pem_bits; if (pem_bits==-1) break;

Jwhile (pcm_bits<=0);

if (pem_bits==-1) break; //6T

do

gotoxy(19,50); cout<<"Enter Pascal's Number please "e<endl;

gotoxy (19,12); cins>pasc; if (pasc==-1) break;

}while((pasc<=0) || (pascl=pow(2,pcm_bits)));

if (pem_bits==-1) break;

do

gotoxy (19,50); cout<<"Enter Erasure Pascal Number please "<<endl;

gotoxy (18,15); cinsspasc2; if (pasci==-1) break;

}while((pasc2<0) || ((pasc2!i=1) && (y==l) && (pressi==1)) || ((pasc2!i=0)&&(pressi==2)) ||
({pasc2==0)&&(pressl==1)) | | ((pasc2!=1)&&(pressl==3)&&(y==1})||
((pasc2==0)&& (pressl==3}));

if (pasc2==-1) break;

e e e e 1/

PhD Thesis

Software Printout

do
gotoxy (19,50) ; cont<<"Enter False Alarm Pascal Number please"<<endl;

gotoxy(22,16); cin»>pasc3; if (pasc3==-1) break;

}wh:le!{pascsco}llttpascs'-l}&&:y--(x 1})&&:pressl--21)l| DGSC3L-O}&&tpressl--1}1|[
((pasc3==0) && (pressl==2)) || ((pasc3!=1)&&(pressl==3) && (y==(x-1))) | | { (pasc3==0)
&&(pressl==3)));

if (pasc3==-1) break;

gotoxy (19,50} ; cout<<"Choose type of Data please "<<endl;

gotoxy(33,32); cin»>>press2;

mark_space_correction = x/y;

photon_energy = ((6.63*pow(10,-34)*3*pow(10,8))}/(1.55%pow(10,-6)));

B=pow (10, 9);

//14*T

while ((press2!a=l)&i(press2!=2)&&(press2!=3)&k(press2!i=4)L&(press2i=5)L&&

(press2i=-1))

it | (pressZI-lJ&&(presszl-zl&&:pressZ'-3)&&(presszI-4J&&fpresle--1J)
{gotoxy (19,50) ;cout<<"Wrong Selection.Please try again
<<endl; gotoxy(33,32);cins>press2;}
| /73T

if (press2==1) | do | gotoxy(19,50);cout<<"Enter the start number O<=start"
<<endl; gotoxy(10,32);cin=>start_number;
if (start number==-1) [break;]
Jwhile (start_numberi=0); } //2+T

else 1f (press2==2)} | do [gotoxy(19,50);cout<<"Enter the start number "
<<pow (2,pcm bits)-le<"<=start "ecendl;
otoxy (10,32) ;cins>start_number; if (start_number==-1)
break; |
jwhile (start_number!= (pow(2,pem_bkbits)-1)); |

else if (press2==3) { do {gotoxy(19,50);cout<<"Enter the start number O<=start"
<<endl; gotoxy(10,32);cins>start_number;
if (start number==-1) {break;]
Jwhile (start_number!=0); }

else if (pressi==4) [do {[gotoxy(19,50);cout<<"Enter the minimum limit O<=min o
<<endl; gotoxy(62,32);cin>>start_number;
if (start number==-1)} {break;}
}while (start number!=0); if (start number==-1) {break;|}

do |gotoxy(19,50) ;cout<<"Enter the maximum limit maxes="

<<pow (2,pcm bits)<<" "<zendl; gotoxy(€8,32);
cin»»end number; if (end number==-1)
{break;} }jwhile (end number!=pow(2,pcm_bits));

//range at least pow(2,pem bits)+1 1.e. 12-2 start from
//0 range=0-64 (and not 63-infinite loop-)

if ((press2==-1) || (start_number==-1) || (end_number==-1}) break; //T

mppm = new int [x*pow(2,pcm_bits)]; //T

if (mppm==NULL) [gotoxy(19,50);coutc<<"NOT ENOUGHT MEMORY FOR MPEM ARRAYL!lL "
<<endl;| //T
else | for (i=0; i<x*tpow(2,pcm bits); i++) mppm(i] = 0; //x*pow(2,pcm_bits)+T
for (i=0; icy; i++) mppm (il = 1; //y*T
im0; jm0; 1=0; mm=0; extra pulses=0; kel; c=-1; [/T

for (m=0; m<c+pow(2,pcm bits); m++)
{ for (i=0; i<x-1; i++) if (mppmli+ (k-1)#*x1==1) j=1i; /[/(x-1)=*2=T

for (i=1; i<=y; 1i++)
{ if (mppm[k*x-i]l==0) break; P!
} else if (mppm[k*x-i]==1) extra pulses++; [//2*T

if (extra pulses==y) break; //T

10

261
PhD Thesis

Software Printout

if { ji=(x-1))} f/T
{ for (i=0; i<j; i++) mppmli+k*x]=mppmii+(k-1)=x]; //j*T

mppm [§+k*x+11=1; //T

for (i=l; i<=extra pulses; i++)
mppm[j+k*x+1+11=1;//extra_pulses*T

1=0; extra pulses=0; //T

1
else if ((j==(%-1))} && (extra pulses!=0)) //T
{ l=extra pulses; k--; extra pulses=0; c++;} //T

k++; [/T

}//if-else statement for mppm null
[/ levpow (2, pem_bits))*

start=0; finish=0; number=0; remainder=0; flag=0; k=1; //T

if (pressia=l) { (start=start number); (finish=pow(2,pcm bits)+start number-1) ;|
else if (press2==2) | (start=start number); (finish=start number-pow(2,pcm bits)+1);]
else if (press2==3) | (start=start number)}; (finish=pow(2,pcm_bits)+start number-1);|

else if (press2==4) {(srand(time(NULL))); (start=start_number) ;
({finish=end number);)//8*T

data = new int [pcm_bits*pow(2,pcm_bits)l; //T

if ((press2==4}|| (press2==5)) [randoem = new int [pow(2,pcm bits)];
if (random==NULL) {gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR RANDOM RRRAYLL!
<<endl;
else {for (i=0; i<pow(2,pem_bits); 1i++)
{random[i]=0;] }
} /73T

if (data==NULL) [gotoxy(19,50};cout<<"NOT ENOUGHT MEMORY FOR DATA ARRAY!!! "<<endl;]
else | for (i=0; i<pem_bits*pow(2,pem_bits); i++) {datalil=0;}

if (press2==1) //3T
{ for (m=start; m<=finish; m++)
{ number=m;
for (i=1; i<=pcm bits; i++) //5T*pcm_bits#(finish-star)
{ remainder=number%2;
number/=2;
datal(k*pcm_bits-il=remainder;
} Kaw;
i

else if (press2==2)
{ for (m=start; m>=finish; m--)
[number=m;

for (i=1; i<=pecm bits; i++

[remainder=number%z;
number/=2;
data[k*pem_bits-i]=remainder;

Vo Ke+;

1
else if (press2==3)
{ for (m=start; me=finish; m++)
[number = m;
for (i=1; i<=pcm bits; i++
[remainder=number % 2;
number/=2;
datal[k*pcm_bits-i]l=remainder;
} K+
]

k=1;
for (m=start; me=finish; m++)
[for {(i=1; i<=pcm bits; i++)
[if (iil=pem bits)
(data[k*pcm bits-il=datalk#*pcm bits-i] “data(k*pcm bits-i-11);
\ else (datal(k-1)*pcm bitsl=datal[(k-1)*pcm_bits]*0);
K++;

11

262
PhD Thesis

Software Printout

else if (pressl==4)
{ for (m=0; m<pow(2,pem bits); m++)
//4*pow (2,pcm bits)+3*pcm bits+4*pow(2,pem_bits)*2
{ number=start+rand({)%finish;
random[m] =number;
//gotoxy(2,58+m) ; cout=<number<<endl;
for (i=0; i<pow(2,pcm bits); i++)
if (((random[m)==random(i])&&(it=m)) || (random[m]>£inish)
|| (randem[m] <start)) { if ((m!=0)&&(k!=0))
{m--; flag=1; k--;}

else {flag=1;}

]
if (flagl=1)}
{ for (i = 1; 1 <= pem bits; i++)
{ //gotoxy(38,58+m) ;coute<number<<endl;
remainder=numbery2;
number/=2;
datal[k*pcm_bits-i]l=remainder;

1
| £lag=0; k++;

gotoxy (19,50) ; cout<<"DISPLAY RANDOM NUMBERS?PRESS9 (8-EXIT) "ecendl ;
gotoxy (64,47) jein==pressl;

while ((press3!=9)|| (press3t=8)||(press3t=-1))
| if (press3==9)
if (pasc<280)
{gotoxy (0,80) ; cout<<"RANDOM NUMBERS "<<endl; print random array(data,pow(2,pcm bits),
pcm bits,X,y,aut pasc,aut pasc2,aut pasc3,aut pcm bits,pcm bits,pasc,pasc2,pasc3,
start number,end number, pressl,press2, press3,pressd, presss);|

else {gotoxy (0,60} ; cout<<"RANDOM NUMBERS "<<endl;

print random array2(data,pow(2,pcm bits),pcm bits,x,y,aut pasc,aut pasc2,aut pasc3,
aut pem bits,pem_bits,pasc,pasc2,pasc3,start _number,end number,pressl,press2,press3,
press4,presss);|

e e L LR R e P PR e PP PR P R PP LR PR PR R E PP EE R e PP PR R EERRE 17
fstream file op2("random.txt",ios::out);

presse=0;

do

gotoxy (19,50) ; cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "<<endl;

gotoxy (33,47) ;cins=>presse;

if (pressé==-1) {[break;]

if (presse6==2) break; }//add download operation here
if (presse==3) break; }

}while (presséi=1);

if (pressé==3) |file_op2.close{}; break;}
if (presse==1)
for (i=0; i<pow(2,pcm_bits); i++)

file op2=<=<"\n";
file_op2<<random[i]l<<" *;

|
:ilT_opz.closet);

break;
else if | (pressia==8) || (press3a=-1)) [break;]
else [gotoxy(19,50);
cout<<"WRONG SELECTION.TRY AGAIN Yecendl ;
gotoxy (64,47) ;coutec" Yeeendl ;

gotoxy (64,47) ;cinsspress3; |
1

if (press2==4) {[delete [] random; random=0;)
if (press3==-1) {break;}

if (pressé==-1) {break;]}

12

263
PhD Thesis

Software Printout

else if (press2==5) /[/21*T
{
for (m=0; mepow(2,pcm_bits); m++)

file op2ssnumber; //input from file pointer or standard input
random [m] =number;

if (flag!=1) |
for (i = 1; i <= pcm bits; i++
[//gotoxy (38, 58+m) ; cout<<number<<endl;
remainder=number%2;
numbexr/=2;
datalk*pem_bits-i]=remainder;
} £lag=0; k++;
} //4*pow(2,pem_bits)*3+pem_bits
if (press2==5) {[delete [] random; random=0;}
clrser2();
}//if-else for data||random null
mppm_data = new int [({x+pcm_bits)*pow(2,pcm_bits)]l;//3T

if (mppm data==NULL)

{gotoxy (19,50) ;cout<<"NOT ENOUGHT MEMORY FOR MPEM-DATA ARRAY!! "<<endl;}
else | for (i=0; i< (x+pcm_bits)*pow(2,pcm_bits); i++) mppm_datali]l = 0;//2*T
k=0;
L it e i i R e T = e i i T e s T T e R o i e B T T 1

for (m=0; m<pow(2,pcm_bits); m++)

for (i=0; i<x; i++) | mppm_data[k* (x+pcm_bits)+i] = mppmik*x+il; }
Ktt+; l++;

} //pow(2,pem_bite)* (x+2)*T

k=0; 1l=0; //T

for (m=0; m<pow(2,pcm_bits); m++)

for (i=x; i<x+pecm bits; i++) | mppm datalk* (x+pcm bits)+i] =
data[(l#pem_bits)-x+1i1; }

Ka+; Lt

I

}//if-else statement for dynamic memory allocation safe failure

[/ ((x+pcm bits)*pow(2,pcm bits)*T)+ (2*T)+ ((x*T+T) *pow (2, pcm_bits))+
/70 (rpem_bits) *T+T) *pow (2, pem_bits))

if (y==1)
if (pressl==1)
weighted er mppm data = new int [(x+pcm bits)];
mppm er = new int [(x+1)*pow(2, pem bits)];
sequence = new float [3];
if ((weighted er mppm data==NULL) || (mppm er==NULL) | | {(sequence==NULL))
[gotoxy (19,50) ;cout<<"NOT ENOUGHT MEMORY FOR ARRAY!!!llllll1"<zendl;}
k=0; flag_er=1; counter=0; 1=0;
for (i=0; i<(xX+pem bits); i++) [weighted er mppm datalil=0;])

for (i=x; i< (x+pcm bits); i++) {weighted er mppm datalil=2;}
for (i=0; i<3; i++) {sequence[il=0;]} //10T

for (1=0; i<pow(2,pcm bits)* (x+pem bits); i++) {mppm_er([il=0;}
//pow(2,pcm_bits) * (x+pcm_bits)*T

for (1=0; izpow(2,pem_bits); i++) {mppm_er[(k#*(x+y))+i1=1; k++;}
[f/pow(2,pem_bits)*T

13

264
PhD Thesis

Software Printout

K=l;

for (i=0; i<pow(2,pcm_bits); i++) {mppm_er[(k*(x+y))-1l=pcm_bits; k++;}
//pow(2, pem_bits)*T

k=0;
pressd=0; /[/3*T

?o

gotoxy(19,50) ; Ccout<<"DO YOU WANT TO DISPLAY THE SEQUENCES?
gotoxy (10,44) ;cin==press4;

if (pressd==2) {break;}

if (pressd==-1) {break;} //3T

jwhile (press4l=1);

"z<endl;

if (pressd==-1) [break;}

if (pressd4==1) | //2T
for (i=2; i<pow(2,pcm_bits); i++) {counter=counter+3;}

sequence [2] = (counter/ { (pow (2, pem_bits)+*pem_bits)));

for (i=0; i<pow(2,pcm bits); i++) [if (mppm datal(k*pcm bits)+
((k+1)#(x-1))+i]mml) {1++;]} k++;} //2%pow(2,pcm_bits)*T

k=0; //2*T

if (1==0) [sequence[2]=sequence(2]+((2*pem_bits)
/{{pow(2,pem_bits) *pem_bite))) ;)
else

sequence[1]=(((1/pow(2,pcm bits))#pem bits

/({{pow(2,pem bits)*pem bits))));
sequence [2] =sequence (2] +((((pow (2,pcm bits) -1)

/pow (2,pcm bits) }*pom_bits)/(({(pow(2,pcm_bits
*pem_bits))));

1=0; k=0; counter=0;

for (i=0; i<pow(2,pcm bits); i++) |
if (mppm data[(k*pcm bits)+
((k+1)#(x-1))+i-1]==l)}
{le+;]} k++:}

if (1==0) [segquence(2]=seguence(2]+((pcm bits)/
({pow (2,pcm_bits) *pem_bits))) ;|
else {
geqguence [3]=(((1/pow(2,pcm bits))*pcm bits
/{{(pow(2,pcm bits)*pem bits))));
seqguence [2] =sequence [2] + ((((pow (2,pem bits) -1)
/powi{2,pcm bits))*pcm_bits)/(((pow(2,pcm_bits
*pcm_bits))));

1=0; k=0; counter=0;

if (sequence(2]<0) {sequence(2)=sequence(2]*(-1);
if (sequence[0]<0) {sequence[0]=secuence [0]*(-1);
if (ssquence(1]<0)

{sequence 1] =sequence [1]#* (-1) ;]

gotoxy (0,57); cout<<"Pe:"<<endl; gotoxy(3,57) ;cout<<sequence[2]<<endl;
gotoxy (0,58); cout<<"Pe.101l:"<<endl; gotoxy(7,58);cout<<sequence[0]<<endl;

gotoxy (0,59); cout<<"Pe.110:"<<endl; gotoxy(7,59) ;jcout<csequence[l]<<endl; //15+*T
/*if (sequence[2]<=0.0001} {sequence [2]=0.12*sequence [2] ; }

elge if (sequence([2]<=0.001) [sequence([2]=0.27*sequence(2];}
else if (sequence([2]<=0.01) [sequence [2]=0.31*sequence [2] ; |

else if (sequence(2]<=0.1} !sequence[2]=o.09*sequence[2i:
else if (sequence[2]<=0.2}) sequence [2] =0.05*sequence [2] ;
else if (sequence[2]<=0.3) { sequence [2] =0.04*sequence [2] ;
else if (sequence[2]<=0.4) sedquence [2]=0.03*sequence [2] ;
else if (sequence(2]<=0.5) sequence [2]=0.02*sequence [2] ;
else if (sequence[2])<=0.6) sequence [2] =0.02*sequence [2] ;

14

265

PhD Thesis

else
else
else
else

else i

else
else
else
else
else
else
else
else
else
else
else

else
else
else
else
else
else
else
else
else
else
else
else

for

it
1T
if
if

(sequence [2]<=0.7)
(sequence (2] <=0.8)
(sequence [2] <=0.9)
(sequence [2]<=1)

else

if (seguence[l]<=0.0001}
(sequence [1]<=0.001)

(sequence [1]<=0.01)
(sequence [1]1<=0.1)
(sequence [1]<=0.2)
(sequence [1]<=0.2)
{gequence [1]<=0.4)
(sequence [1]<=0.5)
(sequence (1] <=0.6)
(sequence [1]<=0.7)
(sequence [1]<=0.8)
(sequence [1]<=0.9)
(sequence (1] <=1)

else

sequence [2]=0.
sequence [2]=0.
sequence [2]=0.
sequence [2] =0,
sequence [2] =0*sequence [2] ; }

Ol#*sequence[2];
o2*sequence [2] ;
Ol*sequence[2] ;
1le*zequence [2] ;

{sequence [1]1=0.12*sequence
sequence [1]=0.
sequence [1]=0.
sequence [1]=0.
sequence [1]=0.
sequence [1]=0.
sequence [1]=0.
sequence [1]=0.
sequence (1]=0.
sedquence [1]=0.
sequence [1]=0.
sequence [1]=0.
sequence [1]=0.
gequence [1] =0*=equence [1]; }

27*sequence [1] ;
Il*sequence[1] ;
os*sequence (1] ;
o5#sequence [1] ;
O4*sequence (1] ;
03*gequence (1] ;
02+sequence [1] ;
o2#sequence (1] ;
0l*zequence (1] ;
02+sequence (1] ;
0l#*sequence (1] ;
16*sequence (1] ;

Software Printout

--- 1/
if (sequence[0]<=0.0001) [sequence [0]=0.12#*sequence (0] ; }
if (sequence[0]<=0.001) seguence [0]=0.27*sequence [0] ;
if (sequence[0]<=0.01) sequence [0]=0.31*gequence [0] ;
if (sequence [0]<=0.1) gequence [0] =0, 09*2equence [0] ;
i1f (sequence[0]<=0.2) gequence [0]=0.05*sequence (0] ;
if (sequence([0]<=0.3) sequence [0]=0. 04 *sequence [0] ;
if (sequence[0]«<=0.4) sequence [0]=0.03*sequence [0] ;
if (sequence[0])<=0.5) sequence [0]=0.02*sequence [0] ;
if (sequence[0]<=0.6) sequence [0]=0.02*sequence (0] ;
if (sequence(0]1<=0.7) sequence [0]=0.01*sequence [0] ;
if (sequence [0]<=0.8) sequence [0] =0.02*sequence [0] ;
if (sequence[0]<=0.9) sequence [0]=0.01*sequence [0] ;
if (sequence[0]<=1) sequence [0]=0.16*sequence [0] ;
else sequence [0] =0*sequence [0] ; }
(1=0; 1<24; i++) [standard er[i]=standard er([i] *sequence(2];]
for (i=0; i<24; i++) |pel 1[i]=pel 1[i]*0;}
for (i=0; i<24; i++) {pe 11[i)l=pes 11[1i] *sequence(l];}
for (i=0; i<24; i++) {pe 111([i)=pe 111[1])+0;}
for (i=0; i<24; i++) [pe 101[i]=pe 101[i]*sequence[0] ;]
for (i=0; i<24; i++) {pe 1101[il=pe 1101[i]1%0;}
for (i=0; i<24; i++) {pe_10101[1)=pe_10101([1i]*0;}
for (i=0; i<24; i++) [standard er[i] = standard er([i] - off standard er[i]
+ pel 1[i) - off pel 1[i] + pe 11[i] -
off pe 11[i] + pe 111[i] - off pe 111[i]
+ pe 101[i] - off pe 101[i] + pe 1101 [i]
- off pe 1101(i] + pe_10101[i] -
off pe 10101(1i];}
--- /"
(1=0; 1<24; 1i++) |
if (standard er[il<0) {standard er[i]l=standard er[i]
%(-1);
]gotoxy[o,65+i}; cout<<"\n"<<standard er[i]l<<endl;
for (i=0; i<24; 1++)
if (standard er(il<=0) {minimum=0;}
else {minimum=standard_er([i];}
pulse energy = minimum * photon energy;
energy in frame = pulse energy * mark space correction;
energy per pcm bit = (energy in frame/pem bits);
dBm = 10 * (log((energy_per_pcm_bit#*B)/pow(10,-3))
/leg(10)) ;
gotoxy (0, 95+1); cautcc"\?";<d3m¢4endl;
*
}
--- 1/

gotoxy (19,50) ;cout«<"DISPLAY INPUT ARRAYS? PRESS1,2 ELSE 8 "<<endl;
gotoxy (€4,47) ;cinsspress3;

while |

15

266

(press3l=1) || (press3i=2) || (press3!=8)|| (press3i=-1))

PhD Thesis

Software Printout

if (press3==1) |
clrscr2(); gotoxy(0,568); cout<<"ERASURE MPPM-DATA ARRAY L]
<<endl ;
print input arrays(mppm data,pow(2,pcm bits),X+pem bits,X,y,aut pasc,aut pasc2,
aut pasc3,aut pcm bits,pcm bits,pasc,pasc2,pasc3,start_number,
end_number,pressl,pressl,press3,pressd,presss);
press6=0;
gotoxy(19,50); cout<<"DC YOU WANT TC SAVE THE DATA IN A FILE? §
<<endl; gotoxy(33,47);cins>presss;
if (pressé==-1) {[break;}
if (pressé==3) (file opl.close(); break;]
if (pressé==1)
k=1

for (i=0; i< (x+pcm_bits)*pow(2,pcm bits); i++)

if (i==k* (x+pem bits)) {file opl<<"\n"; k++;]
}Eile_oplccmppm_data[1]{cu ",

file opl.close();

break;

else if (press3==2) |
clrsecr2();
gotoxy (0,56) ;
Cout<<"WEIGTHED ERASURE ARRAY "<<endl;
print input arrays(weighted er mppm data,1l,
X+pcm bits,X,y,aut pasc,aut pasc2,aut pasc3,aut pcm bits,pcm bits,pasc,pasc2,
pasc3, start number,end number,pressl,press2, press3, press4,presss);

| pressé=0;
gotoxy(19,50) ; cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? L
<<endl; gotoxy(33,47) ;cin=>pressé;
if (pressé==-1) [break;|]
if (pressé==2) {break;}//add download operation here
if (pressé==3) [break;]
}while (presséis=1);

if (pressé==3) {file_opl.close(); break;}
if (pressé==l) |{

k=1;

for (i=0; i<(x+pcm_bits)*1; i++)

if (i==k*(x+pcm bits)) {file ople<c"\n"; k++;}
file opl<<weighted er mppm_datal[il<<" ";

file opl.close();

break;
else if ((press3==8)|| (press3==-1))} [break;}
else [gotoxy(19,50) ;

cout<<"WRONG SELECTION.TRY AGAIN "ecandl;
gotoxy (64,47) ;einsspressi; |
}

if (press3==-1) {[break;)
if (pressé==-1) [break;]

clrscr2();

//delete [] mppm data; mppm data=0;
//delete [1 weighted er mppm_data; weighted er mppm_data=0;

delete [] mppm; mppm=0;
delete [] data; data=0;

16

267
PhD Thesis

Software Printout

delete [] sequence; sequence=0; //40*T
}//end of if-pressl(1l) and y==1
?lse if {(pressl==2}

mppm = new int [x*pasc3]; data = new int [pcm bits#*pasc3];
weighted fa mppm_data = new int [(x+pcm_bits)*pasc2];

if (mppm==NULL) |
gotoxy (19,50) ;cout<<"NOT ENOUGHT MEMORY FOR MEEM3 ARRAY!!!! &
=<endl;}

else { gotoxy(56,11); coutccerasure weighte<endl;
gotoxy (60,12); coute<false_alarm_weight<<endl;

for (i=0; i<x*pasc3d; i++) mppm[i] = O; //7*T
for (i=0; ie<y+false alarm_bits; i++) mppm[i] = 1;
// y+false_alarm_bits)*T

i=0; j=0; 1=0; m=0; extra pulses=0; k=1;
for (m=0; me2*pasc3; m++)
{ for (i=0; iex-1; i++) if (mppmli+(k-1)#*X]==1) j=1;

for (i=1; i<my+false alarm bits; i++)
{ if (mppmlk#*x-i]l==0) break;
else if (mppm[k*x-il==1) extCra pulses+:;
} if (extra_pulses==y+false_alarm bits) break;

if (Ji={x-1))
| for (i=0; i<j; i++) mppm[i+k*x]=mppm[i+(k-1)*x];
mppm [J+k*x+1]=1;

for (i=1; i<=extra pulses; i++)
mppm [j+k*x+1+1] =1;

1=0; extra pulses=0;

else if ((j==(x-1)) && (extra pulses!=0))
{l-extra_pulses; k--; extra pulses=0;)

k++;
} //2*pasc3sT

}//end of if-else mppm null statement

false alarm weight2=0;
if (data==NULL) {gotoxy(19,650);
cout<<"NOT ENOUGHT MEMORY FOR DATA3 ARRAY!!!! "e<endl;}
else { for (i=0; i<pcm bits*pasc3; i++) datalil = 0;

w=0; row counter=0; bit counter=0; K=1;

for (l=1; l<=pasc3; 1l++)

{ for (j=x; j<(x+pcm bits); j++)

| for (m=0; m<pow(2,pcm bits); m++)
[for (i=0; i<x; i++) { if (mppm[i+(1-1)#*x]==
mppm_data [i+(k-1)*(pem_bits+x)]) row_counter++; |

if { (row counter==(x-false alarm bits)) &&
(mppm datalj+ (k-1)*(pcm bits+x)]l==1)) bit counter++;
if (row counter==(x-false alarm bits)) false alarm weight2++;
row_counter=0; k++;
} k=1;
it (bit counter > (false_alarm_weight2/2.0))
data[w+(1-1)*pcm bits]=1;
else if (hit counter = (false_alarm_weight2/2.0) }
data[w+({1-1) *pcm bits]=0;
else if (bit counter = (false_alarm_weight2/2.0))
data[w+(1-1)*pcm bits] =2;
bit counter=0; w++; false_alarm weight2=0;
} k=1; w=0;
}
}//end of if-else data null statement
if (weighted fa mppm data==NULL) {gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR WEIGHT-FA ALARM Yecendl ;|
else | for (i=0; i< (x+pem_bits)*pasc3d; i++) weighted fa mppm datalil = 0;
k=0;
for (m=0; mepasc3; mM++)

{ for (i=0; i<x; i++)
{ weighted_fa mppm_data(k* (x+pcm_bits)+i]l = mppmlk#*x+il; }

17

268
PhD Thesis

Software Printout

Kts; La+;

k=0; 1=0;
for (m=0; mspasc3d; M++)
{ for (i=x; i<x+pcm bits; i++)
{ weighted fa mppm datalk#* (x+pcm bits)+i] =
data[(l#*pem bits)-x+i];
K++; L4+

}//end of if-else weighted fa mppm_data null statement

mppm_fa = new int [(2*x+pcm_bits-y)*pow(2,pcm_bits)];

=== = e e i
if (mppm fa==NULL) {gotoxy(1%,50);
couts<"NOT ENOUGHT MEMORY FOR MPPM-FA ARRAY "ezendl; |
else | for (i=0; i< (2*x+pcm_bits-y)*pow(2,pcm_bits); i++) mppm_fa[i] = 0;
flag_fa=1;
k=0;

for (m=0; m<pow(2,pcm bits); m++)

{ for (i=0; i<x; i++) mppm falk* (2*x+pem bits-y)+il
=mppm data[k* (x+pcm bits)+il;

} K+

1=0; k=0; j=0; row counter=0; bit counter=0; w=0;
for (m=0; m<pow(2,pcm bits); m++)
{ for (n=0; n<pasc3d; n++)

| for (i=0; ie<x; i++) if (mppm datali+1#*(x+pcm bits)]l==

weighted fa mppm data[i+k#* (x+pcm bits)]) row counter++;

(row counter==(x-false alarm bits))
[for (i=x; i<x+pcm bits; i++)
{ mppm fali+l#* (2*x+pcm bits-y)l=(
mppm data[i+l* (X+pcm bits)]
weighted_fa_mppm_data [i+k (x+pem_bits)]);

if { mppm fali+l+*(2*X+pcm bits-y)] !=0
bit counter++;
else bit counter=bit counter;
} mppm £al(j+1)+* (x+pcm bits)+i* (X-y)+w]=
mppm £al{i+1)* (Xx+pcm bits)+]
* (x-y)+wl+bit counter;
for (i=x; i<x+pcm_bits; i++) mppm_fa[i+l* (2*x+pem_bits-y)]=0;
W+
row counter=0; bit counter=0; k++;
} La4; k=0; J++; bit_counter=0; w=0;

}

presss=1;

pressd=0;
gotoxy (19,50) ;
cout<<"DO YOU WANT TO DISPLAY THE SEQUENCE RESULTS? "z<endl;
gotoxy (10,44) jeins>pressd;

while ((pressd4l=1)|| (press4i=2)|| (press4i=-1))
{ if (pressq==-1) {break;}
else if ((pressd==1)|| (press4==2)) [break;|
else |gotoxy (19,50) ;
coute<"WRONG SELECTION.TRY AGAIN vecandl;
gotoxy (10,44) ;cout<<" Teeendl ;
gotoxy (10,44) ;cin=>press4; |

if (pressd==-1) [break;]

11=0; zero counter=0;
for (m=0; m<pow(2,pcm_bits); m++)

for (1=0; 1<2; i++) |
if (mppm fali+m#* (2*x+pcm_bits-y)]==0)
{zero counter++;}

if (zero counter==2) [break;]
else {zero_counter=0; 11++;}

18

269
PhD Thesis

Software Printout

}

bit counter=0; row counter=0; i=0;

for (m=0; m<pow(2,pcm bits); m++)

{ 41f (mppm_fali+m*(2*x+pcm_bits-y)1==1) {bit_counter++;}//1-bit_counter=11//
i=x-1;
if (mppm_fali+m#*({22*x+pcm_bits-y)l==1) {row _counter++;}//l-row _counter=9//

i

-- 1/
gequence = new f£loat [2+*(y+1)];
if (sequence==NULL) {[gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOF FA SEQUENCE ARRAY!!!l! "ecandl; }
else {for (i=0; i<2%(y+1); i++) sequence(i] = 0;]
Zero_counter=0; pulse_counter=0; 1l=0; j=0; flag=1; limit=0;
for (w=0; wey+l; W++)
for (n=0; n<pow(2,pcm_bits); n++)
for (i=0; iex; i++)
if I{{mppm_fa[i+l*t2*x+pcmeits-yi]==0}&&ti==0!&&(w::O})
zero counter=0; pulse counter=0;
if (mppm fali+l#* (2*x+pem bite-y)+1]1==0) |
sequence [1] =sequence [1] + (mppm fa[l*(2*x+pcm_bits-y)+x+pom_bits+]]
* (row counter/pow(2,pcm bits)));
gequence [0] =sequence [0] + (mppm fa[l* (2*X+pcm bits-y)+X+pem_bits+]j]
*((pow(2,pcm bits)-row counter)/pow(2,pem bits)));
else |
sequence [y+2] =sequence [y+2] + (mppm fa[l=* (2*X+pem_bits-y)+x+pem_bits+i]
* (row counter/pow(2,pem bits)));
sequence [0] =sequence [0] + (mppm fa(l* (24xX+pcm bits-y)+X+pem_bits+])
| #((pow(2,pcm_bits) -row_counter) /pow (2, pem_bits)));
j++; flag=0;
else if ((mppm_fa(i+l# (2*#x+pcm_bits-y)l==0)&&{il=0)&(il=(x-1)) }{
—— "

zero counter=0; pulse_counter=0;

for (m=i-1; m>=0; m--) {
if (mppm falm+l* (2*x+pcm bits-y)]l==1) |pulse counter++;)
else {flag=0; break;]

]
if ((pulse counter==1imit)&&(flag==0) }
if (pulse counter==0) sequence [0] ssequence [0]
+mppm fall* (2*x+pcm_bits-y)+
®+pem_bits+i] ;)
else |
if (mppm fali+l*(2*x+pcm bits-y)+1]1==0) {sequence(limit]=sequence(limit]+
mppm fall#* (2#x+pom_bits-y)+
x+pem bits+]] ;)
else [secquence [limit+y+1]=
sequence [limit+y+1]
+mppm fa[l#* (2*x+pcm_bits-y)+X
+pem_bits+il;}

else if ((pulse counter==limit)&&(flag==1) } {
if (mppm fa[i+l*(2*xX+pcm bits-y)+1]==0)
sequence[limit+l] =sequence [1imit+1] + (mppm fa[l* (2*x+pcm bits-y) +X+
pem bits+i]* (row counter/
pow(2,pcm bits)));
sequence [limit] =sequence [limit] + (mppm fa[l* (2*x+pcm bits-y)+X+pcm bits+jl*
((pow(2,pcm bits)-row counter)/
| pow(2,pem _bits)))
else {
sequence [limit+y+2] =sequence [1imit+y+2] + (mppm fall* (2*x+pom_bits-y)+x+
pem bits+]l
* (row_counter/pow(2,pcm_bits)));

19

270
PhD Thesis

Software Printout

sequence[limit+y+l] =sequence [limit+y+1] + (mppm £all# (24xX+pom_bits-y)+x+
pem bits+]l
*({pow{2,pcm bits)-row_counter)/
pow(2,pem_bits)));

J++; Lflag=0;

|
else if ((mppm fali+l* (2*x+pcom bits-y)l==0)&&{i==(x-1})) {
Zero counter=0; pulse_counter=0;

for (m=i-1; m>=0; m--}
if (mppm falm+l+*(2*x+pem bits-y)]==1) [pulse counter++;|
Tlse {break; }
if ((pulse counter==limit} &k (xi=(y+1)))
if (pulse counter==0) {sequence[0]=sequence[0]+mppm fa[l*
(2#x+pcm bits-y)+x+pem bits+jl; flag=0;}
else |

sequence [limit+y+1l] =sequence [limit+y+1] + (mppm fall* (2*x+pcm bits-y)+x+

pcm bits+j]l*(bit counter/pow(2,pcm bits)));
sequence [limit] =sequence [limit] + (mppm fa[l* (2*x+pcm bits-vy)+X+pcm bits+j] *
| ({pow (2, pem_bits) -bit_counter) /pow(2,pem_bits)));

t
else if ((pulse counter==1limit)&&(x==(y+1))) |
sequence(limit+l] =sequence [limit+1] + (mppm f£a[l* (2*X+pem bits-y) +X+pem bits+3i]
* (row counter/pow(2,pcm_bits)});
sequence(limit+y+l] =sequence [limit+y+1] + (mppm fa(l# (2#x+pcm bits-y)+x
+pem bits+jl*
(bit counter/pow(2,pcm bits)));
sequence [limit] =sequence [limit] + (mppm fal[l* (2*xX+pcm bits-y)+X+pem bits+jl+
{ (pow (2,pcm bits)-bit_counter-row_counter)/
pow (2, pem_bits)));

]
j?+; flag=0;

if (n==pasc) [break; |
Jl++4; j=m0; if (l==11) [f£lag=1l;}
else [flag=0;}
if (n==pasc) {break;}

11=0; j=0; flag=1l; limit++;
} //56% (y+1) *pow (2, pom_bits) +x

for (i=0; i<2*(y+1l); i++) |sequenceli]=(sequence(di] /{ (x-y)*
pcm_bits*pow(2,pem_bits)));} //2%{y+1)*T

if ((press4==1)&&(press5==2)) |
gotoxy(0,57); cout«<<"PL:"<<endl; gotoxy(2,57) ;cout<<sequence(0]<<endl;
for (i=0; i<{y+1}; i++) { gotoxy(0,58+i); cout<<"Pf.10:"<<endl;
gotoxy (6,58+1) jcoute<sequence [1+1]<<endl; }
for (i=0; i<y; i++) | gotoxy(0,58+y+1+1); cout<<"Pf.101:"<<endl;
gotoxy (7,58+y+1+1) ;cout<<sequence [1+y+2]<<endl; |

k=1; n=0; w=0; 2=0;

for (i=0; i<2*(y+1); i++) |

gotoxy (0+w, 87+n) ; coutecsequence[i] <<endl;
if (sequence([i] !=0) [waw+13;]

else {w=w+5; |

if (i==k*y+2) [K++; n++; w=0; Z++;}

delete [] sequence; seguence=0;
I //7+T

if (pressS==1)
{

sequence2 = new float [5];
if (sequence2==NULL) |[gotoxy(19,50);

coute<"NOT ENOUGHT MEMORY FOR FA SEQUENCE ARRAY!!!! "ecendl; }
else {for (i=0; 1<5; i++) sequence2[i] = 0;}
20

271

PhD Thesis

Software Printout

for (i=0; 1<2; i++) {sequence2[i] =sequence[i] ;}

sequence2 [3] =sequence [y+2] ;

for (i=2; i<y+2; i++) | sequencez [2] =sequencez [2] +sequence [1] ; }
for (i=y+3; i<2#%(y+1); i++) {[sequencez[4]=sequencez [4]+sequence[i];}

gequence? [2]= (pow(2,pcm bits)-1) /pow(2,pem_bits)* (mppm_fa[x+poem_bits]
/ (pow(2,pcm bits) *pcm bits));

sequence2 [3]= (pow(2,pcm bits)-1) /pow(2,pcm_bits)*

(mppm fa[(2* (x+pcm bits))+x+1]

Jipow (2, pem_bits) *pem_bits));

if (pressq==1)
if (szequence2[0]<0) {sequence2|[0]=sequence2[0]*(-1);}
if (segquence2[l]<0) [sequence2(l]=seguence2[1]*(-1);]
if (sequence2[2]<0) [sequence2[2]=sequence2[2]+(-1);}
if (seguencez[3]<0) [sequence2[3]=sequencel([3]*(-1);}
if (sequence2 [4)<0) |sequencel[4)=sequence2[4]*(-1);]

gotoxy(0,57); coute<<"Pf:"<cendl; gotoxy(3,57) ;cout<<csequence2 [0]<<endl;
gotoxy(0,58); coutz<"P£.10:"<<endl; gotoxy(s,58);cout<csequence2[1] <<endl;

gotoxy(0,59); cout<<"P£.110:"<<endl; gotoxy(7,59) ;cout<<seguence2 (2] <<endl;
gotoxy(0,60); cout<<"PL.101:"<<endl; gotoxy(7,60) ;cout<<sequencel [3]<<endl;

gotoxy(0,61); cout<<"P£.1101:"<<endl; gotoxy(8,61);coutz<sequence2 (4] <<endl;

/*if (sequence[4]<=0.0001)

else if (sequence(4])<=0.001)

aelse if (sequence[4]<=0.01)
elge if (secquence(4]1<=0.1)

{ sequence [4] =0.12#%sequence [4] ; }
{ sequence [4]=0.27#sequence [4] ;
| sequence [4]=0.31*sequence [4] ;
{ sequence [4] =0.09*sequence [4] ; }

else if (sequence(4]<=0.2) { sequence [4] =0.05%sequence [4] ; |
else if (sequence(4]<=0.3) sequence[4]=0,04*sequence[4l:l
else if (sequence(4]<=0.4) gequence [4]=0.03*gequence [4] ;
else if (sequence[4]<=0.5) [sequence [4]=0.02%sequence [4] ; |
else if (sequencel4]<=0.6) | sequence [4]=0.02*sequence[4] ; }
else if (sequence(4]<=0.7) {gequence [4]=0.01*sequence (4] ; }
else if (sequence[4]<=0.8) {sequence [4) =0.02*sequence (4] ; }
else if (sequence(4]<=0.9) {sequence [4]=0.01*sequence (4] ;]

{sequence [4]=0.16*sequence(4] ; |
{ sequence [4] =0D*sequence [4] ; }

else if (secuence[4]<=1)
else

if (seguence[3]<=0.0001} | sequence [3]=0.12*sequence [3] ; }
else if (sequence[3]<=0.001) {sequence([3]=0.27*sequence([3];}

else if (sequence([3)<=0.01) [sequence [2]=0.31%*sequence [3] ;|

else if (sequence[3]<=0.1) | sequence [2]1=0.09*sequence [3] ;]

else if (sequence[3]<=0.2)
else if (sequence([3]<=0.3)
else if (sequence[3]<=0.4)
else if (sequence[3]<=0.5)

{ sequence [3]=0.05*sequence [3]
{ sequence [3]=0.04 *sequence [3]
{ sequence [3]=0.023*sequence[3]
{sequence [3]=0.02*sequence 3]

else if (sequence[3]<=0.8) | sequence [3]1=0.02%sequence[3] ;
else if (sequence[3]<=0.7) { sequence [3]=0.01#sequence [3] ;
else if (sequence(3]<=0.8) sequence [3]=0.02*sequence[3] ;
else if (sequence[3])<=0.9) sequence [3]=0.01*sequence [3] ;
else if (sequence[3]e<=1) [sequence [3]=0.16+sequence[3] ;|
else { sequence [3] =0*sequence [3] ; }
if (sequence([2]<=0.0001) sequence (2] =0.12*sequence [2] ;
else if (sequence(2]<=0.001) sequence [2] =0.27+sequence [2] ;
else 1f (sequence(2]<=0.01) sequence [2] =0.31+sequence [2] ;
else if (sequence(2]<=0.1) sequence [2] =0.09*sequence [2] ;
else if (sequence(2)<=0.2) seguence [2] =0 .05*sequence [2] ;
else 1f (sequence(2]<=0.3) sequence [2] =0.04*sequence [2] ;
else if (sequence([2]<=0.4) seguence [2] =0 .03*sequence [2] ;
else if (sequence(2]<=0.5) sequence [2] =0.02*sequence [2] ;
else if (sequence(2]<=0.6) sequence [2] =0.02+sequence [2] ;
else if (sequence([2]<=0.7) sequence [2] =0.01*sequence [2] ;
else if (sequence([2]«<=0.8) seguence [2] =0.02*sequence [2] ;
else if (sequence(2] <=0.9) sequence [2] =0.01*sequence [2] ;
elge if (sequence(2]<=1) gequence [2] =0.16*sequence [2];
else {sequence [2] =0*sequence[2] ;]
if (sequence[1]<=0.0001) sequence[1]=0.12*sequence (1] ;
else if (sequence(1]<=0.001) sequence [1] =0.27*sequence [1] ;
else if (sequence(1]<=0.01) sequence [1] =0.31*sequence [1] ;

21

272
PhD Thesis

else if
else if
else if
else if
elge if
else if
else if
else if

{sequence (1] <=0.1)
(sequence [1]) <=0.2)
(sequence (1] <=0.3)
(sequence[1] <=0.4)
(sequence [1] <=0.5)
(sequence [1] <=0.6)
(sequence[1]<=0.7)
(sequence (1] <=0.8)
elge if (sequence(l]<=0.9)
else if (sequence(1)<=1)
else

if (sequence [0]<=0,0001)
else if (sequencel(0]<=0.001)
elge if (sequence(0]<=0.01)
elge 1f (sequence(0]<=0.1)
glge if (sequence(0)<=0.2)
elee if (sequence(0]<=0.3)
else if (sequence(0]<=0.4)
else if (sequence([0)<=0.5)
else if (sequence(0]<=0.6}
elze if (sequence(0]<=0.7)
else if (sequence[0]<=0.8)
else if (sequence([0]<=0.9)
else if (sequence(0) <=1)
else

[/for (1=0; i<5; i++)
for (i=0; i<24;

for (i=0; i<24;
for (i=0; i<24;

144)

1+4)

sequence [1]=0.09*sequence [1] ;
sequence [1] =0.05*sequence [1] ;
seguence [1] =0.04*sequence [1] ;
gequence [1] =0.03*saquence [1] ;
gequence [1]=0.02*sequence [1];
sequence [1] =0.02*sequence [1] ;
sequence [1] =0.01*sequence [1] ;
sequence [1]=0.02*sequence [1] ;
sequence[1]=0.01*sequence[1];
sequence [1] =0.16*sequence [1] ;
sequence [1] =0#sequence[1] ;|

sequence [0] =0.12%secquence [0] ;
sequence [0] =0 .27+ sequence [0] ;
sequence (0] =0.31*sequence [0] ;
sequence [0] =0.09*sequence [0] ;
sequence [0] =0.05%sequence [0] ;
sequence [0] =0.04#*sequence [0] ;
geguence [0] =0.03*sequence [0] ;
sequence [0] =0.02*sequence [0] ;
sequence [0] =0.02*sequence [0] ;
sequence [0] =0.01*sequence [0] ;
seguence [0] =0.02*sequence [0] ;
sequence [0] =0.01*sequence [0] ;
seguence [0] =0.1&*sequence [0] ;

{sequence [0] =0*sequence [0] ;)

Software Printout

[gotoxy(0,87+1); cout<<sequencel|[i]<<endl;}

i++) 1standard falil=(standard fa[i] *sequence2[0]);}
pt 10[il={(pf 10[i] *sequencez[1]};]}
pf 110([i]=(pf 110[1i]*sequence2(2]);

for (1=0; i<24; i++) (pf_101([1]1=(pf_101[1i]*sequence2([3]);
for (1=0; i<24; i++) [pf_1101(1)1=(pf_1101([1)+*sequencez(4]);}
——— //
for (i=0; i=24; i++) [standard fali] = standard fali] - off standard fa [i] +
pf 10[i] - off pf 10 [i] + pf_110[i] -
off pf 110 [i] + pf 101[i] -
off pf 101 [i] + pf_1101[i] -
off pf _1101[il;}
for (i=0; i<24; i++)
if (standard fa[i]<0) {standard_fa[i}-standard_fa[ﬂ
+(-1) ;]
gotoxy{0,67+1}; cout<<"\n"<<standard falil<<endl;
for (i=0; 1<24; i++)
if (standard falil<0) [minimum=0;}
else {minimumwstandard_fa[i]:}
pulse energy = minimum * photon_energy;
energy in frame = pulse energy *
mark space correction;
energy per pem bit = (energy in frame/pem bits);
dBm = 10 * (log((energy per pcm_bit#*B)/pow(10,-3))
/log(10)) ;
gotoxy (0,95+1); cout<<"\n"<<dBm<<endl;
i
!
delete [] sequence; sequence=0;
delete [] sequencel; sequencels=0;
i
-- /1
gotoxy (19,50) ;cout<<"DISPLAY INPUT ARRAYS? PRESS1,3 ELSE 8 "ecendl ;
gotoxy (64,47) ;cin>>press3;
while { (press3i=1)||(press3!=3)|| (press3i=8)|| (press3i=-1))
if (pressi==1) |
clrser2();
gotoxy (0,56} ; cout<<"FALSE ALARM MPEM-DATA ARRAY "<<endl;

print_input_arrays (mppm_data,pow(2,pcm_bits)

22

273
PhD Thesis

Software Printout

X+pem bits,x,y,aut pasc,aut pasc2,aut pasc3,
aut pcm bits,pcm bits,pasc,pasc2,pasc3,start number,
end number,pressl,press2,press3,pressd,presss) ;

presss=0;
do

{

gotoxy(19,50) ;

Cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? veecendl ;

gotoxy (33,47) ;cins>pressé;
if (pressé==-1) [break;
if (press&==2) [break;|]
if (pressé==3) [break;|]

}while (pressél=1);

if (pressé==3) [file opl.closel); break;}
if (pressé==1) |
k=1;
for(i=0; i<(x+pcm_bits)*pow(2,pcm_bits); i++

{
if (i==k+* (x+pcm bits)) [file ople<"™\n"; k++;]
file opl<<mppm_data[i]<<" ";

file opl.closel();

else if (press3==3) |
clrscrz();
gotoxy (0,56) ;
coutz<"WEIGTHED FALSE ALARM ARRAY ve<endl ;
print input arrays(weighted fa mppm data,pasc3,
®+pcm bits,x®,y,.aut pasc,aut pasc2,aut pasc3,aut pem bits,
pem bits,pasc,pasc2,pasc3,start_number, end_number,pressl,
press2, press3,pressd,presss);

pressé=0;
do

{
gotoxy (19,50) ;
cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "
«zendl; gotoxy (33,47) ;cin>>presss;
if (pressé==-1) {break;|
if (pressé==2) [break;|
if (pressé==3) [break;}
Jwhile (pressétl=1) ;
if (pressé==3) {file_opl.close(); break;]
if (press6==1)
k=1;
for (i=0; i<(xX+pcm_bits)*pasc3; i++)

if (i==k* (x+pecm bits)) [file oplz<"\n"; k++;}
file oplc<<weighted fa mppm_data[il<<" *;

ril? opl.close();

break;
else if (| (press3==8)|| (pressi==-1))} {break;|}
else
[gotoxy(19,50);
cout<<"WRONG SELECTION.TRY AGAIN "e<endl;
gotoxy (64,47) ;cin>>press3; |

}

if (press3==-1) [break;}
if (pressé==-1) [break;}

clrscra();

delete [] mppm data; mppm data=0;
delete [] weighted_fa mppm_data; weighted fa_mppm_data=0;

23

274
PhD Thesis

Software Printout

delete [] mppm; mppm=0;
delete [] data; data=0; //66*T

}//end of if-else mppm_fa null statement
}//end of if-pressl(2) and (y=1)
?lse if (pressl==3}

mppm = new int [X#*pasc2]; data = new int [pcm bits#pasc2];
weighted er mppm_data = new int [(x+pem_bits)+*pasc2];

if (mppm==NULL) {[gotoxy(1%,50);
cout<<"NOT ENOUGHT MEMORY FOR MPPM2 ARRAYLLL! "ecendl; }
elge { gotoxy(56,11); cout<<erasure weight<<endl;
gotoxy (60,12); cout<<false_alarm_weight<<endl;
for (i=0; i<x*pasc2; i++) mppm([i] = 0O;

for (i=0; i<y-erasure bits; i++) mppm([i] = 1;
i=0; §=0; 1=0; m=0; extra_pulses=0; k=1;

for (m=0; me2*pasc2; m++)
{ for (i=0; i<x-1; i++) if { mppmli+(K-1)#*%]==1) j=i;

for (i=1; ic=y-erasure bits; i++)
{ if (mppm[k#*x-i]==0) break;

else if (mppmlk*x-1]==1) extra pulses++;
} if (extra pulses==y-erasure_bits) break;

if (Ji=(x-1))
{ for (1=0; d<3j; i++) mppm[i+k*x]=mppm(i+(k-1)*x];
mppm [j+k*x+1]1=1;

for (i=1; i<=extra pulses; i++)
mppm [{+k*x+1+1]1=1;

1=0; extra pulses=0;

else if ((j==(x-1)) && (extra pulses!=0))
{1=extra_pulses; k--; extra_pulses=0;]
K++;
} //22+T*(x*pasc2)*(y-erasure bits}
}//end of if-else mppm null statement

erasure weight2=0;

if (data==NULL) {gotoxy(19,50);
coute<"NOT ENOUGHT MEMORY FOR DATAZ ARRAY!!!! "ecendl;)
else | for (i=0; i<pem bits*pasc2; i++) datalil = 0;
w=0; row counter=0; bit counter=0; k=1;
for (l=l; l<=pasci; 1l++)
{ for (j=%; j<(x+pem bite); j++)
| for (m=0; m<pow(2,pcm bits); m++)
| for (i=0; i<x; i++)
if (mppm{i+ (1-1)*x]==mppm data[i+(k-1)# (pcm bits+x)])
row counter++;|
if ({ row counter==(x-erasure bits)) && (
mppm datali+(k-1)#*(pcm bits+x)]==1)) bit_counter++;
if (row counter==x-erasure_bits) erasure weight2++;
row_counter=0; K++;
} k=1;
if (bit counters(erasure weight2/2.0))
data[w+(1l-1)#*pcm bits]=1;
else if (bit counter<(erasure_weight2/2.0))
data[w+(1-1)*pcm bits]=0;
else if (bit counter=(erasure_welght2/2.0))
data[w+(1-1)*pcm bits]l=2;
bit counter=0; w++; erasure_weight2=0;
] k=1; w=0;

}
}//end of if-else data null statement
if (weighted er mppm data==NULL) {gotoxy(19,50);

coute<"NOT ENOUGHT MEMORY FOR WEIGHT-ERASURE "ecendl ;)
else { for (i=0; i< (x+pcm_bits)#*pasc2; i++) welghted er_mppm_data[i] = 0;

i

k=0;

24

275
PhD Thesis

Software Printout

for (m=0; m<pasc2; m++)

for (i=0; i<xX; i++)
| weighted er mppm_data(k* (x+pcm_bits)+i] = mppm(k#*x+i]; |
K++; l++;

k=0; 1=0;
for (m=0; mspasc2; m++)

for (i=x; i<x+pcm bits; i+4+)

| weighted er mppm data(k+* (x+pem bite)+1]
= datal(l*pem_bits)-x+il;

k++; l++;

}

}//end of if-else weighted er_mppm_data null statement

-- I
mppm = new int [X*pasc3]; data = new int [pcm bits+*pasc3];
weighted_fa_mppm_data = new int [(x+pcm_bits)*pasc3];
if (mppm==NULL) {gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR MPPM3 ARRAY!!!! "e<endl; }
else | for (i=0; i<x*pasc3; i++) mppm[i] = 0;
for (i=0; i<y+false_alarm_bits; i++) mppm[i] = 1;
i=0; 3=0; 1=0; m=0; extra pulses=0; k=1;
for (m=0; mM<2*pasc3; m++)
{ for (i=0; iex-1; i++) if (mppmli+ (k-1)#*x]==1)} j=1i;
for (i=1; i<=y+false alarm bits; i++)
{ if (mppm(k*x-il==0) break;
else if (mppm(K#x-1i]==1) extra pulses++;
} if (extra pulses=-=y+false alarm bits) break;
if (fi=(x-1))
{ for (i=0; i<j; i++) mppmli+k*x]=mppm[i+(k-1}+x];
mppm [j+k*x+1] =1;
for (i=1; ic=extra pulses; i++)
mppm [{+k*x+1+1] =1;
1=0; extra pulses=0;
else if ((j==(x-1)) && (extra pulses!=0))
{1=extra_pulses; K--; extra_pulses=0;|]
k++;
}
}//end of if-else mppm null statement
-- "

false alarm weight2=0;
if (data==NULL) [gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR DATA3 ARRAY!!!! 'ecendl; }
else { for (i=0; i<pem bits*pasc3; i++) datali] = 0;
w=0; row counter=0; bit counter=0; k=1;
for (l=1; le<=pasc3; l++)
[for (j=x; Jj<(x+pcm bits); J++)
[for (m=0; mepow(2,.pcm bite); m++)
[for (i=0; i<x; i++)
[1f (mppmii+(1-1)*x]==mppm datali+(k-1}*(pcm bits+x)])
LOW counter++;
if ((row counter==(x-false alarm bits)) &&
{ mppm datalj+ (k-1)*(pcm bits+x)]==1))} bit counter++;
if (row counter==(x-false_alarm_bits)) false_alarm_weight2++;
row_counter=0; K++;
} k=1;
1E { bit counter > (false_alarm_weight2/2.0)
data[w+(1-1) *pcm bits)l=1;
else if (bit counter < (false alarm_weight2/2.0))
data[w+(1-1) *pcm bits]=0;
else if (bit counter = (false_alarm_weight2/2.0))
data[w+(1-1) *pcm bitsl=2;
bit counter=0; w++; false alarm weight2=0;
k=1; w=0;
}//66*T*pem bits*pasc3
}//end of if-else data null statement

25

276
PhD Thesis

Software Printout

if (weighted fa mppm data==NULL) {gotoxy(19,50);
CoOuL<<"NOT ENOUGHT MEMORY FOR WEIGHT-FA ALARM "ecendl ; }
else | for (i=0; i=(x+pcm_bits)*pasc3; i++) weighted fa mppm_data[i] = 0;

k=0;
for (m=0; mepasc3; M++)
{ for (i=0; 1<x; i++)
{ weighted fa mppm_datalk+* (x+pem_bits)+i] = mppmlk*x+i]l;]

Ke+; la+;

k=0; 1=0;
for (m=0; mepascld; m++)
{ for (i=x; il<x+pcm bits; 1++)
{ weighted fa mppm data(k+* (x+pcm bitsg)+i] =
datal(l*pem_bits)-x+1];
k++; l++;
}//15%T* (pasc3+x)
}//end of if-else weighted fa mppm_data null statement

mppm_ws = new int [(X+pcm_bits+2+*y) *pow(2,pem_bits)];

if (mppm ws == NULL) {gotoxy(1%,50);
coute<"NOT ENOUGHT MEMORY FOR MPEM-WS ARRAY "ecendl; }
else | for (i=0; i< (x+pcm_bits+2*y)*pow(2,pcm_bits); i++) mppm_ws[i] = 0;

flag ws=1;

k=0;

fori{m=0; m<pow(2,pcm bits); m++)

{ for (i=0; i<x; i++) mppm ws(k* (x+pcm bits+2%y)+il=
mppm data [k* (x+pcm_bits)+i];

K++;
1
a=0;
if (y%2==0) a=y/2;
else a=(y/2)+1;

k=0; 1=0; n=0; row counter=0; nl=0; counter=0; flag=0; 0=0; w=0;
for (m=0; mepow(2,pcm bits); m++)
{ for (p=0; p<a; p++)
| for (i=flag; je<x; j++)
| if ((mppm datalk#* (x+pcm bits}+jl==1) &&
(counter!=0)) [ni=j; flag=nl+l; break;}
else if ((mppm data[k*(x+pcm bits)+j] ==1)
I && (counter==0))} [n=j; counter++;|

if (p==0) {0=0;]

if ((nt=0) && (ni=flag)) {
mppm data[k* (x+pcm bits)+n-11=1; for (2=0; z<pascl; 2+i)
{ for (3=0; j<x; j++) 1if (mppm datalk* (x+pcem bits)+jl==
weighted fa mppm data([l* (x+pcm bits)+j]) row_counter++;
if (row counter==x) { for (j=x; Jj<x+pcm bits; J++)
| mppm we[j+k#*(x+pem bite)+we2sy]=
weighted fa mppm data[l* (X+pcm bits)+i1"
mppm_data [k* (x+pcm_bits)+3];

if (mppm we[j+k* (X+pcm bits)swr2ry] 1=0)
[mppm ws[(k+1)* (X+pcm bits) +W*2*y+0] ++; |
mppm ws [J+kK* (X+pcm bits)+w:2*y] =0;
| row c?unter=0: 1=0; mppm_data [k#* (x+pcm_bits)+n-1]=0; break;
else l++; row_counter=0;
} 1=0; 0+=2;
if ({ nli=(n+l} } && (n1i=0) } { mppm_data [k*(x+pcm_bits)+nl-1]1=1;
for (2=0; z<pasc3; z++)
{ for (j=0; je<x; j++) if (mppm data[k* (x+pcm bits)+jl==
weighted fa mppm data(l* (x+pem bits)+j]) row counter+s+;
if (row counter==x) | for (j=x; j<x+pem_bits; J++)
{ mppm ws[j+k=* (x+pcm bits)+w*2*yl=
weighted fa mppm data[l#(x+pcm bits)+il"
mppm data [k* (x+pcm_bits)+]];

if (mppm_ws [j+k* (x+pcm_bits)+wr2#*y] 1=0) {mppm_ws[(k+1)*

26

277
PhD Thesis

Software Printout

(x+pem bits) +w*2*y+ol++;]
mppm wa[j+k* (x+pcm bits)+w*2*yl=0;
} row_counter=0; 1=0; mppm_data[k#* (x+pcm_bits)+nl-11=0; break;
}
else l++; row_counter=0;
} n=0; nl=0; counter=0; row_counter=0; 1=0; oO+=2;

] k++; w++; £lag=0; n=0; nl=0; row counter=0; l=0; counter=0;

--- /"
k=0; 1=0; n=0; row_counter=0; nl=0; counter=0; flag=0; bit_counter=0;
11=1; o=1; wW=0;
for (m=0; m<pow(2,pcm_bits); m++)

{ for (p=0; p<a; p++)
{ for (j=flag; j<x; J++)
[if ((mppm data[k* (x+pcm bits)+jl==1)&&(counter!=0))
{nl=j; flag=ni+l; break;}
else if { (mppm data[k#*{x+pcm_bits)+]j] ==1) &k (counter==0})
{n=3; counter++;}
if (p==0) [o=1;}
if (nt=-1) { if (nl=(x-1)) |[mppm_data(k#* (x+pcm_bits)+n+ll=1;
mppm data[k#* (x+pcm bits)+n]=0;}
else mppm_data(k* (X+pem_bits)+n]=0;
for (j=0; jex; J++) 1if (mppm_data[k+*(x+pcm_bits)+j]l==1}
bit_counter++;
if (bit counter==y) | for (z=0; z<pow(2,pcm bits); z++)
{ for (j=0; j<x; j++) if (mppm datalk* (x+pcm bits)+jl==
mppm data[li* (x+pcm bits)+j]) row counter++;
if (row counter==x) | for (j=X; j<xX+pcm bits; j++)
[mppm ws[j+k#* (x+pcm bits)+w*2+y]=mppm datal[ll#* (x+pcm bits)+j]1*
mppm data [k* (x+pcm_bits)+3];
if (mppm ws[j+k* (x+pem bits)+w*22y] 1=0)
{mppm ws [(k+1)* (x+pcm bits) +w*2+y+0]l++; |
mppm ws [+k* (x+poem bits)+ws2+y] =0;
| row counter=0; ll=k+1; bit counter=0; if (n!=(x-1))
[mppm datal(k* (x+pem bits)+n+1]1=0; mppm_data [k+* (x+pcm_bits)+nl=1;}
else {mppm_datal[k+*(x+pcm_bits)l+nl=1;} break;
else 1l++; row_counter=0;
]
else if (bit counter==(y-1)) { for (2Z=0; Z<pascl; Z++)
[for (i=0; jex; j++) if (mppm data[k* (x+pcm bits)+j]l==
weighted er mppm datall#*(X+pcm bits)+j]l) row _counter++;
if (row counter==x) { for (j=x; j<x+pcm_bits; j++)
{ mppm ws[j+k* (x+pcm bits)+wr2*y]=
weighted er mppm data[l#(x+pcm bits)+j] "mppm data[k+*(x+pcm bits)+3l;
if (mppm ws[j+k* (x+pcm bits)+wr2ry] 1=0)
{mppm ws [(k+1)* (x+pcm bits)+w#2+sy+0])++;}
mppm ws [J+k* (X+pcm bits)sw=2*y] =0;
| row counter=0; 1=0; mppm data[k+* (x+pem_bits)+nl=1;
bit_counter=0; break;
elge l++; row_counter=0;
1
} o+=2;

——— "

if (nit=0) | if (nli=(x-1)) [mppm datal[k* (x+pcm_bits)+nl+1l=1;

mppm data (k* (x+pcm bits)+nl]=0;]
else mppm_data[k* (x+pcm_bits)+nll=0;

for (j=0; je<x; J++) if (mppm data[k* (Xx+pcm bits)+jl==1) bit counter++;
if (bit counter=s=y) | for (2=0; zZ<pow(2,pcm bits); Z++)
| £or (§=0; J<x; J++) 1f (mppm datalk* (x+pem bite)+i)==
mppm data[ll*({x+pcm bits)+]j]l) row counter++;
if (row counter==x) | for (j=x; j<x+pcm bits; j++
| mppm ws[j+k* (x+pom bits)+w*2*y]=mppm data[ll* (x+pcm bits)+j]"
mppm datalk* (x+pem_bits)+i];

27

278
PhD Thesis

Software Printout

if (mppm ws[j+k#* (k+pem bits) +w*2+y] 1=0)

{mppm ws [(k+1)* (x+pcm bits)+w*2*y+ol ++;]

mppm ws([j+k#* (x+pcm bits)+w*2ryl=0;

| row counter=0; 1ll=k+1; bit counters=0; if (nil!=(x-1))

{mppm data(k* (x+pem bits)+nl+1]1=0; mppm datalk* (x+pem_bite)+nll=1;}
else {mppm_data [k* (x+pcm_bits)+nll=1;} break;

else 11++; row_counter=0;

else if (bit counter=={(y-1)) | for (z=0; Z<pascl; Z++)
{ for (1=0; j<x; j++) if (mppm data [k*(X+pem bits)+i]l==
weilghted er mppm datall+* (x+pem bits)+i]) row counter++;
if (row counter==x) | for (j=x; j<x+pem_bits; j++)
{ mppm ws([j+k#* (x+pcm bits)+w#2y]=
weighted er mppm data[l* (Xx+pem bits)+1)
“mppm data[k+* (x+pem bits)+3l;

1f (mppm ws([1+k* (X+pcm bits)+w*2#y] 1=0)

{mppm ws [(k+1)* (x+pcm bits)+W*2*y+0] +4;}

mppm ws[j+k#* (X+pcm bits)+w*2+yl=0;

| row counter=0; 1=0; mppm_datalk* (x+pcm_bits)+nl]=1;
bit_counter=0; break;

elTe 1++; row_counter=0;

} N=0; nl=0; counter=0; row_counter=0; l=0; bit_counter=0;
11=k+1; o+=2;
} k++; w++; counter=0; n=0; nl=0; flag=0; o+=2; row_counter=0;
1=0; bit counter=0; ll=K+1;
] //176*T*pow(2,pem_bits) *#x

--- %
presssS=1;
pressd=0;
gotoxy (19,50);
cout=<"DO YOU WANT TO DISPLAY THE SEQUENCE RESULTS? "e<endl ;
gotoxy (10, 44) ;cin>pressd;
while ((press4l=1) || (pressd4i=2}|| (press4l=-1))
| if (pressd==-1) break; |
else if ((pressd==1)|| (press4==2)) {break;|
else {gotoxy (19,50) ;
cout<<"WRONG SELECTION.TRY AGAIN "e<cendl;
gotoxy (10,44) ;cout<<” "<<endl ;
gotoxy (10, 44) ;cinz>pressd; |
if (pressd==-1) {[break;}
11=0; zZero counter=0;
for (m=0; m<pow(2,pcm_bite); m++)
for (i=0; i<2; i++) {
if (mppm ws[i+m* (x+pcm bits+2#y)]1==0)
} [zero_counter++;|
if (zero counter==2) [break;}
}else {zero_counter=0; 11++;}
——— 1

bit counter=0; row counter=0; i=0;

for { m=0; m<pow(2,pcm bits); m++)
if (mppm we[i+m*(x+pcm_bits+2*y)]l==1) {bit_counter++;}
//1-bit_counter=11//
i=X-1;
if (mppm ws[i+m* (x+pcm_bits+2*%y}]==1) {row counter++;}
//1-row_counter=9//
1=0;

}

sequence = new float [4];
if (sequence==NULL) {gotoxy(19,50);

Cout<<"NOT ENOUGHT MEMORY FOR WS SEQUENCE ARRAY!I|!! "<<end1;}
else [for (i=0; i<4; i++) sequence[i]l = 0;}
28

279
PhD Thesis

Software Printout

ZEero counter=0; pulse counter=0; pulse_counter2=0; 1=0;
i=0; flag=1; limit=0;

for (i=0; i<pow(2,pcm bits); i++)
{if (mppm ws[(i* (x+y+1))+(x-1)1==1) {pulse_counter++;}}
for (i=0; i<pow(2Z,pcm bits); i++)
{if (mppm_ws [1*(xX+y+1)]1==1) {pulse counter2++;}}

for (i=0; i<pow(2,pem bits); i++) |
for (1=0; l<x; l++) |
if (mppm ws[{i#* (x+2))+1]==1) |
if (1==0) {

sequence [0] =sequence [0] +
(({pow(2,pem bits)-pulse counter2)/
} pow(2,pcm bits)) *mppm ws(i# (x+y+1)+x1); //Ds

else if (l=al) {

seqguence [2] =sequence [2] + ((pulse counter2/pow(2,pcm bits))
smppm ws [1* (M+y+1)+X]) ; J/Ps 11
sequence [0] =sequence [0] + ({ (pow (2, pem_bits) -pulse_counter2) /pow(2,pem_bits))
mppm_ws [i (x+y+1)+x]1}; //Psl 1

elge if (l==(x-1))
sequence [3] =sequence [2] + ((pulse counter/pow(2,pcm bits))*
mppm ws [i* (x+y+1)+x]); //Ps1 1
sequence[ol-sequence{ol+(t(powlz,pcm_bits}-pulse_counter)/pow{z.pcm_bits]J*
mppm ws [1* (X+y+1)4x]); //Pe

else { sequence [0] =sequence [0] +mppm_ws (1% (x+y+1)+x];} //Ps

!
1

for (i=0; i<pow(2,pem_bits); 1++) |
for (1=0; l<x; l++)
if (mppm ws[ti*tx+2l}?1]--1} {

if (1==0)
sequence [3] =sequence [3] + ((pulse counter2/pow(2,pcm bits))*
mppm wWs[(1% (X+y+1))+ (X+1)1); //Psl 1

sequence [0] =sequence [0]+ (((pow (2, pcm bits) -pulse counter2)
/pow(2,pcm bits)) *mppm ws[(1% (x+y+1))+(x+1)1); //Ps

!

else if (l==(x-1)) {
sequence [3] =sequence (3] + ((pulse counter/pow(2,pcm_bits))*
mppm ws [(1% (x+y+1)) +(x+1)1) ;//Psl 1

sequence [0] =sequence [0]+ (((pow (2,pcm_bits) -pulse_counter)/pow(2,pcm_b
i;s})*mppm we [(i* (x+y+1))+(x+1)1); /J/Ps

else {sequence [0] =sequence [0] +mppm ws [(1% (x+v+2))+ (x+1)1;) //Ps

pulse_counter=0; pulse_counter2=0;

for (i=0; ie<y*(y+2)+1; i++) [sequence(i]={sequence(i]/
(pem_bitstpow(2,pem_bits))) ;| //156*x*pow(2,pem_bits)*T
if ((pressd==1)&&(pressS==2)) |
//gotoxy (0,57); cout<<"Ps:"<<endl;
//gotoxy (3,57) ;eout<<seguence [0] <<endl;
J//for (i=0; i<y; i++) | gotoxy(0,58+y+i);

//coute<"Pel.1:%<<cendl; gotoxy(&,58+y+i);
//ooutz<sequence[(1+1)* (y+1)]<<endl;|

k=1; n=0; w=0; 2=0;
for (i=0; i<y*(y+2)+1; i++) {

29

280
PhD Thesis

f*if
else
else
else
else
else
else
else
else
else
else
else
else

else
else
else
else
else
else
else
else
else
else
else
else

if (w>60) |n++; w=0;}
gotoxy (0+w, 77+n) ; cout<eseguence[i] <<endl;

W=w+12;
if (i==k*y+z) |[k++; n++; w=0; 2++;}

!
else if (pressS==1)
if (press4==1) |

gotoxy(0,57); cout<<"Ps:"<cendl;
gotoxy (3,57) ;cout<csequence [0] <<endl;

gotoxy(0,58); cout<<"Ps.ll:"<<endl;
gotoxy (6,59) ;cout<csequence [2] <<endl;

gotoxy(0,59); cout<<"P3l.l:"<<endl;
gotoxy (6, 60) ;cout<<sequence [3] <<endl;
gotoxy(0,60); cout<<"Ps.101:"<<endl;
gotoxy (7,58) ;cout<<sequence [1] <<endl;

Fsequence[a]::0.0ool)

if

(sequence [8] <=0.001}

(sequence [8] <=0.01)
(sequence [8]<=0.1)
(sequence [8] <=0.2)
(sequence [8]<=0.3)
(sequence [8] <=0.4)
(secuence [8]<=0.5)
(sequence [8] <=0.6)
(sequence [8)<=0.7)
(sequence [8] <=0.8)
(sequence [8] <=0.9)
(sequence [8]<=1)

else
if (sequence([7] <=0.0001)

if
if
if
a2
if
if
if
if
if
if
1K
ir

(sequence [7]<=0.001)

(sequence [7]«=0.01)
(sequence [7]<=0.1)
(sequence [7]<=0.2)
(sequence [7]<=0.3)
(sequence [7]<=0.4)
(sequence [7]<=0.5)
(sequence [7] <=0.6)
(sequence [7]<=0.7)
(sequence [7]<=0.8)
(sequence [7]<=0.9)
(sequence [7]<=1)

else

if (sequence(6]<=0.0001)

else
else
else
else
else
else
else
else
else
else
else
else

if

(sequence [6]<=0.001)

(sequence [6]<=0.01)
(sequence [6]<=0.1)
(sequence [6]<=0.2)
(sequence [6]<=0.3)
(sequence [6] <=0.4)
(sequence [6] <=0.5)
(sequence [6]<=0.6)
(sequence (6] <=0.7)
(sequence [6] <=0.8)
(sequence [6] <=0.9)
(sequence [6]<=1)

else

if (sequence[S5]<=0.0001)

else
else
else
else
else
else
else
else

if
if
L

(sequence [5]<=0.001)}

(sequence [5]<=0.01)
(sequence [5]<=0.1)
(sequence [5]1<=0.2)
(sequence [5]<=0.3)
(sequence [5]<=0.4)
(sequence [5] <=0.5}
(sequence [5]<=0.6)

| sequence [8] =0.12*sequence [8
sequence [8]=0.27*=sequence [8] ;
sequence [8]=0.31*sequence (8] ;
sequence [B]=0.09*sequence[8] ;
sequence [8] =0.05*seguence [8] ;
sequence (8] =0.04*sequence B8] ;
sequence [8]=0.03*sequence [8] ;
gequence [8]=0.02*sequence 8] ;
sequence [8] =0.02*sequence [8] ;
sequence [8]=0.01*sequence[B] ;
sequence [8]=0.02*sequence [B] ;
sequence [8] =0.01*seguence [B] ;
sequence [8]=0.16*sequence[8] ;
sequence [8] =0*sequence [8] ; |
sequence [7] =0.12*sequence[7] ;
sequence [7] =0.27+sequence[7] ;
sequence [7] =0.31*sequencea[7] ;
sequence [7] =0.09*sequence[7] ;
sequence [7] =0.05*sequence[7] ;
sequence [7] =0.04*sequence (7] ;
sequence [7]=0.03*sequence[7] ;
sequence [7]=0.02*sequence[7] ;
sequence [7] =0.02*sequence[7] ;
sequence [7]=0.01*sequence[7] ;
sequence [7]=0.02*sequence[7] ;
sequence [7]=0.01*sequence[7] ;
sequence [7]=0.16*sequence 7] ;
sequence [7] =0*sequence [7] ; |

sequence [6]=0.12*sequence[6] ;
saquence [6]=0.27*sequence[6] ;
sedquence [6] =0.31*sequence 6] ;
sequence [6]=0.09%sequence [6] ;
sequence [6]=0.05*%sequence[6] ;
saquence [6] =0.04 *saquence[6] ;
gequence (6] =0.03*sequence[&] ;
sequence [6]=0.02%sequence [6] ;
sequence (6] =0.02+sequence [6] ;
sequence [6] =0.01*sequence [&] ;
sequence [6] =0.02*seguence [§] ;
sequence [6]=0.01%sequence 6] ;
sequence [6]=0.16*sequence 6] ;
sequence [6] =0*sequence [&] ; |

sequence [5]=0.12*sequence [5] ;
sequence [5] =0.27*sequence[5] ;
sequence [5] =0.31*sequence [5] ;
gequence [5]=0.09*sequence [5] ;
sequence [5] =0.05*sequence [5] ;
sequence [5] =0. 04 *sequence [5] ;
sequence [5] =0.03*sequence [5] ;
sequence [5]=0.02*sequence [5] ;
sequence [5]=0.02*sequence [5] ;

30

281

Software Printout

PhD Thesis

else if (sequence[5]<=0.7)

else if (sequence[5]<=0.8)

else if (sequence[5]<=0.9)

else if (sequence[5]<=1)
else

if (sequence[4]<=0.0001)
else if (sequence[4]<=0.001)
else if (sequence[4]<=0.01)
else if (sequence[4]<=0.1)
else if (sequence[4]<=0.2)
else if (sequence[4]<=0.32)
else if (sequence[4]1<=0.4)
else if (sequence[4]<=0.5)
else if (sequence[4]<=0.6)
else if (sequence[4]1<=0.7)
else if (sequence[4]<=0.8)
else if (sequence [4]<=0.9)
else if (sequence(d4]<=1)
else

if (sequence[3]<=0.0001)
else if (sequence[3]<=0.001)
else if (sequence[3]<=0.01)
else if (sequence[3]<=0.1)
else if (sequence[3]<=0.2)
else if (sequence[3]<=0.3)
else if (sequence[3]<=0.4)
else if (sequence[3]<=0.5)
else if (sequence[3]<=0.6)
else if (sequence[3]<=0.7)
else if (sequence[3]<=0.8)
else if (sequence[3]<=0.9)
else if (sequence[3]<=1)

sequence [5] =0.01*sequence[5] ;
sequence [5]=0.02*sequence [5] ;
sequence [5] =0.01*sequence [5] ;
zequance [5]=0.16*=2equence [5] ;
gequence [5] =0*sequence [5] ; |

sequence [4] =0.12*sequence [4] ;
sequence [4]=0.27*sequence (4] ;
sequence [4]=0.31*sequence (4] ;
sequence [4] =0.09*sequence [4] ;
sequence [4] =0, 05*sequence [4] ;
sequence [4]=0.04*sequence (4] ;
sequence [4]=0.03*sequence[4] ;
sequence [4]=0.02+sequence [4] ;
saquence [4]=0.02*sequence (4] ;
sequence [4]=0.01*sequence[4];
sequence [4]=0.02+sequence [4] ;
sequence [4]=0.01*sequence [4] ;
gequence [4]=0.16*sequence (4] ;
| eequence [4] =0*zeguence [4] ; |

sequence [3]=0.12*sequence[3] ;
sequence [3] =0.27*sequence[3] ;
sequence [3]=0.31*sequence (3] ;
sequence [3]=0.039*sequence [3] ;
sequence [3] =0.05*sequence [3] ;
gequence [1] =0.04*2equence [3] ;
sequence [3]=0,03*sequence [3] ;
sequence [3]=0.02*sequence[3] ;
sequence [3]=0.02*sequence [3] ;
gsequence [3]=0.01*sequence[3];
sequence [3]=0.02*%sequence[3] ;
sequence [3]=0.01*seguence [3] ;
sequence [3]=0.16*sequence[3] ;

else [sequence [3] =0*sequence[3] ;}

if (sequence[2]<=0.0001}
else if (sequence(2]<=0.001)}
else if (sequence[2]<=0.01)
else if (sequence[2]<=0.1)
else if (sequence[2]<=0.2)
else if (sequence(2]<=0.3)
else if (sequence[2]<=0.4)
else if (sequence[2]<=0.5)
else 1f (sequence[2]<=0.6)
else if (sequence[2]<=0.7)
else if (sequence[2]<=0.8)
else if (sequence[2]<=0.9)
else if (sequence[2]<=1)

[sequence[2]=0.12%sequence[2] ;
sequence [2]=0.27+sequence (2] ;
sequence [2]=0.31*sequence[2] ;
sequence [2] =0.09*seguence [2] ;
sequence [2] =0.05*sequence[2] ;
sequence (2] =0.04%sequence [2] ;
sequence [2] =0.03*sequence [2] ;
sequence [2] =0.02*sequence [2] ;
sequence [2]=0.02*sequence[2] ;
gequence [2] =0.01*sequence [2] ;
sequence [2] =0.02*sequence[2] ;
sequence [2] =0.01+sequence[2] ;
sequence [2] =0.16*sequence [2] ;

else [sequence[2] =0*sequence[2] ; }

if (sequence([1]1<=0.0001)
else if (sequence[1]<=0.001})
else if (sequence[1]<=0.01)
else if (sequence[l]<=0.1)
else if (sequence[1]<=0.2)
else if (sequence(1]l<=0.3)
else if (sequence(l)<=0.4)
else if (sequence[l]<=0.5)
else if (sequence[l]1<=0.6)
else if (sequence(l]<=0.7)
else if (sequence[1]<=0.8)
else if (sequence[l]<=0.9)
else if (sequence[l]<=1)
else

if (sequence[0]<=0.0001)
else if (sequence[0]<=0.001}
else if (sequence[0]<=0.01)
else if (sequence[0]<=0.1)
else if (sequence[0]<=0.2)
else if (sequence[0]<=0.3)
else if (sequence[0]l<=0.4)
else if (sequencel0]l<=0.5)
else if (sequence[0]<=0.6)
else if (sequence[0]<=0.7)
else if (sequence[0]<=0.8)
else if (sequence[0]<=0.9)
else if (sequence[0]z=1)
else

sequence [1]=0.12*sequence[1];
sequence [1]=0.27*sequence[1] ;
sequence [1]=0.31*sequence [1] ;
sequence [1]=0.09*sequence[1] ;
sequence [1]=0.05*sequence 1] ;
sequence [1]=0.04 *sequence [1] ;
sequence [1]=0.03*sequence (1] ;
sequence [1]=0.02*sequence[1] ;
sequence [1]=0,02*sequence (1] ;
sequence [1]=0.01*sequence[1] ;
sequence [1]=0.02*sequence (1] ;
gequence [1]=0.01*sequence [1] ;
sequence [1]=0.16*sequence (1] ;
sequence [1] =0#*sequence [1] ; |

sequence [0] =0.12*sequence [0] ;
sequence [0] =0.27+sequence [0] ;
sequence [0]=0.31*sequence [0] ;
sequence [0]=0.09*sequence [0] ;
sequence [0] =0.05*sequence [0] ;
sequence [0]=0.04*sequence [0] ;
sequence [0]=0.03*sequence [0] ;
sequence [0] =0.02*sequence [0] ;
sequence [0] =0.02*sequence [0] ;
gequence [0]=0.01*sequence[0] ;
sequence [0] =0.02*sequence [0] ;
sequence [0] =0.01*seguence [0] ;
sequence (0] =0.16%sequence (0] ;
sequence [0] =0*sequence [0] ;

31

282

Software Printout

PhD Thesis

Software Printout

J/Eor [i=0; i<9; i++) [gotoxy(0,77+i); cout<<sequence2[i]<<endl;]}

for (i=0; i<24; i++) {standard ws[il=(standard ws[i] *sequence2 [0]);}
for (i=0; 1<24; i++) Ips 11[i]=(ps 11[i] *sequence2(1]);]

for (i=0; i<24; i++) {ps 111[i1=(ps 111[i] *sequence2 [2]);]

for (i=0; i<24; i++) {psl 1[il=(psl 1[i] *sequencez[3]);]

for (i=0; 1<24; i++) {ps 1 1 1[il=(ps 1 1 1[i]#*sequence2(5]);}
for (i=0; 1<24; i++) {ps 11 1 1[i]=(ps 11 1 1[i]*sequence2(6]);]
for (1=0; 1<24; i++) {ps 1 1 11[il=(pe 1 1 11[1i] *sequence2(7]);}
for (i=0; i<24; i++) {ps_11_1_11[il=(ps_11_1_11[1)*sequence2(8]);}

for (i1=0; 1<24; i++) {[standard ws(i] = standard we(i] - off standard ws [1] +
ps 11[i] - off ps 11[i] + ps 111[i] - off ps 111[i] +
psl 1[1] - off psl 1[i] + ps 1 1 1[i] - off ps 1 1_1[i] +
ps 11 1 1[i] - off ps 11 1 1 [1] + ps 1 1 11[1i] -
off ps 1 1_11(i] + ps_11_1_11[i] - off_ps_11_1 _11[i];}

for (i=0; 1<24; i++) |
if (standard ws[il<0) [standard we[il=standard ws[i]l=*(-1);}
gotoxy (0,77+1); cout<<"\n"<<standard ws[i]<<endl;

for (i=0; 1<34; i++)
if (standard ws[i]<0) {minimum=0;}
else
{minimum=standard ws([i];}

pulse energy = minimum *
photon enerdy;

energy in frame = pulse energy *
mark space correction;
energy per pem bit =
(energy_in_frame/pem_bits);

dBm = 10% (log((energy per pcm bit*B)
/pow(10,-3))/log(10));
gotoxy (0,105+1) ;
coutec"\n"c<dBmecendl ;

for (i=0; i<24; i++) {ps 101[i]l=(ps 101 [i]*sequence2(0]);)
for (i=0; i<24; i++) {ps_1101[i]=(ps_1101[i]*sequence2([1]);}

for {i=0; 1<24; i++) {ps 1011[il={ps 1011 [i] *sequence2[2]);}
for (i=0; i1<24; i++) {ps_10111[il=(ps_10111[i]l*sequence2[3]);}

for (i=0; i<24; i++) |{ps 11011[1)=(ps 11011 [1i] *sequence2([4]);)
for (i=0; i<24; i++) {ps_110111([i]=(ps_110111[i]*sequence2(5]);}

for (i=0; i<24; i++) {[standard ws([i] = standard ws[i] -
off standard ws[il
+ ps 101[i] - off ps_101[i] + ps_1101[i] -
off ps 1101([1i] +
ps 1011(i) - off ps 1011[i] + ps 10111[i] -
off ps 10111([1i] +
ps 11011[1] - off ps_11011[i] + ps_110111[1i] -
off_ps_110111(i];)

for (i=0; i=24; i++) |
if (standard ws[il<0)
{standard ws[i]=
standard_ws[i]*(-1);]
gotoxy (0,77+1);
coutec"\n"<<
standard wsli]l<<endl;

for (1=0; 1<24; i++) |
if (standard ws([il<0} {minimum=0;
else {minimum-standard_ws[i];

pulse energy = minimum *
photon_energy;

32

283
PhD Thesis

Software Printout

energy in frame = pulse energy *
mark space correction;
energy per pcm bit =
lenergy_in_frame/pem_bits);

dBm = 10 *
{log((energy per pcm bit*B)/
pow(10,-3))/log(10));
gotoxy (0,105+1) ;
coute<"\n"<<dBme<endl ;

157
i
delete [] mppm data; mppm data=0;
delete [] weighted er mppm data; weighted er mppm data=0;
delete [] weighted fa mppm data; weighted fa_ mppm_data=0;
delete [] sequence; sequence=0;
delete [] mppm; mppm=0;
[

delete data; data=0;
}//end of if-else mppm w2 null statement
}//end of if-pressi(3) for y==1
}//end of y==1

else if { y==(x-1) }
if (pressla=l)

mppm = new int [x*pasc2]; data = new int [pem bits*pasc2l;
weighted er mppm_data = new int [(x+pcm_bits)*pasci];

if (mppm==NULL) {gotoxy(19,50);

coute<"NOT ENOUGHT MEMORY FOR MPPM-ER ARRAY!!!!"<cendl;)

else | gotoxy(56,11); cout<<erasure weighte<endl;
gotoxy(60,12); cout<zfalse alarm weighte<endl;

for (i=0; il<x*pasc2; i++) mppm[i] = 0;
for (i=0; ic<y-erasure_bits; i++) mppm[i] = 1;

i=0; j=0; 1=0; m=0; extra_pulses=0; k=1;

for (M=0; Me2*pasc2; m++)
[for (i=0; iex-1; i++)
if (mppm[i+(k-1)}*xX]==1) j=i;

for (i=1; i<=y-erasure bits; i++
| if {(mppm([k*x-i]==0) break;

else if (mppm[Kk*x-i]l==1) extra pulses++;
} if {(extra pulses==y-erasure_bits) break;

if (jlemix-1))
{ for (i=0; i<j; i++) mppmli+k*x]=mppm[i+ (k-1)*x];
mppm [j+k*x+1]1=1;

for (i=1; i<=extra pulses; i++)
mppm [J+k*X+1+1]1=1;

1=0; extra pulses=0;

else 1if ((j==(x-1)) && (extra pulses!=0))
[1=extra_pulses; k--; extra_pulses=0; }
K4+

]
}//end of if-else mppm null statement

erasure_weight2=0;//36*T

if (data==NULL) |[gotoxy(19,50);
coutL<<"NOT ENOUGHT MEMORY FOR DATA2 ARRAY!L1L! “ecendl; |
else | for (i=0; i<pcm bitstpasc2; i++) datali] = 0; //pem_bits*pasc2+T
w=0; row counter=0; bit counter=0; k=1;
for (l=1; l<=pasc2; l++)
| for (j=x; j<(x+pcm bits); j++)
| £or (m=0; m<pow(2,pem bits); m++)
| for (i=0; i<x; i++) | if { mppm[i+(1-1)*x]==
mppm_datali+(k-1)*(pcm_bits+x)]) row_counter++; }

if ((row counter=-(x-erasure bits}) &&
{ mppm_datalj+(k-1)*(pcm_bits+x)l==1))} bit counter++;

33

284
PhD Thesis

Software Printout

if (row counter==x-erasure_bits)
erasure weight2++;
row counter=0; k++;
} k=l;
if (bit counters(erasure weight2/2.0))
data[w+ (1-1)*pcm bits]l=1;
else if (bit counter<(erasure_weightz/Z.O] 1
data[w+ (1-1)*pem bits]=0;
else if (bit counter=(erasure weight2/z.0))
data[w+ (1-1)*pcm bits]=2;
bit counter=0; w++; erasure_welght2=0;
k=1; w=0;
G
}//end of if-else data null statement

if (weighted er mppm data-=NULL) {gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR WEIGHT-ERASURE "ccendl; }
else { for (i=0; i<(x+pcom_bits)+pasc2; i++) weighted_er_mppm_data(i]l = 0;

k=0;
?or (m=0; m<pasc2; m++

for (i=0; i<x; i++)

{ weighted er mppm_data[k* (x+pcm_bits) +i] =
mppm [k*x+1]; }
k++; l++;

k=0; 1=0;
for (m=0; m<pasc; m++)

for (i=x; l<x+pem bits; i+4) |

weighted er mppm data(k* (X+pem bits)+1] =
datal (l*pcm_bits) -x+i];

K++; 1+4;

!
}//end of if-else weighted er mppm data null statement

mppm_ser = new int [(x+pom_bits+y)*pow(2,pem_bits)];

if (mppm er==NULL) {gotoxy(19,50);

cout<<"NOT ENOUGHT MEMORY FOR MPEM-ER ARRARY “<<endl;|

else { for (i=0; i<(x+pom_kits+y)*pow(2,pecm_bits); i++) mppm_sr[i] = 0;
flag_er=1;

k=0;
for (m=0; m<pow(2,pcm bits); m++)
| for (i=0; i<x; i++) mppm er [k*(x+pcm bits+y)+1il]
=mppm datal[k* (x+pcm_bits)+1];
K

J

1=0; k=0; j=0; p=0; row counter=0; bit_counter=0; w=y-1;
//can be also w=0; w=y-1
for (m=0; m<pow(2,pcm bits); m++)
{ for (n=0; n<pasc2; n++)
| for (1=0; iex; 1++) if (mppm datali+1# (x+pcm_bits)

==welghted er mppm data[i+Kk* (x+pcm bits)])

row counter+s+;

if (row counter==(x-erasure bits))

{ for (i=x; iex+pcm bits; 1++)

| mppm er[i+l#* (X+pem bits)+y*pl=
(mppm data[i+l* (x+pcm bits)]”
weighted_er_mppm_datali+k* (x+pcm_bits)]);

it

mppm er [i+1* (Xx+pcm bits)+y*p] =0) bit counter++;
else bit counter=bit counter;
mppm er[({+1) # (x+pcm bits)+y*j+w]l=
mppm er [(j+1) *(x+pcm bits)+y*j+w] +bit counter;
for (i=x; i<x+pcm bits; i++) mppm_er[i+l#* (X+pcm_bits)+y*p]=0;
w--; //instead of w++
} row counter=0; bit counter=0; k++;
} l++; k=0; p++; J++; bit_counter=0; w=y-1; //instead of w=0 ; w=y-1

presss=1;

press4=0;

34

285
PhD Thesis

Software Printout

gotoxy(19,50);
cout<<"DO YOU WANT TC DISPLAY THE SEQUENCES? "<<endl;
gotoxy (10, 44) ;cin>>press4;

while ((press4l=1)|| (pressdl=2}|| (pressdl=-1))

{ if (press4==-1) [break;)
else if ((pressd==1)|| (press4==2)) {break;}
else
[gotoxy (19,50) ;
cout<<"WRONG SELECTION.TRY AGAIN "ecendl ;

gotoxy(10,44) ;coute<” ‘"<cendl; gotoxy(10,44);cin>>pressd;)

1
if (pressd4==-1) [break;]

11=0; zero counter=0;
for { m=0; m<pow(2,pcm_bits); m++)

{
for { i=0; 1<2; 1++) {
if (mppm er [i+m* (X+pcm bits+y)] ==0)
{zerc_counter++;}

if (zero counter==2) {break;}
else {zero_counter=0; 11++;}

bit counter=0; row counter=0; row counteri=0; i=0;
for (m=0; me<pow(2,pcm_bits); m++)

if (mppm er[i+m* (x+pcm_bits+y)]l==1) [bit counter++;}
//1st bit//

i=x-2;

if (mppm er [i+m#* (X+pcm_bits+y)]l==1) [row_counter2++;|

//%th-1 bit//

1=x%-1;

if (mppm er [i+m#* (x+pem _bits+y)]l==1) [row _counter++;}

//Ech bic//

i

sequence = new float [2#%y+3];
if (sequence==NULL)

{gotoxy (19,50) ;
cout<<"NOT ENOUGHT MEMORY FOR ER SEQUENCE ARRAY!!!! "ecendl ;)
else [for (i=0; i<2%*y+3; i++) sequencelil = 0;)

Zero counter=0; pulse counter=0; pulse counter2=0; 1=0; j=0; flag=1;
limit=0;

for (w=0; wely-1); wW++)
for (n=0; n<pow({2,pcm_bits); n++)
for (1i=0; i<x; i++)
if ((mppm er[i+1*{x+pcm bits+y)]==1)&& (i==0)&& (w==0)) |
Zero counter=0; pulse counter=0; pulse counter2=0;
sequence [y+1)] =sequence [y+1] + (mppm_er [(1+1) * (x+pcm_bits) +1#y+j]#*
(row counter2/pow(2,pcm bite)));
sequence [1] =sequence [1]+ (mppm er[(1+1)* (Xx+pcm bitsl+l*y+j]*
(row counter/pow(2,pem bits)));

sequence [0] =sequence [0] + {mppm er[{l+1)* (Xx+pcm bits)+1l*y+j]*
({pow(2,pem bits) -row counter2-row counter) /pow(2,pem bits)));

J++;
H
else if ((mppm er[i+1* (x+pcm bits+y)l==1)&&{il=0)&(il=(x-1}) }{
zero counter=0; pulse counter=0; pulse counter2=0;
for (m=1i-1; m>=0; m--) |

if (mppm er [m+1* (x+pcm bits+y)l==1) {pulse counter++;)
else {zeroc counter=m; break;}

if ((pulse counter==0)&&(it=1}) {

35

286
PhD Thesis

Software Printout

pulse counter=0;
for (m=zeroc counter-1; m>=0; m--) |

if (mppm er[m+l+* (x+pcm bits+y)]==1) [pulse counter++;}
?lse {break; }
if { (pulse counter==0)&&k (W==0)
[sequenc?[a]-sequence[0]+mppm er[t1+1}'[x+pcm bitg) +1*y+31; J++;
flag=0;
else if (pulse counter==limit+1) |
if (flag==0) [sequence[y+pulse counter]=seguence(y+pulse_counter]+
mppm er[(1+1)* (x+pem_bits)+1*y+il; J++;]
alse
if ({i==2)&&(pulse counter==1)) {
sequence [2+y+2] =sequence [2*y+2] +
(mppm er[(1+1)* (x+pcm bits) +1#*y+i]* (row counter2/pow(2,pem_bits)));
sequence [y+2] =sequence [y+2] + (mppm =r[(1+1)* (x+pcm bits) +1*y+]
* (row counter/pow(2,pcm bits)));

sequence [y+1] =sequence [y+1] + (mppm er[{1+1)* (x+pcm bits)+1*y+]j]*
{{pow(2,pcm bits) -row counter2-row counter) /pow(2,pem bits)));

J++; flag=0;

else {
sequence [y+1+pulse counter]=sequence[y+l+pulse counter]+
(mppm er[(1+1)* (x+pcm bits)+1#*y+j]* (row counter/pow(2,pcm_bits)));
sequence [yv+pulse counter] =sequence[y+pulse counter] +
(mppm er[(l+1)* (X+pem_bits)+l*y+j]* ((pow(2,pem _bits)-row counter)
/pow(2,pcm _bits)));
-i-;--l-; flag=0;

else if ((pulse counter==0)&&(i==1)&&(w==0)) |
sequence [y+1] =sequence [y+1] + (mppm er[(1+1)* (x+pem bits)+1*+y+]j]* (row counter
/pow(2,pcm bits)));

sequence [0] =sequence (0] + (mppm er[(1+1)* (x+pocm bits)+l*y+jl*
{(pow(2,pcm bits)-row counter)/pow(2,pcm bits)));

j++; flag=0;
|

else if (pulse counter==limit+l) |

if (flag==0) {sequence[pulse counter]=sequence[pulse counter]+
mppm er [(1+1)* (x+pem bits)+1*y+il; J++;)

else
sequence [pulse counter+l] =sequence [pulss counter+l]+
(mppm er[(l+1)* (x+pcm bits)+l#*y+]]* (row counter/pow(2,pcm_bits)));
sequence [pulse counter]=sequence [pulse counter]+
(mppm er[(l+1)* (Xx+pcm_bits)+1l*y+3i]#((pow(2,pcm_bits)-row_counter)
/pow(2,pcm_bits)));

Jeaiy

1
else if ((mppm er[i+l#* (x+pcm bits+y)]==1)&&{i=={x-1})) {
zZero counter=0; pulse counter=0; pulse_counter2=0;

for (m=i-1; m»>=0; m--) |

if (mppm er[m+l* (x+pcm bits+y)l==1) [pulse counter++;]

else ZEBrc counters=m; break;}
if (xi=(y+1))} {

if (pulse counter==0) |

pulse counter=0;

for (m=zerc counter-l; ms=0; m--) {

if (mppm_er [m+1#* (x+pem_bits+y)l==1) |[pulse_counter++;]

36

287

PhD Thesis

Software Printout

Tlse {break; |

if (pulse counter==0) {

flag=0;

sequence [2*y+1] —sequence [2*y+1] + (mppm_er [(1+1)* (X+pem_bits)+1#*y+]]
* (bit counter/pow(2,pcm bits)));
sequence [0] =sequence [0] + (mppm er[({1+1)#* (X+pcm bits)+l*y+]]#
((pow(2,pcm_bitg)-bit counter) /pow(2,pem_bits)));

J++;

else if (pulse counter==1limit+1) {

sequence[2+y+l] =sequence [2*y+1] + (mppm_er [(1+1)* (X+pem_bits)+1+y+]]
#{bit counter/pow(2,pcm bits)));

sequence [y+1] =sequence [y+1] + (mppm er[(1+1)* (x+pcm bits)+1*y+]]
t ((pow(2,pem_bits)-bit_counter)/pow(2,pcm_bits}));

T++;

I
else if (pulse counter==limit+l) {
sequence [2*y+1] =sequence [2*y+1] +
(mppm er[(1+1)* (x+pem bits)+l*y+jl* (bit counter/pow(2,pcm bits)));
sequence [pulse counter]=sequence[pulse counter]+(mppm_er[(1+1)
* (x+pem bits)+1*y+])
* ((pow(2,pcm_bits)-bit counter) /pow (2,pcm_bits)));
J++;

!
else {
if (pulse counter==0) |
pulse counter=y;

if (pulse counter==limit+1) |

sequence [2*y] =sequence [2*y] + (mppm er[(1+1)* (x+pcm_bits)+1*y+jl*
(row counter/pow(2,pcm bits)));
sequence [2¢y-1] =sequence [2*y-1] + (mppm er[(1+1)* (x+pcm bits) +1*y+il*
{{pow(2,pcm bits)-bit counter-row counter) /pow(2,pcm_bits)));
sequence [2*y+1] =sequence [2*y+1] + (mppm_er [(1+1)* (x+pcm_bits)+1*y+jl*
(bit_counter/pow(2,pcm_bits)));
J++;

!
else if (pulse counter==1imit+1) |

sequence [2*y+1] =sequence [2*y+1] + (mppm er[(1+1)* (X+pem bits)+1*y+7]
* (bit counter/pow(2,pcm bits)));
sequence [pulse counter] =sequence [pulse counter]+
(mppm er[(1+1)* (x+pcm_bits)+1#y+]j]#* ((pow(2,pcm_bits)-bit_counter)
/pow(2,pem_bits)));

J++;
1
|
if (n==pasc) {break;}
}14+; j=0; if (l<=11) [flag=1l;}
else [£lag=0; }
if (n==pasc) [break; }

}1=0; j=0; flag=l; limit++;

for (i=0; i<2*y+3; i++) [sequenceli]=(sequence(i]/ (pecm_bits*pow(2,pcm_bits})};}

37

288
PhD Thesis

Software Printout

if ((press4==1)&&(press5==2)) |

gotoxy (0,57) ; cout<<"Pe:"<<endl; gotoxy(3,57);cout<csequence [0]<<endl;
for (i=0; i<y; i++) | gotoxy(0,58+1); cout<<"Pe.ll:"<<endl;

gotoxy (6,58+1) ;cout<<sequence [1+1) <<endl; |

for (i=0; i<y; i++) | gotoxy(0,58+y+i);

CoUt<<"Pe.101:"<c<endl; gotoxy(7,58+y+1);coutccsequence [i+y+1]<ecendl;}

gotoxy (0,58+2*Y); coutz<"Pel.l:"<<endl; gotoxy(s,58+2%y);
coutcesequence [2*y+l] ccendl ;

gotoxy (0,58+2*%y+1); CouUt<<"Pel0l0l:"<<endl;

gotoxy (8,58+2%y+1) ;coute<sequence (2% (y+1)] <<endl ;

k=1; n=0; w=0; 2=0;
for (i=0; i<22y+3; 1i++)
gotoxy(0+w,87+n); cout<<sequence[i]<<endl;

W=W+13;
if (i==k*y+2) {[K++; Nedb; W=0; Z+4;)

delete [] seguence; seguence=0;

else if (pressS==l)

sequence2 = new float [7];

if (sequence2==NULL) [gotoxy(19,50);

cout<<"NOT ENOUGHT MEMORY FOR ER SEQUENCE ARRAY!!l!! "ecendl;)
else [for (i=0; i<7; i++) sequencez[i]l = 0;]}

k=0; counter=0;
for (i=(k* (x+pcm_bits+y)); i< (x+ (k*(x+pcm_bits+y))); i++)
if (counter=-12) {counter=0; k++;}

if ((mppm er(i)==1)&&(i!=(k* (X+pcm bits+y)))&k
(i1={ (k+1)* (x+pcm_bits+y))))

if ((mppm er[i-1]==1)&&(mppm er(i+l]==1)} {
sequence? (2] =sequence2 [2] +mppm er[1+{x+pcmibits}1:

if ((mppm er[i-1)==0)&&(mppm er[i+l]==1)) {
sequence [4] =sequence2 [4] +mppm er[i+(x;pcm_bits)];

I
if ((mppm er[i] ==1)&& (i==(K* (X+pecm bits+y)))
&&(il=((k+1)* (x+pcm_bits+y))))

sequence?2 [2] =sequence2 [2] + (((pow (2,pcm bits)-1)
/pow (2, pem bits)) *mppm er [i+ (X+pem bits)l);
sequence2 [5] =sequence2 [5] +mppm_er [i+ (x+pcm_bits}];

&& (1 1= (k* (x+pem bitesy)))

1
if ((mppm er([i)]
{(k+1)* (x+pem_bits+y))))

{ &6 (1=

sequence2 [5] =sequence2 [5] + (((pow (2, pcm bits) -1)
/pow(2,pem bits))*mppm er [i+ (x+pem bits)]);
sequence2 [2] =sequence2 (2] +mppm_eX [i+ (X+pem_bits)];

1

counter++;

k=0; counter=0;

for (i=0; i<7; i++) {seguence2[il=(sequence2[i]/
(pow (2, pem_bits) *pem_bits)); |

if (pressd==1) |
if (sequence2[0]<0) {seguence2[0]=sequence2[0]*(-1);]}
if (sequence2[1]<0) {sequence2[l]=sequence2[1]*(-1);]
if (sequence2[2]<0) [seguence2 [2]=sequence2[2]*(-1);}

if (sequence2[3]1<0) [sequence2[3]=sequence2[3]*(-1);}
if (sequence2[4]<0) [sequence2[4]=secuence2[4]*(-1);]

if (sequence2[5]<0) [sequence2 [5]=sequence?[5]#*(-1);]

if (sequence2[£]<0) {sequencel(6]=sequence2[6]*(-1};]

38

289
PhD Thesis

J*if
else
else
else
else
else
else
else
else
else
else
else
else

(sequence [6] <=0.0001)
if (sequence [6]<=0.001)

gotoxy (0,57) ; cout<<"Pe:"<<endl;

gotoxy (3,57) ;cout<<seguence2 [0] <<endl;
gotoxy (0,58) ; cout<<"Pe.ll:"<<endl;

gotoxy (6,58) ;ocout<<saquence2 [1]) <<endl;
gotoxy (0,59); cout<<"Pe.1lll:"<<endl;

gotoxy (7,59) ;cout<<sequence2 [2] <<endl;
gotoxy (0,60) ; cout<<"Pe.101:"<<endl;

gotoxy (7,60) ;cout<<sequence2 [3]<<andl;

gotoxy (0,61) ; cout<c"Pe.1101:"<cendl;
gotoxy (8,61) ;oout<<sequencel [4] <<endl;

gotoxy (0,62) ; cout<<"Pel.l:"<<endl;
gotoxy (6,62) ;coute<sequence?2 [S]l<<endl;

gotoxy (0,62); cout<<"Pel0l0l:"<<endl;
gotoxy (8,63) ;coute<sequence2 [6] <<endl; //15+T

| sequence [6]=0.12*zequence (6] ; |

(sequence [6] <=0.01)
(sequence [6]«=0.1)
(sequence [6] <=0.2)
(secquence [6]<=0.3)
(sequence [6]<=0.4)
(sequence [6]<=0.5)
(sequence [6]<=0.6)
(sequence [6]<=0.7)
(sequence (6] <=0.8)
(sequence [6]<=0.9)
(zequence [6] <=1)

else

if (sequence(5]<=0.0001)

else
else
else
else
else
else
else
else
else
else
else
else

if
if
if
if
if
if
if
if
a2
if
if
i H

(sequence [5]<=0.001)

(sequence [S]<=0.01)
(sequence [5]<=0.1)
(sequence [5]<=0.2)
(sequence [5] <=0.3)
(sequence [5]<=0.4)
(sequence [5]<=0.5)
(sequence [S5]<=0.6)
(sequence [5] <=0.7)
(sequence [5]<=0.8)
(seqguence [5]<=0.9)
(sequence [5]<=1)

else

if (sequence(4]<=0.0001)

else
else
else
else
else
else
else
else
else
else
else
else

1T

(sequence [4] <=0.001)

(sequence [4]<=0.01)
(sequence [4]<=0.1)
({sequence [4]<=0.2)
(sequence [4]<=0.3)
(sequence [4]<=0.4)
(sequence [4]<=0.5)
(sequence [4]<=0.6)
(sequence [4]<=0.7)
(sequence [4]<=0.8)
(sequence [4] <=0.9)
(sequence [4]<=1)

else

if (sequence[3]<=0.0001)

else
else
else
else
else
else
else
else
else
else
else
else

if
if
if
if
if
if
if

(sequence [3] <=0.001)

(sequence [3] <=0.01)
(sequence [3]<=0.1}
(sequence [3]<=0.2)
(sequence[3]<=0.3)
(sequence [3]<=0.4)
(sequence [3]<=0.5}
(sequence [3]1<=0.6)
(sequence[3]<=0.7)
(sequence [3]<=0.8)
(sequence [3]<=0.9)
(sequence [3]<=1)

segquence [6]=0.27+*segquence [6] ;
sequence [6]=0.31*sequence[£] ;
sequence [6] =0.09*sequence [&] ;
gequence [£] =0.05*2equence [&] ;
sequence [6] =0, 04*sequence [§] ;
sequence [6]=0.03*sequence[6] ;
sequence [6] =0.02*sequence [&] ;
sequence [6]=0.02*sequence[6] ;
sequence [6]=0.01*sequence[s] ;
sequence [6] =0.02*seguence [6] ;
sequence [6]=0.01*2equence (6] ;
sequence [6]=0.16*sequence[§] ;
gequence [6] =0*sequence [6] ; |

sequence [5]=0.12#*sequence[5] ;
sequence [5]=0.27*sequence [5] ;
sequence [5] =0, 31+seguence [5] ;
sequence [5] =0.09*segquence[5] ;
gequence [5]=0.05%sequence [5] ;
sequence [5] =0.04*sequence [5] ;
sequence [5] =0.03*sequence [5] ;
sequence [5]=0.02*sequence [5] ;
gequence [5]=0.02*sequence [5] ;
sequence [5] =0.01*sequence [5] ;
sequence [5] =0.02+sequence [5] ;
sequence [5] =0.01*sequence [5] ;
seguence [5]=0.16*seguence [5] ;
sequence [5] =0*seguence [5] ; |

sequence [4]=0.12*sequence [4] ;
sequence [4]=0.27*sequence [4] ;
sequence [4]=0.31*sequence[4];
sequence [4]=0.09*sequence [4] ;
sequence [4] =0.05*sequence [4] ;
sequence [4]=0.04*sequence (4] ;
sequence [4] =0.03*sequence [4] ;
sequence [4]=0.02*sequence[4] ;
sequence [4]=0.02*sequence[4] ;
sequence [4]=0.01*sequence (4] ;
gaquence [4]=0.02*sequence[4] ;
sequence [4]=0.01*sequence (4] ;
sequence [4]=0.16%sequence [4] ;
sequence [4] =0*sequence [4] ;)

sequence [3]=0.12*sequence [3] ;
sequence [3]=0.27*sequence[3] ;
sequence [3] =0.31*sequence[3] ;
sequence [3] =0, 09*sequence [3] ;
sequence [3]=0.05*sequence [3] ;
sequence [3]=0.04*sequence[3] ;
sequence [3] =0.03*sequence [3] ;
gequence [3]=0.02*sequence[3] ;
sequence [3]=0.02*sequence [3] ;
sequence [3]=0.01*sequence [3] ;
sequence [2]=0.02#*sequence [3] ;
sequence [3]=0.01*sequence 3] ;
sequence [3]=0.16*sequence [3] ;

39

290

Software Printout

PhD Thesis

slse

if (sequence[2]«<=0.0001)

else
else
else
else
else
else
else
else
else
else
else
else

it
ah o
1f
if

(sequence [2] <=0.001)

(sequence [2]<=0.01)
(sequence [2)<=0.1)
(sequence [2] «<=0.2)
(sequence [2]<=D.3)
(sequence [2] <=0.4)
(sequence [2] <=0.5)
(sequence (2] <=0.6)
(zequence [2]<=0.7)
(sequence [2]<=0.8)
(sequence [2] <=0.9)
(sequence (2] <=1)

else

if (sequence(l]<=0.0001)

else
else
else
else
else
else
else
else
else
else
else
else

it
if
if
if
if
if
if
if

(sequence [1]<=0.001)

(sequence [1]<=0.01)
{sequence [1]<=0.1}
(sequence [1]<=0.2)
(sequence [1]<=0.3)
(sequence [1] <=0.4)
(sequence [1]<=0.5)
{sequence [1] <=0.6)
(sequence [1]<=0.7)
(sequence [1]<=0.8)
(secuence [1]1<=0.9)
{sequence [1]<=1)

else

it (sequence[0]<=0.0001)

else
else
else
else
else
else
else
else
else
else
else
else

//for

for

for
for
for
for
for
for

for

if

(sequence [0]<=0.001)

(sequence [0] <=0.01)
(sequence [0]<=0.1)
(secuence [0]1<=0.2)
(sequence [0]<=0.3)
(gequence [0]<=0.4)
(sequence [0] «<=0.5)
(sequence [0]<=0.6)
(sequence [0]<=0.7)
(sequence [0)<=0.8)
(sequence [0] <=0.9)
(sequence [0] <=1)

else

[i=

(1=0;
(1=0;
(i=03
(i=0;
(1=0;
(1=0;

(1=03
pe 11[1]

0; i<24;

i++)

i+4+)
i++4)
i++)
i44)
ie4)
i++)

ie24;
1<24;
i<24;
ic24;
1<24;
i<24;

124; 1++)
- off pe 11

off pe 101[i] + pe 1101[i]
pe_10101[1] - off_pe_10101[i];]

for (i=0;

for

(i=0;

1224; i++)

if (standard er[i]<0)

{pe 11[i]=(pe 11[i]*sequencez(1]);
{pe 111[i]=(pe 111[i]*sequence2[2
{pe 101[il=(pe 101[i]*sequencez([3
{pe 1101 [il=(pe 1101[i]*sequence2[
pel 1[il=(pel 1[1i]*sequence2(5]);}

pe_10101[i]=(pe_ 10101 [i]*sequence2(6]);}

{standard er(i] = standard er(i]
[24] + pe 111[1]
- off pe 1101[i]

[sequence [2] =0*sequence [2]; |

sequence [2]=0.12*sequence[2] ;
zequance [2] =0.27*2equence [2] ;
gequence [2]=0.31*zequence (2] ;
sequence [2] =0.09*sequence [2] ;
sequence [2]=0.05*sequence [2] ;
sequence [2]=0.04*sequence (2] ;
sequence [2]=0.03*sequence (2] ;
sequence [2] =0.02*sequence[2] ;
sequence [2] =0.02*sequence [2] ;
gequence [2]=0.01*sequence[2] ;
sequence [2]=0.02*zequence[2] ;
sequence [2]=0.01%sequence[2] ;
sequence [2]=0.16*sequence (2] ;
[sequence [2] =0*sequence [2] ; }

[sequence [1]1=0.12*sequence[1] ;
| sequence [1]=0.27*sequence [1] ;
sequence [1] =0.31*sequence [1] ;
sequence [1]=0.09*sequence[1] ;
sequence [1]=0.05+sequence [1] ;
sequence [1]=0.04*sequence[1] ;
sequence [1] =0.03*sequence [1] ;
sequence [1]=0.02+sequence (1] ;
sequence [1]=0.02*sequence[1] ;
sequence [1]=0.01*sequence[1] ;
gequence [1]=0.02*2equence [1] ;
sequence [1]=0.01*sequence (1] ;
sequence [1]=0.16*sequence[1] ;
sequence [1] =0*sequence [1] ; }

sequence [0]=0.12*sequence[0] ;
sequence [0] =0.27*seguence [0] ;
sequence [0]=0.31*%z2equence[0] ;
sequence [0]=0.09*sequence [0] ;
gequence [0]=0.05*sequence [0] ;
sequence [0] =0.04*sequence [0] ;
sequence [0] =0.03*sequence (0] ;
sequence [0]=0.02*sequence [0] ;
sequence [0] =0.02+sequence [0] ;
sequence (0] =0.01+sequence [0] ;
sequence [0] =0.02%sequence [0] ;
sequence [0] =0.01*sequence [0] ;|
sequence [0]=0.16%sequence [0] ;|
sequence [0] =0*sequence [0] ; |

(i=0; 1<7; i++) [gotoxy(0,87+1); cout<<sequence2[i]<<endl;]}

]

1
)i
41);}

+ pel 1[i]

got?xyto,67+i); cout<<"\n"<<standard_er([i]l<<endl;

i<24; i+4+)

if (standard er[i]<0)

else

[minimum=0; |
[minimum=standard_er([i] ;]

pulse energy = minimum * photon energy;

energy in frame = pulse energy * mark space correction;

energy per pcm bit = (energy in frame/pcm bits);

Software Printout

{standard er[il=(standard er[i]*sequence2([0]};]

- off standard_er[i] +
- off pe 111[1] + pe 101[i]
- off pel 1[1] +

|standard er(il=standard er([i]* (-1);}

dBm = 10 * (log((energy per_ pcm_bit+*B) /pow(10,-3))/log(10)};
?o;oxy(0,95+1); cout<<"\n"<<dBm<<endl ;
*

delete [] sequence;

gequences=0o0;

delete [] sequence2; sequence2=0;

40

291

PhD Thesis

Software Printout

gotoxy (19,50) ;cout<<"DISPLAY INPUT ARRAYS? PRESS1,2 or 3 ELSE 8 "<<endl;
gotoxy (64,47) ;cin>>press3;

while ((press3i=1)|| (press3i=2}|| (press3i1=8) || (press3i=-1))

if (press3==1) {
clrecr2(); gotoxy(0,56);
cout<<"ERBRSURE MPPM-DATA ARRAY "ecendl;
print input arrays(mppm data,pow(2,pcm bits),x+pcm bits,x, vy,
aut pasc,aut pasc2,aut pasc3,aut pem bits,pem bits,pasc,pasc2,pascl,
start number,end number,pressl,press2,press3, pressd,presss);
pressé=0;
do

{

gotoxy (19,50);
cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "ecendl;
gotoxy (33,47) ;eins>prasss;

if (pressé==-1) {break;]

if (pressé==2) [break;|]

if (pressé==3) [break;|

lwhile (pressétl=1); if (pressé==3) [file opl.close(); break;|

if (pressé==1) |

k=1;

for (i=0; ie<(x+pcm_bits)*pow(2,pcm_bits); i++

{
1f (i==k* (x+pem bits)) [file opl<<"\n"; k++;}
file opl<<mppm_datalil<<" *;

?tle opl.close () ;

break;

else 1if (pressi==2) {

Cclrscr2(); gotoxy(0,56);
cout<<"WEIGTHED ERASURE ARRAY "e<endl;

print input arrays(weighted er mppm data,pascl,x+pcm bits,x,
y.,aut pasc,aut pasc2,aut pasc3,aut pcm bits,pcm bits,pasc,pasc2,pasc3,
start_number,end number,pressl,press2, press3,pressd,presss);

pressée=0;

gotoxy (19,50} ;
cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "<<endl;
gotoxy (33,47) ;cin=>pressé6;
if (pressé==-1) {break;
if (pressé==2) (break;}
if (pressé==3) [break;|
Jwhile (pressei=1};
if (pressé==3) [file opl.close(); break;)
if (presse==1)
k=1;
for (i=0; i<(x+pcm_bits)*pasc2; i++)

1f (i==k#*(x+pem bits)) {file opl<=z"\n"; k++;}
file_opl<<weighced_er_mppm_data[i]<<" ny

file opl.closel();

else if (| (press3==8)||(pressi==-1)) {[break;}

else
{gotexy (19,50) ;
cout<<"WRONG SELECTION.TRY AGAIN "ecendl ;
gotoxy (€4,47) ;cinsspressi; |

if (press3==-1) {break;}
if (pressé==-1) [break;}

clrscr2();

41

292
PhD Thesis

Software Printout

delete E% mppm data; mppm data=0;

delete

delete

weighted_er mppm_data; weighted er_ mppm_data=0;

mppm; mppm=0;

9]
delete [] data; data=0;

}//end of if-else mppm er null statement

}//end of erasure when y=x-1

for

-- /"
?lse if (pressl==2)
weighted fa mppm data = new int [X+pecm_bits];
sequence = new float [2];
mppm £a = new int [(x+1)*pow(2,pcm_bits)];
if ((mppm fa==NULL) || (sequence==NULL) ||
(weighted fa mppm_data==NULL}
{gotoxy(19,50);
[cout<<"HOT ENOUGHT MEMORY FOR ARRAYL!!L111illvecendl; |
flag _fa=1; k=0; 1l=0; counter=0;
for (i=0; i<x+pcm bite; i++) {weighted fa mppm datal[i]=0;}
for (i=0; iex; i++) {weighted fa mppm data(i]=1;}
(i=x%; di<x+pem bits; i++) {weighted fa mppm_data[il=2;}
J/2*x*pom bits*T
for (i=0; i<(x+1)*pow(2,pcm bits); i++) (mppm falil=0;}
for (i=0; 1<2; i++4) {sequence [11=0;} //(x+2)*T
for (i=0; i<pow(2,pcm_bits); i++)
for (j=0; j<¥; j++) [mppm fal[(i*(x+1})+]]=
}mppm_data[{i*[x+pcm_bjts!]+j];l [/36*T
for (i=0; i<pow(2,pcm bits); i++)
mppm £al((i+l)*(x))+1i] =pcm_bits;
} //pow(2,pcm_bits) *T
——— 1
press4=0;
do

gotoxy (1%,50); cout<<"DO YOU WANT TO DISPLAY THE SEQUENCES? "<<endl;
gotoxy (10, 44) ;cins>press4;

if (pressd4==-1) {break;)

if (pressd4==2) [break;|

Jwhile(press4l=1);

if (press4==-1) {break;}

}f (pressd==1)

for (i=0; i<pow(2,pecm bits); i++) |
if ((k*(x+pem_bits))==0) [l++;} k++;]

if (1==0) {
for (i=1; i<pow(2,pcm bits); i++) {counter=counter+3;}
sequence [1] =counter/ (pow(2, pecm_bits) *pem_bits) ;

else |
for (i=1; i<pow(2,pcm bits)-1; i++) [counter=counter+3;|
sequence [1] =counter/ (pow (2,pcm bits) *pem bits);
sequence [0] =sequence [0] + (1/ (pow (2, pcm_bits)*
(pow(2,pcm bits) *pem bits)));
sequence [1] =sequence [1] + ({1-pow(2,pem_bits))/ (pow (2, pem_bits)
* (pow(2,pcm_bits)*pem_bits)));

k=0; 1=0; counter=0;

;
i3

if (sequence[0]<0) {sequence[0]=sequence[0]* (-1)
if ({(sequence[l]<0) {sequence[l]=sequence(1l]* (-1)

gotoxy (0,57); cout<<"Pf..110:"<<endl;

42

293
PhD Thesis

Software Printout

gotoxy (8,57) ;eout<<sequence [0] <<endl;
gotoxy (0,58) ; cout<<"Pf£.1101:"<<endl;
gotoxy (8,58) ;cout<<sequence [1] <<endl ;

--- /7
/*if (sequence[1]<=0.0001) {sequence[1] =0.12*=equence [1] ; }
else if (sequence[1]<=0.001) sequence (1] =0.27*saquence [1] ;
else if (sequence[l]<=0.01) sequence (1] =0.31*gequence [1] ;
else if (sequence(1l]<=0.1) sequence (1] =0.09*sequence [1] ;
else if (sequence(l]<=0.2) sequence(1] =0.05*=zequence [1] ;
else if (sequence[l]<=0.3) sequence (1] =0.04*sequence [1] ;
else if (sequence[l]<=0.4) sequence (1] =0.,03*sequence [1] ;
else if (sequence([l]<=0.5) sequence [1] =0.02*sequence [1] ;
else if (sequence(1]<=0.6) sequence (1) =0.02*sequence [1] ;
else if (sequence([l]«=0.7) sequence (1] =0.01*gequence [1];
else if (sequence([l]<=0.8) sequence (1] =0.02*sequence [1] ;
else if (sequence(l]<=0.9) sequence (1] =0.01*sequence [1] ;
else if (sequence([l]==1) sequence (1] =0.16*sequence [1] ;

else gequence [1] =0*sequence (1] ; }
if (sequence[0]<=0.0001) sequence (0] =0.12*sequence [0] ;
else if (sequence[0]<=0.001) sequence [0] =0.27*sequence [0] ;
elge if (sequence[0]<=0.01) sequence [0] =0.31*sequence [0] ;
else if (sequence[0]<=0.1) sequence (0] =0.09*sequence [0] ;
else if (sequence[0]<=0.2) sequence [0] =0.05*sequence [0] ;
else if (gequence[0]<=0.3) gequence [0] =0.04*sequence [0] ;
else if (sequence[0] <=0.4) gsequence [0] =0.03*gequence [0] ;
else if (sequence[0]<=0.5) sequence (0] =0.02*sequence [0] ;
else if (sequence[0]<=0.6) sequence [0] =0.02*sequence [0] ;
else if (sequence[0]<=0.7) sequence [0] =0.01*sequence [0] ;
else if (sequence(0]<=0.8) sequence (0] =0.02*sequence [0] ;
else if (sequence[0]<=0.9) sequence (0] =0.01*sequence [0] ;
else if (sequence([0]<=1) sequence (0] =0.16*sequence [0] ;

else sequence [0] =0*sequence[0] ; }
for (1=0; 1=<24; 1i++) [pf 110[1i]1=(pf 110[1i] *sequence(0]);}
for (i=0; 1<24; i++) [pf_1101[i]l=(pf_1101[i] *sequencell]);]
for (i=0; 1i<24; i++) |pf 110[1] = pf_110[1] - off pf 110[i] +
pE_1101[1] - off_pf 1101[i];}
for (i=0; 1<24; i++) |

if (pf 110[i)<0) {pf 110([i)=pf 110[i]*(-1);}
got?xyto,65+il: cout=<"\n"<<pf_110[i]l<<endl;

——— /"
for (i=0; i<24; i++) |
if (pf 110[i1<0) {minimum=0;}
else {minimum=pf 110[1i];}
pulse energy = minimum * photon energy;
energy in frame = pulse energy * mark space correction;
energy_per_pcm_bit = (energy_in frame/pcm_bits);
dBm = 10 * (log((energy per pcm bit#*B) /pow(10,-3))/log(10));
?oﬁoxyfﬂ,95+il; coutcc"\n"<ccdBmec<cendl ;

*

--- 7
gotoxy (19,50) ;cout<<"DISPLAY INPUT ARRAYS? PRESS1,2 ELSE 8 "<<endl;
gotoxy (64,47) ;cins>press3;
while ((pressil=1)]|| (press3i=3)|| (press3!=8)|| (pressii=-1))
if (press3==1) {
clrserz();
gotoxy (0,56) ;
cout<<"FALSE ALARM MPPM-DATA ARRAY "ecendl;
print input arrays (mppm data,pow(2,pcm bits) ,x+pcm bits,x,y,aut pasc,
aut pasc2,aut pasc3, aut pcm bits,pcm bits,pasc,pasc2,pasc3,start_number,
end number,pressl,press2,press3,pressd,presss);
press6=0;

--- /"
do
{

gotoxy (19,50} ;

cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "ecendl;
gotoxy (33,47) jcinsspresse;

if (press6==-1) [break;

if (pressé6==2) break;

43

294

PhD Thesis

Software Printout

if (pressé==3) [break;)

}while (press6i=1);

if (pressé==3) {file opl.close(); break;}
if (pressé==l) |

for (i=0; i< (x+pem_bits) *pow(2,pom_bits); i++)

if (i==k#*(x+pem bits)) [file opl<<"\n"; K++;]
file opl<<mppm_datalil<<" ";

Tile opl.close();

--- /7

?reak;

else if (press3==3) {

clrsecr2(); gotoxy(0,56);

cout<<"WEIGTHED FALSE ALARM ARRAY "eeendl;

print input arrays(weighted fa mppm data,l,x+pcm bits,x,y,aut pasc,

aut pasc2,aut pasc3,aut pcm bits,poem bits,pasc,pasc2,pasc3,start_number,

end number,pressl,pressl,press3, pressd ,presss) ;

presse=0;

do

gotoxy (19,50) ;

cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "e<endl;

gotoxy (33,47) ;ocin=>presss;

if (pressé==-1) {break;}

if (press6==2) break;

if (press6==2) break;

lwhile (pressel=1);

if (press6==3) {file_opl.close(); break;}

if (presse==1)

k=1;
——— /7!

for (1=0; i< (x+pcm_bits)#1; i++)

1f (i==k* (x+pem bits)) {file ople<"\n"; K++;|]

Eile_oplccweigh:ed_ta_mppm_data[i]c:" "

file opl.close();

break;

}

else if ((press3==8)|| (press3==-1))} [break;]

else {gotoxy(19,50) ;

cout<<"WRONG SELECTION.TRY AGAIN "ecendl;

gotoxy (64,47) jeins>press3; |

t
--- !

R break;

if (press6==-1) |(break;

clrscr2();

//delete [1 mppm data; mppm data=0;

//delete [] welghted_fa_mppm_data; weighted fa mppm_data=0;

delete [] mppm; mppm=0;

delete [] sequence; sequence=0;

1
}//end of false alarm when y=x-1

--- /1

?lse if (pressl==3)

mppm = new int [x*pasc2]; data = new int [pcm bits*pascl];
weighted_er mppm_data = new int [(xX+pcm_bits)*pascl];

flag ws=0;
if (mppm==NULL) [gotoxy(19,50);

cout<<"NOT ENOUGHT MEMORY FOR MPPM-ER ARRAY!!l!"<<endl;)
else { gotoxy(56,11); cout<<erasure_weight<<endl;

44

295
PhD Thesis

gotoxy(60,12); cout<<false_alarm_weight<<endl;

for (i=0; i<x*pasc2; i++) mppm[i] = O;
for (i=0; i<y-erasure bits; i++) mppm([i] = 1;

i=0; j=0; 1=0; m=0; extra_pulses=0; k=1;
for (m=0; m<2*pascl; m++)
for (i=0; i<x-1; i++) if (mppm{i+(k-1)#*x]==1) j=i;
for (i=1; ie=y-erasure bits; i++)
| if (mppmik*x-1]1==0) break;
else if (mppm(k#*x-1]==1} extra pulses++;
} if (extra_pulses==y-erasure_bits) break;
%f { ji={x-1) }
for (i=0; i<j; i++) mppm{i+k*x] =mppm{i+(k-1)*x];
mppm [j+k*x+1]=1;

for (i=1; i<=extra pulses; i++)
mppm [j+k*xX+1+1] =1;

1=0; extra pulses=0;

elgse if ((j==(x-1)) E& (exXtra pulses!=0))
|l=extra pulses; k--; extra pulses=0;}
k++;

1
}//end of if-else mppm null statement

erasure weight2=0;

if (data==NULL) {gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR DATA2 ARRAY!I!! "ezandl; }
else | for (i=0; i<pcm bits*pasc2; i++) datali] = 0;

w=0; row counter=0; bit counter=0; k=1;

for (l=1; le<=pasc2; l++)

[for (j=x; je{x+pcm bits); j++)

[£or (m=0; m<pow(2,pcm bits); m++
| for (i=0; ie<x; i++) | if (mppm[i+(1-1)*x]==
mppm_data [i+(k-1)* (pcm_bits+x)]) row_counter++; |

if ((row counter==(x-erasure bits)) &&
| mppm datalj+(k-1)*(pcm bits+x)l==1) } bit counter++;
if (row counter==x-erasure bits) erasure weightl++;
row counter=0; k++;
} k=1;
if { bit counters{erasure weight2/2.0))}
data[w+ (1-1)*pcm bits]l=1;
else if (bit counter<(erasure weight2/2.0))
datalw+(1-1)*pem bits]=0;
else if (bit counter=(erasure weight2/2.0))
data[w+ (1-1)#*pcm bits]=2;
bit counter=0; w++; erasure weight2=0;
} k=1; w=0;

}//end of if-else data null statement
if (weighted er mppm data==NULL)
{gotoxy (19,50) ;cout<<"NOT ENOUGHT MEMORY FOR WEIGHT-ERASURE "ecendl
else | for (i=0; ie<(x+pcm bits)*pascl; i++)
weighted er mppm_datal[i] = 0;

k=0;
for (m=0; m<pascl; m++)

for (i=0; i<X; i++)

weighted er mppm_datalk* (x+pcm_bits)+i] = mppmik*x+il; }
Kaw; 1o+

k=0; 1=0;

for (m=0; mepasc2; m++)

for (i=x; i<x+pcm_bits; i++) |

45

296

Software Printout

i1

PhD Thesis

Software Printout

weighted er mppm datal[k# (x+pcm_bits)+i] =
datal (1*pcm_bits) -x+11;
Kaw; low;

}
}//end of if-else weighted er mppm_data null statement

mppm_er = new int [(x+pcm_bits+y)*pow(2,pcm bits)];

if (mppm er==NULL)

{gotoxy (19,50) ;cout<<"NOT ENOUGHT MEMORY FOR MPPM-ER ARRAY "<<endl;}

else { for (i=0; i<{x+pom_bits+y)*pow(2.pem_bits); i++) mppm_er([i] = 0;
flag_er=1;

k=0;
for (m=0; m<pow(2,pcm_bits); m++)

for (i=0; i<x; i++) mppm er [k#* (x+pcm bits+y)+il=
mppm data [k* (x+pem_bits)+i] ;
K++;

1=0; k=0; j=0; p=0; row counter=0;
bit counter=0; w=y-1; //can be also w=0; w=y-1
for (m=0; mepow(2,pcm bits); m++)
| for (n=0; n<pasc2; n++)
| for (i=0; i<x; 1++)
if { mppm datali+1* (x+pcm bits}l==
weighted er mppm datal[i+k=®(x+pcm bits)] }
row counter++;
if (row counter==(x-erasure bits))
| for (i=x; i<x+pcm bits; i++)
{ mppm er [1+1%* (x+pcm bits)+y*pl=
(mppm data[i+1#* (x+pem bite)]”
weighted er mppm_datali+k* (x+pem_bits)]);

if (mppm er(i+l# (x+pcm bits)+y#*pll=0) bit counter++;
else bit counter=bit counter;
] mppm er[{(j+1)* (x+pcm bits)+y*j+wl=
mppm er[(j+1)# (x+pcm bits)+y*j+wl+bit counter;
for (i=x; iex+pem bits; i++) mppm_er [1+1# (x+pcm_bits)+y*pl=0;
w--; //instead of w++

| row counter=0; bit counter=0; K++;
} l++; k=0; p++; J++; bit counter=0; w=y-1;

//instead of w=0 ; w=y-1

11=0; zero counter=0;
for { m=0; m<pow(2,pcm_bits); m++)

for (i=0; 1<2; 1++)
if (mppm exr [i+m* (x+pem bits+y)1==0) {[zero_counter++;]

if (zero counter==2) {break;)
elese |zero_counter=0; 11l++;}

}

bit counter=0; row counter=0; row counter2=0; i=0;
far { m=0; m<pow(2,pcm_bits); m++)
if (mppm er([i+m* (X+pcm bits+y)]l==1)
{bit_counter++;}//1st bit//

imx-2;

if (mppm_er [i+m* (x+pem_bits+y)]==1} {[row_counter2++;} //Xth-1 bit//
lmx-1;

if (mppm_er [i+m# (x+pcm_bits+y)]l==1) [row_counter++;} //Xth bit//
i=0;

!
delete [] weighted er mppm_data; weighted er_ mppm_data=0;

delete [] mppm; mppm=0;
delete [] data; data=0;

46

297

PhD Thesis

Software Printout

weighted fa mppm_data = new int [x+pcm_bits];

if ((mppm fa==NULL) || (sequence==NULL) || (veighted fa mppm data==NULL))
{gotoxy (19,50) ;cout<<"NOT ENOUGHT MEMORY FOR ARRAYI!!Illll11"<<endl;}
i

flag fa=1; k=0; 1=0; counter=o0;

for (i=0; i<x+pcm bits; i++) |{weighted fa mppm datalil=0;}
for (i=0; i<x; 1+4) {weighted fa mppm datalil=1;}
for (i=x%; i<x+pem bits; i++) |weighted fa mppm_data[i]=2;}

mppm fa = new int [(x+1)*pow(2,pcm_bits)];

if ((mppm fa==NULL) || (weighted fa mppm data==NULL))
[?DLDXYfIQ.SOI;CDUtAA"NOT ENOUGHT MEMORY FOR ARRAY!L1LL1l1l1"zzendl;)

for (i=0; i<(x+1)*pow(2,pcm_bits); i++) {mppm_falil=0;}
for (i=0; i<pow(2,pcm bits); i+s+) |
for (j=0; j<x; j++) |mppm fa[(i*{x?l}J+j!=mppm_data{fi*{x+pcm_bits!?+j]:}
for (i=0; i<pow(2,pcm bits); 1i++) |
mppm fa[f(i;l}*ﬂx!)+i]=pcm_bits;

delete [] mppm; mppm=0;

mppm_ws = new int [(x+pcm_bits+(2#y))*pow(2,pcm_bits)];

if (mppm ws==NULL)

{
gotoxy (19,50) ; cout<<"NOT ENOUGHT MEMORY FOR MPPM-WS ARRAY!!!!"<<endl;}

else |

for (i=0; i< (x+pcm bits+(2*y))*pow(2,pcm_bits); i++) {mppm_ws[i]=0;]}
for (i=0; i<pow(2,pcm bits); i++)

for (1=0; lex; l++) {mppm ws[(i*(x+pcm bits+(2+y)))+1]=

for (i=0
for (1=0

mppm_er [(i* (x+pem_bits+y))+11 ;)

7 i<pow(2,pem bits); i++) |
i l<x-1; 1++) |[mppm ws[{{i+1)* (x+pcm bits+y))+(i*y)+1l]=
mppm_er [((i+1)# (x+pcm_bits))+ (ixy)+11;}

for (i=1; i<pow(2,pcm bits); i++)

|
mppm}ws[f{i+1}*(x+pcm_bits+yﬁ1+ii*ty)ﬁ-i]:pcm_bits;

counter=0;

for (i=0; i<pow(2,pcm bits)-1; i++) {
for (1=0; l<pcm bits; l++) |
if ((mppm datal((i+1)#(x))+(i*pem bits)+1]
“mppm_data [((1+2) % (x))+((i+1)*pem_bits)+1]1)==1) [counter++;}

mppm ws[((i+1)* (x+pom_bits+2+y))-(i+l1)]=counter;
counter=0;

counter=0; pulse_counter=0; pulse_counterl=0; c=0;

for (i=0; i<pow(2,pcm bits); i++) {
if (mppm datal(i* (x+pcm_bits))]l==1)
counter++; |

for (1=0; i<pow(2,pem bits); i++) |

if {m?pm_data[{i*{x+pcm_bits)J+1]==1J
C4+

for (i=0; i<pow(2,pocm bits); i++)

if (mppm datal((i+1)*x)+(i*pem bits)-11==1) pulse_counter++;}
for (i=0; i<pow(2,pcm_bits); i++)

47

298
PhD Thesis

Software Printout

if (mppm datal((i+1)#*x)+(i*pecm_bits)-2]==1) pulse_counterZ++;]
sequence? = new float [1€];

if (sequence2==NULL) {gotoxy(19,50);

cout<<"NOT ENOUGHT MEMORY FOR WS SEQUENCE ARRAYL!!1l "ecendl; |
else {for (i=0; i<16; i++) seqguencez[i] = 0;}
press4=0;
gotoxy (19,50) ;
cout<<"DO YOU WANT TO DISPLAY THE SEQUENCE RESULTS? Uecendl ;
gotoxy (10,44) ;cins>pressd;
while ((pressdl=1)||(pressd4i=2) || (press4i=-1))
[if (pressq==-1) |break; |
elge if (| (pressds==1)]|| (press4==2)) [break;]
else
[gotoxy(19,50) ;
cout<<"WRONG SELECTION.TRY AGAIN Yecendl;
gotoxy(10,44) ;ocout<" "<<endl;

qotoxv;IO.adl;cin::presad;}

——— /o
if (pressd==-1) [break;]
for (i=0; i<pow(2,pcm_bits); i++)
for (1=0; le¥; 1++)
if ((mppm ws[(i* (x+pcm bits+ (2%y)))+1]==1)&& (1==0)) |
?: (mppm_ws [(1# (xepem_bits+ (2%y)))+1+1] L =0}
secuence2 [2] =sequence2 [2] + (mppm ws [((1+1)* (x+pem bits+y))+
(i#(y))+1]*((pulse counter2)/(pow(2,pcm bits))));
sequence? [11] =sequence2 [11]+ (mppm ws [((i+1)# (X+pcm_bits+y))+
(i*(y))+1]1#* ((pulse counter)/ (pow(2,pcm bite))));
sequencel [3) =sequence2 [3] + (mppm ws[((i+1)* (X+pom bits+y))+ (i*+(y))+1]+*
({powl2,pem_bits)-pulse_counter2-pulse_counter)/pow(2,pcm_bits)));
——— /"
else |
sequencez [1] =sequence2 [1] + (mppm ws [{ (1+1)* (x+pem_bits+y))+ (i*=(y))+1]*
({pulse counter2)/pow(2,pcm bits)));
sequence2 [7] =sequence2 (7] + (mppm ws [{{i+1}* (x+pom_bits+y)}+{i*(y))+1]#
((pulse counter) /pow(2,pcm bits)));
sequence?2 [0] =sequence2 [0] + (mppm ws [((1+1)* (x+pcm bits+y))+ (i*(y))+1]*
((pow(2,pcm bits)-pulse counter2-pulse counter)/pow(2,pem bits)));
\ }
if ((mppm we[(i* (x+pem bits+(2%y))) +1]==1) && (1!=0) &&(1t=(x-1))) {
if ((mppm ws([(i* (x+pcm bits+(2*y)))+1+1]==1)&%& (mppm_ws [(i*
(x+pem_bits+ (2#y)))+1-1]1=0))
Tequence2{2]=sequen¢e2[2]+mppm_ws[{{i+1)'(x+pcm_bits+y}}+(i*{y!!+l];
--- 1
if (mppm_ws[(i* (x+pom_bits+(2#2y)))+1+1]==0)
TEquencez{1]=sequence2[1]+mppm_ws[{[1+1)*(x+pcm_bits+y})+ti*{y::+1]:
if { (mppm ws[(i*(x+pcm bits+(24y])))+1l+1l]==1)&&
;mppm_ws[{i*(x+pcm_b1ts+{2*y}}}+1—1!--0))
sequence? [3] =sequence2 [3] +mppm_ws [((1+1) * (x+pem_bits+y))+ (ix(y))+1];
]
if ((mppm ws[(i* (x+pcm bits+ (2%y)))+1] ==1) && (1==(x-1))) {
——— I

?f (mppm_ws [(1* {x+pcm_bits+(2*y)))+1-11==1)
sequence? [2] =sequence2 [2] + (mppm_ws [({1+1)* (x+poem_bits+y))+ (1#(y))+1] *

((counter) /pow (2,pem bits)));
sequence2 [10] =sequence2 [10] + (mppm_ws [{ {1 +1) * (x+pem_bits+y))+ (i*(y)) +1]*

48

299
PhD Thesis

Software Printout

({c) /pow(2,pem bits)));
sequencez [3) =sequencez [3]+ (mppm ws[((i+1)* (x+pcm_bits+y) b+ {i=(y))+1]+
((pow(2,pcm_bits)-counter-c) /pow(2,pcm_bits)));

else

sequence2 [3] =sequence2 [3] + (mppm_ws [{ (1+1)* (x+pcm_bits+y))+ (1*(y))+1]*
{{counter) /pow (2, pem bits)));

secquencel [8] =sequence2 [B] + (mppm_ws [{ (1+1)* (X+pem_bits+y) J+ (1% (y)) +11+#

((c)/pow(2,pcm bits)));

sequence? [0] =sequence2 [0] + (mppm ws [((i+1)# (X+pem_bits+y) b+ (i+(y))+1]#

({pow (2,pem_bits) -counter-c)/pow(2,pem_bits)));

——— 1
for (i=0; i<16; i++)
{
sequence2 [i]=(sequence2 [1]/ (pow (2,pcm bits) *pcm bits));
if (esequence2[i]<0) [sequence2[i]=sequence2 [i]*(-1);]

sequencel [2] = (sequence2 [2] /pow (10,6)) ;
sequence? (3] = (sequence2 [3] /pow (10,6)) ;
sequence2 [10] = (sequence2 [10] /pow (10,6)) ;
if (pressd==1)
gotoxy(0,58); cout<<"Ps:"<<endl;

gotoxy (3, 58) ;cout<<csequence2 [0] <cendl ;
gotoxy(0,59); cout<<"Ps.111:"<<endl;

gotoxy (7,59) ;coute<saquence? [1] <<endl ;
gotoxy (0,60); coute<"Psl11.1.11:"<<endl;

gotoxy (10,60) ;coutc<segquence? [2] <<endl;
gotoxy(0,61); coute<"Psl.1l:"<<endl;

gotoxy (6,61) ;cout<<sequence2 [3] <<endl;
gotoxy(0,62); cout<<"Ps.101:"<<endl;

gotoxy (7,62) ;coute<csequence2 [4] <<endl ;
gotoxy(0,63); coute<"Ps.1101:"<<endl;

gotoxy (8, 63) ;coutecsequencel [5] «<endl ;
gotoxy(0,74); cout<<"P2.11011:"<<endl;

gotoxy (9, 74) ;cout<<sequence2 [6] <<endl ;

gotoxy(0,65); cout<<"Ps.11:"<<endl;

gotoxy(6,658) ;cout<<gequence [7] <<endl ;
gotoxy (0,66); coutz=<"Psl.ll:"<<endl;

gotoxy (7, 66) jcout<sequence2 [8] <<endl ;
gotoxy(0,67); cout<<"Psl.1.1:"<<endl;

gotoxy(8,67) ;cout<<saquence2 [9] <<endl ;
gotoxy(0,68); cout=<"Psll.l.1l:"<<endl;

gotoxy (9, 68) ;cout<<sequence2 [10] <<endl;
gotoxy(0,69); colut<<"Psl.1.1l:"<<endl;

gotoxy (9, 69) ;cout<<saquence2 [11] <<endl;
gotoxy (0, 70); cout<<"Ps.101:"<<cendl;

gotoxy(7,70) ;cout<<sequence [12] <<endl;
gotoxy (0,71); cout<<"F5.1101:"<<endl;

gotoxy (8, 71) ; cout<esequence2 [13] <<endl;
gotoxy (0,72); cout<<"Ps.11011:"<<endl;

gotoxy (9, 72) ;cout<<sequence2 [14] <<endl;
gotoxy(0,73); cout<<"Ps.110111:"<<endl;

gotoxy (10, 73) ;cout<<seguencel [15] <<endl ;
]
delete [] sequence2; seguence2=0;
counter=0; pulse counter=0; pulse_counter2=0; c=0;
flag ws=1;

--- /7

49

300
PhD Thesis

Software Printout

//delece [1 mppm ws; mppm wWs=0;
//delete [] mppm_data; mppm_data=0;

}//end of wrong slot when X=y-1
}//end of x=y-1

else if ((y!=1)&&(y!i=(x-1)))

//erasure weighted array calculation for y!=x-1 and y!=1
%t (pressl==1)

mppm = new int [X*pasc2]; data = new int [pcm bits*pasc2];
weighted_er mppm_data = new int [(x+pcm_bits)+pasc2];

if (mppm==NULL) [gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR MPPM-ER ARRAY!!l!"<<endl;]
else | gotoxy(56,11); cout<<erasure weight<<endl;

gotoxy (60,12) ; cout<<false_alarm_weight<<endl;

for (i=0; i<xX*pasc2; i++) mppm[i] = 0;
for (i=0; i<y-erasure_bits; i++) mppm([i] = 1;

i=0; j=0; 1=0; m=0; extra pulses=0; k=1;

for (m=0; m<2*pasc2; m++)
| for (i=0; i<x-1; i++)
if (mppmii+(k-1)*X]==l)} J=i;

for (i=1; is=y-erasure bits; i++)
| if (mppmlk*x-i]l==0) break;

else if (mppm(K#*X-1]==1) eXtra pulses++;
} if (extra pulses==y-erasure bits) break;

if (jl=(x-1))
{ for (i=0; i<j; i++) mppmli+k#*x)=mppm(i+ (k-1)*x);
mppm [J+k*x+1]=1;

for (i=1; ic=extra pulses; i++
mppm[{+k*x+1+11=1;

1=0; extra pulses=0;

else if ((j==(x-1)) && (extra pulses!=Q))
[1=extra_pulses; k--; extra_pulses=0;]
K++;

|
}//end of if-else mppm null statement

erasure_weight2=0;

if (data==NULL) {gotoxy(19,50);
Cout<<"NOT ENOUGHT MEMORY FOR DATA2Z ARFAY!Ll!l! "ecandl; }
elge | for (i=0; i<pem bits*pasc2; i++) data[l] = 0;
w=0; row counter=0; bit counter=0; k=1;
for (l=1; l<=pasc2; l++)
| for (j=x; je(x+pcm bits); j++)
| for (m=0; mepow(2,pem bits); m++)
{ for (i=0; i<x; 1++)
[if (mppmii+ (1-1)#*X]==mppm datali+ (k-1)*(pcm bits+x)])
FOW COUNCEr++;
if ({ row counters=(X-erasure bits)) &&
{ mppm datalj+(k-1)#*(pcm bits+x)]l==1 }]} bit_counter++;
if (row counter==x-erasure bits) erasure_weight2++;
row counter=0; kK++;
] k=1;
if (bit counters {erasure weight2/2.0))
datalw+ (1-1)*pcm bits]=1;
else if (bit counter<(erasure weight2/2.0))
data[w+(1l-1)*pcm bits]=0;
else if (bit counter=(erasure weight2/2.0))
datalw+ (1-1)*pcm bitsl=2;
bit counter=0; w++; erasure weight2=0;
| k=1; w=0;

}//end of if-else data null statement

50

301
PhD Thesis

Software Printout

if (weighted er mppm data==NULL) {gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR WEIGHT-ERASURE "<<endl; |
else | for (i=0; i<(x+pcm_bits)*pasc2; i++) weighted er mppm_datalil = 0;

k=0;
for (m=0; m<pasc2; m++)
for (i=0; 1<%; i++)
| weighted er mppm data(k* (x+pcm_bits)+i] =
mppm [(K+x+1];

K+t la+;

k=0; 1=0;
for (m=0; mepasc2; m++)

for (i=x%; i<xX+pem bits; i++)

weighted er mppm datal[k* (x+pcm_bits)+i] =
datal (1*pcm_bits) -x+1];

Kawy law;

}//end of if-else weighted er mppm data null statement

mppm_er = new int [(xX+pcm_bits+y)*pow(2,pcm_bits)];

if (mppm er==NULL) [gotoxy(19,50);
cout<<“NOT ENOUGHT MEMORY FOR MPPM-ER ARRAY ‘“<<endl;
else | for (1=0; i<(x+pcm bits+y)#*pow(2,pem bits); i++)
mppm er[i] = 0; //(x+pcm_bits+y) *pow (2,pem bits)

flag er=1; //2T

k=0;
for (m=0; m<pow (2, pcm bits); m++)
[Eor (i=0; i<x; i++)
mppm er [K* (Xx+pcm bits+y)+1i] =mppm data[k#* (x+pcm bits)+i];
//pow (2, pem_bits)#* (x+1)
K++;

|

1=0; k=0; j=0; p=0; row counter=0;
bit counter=0; w=y-1; //can be also w=0; w=y-1
for (m=0; m<pow(2,pcm bits); m++)
| for (n=0; n<pasc2; n++)
[for (i=0; 1<x; i++) if (mppm datali+1* (x+pcm_bits)]l==
weighted er mppm data[i+k* {X+pcm bits)])}
row counter++;
if { row counter=={(x-erasure bits) }
| for (i=x; i<x+pcm bits; i++)
{ mppm er[i+l*(x+pcm bits)+y*pl=
(mppm datali+l*(x+pcm bits))”
weighted er mppm data[i+k#* (x+pcm_bits)])

if (mppm er([i+l#* (x+pcm bitsg)+y*p] 1=0
bit counter++;
else bit counter=bit counter;
} mppm er[(j+1)*(x+pcm bits)+y*j+w] =
mppm er [(§+1) # (x+pcm bits)+y*i+w] +bit counter;
for {i=%; i<x+pcm bits; i++) mppm_sr[i+l* (x+pcm_kits)+y*pl=0;
w--; //instead of w++
| row counter=0; bit counter=0; K++;
] 1++; k=0; p++; j++; bit counter=0; w=y-1; //instead of w=0 ; w=y-1
[/ (6+2+pasc2+3tpasc2+pem-bits) *pow (2, pem_bits

pressS=0;
gotoxy (19,50) ; cout<<"USE 2-PULSE ALGORITHM OR THE DETAILED? ‘"<<endl;

gotoxy (10, 39) ;cinss>presss;

while ((press5l=1) || (press5i=2)|| (press5i=-1) }
{ if {(pressS==-1) {break; }
elge if ((pressS==1)|| (press5==2)) {[break;]
else gotoxy (19,50) ;
cout<<"WRONG SELECTION.TRY AGAIN tecendl ;
51

302
PhD Thesis

Software Printout

gotoxy (10,39) ;oout<<" ‘“<<endl; gotoxy(10,39);cin>>presss;}

}
if (pressS==-1) |[break;]
press4=0;
gotoxy (19,50); cout<<"DO YOU WANT TC DISPLAY THE SEQUENCES? "ceandl ;
gotoxy (10, 44) ;einsspressd;

while ([(pressai=1)||(press4:=2)]|| (pressai=-1))

{ if (pressd4==-1) {break; |
else if ((pressd==1)|| (pressd4==2)) [break;|
else [gotoxy (19, 50) ;
cout<<"WRONG SELECTION.TRY AGAIN "<<endl;
gotoxy (10,44) ;coutec" "ecendl; gotoxy (10,44);cins>pressd;)

1
if (pressd4==-1) |break;]

1l1=0; Zero counters=0;
for { m=0; m<pow(2,pcm_bits); m++)

for (i=0; i<2; i++) |
if (mppm er[i+m* (x+pcm_bits+y)]==0) [zerc_counter++;}

if (zero counter==2) {break;}
else |zero_counter=0; 11++;}

bit counter=0; row counter=0; row counter2=0; i=0;

for (m=0; m<pow(2,pcm_bits); m++)

i: (mppm er [1+m* (x+pem_bits+y)1==1) [bit_counter++;] //lst bit//
};xziépm_er[i+m*(x+pcm_hita+y)]==1} {row_counter2++;} //Xth-1 bit//

1;x1;§pm_er[i+m*{x+pcm_bits+y}]--1} [row_counter++;} //Xth bit//

i=0;

}
sequence = new float [2*y+3];
if (secuence==NULL) [gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR ER SEQUENCE ARRAY!!!! "ecendl ;)
else [for (i=0; i<2*y+3; i++) sequenceli] = 0;]

zero_counter=0; pulse_counter=0; pulse_counter2=0; 1=0; j=0; flag=1; limit=0;

for (w=0; we(y-1); w++)
for (n=0; n<pow(2,pcm_bits); n++)
for (1=0; 1<X; i++)
{if { (mppm_er [i+1* (X+pem bits+y)]==1)&& (1==0) && (Ww==0))
zero counter=0; pulse counter=0; pulse counter2=0;
sequence [y+1] =sequence [y+1] + (mppm_er [(1+1) * (x+pcm_bits) +1+y+j]*
(row counterz/pow(2.pcm bits)));
sequence [1] =sequence [1] + (mppm er[{1+1)* (x+pcm bits)+1l*y+j]*
{row counter/pow(2,pem bits)));

sequence [0] =sequence [0] + (mppm er([(1+1)* (Xx+pcm bits)+l*y+jl*
((pow(2,pcm bits)-row counter2-row counter) /pow(2,pem bits)));

Tres

!
else if ((mppm er[i+l# (x+pcm bite+y)l==1)&&(i1=0)&{il=(x-1}) }{
Zero_counter=0; pulse counter=0; pulse counter2=0;

for (m=i-1; m»>=0; m--) {

52

303
PhD Thesis

Software Printout

if (mppm er [m+l# (x+pcm bits+y)l==1) [pulse counter++;}
else | zero counter=m; break;}

}

if ((pulse counter==0)&&(it=1)) |
pulse counter=0;
for (m=zere counter-1; ms==0; m--) |

if (mppm er[m+l* (x+pcm bits+y)1==1) [pulse counter++;}
else {break;}

!

if { (pulse counter--=0}&&(w==0)) {secquencel[0]=sequence[0]+m

ppm er[(1+1)# (x+pem bits)+l*y+i]; j++; flag=0;]

else if (pulse counter==limit+1) {

if (flag==0) {sequence[y+pulse counter]=sequence [y+pulse counter]+

mppm er [(1+1)# (x+pem_bits)+1l*y+3]; J++;]

else

if ((i==2)&&(pulse counter==1)) |

sequence [2*y+2] =sequence [2*y+2] + (mppm er [(1+1) * (x+pcm_bits)+1*y+]j]*
{row counter2/pow(2,pcm bits)));

sequence [y+2] =sequence [y+2] + (mppm er [{1+1) *{xX+pem bits)+1l*y+i]*
(row counter/pow(2,pcm bits)});

sequence [y+l]l=sequence [y+1]+ (mppm er [(1+1) * {X+pcm bits)+1*y+j]*
{ {pow(2,pcm bits)-row counter2-row counter) /pow(2,pcm bits)));

J++; Llag=0;

else {
sequence [y+1l+pulse counter]s=sequence [y+l+pulse counter]+
{mppm er[(1+1)* (x+pcm bits)+1*y+]j] * (row counter/pow(2,pem_bits)));
sequence [y+pulse counter]=sequence [y+pulse counter]+
(mppm er [(1+1)* (x+pcm_bits)+1*y+jl* ((pow(2,pcm_bits)-row_counter)
fpow(2,pcm bits))),
?++,— flag=0;

else if ((pulse counter==0)&&(i==1)&&{w==0))
sequence [y+1] =sequence [y+1] + (mppm er[{1+1)* (x+pcm bits) +1*y+j]*
(row counter/pow(2,pem bits)));

sequence [0] =sequence [0] + (mppm er[(1+1)#* (x+pcm bits)+1l*y+]j]*
((pow(2,pcm bits)-row counter)/pow(2,pem bits)));

?++; flag=0;

else if (pulse counter==1limit+1) |

if (flag==0) {sequencelpulse counter]=seguence[pulse counter]+
mppm er[(1+1)* (x+pom bits) +1#y+il; J++;}

else
sequence [pulse counter+l] =sequence[pulse counter+l]+
(mppm er[(1+1)* (x+pcm bits)+l*y+]]
(row counter/pow(2.pem bits)));
sequence [pulse counter]=sequence[pulse counter]+(mppm er[(1+1)* (x+pcm_bits)+1*y+]]
+((pow(2,pem_bits) -row_counter) /pow(2,pcm_bits)));
J++;

else if ((mppm er[i+l*(x+pcm bits+y)l==1)&&({i==(x-1)))
Zero counter=0; pulse counter=0; pulse counter2=0;

for (m=i-1; m==0; m--} |

53

304
PhD Thesis

Software Printout

if (mppm er[m+l# (X+pcm bits+y)]l==1) {pulse counter++;}

Tlse {zeroc counter=m; break;}
if (xl=(y+1)) {

if (pulse counter==0) {

pulse counter=0;

for (m=zero counter-1; m»=0; m--) |

if (mppm er(m+1l* (x+pem bits+y)l==1) [pulse counter++;}
else break; }

|
if (pulse counter==0) {

flag=0;

sequence [2*y+1] =sequence [2+y+1] + (mppm_er [(1+1) * (x+pem_bits)+1*+y+j]*
(bit counter/pow(2,.pcm bits)));

gequence [0] =sequence [0] + (mppm er [(1+1)* (x+pem bite)+1*y+]j]*
{{pow(2,pecm_bits)-bit_counter) /pow(2,pem_bits}));

J++;

else if (pulse counter==limit+1) |

sequence [2*y+l] =sequence [2*y+1] + (mppm_er [{1+1) * (x+pem_bits)+1*y+j] *
(bit counter/pow(2,pem bits)));

sequence [y+1] =secuence [y+1] + (mppm er [(1+1) * (x+pcm bits)+lry+jl*
({pow(2,pcm_bits) -bit_counter) /pow(2,pem_bits)));

?++;

else if (pulse counter==limit+1)

sequence [2*y+l] =sequence [2*y+1]+ (mppm_er [(1+1) * (x+pem_bits)+1*xy+jl *
(bit counter/pow(2,pcm bits)));

sequence [pulse counter]=sequence [pulse_counter]+ (mppm_er [(1+1)#*

(x+pcm bits)+1l#y+i]+*

{(pow(2,pcm_bits) -bit_counter) /pow(2,pcm_bits)));

qJ++;

else
if (pulse counter==0} |
pulse countersy;

if (pulse counter==limit+1) |

sequence [2#y] =sequence [2*y] + (mppm_er { (1+1) # (x+pcm_bits)+l#y+j] *
(row counter/pow(2,pem bits)));

sequence [2*y-1]=sequence [2*y-1]+ (mppm er [(1+1)* (X+pem bits)+1l*xy+jl*
((pow(2,pcm bits)-bit counter-row counter) /pow(2,pcm bits)));
sequence [2#y+1] =sequence [2*+y+1] + (mppm_er [(1+1) # (x+pcm_bits)+1*y+]j] #
(bit_counter/pow (2,pem_bits)));

J++;

else if (pulse counter==limit+1) |

sequence [2#y+1] =sequence [2%v+1] + (mppm_er [{1+1) * (X+pem_bits)+1l*y+jl+
(bit counter/pow(2,pcm bits)));

sequence [pulse counter]=sequence [pulse_counter]+

(mppm er[(1+1)* (Xx+pcm bits)+1*y+jl*

{ (pow (2,pem_bits) -bit counter) fpow(2,pem bits)));

?++;

54

305
PhD Thesis

Software Printout

|

if (n==pasc) |break; }
}144; j=0; if (le=11) {flag=1;}

else {flag=0;}
if (n==pasc) |break;]

11=0; j=0; flag=1; limit++;

--- /!
for (i=0; i<2#*y+3; 1++) [sequence([i]=
(sequence [1]/ (pem bits*pow (2, pem_bits))) ;)
if ((pressd==1)&&(presss5==2)) |
gotoxy (0,57);
coute<"Pe:"<<endl;
gotoxy (3,57) ;coutecsequence [0] <<endl;
for (1=0; i<y; i+4) |
gotoxy(0,58+1); coute<"Pe.ll:"<<endl;
gotoxy (6,58+1) ; cout<<sequence [i+1]<<endl; |
for (i=0; i<y; i++) | gotoxy(0,58+y+i);
cout<<"Pe.101:"<<endl; gotoxy(7,58+y+1);
cout<<sequence [i+y+1] <<endl;}
gotoxy (0,58+2%y);
cout<<"Pel.l:"ccendl;
gotoxy(6,58+2*y);
cout<<sgsequence [2+y+1] <<endl;
gotoxy (0,58+2*y+1);
Ccout<<"Pel0101: "ceandl;
gotoxy (8,58+2%y+1);
cout<<seguence [2# (y+1)]<<endl;
k=1; n=0; w=0; 2=0;
for (i=0; 1<2*y+3; 1++)
gotoxy (0+w,87+n) ; cout<csequence [1]<<endl;
W=w+13;
if (i==kty+z) {k++; n++; wa0; 2++;]
delete [] sequence; seaquence=0;
--- /!

else %f (pressS==1)

sequence? = new float [7];

if (sequence2==NULL) {gotoxy(19,50);

cout<<"NOT ENOUGHT MEMORY FOR ER SEQUENCE ARRAYIL!! vecendl ; }
else [for (i=0; i<7; i++) sequence2[i] = 0;}

for (1=0; i<2; 1++) {sequence2[il=sequence[i];}
sequence? [5] =sequence [2%y+1] ;
sequence2 [6] =sequence [2*y+2] ;

sequence?[3] =sequence [y+1] ;

for (i=2; i<y+1l; 1++) {sequence2 [2] =sequence2 [2] +sequence[1i] ;]
for (i=y+2; 1l<2#y+1l; i++)
{sequence?2 [4] =sequence2 [4] +sequence [1] ; }

if (pressd4==1) |
if (sequence2[0]<0) [sequence2[0]=sequence2[0]#*(-1);]
if (=equence2[1]<0) [sequence2[l]=sequence2[1]*(-1);]
if (seguence2([2]<0) {segquence2([2]=seguence2(2]*(-1);}
if (segquence2[3]<0) {sequence?[3]=sequence2[3]+(-1);]
if (sequence2[4]<0) [seguencel[4]=sequence2[4]*(-1);]}
if (sequence2[S]<0) [sequence2[S]=sequence2[S]=*(-1);]
if (seqguence2[6]<0) {seguence2[6]=sequencel2[6]*(-1);]

gotoxy (0,57); cout<<"Pe:"<e<endl;

gotoxy (3,57) ;jecoute<segquence2 [0] <<endl;
gotoxy (0,58) ; cout<<"Pe.1ll:"<<endl;

gotoxy (6,58) jcout<<sequence2 [1]<<endl;
gotoxy (0,59) ; cout=<"Pe.111l:"<<endl;

gotoxy (7,59) jcout<<sequence2 [2] <<endl;
gotoxy (0,60) ; cout<<"Pe.101:"<<endl;

gotoxy (7,60) ;cout<<sequencez2 [3]<<endl;

55

306
PhD Thesis

gotoxy (0,61) ; cout<<"Pe.1101:"<<endl;
gotoxy (8,61) ;cout<<sequencel [4] <<endl;

gotoxy (0,62); cout<<"Pel.l:"<<endl;
gotoxy (6,62) jcout<<sequence2 [S]<<endl;

gotoxy (0,63) ; coutz«"Pel0l0l:"<<endl;
gotoxy (8,63) j;cout<<sequence2 [6]<<endl;

[*1if (sequence [6]<=0.0001)
else if (sequence(6]<=0.001)
else if (sequence(6]<=0.01)
else if (sequence[6]<=0.1)
else if (sequence[&]<=0.2)
else if (sequencel6]==0.3)
else if (sequence(&] <=0.4)
else if (sequence[§]<=0.5)
else if (sequencelé]l<=0.8)
else if (sequencelg]l<=0.7)
else if (sequence[&]<=0.8)
else if (sequence[€]<=0.9)
else if (sequence(6]<=1)

else {sequence[&] =0*zequence[&] ;|

if (sequence [S]1<=0.0001)
else if (sequence(5]<=0.001)
else if (sequence[5]<=0.01)
else if (sequence[5]<=0.1)
else if (sequence[5]<=0.2)
else if (sequence(5]<=0.3)
else if (sequence(5]<=0.4)
else if (sequence[5]<=0.5)
else if (sequence[5]<=0.6)
else if (sequence(S5]<=0.7)
else if (sequence[5]<=0.8)
else if (sequence[5]<=0.9)
else if (sequence(5]<=1)
else

if (sequence [4]<=0.0001)
else if (sequence([4]<=0.001)
else if (sequence(4]l<=0.01)
else if (sequencel4]<=0.1)
else if (sequence[4]<=0.2)
else if (sequence(4]<=0.3)
else if (seguence[4]<=0.4)
else if (sequencel4]<=0.5)
else if (=2equence[4]<=0.8)
else if (sequence(4]=<=0.7)
else if (sequence[4]<=0.8)
else if (sequence[4]<=0.9)
else if (sequence(4]<=1)
else

if (sequence[3]<=0.0001)
else 1f (sequence[2]<=0.001)
else if (sequence([3]<=0.01)
else if (sequence[3]<=0.1)
else if (sequence[3]«<=0.2)
else if (sequence[2]<=0.3)
else if (sequence[3]<=0.4)
else if (sequence[2]<=0.5)
else if (sequence[3]<=0.8)
else if (sequence([23]<=0.7)
else if (sequence[3]<=0.8)
else if (sequence[3]<=0.9)
else if (sequence[3]<=1)

else [sequence [3] =0*sequence[3] ;]

if (sequence[2]<=0.0001)
else if (sequence([2]<=0.001)
else if (sequence(2]<=0.01)
else if (sequence(2]<=0.1)
else if (sequence[2]<=0.2)
else if (sequence(2])<=0.3)
else if (sequence(2]<=0.4)
else if (sequence(2]<=0.5)

{sequence [6] =0.12%sequence [6] ; }
sequence [6] =0.27+sequence [6] ;
sequence [6] =0.31*sequence [6] ;
seguence [6] =0.09*sequence [8] ;
sequence [6] =0.05*sequence [6] ;
sequence [6] =0.04*sequence (6] ;
sequence [6] =0.03*sequence [6] ;
sequence [6] =0.02*sequence [6] ;
sequence [6] =0.02+sequence [6] ;
sequence [6] =0.01*sequence [6] ;
sequence [6] =0.02*sequence [6] ;
sequence [6] =0.01*sequence [6] ;
sequence [6] =0.16*sequence [6] ;

sequence [5]=0.12*sequence (5] ;
seguence [5] =0.27*sequence [5] ;
sequence [5] =0.31*sequence [5] ;
sequence [5] =0.09*sequence [5] ;
sequence [5] =0.05%sequence (5] ;
sequence [5] =0.04*sequence (5] ;
sequence [5] =0.03#*sequence (5] ;
sequence [5] =0.02*sequence [5] ;
sequence [5] =0.02*gequence [5] ;
sequence [5] =0.01*sequence [5] ;
sequence [5] =0.02#%sequence [5] ;
sequence [5] =0.01*gequence [5] ;
sequence [5] =0.16+sequence [5) ;
sequence [5] =0*sequence[5] ;]}

sequence [4] =0.12*sequence [4] ;
sequence [4] =0.27+sequence (4] ;
sequence [4] =0.31+sequence [4] ;
sequence [4] =0.09*sequence [4] ;
sequence [4] =0.05*sequence [4] ;
sequence [4] =0.04*sequence [4] ;
sequence [4] =0.03*sequence [4] ;
sequence [4] =0.02*sequence [4] ;
gequence [4] =0.02*2equence [4] ;
sequence [4] =0.01*sequence (4] ;
sequence [4] =0.02*sequence [4] ;
sequence [4] =0.01*sequence [4] ;
sequence [4] =0.16*sequence (4] ;
sequence [4] =0*sequence [4] ; |

sequence [3] =0.12*sequence [3] ;
sequence [3] =0.27*sequence (3] ;
sequence [3] =0.31%sequence (3] ;
sequence [3] =0.09%sequence [3] ;
sequence [3] =0.05*gequence (3] ;
seqguence [3] =0.04*sequence [3];
sequence [3] =0.03*sequence (3] ;
sequence [3] =0.02%sequence [3] ;
sequence [3] =0.02*sequence [3] ;
seqguence [3] =0.01*sequence [3];
sequence [3] =0.02*sequence [3] ;
seguence [3] =0.01*sequence [3] ;
sequence [3] =0.16*sequence [3] ;

sequence [2] =0.12*sequence [2] ;
sequence [2] =0.27*sequence [2] ;
sequence [2] =0.31*sequence (2] ;
sequence [2] =0.09*sequence [2] ;
sequence [2] =0.05*sequence [2] ;
sequence [2] =0.04*sequence (2] ;
sequence [2] =0.02*sequence (2] ;
seguence [2] =0.02*sequence [2] ;

56

307

Software Printout

PhD Thesis

else
else
alse
else
else

if
if
if
if
if

(segquence [2] <=0.6)
(sequence [2] <=0.7)
(sequence[2] <=0.8)
(sequence [2] <=0.9)
(sequence [2] <=1)

else

if (sequence[1]<=0.0001)

else
else
else
else
elge
else
else
else
else
else
else
else

if

(secquence [1] <=0.001)

(sequence (1] <=0.01)
(sequence (1] <=0.1}
(sequence [1] <=0.2)
(secquence [1]1<=0.3)
{sequence [1] <=0.4)
(sequence[1] <=0.5)
{sequence [1] <=0.6)
(sequence [1] <=0.7)
(sequence [1] <=0.8)
(sequence (1] <=0.9)
(gequence [1] <=1)

else

if (sequence [0]<=0.0001)

else
else
else
else
else
else
else
else
else
else
else
else

f/for (1=0; 1<7; i++) [gotoxy(0,87+1); coutec<sequence2[il<<endl;)

for (i=0; i<24; i++) |standard er[i]=(standard_er[i]*sequence2[0])};]

if
if

(sequence [0] <=0.001)

(sequence [0] <=0.01)
(sequence [0] <=0.1)
(gequence [0] <=0.2)
(sequence [0] <=0.3)
(sequence [0] <=0.4)
(sequence [0] <=0.5)
(sequence [0] <=0.6)
(sequence [0] <=0.7)
{sequence [0]<=0.8)
(sequence [0] <=0.9)
(sequence [0] <=1)

for (i=0; i<24;
for (i=0; 1<24;
for (i=0; 1<24;
for (i=0; i<24;

i+4)
i++)
i++)
i+4)

sequence [2] =0.02*sequence [2] ;
sequence [2] =0.01*sequence [2] ;
sequence [2] =0.02*sequence [2] ;
gequence [2] =0.01*sequence [2] ;
sequence [2]=0.16%sequence (2] ;
sequence [2] =0*sequence [2] ; }

gequence [1]=0.12*sequence (1] ;
gequence [1]=0.27+sequence (1] ;
sequence [1] =0.31*sequence (1] ;
sequence [1] =0.09*sequence (1] ;
sedquence [1] =0.05*sequence (1] ;
gequence [1] =0.04*secuence [1] ;
sequence [1] =0.03*sequence [1] ;
sequence[1] =0.02*sequence (1] ;
sequence [1] =0.02*gequence [1] ;
seguence [1] =0.01*sequence (1] ;
sequence [1] =0.02*sequence [1] ;
sequence [1]=0.01*sequence (1] ;
sequence [1] =0.16*sequence [1] ;
seguence [1] =0*sequence [1] ;)

sequence [0] =0.12*sequence [0] ;
sequence [0] =0.27*sequence [0] ;
sequence [0] =0.31*sequence [0] ;
sequence [0] =0.09*sequence [0] ;
sequence [0] =0.05*sequence [0] ;
g2equence [0] =0.04*2aquence [0] ;
sequence [0] =0.03*sequence (0] ;
sequence [0] =0.02*sequence [0] ;
sequence [0] =0.02*sequence [0] ;
gequence [0] =0.01*sequence [0] ;
sequence [0] =0.02*%sequence (0] ;
sequence [0] =0.01*sequence (0] ;
sequence [0] =0.16%sequence (0] ;
[zequence [0] =0*sequence [0] ; }

for (i=0; i<24; i++) [pel 1[i]=(pel 1[i]*sequence2([5]);]

if (standard er[il<o0}

for (i=0; i<24;

for (i=0; i<24; i++)
off standard er[i]

off pe 1101[i]

+ pel_1[i]l - off pel 1[i] + pe_10101[i]l - off pe 10101[i];}

for (1=0; 1<24;

for (i=0; i<24;

else

ie+)

i++) |
[standard er[i]=standard er[i]l*(-1);}
gotoxy (0,67+1); cout<e"\n"<<standard_er[1i]<<endl;

i++) |
if (standard er[i]=<0}

minimum=0; }

minimum=standard er(i];}

pulse energy = minimum * photon_energy;

energy in frame = pulse energy #

dBm = 10 * (logl((energy per pcm_bit*B)/pow(10,-3))/log(10));

mark space correction;

{pe 11[i]=(pe 11[i]*sequence2([1]);]
{pe 111[il=(pe 111[i]*sequence2[2]);
{pe 101[il=(pe 101 [i]*sequence2(3]);
{pe 1101[il=(pe 1101 [i]*sequence2[4]);}

{pe_10101[i]=(pe_10101[i)*sequence2[6]);}
{standard er[i] = standard er[i] -

4+ pe 11[i] - off pe 11 [24] + pe 111[i]
off pe 111([i] + pe 101[1] - off pe 101[1i] + pe 1101 [i]

Software Printout

energy_per_pcm_bit = (energy in_frame/pem_bits);

gotoxy (0,95+1); coute<"\n"<<dBm<<endl;

delete [] sequence;
delete [] sequencel;

12/

sequence=0;
sequence2=0;

gotoxy (19,50} ;cout<<"DISPLAY INPUT ARRAYS? PRESS1,2 or 3 ELSE 8 "<<endl;

57

308

PhD Thesis

Software Printout

gotoxy (64,47) jein>>press3;
while ((pressii=1)||(press3!=2) || (press3i=8)|| (pressil=-1))

if (press3==1) {

clrscr2(); gotoxy(0,56);
cout<<"ERASURE MPPM-DATA ARRAY "eeandl ;
print input arrays(mppm data,pow(2,pem bits),
x+pem bits,x,y,aut pasc,aut pasc2,aut pascl,aut pem bits,
pcm bits,pasc,pasc2,pasc3,start_number, end_number,pressl,
press2,press3,pressd, presss);

pressé=0;
do

{
gotoxy (19,50) ;
cout=<
“DO YOU WANT TC SAVE THE DATA IN A FILE? "ecendl ;
gotoxy (33,47) ;cinsspresss;
if (pressé==-1) [break;)
if (pressé==2) [break;)]
if (pressé==3) [break;|
}while (pressé!=1);

if (pressé==3) [file_opl.closel); break;]
if (pressé6==1) |

k=1;

for (i=0; i< (x+pcm_bits) *pow (2,pcm_bits); i++)

if (i==k* (x+pcm bits)) {file opl<<"\n"; k++;)
file opl<<mppm_data[il<<" ";

file opl.closel);

break;

else if (press3==2) {

elrser2(); gotoxy(0,56);

cout<<"WEIGTHED ERASURE ARRAY "<<endl;

print input arrays(weighted er mppm data,pasc2,x+pcm bits,x,v,

aut pasc,aut pasc2,aut pasc3,aut pem bits,pem bits,pasc,pascz,
pasc3,start_number,end number, pressl,press2, press3 press4, presss);
pressé=0;

do

{

gotoxy (19,50) ;
cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "e<cendl;
gotoxy (33,47) ;ein=>pressé;

if (pressé==-1) {break;?

if (press6==2) [break;}
if (presse==3) ([break;)
while (pressél=1});
if (press6==3) (file_opl.close(); break;}
if (pressé==1)
k=17
for (i=0; i<(x+pcm_bits)*pasc2; i++)

if (i==k* (x+pcm bits)) [file ople<"\n"; k++;}
file opl<<weighted_er mppm_datali]l<<" ";

|
f%le opl.close();

break;
I
else if | (pressi==8)|| (pressd==-1})} {break;}
else {gotoxy(19,50);
cout<<"WRONG SELECTION.TRY AGAIN "eecendl ;

gotoxy (64,47) ;cin>»>press3; |

!

if (pressi==-1) {break;)
if (pressé==-1) {(break;|

clrscr2();

58

309
PhD Thesis

Software Printout

delete [l mppm data; mppm data=0;
delete [] weighted_er_ mppm_data; weighted_er mppm_data=0;

delete [] mppm; mppm=0;
delete [] data; data=0;

}//end of if-else mppm er null statement
}//end of if-pressl(l) for y!=1 or yl!=(x-1)

//weighted fa array calculation

else if (pressl==2)

{ mppm = new int [x*pasc?]; data = new int [pem bits+pasc3];
welghted _fa_mppm_data = new int [(x+pcm_bits)*pasc3];

if (mppm==NULL) {[gotoxy(19,50);
Ccout<<"NOT ENOUGHT MEMORY FOR MPEM3 ARRAY! L1 "ecendl ;)
else | gotoxy(56,11); cout<<erasure weight<<endl;
gotoxy (60,12); cout<<false_alarm_weight<<endl;

for (i=0; iex*pasc3; i++) mppm[i] = O;
for (i=0; i<y+false_alarm_bits; 1i++) mppml[i] = 1;

i=0; j=0; 1=0; m=0; extra pulses=0; k=l;
for (M=0; Me2*pasc3; M++)
{ for (i=0; 1<x-1; i++) 1f (mppm[i+(k-1)*x]l==1) j=1;

for (i=l; i<=y+false alarm bits; i++)
{ if (mppm[k*x-1]==0) break;
else if (mppmik*x-1]==1) extra pulses++;
} if (extra pulses==y+false alarm bits) break;

if (Ji=(x-1))
| for (i=0; i<i; i++) mppm[i+k*x]=mppm[i+(k-1)*x];
mppm [{+k*+x+1]) =1;

for (i=1; i<=extra pulses; i++)
mppm [j+k*x+1+1] =1;

1=0; extra pulses=0;

else if ((j==(x-1)) &% (extra pulsesi=0))
{l=extra_pulses; k--; extra_pulses=0;]

Kt

}

}//end of if-else mppm null statement

false alarm weight2=0;
if (data==NULL) {gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR DATA3 ARRAY!!!! becendl; }
else | for (1=0; l<pem bits*pasc3; i++) datalil = 0;

w=0; row counter=0; bit counter-o0; k=1;

for (1=1; l<=pasc3; l++)

{ for (j=x; J<ix+pcm bits); j++)

| for (m=0; mepow(2,pcm bits); m++)
| for (1=0; i=<¥%; i++) { if (mppm[i+(l-1)#*x]==
mppm_datali+ (k-1)* (pem_bits+x)]) row_counter++; |

if ((row counter==(x-false alarm bits)) &&
(mppm data[j+(k-1)* (pcm bits+x)])==1))} bit counter++;
if | row counter==(x-false_alarm_bits) } false_alarm_weight2++;
row_counter=0; K++;
} k=1;
if (bit counter > (false_alarm_weight2/2.0})
data[w+(1-1) *pem bits]=1;
else if (bit counter < (false_alarm_weight2/2.0))
data[w+(1-1)*pcm bits]=0;
else if (bit counter = (false_alarm weight2/2.0))
data[w+(1-1) *pem bits]l=2;
bit counter=0; w++; false alarm weight2=0;
} k=1; w=0;

}

}//end of if-else data null statement

59

310
PhD Thesis

Software Printout

if (weighted fa mppm data==NULL)
gotoxy(19,50) ;cout<<"NOT ENOUGHT MEMORY FOR WEIGHT-FA ALARM "ecandl ;)
else | for (i=0; i=(x+pcm_bits)*pasc3; i++) weighted fa mppm_data[i] = 0;

k=0;
for (m=0; mepasc3; M++)
{ for (i=0; 1<x; i++)
{ weighted fa mppm_datalk+* (x+pem_bits)+i] = mppmlk*x+i]l;]

Ke+; la+;

k=0; 1=0;
for (m=0; mepascld; m++)
{ for (i=x; il<x+pcm bits; 1++)
{ weighted fa mppm data(k+* (x+pcm bitsg)+i] =
datal(l*pem_bits)-x+1];
k++; l4+;

}//end of if-else weighted fa mppm_data null statement

mppm_£fa = new int [(2*x+pcm_bits-y) *pow(2,pcm_bits)];

if (mppm fa==NULL)
gotoxy (19,50) ;cout=<"NOT ENOUGHT MEMORY FOR MPEM-FA ARRAY "<<endl;}
else | for (i=0; i<(2*x+pcm_bits-y)*pow(2,pcm_bits); i++) mppm_falil = 0;

flag fa=1;

k=0;
for (m=0; m<pow(2Z,pcm bits); m++)
{ for (i=0; i<¥; 1++) mppm fa(k* (2*x+pcm bits-y)+il=
mppm data[k#* (X+pem_bits)+1i];
Kot

}

1=0; k=0; j=0; row counter=0; kit counter=0; w=0;
for (m=0; m<pow(2,.pcm bits); m++)
{ for (n=0; necpasc3d; n++)
{ for (i=0; iex; i++) 1if (mppm data[i+l#*(x+pcm bitsg)] ==
weighted_fa_mppm_data[i+k# (x+pcm_bits)]) row_counter++;

if (row counter==(x-false alarm bits))
[for (i=x; i<x+pem bits; i++)
{ mppm fal[i+l#* (2#x+pem bits-y)]=(
mppm datali+1#* {x+pem bits)]”
weighted fa mppm_datali+k* (x+pcm_bits)] };

if { mppm fa[i+l*(2%*x+pem bits-y)]l =0) bit counter++;
else bit counter=bit counter;
} mppm £al(j+1)* (x+pcm bits)+j* (X-y)+wl=
mppm fal (j+1)#* (x+pem bits)+]* (x-y)+w]l+bit counter;
for (i=X; i<X+pem_bits; i++) mppm fal[i+l* (2*X+pcem bits-y)1=0;
W+ ;
row counter=0; bit counter=0; k++;
] l+4; k=0; j++; bit_counter=0; w=0;

presss=0;
qotoxy (19,50); cout<<"USE 2-DULSE ALGORITHM CR THE DETAILED? ‘"<<endl;
gotoxy (10,39) ;cin=>presss;

while ((pressS5i=1)|| (presss5!=2)|| (presssi=-1))
{ if (pressS==-1) {break; |
elge if ((pressS==1)|| (pressS==2)) [break;|
else [gotoxy (19,50) ;
coutz<"WRONG SELECTION.TRY AGAIN "eeendl ;
gotoxy (10,39) ;jcout<<® "e<cendl;

?ctoxytlo,39l;cin::presss;}

if (pressS==-1) [break;]

pressd=0;

gotoxy (19,50) ;

&0

311

PhD Thesis

Software Printout

cout<<"DO YOU WANT TO DISPLAY THE SEQUENCE RESULTS? "e<endl ;
gotoxy (10,44) ;cins>press4;
while ((press4!=1)|| (press4!=2)|| (press4l=-1))
{ 1f (pressd4==-1) {break;
else if ((pressd==1)|| (press4==2))} |break;
else
|gotoxy(19,50);
Cout<<"WRONG SELECTION.TRY AGAIN "e<cendl ;
gotoxy (10, 44) ;cout<<" "ecendl ;

gotoxy (10, 44) ;cins=press4; |

}
if (pressd==-1) [break;]

11=0; zero counter=0;
for (m=0; m<pow(2,pcm_bits); m++)

for (i=0; i<2; i++) |
if (mppm fali+m* (2*x+pem bits-y)1==0) {zero_counter++;}

if (zero counter==2) [break;}
else {zero_counter=0; 11++;}

bit counter=0; row counter=0; i=0;
for (m=0; me<pow(2,pcm bits); m++)
{ 1f (mppm fali+m*(2#*x+pcem bits-y)]1==1)
{bit counter+s+;)//1-bit_counter=11//
i=x-1;
if (mppm fa[i+m#*(2*x+pem_bits-y)]==1) {[row counter++;}
//1-row _counter=9//
im0;

seguence = new float [2#%(y+1)];

if (sequence==NULL) [gotoxy(19,50);

Cout«<"NOT ENOUGHT MEMORY FOR FA SEQUENCE ARRAY!!!! "cqendl;}
else {for (i=0; i<2%*(y+1); i++) sequence(i] = 0;]

zero_counter=0; pulse_counter=0; 1=0; j=0; flag=1; limit=0;
for (w=0; Wey+l; W++)
for (n=0; n<pow(2,pcm_bits); n++)

for (i=0; i<x; i++)

{if { (mppm_fali+l* (2*x+pcm_bits-y)]l==0)&&(i==0)&&(w==0})

zero counter=0; pulse counter=0;
if {Tppm_ta[i+1*(2*x+pcm_bits-y:+1]==ol

sequence [1] =sequence[1] + (mppm fa[l#* (2+x+pcm bits-y)+X+pem_bits+]] *
(row counter/pow(2,pem bits)));
sequence [0] =sequence [0] + (mppm fa[l* (2*#xX+pem bits-y) +x+pem bitssqi] *
| ((pow(2,pcm bits)-row counter)/pow(2,pcm bits)));

else
ssquence [y+2] =sequence [y+2] + (mppm £a[l#* (2+x+pcm bits-y)+x+pem_bits+jl+
(row counter/pow(2,pcm bits)));
sequence [0] =sequence [0] + (mppm fa[l* (2*x+pcm bits-y)+xX+pcm bits+j] *
({pow(2,pcm_bits) -row_counter)/pow(2,pcm_bits)));
1

j++; flag=0;
else if ((mppm fa[i+l* (2*x+pcm bits-y)] ==0)
&R (11=0)&(it=(x-1)) }|
zero counter=0; pulse_counter=0;
for (m=i-1; m>=0; m--)

{
if (mppm falm+l#*(2*x+pem bits-y)l==1) [pulse counter++;}
else flag=0; break;)

61

312
PhD Thesis

Software Printout

if ((pulse counter==1limit}&&(flag==0)) {
if (pulse counter==0)
[[sequence [0] =sequence [0] +mppm_fa[1* (2#x+pcm_bits-y) +x+pom_bits+i] ;}
else
if (mppm fali+l=*(2*x+pcm bits-y)+1]1==0) [sequence[limit]l=
sequence [limit] +mppm fa[l#* (2*x+pcm bits-y)+x+pem bits+jl;)
else {sequence [1imit+y+1]=
| sequence (limit+y+1] +mppm_£a[l* (24x+pem bits-y)+x+pem bits+il;]

else if ((pulse counter==limit)&&(flag==1))} {
if (mppm fali+l* (2#x+pcm bits-y)+1]==0) |
sequence [limit+1l] =sequence [1imit+1] +
(mppm fa[l*(2*x+pcm bits-y)+X+pom_bits+]]*
(row counter/pow(2,pcm bits)});
sequence[limit] =sequence[limit] +
(mppm fa[l* (2*x+pcm bits-y)+xX+pcm bits+j]*
({(pow(2,pcm_bits)-row_counter) /pow(2,pem_bits)));

alse
sequence [limic+y+2] =sequence [limit+y+2] +
(mppm fall*(2*x+pem bits-y)+X+poem _bits+i]*
(row counter/pow(2,pcm bits)));
sequence[limic+y+l] =sequence[limit+y+1] +
(mppm fa[l#* (2*x+pem bits-y)+¥+pem bits+j]
((pow(2,pem_bits)-row_counter) /pow(2,pem_bits)));

!
i
J++; f£lag=0;

!
else if ((mppm fali+l#* (2*x+pem bite-y)1==0)&&{i==(x%-1)))]
Zero counter=0; pulse_counter=0;

for (m=i-1; m>=0; m--) {
if (mppm fa[m+l* (2*x+pcm bits-y)]==1) [pulse counter++;}
else [break;]

H
if ((pulse counter==limit)&&(xi=(y+1))) {
if (pulse counter==0) {sequence [0]=seguence [0]+
N (mppm fall+ (2+x+pcm bits-y)+x+pem bits+i]; £lag=0;}
else

sequence [limit+y+l] =sequence[limit+y+1] +
(mppm fall*(2*x+pem bits-y)+X+pom_bits+i]*
(bit counter/pow(2,pcm bits)));
sequence[limit] =sequence [1imit] + (mppm fa[l*
(2*x+pcm bits-y)+x+pem bits+]j]l* ((pow(2, pecm_bits)-bit_ counter
} /pow(2,pem_bits)));

]
else if ((pulse counter==1imit)&&(x==(y+1)}) |
sequence[limit+l] =sequence[limit+1] + (mppm faf[l#
(2*+x+pcm bits-y)+x+pcm bits+i] * (row counter/pow(2,pem_bits)));
sequence [limit+y+1] =sequence [limit+y+1]+
(mppm fa[l*(2*x+pcm bits-y)+x+pem_bite+i]*
(bit counter/pow(2,pcm bits)});
sequence [limit] =sequence [1imit]+
(mppm fa([l#*(2*x+pem bits-y)+x+pem bits+])
*|(powl(2,pem_bits)-bit_counter-row_counter) /pow(2,pcm_bits)));

J++; £lag=0;

if (n==pasc) |break; }

}l4+4; 1=0; if (1l<=11) {flag=l;}
else {flag=0;}

if (n==pasc) {break; |}

}1=0; j=0; flagsl; limit++;

for (i=0; i<2*(y+1); i++

62

313

PhD Thesis

Software Printout

{sequence [i]l= (sequence [1]1/{ (x-y) *pem_bits*pow(2,pem_bits))} ;|

if { (pressdi==1)&&(pressS==2) } |
gotoxy (0,57); cout<<"Pf:"<<cendl;
gotoxy (3,57) jeout<<sequence [0] <<endl ;
for (i=0; i<(y+1); i++) | gotoxy(0,58+i);
cout<<"Pf.10:"<<endl; gotoxy(6,58+1i);
coute<sequence [i+1]<<endl; |
for (i=0; i<y; i++)
{ gotoxy(0,58+v+1+i); cout<<"Pf.101:"<<endl;
gotoxy (7,58+y+1+1) jcoute<sequence [1+y+2]<<endl; }

k=1; n=0; w=0; 2=0;

for (i=0; i<2#({y+1); i++) |
gotoxy (0+w,87+n) ; coutcc<sequence([i] <<endl;

if (sequence[i] t=0) [w=w+13;]
else {w=w+5;}
1f (i==k#*ty+2z) {k++; D++; W=0; Z4+;}
?elete [1 sequence; sequence=0;
if (pressS==1)

sequence2 = new float [5];
if (sequence2==NULL) {gotoxy(1%,50);

coute<"NOT ENOUGHT MEMORY FOR FA SEQUENCE ARRAY!!L! Mescendl; |

else {for (i=0; i<S5; i++) sequence2[i] = 0;}
--- 7

for (i=0; i<2; i++) { sequence2 [i] =sequence [1i] ; }

sequence2 [3] =sequence [y+2] ;

for (i=2; i<y+2; i++) {sequence2 [2] =gsequence2 [2] +sequence [1];]
for (i=y+3; i<2*(y+1); i++) {sequence?(4]=sequence[4]+sequenceli] ;]

if (pressd==1)
if (sequence2 [0]<0) {sequencel[0]=sequence2 [0]+(-1);}
if (sequence2[1]1<0) {[sequence2([l]=sequence2[1]*(-1);}
if (sequence2(2])<0) {sequence2(2]=sequence2[2]#(-1);}
if (sequence2[3])<0) [sgequence2|[3]=seguence2[3]*(-1);]
if (sequence2[4]<0) {[sequencel(4]=sequence2[4]+(-1);]

gotoxy (0,57); coute<"PLf:"<<endl;
gotoxy (3,57) ;couteesequence2 [0] <cendl ;
gotoxy (0,58); cout<<"PL£.10:"<<endl;
gotoxy (6,58) ;cout<csequence?2 [1] <<endl ;
gotoxy(0,59); cout<<"PL£.110:"<<cendl;
gotoxy(7,59) ;coute<csequence2 [2] <<endl ;

gotoxy (0,60); cout<<"Pf.101:"<<endl;
gotoxy (7, 60) ;coutz<sequence2 [3] <<endl ;

gotoxy(0,61); cout<=<"PL£.1101:"<<endl;
gotoxy (8,61) ;cout<<seguence2 [4] <cendl ;

/*if (sequence[4]<=0.0001) | sequence [4]=0.12*sequence [4] ; }
else if (sequencel4)<=0.001) [sequence[4]=0.27*sequence(4];}
else if (sequence[4]<=0.01) { sequence [4]=0.31#sequence (4] ; |

else if (sequence[4]<=0.1) {sequence [4] =0.09*sequence [4] ; }
elge if (sequence(4]<=0.2) { sequence [4] =0.05*sequence[4] ; }
else if (sequence(4]<=0.3) [sequence [4]=0.04*sequence [4] ; |
else if (sequencel4]<=0.4) {secquence [4]=0. 03 *sequence [4] ; |
else if (sequence[4]<=0.5) [sequence [4] =0.02*sequence [4] ; |
else if (sequence[4])<=0.6) | sequence [4] =0.02*+sequence [4] ; |
else if (sequence(4]<=0.7) [sequence [4]=0.01+sequence [4] ; }
else if (sequence[4]<=0.8) {sequence [4] =0.02*sequence [4] ; }
else if (sequence [4]<=0.9) [sequence [4) =0.01*sequence [4] ; }
else if (sequence(4]<=1} { sequence [4]=0.16 *sequence([4] ; |
else | sequence [4]=0*sequence [4] ; }
if (sequence[3]<=0.0001) | sequence [3]=0.12%sequence [3] ; }

else if (sequence[3]1<=0.001) [sequence[3]=0.27*sequence(3];}
else if (sequence[3]«<=0.01) | sequence [3]=0.31*sequence [3] ; |

else if (sequence[3]<=0.1) | sequence [3]=0.09*sequence [3] ;
else if (sequence[3]<=0.2) sequence [3]1=0.05*sequence(3] ;]
else if (sequence[3]<=0.3) sequence [3]=0.04 *sequence[3] ;}
&3

314
PhD Thesis

else
else
else
else
else

if |
else

else
else

if
else
else
else
else
else
else

else
else
else
else

if |
else
else
else
else
else
else
else
else
else

/

for
for
for
for
for

for

for

for

Software Printout

else if (sequence(3]<=0.4) {sequence [3]=0.03 *sequence(3] ; }
else if (sequence[3]<=0.5) { sequence [3]=0.02*sequence[3] ; }

if (sequence(3]<=0.6) isequence[s]-o.oz*sequence[3];}

if (sequence[3]<=0.7) sequence [3]=0.01*sequance [3] ; |

if (sequence(3]<=0.8) |sequence[3]=o.02*sequence[3]:

if (sequence[3]<=0.9) sequence [3]=0.01*seqguence[3] ;

if (sequence[3]<=1) {sequence [3]1=0.16*sequence [3] ;

else | sequence [3] =0*sequence [3] ; }
sequence [2] <=0.0001) | sequence [2]1=0.12*sequence[2] ; }

if (sequence[2]<=0.001) {sequence([2]=0.27*sequence(2];}
else if (sequence[2]<=0.01) sequence [2]=0.31*sequence(2] ;}
else if (sequence[2]<=0.1) sequence [2]=0.09*sequence[2] ; |
else if (sequence([2]<=0.2) sequence [2] =0.05*sequence (2] ; }

else if (sequence([2]<=0.3) {sequence [2)=0.04 *sequence (2] ;
else if (sequence[2]<=0.4) { sequence [2]=0.02*sequence (2] ;
else if (sequence[2]<=0.5) { sequence [2]=0.02*sequence (2] ; }
else if (sequence[2]<=0.6) {sequence [2] =0.02 *sequence [2] ; |
else if (sequence[2]<=0.7) {sequence (2] =0.01*sequence[2] ; }
else if (sequence[2]<=0.8) {sequence [2]=0.02*sequence (2] ; }

if (sequence [2]<=0.9) sequence [2]=0.01%sequence[2] ;]

if (sequence[2]<=1) secquence [2]=0.16*sequence [2] ; |
else sequence [2] =0*sequence [2] ; |
sequence (1] <=0.0001) sequence [1]=0.12+sequence [1] ;

if (sequence[1]<=0.001) sequence [1]=0.27*sequence[1] ;

if (sequence[1]<=0.01) sequence [1]=0.31*gequence[1] ;

if (sequence [1]<=0.1) gequence [1]=0.09*g2equence [1] ;

if (sequence(l]<=0.2} sequence [1]1=0.05*%sequence[1] ;

if (sequence[1]<=0.3) sequence [1]=0.04*sequence [1] ;

if (sequence[l]<=0.4) sequence [1]=0.03*sequence [1] ;
else if (sequence[l]<=0.5) sequence [1]=0.02*sequence (1] ;]
elge if (sequence(l]<=0.6) sequence [1]=0.02*sequence 1] ; }

if (sequence([1]<=0.7) sequence [1]=0.01*sequence [1] ;

if (sequence(l]<=0.8) sequence [1]=0.02#%gequence[1] ;

if (sequence[1]<=0.9) sedquence [1]=0.01*sequence[1];

if (sequence[l]l<=1) sequence [1]=0.16*sequence [1] ;

else sequence [1]=0*sequence [1]; }
gsequence [0] <=0.0001) sequence [0]=0.12*sequence[0] ;

if (sequence[0]<=0.001) sequence [0] =0.27+sequence [0] ;

if (sequence(0]<=0.01) sequence [0]=0.31+sequence [0] ;

if (sequence[0]<=0.1} sequence [0]=0.09*sequence [0] ;

if (sequence[0)<=0.2) sequence [0] =0.05*seguence [0] ;

if (sequence [0)<=0.3) seguence [0] =0.04*seguence [0] ;

if (sequence [0]<=0.4) sequence [0]=0.03*sequence [0] ;

if (sequence[0]<=0.5) sequence [0] =0.02*sequence [0] ;

if (sequence([0)<=0.€) gequence [0]=0.02*geguence [0] ;

if (sequence[0]<=0.7) sequence (0] =0.01+sequence [0] ;
else if (sequence[0]<=0.8) | sequence [0]=0.02 *sequence [0] ; }
else if (sequence[0]<=0.9) { sequence [0]=0.01 *sequence [0] ; }
else if (sequence[0]<=1) {sequence [0] =0.16*sequence (0] ; |
else | sequence [0]1=0*sequence [0] ; }

Jfor (i=0; i<5; i++) [gotoxy(0,87+1i); cout<<seguence2[i]<<endl;}

(1=0; i<24; i++) (standard falil=(standard fa(i]+sequencez(0]);]
(1=0; i<24; i++) [pf 10[i)=(pf 10[i)*sequence2(1]);}

(1=0; 1i<24; i++) {pf 110[i]=(pf 110[i]*sequence2([2]);

(1=0; 1<24; i++) {pf 101[1i]1=(pf_101[i]*sequence2[3]);

(1=0; i<24; i++) [pf_1101(i)=(pf_1101[i]*sequence2(4]);}

(i=0; 1<24; i++) |standard fa[i] = standard fa[i] -
off standard fa [i] + pf 10[i] - off pf 10 [i] + pf 110[1i] -
off_pf 110 [i] + pf_101(i] - off_pf_101 [1] + pf_1101(i] - off_pf_1101([1i];}

(im0; i<24; i++) |
if (standard falil<0) {standard falil=
standard fa[il#(-1);}
gotoxy (0,67+1); cout<<"\n"<<standard_fa[i]<<endl;

(1=0; i<24; i++) |

if (standard falil<0) {minimum=0;}

else {minimum=standard fa(i];}

pulse energy = minimum * photon energy;

energy in frame = pulse energy * mark space correction;
energy per pcm bit = (energy in frame/pcm bits);
dBm = 10 * (log((energy per pcm_bit*E)/pow(l0,-3))
flogllo));

gotoxy (0,95+1); cout<<"\n"<<dBm<<endl;

64

315
PhD Thesis

Software Printout

delete [] zequence; sequences=0;
delete [] sequence2; sedquence2=0;

gotoxy (19,50) ;eout<<"DISPLAY INPUT ARRAYS? PRESS1,3 ELSE 8 "<<zendl;
gotoxy (64,47) jcin=>press3;

while ((press3i=1)||(press3i=3) || (press3i=8) || (pressil=-1))

if (pressi==1) |

clrscr2(); gotoxyl(0,56); coute<"FALSE ALARM MPPM-DATA ARRAY "e<cendl;
print input arrays (mppm data,pow(2,pcm bits) ,x+pem bits, X, y,aut pasc,aut pasc2,

aut pasc3,aut pem bite,pem bite,pasc,pasc2,pasc3, start_number, end number,pressi,
press2,press3,press4,presss);

presse=0;

do

|

gotoxy (19,50) ;

CcoUuL<<"DO YOU WANT TO SAVE THE DATA IN A FILE? tecendl ;
gotoxy (32,47) ;cins>pressé;

if (press6==-1) [break;]}

if (pressé==2) [break;|}

if (pressé==3) {break;}

jwhile (presséi=1);

if (pressée=
if (pressé=
k=1;

for (i=0; i< (xX+pcm_bits) *pow(2,pcem_bits); i++)

3) [file opl.closel(); break;|)
1)

{f (i==k+#(x+pcm bits)) {file opl<<™\n"; ke+;)
file_opl<<mppm_data[i]<<" *;

file opl.closel();

break;

else if (pressi==3) |
clrscr2(); gotoxy(0,56); cout<<"WEIGTHED FALSE ALARM ARRAY "<<endl;

print input arrays(weighted fa mppm data,pasc3, x+pem bits,x,y,aut pasc,aut pasc2,
aut pasc3,aut pcm bits,pcm bits,pasc,pasc2,pasc3,start_number,end number,pressl,
press2,press3,pressd ,presss) ;
press6=0;
?o
gotoxy (19,50) ;
CoUt<<"DO ¥YOU WANT TO SAVE THE DATA IN A FILE? te<endl;
gotoxy (33,47) ;ein=>presss;
if (pressé==-1) [break;}
if (press6==2) ([break;}
if (presse==3) |break;}
]while (presséi=1);

if (press6==3) [file_opl.close(); break;}
if (presséa==1)

K=1;

for (i=0; i<(x+pcm_bits)+*pasc3; 1++)

if (i==k*(x+pcm bits)) {file ople<"\n"; k++;]}
?i1e_opl<<weighted_fa_mppm_data[i]<<" ",

file opl.closel);
]

break;

else 1f ((press3==8)|| (press3==-1)) [break;|

else gotoxy(19,50) ;
&5

316

PhD Thesis

cout<<"WRONG SELECTION.TRY AGAIN "<<endl;

?otoxy{54,4?};cin>>presss;l

if (press3i==-1} {[break;}
if (pressé==-1) {break;}
elrscr2();

delete [] mppm data; mppm data=0;

delete [] welghted_fa_mppm_data; weighted_fa_mppm_data=0;

delete [] mppm; mppm=0;
delete [] data; data=0;

}//end of if-else mppm_fa null statement

}//end of if-pressi(2) and (y!=1) and (yl=(x-1))

else if (prezssla=3i)
[mppm = new int [x*pasc2]; data = new int ([pcm bits*pasci];

weighted er mppm_data = new int [(x+pcm_bits)*pasc2];

if (mppm==NULL) {gotoxy(19,50);
COUt<<"NOT ENOUGHT MEMORY FOR MPPM2 ARRAY!!!l! "ezendl;)
else | gotoxy(56,11); cout<<erasure weight<<endl;

gotoxy (60,12); cout<<false_alarm_weight<<endl;

for (i=0; il<x*pasc2; i++) mppm([i] = 0O;
for (i=0; i<y-erasure_bits; i++) mppm[i]l = 1;

i=0; j=0; 1=0; m=0; extra pulses=0; k=1;

for (m=0; me2*pasc2; m++)

{ for (i=0; f<x-1; i++) if (mppmli+(k-1)#x]==1) j=i;

for (i=1; i<=y-srasure bits; i++)
{ if (mppm(k*x-i]==0) break;

else if (mppm[k#x-1i]==1) exXtra pulses++;
] if {extra_pulses==y-erasure_bits) break;

if (Jim{x-1))
| for (i=0; ie<j; i++) mppm[i+k#*x]=mppm[i+ (k-1)*x];
mppm [j+k*x+1] =1;

for (i=1; i<=extra pulses; i++)
mppm [j+K*xX+1+i1=1;

] 1=0; extra pulses=o;

else if ((j==(x-1)) && (extra pulses!=0))
{l=extra_pulses; k--; extra pulses=0;}

K++;

}//end of if-else mppm null statement

erasure_weight2=0;

if (data==NULL) {gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR DATA2 ARRAYI!L! "ecendl;)
else { for (i=0; izpcm bits*pasc2; i++) datali]l = 0;

w=0; row counter=0; bit counter=0; k=1;

for (l=1l; l<=pascl; 1++)

{ for (j=x; je<(x+pcm bits); j++)

{ for (m=0; m<pow(2,pcm bits); m++)
| for (i=0; i<x; i++)

Software Printout

if (mppm[i+(1-1)#*xX]==mppm_datali+(k-1)*(pcm_bits+x)]) row counter++; }

if ((row counter==(x-erasure bits)) &&

{ mppm datalj+({k-1)*(pcm bits+x)]l==1 }) bit counter++;

if (row counters==x-erasure bits) erasure weight2+s;
row_counter=0; K++;
| k=1;
if (bit_counters(erasure_weight2/2.0))

66

317

PhD Thesis

Software Printout

data [w+(1-1)*pcm bits]=1;
else if (bit counter< (erasure_weight2/2.0))
data[w+(1-1)*pcm bits]l=0;
else if (bit counter={erasure_weight2/2.0))
datalw+(1-1)*pem bits)=2;
bit counter=0; w++; erasure_weight2=0;

} k=1; w=0;

}//end of if-else data null statement

if (weighted er mppm data==NULL)
gotoxy(19,50) ;eout<<"NOT ENOUGHT MEMORY FOR WEIGHT-ERASURE "<<endl; |
else { for (i=0; i< (x+pem_bits)*pasc2; i++) weighted_er_mppm_data(i] = 0;

k=0;
for (m=0; mepasc2; m++)

for (i=0; 1<X; i++)
| weighted er mppm_data(k# (x+pcm_bits)+i] = mppm(k*x+i]; }
K++; l++;

}

k=0; 1=0;
?or (m=0; m<pascl; m++)

for (i=x; ie<x+pcm biteg; i++
| weighted er mppm data(k# (x+pcm_bits)+i] =
datal(l*pem bits)-x+1i];

k++; l++;

}//end of if-else weighted er mppm_data null statement

mppm = new int [X*pasc3]; data = new int [pcm bits#*pasc3];
weighted_fa_mppm_data = new int [(x+pcm_bits)*pasc3];

if (mppm==NULL) {gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR MPPM3 ARRAY!!!! "ecendl; }
else { for (i=0; i<x#*pasc3; i++) mppm([i] = 0;

for (i=0; i<y+fa19e_a1arm_bits; i++) mppm[i] = 1;

i=0; 4=0; 1=0; m=0; extra pulses=0; k=1;
for (m=0; me2*pasc3; M++)
{ for (i=0; iex-1; i++) 1if (mppm[i+ (k-1)*x]==1) j=i;

for (i=1; i<=y+false alarm bits; i++)
{ if (mppm[k*x-i]l==0) break;
else if (mppm[K*xX-i]==1) extra pulses++;
] if (extra_pulses=-=y+false alarm bits) break;

if (jl=(x-1))
{ for (i=0; i<j; i++) mppm[i+k#*x]=mppm[i+(k-1)*x];
mppm [J+Kk*x+1]=1;

for (i=1; i<=extra pulses; i++)
mppm [J+k*x+1+1]=1;

1=0; extra pulses=0;

else if ((j==(x-1)) && (extra pulses!|=0))
{1=extra_pulses; k--; extra_pulses=0;}

K++;

1
}//end of if-else mppm null statement

false alarm weight2=0;
if (data==NULL) [gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR DATA3 ARRAY!!I! "c<endl; }
else | for (i=0; i<pcm bits*pasc3; i++) datalil = 0;

w=0; row counter=0; bit counter=0; k=1;

for (1=1; l<=pasc3d; l++)

| for (j=x; j<(x+pcm bits); j++)

| for (m=0; mepow(2,pcm bits); m++)
for (i=0; i=x; i++)
if (mppm[i+(1-1)*x]==mppm_data[i+(k-1)*(pem bits+x)]) row_counter++; |}

&7

318
PhD Thesis

Software Printout

if | { row counter==(x-false alarm bits))} && { mppm_datalj+{k-1}*
(pcm bits+x)]==1)) bit counter++;
if (row counter=={(x-false_alarm_bits)) false_alarm_weight2++;
row_counter=0; K++;
} k=1;
if (bit counter > (false_alarm weight2/2.0))
data[w+(1l-1)*pcm bits]l=1;
else if (bit counter < (false alarm_weight2/2.0))
dataw+(1-1)*pem bits]=0;
else if (bit counter = (false_alarm weight2/2.0))
data [w+(1-1)#*pcm bits]=2;
bit counter=0; w++; false alarm weight2=0;
|] k=1; w=0;

}//end of if-else data null statement

if (weighted fa mppm data==NULL) {gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR WEIGHT-FA ALARM "<ecendl; |
else { for (i=0; i< (x+pcm_bits)*pasc3; i++) weighted fa mppm_datal[i] = 0;

k=0;

for (m=0; m<pasc3; m++)

{ for (i=0; i<x; i++)
| weighted fa mppm_data(k# (x+pcm_bits)+i] = mppm(k*x+i]; }
K++; L++;

k=0; 1=0;
for (m=0; m<pasc3; M++)
{ for (i=x; il<x+pcm bits; i++)

| weighted fa mppm datal(k# (x+pcm_bits)+i] =
data[{l*pem_bits)-x+i]; }

K++; l++;

}//end of if-else weighted fa mppm_data null statement

mppm_ws = new int [(X+pcm_bits+2+y) *pow(2,pcm_bits)];

if (mppm ws == NULL) {gotoxy(19,50);
coute<"NOT ENOUGHT MEMORY FOR MPPM-WS ARRAY *e<endl; |
else | for (i=0; i< (X+pcm_bits+2+y)+pow(2,pocm_bits); i++) mppm_ws[i] = 0;

flag ws=1;

k=0;

for (m=0; m<pow(2,pcm bits); m++)

{ for (i=0; i<x; i++) mppm ws[k* (X+pcm bits+2%y)+il=
mppm data[k#* (x+pem_bite)+1];

} K++;

a=0;
if (y%2-==0) a=y/2;
else a=(y/2)+1;

k=0; 1=0; n=0; row counter=0; nl=0; counter=0; flag=0; o0=0; w=0;
for (m=0; m<pow(2,pcm bits); m++)
{ for (p=0; p<a; p++)
[for (j=flag; jex; j++
[if ((mppm data[k* (x+pem bits)+j]l==1) && (counter!=0))
[ni=j; flag=nl+1l; break;}
else if ((mppm datalk#*(x+pcm bits)+]j]==1) && (counter==0))
{n=j; counter++;}

if ((n!=0) && (n!=flag)) { mppm_data[k®*(x+pcm_bits)+n-1]1=1;
for (2=0; Ze<pasc3d; Z++)

| for (3=0; J<x; j++) 1f (mppm data(k* (x+pem bits)+jl==
weighted fa mppm_data(l#* (x+pcm_bits)+j]l) row_counter++;

68

319
PhD Thesis

Software Printout

if (row counter==x) | for (j=x; j<x+pcm_bits; j++
| mppm ws([j+k* (x+pcm bits)+w*2*yl=
weighted fa mppm data[l# (x+pcm bits)+j] “mppm_data(k#* (x+pcm_bits)+]1;

if (mppm wsl[j+k* (x+pem bits) +we2+y] 1=0)

[mppm ws [(k+1) = (x+pcm bits)+w*2*y+ol++;]

mppm ws[]+k* (X+pcm bits)+wrisy]l=0;

| row _counter=0; 1=0; mppm_data[k#* (x+pcm_bits)+n-1]1=0; break;

else l++; row counter=0;
]
} 1=0; o+=2;

if ({ nlt=(n+1)) && (ni1t=0) } | mppm_datal(k* (x+pcm_bits)+nl-1]=1;
for (2Z=0; Z<pasc3; Z++)
{ for (1=0; q<%X; J++) 1f (mppm data[k#* (x+pcm bitg)+il==
weighted fa mppm datall+* (x+pcm bits)+j]) row counter++;
if (row counter==x) | for (j=x; j<x+pcm bits; j++}
{ mppm ws([{+k#* (x+pcm bits)+ws2+y]=weighted fa mppm data(l#* (Xx+pcm bits)+i]

“mppm data(k# (x+pecm_bits)+]];

if (mppm ws[i+k* (X+pcm bits) +w*2+y] 1=0)
{mppm ws[(k+1)* (x+pcm bits)+ws2eysol ++;]
mppm ws[j+k* (Xx+pcm bits)+w*2*y] =0;
| row_counter=0; 1=0; mppm_data[k* (x+pem_bits)+nl-11=0; break;

else l+4; row_countcer=0;

}
} n=0; nl=0; counter=0; row_counter=0; 1=0; 0+=2;

} K++; W++; flag=0; n=0; nl=0; row_counter=0; l=0; counter=0;

S == e oo 1/
k=0; 1=0; n=0; row_counter=0; nl=0; counter=0; flag=0; bit_counter=0;
1l=l; o=1; w=0;
for (m=0; m<pow(2,pcm_bits); m++)

{ for (p=0; pea; p++)
[for (j=flag; j<x; j++)
| if { (mppm datalk* {x+pcm_bits)+]j)==1)&& (counter!=0} }
[n1=1; flag=nl+1l; break;}
else if ({ (mppm data[k#*(x+pcm_bits)+]j] ==1) &k (counter==0})
{?-j; counter++; |
if (p==0) [o=1;}
if (ni=-1) { if (nl={x-1)) [mppm_datalk+* (x+pcm_bits)+n+1]1=1;
mppm data[k* (x+pcm bits:+n]-0;?
elze mppm_data [k#* (x+pcm_bits)+n]=0;
for (j=0; j<x; j++) 1if (mppm_data [k*(x+pcm_bits)+jl==1)
bit_counter++;
if (bit counter==y) [for (2=0; z<pow(2,pcm bits); z++)
| for (i=0; je<x; j++) if (mppm datalk* (x+pcm bits)+jl==
mppm datalll#*(x+pcm bits)+]j]) row counter+s+;
if (row counter==x) { for (j=X; j<x+pem bits; j++)
{ mppm ws[{+Kk*(X+pem bits)+wr2+y]=mppm datal[ll* (x+pcm bits)+i]
“mppm datalk* (x+pcm_bits)+]1];
if (mppm we[j+k* (X+pcm bits)+wk2+%y] 1=0)
{mppm ws[(K+1)* (X+pcm bits) +w=2*y+0]++;}
mppm Ws [j+k#* (x+pcm bits)+w*2+y] =0;
} row counter=0; ll=k+1l; bit counter=0; if (ni=(x-1))
{mppm data[k+*(x+pecm bits)+n+1]=0; mppm data[k* (x+pcm_bits)+n]=1;}
else Im?pm_data[k*tx+p¢m_bits}+n]-1;} break;
else 1l+4+; row_counter=0;
|
i
A R e B B e B S e S i

else if (bit counter==(y-1)) | for (2=0; z<pasc2; z++)
{ for (j=0; Jj<x; j++) if (mppm datalk* (x+pcm bits)+jl==
weighted er mppm datall#*(x+pcm bits)+j]l) row counter++;
if (row counter==x) [for (j=x; jex+pcm bits; j++)
{ mppm ws[j+k* (x+pem bits)+w*2*y]=weighted er mppm datal[l#*(x+pcm bits)+3j1"

mppm_data [(k* (x+pcm_bits) +j1;

69

320
PhD Thesis

Software Printout

if (mppm ws[j+k* (x+pcm bits)+w*22y] 1=0) |[mppm_ws[(k+1)* (x+pcm_bits)+w*2*y+0]l++;}
mppm ws[j+k* {x+pcm bits)+w*2%y]=0;
} row_counter=0; 1=0; mppm_data (k*(x+pcm_bits)+n]=1; bit_counter=0; break;

else l++; row counter=0;

} o+=2;
if (nli=0) { if (nli=(x-1) } |[mppm_datalk* (x+pcm_bits)+nl+ll=1;
mppm data[k#*(x+pcm bits)+nll=0;}
else mppm_data [k* (X+pem_bits)+nll=0;

for (j=0; j<x; j++) if (mppm_data[k* (x+pcm_bits)+jl==1) bit_counter++;

if (bit counter==y} [for (z=0; z<pow(2,pcm bits); z++)

| for (i=0; j<x; j++) if (mppm datalk* (x+pcm_bits)+]]==

mppm data[ll# (x+pom bits)+i]) row counter++;

if (row counter==x) [for (j=x; je<x+pcm bits; j++)

| mppm ws[j+k* (x+pem bits)+w*2*y] =mppm data[l1* (x+pcm bits)+j]"
mppm data [k* (x+pcem_bits)+3];

if (mppm ws[j+k*(x+pcm bits)+wr2*y] l=0) [mppm_ws[(k+1)* (x+pcm_bits)+wt2*y+0]++; |
mppm ws [j+K* (X+pcm bits)+w*2*y]=0;

} row counter=0; 1ll1=k+l; bit counter=0; if (nll={x-1}) [

mppm datalk#* (x+pem bits)+nl+1]1=0;

mppm data [k* (x+pcm bits)+nl]=1;}

else [mppm_data[k* (x+pem_bits)+nll=1;] break;

else 1l++; row_counters=0;

else if ([bit counter==(y-1)) | for (z=0; z<pasc2; Z++)

{ for (i=0; jex; j++) if (mppm data(k* (x+pcm bits)+j]l==

weighted er mppm data[l# (x+pcm bits)+j]) row counter++;

if (row counter==x} | for (j=x; j<x+pcm bits; j++)

{ mppm ws[j+k*(x+pcm bits)+w*2+y] =weighted er mppm data [Ll* (x+pcm bits)+jl"
mppm datalk#* (x+pcm bits)+jl;

if (mppm ws[j+k* (x+pcom bits)+w#*2*y] l=0) [mppm ws[(k+1)* (x+pcm bits) +w*2*y+0]++;]

mppm_ws
[1+k* (x+pcm bits)+w2+y]=0;
} row counter=0; 1=0; mppm data [k* (x+pcm_bits)+nll=1; bit_counter=0; break;
else l++; row_counter=0;
}
} n=0; nl=0; counter=0; row _counter=0; 1l=0; bit counter=0;
li=k+1; o+=2;
} k++; w++; counter=0; n=0; nl=0; flag=0; o+=2;
row counter=0; 1=0;
| bit_counter=0; 1ll=k+l;
presss=0;
gotoxy (19,50) ; cout<<"USE 2-PULSE ALGORITHM OR THE DETAILED? ‘"<<endl;
gotoxy (10,33} ;cin=>presss;
while ((pressSi=1)]||(press5!=2)|| (pressSi=-1) }
{ if (pressS==-1) |break; |
else if ((press5==1)||(press5==2)) [break;|}
else [gotoxy (19,50);
cout<<"WRONG SELECTION.TRY AGAIN "ecendl ;
gotoxy (10, 39) ;coutec" "ecendl;
gotoxy (10, 39) ;cin>>presss; }
=== m e e e eeeeecoeeeee /"

if (pressS==-1) (break;}

pressed=qQa;
gotoxy (19,50) ;
cout<<"DO YOU WANT TC DISPLAY THE SEQUENCE RESULTS? "<<endl;

gotoxy (10,44) ;cin=>press4;

J0

321
PhD Thesis

Software Printout

while ((press4i=1)|| (pressai=2)|| (press4i=-1} }
{ if (pressd==-1) break; |
else if ((pressds==1)|| (press4==2))} {break;|
else
[gotoxy(19,50) ;
cout=<"WRONG SELECTION.TRY AGAIN Tecendl ;
gotoxy (10, 44) ; coute<" “<<endl ;

gotoxy (10,44) ;cins>pressd; |

}
if (pressi==-1) {break;}

11=0; zero counter=0;
for (m=0; m<pow(2,pcom_bits); m++)

for (i=0; i<2; i++) {
1f (mppm ws[i+m* (x+pcm bits+2+y)]==0} [zero_counters+;}

if (zero counter==2) {[break;}
else {zero_counter=0; 11++;]
1

bit counter=0; row counter=0; i=0;
for (m=0; m<pow(2,pcm bits); m++)
{ if (mppm ws[i+m* (x+pcm bits+2+%y)}]==1)
{bit counter++;}//1-bit_counter=11//
i=x-1;
if (mppm we[i+m#* (X+poem_bits+2+%y)]==1) {row countetr++;)
//1-row_counter=3//

i=0;
}
-- /7
sequence = new f£loat [y+*(y+2)+1];
if (sequence==NULL) {[gotoxy(19,50);
cout<<"NOT ENOUGHT MEMORY FOR WS SEQUENCE ARRAY!!!l! "ecendl; }
else [for (i=0; i<y*(y+2)+1; i++) sequence[i] = 0;}
Zero counter=0; pulse counter=0;
pulse_counter2=0; 1=0; j=0; flag=1; limit=0;
for (w=Q; wa(y-1); ws+)
for (n=0; n<pow(2,pcm_bits); n++)
for (i=0; i<X; i++)
if ((mppm ws[i+1l#* (x+pcm bits+2%y)l==1) k& (i==0)&& (W==0)) {
Zero counter=0; pulse counter=1; pulse_counter=0;
for (m=i+l; m<x; m++} |
if (mppm wslm+l#* (x+pcm bits+2+y)]==1) [pulse counter2++;}
elseI {break;}
-- /7

if (pulse counter2==0) |

for (2z=0; 2<2; 2Z++)

sequence[1] =sequence [1]+ (mppm ws[(1+1)* (X+pem bite) +1*2%y4i]#
(row counter/pow(2,pcm bits)));

gequence [0] =sequence [0] + (mppm wa[(1+1)* (x+pcm bits)+1#2+y+]]+
((pow(2,pcm_bits) -row_counter) /pow(2,pcm_bits)));
J++;

}
else [
for {z=0; 2z<2; z++) |
sequence [pulse counter2*(y+1)+pulse counter]=
sequence [pulse counter2*(y+1)]+ (mppm ws[(1+1)*(x+pcm bits)+1*2*y+j]*
(row counter/pow(2,pcm bits)));

sequence [pulse_counter2+* {y+1)]l =sequence [pulse_counterz2#* (y+1}]1+

71

322
PhD Thesis

Software Printout

(mppm ws[(1+1)* (x+pcm_bits)+1#2+y+j]* ((pow(2,pem_bits) -row_counter)/
pow (2,pcm_bits)));
J++;

else if ((mppm we[i+l* (X+pem bits+2+y)]==1)&& (11=0) &{il=(x-1))){
Zero counter=0; pulse counter=0; pulse_counter2=0;

for (m=i-1; m>=0; m--) |

if (mppm ws[m+1* (x+pem_bits+2+y)]==1)
{pulse counter++;}

else
{zero counter=m; break;]

if ((pulse counter==0)&&(il=1)) |
pulse counter=0;
for (m=2ero counter-1i; m>=0; m--} |

if (mppm_ws [m+1* (X+pcm_bits+2#*y)] ==1)
[pulse counter++;}
else |break; }

if ((pulse counter==0)&&(w==0)) |
flag=0;
for (m=i+1; mex; m++) |

if (mppm ws[m+l* (x+pem bits+2+y)]==1) [pulse counterZ++;}
else [break;]

if (pulse counter2-==0) | for (2=0; 2<2; 2++)

| sequence [0] =sequence [0] +mppm ws [(1+41) * (x+pem_bits) +1#24y+3]; j++;] |

else [for (z=0; 2<2; zZ++)

{ sequence [pulse counter2#* (y+1)]=sequence[pulse_counter2#* (y+1)]+mppm_ws[(1+1)#
(x+pem bits)+1%*2%y+3]; J++;}

else [flag=0; for (z=0; z<2; zZ++) {j++:} }

|
else if { (pulse counter==0)&&(i==1)&&(w==0)) {
for (M=i+1; m<xX; m++

if (mppm ws [m+l#* (x+pem bits+2+y)]1==1) [pulse counter2++;|
else break; }

}
if (pulse counter2==0) {
for (2=0; 2<2; Z++) |

sequence [0] =sequence [0] + (mppm ws[(1+1)* (x+peom bits) +1#2+y+i]#
{ (pow(2,pem_bits) -row_counter) /pow(2,pem_bits)));

JH+;:

!

1
else {
for (2=0; Z<2; Z++
sequence [pulse counter2#*(y+1)]=sequence [pulse counter2* (y+1)]+
(mppm ws [(1+1)* (x+pcm_bits)+1*2*y+j]* ((pow(2, pcm_bits)-row_counter)
[powi(2, pem_bits)));

J+t;

1
else if (pulse counter==limit+1) |
for (m=i+l; mex; m++) |
if (mppm ws[m+l* (x+pcm bits+2*y)]==1) [pulse counterz++;|

else {break;}

|
if (flag==0) {

72

323

PhD Thesis

Software Printout

if (pulse counter2==0} |
for (z=0; z<2; z++) {sequence[pulse counter]=sequence[pulse counter]+
mppm ws[(1+1)* (X+pcm bits)+1%2%y+31; Ja+;}

’ else

for (z=0; z<2; z++) |sequence[pulse counterz* (y+1)+pulse counter]=
sequence [pulse counter2#*(y+1)+pulse_counter]+mppm_ws[{1+1)#
(x+pem_bits)+1*2%y+i];

jT+:}

]

else {

if (pulse counter2==0) |

for (2=0; 2Z<2; 2++)

gequence [pulse counter+l]=sequence[pulse counter+l]+

(mppm ws [(1+1)* (X+pcm bits)+1#2+y+]j]* (row counter/pow(2,pcem bits)));
sequence [pulse counter] =sequence [pulse counter] +(mppm ws[(1l+1)*
(x+pcm_bits)+1#2+y+]1] #{ (pow (2, pem_bits) -row_counter) /pow (2, pem_bits)));
J++;

|

else {

for (z=0; Z<2; Z++)

sequence [pulse counter2#* (y+1)+pulse counter+l]s=

seguence [pulse counter2+*(y+1)+pulse counter+1l]+ (mppm ws[(1+1)*

(x+pcm bitg)+1*2%y+j] * (row counter/pow(2,pem bits)));
sequence [pulse counter2* (y+1l)+pulse counter]s=

sequence [pulse counter2#(y+1l)+pulse counter]+

(mppm ws[(l+1)* (x+pcm bits)+l*2*y+jl=

((pow(2,pcm bits)-row_counter)/pow(2,pcm_bits)));

J+4s

1
else if ((mppm we[i+l* (X+pem bits+2*y) 1==1)&&(i==(x%-1)) } {
zero counter=0; pulse counter=0; pulse_counter2sl;

for (m=i-1; m>=0; m--) |

if (mppm ws[m+l* (x+pocm bits+2+y)]==1} [pulse counter++;]
else | {zero counter=m; break;}

if (pulse counter==0) |
pulse counter=0;
for (m=zero counter-1; m»=0; m--} |

if (mppm ws [m+1* (x+pcm bits+2*y)]==1) |{pulse counter+s+;|
else [break; }
]
if (pulse_counter==0) |
flag=0;

{
sequence [pulse counterl# (y+1)]=-sequence [pulge counter2* (y+1)]+
(mppm ws[(1+1)* (x+pcm bits)+1*2+*y+j]* (bit counter/pow(2,pem bits)));

sequence [0] =sequence [0] + (mppm ws [{1+1)#* (X+pcm bits)+1*2*y+j]*
((pow(2,pem bits)-bit counter)/pow(2,pcm_bits))); a4

I

for (2=0; 2<2; 2++)

else if (pulse counter==limit+1)} {

for (z=0; zZ<2; Z++)
sequence [pulse counter]=sequence [pulse_counter]+ (mppm_ws[(1+1)* (x+pcm_bits) +1*2*y+j]*
(bit counter/pow(2,pem bits)));
sequence [pulse counterz*(y+1)+pulse counter]s=
sequence [pulse counter2* (v+1l)+pulse countcer]+ (mppm ws[{(l+1)*
(x+pem_bits) +1#2+y+j1+ ((pow (2, pom_bits) -bit_counter) /pow (2,pem_bics)));
J++;

73

324
PhD Thesis

Software Printout

if (n==pasc) {break; }
}1++; j=0; if (le<=11) {flag:l;]

else {flag=0;|]
if (n==pase) {break; }

}1=0; j=0; flag=1; limit++;

for (i=0; 1<y*(y+2)+1; 1i++) [sequence[i]=(sequence(i]/(pem bits*pow(2,pcm_bits)));}

if ((press4==1)&&(presssS==2))
//gotoxy (0,57); coute<<"Ps:"<<endl; gotoxy(3,57);cout<<sequence [0]<<endl;

J/Eor (i=0; i<y; i++) | gotoxy(0,58+i);
//coutec"Ps.11:"ccendl; gotoxy(6,58+1) ;coutecsequence[i+l] <cendl;|

[/for (i=0; i<y; i++) | gotoxy(0,58+y+i); cout<<"Psl.l:"<<endl;
//gotoxy (6,58+y+1i) jooute<sequence [(i+1)#* (y+1)] <<endl;|

[/for (i=0; ie<{y-1); i++) { gotoxy(0,58+2*y+1i); cout<<"Ps1.1.11:"<<endl;
//gotoxy (9,58+2*y+1) joout<<sequence [(i+1)* (y+1}+1] <<endl;}

//for (i=0; iec({y-2); i++) { gotoxy(0,58+3%y-1+i); cout<<"Psll.l.l:"<<endl;
//gotoxy (9,58+3*y-2+1) ;cout<<gequence | (y+1)+2+1i] <<endl; |}

[/1f (y=4) [for (i=1; 1<0.5*y; i++) { gotoxy (0,58+d4*y-2+1);
//cout<<"Ps11.1.11:"<<endl;

//gotoxy (10,58+4*y-241) ;coutecsequence [(i+1) * (y+2)J<<cendl;} |

k=1; n=0; w=0; z=0;

for (i=0; i<y*(y+2)+1; i++) |

if (w>60) [(n++; w=0;]

gotoxy (0+w, 77+n) ; cout<<sequence [i]l<<endl;

wW=w+12;
if (i==k*y+2) [k++; D++; wWa0; 2++;)

delete [] sequence; sequence=o0;

else if (pressS==l)

sequence2 = new fleat [9];

if (seguence2==NULL) {gotoxy(1%,50);

cout<<"NOT ENOUGHT MEMORY FOR WS SEQUENCE ARRAY!!!l! "ecandl; }
else {for (i=0; i<9; i++) sequence2[i] = 0;}

for (i=0; i<2; i++) [sequence2[i]=sequence[i]; sequence[il=0;}
sequence? (3] =sequence [y+1] ; sequence[y+1]=0;
sequencel [5] =sequence [Y+2] ; sequence[y+2]=0;

for (i=2; l<y+l; 1++) {sequence2 [2] =sequence2 [2] +sequence [1] ;
sequence(i]=0;}
for (i=y+3; 1<2%(y+1); 1++) {sequence2[&]=sequence2[6]+
sequence[i]; sequence(il=0;}

for (i=2; icy; 1i++)
[sequence2 [4] =zequencel [4] +sequence [1* (y+1)] ;
sequence [i* (y+1)1=0;]

for (i=2; icy; i++)
{ sequence2 [7] =seguence2 [7] +sequence [i* (y+1)+1];
gequence [1* (y+1)+1]=0; |

for (i=0; i<y*{y+2)+1; i++)
{sequence2[8] =sequence? [8] +sequence [i] ; sequence [1]=0;}

if (press4==1) {
if (seguencel0]l<0) {sequencez[0]=sequence2[0]*(-1);]}
if (sequence[l]<0) {seguence2(1]=sequence2[1]*(-1);}
if (sequence[2]<0) {sequence2[2]-sequence2[2]*(-1)};|]
if (sequence[3]<0) {seguencez2 [3]=sequencez[3]=*(-1};}

74

325
PhD Thesis

if (seguencel4]<0) [sequencel[4]=
sequence2 [4] * (-1) ;
if (sequence[5]<0) {seguence2[5]=sequence2[5]+*(-1);]

if (sequence[&]<0)

Software Printout

|sequencel [6] =sequence2[&] *(-1) ;|

if (sequence(7]<0) {sequence2[7]=-sequence2[7]+(-1};
if (sequence(8]1<0) {seguencez[8]=sequence2[8]*(-1);

gotoxy(0,57); coute<"Ps:"<<endl;
gotoxy(3,57) ;cout<<sequence2 (0] <<endl;
gotoxy (0,58) ; cout<c"Ps.11:"<cendl;
gotoxy (6,58) ;cout<esequence2 (1] <<endl;
gotoxy (0,59); coute<"Ps.111:"<<endl;
gotoxy(7,59) ;cout<<secuence2 (2] <<endl;
gotoxy(0,60); coutec"Psl.1:"<<endl;
gotoxy (6, 60) ;coutecsequence2 [3] <<endl;
gotoxy(0,61); cout<<"Psl.ll:"<<endl;
gotoxy (7,61) ;cout<<sequence [4] <<endl;
gotoxy(0,62); cout<<"Psl.1.1:"<<endl;
gotoxy (8, 62) ;coute<gequence? [5] <<endl ;
gotoxy(0,63); cout<<"Psll.1.1:%<<endl;
gotoxy(9,63) ;cout<<sequence? [6] <<endl;
gotoxy(0,64); cout<<"Psl.1.11:"<<endl;
gotoxy (9, 64) ;coute<sequence2 [7] <<endl ;
gotoxy(0,65); cout<<"P811.1.11:%<<endl;
gotoxy(10,65) jcout<<sequence2 [8] <<endl;

/*if (sequence[8]<=0.0001)
i (sequence [B] «<=0.001)
else if (sequence(8]<=0.01)
else if (sequence[8]=<=0.1)
else if (sequence(8]<=0.2)
else if (sequence[8]<=0.3)
else if (sequence[8]<=0.4)
elge if (sequence[8]<=0.5)
else if (sequence[8]<=0.6)
else if (sequence(8]<=0.7)
else if (sequence([8]<=0.8)
else if (sequence[B]<=0.9)
else if (sequence[8]<=1)

else {sequence[8] =0#*sequence (8] ; }

if (sequence[7]<=0.0001)
else if (sequence([7]<=0.001})
else if (sequence[7]<=0.01)
else if (sequence[7]<=0.1)
else if (sequence([7)<=0.2)
else if (seguence[7]<=0.3)
else if (sequence[7]<=0.4)
else if (=2equence([7]<=0.5)
else if (sequence[7]<=0.8)
else if (sequencel7]<=0.7)
else if (sequence[7]<=0.8)
else if (sequence(7]<=0.9)
else if (sequence[7]=<=1)

else |sequence [7] =0*sequence[7] ;]

if (sequence[6]<=0.0001)
else 1f (sequencel&]<=0.001)
else if (sequence(6]<=0.01)
else if (sequence[6]<=0.1)
else if (sequence[s]<=0.2)
else if (sequence([&]<=0.3)
else if (sequence[€]<=0.4)
else if (sequencel6]<=0.5)
else if (sequence[&] <=0.8)
else if (sequence([£]<=0.7)
else if (sequence[6]<=0.8)
else if (sequence[6]l<=0.9)
else if (sequence[&]<=1)

else [sequence [6] =0*sequence[6] ;]

if (sequence [5]<=0.0001)
else if (sequence([5]<=0.001)
else if (sequence[5]<=0.01)
else if (sequence(5]<=0.1)
else if (sequence[5]<=0.2)
else if (sequence(5]<=0.3)
else if (sequence(5]<=0.4)
else if (sequence[5]<=0.5)

{sequence [8]=0.12*sequence [8] ; }
sequence [8] =0.27*sequence [8] ;
sequence [8] =0.31*sequence (8] ;
sequence [B] =0.09%*%sequence (8] ;
sequence [8] =0.05*sequence (8] ;
sequence [B] =0.04*sequence (8] ;
sequence [8] =0.03*sequence [8] ;
sequence [8] =0.02*gequence [8] ;
sequence [8] =0.02+sequence [B] ;
sequence [B] =0.01*sequence (8] ;
sequence (8] =0.02*gequence [8] ;
sequence [8] =0.01*sequence [8) ;
sequence [8] =0.16+sequence [8] ;

seguence [7] =0.12*sequence (7] ;
sequence [7] =0.27+*sequence [7] ;
sequence [7] =0.31*sequence [7] ;
sequence [7] =0.09*sequence [7] ;
sequence [7] =0.05*sequence [7] ;
sequence [7] =0.04*sequence [7] ;
sequence [7] =0.03*sequence [7] ;
gequence [7] =0.02*2equence [7] ;
sequence [7] =0.02%sequence (7] ;
sequence [7] =0.01*sequence [7] ;
sequence [7] =0.02*sequence [7] ;
sequence [7] =0.01*sequence [7] ;
sequence [7]=0.16%sequence (7] ;

sequence [6] =0.12*sequence [§] ;
sequence [6] =0.27*sequence (6] ;
sequence [6] =0.31+sequence (6] ;
sequence [6] =0.09*sequence (6] ;
sequence [6] =0.05*gaquence [§] ;
seqguence [6] =0.04*sequence [68] ;
sequence [6] =0.03*sequence [6] ;
sequence [6] =0.02%sequence (6] ;
sequence [6] =0.02*sequence [6] ;
seguence [6] =0.01*sequence (8] ;
sequence [6] =0.02*sequence [6] ;
seguence [6] =0.01*sequence [5] ;
sequence [6] =0.16*sequence [6] ;

sequence [5] =0.12*sequence [5] ;
sequence [5] =0.27*sequence [5] ;
sequence [5] =0.31*sequence (5] ;
sequence [5] =0.09*sequence [5] ;
sequence [5] =0.05*sequence [5] ;
sequence [5] =0.04*sequence [5] ;
sequence [5] =0.023*sequence (5] ;
seqguence [5] =0.02*sequence [5] ;

75

326

PhD Thesis

else if (sequence[5]<=0.6)
else if (sequence[5]<=0.7)
else if (sequence[5]<=0.8)
else if (sequence([5]<=0.9)
else if (sequence[5]<=1)

sequence [5] =0.02*sequence [5] ;
sequence [5] =0.01*sequence [5] ;
sequence [5] =0.02*sequence [5] ;
gequence [5] =0.01*=saquence [5] ;
sequence [5]=0.16%*sequence [5];

else | sequence [5] =0*sequence[5] ; }

if (sequence[4]<=0.0001)
else if (sequence(4]<=0.001)
else if (sequencel4]l<=0.01)
else if (sequence(4]<=0.1)
else if (sequence[4]<=0.2)
else if (sequence(4]<=0.3)
else if (sequence[4]<=0.4)
else if (sequence(4]<=0.5)
else if (sequence(4]<=0.6)
else if (sequence[4]<=0.7)
else if (sequence(4]<=0.8)
else if (sequence(4]<=0.9)
else if (sequence(4]<=1)
else

if (sequence[3]<=0.0001)
else if (sequence[3]<=0.001}
else if (sequence[3]<=0.01)
else if (sequence[3]<=0.1)
else if (sequence[2]<=0.2)
else if (sequence[3]<=0.3)
else if (sequence(3]<=0.4)
else if (sequence[3]<=0.5)
else if (sequence[3]<=0.6)
else if (sequence[3])==0.7)
else if (sequence(3]<=0.8)
else if (sequence(3])<=0.9)
else if (sequence[3]<=1)

gequence [4] =0.12*sequence (4] ;
gsequence [4]=0.27+sequence (4] ;
sequence [4] =0.31*sequence (4] ;
sequence [4] =0.09*sequence (4] ;
sequence [4] =0.05*sequence [4] ;
gequence [4] =0.04*secuence (4] ;
sequence [4] =0.03*sequence [4] ;
sequence [4] =0.02*sequence (4] ;
sequence [4] =0.02*gequence [4] ;
sequence [4] =0.01*sequence (4] ;
sequence [4] =0.02*sequence [4] ;
sequence [4] =0.01*sequence (4] ;
sequence [4] =0.16*sequence [4] ;
seguence [4] =0*sequence [4] ;]

sequence [3] =0.12*sequence [3] ;
segquence [3] =0.27*sequence [3] ;
sequence [3] =0.31*sequence [3];
seqguence [3] =0.09*sequence [3] ;
g2equence [3] =0.05*3aquence [3] ;
sequence [3] =0.04*sequence (3] ;
sequence [3] =0.03*sequence [3] ;
sequence [3] =0.02*sequence [3] ;
sequence [3] =0.02*sgequence [3] ;
sequence [3] =0.01*sequence [3];
sequence [3] =0.02*sequence (3] ;
sequence [3] =0.01%sequence [3] ;
sequence [3] =0.1&6*sequence [3] ;

elaze [sequence [3] =0*sequence[3] ;]

if (sequence[2]<=0.0001)
else if (sequence[2]<=0.001})
glse if (sequence([2]<=0.01)
else if (sequence(2]<=0.1)
else if (sequence(2]<=0.2)
else if (sequence[2]<=0.3)
else if (sequence[2]<=0.4)
else if (sequence(2]<=0.5)
else if (sequence[2]<=0.6)
else if (sequence[2]<=0.7)
else if (sequence([2]<=0.8)
else if (seguence(2]<=0.9)
else if (sequencel2]<=1)
else

if (sequence[1]<=0.0001)
else if (sequence[l]<=0.001)
alse if (sequence(l]<=0.01)
else if (sequence(l]<=0.1)
else if (sequence[1l]<=0.2)
else if (sequence(l]<=0.3)
else if (sequence(l]<=0.4)
else if (sequence[l]l<=0.5)
else if (sequence(l]<=0.86)
else if (sequence(l]l<=0.7)
else if (sequence(l]<=0.8)
elze 1if (sequence[l]l<=0.9)
else if (sequence(l]<=1)

sequence [2] =0.12*sequence (2] ;
sequence (2] =0.27*gsequence [2] ;
seguence [2] =0.31*sequence [2] ;
seguence [2] =0.09%*sequence [2] ;
sequence [2] =0.05#sequence (2] ;
sequence [2] =0.04*sequence [2] ;
sequence [2] =0.03+sequence (2] ;
sequence [2] =0.02*sequence [2] ;
seguence [2] =0.02*sequence [2] ;
sequence [2] =0.01*sequence [2] ;
sequence [2] =0.02*sequence [2] ;
sequence [2] =0.01*sequence [2] ;
seguence [2] =0.16*sequence [2] ;
sequence [2] =0*szeguence [2] ; |

sequence [1] =0.12*sequence [1] ;
sequence [1] =0.27*sequence [11] ;
sequence [1]=0.31*sequence [1];
sequence [1]=0.09%*sequence (1] ;
sequence [1] =0.05*sequence (1] ;
gequence [1] =0.04*sequence (1] ;
sequence [1] =0.03*sequence (1] ;
sequence [1]=0.02*gequence (1] ;
sequence [1] =0.02*sequence (1] ;
sequence [1]=0.01*sequence (1] ;
sequence [1] =0.02*sequence (1] ;
sequence [1] =0.01*sequence [1];
sequence (1] =0.16*sequence (1] ;

else {sequence (1] =0#*sequence(1] ;}

if (sequence [0]<=0.0001)
else if (sequence[0]<=0.001)
else if (sequence[0]<=0.01)
else if (sequence([0]<=0.1)
else if (sequence(0]<=0.2)
else if (sequence[0]<=0.3)
else if (sequence[0]<=0.4)
else if (sequence[0]<=0.5)
else if (sequence(0]<=0.6)
else if (sequence[0]l<=0.7)
else if (sequence[0]<=0.8)
else if (sequence(0]«=0.9)
else if (sequence(0]<=1)
else

sequence [0] =0.12*sequence [0] ;
sequence [0] =0.27*sequence [0] ;
sequence [0] =0.31*sequence [0] ;
sequence [0] =0.09*sequence [0] ;
sequence [0] =0.05*sequence [0] ;
sequence [0] =0.04*sequence [0] ;
sequence [0] =0.03*sequence [0] ;
sequence [0] =0.02*sequence [0] ;
sequence [0] =0.02*%sequence (0] ;
sequence [0] =0.01*sequence [0] ;
sequence [0] =0.02*sequence [0] ;
sequence [0] =0.01*sequence [0] ;
sequence [0] =0.16*sequence (0] ;
seguence [0] =0*sequence [0] ; |

76

327

Software Printout

PhD Thesis

Software Printout

f/for (i=0; i<9; i++) [gotoxy(0,77+i); cout<<seguence2[i]<<endl;)

for (i=0; i<24; i++) [standard ws([i])=(standard ws([i] *sequence2 [0]);}
for (1=0; 1i<24; 1++) {ps 11[il={(ps 11[1i] *sequence2 [1]} ;]

for (i=0; i<24; i++) [ps 111 [i)=(ps 111[i] *sequence2[2]);}
for (i=0; i<24; i++) {psl 1[il=(psl 1[i] *sequence2[3]};}

for (1=0; 1<24; 1++) {p2 1 1 1[i]l=(ps 1 1 1[1i]+*sequence2([5]);
for (i=0; i<24; 1++) {ps 11 1 1[i]=(ps 11 1 1[i]*secuence2[s]
for (i=0; i<24; i++) {ps 1 1 11[il=(ps 1 1 11(i)*sequencez(7
for (1=0; i<24; i++) {ps_11_1_11[i]1=(ps_11_1_11(1i] *sequence2|

i}
i |

1)1}

for (1=0; i<24; 1++) {standard ws[i] = standard ws[i] - off standard ws [i] +
ps 11[1)

!
)
)
8

off ps 11([i] + ps_111(1]) - off_ps_111[i] + psl_1[1] - off_psi_1[1i] +
ps 11 1I[1] -

off ps 1 1 10[i] + ps_11_1_1[i] - off_ps_11_1_1 [i] + ps_1_1_11[i] -
off pal 1 11([4] +

ps_11_1_11([1) - off_ps_11_1_11[i];}

for (i=0; i<24; i++)
if (standard ws([il<0) [standard ws[i]l=standard ws[i]*(-1};]
gotoxy (0,77+1); cout<<"\n"<<standard ws[i]<<endl;

for (i=0; i<24; i++) |
if (standard ws[i]l<0) [minimum=0;}
else minimum:standard_ws[i];}
pulse enerqgy = minimum * photeon enerqgy;
energy in frame = pulse energy * mark space correction;
energy per pcm bit = (energy in frame/pcm bits);
dBm = 10 * (log((energy per pcm bit*B) /pow(10,-3))/log(10));
To;oxy{0,105+i}; cout=<"\n"z<dBm<<endl ;
*

--- /"
delete [] sequence; sequence=0;
delete [] sequencel; sequencel=0;
sequence = new float [y#*y+y-1];
if (sequence==NULL) |[gotoxy(19,50);
cout<<"NOT ENCUGHT MEMORY FCR WS SEQUENCE ARRAY!!!! "ezendl;]
else [for {i=0; i<(y*y+y-1); i++) sequence[i]l = 0;}
zZerc counter=0; pulse_counter=0; pulse_counter2=0; 1l=0; j=0;
flag=1; limit=0;
for (w=0; we(y-1); w++)
for (n=0; n<pow(2,pem_bits); n++)
for (i=0; i<x; i++)
if ((mppm ws[i+1* (x+pcm bits+2%y)]==1) && (1==0) && (Ww==0}) |
Zero counter=0; pulse counter=0; pulse counter2=0;
for (2=0; 2<2; 2++) [J++;}
1
--- %

elge if ((mppm ws[i+l* (X+pem bite+2*y)]==1)&&(11=0)&&(il=(x-1)) }{
zero counter=0; pulse counter=0; pulse_counter2=0;

for (m=i-1; m>=0; m--) {
if (mppm ws[m+l#* (x+pem bits+2*y)]==1) [pulse counter++;}
| else |zero counter=m; break;}
if ({(pulse counter==0)&&({il=1)) |
pulse counter=0;
for (m=zero counter-1; m»=0; m--) {

if (mppm ws(m+l#* (x+pem bits+2*y)]l==1) (pulse counter++; |
else {break; }

if ((pulse counter==0)&&(w==0}) |

flag=0;
for (z=0; z<2; z++) [j++;]

77

328
PhD Thesis

Software Printout

1

else if (pulse counter==limits+1) |
for (m=i+l; mex; m++) |

if (mppm ws[m+l# (x+pcm bits+2*y)l==1) [pulse counterz++;}
else {break;}

if (flag==0) |
if (pulse counter2==0) | for (2=0; Z2<2; Z++)
{ sequence [pulse counter]=sequence [pulge counter]+
mppm ws [(1+1) # {x+pcm bits)+1+2+¢y+3]; J++;] flag=0;]
else
{ for (2=0; 2<2; 2++) [sequence([pulse counter2#* (y+1)+
pulse counter]=sequence [pulse counterl* (y+1l)+pulse counter]+
) mppm_ws [(1+1) * (x+pom_bits)+1#2*y+3]; J++;] flag=0;)

else i
if (pulse counter2==0) |
for (z=0; z<2; z++) |
seguence [pulse counter+l]=sequence[pulse counter+1]+
(mppm ws [(1+1)* (x+pcm bits)+1*2*y+]j] * (row counter/pow(2,pem_bits)));
sequence [pulse counter] =sequence[pulse counter]+
(mppm ws[{1+1)* (x+pcm _bits)+1*2*y+j]*((pow(2,pcm_bits) -row_counter)
/pow (2, pem_bits)));
4+

else {

for (z=0; z<2; z++) |

sequence [pulse counter2#*(y+1)+pulse counter+ll=

sequence [pulge counter2*(y+l)+pulge counter+l]+

(mppm ws [(1+1) * (x+pem bits)+1*2*y+i] * (row counter/pow(2,pem_bits)));
sequence [pulse counter2* (y+1)+pulse counter]=

sequence [pulse counter2#(y+1)+pulse counter]+

(mppm ws [(1+1) * (X+pem_bits)+1*2*y+j] * ((pow (2,pem_bits) -row_counter)
/pow (2, pem_bits)));

J++;

|
flag=0;

else if ((pulse counter==0)&&(i==1)&&(w==0)) |
for (m=i+l; m<x; m++) |

if (mppm ws[m+l* (x+pcm bits+2*y)l==1) [pulse counterz++;}
else [break;}

]

if (pulse counter2==0) |

for (2=0; 2<2; Z++)

sequence [1] =sequence [1] + (mppm ws[(1+1)#* (x+pcm bits)+1l#2+y+]]#
(row counter/pow(2,pcm bits)));

445

I
else |
pulse counter=l;
for (2Zm0; 2<2; Z++) |
sequence [pulse counter2#*(y+1l)+
pulse counter]=sequence [pulse counter2* (v+1l)+pulse counter]+
(mppm ws [(141) * {x+pcm bits)+1#2#%y+]j]* (row counter/pow(2,pcm bits)));

78

329

PhD Thesis

Software Printout

else if (pulse counter==limit+l) [for (z=0; Z<2; z++) {j++;} |

else if ((mppm we[i+l* (x+pcm bite+2*y) 1==1)&&(1==(x-1))) |
Zerc counter=0; pulse counter=0; pulse counter=1;

for (m=i-1; m>=0; m--) {

if (mppm ws[m+l* (X+pecm bits+24y)]l==1) [pulse counter++;]
else {zero_counter=m; break;)

if (pulse counter==0) |
pulse counter=0;
for (m=zerc counter-1; m>=0; m--} |

if (mppm ws[m+1% (X+pcm bits+2%*y)]==1) {pulse counter++;}
else |break;)

I

if ((pulse counter==0)&&{w==0)) |

flag=0;

for (2=0; 2<2; 2++) [j++;]

else if (pulse counter==limit+1} |

if (flag==0) |

for (z=0; m<2; z++) |

sequence [pulse counter2# (y+1)+pulse counter]s=

seqguence [pulse counter2*(y+1)+pulse counter]+ (mppm ws[({1+1)*

(x+pem bits)+1+#2%y+j]l* (bit counter/pow(2,pem bits)));

sequence [pulse counter] =sequence [pulse counter] +

(mppm ws[(1+1)* (x+pcm_bits)+1*2*y+jl=* ((pow(2,pcm_bits)-bit_counter)
/pow(2,pcm_bits)));

T++;

}

else {

seguence [pulse counter+l]=sequence[pulse counter+1]+

(mppm ws[(1+1) * (x+pcm bits)+1*2%y+j]*(row counter/pow(2,pcm_bits)));
sequence [pulse counter2#(y+1) +pulse counter]=
sequence [pulse counter2* (y+1)+pulse counter]+ (mppm ws[({l+1)*
{x+pcm bits)+1*2%y+j]l» (bit counter/pow(2,pcm bits)));
sequence [pulse counter]=sequence([pulse counter]+
(mppm ws [(1+1)* (x+pcm bits)+1*2*y+j]l* ((pow(2,pem_bits) -

bit counter-row counter) /pow(2,pcm bits))) ;
1++;

else if (pulse counter==limit+l) | for (z=0; Z<2; z++) [j++;] |

if (n==pasc) [break; |
}le4; 3=0; if (1<=11) {flag=1;}
else {flag=0; |
if (n==pasc) {break; }

J1=0; j=0; flag=1; limit++;

79

330
PhD Thesis

Software Printout

for (i=0; i<(y*y+y-1); i++)
{sequence[i] =(sequence [1]/ (pem_bits*pow(2,pem bits)));}

if ((pressd==1)&&(pressb==2))
[/tor (1=0; izy; i++) | gotoxy(0,58+1); coutz<"Ps.101:"<<endl; gotoxy(7,58+1);
//cout<<sequence [1+1] <<endl; }

[/for (i=0; iey-1; i++) | gotoxy(0,58+y+i); coute<"Psl1.1011:"<<endl;
//gotoxy (9,58+y+1) jeoutz<sequence [1+ (y+2)] <<endl;}

f/for (i=0; ie<y-2; i++) | gotoxy(0,58+y+1+1); coute<"Ps1011.1:"<<endl;
[/gotoxy (0,58+y+1+1) jcoutecsequence[(1+1) % (y+1)+1] <<endl;)

k=1; n=0; w=0; 2=0;
for (1=0; deyty+y-1; 14+4) |
if (w>60) [n++; w=0;}
gotoxy (0+w,105+n) ; cout<<sequenceli] <<endl;

W=wW+12;
if (i==k*y+2) {K++; D++; w=0; 2Z+4+;}

delete [] sequence; seguence=0;

}
else if (pressS5==1)

sequence? = new float [6];

if (sequence2==NULL) |gotoxy(19,50);

cout<<"NOT ENOUGHT MEMORY FOR WS SEQUENCE ARRAY!!!! "ecendl; |
else [for (i=0; 1<6; i++) seguencez(i] = 0;}

sequence2 [0] =sequence (1] ; sequence(l]=0;
sequence2 [2] =sequence [y+2] ; sequence [y+2]=0;

for (i=2; i<y+l; i++) [sequence2 [1] =seguence2 [1] +sequence[i] ;

sequence [1]=0; }

for (1=2; ic<y; i++) {sequencez [3] =sequence2 [3] +sequence [1# (y+1)+1];
sequence [1* (y+1)+1)=0;]

if (y»2) { for (i=y+23; i<y+6; i++) { sequence? (4] =sequencel [4] +sequence [i];
sequence [1]=0; |

else [sequence2[4]=0;}

for (i=0; i<y*y+y-1; 1++) [sequencel[5]=sequence2[5]+sequence(i]; sequence[i]=0;)

if (pressd4==1) |
if (sequencez([0]1<0) |seguencez[0]=sequencez[0]*(-1};}
if (sequence2[1]<0) {|sequence2[l]=sequence2[1]*(-1);
if (sequence2[2]<0) {sequence2[2]=sequencel[2]*(-1);
if (sequence2[2]1<0) {sequence2[3]=-sequence2[3]%*(-1);
if (sequencez[4]<0) [sequencez[4]=sequence2[4]*(-1);]
if (sequencez [5]<0) {sequence2([5]=sequence2[5]*(-1);

gotoxy (0,68) ; cout<<"Ps.101:"<<endl;

gotoxy (7,68) ;cout<esequence? [0] ecendl;

gotoxy (0,69); cout<<"Ps.1101:"<<endl;

qotoxy (8,689) ;cout<<sequence2 [1]<<endl;

gotoxy (0,70) ; cout<=<"P8.1011:"<<endl;

gotoxy (8,70) ;cout<esequence?2 [2] <<endl;
gotoxy (0,71); couts<"P2.10111:"<<endl;

gotoxy (9,71) ;cout<<sequence2 [3] <<cendl;
gotoxy (0,72); cout<<"Ps.11011:"<<endl;

gotoxy (9,72) ;coutccsequence? [4] <<cendl;
gotoxy (0,73) ; cout<<"Ps.110111:"<<endl;

gotoxy (10, 73) ;coute<sequencel [S5] <<endl ;
J/for (i=0; i<6; i++) |[gotoxy(0,87+i); cout<<sequence2[i]l<<endl;)

/*for (i=0; i<24; i++) |ps 101[il=(ps 101[i] *sequence2[0]);}
for (1=0; i<24; i++) [ps 1101(i]=(ps 1101 (1] *sequencez (1])]

for (i=0; i<24; i++) {ps_1011(il=(ps_1011(i] *sequencez([2]);}

80

331
PhD Thesis

Software Printout

for (i=0; i<24; i++) [ps_10111[il=(ps_10111[i] *sequence2[3]};]

for (i=0; i<24; i++) {[ps 11011[i]=(ps 11011[i] *sequence2[4]};}
for (i=0; i<24; i++) {ps_110111[i]=(ps_110111[i] *sequence2 [5]};}

for (i=0; i<24; i++) [standard ws[i] = standard ws[i] -

off standard ws[i] + ps 101[i] - off ps 101[i] + ps 1101[i] -
off ps 1101[i] + ps 1011[1] - off p= 1011[1] + ps 10111[1] -

off ps 10111(1i] + ps 11011([1] - off ps 11011 ([i] + ps_110111[i] -
off ps 110111([1i];}

for (1=0; 1<24; i++)
if (standard ws[i]<0) [standard ws([il=standard ws[il#*(-1);]
gotoxy (0,77+1) ; coutz<"\n"<<standard_ws[i] <<endl;

for (i=0; i<24; i++) |
if (standard wslil<0) {minimum=0;]
else {minimum=standard_ws[i];)

pulse energy = minimum * photon energy;
energy in frame = pulse energy * mark space correction;
energy_per_pcm_bit = (energy_in frame/pcm_bits);

dBm = 10 * (log{(energy per pcm bit#B) /pow(10,-3))/log(10));
gotoxy (0,105+1); cout<<"\n"<<dBm<<endl;
} x/
delete [] sequence; sequence=0;
delete [] sequence2; sequence2=0;

delete [] mppm data; mppm data=0;
delete [] weighted er mppm data; weighted er mppm data=0;
delete [] weighted_fa_ mppm_data; weighted fa_mppm_data=0;

delete [] mppm; mppm=0;
delete [] data; data=0;

}//fend of if-else mppm_ws null statement

of if-pressl(3) for yl!=1 or yl=(x-1)
--- I

counter=0;

gotoxy (19,50) ;

cout<<"WHICH ERRCR RATE ARRAY TO DISPLAY? "ecendl ;

gotoxy (64,47) ;einss>press3;

while ((press3i=4) || (press3!=5)||{press3i=6))

if (press3==4) |

1f ((yl=1)&&(yl=(x-1}} } {

if (flag er==1)

gotoxy (0,56); cout<<"MPPM ERASURE ERROR RATE ARRAY "ecendl;

counter=print error rate arrays (mppm er,pow(2,pcm bits) ,X,y.pcm bits

press3,x,y,aut pasc,aut pasc2,aut pasc3,aut pem bits,pem bits,pasc,pasc2,

pasc3, start number,end number, pressl,press2,press3,pressd,presss);

gotoxy (14,47) ; cout<<counter<<endl;

pressé=0;

—— /"

do

{

gotoxy(19,50) ;

cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "ezendl;

gotoxy (33,47) ;cins>presss;

if (pressé==-1) [break;}

if (pressé==2) (break;|

if (pressé==3) ({break;|

}while (presséi=1);

if (pressé==3) [file op.close(); break;}

if (pressé==1) |

k=1;

for (i=0; i<(x+y+pom_bits)*pow(2,pcm _bits); i++)

if (i==k* (x+y+pecm bits)) {file opz<"\n"; k++;]
}file_op<<mppm_er[il<<" LIF

g8l

332
PhD Thesis

Software Printout

file op.close();

clrser2(); break;

else
{gotoxy(19,50) jcout<<"NOT CALCULATED YET.PLEASE TRY AGAIN "<cendl ;
gotoxy (64,47) ;eoutes "<<endl; gotoxy(64,47) ;cinsspress3;|

else if (y==1) |
if (flag er==1) |

gotoxy (0,56} ; cout<<"MPPM ERASURE ERROR RATE ARRAY "s<endl;
counter=print error rate arrays (mppm er,pow(2,pcm bits),x,1,pcm bits,press3,
X,¥,aut pasc,aut pasc2,aut pasc3,aut pcm bits,pcm bits,pasc,pasc2,pasc3,
start number,end number,pressl,press2, press3, pressd, presss);

gotoxy (14,47); cout<<counter<<endl;

do

{

gotoxy (19,50) ;

cout<<"DO YOU WANT TCO SAVE THE DATA IN A FILE? "<<endl;
qgotoxy (33,47) ;cinsspresss;

if (pressé==-1) {break;}

if (pressé==2) [|break;|]

if (pressé==3) |break;|

}while (press6i=1);

if (pressé==3) (file op.close(); break;)

if (press€==1) {

k=1;

for (i=0; i<(x+y)*pow(2,pcm_bits); i++)

if (i==k*(x+y)) [file op<<™\n"; k++;]
file op<<mppm_er[il<<" ";

?ile op.close();

clrser2(); break;

else {gotoxy(19,50);

cout<<"NOT CALCULATED YET.PLEARSE TRY AGAIN "<<endl;

gotoxy (64,47) ;coute<c" Vecendl; gotoxy(64,47);cin>>pressi;]
i

elge if (ym=(x-1)) {

if (flag er==1) |

gotoxy (0,56) ; cout<<"MPPM ERASURE ERROR RATE ARRAY "ecendl ;
counter=print error rate arrays (mppm er,pow(2,pcm bits) ,x,y,pcm bits,press3,
X,y,aut pasc,aut pasc2,aut pasc3,aut pcm bits,pem bits,pasc,pasc2,pasc3,
start number,end number,pressl,press2,press3,pressd,pressS);

gotoxy (14,47); cout<<counter<<endl;

do

gotoxy (19,50) ;

cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "ecendl ;
gotoxy(33,47) ;einsspresss;

if (pressé==-1) break;l

if (presse6==2) break;

if (pressé==3) [break;|

}while (presssi=1);

if (press6==3) [file op.close(); break;)

if (pressé==1) |
k=1;

for (i=0; i< (x+y+pom_bits)*pow(2,pem_bits); 1++)

if (l==k* (x+y+pcm bits)) {file op<<"\n"; k++;!}
file_op<<mppm_er(il<e" ";

file op.close();

clrsecr2(); break;
else {gotoxy (19,50) ;

cout<<"NOT CALCULATED YET.PLEASE TRY AGAIN "<<endl;
gotoxy (64,47) ;coute<® “"ecendl; gotoxy(64,47);cins>pressi;|]

else if (press3==5) |
if ({yt=1)&&(yl=(x-1))) {

82

333
PhD Thesis

Software Printout

if (flag fa==1) |

gotoxy (0,56) ; cout<<"MPEM FALSE ALARM ERROR RATE ARRARY "<<endl;
counter=print error rate arrays (mppm fa,pow(2,pcm bits),x.y,pcm bits,
press3 ,¥,y,aut pasc,aut pascZ,aut pasc3,aut pem bits,pcom bits,pasc,pasc2,
pasc3, start number,end number,pressl,press2,pressl, pressd,presss);

gotoxy (14,47); cout<<counter<<endl;

do

gotoxy (19,50) ;

coute<"DO YOU WANT TO SAVE THE DATA IN A FILE? "ecendl ;
gotoxy (33,47) ;cins>pressé;

if (pressg==-1) |break;
if (pressé==2) break;
if (pressé==3) [break;]

}while (presséi=1),;

if (presse==3) [file op.cleose(); break;}

if (pressé==1) |
k=1;

?nr (1=0; i< (x+pcm_bits+X-y) *pow (2,pem_bits); i++)

if (i==k* (X+pcm bits+x-y)) {file op<<"\n"; k++;]
file op<<mppm_falile<<" *;

file op.close();

clrser2(); break;

else

{gotoxy (19,50) ;cout<<"NOT CALCULATED YET.PLEASE TRY AGAIN "ecandl;
otoxy (64,47) ;cout<<® "ecendl; gotoxry(64,47);cinss>press3;|]
else if (y==1) {

if (flag fa==1)

gotoxy (0,56) ; cout<<"MPEM FALSE ALARM ERROR RATE ARRAY "ecandl ;

counter=print error rate arrays (mppm fa,pow(2,pem bits),x,y.pcem bits,
press3,x,y,aut pasc,aut pasc2,aut pasc3,aut pcm bits,pcm bits,pasc,pasc2,
pasc3, start number,end number,pressl,press2,press3, pressd,presss);
gotoxy (14,47); cout=<counter<<endl;

?O

gotoxy (19,50);

cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "eecendl;
gotoxy (33,47) ;cin->presss;

if (pressé==-1) [break;|

if (pressé==2) (break;}

if (pressé==3) [break;]

lwhile (presssi=1);

if (pressé6==3) [file op.close(); break;)

if (pressé==1) |

k=1;

for (1=0; i<(2*x+pcm_bits-y) *pow(2,pem_bits); i++)

if (i==k=*(2%x+pcm bits-y)) {file_ope<<"\n"; k++;}
fi}.le_op<<mppm_ta{i]<<" v,

Tile op.close();

clrsecr2(); break;

else
{gotoxy (19,50) ;oout<<"NOT CALCULATED YET.PLEASE TRY AGAIN "e<endl;
?ntnxyf64,¢7!;cnutcc" Vecendl; gotoxy(64,47);cins>press3;}

else if (ym=(x-1)) [

if (flag fa==1)

gotoxy (0,56) ; cout<<"MPPM FALSE ALARM ERROR RATE ARRAY Yecendl;
counter=print error rate arrays (mppm fa,pow(2,pcm bits) ,x,y,1,press3,
¥,¥,aut pasc,aut pasc2,aut pasc3,aut pcm bits,pem bits,pasc,pasc2, pasc3,
start number,end number,pressl,press2,press3d,press4,presss);

gotoxy (14,47); cout<<counter<<endl;

do

{

gotoxy (19,50) ;

cout<<"DO YOU WANT TC SAVE THE DATA IN A FILE? "<<endl;
gotoxy (33,47) ;cins>presss;

if (pressé==-1) |break;
if (presse==2) break;
if (pressé==3) break;

83

334

PhD Thesis

Software Printout

twhile (pressél=1);
if (pressé==3) [file op.close(); break;]
if (pressé==1) |

k=1;
for (1=0; i< (x+x-y)*pow(2,pcem bits); i++)

if (i==k# (xs+x-y)) [file opeec"™\n"; ke+;)
file op<<mppm_fa[i]l<<" ;

file op.closel);

clrscr2(); break;

else
{gotoxy (19,50) ;eout<<"NOT CALCULATED YET.PLEASE TRY AGAIN "e<endl;
gotoxy (64,47) ;coutec® "ecendl; gotoxy(64,47);cinsspressi;]

]

else if (press3==6) |

if ((yl=1)&&(yl=(x-1))) {

if (flag ws==1)

gotoxy (0,56} ; cout<<"MPPM WRONG SLOT ERRCR RATE ARRAY "<<endl ;
counter=print error rate arrays (mppm ws,pow(2,pcm bits),x,y,pcm bits,
press3,X,y,aut pasc,aut pasc2,aut pasc3,aut pcm bits,pcm bits,pasc,pasc2,
pascl, start number,end number, pressl,press2,pressi,press4,presss);

gotoxy (14,47); cout=<counter<<endl;

do

gotoxy (19,50) ;

cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "ezendl;
gotoxy (33,47) ;cin>>presss;

if (pressé==-1) {break;}

if (pressé6==2) break;

if (pressé==3) break;

}while (pressél=1);

if (press6==3) (file_op.close(); break;)

1f (pressé==1)

k=1;

?nr (1=0; i<{x+pom_bits+y+y)+pow(2,pem_bits); i++)

1f (im=k* (x+pcm bits+y+y)) {[file_ope<"\n"; k++;]
file_opccmppm_ws[i]<<n ",

file op.closel();

clrscr2(); break;

else
{gotoxy (19,50} ;cout<<"NOT CALCULATED YET.PLEASE TRY AGAIN "<<endl;
gotoxy (64,47) ;coute<" Vecendl; gotoxy(64,47);cins>press3;}

else if (y==1) {

if (flag ws==1) {

gotoxy (0,56) ; cout<<"MPPM WRONG SLOT ERROR RATE RRRAY “ecendl ;
counter=print error rate arrays (mppm ws,pow(2,pcm bits) ,X,y,.pcm bits
press3,x,¥,aut pasc,aut pasc2,aut pasc3,aut pem bits,pem bits,pasc,pasc2,
pasc3, start number,end number, pressl,press2,press3,pressd,presss);
gotoxy (14,47) ; cout<<counter<<endl;

do

{

gotoxy (19,50) ;

cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "ccendl;
gotoxy (33,47) ;cins>presss;

if (pressé==-1) |break;]

if (pressé==2) {break;|

if (pressé==3) [break;}

}while (presssi=1);

if (pressé==3) {file op.close(); break;|

if (pressé==1} {

k=1;

for (i=0; i<(x+pcm_bits+y+y) *pow(2,pcm_bits); i++)

if (i==k*(x+pcm bits+y+y)) {file_op<<"\n"; k++;}
file_op<<mppm_ws[i]l<<" ';

file op.close();

84

335

PhD Thesis

Software Printout

]

clrscr2(); break;

else

{gotoxy (19,50} jcout<<"NOT CALCULATED YET.PLEASE TRY AGAIN "ecendl;
gotoxy (64,47) ;coute<® Vecendl ; gotoxy(64,47);cins>press3;}
elge if { v

==(x-1)) {
if (flag ws==1) |
clrscr2();
gotoxy (0,56) ; cout<<"MPPM WRONG SLOT ERROR RATE ARRAY Uecondl;
counter=print error rate arrays (mppm ws,pow(2,pcm bits) ,x,v,.pem bits
press3, X,y,aut pasc,aut pasc2,aut pasc3,aut pcm bits,pem bits,pasc,
pasc2,pasc3, start number,end number,pressl,press2,press3,pressd,presss);
qotoxy (14,47); cout<zcounter<<endl;
do

gotoxy (19,50) ;

cout<<"DO YOU WANT TO SAVE THE DATA IN A FILE? "eeendl;
gotoxy (33,47) ;cins>presss;

if (pressé==-1) {break;|

if (pressé==2) {break;}

if (pressé==3) [break;|

lwhile (pressél=1);

if (pressé==3) [file op.close(}; break;)

if (pressé==1)

k=1;

1f (i==k*(x+pcm bits+y+y)) {file op<<"\n"; K++;]
file op<<mppm_ws[il<<" ;

?ile op.close();

clrser2(); break;

else

{gotoxy(19,50) ;ecout<<"NOT CALCULATED YET.PLEASE TRY AGAIN "e<endl;
gotoxy (64,47) ;coute<" "ecendl; gotoxy(64,47);cins>press3;}
|

else if (| (press3==8)|| (press3==-1)) {break;}

else | gotoxy(19,50);

cout<<"NOT VALID SELECTION.PLEASE TRY AGAIN "e<cendl;

Tatoxy(64,4?l;cin>>press3;}

if (press3==-1) |[break;]
gotoxy(19,50) ;
cout<<"TO EXIT PRESS -1: "ccendl ;
gotoxy (36,50) ; cin=squestion;
}//end of while-loop

}//end of main

//-Control Panel
void control_panel ()
{

gotoxy (0,0);
cout<<®| |

85

336
PhD Thesis

|l
cout<<"| |
|n.
cout;<"|[
[%5
cout;<“||
|u.
coute<h ||
¥
cout<<"| |
| %
coutz<"| |
1=
coutc< ||
11"
coutz<"||
11°;
coute<" | |
e
coutee" ||

11"s

| =

cout<<"| |

cout<<| |
[v;
coute<y ||
1%
coute<"| |
|14
cout=<"| |

|n.
i

coute< ||
| ¥z

coutech | |
| =

coutee"| |

L1z

cout;<"|[
112

cout<<"| |
[1"s

| 5
cout;<“|[
| ¥

I
coute<t| |
|

cout<<n | |

[v;

|z
coute<"| |
",

11"
1
H

coute<"| |

",
i

coutez"| |
| %5

cout<<®| |
[

coute<"| |
||r|'

cout<<®| |

Software Printout

| MPPM BIT ERROR RATES CALCULATION |

|

|TO EXIT PRESS:

MANUAL INPUTS |

| ENTER CORRECT

Number of Slotse:
Number of Pulses:
Pascal's Number:

PCHM BITS:

Erasure Number:

False Alarm Number:

INPUT CONTROL

PANEL |

-1 AT ANY TIME|

| AUTOMATIC CALCULATIONS

INTEGERS ONLY | MAXIMUM

PCM

Maximum MPPM Number:
Erasure Weight:
False Alarm Weight:

Pascal's Number:

BITS:

Erasure Number:

False Alarm Number:

PRESS 1, 2 OR 3 TO CHOOSE BIT ERROR RATE
1 ERASURE ERROR 2 FALSE ALARM ERROR 3 WRONG SLOT ERROR
Choice:
| PCM DATA |

1 LINEAR INCREMENT

2 LINEAR DECREMENT

3 GRAY-CODE NUMBER

4 RANDOM NUMBERS

| &

PRESS 1, 2, 3, 4,

5, 65 T 8| 7

9 OR 10 FOR THE DATA USING | 8

LINEAR MAPPING OR ALGORITHMS| 9

5 READ NUMBERS | =mm e | 10
| |
Number: | Choice: | Range: -
| |
| OUTPUTS |
ALGORITHM |
—————————————————————— | PRESS 1, 2, 3 UNTIL 9 TO | ARRAYS

1 2-Pulse 2 Original

SELECT:

PRINT MAPPING ARRAYS AND |=-=--=-==-==-m-mmemeee

MPPM ERROR RATE ARRAYS AND | 1 MPEM-DATA ARRAY

THEN PRESS 1, 2 UNTIL 3 TO | 2 ERASURE WEIGHT

MANIPULATE THE

86

337

RESULTS | 3 FALSE ALARM WEIGHT

---------- | 4 ERASURE PCM ERROR

PhD Thesis

Software Printout

a
Q
=
=
A=
A
=
[
1
'
'
'
'
]
[
[l

5 FALSE ALARM PCM ERR
i Wl
coltex 1 1 o
1] YES 2 NO | WRITE ARRAY 2 DW/LD FPGA | & WRONG SLOT PCM ERR
[
CoUte<® elect: 3 o
"|| sel | ONTINUE |
|*;
COUL<Ll || =mmmmmmm e | | 8 MO DISPLAY-EXIT
|15
Colut«< 2 0 M
"] | | 9 RANDOM DATA NUMBERS
1%
cout<<"|| Statistics: | select: | Chooice:
|55
sotteet | | |
cout<< ||
[.5
coute<" || PROGRAM MESSAGE:
|1";
coutee" ||
11"s
coutec! | |
|| "ccendl;
------- 54%T
I e T T T T T AT T ST T R T T T i S m e e i I
//-Pascal's Number Calculation
unsigned long double pascal cale (int %, int y)
unsigned long int a.b,c,value,value2,value3,pasc; int i; //T
if (y>=x-y) //T
| value=y+l; a=y+2; valueld=x-y; c=x-¥-1; //T
for (i=1; iexX-y; i++) //(x-y)=*T
[value=value*a; a++;}
for (i=1; i<x-v; i++) S ix-y)*T
[valuez=value3d*c; c--;}
pasc=value/valuel; /T
| else Jl-===-- 45T+ (2% (X-¥) *T)
| value=x-y+1; a=x-y+2; value2=y ; b=y-1; //T
for (i=1; ie<y; i++) //y*T
{walue=value*a;a++; |
for (i=1; i<y; i++})
{valuez=value2+*b;b--;} [/y*T
pasc=value/value2;
| return pasc; //T
} Jlmmmmmm- 4*T+2%y*T

//8variables=7long double+linteger

//-Print Random Data-vertical printing-
veid print randem array (int #data, unsigned leong int pasc¢ 1, int %_1, int x,
int y, unsigned long int aut pasc,
unsigned long int aut pasc2,
unsigned long int aut pase3, int aut pem bits, int pem_bits,
unsigned long int pasc, unsigned long int pasc2,
unsigned long int pasc3, int start number, int end number,
int pressl, int press2, int press3i, int pressd4, int presss)
{ int i; int j; int k=0; int number=0; int 1=x-1; char dummy=0; F /T

for (j=0; je<pasc_1; j++) //pasc

87

338
PhD Thesis

Software Printout

| for (i=0; i<x 1; i++) P
| if (datalk*x 1+il==1) number=number+pow(2,1-1i); //T

aelse number=number ;
| coutccnumber<<endl; number=0; kK++; {fT
] cout<<"\n\nPress any button and then enter te continue: "; cins>dummy;//T
clrscri);

control panel () ;
£ill data(x,y,aut pasc,aut pasc2,aut pasc3,aut pem bits,pem bits,pasc,pasc2,
pasc3,start number,end number,pressl,press2,press3, pressd,presss);
§i il { (x*T+T) *pasc) + (2*T)
f /=== & variables = 5 integer + 1 char

//-Print Random Data2-horizontal printing-

void print random array? (int *data, unsigned long int pasc 1, int x 1, int x,
int y, unsigned long int aut pasc,
unsigned long int aut pasc2, unsigned long int aut pasc3,
int aut pem bits, int pem bits, unsigned long int pasc,
unsigned long int pasc2, unsigned long int pasc3,
int start number, int end number, int pressl, int press2,
int press3, int press4, int presss)

{ int i; int j; int k=0; int number=0; int l=x-1; char dummy=0;

for (j=0; j<pasc 1; j++) [/pasc
[for (i=0; i<x 1; 1++) [f/x

| if (datalk*x 1+il==1) number=number+pow(2,1-i); //T

else number=number ;

| ecoutzznumber<<'\t'; number=0; k++; //T
} cout<<"\n\nPress any button and then enter to continue: "; cins>dummy; //T
clrseri();
control panel ();
£ill data(x,y,aut pasc,aut pasc2,aut pasc3,aut pem bits,pem bits,pasc,pasc2,pasc3,

start number,end number,pressl,press2,press3, press4,presss);
} /f----6 variables = 5 integers + 1 char
//===--pasc# (x#T+T)) +T

//-Print Input Arrays

void print input arrays (int #*mppm, unsigned long int pascl, int x1, int x, int y,
unsigned long int aut pasc, unsigned long int aut pasc2,
unsigned long int aut pasc3, int aut pem bits, int pem_bits,
unsigned long int pasc, unsigned long int pascz,
unsigned long int pasc3, int start number, int end number,
int pressl, int press2, int press3, int pressd4, int presss)

{ int i=0;int j=0;int k=0;const limit=290;char dummy=0;

for (i=0; i<xlzpascl; 1++)
| %f (k==x1*limit)

cout<<"\n\nPress any button and then enter to continue printing: *;
cinz>dummy;

clrscr();

control panel();

£ill data(x,y,aut pasc,aut pasc2,aut pasc3,aut pcm bits,
pcm bits,pasc,pasc2,pasc3,start number,end number,
pressl,press2,press3, pressd,presss);

gotoxy(0,56); coute<"\n"; k=0;//3+T

!
if (j==X%1) { cout<<"\n"; j=0;] //2¢T
cout<<mppm(i] ; j++; k++; [/T
| cout<<"\n\nPress any button and then enter to print the next array: ";
cins>dummy; //T
clrscr();
control panel(};
fill data(x,y,aut pasc,aut pasc2,aut pasc3,aut pcm bits,pcm bits,pasc,
pasc2,pasc3,start_number, end number,pressl, pressl,pressi,
pressd,presss);
Y} £fmm-- 5 variables = 4 integers + 1 char
JFEEEEEE (6*T) *x*pasc+ (2*T)

a8

339
PhD Thesis

Software Printout

void £i11 data (int x, int y, unsigned long int aut pasc, unsigned leong int aut_pasc2,
unsigned long int aut pasc3, int aut pem bits, int pcm_bits,
unsigned long int pasc, unsigned long int pasc2,
unsigned long int pasc3, int start number, int end number,
int pressl, int press2, int press3, int press4, int presss)

gotoxy(19,10); cout<cX<c<endl;

gotoxy (20,11); cout<<y<<endl;

gotoxy(57,13); cout<<aut pasc<<endl;

gotoxy(56,15) ; cout<caut pascie<<endl;

gotoxy (60,16) ; cout<caut pasc3e<<endl;

gotoxy(50,14); cout=<aut pem bits<<endl;

gotoxy (61,10); cout<<pow(2,aut pcm bits)<<endl;
gotoxy(72,10) ; cout<cpow(2,aut_pcm_bits)-aut_pasce<endl;

gotoxy(12,13); cout<<pcm bits<<endl;
gotoxy(19,12); cout<<pasc<<endl;
gotoxy(18,15); cout<cpasc<c<endl;
gotoxy (22,16) ; cout<<pasci<<endl;
gotoxy(33,23); cout<e<pressl<<endl;
gotoxy (33,32); cout<<press2<<endl;

if ((press2==1)|| (press2==2) || (press2==3)) {
gotoxy(10,32) ;
cout<<start_number<<endl;

else |
gotoxy (62,32); cout<<start number<<endl;
gotoxy (€8,32); cout<<end number<<endl;

gotoXy (64,47) ; coutz<press3d<<endl;
gotoxy(10,44); cout<<pressd<<endl;
gotoxy (10,39) ; cout<<pressSc<endl; //20T

//-Print Error Rate Arrays
int print error rate arrays (int *mppm, unsigned long int pasc 1, int x_1, int y_1,
int pecm bits 1, int press, int x, int v,
unsigrned long int aut pasc, unsigned long int aut_pascl,
unsigned long int aut pasc3, int aut pem_bits,
int pem bits, unsigned leng int pasc,
unsigned long int pasc2, unsigned long int pasc3,
int start number, int end number, int pressl,
int press2, int press3, int press4, int pressS)

int i; int j=0; const limit=2%0; char dummy=0; int p=0; int k=0; int counter=0;
int x1; int y1;

if ((press==4)&&(y 1i=1)&&(yl=I(x 1-1))) [x1=x 1+¥+pcm_bits_1;
yl=y 1;

else if ((press==4)&&(y 1l==1))} [x1=x 1+1;
yl=y 1;}

else if ((press==4)&&(vy 1==(x 1-1)) } [x1=x l+v+pem bits 1;
yl=y_1;}

else if ((press==5)&&(y 1!=1}&&(y 11=(x 1-1))) {x1=2#X l+pcm bits 1-y_1;
yl=xX 1-y 1;1}

else if ((press==5)&&(y l==1)) [x1=2#+x 1l+pcm_bits_1-y_1;
vi=x 1-v 1;}

else if ((press=aS)&&(¥y l==(xX 1-1))) [x1=2%x 1-y 1;
yl=xX_1-y_1;}

else if ((press==6)&&(y 1!=1)&&(y li=(x 1-1))) {xl=x l+pcm_bits_l+2*y;
yl=2%y; |

else if ((press==6)&&(y l==1)} } [X1=x l+pcm bits 1+2*y;
yl=2%y;

else if ((press==6)&&(y l==xX 1-1)) [x1=x 1+pcm bits_1+2%y;
yl=2%y;} //18*T

J == e oo %

if (x1=65) //x*pascs*T

for (i=0; i<xl*pasc_1; i++)

89

340
PhD Thesis

Software Printout

if (k==x1*limit)

cout<<"\n\nPress any button and then enter to continue printing: “<<endl;

cin==dummy ;

clrscr() ;

control panel();

£ill data(x,y,aut_pasc,aut_pasc2,aut_pasc3, aut_pcm_bits,pem bits, pasc, pasc2,
pasc3,
start number,end number,pressl,press2,press3,pressd,presss);
gotoxy (0,56) ; cout<<"\n"; k=0;

] if (J==x1-yl+p) [cout<<" “;p++;}
if (J==x1) {ecout<<"\n"; 3=0;
if (p==yl) [p=0;}
coutesmppm[i] ; J++; K++;

| ecout<="\n\nPress any butten and then enter to print the next array: "<<endl;
cins=dummy ;

}

else |
for (i=0; i<xl*pasc_1; i++)
{
if (k==x1*limit
cout<<"\n\nPress any button and then enter to continue printing: *
<<endl ;
cinz>dummy;
clrscr();
contreol panel () ;
£ill data(x,y,aut pasc,aut_pasc2,aut_pasc3,aut_pcm bits,pem_bits,
pasc,
pasc2,pasc3,start number,end number,pressl, pressi,
press3, pressd ,presss) ;
gotoxy (0,56); cout<<"\n"; k=0;
if (j==x1-y1l+p) [coutccmppm[ilec<® *; p++;]
if (p==y1} {[cout<<"\n";p=0;}
if (j==x1) {J=0;}
d++5 K+4;
| coute<"\n\nPress any button and then enter to print the next array: "
<<endl;
cins=dummy;

counter=0; //T
if ((press==4)Ek(y _1l=1)EE{ ¥y _1!=(x_1-1)) }
for (i=0; i<pasc_1; i++)
Ifor (J=0; Jeyl; J++)
!coun:er=counter+mppmi{(i+1}-[x_1+pcm_b1ts}]+{i*y1)+j]; //14*pascry*T
)
llse if ((press==4)&&(y _1==1))}
for (i=0; i<pasc_1; i++) {counter=counter+mppm(({i+1)#*x_1)+1];}
else if ((press==4)&&(y 1l==(x 1-1)})
{ for (i=0; ic<pasc_1; i++)
for (j=0; j<yl; j++)
counter=counter+mppm [((1+1)* (x_l+pecm_bits 1))+ (1#y1)+]];

| I
else if ((press==5)&&(y_1!=1)&&(yl=(x_1-1)))

for {i=0; i<pasc_1; i++)

for (j=0; Jjeyl; Jj++)

{
counter=counter+mppm{ { (i+1)*(x l+pcom bits 1))+ (i*yl)+]];

}

!
else %f { (press==5)&&(y 1==1))

90

341
PhD Thesis

fﬂr (i=0; i<pasc_1; i++)
for (j=0; jeyl; Jj++)
{

counter=counter+mppm(((i+1)#*x 1)+ (i*yl)+3];

else if ((press==5)&&(y==(x-1)))
for (i=0; i<pasc_1; i++)

counter=counter+pem bits;

else if ((press==6)&&(y_1!=1)&&(y_1!=(x_1-1)))
{for (i=0; i<pasc_1; i++)
[for (J=0; Jeyl; J++)
counter=counter+mppm[((i+1)*(x%_1+pcm_bits_1))+{i*yl)+3l;
!
else if ((press==6)&&(y_1==1})
[for (i=0; i<pasc_1; i++
for (1=0; j<yl; j++)
counter=counter+mppm(({(i+1)#x_1)+ (1#y1)+]];
)
else it ((press==6)&&(y==(x-1))})
for (i=0; i<pasc_1l; is++
for (J=0; jeyl; j++)
{counterscounter+mppm[tfi+1]*[x_1+pcm_bits_1}b4{i*y1:+j];
}
!

clrserl);
control panel({}); //3T

Software Printout

fill data(x,y,aut pasc,aut pasc2,aut pasc3,aut pcm bits,pcm bits,pasc,pascl,pasc3,

start_number,end number,pressl, pressl,pressi, pressd, presss);

return counter; //T

//----9 variables = 8 int + 1 char

91

342

PhD Thesis

== = e 1/
Iy COMMENTS i
[/ === = e e o e e mtn s e s eoene)
//Program: Create Permutation according to MPEM codewords it
ffcut: Final i
//Date: 13/0%/07 i
//Aauthor: Konstantinos Nikolaidis Lof
//Inputs: Keyboard (Pascal's Number) /
//Description: Save all possible permuations of an MPPM mapping I/
I
5;Time Analysis: BEST CASE: 22#T+N=*T WORST CASE: 24#T+2*N*T+sizesT /5
/
[//8pace Analysis: 112 bits + 1 int pointer /f
A /!
/== e e sesoseseesooooo /1
i CLASSES ¥
== /7

#include <stdioc.hs
#include <iostream.h>
#include <fstream.h>

unsigned long int counter; //global variable

f = e e e e 1"
void print{const int *v, const int size) //print function
fstream file opl ("mapping dec.txt",ios::app|ios::in);
//write in decimal form all permutaions-possible mappings
it (!file opl) |[cerr<<"File could not be opened"<<endl;
if (v 1= 0)
for (int 1 = 0; i < size; i++) |
file opl<<v[il<<" ¥;
. !
file opl<<endl;
counter++; [/2+T+size*T
file copl.close(); //4*T
} //best-4+#T worst-6+T+size*T
J == e s /"
TOid visit({int *Value, int N, int k)
static level = -1;
level = level+l; Value([k] = level;
if (level == N) {print(Value, N);)
else |
for (int 1 = 0; 1 < N; i++) |
if (valuelil==0) [visit(Value, W, i};}
!
level = level-1; Valuelk] = 0; //best-6*T worst-&6*T+N*T
e e e R e e e e e e R e i S S S i L e i o e i e /
\.{roi d main()
int N;
int *Value;
counter=0;
while (1)
{
counter=0;

coute<"Enter Pascal's Number Pleasge?"; /fz*pcm_bitsspascal's Number

cins==N;
if (N==-1) [break;} //exit with -1
Value = new int [N];

for (int i = 0; i < N; i++) |

343

Software Printout

PhD Thesis

Valuel[i] 0;
}

visit (Value, N, 0};

delete [] Value; Value=0;

coute<"\nThe nu

344

per of different mappings is:"<e<counter<<endl; //12=T+N*T

Software Printout

PhD Thesis

Appendix D

APPENDIX D

Mathematical Analysis
Matched Filtering

12-2 MPPM SYSTEM

NORMALIZED BANDWIDTH OF 30

345
PhD Thesis

Matched Filtering

Set up the scan limits

0
1:=0,1..9 n:=10 0| os19
PRI 1] 0521

i o ange 2| 0521
xi= Oun This gives the row of the matrix &y 0522
v=14] 0523
yi=0.n This gives the column of the matrix 5| 0524
6| 0525
Preamplifier terms 7| 0526
g) 8| 0527
fy = 1210 Preamp bandwidth 51 o052
8, = 1610 2 Preamp noise at input - double sided Philips TZA 3043
9 ;
B:=1.10 Bit rate
-1 PCM bit time
B
m_bits- Ty)
P it Slot time
X
M= 10 Number of like symbols in PCM
nq:=1.610" L Quantum energy
A= 1.5510" ° This is the wavelength of operation
-34_ 8
66310 ~ -3.10
photon_energy :=
A na
Ro e ——
photon_en
Pulse shape terms o
. Ry = 1.247
0.1874.T, o R Th
o= — % £.T
£, wTe o = 0.012
wp 1= 2o, wpn == 270, T

346

PhD Thesis

Thn *
TRI=Q R

Pulse(t) := -exp

1 i
V2monTy | 54,2
<"n
Pulse shape

Matched filter only

“pn

2.T

Ip(t) =

ek

) "*‘l’[(“n' ""‘pn)zj|‘ex|’(""pn'q'erf{“n'“’m

Matched Filtering

Ty = 0.012

1
2'(-*u

Li(t) =

2.

-exX]
Iy

ti=-1,-099.6

810"
o
e 10

(0 4<10°

noise i= :—I_;‘n -exp[[n‘,,-wp,,)g]-erfc{un- wp,,)

Set up the pulse shapes

12-2 and 12-3 Systems
vglt) i= Iglt)
Vorolt) == Ig(t)

Vorrott) = In(t) + It — 1)

347

¢ \2
I‘)pnz P[(%-wm)?]mp(_uw-l)- exp[—[u.,-wpn B 3.“:-)} - {l:z"va"

‘-"n"-*’pn'ﬁ

T
g

075050250 02505075
L

noise = 3.578 x I09

slope,y(t) == I)(t)
slopeyp(t) := Ij(1)
slopeolt) = Li(t) + Lt — 1)

PhD Thesis

Matched Filtering

Vor1olt) := Igt) + Iglt = 1) + Ip(t = 2) slopeqpp(t) = Lj(t) + Li(t = 1) + Ij(t = 2)
Voror(t) i= Ig(t) + Ig(t - 2) slopegy(t) i= L(t) + I)(t = 2)

Vorro1(t) i= To(t) + Tyt = 1) + Ig(t = 3) slopeqyor(t) = Lj(t) + L(t = 1) + Ij(t = 3)
Voronnlt) i= Lolt) + Tt — 2) + Ly(t — 3) slopegn(t) := Li(t) + Lt — 2) + Ij(t - 3)
voroiolt) := Lolt) + Tglt — 2) + Tt — 4) slopegyoi(t) = Lit) + Tj(t — 2) + Li(t — 4)

upto 12-4 System

Vorinolt) == Tp(th + Ip(t = 1) + Tt = 2) + Ip(t = 3)
Voror(t) = Ig(t) + Ly(t = 1) + Iy(t — 2) + Iy(t = 4)
Vorion1(t) = Ip(t) + Ig(t — 1) + Tt — 3) + Ig(t — 4)

Vororn1(t) = Ig(t) + Ipt — 2) + Ig(t = 3) + Io(t — 4)
slopegqo(t):= () + Lt = 1)+ Lt = 2) + L)(t - 3)

slopeyyop(t) == Lt + Lt = 1)+ Li(t = 2) + Li(t— 4)
slope oty == Li(t) + Lt — 1)+ Ij(t — 3) + Li{t — 4)
slopeyopp(thi= Ij(t) + Ij(t = 2) + Iyt = 3} + Lt - 4)

upto 12-5 System
Vornnnoft) = Lol + Tglt = 1) + Iglt = 2) + Ig(t — 3) + Ly(t - 4)

Vorinnon(t) == Io(t) + Iglt — 1) + Tt — 2) + Iglt — 3) + Ip(t — 5)
Vorrnonn(t) = Ip() + Igt = 1) + Ip(t = 2) + Iglt = 4) + Ip(t = 5)

Vorrorni(t) = Ig(t) + Tg(t — 1) + Tg(t = 3) + Ig(t — 4) + It - 5)
Voror111(t) = In(t) + Ig(t = 2) + Ig(t = 3) + Ig(t = 4) + Lt = 5)
slopeyypo(t) == I(t) + L(t = 1)+ L(t = 2) + Li(t = 3) + Lt - 4)

slopeyo(t) = L(t) + Lj(t — 1) + Lt — 2) + Li(t — 3) + Ij(t - 5)
slopeyon(t) i= Li(t) + L(t = 1) + Lt = 2) + L{t = 4) + Ij{t - 5)

slopegon(t) = Lt + L{t = 1)+ Lt = 3) + Li(t = 4) + Li(t - 5)
slopegpyp(t) = Ii(t) + Lj(t = 2) + Lj(t = 3) + Lt — 4) + I(t - 5)

upto 12-6 System

Vorrnnnnolt) i= Ig(t) + Iolt = 1) + Ig(t — 2) + In(t — 3) + Iglt — 4) + Iyt = 5)
Vorrnnon(t) = Iglt) + Tg(t = 1) + Tglt = 2) + In(t = 3) + Lt = 4) + Tp(t = 6)

348
PhD Thesis

Matched Filtering

Vorrnon(t) = Iglt) + Tglt = 1) + Tolt — 2) + Ig(t — 3) + Iglt — 5) + Ig(t - 6)

vorrtor11(t) i= lp(t) + Ip(t = 1) + Ip(t = 2) + Ip(t — 4) + Ig(t — 5) + Ig(t - 6)
Vortoni () = Ip(t) + It — 1) + Lt — 3) + Lyt — 4) + It — 5) + Ig(t — 6)

Voot = Iplt) + Ip(t = 2) + Ig(t — 3) + Iy(t — 4) + Iyt — 5) + Ly(t — 6)
slopey)pppoft) = L(t) + Ti(t — 1) + Lt = 2) + j(t — 3) + Li(t— 4) + L;(t - 5)

slopeqypon(t) = (Y + Lt = 1) + 1j(t = 2) + Li(t = 3) + Lt = 4) + Li{t - 6)
SlO]JEuuo]](l) = Il(l:i + It(l - 1)+ I](l = 2) + Il(l =3)+ Lj(t- 5)+ It(l - 6)

slopegyor(t) i= (0 + Ii(t = 1) + Li(t = 2) + Li(t — 4) + L;(t = 5) + Li(t - 6)
slopey o) = L + Lt = 1) + Lt = 3) + [i(t — 4) + [)(t = 5) + [}(t - 6)

slope oy () = L0 + Tt = 2) + it = 3) + Li(t — 4) + Lj(t = 5) + Ij(t - 6)

upto 12-7 System
Vorrrnnnolt) = Iglt) + Ig(t — 1) + Iplt — 2) + Ip(t — 3) + It — 4) + Ig{t — 5) + Iglt — 6)

Vorrnnnnon(t) = Tglt) + Tglt — 1) + Tt — 2) + It — 3) + Tt — 4) + It — 5) + Ig(t = 7)
Vorrront(t) := Ip(t) + Tg(t = 1) + Tg(t = 2) + Tg(t = 3) + Tp(t = 4) + Iyt = 6) + Iy(t = 7)

Vorrntonni(t) := Ip(ty & It = 1) + Ip(t = 2) + Ig(t = 3) + Ip(t = 5) + Iglt = 6) + It = 7)
Vorrroni1(t) i= Ig{t) + Tglt — 1) + Tg(t — 2) + Tplt — 4) + It — 5) + Tt — 6) + It — 7)

Vortorinn1(= Tty + Tt = 1) + Ig(t = 3) + Ig(t = 4) + T(t = 5) + Iglt = 6) + Ty(t = 7)
Voror() 3= Tg(t) + To(t = 2) + Tg(t = 3) + Tt — 4) + Ty(t = 5) + Tyt — 6) + Iyt = 7)
slope ot := L) + Lt — 1) + Tj(t = 2) + Li(t = 3) + Li(t — 4) + Li(t = 5) + Li(t - 6)
slopeqyipm(t) = Lit) + Lt = 1)+ Li{t = 2) + Li(t = 3) + L(t = 4) + Li(t = 5) + Li{t = 7)
slopeyyon(= LD + Tt — D+ Lt—2) + (t—3) + L{t— 4 + L(t— 6) + L(t—)

slope o) := L) + Lt = 1)+ Li(t = 20+ Li(t = 3) + Lt = 5) + Li(t = 6) + Lj(t = 7)
slopeyypopn(t) := L) + Lt — 1)+ Lt — 20 + Tt — 4) + Li{t = 5) + Li{t - 6) + Li(t - 7)

slope oyt i= Lt + Lt = 1) + Ij(t = 3) + Lt = 4) + Li{t = 5) + Ig(t = 6) + Ig(t = 7)

slopeo111111(t) = L (6) + T(t— 2) + it — 3) + L(t— 4) + L(t — 5) + Lot — 6) + Iyt — 7)

349

PhD Thesis

Matched Filtering

upto 12-8 System
vorrnnaielt) = Tg(t) + Tg(t — 1) + Tg(t — 2) + Tg(t — 3) + Tg(t — 4) + In(t — 5) + Ig(t — 6) + Tp(t = 7)
Vorrnrnon(t) i= Ig(t) + Ip(t = 1) + Ig(t = 2) + Iglt = 3) + In(t — 4) + Iyt — 5) + Lp(t — 6) + Lot — 8)
Vornnnon(t) i= Lo(t) + Iglt = 1)+ It — 2) + Ig(t = 3) + Iyt — 4) + Ig(t — 5) + Lyt = 7) + It — 8)
Vorrrtonint) i= Iglt) + Iolt — 1) + Tolt — 2) + Lglt — 3) + ot — 4) + It — 6) + Lylt — 7) + Iglt — 8)
Vorrnnornnn(t) = Ig(t) + Tg(t — 1) + Tg(t — 2) + Tg(t — 3) + Ig(t — 5) + Ip(t — 6) + Ig(t — 7) + Ig(t — 8)
Vornonni1(t) = Tg(t) + Ig(t = 1) + Ig(t = 2) + Tg(t — 4) + Tg(t — 5) + Ly(t — 6) + Ly(t — 7) + Io(t - 8)
Vorrorinnilt) = Ip(t) + I(t = 1) + Tgft = 3) + Ip(t = 4) + I(t = 5) + gt = 6) + Ig(t = 7) + I(t - 8)
Verorin111(t) = Iglt) + To(t — 2) + Tglt — 33 + Iglt — 4) + Iglt — 5) + Iyt — 6) + Lylt — 7) + Ig{t — 8)
slope el = Lty + Tt = 1) + (e = 2) + Li(t — 3) + Tj{t = 4) + Lt — 5) + Tj(t — 6) + Ij{t -
slopepnnon(t) = L)+ L(t = 1) + Ti(t = 2) + Ij(t = 3) & Lt = 4) + Tyt = 5) + L(t = 6) + Ij(t -
slopeyyyyrion() = () + Lt — 1) + L(t— 2) + Lt — 3) + Lt — 4) + Lt — 5) + L(t— 7) + I(t -
slope o) = Lt + Lt = 1) + Tt = 2) + L(t = 3) + Li(t = 4) + Tyt = 6) + Li(t = 7) + Ij(t -
slopeyypon () = Tt + Tyt = 1) + Tyt = 2) + Tyt = 3) + Tj(t = 5) + Iyt = 6) + I(t = 7) + Ty(t -
slope o) = Li(th + Lt = 1) + Lt = 2) + Li(t = 4) + Li(t = 5) + L)(t = 6) + Li(t = 7) + Li(t -
slope ot = Lty + Li(t = 1) + Lt = 3) + Lilt = 4) + Li{t = 5) + Li{t = 6) + Li(t = 7) + Lj{t -
slope o111 a(t) = T(t) + Tt — 2) + T(t — 3) + T(t — 4) + Tt — 5) + Lt — 6) + T(t— 7) + Lt -
upto 12- 9 System
Vorrnnolt) = Iglt) + Iglt = 1) + Tg(t = 2) + Tt — 3) + It = 4) + Ig(t = 5) + It — 6) + Iyt = 7)
Vorrtnnor(t) = Ip(t) + Ip(t = 1) + Ig(t = 2) + Ig(t — 3) + Ig(t — 4) + Tg(t = 5) + To(t — 6) + Ip(t = 7)
Vorinninion(t) = Tolth + Tp(t = 1) + Tglt — 2) + Tglt — 3) + Tglt — 4) + Tglt — 5) + To(t — 6) + Tp(t — B)
Vorrnnrzorni(t) = Iglt) + Tolt — 1) + Tglt — 20 + Tglt — 3) + Iglt — 4) + Iglt — 5) + Tp(t — 73 + Ip(t — 8)
Vorrnnonni(t) = Ig(t) + Ip{t = 1) + Ig(t — 2) + Ig(t — 3) + Lg(t — 4) + Ig(t — 6) + It — 7) + Ig(t — B)
Vorrroni(t) i= Tg(t) + Tglt — 1) + Tg(t — 2) + Tt — 3) + Iglt — 5) + Ig(t — 6) + Lt — 7) + It — 8)

Vorrrorinnnft) = Iglt) + Iglt — 1) + It — 2) + Iyt — 4) + Ilt — 5) + Ig(t — 6) + Iyt — 7) + Iyt — B)

350

PhD Thesis

Matched Filtering

vortortinn(t) i= To(t) + Tolt — 1) + To(t — 3) + Tt — 4) + Tg(t — 5) + Tg(t — 6) + Tg(t — 7) + Tg(t — 8)
Voronnninnn(t) = Tplt) + Tp(t = 2) + Ip(t = 3) + Tp(t = 4) + Tplt = 5) + Tg(t = 6) + Tp(t = 7) + To(t - 8)

slopey ety = L) + Tt = 1) + Li(t = 2) + Li(t — 3y + Li(t — 4) + Li(t = 5) + L)i(t — 6) + Ij(t -
slopepppnon(t) i= L0t + Li(t = 1)+ L{t = 20 + Li(t = 3) + Lj(t = 4) + Li(t = 5) + L)i{t = 6) + Ij{t-
slopeymon(= L) + Lt = 1)+ L{t—=2) + L{t = 3y + Lt —4) + Ij{t — 5) + i(t — 6) + Ij{t—
slopey ;o) = LD + Lt — 1) + Tt — 2) + it — 3) + L(t — 4) + Lt — 5) + Lt — 7) + Lt -
slopeyy o) = Li(t) + Ti(t = 1) + Li(t = 2) + Lj(t = 3) + Ij(t = 4) + Lj{t = 6) + Ij(t = 7) + Lt -
slopeyy oty = Lt + Lt = 1)+ Lt = 2y + Lt = 3) + it = 5) + [t - 6) + Lt = 7) + L(t -
slopeyyiopn(t) = L) + Li(t = 1) + Ij(t = 2) + Li{t = 4) + Li(t = 5) + Li(t = 6) + Lj(t = 7) + Iy(t -

slopeyoppmm(=L + Htt = 1)+ Lt = 3) + it — 4 + L(t = 5) + Li(t = 6) + Li(t = 7) + Ij(t -
slopeyoppppnat) = Lt + Li{t = 2) + Li(t = 3) + Lji(t = 4) + Tj(t = 5) + Li{t = 6) + j(t = 7) + Lt -

upto 12 - 10 System

Vornininolt) = Lp(t) + Io(t — 1) + To(t — 2) + Tg(t — 3) + Tg(t — 4) + To(t — 5) + To(t — 6) + Tyt —
Vornninniro(t) i= To(t) + To(t — 1) + To(t — 23 + To(t — 3) + Tg(t — 4) + Tp(t — 5) + Tolt — 6) + It —
Vorrrninntonn(t) = Ip(t) + Iolt — 1) + Tt — 2) + Ig{t — 3) + Lyt — 4) + Tyt — 5) + Tyt — 6) + Tyt —
Vorrntnonnt) = Ig(t) + Ig(t = 1) + Ig(t — 2) + Tg(t — 3) + Ig(t — 4) + Ip(t — 5) + Ig(t — 6) + Igft -
Vornnninoninn(t) i= Io(t) + Io(t — 1) + Ig(t — 2) + Ig(t — 3) + Io(t = 4) + Io(t — 5) + Ip(t = 7) + Iglt -
Vornntonin{t) = Ip(t) + Lot = 1) + It — 2) + Iplt — 3) + Lyt — 4) + Ip(t — 6) + Lp(t — 7) + Tylt -
Varrntonnnnt) := I(t) + Io(t — 1) + To(t — 2) + Ig(t — 3) + Io(t — 5) + Ip(t — 6) + Io(t — 7) + It —
Vorntornnnnt) := Tg() + Tolt = 1) + To(t = 2) + Tglt = 4) + Tyt = 5) + Tg(t = 6) + Ty(t = 7) + Tg(t =
Vortortnniinft) = Ig(t) + Ig(t = 1) + Ig(t — 3) + Ig(t — 4) + Ig(t — 5) + Ip(t — 6) + gt — 7) + Igft -
Voaronnninn(t) i= Io(t) + Io(t = 2) + Ig(t — 3) + Iglt — 4) + Io(t = 5) + Ip(t — 6) + Ip(t = 7) + Iglt -
slopeypnelt) = Lt + Lit= 1) + Lt = 2) + Lt = 3) + Li(t = 4) + Tj(t = 5) + Li(t= 6) + Ij(t -
slopey et = Lt + Lt — 13+ Li(t — 2) + Lt — 3) + Lt — 43 + Ij(t — 5) + Lj(t — 6) + Ij(t -
slopeyymmon(t =L + Lit— 1)+ Lt —2) + [t — 3) + [i(t — 4) + Ti(t — 5) + Li(t— 6) + Ty(t -
slopeyyppppont(t) = Lo + Lt = 1) + It = 2) + Li(t = 3) + Li(t = 4) + Li(t = 5) + Li(t = 6) + Ij(t -
slopeyimonn(t) = Lit) + Lt = 1) + Lt = 2) + Li(t = 3) + Li(t = 4) + Lj(t = 5) + Li(t = 7) + Ij(t -
slopeyyonn(t) = Lt + Lt = 1) + Tt = 2) + L(t = 3) + Li(t = 4) + Lj(t = 6) + Lt = 7) + Iy(t -
slope o) = Lt + Lt — 1) + L(t — 2) + Lt — 3) + Lt — 5) + Ij(t— 6) + Lt — 7) + Iy(t -

351
PhD Thesis

Matched Filtering

slopeyy o) = L0 + it = 1) + i(t = 2) + Ij(t = 4) + Lt = 5) + L(t = 6) + I(t = 7) + Ty(t -
slopepyoppn(t) = L) + Lt = 1)+ L(t = 3) + Lt = 4) + Lt = 5) + Li(t = 6) + Lt = 7) + it -
slopeyornnn(t) = Lit) + Lt = 2) + Tt = 3) + Lt = 4) + Li(t = 5) + Lj(t = 6) + it = 7) + Ij(t -

upto 12- 11 System

Vorrrntnnnnntolt) i= Iglt) + To(t — 1) + Tplt — 2) + Tglt — 3) + Tolt — 4) + Ig(t — 5) + Ip(t — 6) + Tyt =~
Vorrrnnnnnon (8 i= Ip(t) + It — 1) + Ip(t — 2) + Ig(t — 3) + Iglt = 4) + Ig(t — 5) + Ig(t — 6) + I(t
Vorrnttnnion (t) := L(t) + In(t — 1) + Ip(t — 2) + Tg(t — 3) + Iolt — 4) + Ig(t — 5) + Ip(t — 6) + Tp(t -~
Vorrnnrnnrornn (8 := I(t) + Tn(t — 1) + Ly(t — 2) + Tt — 3) + Ig(t — 4) + Iy(t — 5) + Ip(t — 6) + Ty(t -~
Vorrnntaonna () := Lp(t) + In(t = 1) 4 Ip(t = 2) + Ig(t = 3) 4 Ig(t — 4) + It = 5) + It — 6) + Tp(t = ¢
Vorrrntornnn (0 = Ip(th + To(t = 1) + To(t — 2) + To(t — 3) + Tg(t = 4) + Ig(t = 5) + Io(t — 7) + To(t — ¢
Vorrnnzonan () i= Ip(t) + In(t = 1) + Iy(t = 2) + Tg(t = 3) + Ig(t = 4) + Lt = 6) + Iy(t = 7) + Tp(t = ¢

Vorinrorin1111 () := Iglt) + Iolt — 1) + Iglt — 2) + Dot — 3) + Tplt — 5) + Iglt — 6) + Lyt — 7) + Iplt — ¢
Vorrroninn111n () := Tglt) + Tn(t — 1) + Tglt — 2) + Tp(t — 4) + Iglt — 5) + Iyt — 6) + Lylt — 7) + Ip(t — ¢

Vorror1nnanna () := Ip(t) + In(t = 1) + Ip(t = 3) + Ip(t — 4) + Ig(t = 5) + Lot = 6) + Iy(t = 7) + Ip(t = ¢

Vot (0 = Ip(t) + Ly(t = 2) + Ly(t — 3) + Ly(t — 4) + Ig(t = 5) + Ly(t — 6) + Lg(t — 7) + Ly(t - ¢
slopey ettty = Lt + Lt = 1) + Tt = 2) + Li(t = 3) + Lt = 4) + [j(t = 5) + L(t = 6) + Iyt

slopey ot = L(t + it = 1) + Ij(t = 2) + it = 3) + Li(t = 4) + Lj(t = 5) + [i(t = 6) + Lj(t
slopepypmon(t) = Lty + Lt = 1) + Li(t = 2) + Li(t = 3) + Lt — 4) + Li(t = 5) + Li(t - 6) + [)(t
slopey ot = Lt + Lt = 1) + Lj(t = 2) 4+ Li{t = 3) + Li(t = 4) + Li(t = 5) + Li(t = 6) + Lj(t
slopeymon(t) = Lt + Lt — 1)+ It — 2) + Liit— 3) + [t — 4) + Lt — 5) + Li(t — 6) + Ij(t
slopeyyponnn(t) = L) + Lt = 1) + Lt = 2) + Lt = 3) & Lt = 4) + Lt = 5) + Lt = 7) + Iyt
slopeyyyypornn(t) = Lty + Lt = 1)« Li(t = 2) + Li(t = 3) + Lt — 4) + Li(t = 6) + Li(t = 7) + L(t

slopey () = Lt + Lt = 1) + Lt = 2) + Li(t = 3) + Lj(t = 5) + Lj(t = 6) + L(t = 7) + Ij(t
slopeyjionnn(t) = Lit) + Lt — 1) + Lt — 2) + Lt — 4) + Lt — 5) + Ij(t — 6) + L;(t — 7) + Lt

slopeyyon () 5= L0 + [t = 1)+ Lt = 3) + Lt— 4) + [t = 5) + [t - 6) + Lj(t = 7) + [

slopegorippnn(t) = Lt + [t = 2) + T(t = 3) + Li{t = 4) + [i(t = 5) + [t = 6) + Lj(t = 7) + Lj1

352

PhD Thesis

Matched Filtering

only 12— 11 System
Vornnntininolt) = Tolt) + Tt — 1) + Tg(t = 2) + It = 3) + It — 4) + To(t — 5) + Iglt — 6) + Tt -
Vornor(® = o0 + It = 1)+ Io(t = 2) + It = 3) + To(t = 4) + It = 5) + Iyt = 6) + Tyt -
Voo (t) = To(t) + Ip(t — 1) + Ig(t — 2) + To(t — 3) + To(t — 4) + Io(t — 5) + It — 6) + It —
Vorrnnnintonnn{t) = TIp(t) + Iplt — 1) + Iglt — 2) + Iglt — 3) + It — 4) + Ig(t — 3) + It — 6) + Tyt -
Vornnoninn (1) = Tl + It = 1) + It = 2) + Tg(t = 3) + Ig(t — 4) + Ig(t — 5) + Tg(t — 6) + Tg(t -
Vorrnntio111(t) = To(t) + Ig(t = 1) + Tg(t = 2) + Tg(t = 3) + Ip(t — 4) + I(t = 5) + It = 6) + Iyt -
Vortrntror11111(t) = Tp(t) + Iglt — 1) + Tp(t — 2) + Ig(t — 3) + Tp(t — 4) + Tolt — 5) + Tolt — 7) + To(t —

Vorrrntonininn(t) = It + Tplt — 1) + Iglt — 2) + Iglt — 3) + Tplt — 4) + Iglt — 6) + Iglt — 7) + Tglt —
Vorrntontinn () = Tg(t) + Tgt = 1)+ Tg(t = 2y + Tt = 3) + Tp(t = 5) + Ip(t = 6) + Tt = 7) + Tt —

Vormtortnnnninn{t) = Ip(t) + Io(t = 1) + It = 2) + Io(t = 4) + Ip(t — 5) + Lp(t — 6) + Tg(t — 7) + Tg(t -
Vortonttttrtin(t) = To(t) + Tolt — 1) + To(t — 3) + T(t — 4) + To(t — 5) + To(t — 6) + Tolt — 7) + Tt —
Vorontnnnannn(t) = Ip(th + Tglt — 2) + It — 3) + Tplt — 4) + Ip(t — 5) + It — 6) + It — 7) + It —
slopey et = L) + Lt = 1)+ Li(t = 2) & Lj(t = 3) + Lj(t = 4} + Ij(t = 5) + Li(t = 6) + L1
slope g ananazon (D) == L) + T(t— 1) + Tt — 2) + T(t — 3) + L(t — 4) + I(t— 5) + (t— 6) + [,
slopeyy e (0 = Lty + Lt = 1) + Li(t = 2) + Lj(t = 3) + Ij(t = 4) + Lj(t = 5) + L;(t = 6) + L;(1
slopepynunnonn (0 = Ty() + (= 1) + Ty(t = 2) + i(t = 3) + Tyt = 4) + Ij(t = 5) + Ty(t = 6) + [0
slopeptitonnn () = Li(t) + Li(t = 1) + Li(t = 2) + Lt = 3) + Li(t = 4) + Lt = 5) + Li(t - 6) + L1
slopey o (B = Lty + it = 1)+ Lit = 2) + Ii(t = 3) + Lit = 4) + Lji(t = 5) + Li(t = 6) + L;(1
slopeqyinntonannn (8 = L(E) + Tt — 1) + T(t — 2) + T(t — 3) + Ty(t — 4) + Tt — 5) + I(t— 7) + L0

slopeprprornnnn () 5= L) + L(t = 1) + Ij(t = 2) + Ij(t = 3) + Ij(t = 4) + Ij(t = 6) + Li(t = 7) + [0
slopeyonnan () = Litd + it — 1)+ Lt — 2) + Lt — 3) + Lt — 5) + Li{t— 6) + Liit — 7) + L

slopeyyopnnn (B = Lty + it = 1y + Lt = 2) + Lt — 4) + Li(t = 53+ Lj{t - 6) + Li{t— 7) + L0
slopeyionnn (D) = L) + Lt — 1) + Lt — 3) + T(t — 4) + it — 5) + j(t — 6) + L;(t — 7) + L1

slopeyorimnn () = L) + it = 2) + Lt = 3) + Lj(t = 4) + Li(t = 5) + Ij(t = 6) + Li(t = T) + L1

353
PhD Thesis

Matched Filtering

peak value

2
tpo = TOOL sl()peo(tpk]-l'! +tpk
Vpoi=V¥ [I]] ’
po O\ P = 0.042 v 9
=008 vo(0.03) = 6402 10

0 1, = 0035
= 6438 % 107 PO
Vpo= 6438 5 10 vo(0.003) = 4.043 % 10°

decision time
2
b = 100 (1)~ v 1oty Tt

Y= 1D(|i|u.) =
! ! tgo, = —1:278 x tg=-0012

tyo v, V4, e
1 1 =
' 77 9 v

H483103] Vgloltpe) = 3377 2107 TgEg 3.345109 ke

-1.442:103 i 9 0.521 3.351-109 0.519
V4 = 3377 =« 10
-1.401-10°3 s 0.521 3.358109 0.52
136103 " 0.522 3364109 0.521
1.319-103] Vpo = 6438 10 0523 3371-109 0.522
1278103 0.524 3.377-109 0.523
1237103 0.525 3383109 0.524
-1.196-103 0.526 3.39-109 0.525
-1.155:10°3 0.527 3.396-109 0.526
1114103 0.529 3.403109 0.527
t=-1,-09.3 ——
B I{J9 T T T T
Vol ge1o g
RLINT -
Vd
3. w10 i
4

354
PhD Thesis

peak value
Same as an isolated pulse
.
Ly = rool s]upemflpk}-l,_. sk
toro= 0035ty = 0.042
Vplo = "om(fpm]
9

C
Vprp= 6.438 x 10

decision time

2 - 9
Lmi = rocl.[(vomftd) - "di)'Ts .Ld] "olo[tdm_‘) =3377% 10

tdo,
1

1483103
-1.442:10°3
1.401-103

1.3610°3
-1.319:10°3
1278103
-1.237-103
-1.196:10°3
1155103
-1.114-103

t=-1,-09.3

355

Vi

Vplo

0.519

0.52

0.521

0.522

0.523

0.524

0.525

0.526

0.527

0.528

Matched Filtering

PhD Thesis

Matched Filtering

w
<

by 15 re10°F -
anﬂ{'dm)
L A Ty -
1 1L
U
2] 0 1 2 3 A

— CAUTION

First Pulse
2
tpyy r{.xjt(:;]q)e“o{[pk]-'l's ,lpk) tok = 0.042
Vpil = "oilo(‘pn)
-9 4 i
Vpr1 = 6438 % 107ty = 0.035
Second Pulse
okl *= tpk + 1
2
t110:= root| slope oty) Ty +tykr
Vpiio+= “'nllﬂ(lplllJJ tp110 = 1.035

Vp110= 6591 x 10°

decision time

356
PhD Thesis

2
a1y, = rooL|: anm(l[l] — V4, -T,;“.Ld:|))
i (I) \-di \di
td“-. = T-dol. = ld“,_ +1=Ypu Vp11o
-1.483-103 -1.483103 0.999 0-05;2 E_g
-1.442:10°8 -1.44210°3 0,999 . 5
-1.401-103 -1.401-10-3 0999 0521 0.509
-1.36:103 -1.36-103 0.999 0.522 051
-1.319:103 -1.31910°3 0.999 0523 0.511
-1.237-10°3 -1,23710°3 0.099 . E
-1.196-10°3 -1.186:10°3 0.999 0.526 0.514
-1.155-103 -1.15510-3 0,999 0.527 0515
-1.114-10°3 1114103 0999 0.528 0516
t=-1,-099.3
810 Y ' i :
Vor10() 6'109
v
_hg 4410°)

peak value -

First Pulse

-
tpi11 = rcml(slupcum(lpk}-T,;.lpk) Lok = 0.042

Vprr1 = Vorntoltpinn)

C
Vpiip = 6438 x m) toyyy = 0.035

Second Pulse

357

Matched Filtering

PhD Thesis

Aolda= ok + 1

2
torniz = rom(ﬂopellml:[nkl]'-rs -Ipm)
Vpiuz = "o;llﬁ(‘pmz) tpnnz = 1.035

0
Vpiniz = 6591 x 10°

Third Pulse
toka == tox + 2
2
tp1110 = root :slupcuw(lpk-_,:l-Ts sloka

Vpll1o = \'umo(lpmo] to1p10 = 2.035

9
Vpir10 = 6.595 x 10

decision time

w2
1d”]i — r(x:l[(vﬂ“m(ld) \-'di)- T, ,I(J

Matched Filtering

Vg, Va.
t + 2= % i
tain, = to, = tarn, + L= i ” - =
pl1l /p1110
-1.483-103 -1.48310°3 0.999 1

1,999 0.519 0.507

-1.44210°3 -1.442-103 0.999
1.999 0.52 0.508

-1.401-10-3 -1.401-10-3 0.999
1.999 0521 0.509

-1.36103 -1.36:10-3 0.999
1.909 0.522 0.5

-1.319-10-3 -1.319:103 0.999
1.900 0.523 0.511

-1.278103 -1.278:103 0.999
1.099 0.524 0.512

-1.237103 -1.23710°3 0.999
1.000 0.525 0.513

-1.196-10-3 -1.196:10-3 0.999
1.999 0.526 0.514

-1.155-10-3 -1.155-10-3 0.999
— —— 1.099 0.527 0.515
-1.11410 -1.11410 0.999 0538 T

t:=-1,-099.3

358

PhD Thesis

Matched Filtering

9

8210 T T T
Vorr1olt) 6:10°] E
Vp1110 2107 il
"num{ldlll)
A S 2107 .

0

peak value

Same as isolated pulse and 10 sequence

2
toro1 = mnl(slu[mml(Tpk:l-Ts ‘I'pk)

tyron = 0.035

Vpio1 = Vulﬂl(tplﬂl)
y 9

Vpto1 = 6438 x 10

Second Pulse
[ka: '-pl; + 2

2
tproro:= rootl slopeyoiltokes) Ts s tokes
Vploio = "nlol(’-pmw]

9
Vpiolo = 6442 < 10

tpioio = 2.035

decision time

359

2
e

PhD Thesis

2
tdlﬂli:_ 1'00{("01:11[‘11] V[lj)"fs .-td:|

Vd vd,
1 1
Vplol Vplo1o
0.519 0.519
052 0.52
0521 0.521
0.522 0.522
0.523 0.523
0.524 0.524
0.525 0.525
0.526 0.526
0.527 0.527
0.528 0.528
t=-1,-099.3
S-']Og T T T
Voro1(D) 6:10°F
i
S 7311 Y| 11, || S
Volo1| t101
s (-") 210°F
1 0 1 2
t
peak value
First Pulse

2
tprion = r°°1(5}0951101 () T, ’lpk)
Vpiion = “'ollDI(1pllol}

9
Vprio = 6.438 < 10

Second Pulse

360

Matched Filtering

PhD Thesis

Matched Filtering

tpke7 = Lpk + 1

|
Ip1or_2:= oot 5101’3|10|(‘pk57]"s stpker
Vpliol 2= mel[Tpl]m 2]

= 9
Vprion 2 = 6.591 = 10

First pulse
Third Pulse
Lokes == Lok + 3
),
tp11010 = root 510135110[(11:1;68)' s tkes
Vpl1o10 = "Dllnl(thIDI[J
9
Vpiroto = 6442 « 10
Vi, Vi, Vi
decision time e o Eo
Vp1101 Vpl101 2 Vpl1010
2
taion, = fml[("onm(‘d] - “'d.‘)'Ts -H} 0519 0.507 0519
052 0.508 0.52
0.521 0.509 0.521
0522 0.51 0522
0.523 0.511 0523
0.524 0512 0.524
0.525 0.513 0.525
0.526 0.514 0.526
t=-1,-059.4 0527 0515 0.527
0528 0516 0.528
8410° T T T
Vorro1(0) 6<10°F - 1
Vpiiol 210k _
Vorronf td1101
i (o) 2107 =

=]

361

PhD Thesis

peak value

For the first pulse same as 10 sequence
2
tpton = fOOI(SIOPeml:(kaJ Ty !I-pk)
toronr = 0.035 g = 0.042
} 9
VolDlI{'plOllJ = 6438 x 10
Vploil = “'cloll(tpmll)
9
Vo101 = 6438 % 10
For the second pulse same as 101 sequence
1p|<|21: [pk + 2
2
tpro11 2 += root Slopelon(lpml}"fs slpki21
tyon 2= 2.035
]
Votont(tpron 2) = 6442 % 10
Vploil 2 = \'olollh‘ploll_?.)

Vplonn 2 = 6.442 = lf_l)

For the third pulse same as 110 sequence
k122 = tp + 3

2
o110 = m“l(ﬂlﬂlww1|(’pk|z:J'Ts -H»;m)

tainnin = 3.035
9
VolDII[Tpmnu) = 6591 = 10

Vplo110 = "ewll(‘plmloJ

Vplol1p = 6.591 = '1(19

decision time

362

Matched Filtering

PhD Thesis

Matched Filtering

First Pulse

2
tdlﬂlli = m[[(‘f‘nmll':Td] = "d.l)'Ts sfd:|

Vd, v, Vd,
1 1 1
Vplonl Vplo1l 2 Vp10110
0518 0518 0.507
052 052 0.508
0.521 0521 0.509
0.522 0522 0.51
0.523 0523 0.511
0.524 0524 0.512
0.525 0.525 0.513
0.526 0.526 0.514
0.527 0527 0.515
0.528 0528 0516
t:i=-1,-099.6
810° T T T
Voron1(t) 6<10°F ' e
Vplon w10k N

Volﬂll[tdmllc]
s SToax10

peak value

First Pulse

”
tp1non ¢ ""0(“]‘-‘["—'|1011(|pk)"r: -1pk)

Vprto11 = Vorton{tpironr) tprion = 0.035

363

PhD Thesis

Vpro11 = 6438 x 10°

Second Pulse
k123 = tpk + 1
=)
tp11011_2 *= root 3'“!’=um|(lpl;|23]"s stpki2s
Vpllonl_2 = Vanou(tpnou_z)

9
Voton 2= 6391 % 107ty 2= 1.035

Third Pulse
tpk124 += tpi + 3

. I w2
Ipion1 3 := root slopeyori(tpki2a) Ts s tpkr2e

Vplion_3 = ‘-'ulmll[lpllun_sJ

9
Vpito1y 3 = 6442 x 10
Fourth Pulse
tpk12s == tpk + 4
&
tp110110 += root 5'°P¢11011(ka1:5]‘T5 stpki2s
Vplio110:= "ullou('pllouo)

Q
Vprrorio= 6.591 » 10

decision time

First pulse

taton, = r°°‘-|:("nuoll(td) = Vdi]'Tsz-ld]

v, i v, va,
Vpuionl Vplion_2 Vplio11_3 Vprio110
[os519] [os07] [os19] [os07]

364

Matched Filtering

PhD Thesis

Matched Filtering

0.52 0.508 0.52 0.508
0.521 0.509 0.521 0.509
0.522 0.51 0522 051
0.523 0.511 0.523 0.511
0.524 0.512 0.524 0.512
0.525 0.513 0.525 0.513
0.526 0.514 0.526 0.514
0.527 0.515 0.527 0.515
0.528 0.516 0.528 0.516

t:=-1,-099..6

SL:I(J? T T T T
Votro11(t) 6<10°F ; = e
o
o <10+ = R |, | —— .
“n]l(m('dnou]
e 3 2a0' -

0 1
2 0 2 4 [8

peak value
For the first pulse same as 10 sequence
2
tpronny = rootl slopegorn{tpe) Tyt
tionnn = 0.035 Lok = 0.042

0
"nmm('-p]mll} = 6438 x 10

Vpioi11 *= Vo101 ||(1pm| I!}

For the second pulse same as 101 sequence
tok1se = tpk + 2
2
tpro111_2 = rootl ﬂk’]":ml]l('pkmﬁ]'Ts »Lpkigs

tproin 2 = 2035

365
PhD Thesis

)
Voronni{tpron 2) = 6442 10

Vptot11_2 = Votorti{tprotns_2)

Yyloiil2 = 6442 % 10°

For the third pulse same as 110 sequence
tokigy i= tpg + 3

v
thronnn 3= TOOL(SLOP"-mul(kais?)'ls -kals‘-')

toronng 3 = 3.035

Voroin(tpro11 3) = 6.591 = 10
Vpto111.3 = Votorti{tpionn 3)
Voio1113 = 6591 x 10
For the third pulse same as 110 sequence
tokies = tpr + 4
101110 = T‘“"(ﬁli’l‘elmll([pkms)"rsz:‘pkws)

thionne = 4.035

9
Voroni{tproniie) = 6.595 x 10

Vplo1110 *= "olDIlI('plOll]O)

Vpioi110 = 6.595 x 10°

decision time

First Pulse

2
Tdm:ui = “K}{(“'n]llll]([d} = \'di)'Ts -hi:l

366

Vi, Vd,
] _ 1
Vplorin Vploi11_2
0.519 0.519
052 0.52
0.521 0.521
0.522 0522
0.523 0523
0.524 0.524
0.525 0.525
0.526 0.526
0.527 0.527
0.528 0.528
vy,
1
Vplotiio
0.507
0.508
0.509
0.51
0.511
n&17

Matched Filtering

Vd
i

Vploi11_3

0.507

0.508

0.509

0.51

0.511

0.512

0.513

0.514

0.515

0.516

PhD Thesis

Matched Filtering

v 14
0.513
t:=-1,-099..6 T
0515
0.516
i 109 T T T T
Voto111(D) 6'109' ! -
Vp1o111 a10%F n
"'ulOIl]('lelIl]
S 5 % 109‘ -
1
u
—2 0 = 4 6 8

peak value

For the first pulse same as 10 sequence
2
Lo = TDOL(SIOPenmu(tpk)'Tg :tpk)
tortor = 0035ty = 0.042

9
Vorrorn(tprionir) = 6.438 < 10

Q9
Voron = “nnum('p]mm) Vpioin = 6438 < 10

For the second pulse same as 101 sequence
tokige i= o + 1

oy
Yo 2= YOO‘(SIOPenmu('-pkmv]' I 'tpkiﬂg)

tonon 2= 1.035
9
"ol|0||1(1p|1o“1_2} = £.59] % 10

Vpllo111 2+ "nuom('pllom :J

367
PhD Thesis

[y
Vp1o111 2 = 6.591 » 10)

For the third pulse same as 110 sequence
tokron = bk + 3

2
tpiton 3= fOOE(SIOPenoul(tpmoo)‘ls stpkl')O)

tyronn 3 = 3.035

9
’*'n:mm[lpnt:lu_s] = 6442 10

Vplioil_ 3= \'anom(lpuom_s)

9
Vpitoi 3 = 6.442 % 10

For the third pulse same as 110 sequence
kaw| iz lpk + 4
2
tpi10111 4 7= rGO‘(Slf’Peuol|1(ka19|]"1's -lpkwl)

tprio1n 4 = 4.035

& 9
Volli]]ll('pllﬂlll_—i} 6.591 = 10

VpLioi1_4 = "numu{(putuu_-i_)

9
Vprtornn_4 = 6.591 x 10

For the third pulse same as 110 sequence
tpk1oz 7= lpk + 5
2
tprior110 += root 5|°Fb‘1|o11|':'pkm)'Tg stpkion

tpitorrio = 3.035

9
Vonroni{tprioniio) = 6.595 = 10

Yproiio = Vullulll(lpnmnn)

368

Matched Filtering

PhD Thesis

Matched Filtering

9
Vpitoi11o = 6.595 x 10

decision time

First Pulse

2
1611011111‘ r""{("ollﬂlll(ld} “'di)' Ty :1dj|

t:=-1,-099..6
9
B0 T T T T
Vor10111th) 6<10F 3 | -
Vpl1o111 sac’k i
v, 1|01||(fd|10|11)
0 . :/ 2:\'|09 b
-2 0 2 4 [8

peak value
For the first pulse same as 10 sequence
il
tp1oto1 = Toot| slopejoron(tpe) T s bk

tpro101 = 0.035 tp = 0.042
9

"ololul(T-pwlol} = 6.438 x 10
Vploto1 ©= Vototot(tp1o101)

9
Vpiopor = 6-438 « 10

For the second pulse same as 101 sequence
tokaas = tpk + 2
ik
tp1o101_2 == root *"Ulleltnol(‘pk-}:s]' T5" tpkaas

tpro101 2 = 2.035

369
PhD Thesis

Matched Filtering

9
Vorotoil tptotor 2) = 6442 10

Vplo101 2 = "ommt(lpmlm_z)

VaroioL2= 642X 10"

For the third pulse same as 110 sequence
tpkaa0 := o 4
il
tprono1o = rmt(51°pelﬂlHlllll(tpk-’l-'tg)'ls 'ka-i-‘lﬂ)

taroro10 = 4.035

)
vototoi(tprotoro) = 6442 x 10
Vpioto10 = Vorotor(tprotoro)

9
Vptotore = 6.442 = 107

decision time

First Pulse

2
tdm]oii = TOOLI:(\'nml fll(t:l) = Vd.l)‘Tea -Td:|

Vi, Vd. Va,
i 1 i

Vp1o1o1 Vploiol 2 Vplo1o1o

370
PhD Thesis

0.519

0.52
0.521
0.522
0.523
0.524
0.525
0.526
0.527
0.528

Volo101(t)

Vploio

"nunm[‘dmmlﬁ)

Matched Filtering

ERROR SOURCES

FALSE ALARMERROR

0.519 0.519
0.52 0.52

0.521 0.521

0.522 0.522

0.523 0.523

0.524 0.524

0.525 0.525

0.526 0.526

0.527 0.527

0.528 0.528 1,-099..5
B IUg T T T
610 - il o =
1<10°1 - || i -
210 1

@

-2 0 4

PhD Thesis

Equivalent pcm error number is found by error_number/{(x-y)*pcm_bits"pem_words)

Matched Filtering

Standard false alarm

Vd.
i

" Sgnoise

T bQr
|

Pe(b,i) = —g-l-ur[{ t]
Tp 2 \’2

Per(b,i) = 0.205204-Pdb,1)

Qr, =mngq-

Slot after pulse false alarm - time td+Ts
Vo010, i= “'om(tdo,. f 1)

Vd. — Voolo,
1 1

,f Sy noise

T, b'Qﬂﬂi
Ppg(b,i) == ——-erfi
TR 2 ﬁ

Perio(b,i) := 0.0303914-Ppo(b, i)

Qfml. =Ny

Slot after double pulse false alarmm - time td+2Ts

Voolto, = "oucu('do.l + 2)

Vd, = Vol 1€I.i

Qpotye, = NY—m—
1 "S 1wise

372

PhD Thesis

T:. i ""Qrouoi
P (b.1) = =—-—-erfg]
0110 T 2 ﬁ

Peo10(b,i) := 0.00474853-Pgyo(b, i)

Matched Filtering

Slot between pulses false alarm - time td+Ts

Voolor, = \’olol[lno.i 4 IJ

“'di ™ “'DOIOI’.

" Syrnoise

T, | b'QflOli
Prog(b,i) == —.—.erfi
flo1 T 5 ﬁ

Perop(b.i) := 0.00440267-Pyyg(b.i)

Qﬂmi =ng

Slot between double pulse and a pulse false alarm - time td+2Ts

Voollor, = “'oll(ll(ld.o‘. + 2)

373

PhD Thesis

Matched Filtering

"'d‘. \JDOUOI‘.
Qo = M —F———
1 "Sa-lwisc
Ti:d b-anli
P, (b,1) ;= ——-erfg
1m TR 2 ﬁ

Peryior(bai) := 4.47591-008. Py 0. i)

TOTAL FALSE ALARM ERROR

Pparb.1) := Peg(b,1) + Peyolb,1) + Peppprolb. 1) + Pepppr(b,1) + Peggpg(b,i) S i
Ppodb.i) -

§.707-10-10
6.163-10-10
5.662-10-10
5201-10-10
4.777-10-10
4.386-10-10
4.027-10-10
3.697-10-10
3.393-10-10
3.114-10-10

WRONG SLOT ERROR

374
PhD Thesis

Matched Filtering

Equivalent pcm error number is found by error_number/{pcm_bits *pcm_words)

Standard wrong slot

m:- slog "‘:o('dui)

1 s]opei
- Y
i 2

" S,noise

‘{Qs.'h]
~erfi :
T

Pe(b,i) 1= 0.844279-P(b, i)

Pyb,i) =

ta | =

Wrong slot on first pulse of two

s]()pem]_l: slopem{lmj)

375
PhD Thesis

1 J slopegyy,
1

Dary 3 | = | —
ksui ']‘1(m

2
Qe b
-erf
i

Pespy(b, i) := 0.0996094 Py (b,i)

Pii(b,1) :=

o | —

Wirong slot on second pulse of fwo _

s]()]xmwit “](’P‘:llo(ldoi +]]

1y Slopeoto,
Qo = HQ'(—)'—
: 2 "Sn-ll()isc

o Qoo b
Pipiofb,1) = E-eri‘c ﬁ

Peiolb.i) = 0.0478516-P,y o(b. i)

Matched Filtering

Wirong slot on third pulse of three

slopeqniio, © st"Penm(fch:‘. + 3)

376

PhD Thesis

Matched Filtering

1 Slopeatiio,
J ;

Q, = nq[— —
Y ,’Su-lmisc

]
anmi'b
cerfo ——
2

Psppotb,i) @
Peqppolb.1) := 0.00146484.P, 1 9(b.1)

ty | —

Wrong slot on second pulse of 101

slopegyoy, = ﬁi(}peml(ldo_ . 2)
i i

1) slopegy o),
1

Qaron, = ﬂ‘l'(_ —
Sk 2 "S“-noisc

1 Qspo1,b
Poyoi(b, i) = —-erfe v'_l
2 o

Pestor(b.i) := 0.0801188-P.yo(b.i)

Wirong slot on third pulse of 1101

slopegyyqr, = Stopclml(tdni + 3)

377
PhD Thesis

Matched Filtering

ol

I J slopeg 01,

Q, = nq[— —
SO ,’Su-lluisc

1 Qsllﬂli'b
Pipyon(b,i) = :-crl’

NG

Pesqiop(b.1) i= 0.000732422.F, 1 101(b.1)

slopeoron, = Slopemu[‘doi t 3)

~

1) slapegyony,
1

‘l 3y noise

Uronr. b
cerfd ———
i

Peston(b.1) i= 0.00146484-Pgo1y(b,1)

Q_mmi = ?Ifl'(

Poaonib,i):

ra | =

5'“!*’(%1“'. = *"lupelom(ldo.l + 1‘)

~

1] slopegop 1

" S,noise

1 Qsmmi'l’
P b,i) 1= —-erfe] ——o——
s1o111L051 > erl \ﬁ

Pesior1(bsi) 1= 0-Pagorp1(b,i)

QsIUlll!. = T!fi'[

378
PhD Thesis

Matched Filtering

5'“!’emmni = “lul"’llt:u('dai + 3)

1 5‘»10133011¢:m.l
QSIIOII:.: '!fl'(]

3 "So-noisc

R W

1 Qanton b
Paron(b,1) i= —-erf

Pestio11(bs1) = 0-Pyypop(b,1)

Slopcunnmi et 5|°P°I|01I|(Tdoi i 3)

1 2*'L’P“mw:ui
Q:.llnllli: 'iL]‘(]

2) ’ Spenoise

Papiornn(b,i):

t | —

Qst1011 |1.'b
-erfi

Pesroni(b.i) = 0-Pypporpp(b.i)

Wrong slot on second pulse of three 111

slopegyyy, = S|0IJ"-1||0(ldo.l f])

1 SIOP“-nm.l
PO i
i 2

“ S, noise

379
PhD Thesis

. Quib
Pgy 1(bsi) = :-erfc T

Pest 1 1(by1) = 0Py ¢ y(b,i)

Matched Filtering

Wrong slot on second pulse of four 1111

ﬂlt‘P‘-'uuui = SIL‘W]Il!ﬂ(lda.‘ + |)

1 5'°Peon11i
Qa1 1 = 1|‘:|'(3)'—

"So-noise

1 Qa1 b

P b,1) 1= —.erfe| ——
s1_1_1140,1) = er| \ﬁ

Pest 1 11(bai) i= 0Py ¢ (b.1)

Wrong slot on second pulse of four 1111

—)
s*1‘3'!~'?'¢"L:|11|’. = slopc“”u(ld,,_. + -)

1y slopeorn 1
'-:.'s:|1_|_1.I B "'Ifl{j)'i

1‘ 5, noise

380

PhD Thesis

| Qsll_l_li'b
Pani_1_1(bi) 1= < -erf

P

Pesti_1_1(bsi) == 0Py 1(b,i)

Matched Filtering

Wrong slot on second pulse of five 11111

slopegpii, = 5|0P°|!n1n(ldnl. + 3)

1 8'“[’00|11i|i
an_l_u.l = ﬂ‘l'[?)'i

"So-rwlse

Qa1 b
-erfe] —————
2

Pesi1 1 n(bs) := 0-Pgpy g q1(b.1)

ta | =

Panr 1 n(b,i):

TOTAL WRONG SLOT ERROR

381

PhD Thesis

Matched Filtering

Pews(b,1) i= P(b,i) + Pgpilb,i) + Pepudlbai) + Peiolb.i) + Pgio(b.i) + Pegppon(b,i) + Pegronib,i

Pews(b.1) =
0

o|lolo]lo] olo]lolo]lo

ERASURES

Equivalent pcm error number is found by error_number/{pcm_bits *pcm_words)

382
PhD Thesis

Matched Filtering

Standard erasure of pulse

modify pulse parameters

]
Tpo Ldo, 0.5
1
tgo + 05> thg= 4o + 0.5 = oy
1 1 p——
foy= oo tpy1 = 0.035 ~7] 5,495 0 -1.4831C
1 0.499 o| 0035 -1.442-1(
Q=1 "o[lpo.[N 1 0.499 1] 0035 14011
b 1= M- - —
i JSonoise 3 0,455 2| 0035 1.361C
P 0499 3| oo3s -1.319-1C
3 0.499 tho=| 4 0035 -1.2781C
Qb ' BEFSER
P(b,i):= Loarh i 1 0.499 5| 0035 1.237-1¢
2 ﬁ P 0.490 6| 0035 -1.186-1C
r T 71 0035 1.1551(
Pe(b,i) i= 0.85201 P(b,i) 1 0.499 8| 0035 SERhl
9 0.035
Erasure of first pulse in 11
]
Tpn.l:_ ldn‘_ ¢ 0.5 e
1
foa = Tpll 3345109
3.351-109
Vnuo(lpn) —Va, 3.358-109
Qrp, = N ————
f : 3.364-10°
¥ Sy moise
» 5 n 2T4 AanQ

383
PhD Thesis

b T R RV o

3.377108

3383100

Qb

10 3.39-10°
) Vorro(tpn) = 6438 = 10 e

Prpi(b,i) = :-erl’c[

3.403-109

Pepp(b.i) i= 0.00581869-Pyy (b, i)

Matched Filtering

Erasure of second pulse in 11

madify pulse parameters

tp”n‘_ = Ldn‘_ f 1.9

tdo;"' 15> Lpll'Ldo‘. +15=

1 = tho
e S 1 1.499
1 1.499
"ollO{'pllOi] "d.l
Qriro, = MW ————— L Ll
] ,fSﬂvncuse 1 1.499
1 1.499
1 1,499
1 Qmui'h : e
Peppolb.1) :-crl —J: .
= = 1 1.499
1 1.499
. x 1 1.489
Peryjo(bai) i= 0.0593262-P; 1(b.i1)

Erasure of third pulse in 111

modify pulse parameters

e
th”Di = 'doi + 2.5

4 = tpinto
MY T TP E‘ 5499

384

PhD Thesis

"omo(‘pmoi "d.l

" 5, noise

1 erl]()-l'b
Priolb.i) ¢ :-erfc e

Perr110(b.1) i= 0-Pyqpo(b.1)

ernn.ll‘ nq-

alalalalal=a] =] =] =

£.85d

P

2.499

2035

2,499

2035

2.499

2035

2,499

2.035

2499

2035

2.499

2035

2.499

2.035

2,499

2035

2035

Matched Filtering

Erasure of second pulse in 101

Determine the peak amplitude of last pulse

ti=tpe + 2

385

PhD Thesis

Matched Filtering

Joaia= mmlr(lltu + (- 2'1)-T52,1]
maodify pulse parameters

L]
— -
tplUiUi = ldoi + 2.5

tp1o10 = 2.035

Mf-‘ tp1o10

"ol()l(lpli)l()i! v,
Crio1, = Ma- -
! "SD-IIOISC

1 Qﬂmi'h
Proilb,i) = E-crl' J:

Perpo1(b.1) := 0.0709229.P, gy (b.1)

Erasure of third pulse in 1101

modify pulse parameters
A
Tpl!(ll()i e ldoi + 3.5

m:' o010

Vu:[nl(fpuowi ~Va,

\l Sy noise

1 Qritor b
P,-||01(|J_.i) = :-erf J_

Periop(bsi) := 0.000366211 B 101(b.i)

erlO!.l‘-— nq

Erasure of last pulse in 10101

modify pulse parameters

A
TplO!OIi: Idoi + 4.5

Aoy = Tproton

386
PhD Thesis

“'ulDIﬂl(lptoltlli? TV
Qriot01, 5= Na-
L 1‘Su-noisc

Crio101 i'b
serfe] ————

V2

3| =

Prowor(b,1) :

Pertotot(b.i) := 0.000406901-Pryg101(b, i)

TOTAL ERASURE ERROR

Matched Filtering

Perasurelb51) i= Perdby1) + Fogpi(b,i) + Periolbii) + Perprolbai) + Paioi(b,1) + Panior(b,1) + Ferin

TOTAL ERROR RATE

Pet(b.1) == Perasure(Ds1) + Prog(bai) + Pesslb. i)

387

PhD Thesis

Matched Filtering

Pyo(b.i) = Peys(b.i) = Perasuretbo1) =
6.707-10-10 0 3.398-10-10
6.163-10-10 0 3.684-10-10
5.662-10-10 0 3.994-10-10
5.201-10-10 0 4.329-10-10
4.777-10-10] 4.692:10-10
4.386-10-10 o] 5.084-10-10
4.027-10-10 o] 5.507-10-10
3.697-10-10 0 5.966-10-10
3.393-10-10 o] 6.461-10-10
3.11410-10 0 6.997-10-10

Puy(b.i) =

1.01-10:9
9.847-10-10
9.656-10-10
9.53-10-10
9.468-10-10
9.47-10-10
9.535-10-10
9.663-10-10
9.855-10-10
1.011-102
SENSITIVITY

388

PhD Thesis

Matched Filtering

pe(b,i) == (log(Pg(b.i)) + 9) Setfor 1in 109 errors

pe(b.1) =
4.516-103
-6.708:102
-0.015
-0.021
-0.024
-0.024
-0.021
-0.015
-6.364-10°3
4781103
a, = root(pe(b.i).b) Find the root to give 1 in 109
minimum := min(a) Peys(b,0) = 0 Perasure(b. 0) = 3.398 x 10 10 =
maximum := max(a) 2978103
N 2976102
minimum = 2,973 = 107 2974102
maximum = 2,978 x 10° 2973103
- 10 2973103
Pgailb,0) = 6707 « 10 TR
_g 2973103
Py(b,0) = 1.01 x 10~ e
2976103
2978103

SENSITIVITY in dBm

389
PhD Thesis

Matched Filtering

.. 3 This is the minimum number of photons per pulse
minimum = 2.973 x 10

Pulse_energy := minimum-photon_energy This is the minimum pulse energy - Joules
y X e " .
Mark space correction := =— This is to give the average energy in the fr
| = v

Energy in_frame := Pulse energy-Mark space comrection

Number of PCM := pem_bits

Energy_per PCM_ bit := Saag i T This is the average energy per PCM bit-tin

Number of PCM

Energy per PCM bit-B = 3815% 107 This is the average power in Watt (B is 1/bit tim
Boagy por POMLVD _ wgys 1074 This is the average power in millWatt
10 3
dBm := 10-log Energy per PCM bit-B
102
dBm = —34.185 This is the sensitivity in dBm - dB referenced to 1|

INITIALIZATION OF GLOBAL VARIABLES AND TABULATED
RESULTS

390

PhD Thesis

Matched Filtering

tox = 0.042

0.519

0.52

0.521

0522

0.523

0.524

0525

0.526

0.527

0528

range = 1000

—9
Pg(b.0)=1.01 x 10 ~

2978103
2.976:103
2974103
2973103
2.973-10%
2973103
2973103
2.974-10%
2976103
2978103

Vor = 0.5195 tg = -0.012

b= 2977
2

n= 30

minimum = 2.973 » 1lJ3

maximum = 2.978 = 103 dBm = -34.185

2.978:10°
2977107
2.976<10°)
2.975:10°

2974107

2973410

2.072410° — =
0123456 780910111213141516171¢

1

Aml12 Ym2 pem_bits = 6

391
PhD Thesis

Appendix E

APPENDIX E

Mathematical Analysis
Raised Cosine Filtering

12-1 PPM SYSTEM

NORMALIZED BANDWIDTH OF 30

392
PhD Thesis

Raised Cosine Filtering

Set up the scan limits

range := 1000
0
i=0,1.9 n:= 10 0 087
e 1| o871
Sl range 2| osr2
$oom s This gives the row of the matrix o
v=[a| o874
5| 0.875
y:=0.n
6| 0876
Preamplifier terms 7| osm7
8| 0878
f=1.210" Preamp bandwidth 9| 0879
S, = 1610 i Preamp noise at input - double sided Philips TZA 3043
B=110 Bit rate
pem_bits = 3
;L) PCMbittime X = 12
B
m_bits. T) Y=1
s e S Slot time
X
R=10 Number of like symbols in PCM
ng= 16107 Quantum energy
A:=1.5510"° This is the wavelength of operation
66310 13108
photon_energy 1= ——
X R
ot=
hoton_energy
Pulse shape terms e
01874, ot 0.1874.T,
= T i Te
393

PhD Thesis

Raised Cosine Filtering

MNoise corner frequency.

W = 2-m-£5- T Bg:=]
Pulse shape :
1 2 2
Pulse(t) := —————-ex} — wpi= 2
2oy T, 2 ,_,“2
9
Wy = 6-10°
Pulse shape

Ideal Raised Cosine filter only

3:=0.99 This is the roll-off factor of the RC filter use lim to find the |o(Ts/2,-Ts/2)

1
Ip(t):=1-—+ 1 if t=0
f 1-T
lif 12—
S 1L, 8
1 if 18 ——
2
t
sl We— |-cc ‘Jfl'-ﬂ-L
T, T,
otherwise
t |2
(11-!—] 1 .1.1:}'_
5 Is—

2
I 1 [] + ou:{t)) \ 5|1 [i + ca\s[?]j
Ij(f) = = = e [o)== | |2 | a
™ - = t_@n.x_j* ™ 2 . 1_0(|'x_];
e 2
0 : 0 ¢

394
PhD Thesis

Raised Cosine Filtering

3 3
B, B,
NEB(fn) = Il{fn)'Bs t 14(1"}—1 h(fn]'__’
- '
10 =10 10
noise == ‘SO-NEB(f,,) t:=-5.10 ,—4.99-10 w510
. : — 13
noise = 1,158 = 10 JAID‘J
Set up the pulse shapes
210
12-1 PPM System Io(t)
volt) := Tglt) 0
Vorolt) = To(t) 2.10°
sa0”'? 0 se10” 1"
t
Vornalt) = Ip(t) + Ip(t = 1)
395

PhD Thesis

Voro1(t) = Io(t) + Lot — 2)

peak value
V0= Vil

decision time

tay = 100 (Tt — v olte) Tt

vdi = Io(tdni)
v
205
veltpi)

1 10 - 10

t= 510" 1% 490107 1% 510

396

Raised Cosine Filtering

PhD Thesis

Raised Cosine Filtering

4410
Vol
o
Voo 210
"u(idoﬁ)
— 0
—2:10°
_ed07 ! 41071 _2a00710 0 20071 407! ea07!®

peak value

Same as an isolated pulse
vp10:= Voroltpk)

decision time

2
1dmi = “K}[[(“'nlﬂ{ld) — vdiJ-Ts ,Id]

“'d,‘
- 0.5

\"om('pk] o

v olo(ldloj]

Yplo

397
PhD Thesis

Raised Cosine Filtering

1107
Vorolt)
210
Vp1o
VulO(‘dng)
[
2410
ox10710 — 41071 —2¢1071° 0 21070 407! g0

peak value

First Pulse

pl1 - ‘pk

Vpll = "'n[lD{Tpk)
9

vpnn = 4x 10

Second Pulse
Lok = e 1

tp11o 3= toka
Vpl1o = Vol 10('p1|0]

Vprro= 4% 10

398
PhD Thesis

Raised Cosine Filtering

decision time

2
tany, = fm[("onoiid) - Vdi]‘Ts -ld]

“'dl‘ 0.5
—= 0D
"u[m('pnu)

4107
Var1o(t)
o

2«10

Vpl10
"ollU('dllJ
0
2107
6107 a0 —2a07' 0 207" aa0'® g

peak value

Same as isolated pulse and 10 sequence
tpron = Uk

8]

taton

Vplol = Voml(lplm)

399
PhD Thesis

Raised Cosine Filtering

9
Vplol = 4% 10
Second Pulse
tokes = tik + 2

tprono = tgk + 2

Vptono* "ulm['pzomJ
9
Vpioig = 4% 10
tpro10 =2
decision time
"'d_‘

2
taon, = TOOE[("awl(‘d} VdiJ'TE etd:l ——— =05

"niDl[Tpn}

& 1
Voro1(t)
2410°]
Vp1o10
"ulDI([dIDIﬁ)
0
9
2410
61070 — 407! 207" 0 w1070 a0 a0V

400
PhD Thesis

ERROR SOURCES

FALSE ALARM ERROR

Raised Cosine Filtering

Equivalent pcm error number is found by emor_number/((x-y)*pcm_bits*pcm_words)

Standard false alarm

bng-vy,
Qg b, i) = L
‘JIIDESC
L1 Qgfb.1)
Pgb,1) = —-erfc
R W

Per(b.i) := 0.32197-Py(b. i)

Qplb,i) =

5.862

5.862

5.862

5.862

5.862

5.862

5.862

5.862

5.862

5.862

Slot after pulse false alarm - time td+Ts

Vol0, = Vnm{ldni + 1)

Qpolb,1) =

Jmise

ll'ﬂ‘i'(vdi = "am::i!

401

PhD Thesis

Raised Cosine Filtering

b,1)
Prg(b.i) = %-erfc[w)

NG

Perio(b.i) i= 0.0454545-Pyy(b.i)

Slot after double pulse false alarm - time td+2Ts

Vool1o, = Vol lo(lno.l + 3]

b‘ﬂ*]'("d.l = Voouo]..!
Qm”o[b.i_l = -
\‘I'lolse

) 1 Qponpolb.i)
Pgy1polb,i) = :-erf

=

Peorio(bi) := 0.0364583-Pyyp1o(b, i)

Slot between pulses false alarm - time td+Ts

Voolon, 3= Volﬂl(ltlo.‘ + |)

402
PhD Thesis

Raised Cosine Filtering

13'"’IQ'(V:|.l \’ummj!
Qpoi(b.i) =
\Jnui:u:

1 Qnon(b.i)
Paog(b,i) = :-crl’c(L]

NS

Perior(bai) i= 0.0364583-Ppgy(b,i)

TOTAL FALSE ALARMERROR

Ppot(bs1) = Pegb,i) + Peo(bsi) + Pemnyolbsi) + Peryor(b, i)

Ppoib.i) =
1.004-109
1.004-109
1.004-109
1.004-10°9
1.004-109
1.004-109
1.004-10°9
1.004-109
1.004-109
1.004-109

403
PhD Thesis

Raised Cosine Filtering

ERASURES

Equivalent pcm emror number is found by error_number/(pcm_bits*pem_words)

Standard erasure of pulse

modify pulse parameters

h'nLl'(\'n[1pk) = Vd
Qb,i) = —)-‘
\)noise

{Q,{h,i]]
~erf
NE

Pe(b.i):= 1.125.P(b,i)

Pdb,1):=

ta | —

Erasure of second pulse in 11

l""'I‘i'("nlw(‘pk‘ 1) “'d.l)
Jnoise

(erlu{b-ilj
-erfe] ——
NE)

Perpiolb,1) := 0-Pyqlb,1)

Qralb,1) =

Poyglb,i) =

ta | —

404

PhD Thesis

Raised Cosine Filtering

Erasure of second pulse in 101

b‘ﬂQ'(\’oml(lpk r2) “'d‘.)

Qrioih.i) = —

nomse

e 'l Qrio1(b,1)

Prioi(b.i) i= —-erf] ————
rropt D. 1) jnr \E
Perro1(b.1) 1= 0-Pyg(b.i)

TOTAL ERASURE ERROR

Perase(b.1) i= Pyib,i) + Pyqiolb,1) + Peypn(b, 1)

TOTAL ERROR RATE

Payfb. i) = Peraure(b. 1) + Ppog(b.i)

Ppedb.i) = Pyy(b.i) = Perpsure(bai) =
1.004-109 3.498-10® 2.493-109
1.004-109 3498100 2493109
1.004-10-9 3.498-10® 2.493-109
1.004-109 3.498-10°9 2493109
1.004-10:9 3.498109 2.493-10:9
1.004-109 3.498-10° 2.493-109
1.004-109 3.498-109 2493100
1.004-109 3.498100 2493109
1.004-109 3.498-10-® 2.493-109
1.004-10°9 3.498-10°9 2493100

405

PhD Thesis

Raised Cosine Filtering

3

dBm := 10-log
10 °

EtlergyJler_i’(.‘fk-l_hil-B]
dBm = —46.381 This is the sensitivity in dBm - dB referenced to 1 m\W

INITIALIZATION OF GLOBAL VARIABLES AND TABULATED
RESULTS

k=0 ver=087 £,= 30 b=6238 tg=-12545.10" '°

sensitivity := 2966

406
PhD Thesis

Appendix F

APPENDIX F

Publications

Publication 1

Publication 2

Publication 3

Publication 4

407
PhD Thesis

Publication 1

Investigation of an Optical Multiple PPM Link over a Highly Dispersive

Optical Channel

K. Nikolaidis. M.J.N. Sibley
Department of Engineering

Huddersfield University, Queensgate, Huddersfield, HD1 3DH

Abstract

X
This paper describes a performance analysis of (}’ J multiple PPM systems, in which X denotes the

number of data slots and Y the number of pulses. operating over a plastic optical fibre (POF) channel.
The effects of receiver noise and channel dispersion are accounted for and the manner in which the
erasure, wrong-slot and false-alarm errors affect system performance is examined. The

receiver/decoder uses slope detection and a maximum likelihood sequence detector (MLSD). As the

X
analysis of any (}, J multiple PPM system is extremely time-consuming, a novel automated solution

was designed to predict the equivalent PCM error rates of specific sequences and simplify the task. We

also propose a measure of coding quality that accounts for efficiency of coding and bandwidth
. y . 5 12 . .
expansion. Using this measure, original results show that a 5 system is the most efficient for a

wide range of bandwidths.

408
PhD Thesis

Publication 1

1. Introduction

Digital Pulse Position Modulation (digital PPM) is a modulation format that codes n bits of PCM into a
single pulse that occupies one of 2" time slots. It is considered to be optimal for implementation over
optical fibre channels and is the preferred modulation format for the ideal photon counting channel and
optical inter-satellite links. A digital PPM frame usually has several empty time slots which are used as
a guard interval to reduce the effects of inter-symbol (ISI) and inter-frame (IFI) interference. Various
studies over the last three decades [1-8] have shown that such a scheme can offer an improvement in
receiver sensitivity of 5-11 dB when compared to PCM. Such an increase in sensitivity can be
exploited beneficially in both long haul applications and the multi-user environment. However, this
improvement results in a considerable increase in the final data rate of the original PCM [9]. and this

makes implementation difficult.

Alternative methods have been proposed, such as multiple PPM [9-16]. dicode PPM [17. 18],
differential PPM [19. 20] and overlapping PPM [21] that reduce transmission bandwidth while
maintaining an increased sensitivity. Dicode and multiple PPM [9] are the most bandwidth efficient of
these formats and multiple PPM. the subject of this paper. offers the best sensitivity without the large
bandwidth increase. In this scheme, multiple pulses per frame are used. with the pulse positions being
determined by the original PCM word. Thus if & pulses are transmitted in a timeframe of n slots, the

'
number of combinations are ” =L. Ideally, " should be a power of two to ease
k) kNn—k) k

12
implementation but for & >1 this is rarely the case. For example. a (2) multiple PPM system uses a

12-slot frame with 2 data pulses to code 6 bits of PCM data. This gives 64 valid multiple PPM frames

409
PhD Thesis

Publication 1

instead of the available 66. If linear mapping is used, the PCM word 000000 is translated to a code-

word with pulses in slots 1 and 2 (referred to as a [1,2] code-word) and the PCM word 111111 is
3 12} G 3
translated to the [10,11] code-word. If higher order codes are used. such as 6) further reductions in

bandwidth can be achieved because it becomes possible to encode up to 9 bits.

12
Sugiyama and Nosu [13] proposed a detailed noise performance of a (2 J multiple PPM. optical fibre

system in the presence of erasure errors, A Maximum Likelihood Sequence Detector (MLSD) was used
as the decoder-detector and this same scheme is also used in this paper. They concluded that multiple
PPM is more efficient than digital PPM in terms of power and bandwidth utilization. resulting in a best
predicted sensitivity of 0.58 bits/photon compared to the 0.5 bits/photon for digital PPM. both
operating at an error rate of 1 in 10, The use of error reduction codes such as Reed-Soloman (RS) to
further increase receiver sensitivity was proposed by Atkin and Fung [22]. They analyzed the
performance of a RS coded multiple PPM system using an avalanche photodiode (APD) and predicted
0.1 nats/photon compared to the 0.03 nats/photon, for an equivalent (RS) PPM system, both operating

at an error tate of 1 in 107,

Park and Barry [14] examined the performance of multiple PPM and its variants PPM and OPPM on
ISI channels with additive white Gaussian noise. The error probability and channel capacity results
indicated that. although PPM modulation schemes were extremely power efficient across ISI-free
channels, their power efficiency dropped dramatically when ISI was present. The same authors also
investigated the effect of dispersion on multiple PPM [15] for indoor wireless infrared communication.
They concluded that a partial-response pre-coding at the transmitter reduces the ISI span to two baud

periods. which reduced the complexity of the receiver significantly providing a good balance of

410
PhD Thesis

Publication 1

12
performance and complexity. They also concluded and showed that a [J combination is particularly

12
efficient [16]. Sibley [9] presented an original performance analysis of a [2] multiple PPM system

with a slope detection system coupled with a classical matched filter, MLSD scheme to combat inter-
symbol interference. The author concluded that this multiple PPM scheme had a 7.36 dB advantage
over PCM when operating under wide bandwidth conditions. When all consecutive pulses were
replaced by three-pulse sequences to reduce the effects of ISI and IFT at low bandwidths. it was shown
that such a hybrid 2/3 pulse system gave a sensitivity of -22.74 dBm at a channel bandwidth of 0.7

times the PCM bit rate. This represented a 3.61 dB improvement over the original two-pulse system.

In this paper, we present an original method of predicting the sensitivity of any multiple PPM system
; ; 12 . ; ;
using MLSD and results are presented for a [}') multiple PPM scheme. Section 2 discusses the types
of error, error probability and MLSD scheme used in the multiple PPM system. Section 3 presents the
; . ; g 12 g
MLSD approach using specific multiple PPM sequences in a 7 multiple PPM scheme, and a

simplified algorithm is presented. Section 4 presents and discusses the results, and section 5 presents

the conclusions.

411
PhD Thesis

Publication 1

2. Pulse Detection Errors

As with digital PPM, multiple PPM systems suffer from three types of error, erasure, false alarm and
wrong-slot. The following three sections present expressions for their respective error probabilities [3.

4].
2.1 Erasure Error

Erasure errors are generated by noise present at the decision (sampling) time causing the amplitude of

the pulse to fall below the threshold voltage. The probability of this occurring, Pe. is given by (1):

P = (].SCHC(%] 40
where Q. is given by (2):
ViV
Q= Ty @

where the symbols have the following meanings:

Vo = Volty) the peak receiver output,

vy = vy(ty) the receiver output at the threshold crossing time td,

{n, ") the mean square receiver output noise.

412
PhD Thesis

Publication 1

When an Erasure error occurs. one pulse is removed from the multiple PPM frame. Thus. if the frame

FA

12
has only 2 pulses. as with [5] multiple PPM. only one pulse is present. In this case the number of

resultant PCM errors is found in the same way as that used by Sibley [9].
2.2 False Alarm Error

For the False-Alarm Error (FA), noise in an empty slot could cause a threshold violation and so a pulse

could be detected in an empty slot. The probability of this occurring is given by (3):

= 0
Pr= L(J.Scrf(i) @)
T V7
where,
Vi 'vn(td)
C" 2 4
=) @
and

T i
—~ = the number of uncorrelated samples/time slot
Tr

tr = the time at which the autocorrelation function of the filter has become small
vo(tg) = the signal voltage in the slot considered. which can be non-zero due to

the effects of ISL

In the case of a FA error, an extra pulse is detected on a frame. The treatment is identical to that used

by Sibley [9].

413
PhD Thesis

Publication 1

2.5 Wrong-Slot Errors

Noise on the leading or falling edge of a pulse can cause it to appear either before or after the current
slot. To minimize this error, detection should occur at the centre of the current slot. Hence the
probability of a Wrong-Slot error (WS), Pg, is given by (5):

QS

5)
o ‘

P: = 0.5erfc(

with Qs defined by (6):

0, L slope(ty) ©)

2 fin®

where,
Ts = the slot width.

slope(tq) = the slope of the received pulse at the threshold crossing instant tq,

When a WS error occurs. a pulse can be detected immediately before or after the correct slot depending
on the size of the dispersion and receiver noise as described by Garrett [3, 4]. For example, consider the
codeword [3,5] which decodes to the 010110 equivalent PCM word (if a linear mapping is used). If a
WS error occurs on the first pulse of the code-word causing it to appear too early, the detected code-
word will be [2.3.5]. If the noise and dispersion causes the pulse to appear one slot later, the code word
[4.5] results, Similarly, if the WS error occurs on the 2™ pulse, the possible detected code-words might
be [3.4.5] or [3.6]. Thus four possible PCM words result as shown in Table 1. The output of the
MLSD. as described by Sibley [9]. is obtained by summing the logic 1s for each individual bit and
averaging over the number of code-words. A PCM bit is assigned to logic one if it’s weighting is

greater than 0.5, a logic 0 if it is less than 0.5, or undefined ‘U’ for worst case scenarios when equal to

414
PhD Thesis

Publication 1

0.5 (Table 1). The bit-by-bit comparison between the original code-word and the averaged MLSD
codeword gives the average error per PCM bit for a specific multiple PPM sequence and the total
wrong slot error is found by averaging all possible WS code-words. A problem occurs in characterising
an error as a WS error when IFI occurs on the first or last pulse in a multiple PPM frame. If a WS error
occurs on a pulse in the first slot of the frame, a false pulse could occur in the last slot of the preceding
frame. This would appear to give a False-Alarm error in the frame before the one under consideration.
If a WS error occurs on a pulse in the last slot of the frame, the pulse could effectively move into the
first slot of the following frame. Thus the original pulse 1s lost and the treatment is similar to an

Erasure error.
3. Software Description

The error sources just described will generate errors in the decoded PCM word. In order to calculate the
error probability and the effects of ISI and IFL, Sibley [9] considered specific pulse sequences such as 0
and / (called standard error) and 10, 110, 11, 1/, 101, 10/ and 10/1 caused by ISI or IFI of adjacent
slots with the symbol in error being represented in italics. The error probability was determined by

applying the MLSD decoding and then weighting by the probability that the particular sequence occurs.

This process can be very tedious and time consuming (420 combinations need to be considered just for
; 12 ; e ; 22
FA errors in a 5 multiple PPM system) especially if the system is large such as Al Hence, a

software solution, using novel algorithms, was developed that simulates a multiple PPM decoder. In
this system. registers are created according to the multiple PPM system (using Dynamic Memory

Allocation) and every possible code-word of the system is generated. Digital 1s and 0Os represent

415
PhD Thesis

Publication 1

12
occupied and empty multiple PPM slots and so the [1,2] code-word in a [2 J multiple PPM system is

represented as 110000000000, The remaining bits in the registers contain the equivalent PCM data and
so the [1,2] register contains 110000000000/000000 if lincar increment mapping starting from zero is

used. Other code-words are dealt with in a similar fashion.

Errors in received code-words are dealt with in the following manner. All possible corrupted code-
words are generated and stored in registers, together with their equivalent PCM data. These corrupted

code-words are generated when an Erasure, False Alarm or Wrong Slot error oceurs. For example, in a

12
[-] multiple PPM system the [4,7] codeword can be detected as [4,7] if an erasure error occurs on the

&

second pulse of the codeword. The corrupted code-word is [4.?] and its equivalent PCM data can be
found by averaging the PCM data of all code-words with one pulse in slot 4 [9]. The [4.7] codeword
could also be detected as [3.4.7] due to a False Alarm. Hence, a corrupted codeword is generated and
its equivalent PCM data can be found by averaging the PCM bits of [3.4]. [4.7] and [3.7] code-words.
The wrong slot corrupted codeword is a mixture of false alarm and erasures. Thus, [4,7] can be
detected as [3.4.7] or [4.6.7] (false alarm error caused by left dispersion of the first or second pulse) or
as [5.7] or [4.8] (right dispersion of the first or second pulse). If the codeword has adjacent pulses such
as [3.4] the codeword can be detected as [?7.4] (erasure). The bit-by-bit comparison (XOR) of the
weighted and original data will give the number of PCM error bits for every error sequence. (An
example is given by Sibley [9] in which the second pulse in [4.7] is erased to give [4.7].) The software
automatically checks every code-word for every possible error sequence and calculates the number of
PCM error bits that every sequence generates. The PCM equivalent error rate of every error sequence

(average error per PCM bit in Table 1) can be obtained and used to calculate the total error probability

416
PhD Thesis

Publication 1

12
of a multiple PPM system. Therefore, for a [2 J multiple PPM system, 12 erasure, 220 false alarm

and 232 wrong slot errors need to be considered.

If this methodology is expanded to larger systems, a very large number of sequences need to be

considered so making this analysis again very prolonged. The solution was the development of a new
algorithm that only considers the most important and common sequences in any y multiple PPM

system. This simplification can be achieved because some particular sequences rarely occur and so
have a negligible effect on the equivalent PCM error rate. Some sequences can be further grouped and

so only the 26 sequences shown in table 2 need to be considered to predict the performance of any

X
[}__ J multiple PPM system. even when the effects of IST and IFI are accounted for.

4. Discussion and Mathematical Analysis

12
In a mathematical analysis of a (2] multiple PPM system. Sibley [9] used a 1.2 GHz bandwidth

PINBIT receiver, with a frequency independent, input equivalent noise current spectral density of 16 x
10" A%Hz (double-sided), a classical matched filter and a threshold crossing deteotor. An operating
wavelength of 650 nm and a photo-diode quantum efficiency of 100% were taken. Simulations were
carried out using a data rate of 1 Gbit/s and the total equivalent PCM error probability obtained, by
adding together the individual probabilities, was taken to be 1 error in 10° pulses. For a given sets of
parameters, the pulse shapes. derivates and the noise were found and the number of photons per bit. b.

caleulated. A threshold parameter, v, was defined as

10

417
PhD Thesis

Publication 1

Va

v=—t (7
Vipk

vpk = the peak voltage of an isolated pulse

The same parameters and method for predicting sensitivity were used in this investigation to examine a

12
[}’ J multiple PPM system. All the experiments considered transmission through plastic optical fibre

with a Gaussian impulse response [12]. The channel bandwidth was normalised to the PCM bit-rate
and varied between 100 and 1.2. Operation below 1.2 was impossible due to the high levels of ISI and
IFI causing sequences such as 110, 1101 and 1110 to be received as 10, 101 and 10 respectively as

shown in figure 1.

2

1
4.1 Sensitivity Performance of [}] Multiple PPM

Table 3 details the variation in the number of photons per multiple PPM pulse, for a PCM bit error rate
of 1 in 10”, as the channel normalised bandwidth, f,, varies from 100 to 1.2. Two sets of data are
presented representing the best and worst sensitivities at a particular bandwidth, and each set compares
results from the complete and simplified analyses. As can be scen, there is little difference between the
two analyses and so the simplified version was used in the simulations. It is apparent from the table
that the optimum coding level ranges from 12-2 for high bandwidths to 12-1 for low bandwidths.

However, this representation of the data does not take into account the coding efficiency of the systems

11

418
PhD Thesis

Publication 1

12 12
a (] J system can code up to 3 PCM bits while a (2] system can code up to 6 PCM bits. Thus the

12
[2 J system could be regarded as more bandwidth efficient. In order to explore this, we define a

bandwidth expansion, BE. parameter as

X

n

BE= (8)

where X is the number of multiple PPM slots in a frame. A process of normalisation is now applied to
the sensitivities and bandwidth expansion so that all values are expressed between 0 and 1. To achieve
this, the number of photons required for each coding level are divided by the largest number of photons
per pulse for that particular bandwidth (worst case sensitivity in table 3) and all bandwidth expansions

are divided by the largest BE (12/3 = 4 for all f;;). These normalized results are shown in table 4.

A weighted sum approach can now be applied to the multiple PPM systems (at every value of £) in
terms of sensitivity and bandwidth expansion, with a range of weights between 0 and 100% in steps of
10%. A weighting of 0% means bandwidth expansion is the most important parameter while a
weighting of 100% means sensitivity is more important. A 50% weighting is where the two parameters
are equally important and is a key point of interest. Thus, using (9). an efficiency factor, 77, can be

defined as
U/ 1- [phi’(?l\ulnmm X w‘:ightmm % BE’I!CII‘I'H X WCightBF) (9)

where,

Phpengnon 15 the normalized sensitivity in photons per PCM bit

12

419
PhD Thesis

Publication 1

BE

“norm 18 the normalized bandwidth expansion

weight,, is the sensitivity weighting = 0 to 1 in steps of 0.1, and

weighty;: is the bandwidth weighting = 1- weight

sens

A system is considered to be 100% efficient if it has the best sensitivity and the lowest BE (coding 9

PCM bits). On the other hand, a system is 0% efficient if it has the lowest sensitivity and the bandwidth

12
expansion of the [I l) system (only 3 PCM bits can be encoded). Table 5 shows the efficiency map

12
for a 12-Y multiple PPM system across the range of f;. As can be seen, the (6 J multiple PPM system
is generally the most efficient system, It is only when the bandwidth is extremely low that the coding

12
level changes to (5 J Both systems code 9 bits of PCM data but the normalised bandwidth expansion
12 o oy G ;
for the 5 code is slightly lower. When the sensitivity weighting is greater than 90%, the optimum
; ; 12 s E S ; g :
coding level is generally s) In this situation, bandwidth expansion is not important and so the

12
higher sensitivity, lower codes can be used. The simulation predicts that [1] (i.e. digital PPM)

should be used at very low bandwidths. This is because there is a very high level of pulse dispersion
leading to an increased level of ISI and IFT and. as digital PPM only has one pulse in a frame, it will not

be affected in the same way as a two pulse frame.

Figure 2 shows a surface plot for a 12-Y multiple PPM system operating with a normalized bandwidth

of 30. In this figure, the efficiency factor, 77. has been plotted on the vertical axis to demonstrate the

420
PhD Thesis

Publication 1

12
optimum. This figure clearly shows that the [6 J coding system is the most efficient except at the
extreme when sensitivity is more important than operating speed (above 80-20 weighting). In this

12
instance smaller systems are more efficient such as [2 J

5. Conclusion

12
This paper has examined the performance of a [}] multiple PPM system coding 1 Gbit/s PCM data.

The channel chosen was plastic optical fibre with a Gaussian impulse response and the optical receiver
had a 1.2 GHz bandwidth, white noise, a classical matched filter and a threshold crossing detector.
Slope detection was used together with a maximum likelihood sequence detector, in order to recover
the original PCM data. The effects of Wrong-Slot, False-Alarm and Erasure errors were examined in
detail. A novel algorithm was described that greatly reduces the amount of time taken to predict the
performance of a multiple PPM system. It was shown that the analysis could be simplified further if
error sequences are grouped automatically and reduced in number so that more complicated systems

can be analyzed.

A novel system parameter, the efficiency factor. has been proposed to account for the coding efficiency

of multiple PPM. Using this parameter. it has been shown that when the number of pulses is increased

12
ina (Y)mu]tiplc PPM system, leading to a more bandwidth efficient system, sensitivity is degraded.

12
However if bandwidth efficiency is accounted for, results show that (6) multiple PPM system is

14

421
PhD Thesis

Publication 1

generally the most efficient one. For very low bandwidths, lower systems are more efficient such as

12 12
[2]and{] J This is due to the high level of pulse dispersion causing detection errors.

15

422
PhD Thesis

Publication 1

References

1. KARP, S. and GAGLIARDI, R.M.: “The design of a Pulse-Position Modulated Optical
Communication System™, IEEE Trans. in Communications. vol. com -17. Number 6, pp 670-
676, December 1969.

2. BLACHMAN, NM.: “The SNR Threshold in PPM Reception™., IEEE Trans. in
Communications, vol. com-22, Number 8, pp 1094-1098, August 1974.

3. GARRETT, L: “Digital pulse-Position Modulation over dispersive optical fibre channels™,
Presented at Int. Workshop on Digital communications. Tirrenia, Italy. 15-19 August 1983,

4. GARRETT, 1: ‘Digital pulse-position modulation over slightly dispersive optical fibre
channels’, International symposium on Information theory. St. Jovite, 1983, pp. 78-79

5. CALVERT, N.M., SIBLEY, M.LN., and UNWIN, R.T.: “Experimental optical fibre digital
pulse-position modulation system™, Electron.Lett., 1988, 24, pp.129-131.

6. GARRETT, 1, CALVERT, N.M., SIBLEY, M.JN.. UNWIN, R.T. and CRYAN, R.A.:
“Optical Fibre digital pulse position modulation”, Br.Telecom. Technol. J., vol.7. no. 3. pp 5-
11, 1989.

7. CRYAN, R.A., UNWIN, R.T., GARRETT, I, SIBLEY, M.IN. and CALVERT, N.M.:
“Optical Fibre digital pulse-position modulation assuming a Gaussian received pulse shape™,
IEE Proc.J.. vol. 137, no. 4. pp 89-96. 1990.

8. SIBLEY, M.LN. and MASSARELLA, A.JL: “Detection of digital pulse position modulation
over highly/slightly dispersive optical channels”, Presented at SPIE Conf. on Video
Communications and Fiber Optic Networks, Berlin, 1993,

9. SIBLEY, M.LN.: “Analysis of multiple pulse position modulation when operating over graded-

index. plastic optical fibre™, IEE Proe.-Optoelectron.. vol.151, no.6. December 2004,
16

423
PhD Thesis

Publication 1

.LEE. G.M.. SCROEDER. G.W.: “Optical Pulse¢ Position Modulation with Multiple Positions

per Pulsewidth”, IEEE Trans. Commun., vol. COM-25, pp. 360-365, 1977

. GOL’DSTEYN, A. and FREZINSKIY. B.: “An Investigation of the Transmission of a Multi-

Position PPM Optical Signal Through a Communications Line Containing Repeaters”, Radio.

Eng. Electron Phys.. vol.24. pp.65-71. 1978.

.HERO, M.A., HU, L.: “Multi-pulse PPM and a new look at coding for direct detection optical

channels using APD receivers”™. Proceedings of the 23" Conference on Communication,

Control and Computing, IL, USA: University of Illinois, pp 401-410, 1985.

. SUGIY AMA, H. and NOSU, K.: “multiple PPM: A Method for Improving the Band-Utilization

Efficiency in Optical PPM™, Journal of Lightwave Technology. vol. 7. no.3. pp 465-472. 1989.

.PARK, H. and BARRY, R.: “Performance analysis and channel capacity for multiple-pulse

position modulation on multipath channels™, IEEE International Symposium on Personal.

Indoor and Mobile Radio Communications, pp 247-251, 1996.

.PARK. H. and BARRY, R.: “Partial-response precoding scheme for multiple pulse-position

modulation™, [EEE Proc. Opto., vol. 150, no. 2, pp 133-137, 2003.

. PARK. H. and BARRY, R.: “Trellis-Coded Multiple-Pulse-Position Modulation for Wircless

Infrared Communications”, [EEE Trans. Commun., vol. 52, no. 4, pp. 643-651, April 2004.

. SIBLEY, M.ILN.: “Dicode pulse-position modulation: a novel coding scheme for optical-fibre

communications™, IEE Proc. Optoelectronics, vol.150, no.2, pp 125-132, April 2003.

. SIBLEY, M.IN.: “Analysis of dicode pulse position modulation using a PINFET receiver and a

slightly/highly dispersive optical channel”, IEE Proc. Optoelectronies, vol.150, no.3, pp 205-

209, June 2003.

. ZWILLINGER, D.: “Differential PPM has a higher throughput than PPM for the bandlimited

and average power limited channel”, IEEE Trans. of Inform. Theory, vol. IT-34, Issue 5, PL.2,

pp 1269-1273. 1988.
17

424

PhD Thesis

20

21,

Publication 1

D, SHIU and KAHN, JM..: “Differential Pulse-Position Modulation for Power-Efficient

Optical Communication™, IEEE Trans. in Communications, vol. com-47, Number &, pp 1201-
1210, August 1999,

SHALABY, HMH.: “A performance analysis of optical overlapping PPM-CDMA

communication systems”, IEEE Journal of Light. Tech.. vol. 17. no. 3. pp. 426-434, 1999.

. ATKIN, G.E. and FUNG, K.S.: *“Coded multipulse modulation in optical communication
systems™, [EEE Trans. in Communications, vol. com-42, Number 3, pp 574-582, March 1994,

. SHIN, B.-G., PARK, J-H. and KIM, I-I: ‘Low-loss. high-bandwidth graded-index plastic
optical fiber fabricated by the centrifugal deposition method’, Applied Physics Letters, vol. 82,

no. 26, pp. 4645-4647, 2003,

18

425

PhD Thesis

Publication 1

PCM bits Bit5 Bit4 Bit3 Bit2 Bitl Bit0 Errors/PCM
Bit
First Pulse Left [2.3] 0 0 1 0 1 1
Error (2,3.5) [2,5] 0 0 1 1 0 1
[3.5] 0 1 0 1 1 0
AVERAGE 0/3 1/3 2/3 2/3 2/3 2/3
0 0.33 0.66 066 0.66 0.66
Average PCM 2.3.5] 0 0 1 1 1 1
Original Word [3.5] 0 1 0 1 1
Error Bits XOR 0 1 1 0 0 1 3/6
First Pulse Right [4.5] 0 1 1 1 1 0
Error (4,5)
Original Word [3.5] 0 1 0 1 1 0
Error Bits XOR 0 0 1 0 0 0 1/6
Second Pulse Left [3.4] 0 1 0 1 0 1
Error (3.4.5) [3.5] 0 1 0 1 1 0
[4.5] 0 1 1 1 0
AVERAGE 0/3 3/3 1/3 3/3 2/3 1/3
0 1 0.33 1 0.66 033
Average PCM [3.4.5] 0 1 0 1 1 0
Original Word [3.5] 0 1 0 1 1 0
Error Bits XOR 0 0 0 0 0 0 0/6
Second Pulse Right [3.6] 0 1 0 1 1 1
Error (3,6)
Original Word [3.5] 0 1 0 1 1 0
Error Bits XOR 0 0 0 0 0 1 1/6
Av. Error/PCM Bit 5/24=0.20833
for [3,5]

Table 1: Decoding for Wrong-Slot Error using MLSD

19

426

PhD Thesis

Publication 1

Error False-Alarm Wrong-Slot Erasure
Sequences 0 1 1 Standard errors
10 11 11
110 11 11
101 111 111
1101 101 101
11071 1107
1011 10101
10111
11011
110711
111
1711
1111
11711

Table 2: Sequences considered from the simplified algorithm with symbol in error being

represented in italics (0 and I alone are called standard errors)

20

427

PhD Thesis

Publication 1

Best sensitivity Worst sensitivity
fn (photons per pulse) Optimum (photons per pulse) Optimum
Simplified Complete | coding level Simplified Complete | coding level
100 2763 2763 12-2 2845 2853 12-10
90 2770 2770 12-2 2854 2855 12-10
80 2782 2782 12-2 2868 2871 12-10
70 2798 2798 12-2 2884 2886 12-10
60 2821 2821 12-2 2933 2935 12-10
50 2853 2853 12-2 2951 2953 12-10
40 2003 2903 12-2 2989 2993 12-10
30 2973 2973 12-2 3077 3086 12-10
20 3103 3103 12-2 3204 3205 12-10
18 3149 3149 12-2 3252 3253 12-10
15 3240 3240 12-2 3348 3348 12-10
12 3373 3373 12-2 3487 3488 12-10
10 3501 3501 12-2 3621 3622 12-10
9 3585 3585 12-2 3710 3710 12-10
8 3689 3689 12-2 3819 3820 12-10
7 3823 3823 12-2 3960 3961 12-10
6 4004 4004 12-2 4148 4149 12-10
5 4257 4257 12-2 4411 4413 12-10
4 4642 4642 12-2 4810 4812 12-10
3 5312 5312 12-2 5500 5504 12-10
2 6994 6994 12-2 7232 7237 12-10
1.8 7744 7744 12-2 8006 8010 12-10
1.5 10030 10030 12-1 11810 11910 12-10
1.2 42380 42380 12-1 101000 101000 12-10

Table 3 Best and worst case sensitivity (using the simplified and complete models) and

corresponding coding level for varying normalised channel bandwidth

21

428

PhD Thesis

Normalised | Normalised Coding
fn sensitivity BE level
100 0.971 05 12-2
90 0.971 05 12-2
80 0.970 0.5 12-2
70 0.970 05 12-2
60 0.962 05 12-2
50 0.967 0.5 12-2
40 0.971 0.5 12-2
30 0.966 05 12-2
20 0.969 0.5 12-2
18 0.968 0.5 12-2
15 0.968 05 12-2
12 0.967 05 12-2
10 0.967 0.5 12-2
9 0.966 0.5 12-2
8 0.966 0.5 12-2
7 0.965 05 12-2
6 0.965 0.5 12-2
5 0,965 05 12-2
4 0.965 05 12-2
3 0.966 0.5 12-2
2 0.967 0.5 12-2
1.8 0.967 0.5 12-2
15 0.842 1 121
1.2 0.420 1 121

Table 4: Normalized sensitivity, BE and optimum coding level of a 12-Y MPPM system

22

429

Publication 1

PhD Thesis

Publication 1

Equal
BE is more important Weight Sensitivity is more important
fn 0-100 10-90 20-80 | 30-70 | 40-60 50-50 60-40 70-30 | 80-20 | 90-10 100-0
100 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2
90 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-4 12-2
80 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
70 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-4 12-2
60 12-6 12-6 12-8 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
50 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
40 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
30 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
20 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
18 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
15 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
12 12-6 12-6 12-6 12-6 12-86 12-6 12-6 12-6 12-6 12-2 12-2
10 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
9 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-8 12-6 12-2 12-2
8 12-6 12-6 12-6 12-8 12-6 12-6 12-6 12-8 12-6 12-2 12-2
7 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 126 12-6 12-2 12-2
5 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
4 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
3 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
2 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
1.8 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-6 12-2 12-2
1.5 12-5 12-5 12-5 12-5 12-5 12-5 12-5 12-2 12-2 12-2 12-1
1.2 12-5 12-5 12-5 12-5 12-5 12-5 12-1 12-1 12-1 12-1 12-1

Table 5: Efficiency map (as defined by equation 9) for a 12-Y multiple PPM system

430

PhD Thesis

Publication 1

9
2510

-1 0.9 0.63 144 225 3.06 388 4.69

 #
time

Figure 1: 1110, 110 and 1101 pre-detection multiple PPM sequences with f,=1.2

24

431

PhD Thesis

Publication 1

EFFICIENCY OF A 12-Y MPPM SYSTEM
G =R
-
07" ,.f“———-] __I
) 7
0.6 auN ety
0.5' kf ; B
= = |
n (zz' 3
) 0alt AVAY T
0.211f T
011 100_0
0 50_50
— g ! ' Weight (yy')
Vo © 0_100
12-Y Systems (xx')

Figure 2: Efficiency (surface weighted sum) plot of a 12-Y multiple PPM system for a normalized
bandwidth of 30 (in the yy’ axis from 0 to 49, Bandwidth expansion is dominant from 51 to 100

sensitivity is dominant with equality in 50)

25

432
PhD Thesis

Publication 2

Page 10f 9

Theoretical Investigation into the Effects of Data Mapping

in an Optical multiple PPM Link

K. Nikolaidis, M.J.N. Sibley
Department of Engineering and Technology
School of Computing and Engineering

The University of Huddersfield, Queensgate, Huddersfield, HD1 3DH

The effects of linear increment, linear decrement, Gray code and random mapping of data on the
. (12 : . . : ;
performance of a | | multiple PPM system are presented. Simulations using show that the Gray code

is the most effective as it minimizes the Hamming distance between adjacent multiple PPM words.

Introduction: Digital Pulse Position Modulation (PPM) is a modulation format that codes n bits of
PCM into a single pulse that occupies one of 2" time slots. The improvement in receiver sensitivity
results in a considerable increase in the final data rate of the original PCM [3], and this makes
implementation difficult. Alternative methods have been proposed [1-6] of which multiple PPM [3-6],

the subject of this paper, is the most efficient in that it offers the best sensitivity [3] without the large

12
bandwidth increase. Sugiyama and Nosu [5] proposed a detailed noise performance of a [2] multiple

PPM, optical fibre system in the presence of erasure errors. A Maximum Likelihood Sequence Detector
(MLSD) was used as the decoder-detector, and this same scheme is also used in this paper. They
concluded that multiple PPM is more efficient than digital PPM in terms of power and bandwidth

1

433
PhD Thesis

Publication 2

Page 20f9

utilization, resulting in a best predicted sensitivity of (.58 bits/photon compared to the 0.5 bits/photon
for digital PPM, both operating at an error rate of 1 in 107, They also considered the effects on system
sensitivity of randomizing the mapping of the PCM data to multiple PPM words — a technique that is

also examined in this paper.

In this paper, we present original detailed results obtained from mapping experiments on a (}’]

multiple PPM system using MLSD. The mappings considered are Linear Increment, LI, Linear
Decrement, LD, Gray Code, GC, and Random, RD. With the LI code being taken as reference, we

show that the other codes give an improvement in sensitivity without introducing redundancy.

Pulse Detection Errors: As with digital PPM, multiple PPM systems suffer from three types of error,
erasure, false alarm and wrong-slot [7,8]. In case of an error the number of resultant PCM errors is
found using a MLSD in the same way as that used by Sibley [3]. In order to calculate the error
probability and the effects of Inter-Symbol Interference, ISI, and Inter-Frame Interference, IFI, Sibley
[3] considered specific pulse sequences such as ¢ and / (called standard error) and 10, 110, /1, 11, 101,
107 and 1071 caused by ISI or IFI of adjacent slots with the symbol in error being represented in
italics. The error probability was determined by applying the MLLSD decoding and then weighting by

the probability that the particular sequence occurs. This process can be very tedious and time

12
consuming (420 combinations need to be considered just for FA errors in a [2] multiple PPM

L . 22 . .
system) especially if the system is large such as [5 . Hence, a software solution, using novel

algorithms, was developed as previously described [9]. Use of this software greatly simplified the task

of examining the effects of different coding techniques on the PCM error rate.

434
PhD Thesis

Publication 2

Page 3 of 9

Mathematical Analysis: The same mathematical models were used in the same way as that used by
Sibley [3]. The total equivalent PCM error probability obtained, by adding together the individual
probabilities, was taken to be 1 error in 10° pulses. For a given sets of parameters, the pulse shapes,
derivates and the noise were found and the number of photons per bit, b, calculated. A threshold

parameter, v, was defined as

y=—4 1

v = the peak voltage of an isolated pulse

All the experiments considered transmission through plastic optical fibre with a Gaussian impulse
response [4]. The channel bandwidth was normalised to the PCM bit-rate and varied between 100 and
1.2. Operation below 1.2 was impossible due to the high levels of ISI and IFI causing sequences such

as 110, 1101 and 1110 to be received as 10, 101 and 10 respectively.

Results and Discussion: Table 1 details the variation in the number of photons per PCM bit as the
. . . 12 . .
normalised channel bandwidth, f,, varies from 100 to 1.2 for v systems using LI. It is apparent

from the table that the optimum coding level ranges from 12-2 for high bandwidths to 12-1 for low
bandwidths. Moreover, sensitivity is further degraded when the number of pulses is increased.
Sugiyama and Nosu [5] only considered random mapping of data to find the optimum coding

technique. Here we present results for four different mappings — Linear Increment, Linear Decrement,

12
Gray Code and Random — that operate without redundancy for every version of the [lr‘)family, The

435
PhD Thesis

Publication 2

Page 4of 9

results are shown in table 2 which details the improvement in sensitivity (photons/PCM bit) obtained
over Linear Increment mapping (taken as the reference). Table 3 presents the variation of optimum

mapping as the channel normalised bandwidth, f,, varies. From these results it is evident that eight

12 12 12 12 ; ot
systems (from] t p and 9 and 1) enhance their sensitivity if Gray Codes are used. Two
L J

12 12
systems ((7]and(8 J) enhance their sensitivity if Linear Increment/Decrement is used (the LI and
LD mappings gave almost the same sensitivity) and Random mapping was most efficient only fo ol

Thus it can be seen that Gray Codes are the most efficient mapping for most systems of th [Y]

family. This can be explained from the fact that Gray Codes minimize the Hamming distance between
adjacent multiple PPM words, and MLSD is used. Hence, if the Hamming distance is kept to

minimum, there are minimum errors between the decoded word and the original data.

12
As an example consider the codeword [2,4] of the [2] MPPM system, which decodes to the 001100

equivalent PCM word (if L.I mapping is used). If a WS error occurs on the first or second pulse of the
codeword, 7 error bits are generated. This means an average error/PCM bit for [2,4] of 0.29. With
Gray coding, [2,4] decodes as 001010 and the number of errors is reduced to 6. The average error/PCM
bit is reduced to 0.25. Other results were generated for the rest of the sequences and the other error

types in a similar fashion.

Conclusion: This paper has examined the effects of linear increment, linear decrement, Gray code and
. 12) . :
random coding on the error performance of a v multiple PPM system coding 1 Gbit/s PCM data.

4

436
PhD Thesis

Publication 2

Page 5 of 9

The receiver/decoder uses slope detection and a maximum likelihood sequence detector (MLSD)
together with slope detection. By performing a series of mapping experiments, it was shown that the
Gray code gives optimum sensitivity for most systems of the 12-Y family. It does this by minimizing
the Hamming distance between adjacent multiple PPM words, which reduces the likelihood of a
decoding error in the MLSD. None of these codes considered resulted in any additional data being

transmitted.

437
PhD Thesis

Publication 2

Page 6of 9

References

1. SIBLEY, M.J.N.: “Dicode pulse-position modulation: a novel coding scheme for optical-fibre
communications”, IEE Proc. Optoelectronics, vol.150, no.2, pp 125-132, April 2003.

2. ZWILLINGER, D.: “Differential PPM has a higher throughput than PPM for the bandlimited
and average power limited channel”, IEEE Trans. of Inform. Theory, vol. IT-34, Issue 5, Pt.2,
pp 1269-1273, 1988.

3. SIBLEY, ML.JN.: “Analysis of multiple pulse position modulation when operating over graded-
index, plastic optical fibre”, IEE Proc.-Optoelectron., vol.151, no.6, December 2004.

4. HERO, M.A., HU, L.: “Multi-pulse PPM and a new look at coding for direct detection optical
channels using APD receivers”™, Proceedings of the 23" Conference on Communication,
Control and Computing, IL, USA: University of Illinois, pp 401-410, 1985.

5. SUGIYAMA, H. and NOSU, K.: *multiple PPM: A Method for Improving the Band-Utilization
Efficiency in Optical PPM”, Journal of Lightwave Technology, vol. 7, no.3, pp 465-472, 1989.

6. ATKIN, G.E. and FUNG, K.S.: “Coded multipulse modulation in optical communication
systems”, IEEE Trans. in Communications, vol. com-42, Number 3, pp 574-582, March 1994.

7. GARRETT, L: “Digital pulse-Position Modulation over dispersive optical fibre channels”,
Presented at Int. Workshop on Digital communications, Tirrenia, Italy, 15-19 August 1983.

8. GARRETT, I: ‘Digital pulse-position modulation over slightly dispersive optical fibre
channels’, International symposium on Information theory, St. Jovite, 1983, pp. 78-79

9. NIKOLAIDIS, K and SIBLEY, M.ILN.: “Investigation of an Optical Multiple PPM Link over a

Highly Dispersive Optical Channel”, accepted [ET Optoelectronics Paper

438
PhD Thesis

Page 7 of 9

Publication 2

Linear Increment mapping
Sensitivity (photons/PCM bit)
Fn |12 1 [122 [123 [124 | 125 | 12 6 12.7 12 8 12.9 12 10 | 12 11
100 932 921 1199 1401 1567 1877 2190 2802 3610 4740 10234
20 934 923 1202 1405 1572 1883 2197 2811 3622 4755 10267
80 938 927 1207 1411 1579 1891 2207 2823 3637 4777 10314
70 944 933 1214 1419 1588 1901 2219 2839 3658 4803 10373
60 952 940 1224 1431 1601 1917 2238 2863 3689 4843 10457
50 962 951 1239 1448 1619 1941 2263 2896 3731 4898 10575
40 979 968 1260 1473 1648 1973 2303 2947 3797 4985 10762
30 1003 291 1292 1811 1692 2027 2366 3027 3901 5128 11081
20 1047 1034 1348 1576 1764 2113 2466 3155 40865 5340 11528
18 1062 1050 1368 1600 1791 2145 2503 3202 4127 5420 11700
15 1093 1080 1408 1646 1843 2207 2576 3296 4248 5580 12041
12 1137 1124 1456 1714 1919 2299 2683 3432 4424 5812 12540
10 1180 1167 1522 1780 1993 2387 2786 3565 4594 6035 13020
9 1209 1195 1559 1823 2042 2445 2854 3651 4706 6183 13336
8 1244 1230 1605 1877 | 2102 2517 2938 3758 4845 6365 13728
7 1289 1274 1664 1946 | 2179 2610 3047 3897 5023 8600 14230
6 1350 1335 1743 2038 | 2283 2734 3191 4082 5261 6913 14898
5 1435 1419 1854 2168 | 2429 2909 3395 4342 5595 7352 15833
4 1565 1547 2023 2365 | 2650 3173 3703 4735 6101 8017 17237
3 1790 1771 2315 2706 | 3032 3629 4237 5415 6975 9167 189657
2 2356 | 2331 3047 3561 3993 | 4775 5575 7118 9162 12053 | 25663
1.8 2608 | 2581 3373 3941 4421 5285 6173 7880 10140 13343 | 28347
1.5 3347 3533 | 4766 5665 6433 7793 9170 116850 | 14853 19850 | 37547
1.2 | 14127 | 27390 | 39450 | 47555 | 54461 | 86327 | 78167 | 99250 | 126900 | 168333 | 318653

Table 1: Sensitivity in photons/PCM bit of a 12-Y MPPM system using a Linear Increment mapping

439

PhD Thesis

Publication 2

Page 8of 9

Maximum improvement in sensitivity (photons/PCM bit)
fn 12.1 | 122 | 12.3 | 12 12.5 | 12.6 127 128 12.9 12.10 | 12 11
100 -2 0 -2 2 -1 -4 0 0 -3 -18 -18
90 -2 0 -1 -1 -1 -5 0 0 -3 -18 18
80 -2 Q -2 -2 -1 =5 0 0 -3 -18 22
70 -2 0 -1 -1 -1 -4 0 0 -3 -18 -22
60 -2 0 -1 -2 -1 -5 0 0 -3 -18 -22
50 -2 0 -1 -2 -1 -T 0 o] -3 -18 -18
40 -2 Q -2 -2 -1 -5 0 0 -3 -18 -22
30 -3 0 -2 -2 -1 -5 0 0 -3 -20 -22
20 -3 0 -2 -2 -1 -5 0 o] -4 -20 -22
18 -3 Q -2 -2 -1 -5 0) -4 -20 -22
15 -3 0 -2 -2 -1 =5 0 0 -4 -22 22
12 -4 0 -2 -2 1 -5 0 0 -4 23 26
10 -4 Q -2 -2 -1 -6 0 0 -4 -23 26
9 -4 Q -2 -2 -1 -6 0 0 -4 -25 29
8 -5 0 -2 -2 -1 -6 0 0 -4 -25 33
i -5 Q -2 -2 -1 -6 0 0 -5 -27 37
6 -6 Q -2 -2 2 -1 0] -5 -28 -40
5 -7 Q -2 -2 Q -7 0 0 -4 -30 -48
4 -9 0 -3 -3 -2 -8 0] -5 -33 -55
3 -10 Q -3 -3 2 -9 0 Q0 -5 -38 -88
2 -12 0 -4 -3 -3 -12 0 o] -4 -55 -187
1.8 -13 Q -5 -3 3 -13 0 0 -5 -62 -220
1.5 0 -30 -26 -95 0 -20 -8 10 -26 -133 o
1.2 0 -793 -321 | -1630 -6 -173 -156 80 -450 -1500 0

Table 2: Maximum improvement of sensitivity in photons/PCM bit in contrast to Linear Increment

mapping. A zero number means that Linear Increment remains the most efficient mapping

440
PhD Thesis

Publication 2

Page 9 of 9

12-Y multiple PPM EFFICIENCY MAP
fn 12.1 | 122 1 123 | 124 | 125 | 12.6 12.7 128 12.9 12.10 | 12 11

100 GC | GCAI| GC GC GC GC LI Ll GC RD GC
90 GC | GCLI| GC GC GC GC LI LI GC RD GC
80 GC | GCAI| GC GC GC GC LI LI GC RD GC
70 GC | GCAI| GC GC GC GC LI LI GC RD GC
60 GC | GC/LI| GC GC GC GC LI LI GC RD GC
50 GC | GC/LI | GC GC GC GC LI LI GC RD GC
40 GC | GC/LI| GC GC GC GC LI LI GC RD GC
30 GC | GC/LI| GC GC GC GC LI LI GC RD GC
20 GC | GC/LI| GC GC GC GC LI LI GC RD GC
18 GC | GC/LI| GC GC GC GC LI Ll GC RD GC
15 GC | GCAI| GC GC GC GC LI LI GC RD GC
12 GC GC/LI GC GC GC GC Ll LI GC RD GC
10 GC | GCALI| GC GC GC GC LI LI GC RD GC
9 GC | GCAI| GC GC GC GC LI LI GC RD GC
8 GC | GCALI| GC GC GC GC LI LI GC RD GC
7 GC | GCAI| GC GC GC GC LI LI GC RD GC
6 GC | GCAI| GC GC GC GC LI LI GC RD GC
5 GC | GC/LI| GC GC LI GC LI LI GC RD GC
4 GC | GC/LI| GC GC GC GC LI LI GC RD GC
3 GC | GC/LI| GC GC GC GC LI LI GC RD GC
2 GC | GC/LI| GC GC GC GC LI LI GC RD GC
1.8 GC | GC/LI| GC GC GC GC LI LI GC RD GC
1.5 | GC/LI | GC GC RD LI GC GC RD RD RD LI
1.2 | GC/LI | GC GC RD RD GC GC RD RD RD LI

Table 3: Variation in optimum mapping as the channel normalised bandwidth, f,, varies from 100 to
1.2 for a 12-Y MPPM system. The mappings considered are Linear Increment, LI, Linear Decrement,

LD, Gray Code, GC, and Random, RD

441
PhD Thesis

Publication 3

Optimum Mapping in an Optical Multiple PPM link using a Maximum Likelihood

Sequence Detection Scheme

K. Nikolaidis. M.J.N. Sibley
Department of Engineering and Technology

Huddersfield University, Queensgate, Huddersfield, HD1 3DH
Abstract

The performance analysis of any multiple PPM system is extremely time-consuming due to the effects
of different detection errors on the multiple PPM alphabet. In a small multiple PPM system such as

5
[ﬁ]_. there are 64 codewords and each one can have 10 possible false alarms, 2 possible erasures and 4

possible wrong slot errors. The situation is worse if higher order codes are considered.

This paper presents a novel algorithm that reduces the time taken to predict the sensitivity of a multiple
PPM system from almost 2 hours of analysis to under a second. Results obtained using this method
agree with those obtained using a full mathematical model. We also present a methodology that obtains
a close to optimum mapping for any multiple PPM system. Detailed results show the effectiveness of

this mapping routine.

442
PhD Thesis

Publication 3

1. Introduction

Digital Pulse Position Modulation (digital PPM) is a modulation format that codes n bits of PCM into a
single pulse which occupies one of 2" time slots [1-7]. Unfortunately this coding scheme results in
excessive bandwidth expansion [7] and this has led to many altemative schemes being developed. Of
these, multiple PPM has received attention because it reduces the bandwidth expansion effect by using

several pulses in a data frame [8-14].

12
Sugiyama and Nosu [11] presented a detailed noisc analysis of [2 } multiple PPM operating in the

presence of erasure errors with an optical fibre link. A Maximum Likelihood Sequence Detector
(MLSD) was used as the decoder-detector. This same scheme is also used in this paper. They also
proposed a method of finding the optimum mapping of PCM words to multiple PPM words. By
constantly changing the allocation of multiple PPM words to PCM words, they calculated the PCM
error probability and, depending on the rate of change of this probability, they changed the mapping
until there were no further reductions in error probability. This resulted in the optimum mapping. The

analysis did not take into account pulse dispersion and wrong-slot errors.

7

L

Sibley [12] analysed the performance of [)mu]tiplc PPM when operating over a dispersive optical

2

fibre channel. The effects of Inter-Symbol Interference (ISI) and Inter-Frame Interference (IFI) were
taken into account as well as erasure., false alarm and wrong slot detection errors. Specific data
sequences were examined to determine the equivalent PCM error rate. A hybrid 2/3 pulse system was

analysed that reduced the effects of pulse dispersion on the error rate.

443
PhD Thesis

Publication 3

Nikolaidis and Sibley [13] proposed a novel automated solution that simplified the task of predicting
the equivalent PCM error rates of specific sequences. A MLSD was used as the decoder-detector.
They also proposed a measure of coding quality that accounts for efficiency of coding and bandwidth

expansion. Using this measure. results obtained from a mathematical analysis showed that. over a wide

12 12
range of channel bandwidths, a [6] system is the most efficient of the (l" J multiple PPM systems.

12
In [14] they showed how the performance of a [YJ multiple PPM system is affected by linear

increment, linear decrement, Gray code and random mapping of PCM data to multiple PPM words.
Calculations showed that the Gray code is the most effective as it minimizes the Hamming distance

between adjacent multiple PPM words.

In this paper. we present a fully automated methodology that further simplifies the original method of
predicting the sensitivity of any multiple PPM. MLSD system. It operates by identifying those
multiple PPM sequences which, when in error, have the greatest impact on the PCM error rate. These
sequences are then used to predict the system error rate and sensitivity. As a result, the new analysis is
considerably faster than that previously described [13]. We also present a novel methodology that
minimises the effect of these dominant error sequences by changing the mapping of PCM codewords to

multiple PPM codewords to generate the optimum mapping.
2. Pulse Detection Errors

As with digital PPM, multiple PPM systems suffer from three types of error — erasure, false alarm and

wrong-slot [1-7]. An erasure error results in the detected multiple PPM word having one less pulse in

444
PhD Thesis

Publication 3

the frame: false alarm errors result in an extra pulse in the frame: wrong-slot errors cause pulses to
appear either before or afier the current slot. In all cases, the MLSD must average all possible

codewords to generate the most likely sequence [12].

12
This whole process can be very tedious and time consuming: for the [2 J system, 420 combinations

need to be considered just for false alarm errors and analysis becomes very difficult with larger
systems. In [13] a software solution, using novel algorithms, greatly simplified the analysis of any
multiple PPM system and aided in determining the effects of different coding techniques on the PCM
error rate. The next section details a new technique for finding those multiple PPM codewords that

have a major impact on the PCM error rate. These can then be used to find the system sensitivity.
3. A novel methodology of predicting a close to optimum equivalent PCM mapping

In order to simplify the task of predicting the error rate of a multiple PPM system, the codewords (and
hence equivalent PCM words) that are most affected by detection errors can be identified and their
cffects minimised by coding. The original methodology deseribed here identifies these dominant errors
which are then used in another algorithm that determines the optimum coding technique for a particular
multiple PPM system. The reduction in processing time that comes from this methodology is

significant.
3.1 Dominant error sequences in multiple PPM
Figure 1 is a data flow diagram showing how the dominant error sequences are identified. Each error

sequence is isolated in turn by setting its equivalent PCM error rate to one while the other sequences

4

445
PhD Thesis

Publication 3

are set to zero. Thus only one etror source contributes to the system performance at any one time. The
software previously described in [13] is then used to find the resulting photons/bit for the desired error
rate. This is then multiplied by the probability of the particular error sequence occurring to give the
“sequence sensitivity”™. By considering each error sequence in turn and summing the sequence
sensitivities. the total number of photons per bit can be found and the sensitivity of the system can be

easily calculated. Comparisons with the full mathematical model show that this method is accurate.
12 ; Wi g
Tests on other ¥ systems have shown that the dominant error sources and sequence sensitivities are

the same in these other systems and so this methodology can be applied to multiple PPM systems in
general. This method of identifying the dominant error sequences and determining the subsequent
sequence sensitivity means that the simulation time is reduced considerably as shown in Table 1. Thus

the effects of different mappings can be determined very rapidly so making analysis much faster.

The most significant error sequences were found to be those involving an erasure with the next being
those with a false alarm. The wrong slot sequences are only significant when there is considerable
pulse dispersion caused by a normalised fibre bandwidth, f,, of less than 2. As erasure sequences are
the most dominant sequences, the next section describes how to find an optimum. or close to optimum,

mapping that minimises their effect.

3.2 Optimum mapping in multiple PPM

12
In a (2] multiple PPM system, 6 PCM bits can be encoded. In order to minimise the error

probability, the Hamming Distance (HD) between all code-words, referred to as the Total Hamming

446
PhD Thesis

Publication 3

Distance (THD). should be minimised. Taking the all zero code-word as reference. the PCM
codewords have the following properties:

i) 6 codewords with HD of 1

i) 15 codewords with HD of 2

iii) 20 codewords with HD of 3

iv) 15 codewords with HD of 4

v) 6 codewords with HD of 5§

vi) 1 codeword with HD of 6
The mapping of PCM codewords onto the multiple PPM codewords must be chosen to minimise the

THD. The three sources of error need to be considered in turn, and their effects on the THD minimised

by reducing their individual HD.

12
Consider the [2)deleclt:d sequence [1.x] where 12=x>2. Erasure of any of the second pulses will

cause the MLSD detector to receive only the pulse in slot 1 so giving the [1.?] condition. The received
codeword could have been any of the 11 codewords in the [1.x] sequence and so the MLSD will
average the equivalent PCM data of these codewords to give a PCM word of 000000. Taking this as
the reference, table 2 shows that the Erasure Sequence Hamming Distance, ESHD, is equal to 17 for
both linear increment and Gray coded data. To obtain the optimum coding regime for this [1,7]
condition, PCM codewords should be chosen and assigned to the multiple PPM codewords so that the
ESHD. and hence the THD, are minimised. If [1.2] is assigned to 000000, there are 6 other codewords
with HD of 1 and a possible 4 out of 15 other codewords with HD of 2. Table 2 shows the resulting
“optimum” mapping for this particular sequence. The ESHD is now reduced to 14 which is an 18%
reduction compared to linear mapping. The erasure sequences [1.?] to [6.7] can also have an ESHD of
14; however the ESHD increases for codes above [6,?] as shown in table 3. This is because the choice
of remaining PCM code-words is limited due to the fact that the lowest HD ones have already been
allocated. Thus the MLSD must average the remaining PCM code-words. which have a higher HD,

6

447
PhD Thesis

Publication 3

and this results in a large HD for the erasure codewords [7.7] to [12.7]. A complication occurs with the
erasure codewords [10.?] and [11,7]. Below [10.?] the number of code-words to be averaged is 11
(table 3) and so the MLSD has an odd number of 1s or 0s to consider when making a decision and there
is no ambiguity in the result. However, when [10,?] and [11,7] are received, the MLSD will randomly
allocate a 1 or a 0 to a data bit because the number of 1s and 0s is the same. This random allocation

will generate a large number of errors and so the optimum mapping should avoid this.

Minimisation of the ESHD means that the errors from some false alarm and wrong-slot sequences will
also be reduced. Consider the sequence [1.2]. A false alarm will generate a sequence [1.2,x], where
12=x>2. The output of the MLSD will be the average of three PCM codewords corresponding to [1.2].
[1.x] and [2.x]. If 8=x>2. the code-words [1.2] and [1.x] will have a HD of 1 and so only the [2.x]
code-word will have to be chosen (preferably with a HD of 2). If 12=x>8, only the code-word [1.2] has
a HD of 1 while the other two code-words [1.x] and [2.x] have a HD of 2. In general, for [1.x,y] code-
words. where 11=x>1. 12>y>2 and x>y. two out of three codewords have a maximum HD of 2. The
missing codewords are allocated to minimise the ESHD. As regards wrong-slot errors, some are
already optimised because they appear to be pulse erasures (right shift wrong-slot to adjacent pulse for
instance). For the others, Gray codes are very efficient because a wrong-slot error causes the next
codeword to be chosen and, in Gray coded data, the resulting error will be one bit. However, wrong-
slot errors are only significant over a small range of low bandwidths and so minimising their effect is

not as important as minimising the effect of erasures.

A mapping such as this that targets crasure errors and affects a large number of false alarm and wrong-
slot sequences is optimum, or very close to optimum, and table 4 shows the mapping generated. This

mapping can also be adapted for larger systems. For example the mapping generated for the erasure

448
PhD Thesis

Publication 3

12
codeword [1,?]. as shown in table 2, can be used in a [‘;] multiple PPM system to generate the

12
mapping for the erasure codeword [1.2.?] as shown in table 5. Here the [2]mapping forms the basis

of the expanded mapping with the extra bit, the Most Significant Bit (MSB). set to 0. This same

[2]mapping can be used to generate the mapping for the [2.3,7] erasure sequence but this time the

MSB is set to 1 for all codewords. By using this technique. 12 erasure codewords will be generated
with a minimum ESHD and a large number will be generated that are close to minimum. The

remaining codewords are sclected to minimise the HD as before.
4. Results and Discussion

As in a previous publication [12], the receiver system was taken to be a 1.2 GHz bandwidth PINBJT
receiver with a frequency independent, input equivalent noise current spectral density of 16 x 10
A%Hz (double-sided), followed by a classical matched filter and a threshold crossing detector. The
transmission medium was plastic optical fibre (POF) with a Gaussian impulse response [15] at an
operating wavelength of 650 nm (corresponding to the transmission window in POF). A photodiode
quantum efficiency of 100% was taken. and a PCM data rate of 1 Gbit/s was used with an error rate of
1 error in 10’ pulses. The channel bandwidth, f;,, was normalised to the PCM bit rate and varied
between 100 and 1.2. Operation below 1.2 was impossible due to the high level of ISI and IFI. The

error rate was calculated for a given fibre bandwidth and coding level.

449
PhD Thesis

Publication 3

12 12
Table 6 shows the percentage change in error rate for a [2 Jand[S] multiple PPM system, using

linear increment as a base and a PCM error rate of 1 bit in 10° bits, at normalised channel bandwidths
of 100, 50, 10 and 1.2. It was not possible to obtain results for f;, < 1.2 due to excessive ISI and IFL
For normalised bandwidths greater than 10 it can be seen that there is little to be gained by using linear

decrement or Gray code. However, if the mapping is random. there is a large deterioration in error rate

12 12
for both thc[2]and (; J systems. The effect of the optimum code can be clearly seen with

12 12
significant drops in error rate particularly for the [_{) system. This is because the [3 J system has

220 possible codewords to code only 128 PCM codewords. Thus there is an element of redundancy in
the code which means that the optimisation routine has a larger range of codewords available to it and

this increases performance.

When operating with f;, < 10 there is a large degree of pulse dispersion and this leads to ISI/IFT and an

increase in erasure and wrong-slot errors. Indeed, when f; = 1.2, wrong-slot errors are dominant and so

12
the Gray code offers the best performance for the [2] system. As discussed in the previous

12
paragraph, the {3] system has some unused codewords which can be used to combat ISI/IFT and this

leads to better performance.

450
PhD Thesis

Publication 3

5. Conclusion

This paper has described a novel method of determining the error rate performance of multiple PPM
systems. Use of the routine described here identified erasure errors as having the greatest impact on the

PCM error rate. Wrong Slot errors are only significant for low normalised bandwidths.

A separate routine was then used to obtain the optimum mapping of PCM to multiple PPM codewords.
The routine targets those codewords that have the greatest impact on the PCM error rate (erasure and

then false alarm errors) and minimises their effect. Use of this routine clearly showed the effects that
. . 12 12 . .
optimum mapping can have on the error performance of 5 and 3 multiple PPM systems. This

routine can be followed for other (larger or smaller) MPPM systems.

10

451
PhD Thesis

Publication 3

References

1. GARRETT, L: “Digital pulse-Position Modulation over dispersive optical fibre channels™,
Presented at Int. Workshop on Digital communications, Tirrenia, Italy. 15-19 August 1983.

2. GARRETT, I: °Digital pulse-position modulation over slightly dispersive optical fibre
channels’, International symposium on Information theory, St. Jovite, 1983, pp. 78-79

3. CRYAN,R. A UNWIN, R. T., GARRETT, I.. SIBLEY, M. I. N. and CALVERT, N. M.:
‘Optical Fibre Digital Pulse-Position-Modulation Assuming a Gaussian Received Pulse Shape’,
IEE Proceedings. Part J, Vol 137. No 2, 1990, pp 89-96.

4. MASSARELLA, A. I and SIBLEY, M. I. N.: “Experimental Results on Suboptimal Filtering
for Optical Digital Pulse-Position Modulation”, Electronics Letters, Vol 27, No 21, 1991, pp
1953-1954.

5. MASSARELLA, A. J. and SIBLEY. M. J. N.: "Experimental Results for Optimum Coded
Digital PPM with Ge APD Receiver and Gaussian Noise Approximated Theory’, Electronics
Letters, Vol 28, No 20, 1992, pp 1857-1858.

6. MASSARELLA, A. I and SIBLEY, M. J. N.: “Experimental Error Correction Results for
Optical Digital Pulse-Position Modulation”, Electronics Letters, Vol 28, No 18, 1992, pp 1684-
1686.

7. SIBLEY, M.IN.: “Design implications of high speed digital PPM’. SPIE conference on Gigabit
Networks, San Jose, 1994,

8. LEE, G.M., SCROEDER. G.W.: “Optical Pulse Position Modulation with Multiple Positions

per Pulsewidth™, IEEE Trans. Commun., vol. COM-235, pp. 360-365, 1977

11

452
PhD Thesis

Publication 3

9. GOL'DSTEYN, A. and FREZINSKIY. B.: “An Investigation of the Transmission of a Multi-
Position PPM Optical Signal Through a Communications Line Containing Repeaters™, Radio.
Eng. Electron Phys.. vol.24. pp.65-71, 1978.

10. HERO, M.A., HU, L.: “Multi-pulse PPM and a new look at coding for direct detection optical
channels using APD receivers™. Proceedings of the 23" Conference on Communication,
Control and Computing, IL, USA: University of Illinois, pp 401-410, 1985.

11. SUGIYAMA, H. and NOSU, K.: “multiple PPM: A Mecthod for Improving the Band-Utilization
Efficiency in Optical PPM”, Journal of Lightwave Technology, vol. 7, no.3, pp 465-472, 1989.

12. SIBLEY, M.JN.: “Analysis of multiple pulse position modulation when operating over graded-
index. plastic optical fibre™. IEE Proc.-Optoelectron.. vol.151, no.6, December 2004,

13. NIKOLAIDIS, K.. SIBLEY, M.IN.: “Investigation of an Optical Multiple PPM Link over a
Highly Dispersive Optical Channel™, IET Optoelectronics, June 2007, Volume 1. Issue 3. p.
113-119.

14. NIKOLAIDIS, K., SIBLEY, M.ILN.: “Investigation into the Effects of Data Mapping in an
Optical multiple PPM Link™, Electronics Letters, September 2007, Volume 43, Issue 19, p.
1042-1044.

15. SHIN, B.-G., PARK, J-H. and KIM, I-J.: ‘Low-loss, high-bandwidth graded-index plastic
optical fiber fabricated by the centrifugal deposition method’, Applied Physics Letters, 2003,

Volume 82, Issue 26, pp. 4645-4647

12

453
PhD Thesis

SENSITIVITY ANALYSIS SCHEMES

NO S/W AND

SYSTEM
MATHEMATICAL ONLY S/W
ANALYSIS

12-1 <30 min <1 sec
12-2 <110 min <1 sec
12-3 <140 min =1 sec
12-4 <200 min <1 sec
12-5 <380 min <3 sec
12-6 <380 min =3 sec
12-7 =380 min <3 sec
12-8 <200 min <1 sec
12-9 <140 min =1 sec
12-10 <110 min <1 sec
12-11 <30 min <1 sec

TOTAL <2100 min <18 sec

Publication 3

Table 1: Time needed to predict the efficiency of the 12-Y system using non-automated methods and

only software

—
(3

454

PhD Thesis

Erasure Error Mapping
[1,2] Linear Increment Gray Code Optimum
[1,2] 000000 000000 000001
[1.3] 000001 000001 000100
[1,4] 000010 000011 011000
[1.5] 000011 000010 000110
[1.6] 000100 000110 001100
[1,7] 000101 000111 110000
[1.8] 000110 000101 100000
[1.9] 000111 000100 010000
[1,10] 001000 001100 000000
[1,11] 001001 001101 001000
[1,12] 001010 001111 000010
Averaged [1,?] codeword 000000 000101 000000
Sequence Hamming Distance 17 17 14

Publication 3

Table 2: Erasure Sequence Hamming Distance ESHD for Linecar Increment, Gray Code and

12
“Optimum” mapping of the erased [1.7] codeword in a (2]multiplc PPM system

14

455

PhD Thesis

Number
Erasure | Averaged
sequence | codeword B S
codewords

[1.?] 000000 11 14
12,?] 001011 11 14
[3.7] 010101 11 14
[4.2] 01111 0 11 14
[5,7] 100110 11 14
[6,2] 101101 11 14
[7,7] 110011 11 16
18.7] 11100 0 11 20
19.7] 110010 11 22
[10,7] 000000 10 21
[11,?] 101001 10 24
[12,7] 011101 9 22

Table 3: Erasure averaged codewords for a (}_]multiph.: PPM system

15

456

L

Publication 3

PhD Thesis

Publication 3

Optimum mapping for the 12-2 MULTIPLE PPM System
clw PCM c/w PCM c/w PCM c/w PCM
[1.2] 000001 [2.8] 011011 [4,7] 111110 [6,10] 101100
[1.3] 000100 [2.9] 001010 [4.8] 011010 [6.11] 101101
[1.4] 011000 |2,10] 000011 [4,9] 011110 [6,12] 001101
[1,5] 000110 [2.11] 001001 [4,10] 010110 [7.8] 110001
[1,6] 001100 [2,12] 001011 [4,11] 011111 17.9] 110010
[1.7] 110000 [3.4] 010100 [4,12] 011100 [7,10] 010011
[1.8] 100000 [3.5] 000111 [5,6] 101111 [7.11] 110011
[1.9] 010000 [3.6] 111101 [5.7] 100010 17.12] 110111
[1,10] 000000 [3.7] 110101 [5,8] 101110 [8,9] 111010
[1.11] 001000 [3.8] 010001 [5.9] 110110 [8.10] 101000
[1,12] 000010 [3.9] 010111 [5,10] 100100 [8.11] 111000
[2.3] 011001 [3.10] 000101 [5.11] 100110 [8.,12] 111001
[2.4] 001111 [3.11] 010101 [5.12] 100111 [9.10] 010010
[2.5] 100011 [3.12] 011101 [6,7] 111111 [9.11] 101010
[2,6] 101011 [4,5] 001110 [6,8] 101001 [9,12] 110100
[2.7] 111011 [4,6] 111100 [6,9] 100101 [10,11] 100001

12
Table 4: The estimated “optimum™ mapping for the [2] multiple PPM system

16

457

PhD Thesis

Publication 3

Erasure Error Mapping
1,2,2] Linear Increment | Gray Codes | Optimum
[1.2,3] 0000000 0000000 0000001
[1,2,4] 0000001 0000001 0000100
[1,2,5] 0000010 0000011 0011000
[1,2,6] 0000011 0000010 0000110
11,2,7] 0000100 0000110 0001100
[1,2,8] 0000101 0000111 0000010
[1.2,9] 0000110 0000101 0100000
[1,2,10] 0000111 0000100 0010000
[1,2,11] 0001000 0001100 0000000
1,2,12] 0001001 0001101 0001000
Averaged [1,2,?] codeword 0000000 0000101 0000000
Averaged Hamming Distance 15 17 12

Table 5: Total and averaged Hamming distance for Lincar Increment, Gray Code and “Optimum™

.)

L

1
mapping of the [1.2.?] ER averaged codeword in a [3‘]multip]e PPM system

17

458
PhD Thesis

Publication 3

£, 100 50 10 1.2
12
0.0 0.0 02 0.2
LD
12
[«) 2.8 0.0 .13 0.0
12
[,} J 29 0.2 0.8 -50.1
GC —
12
[N J 2.4 5.1 56 | -21.8
12
2] 12.2 12.3 12,6 74.8
RDI
12
[N] 13.6 12.5 11.0 13
12
; 11.3 10.0 11.7 24.6
RD2
12
{,] 10.3 10.6 9.2 5.0
12
[2 J 4.4 7.0 6.5 03
RD3
12
i 18.0 15.2 13.7 6.4
12
[2} 203 | -191 | -170 | -248
OPT
12
[N J 2332 | -253 | 260 | -30.0

12 12
Table 6: Percentage change in error rate for a [,))and a [q]multiplc PPM system using linear
increment mapping as the reference and a PCM error rate of 1 bit in 10 pulses. The mappings

considered are Linear Decrement (LD), Gray Code (GC), Random (RD1, RD2, RD3) and Optimum
(OPT).

18

459
PhD Thesis

False Alarm between
) fal *
Erasure of First Pulse*0)

Standard Erasure*1 Erasure of Second
Puise*0

Standard
False Alarm*0

Erasure Error

Repeat for Every Erasurg
Sequence maki
probahility of the

sequence occuring equal
to 1 and every other

sequence setto 0

Repeat for Every Falde
Alarm Sequence when
impact of every Erasure
Sequence is measured

the /

« Every Error

False Alarm between
Double Pulses*D

’:rrur

Wrong Slot on First
Puise*d

Standard

Pulse*0
Wrong Slat*0
I Wrnng Slot |

Ermr

Repeat for Wron Slof '

Seguence wher,the /

impact of every F:

Alarm Sequenceis
measurad

Sequence

epe at for Every Emor
Sequence

photons/pulse or as Ermor Rate

Save the Tmpacts of every Error Sequence in

Error Rate
2) Repeat for next Error Sequence

1) Impact of Standard Erasure Error In Total

PCM EQUIVALENT ERROR RATES
GENERATED FROM SOFTWARE

1) Multiply PCM Eguivalent Error
Rate of Standard Erasure Ermor of the
X-Y MPPM SYSTEM with the Impact
of Standard Erasure Error
2) Repeat for the next Error
Sequence

Repeat Until the Final
(irong Slot Sequence

Figure 1: Data flow diagram of the optimization routine

19

460

Y

|
Repeat Until the Final
Wrong Slot Sequenge

PhD Thesis

Publication 3

WWrong Slot on Second

Publication 4

Investigation of Higher Order Optical Multiple PPM Links over a Highly

Dispersive Optical Channels

K. Nikolaidis, M.IN. Sibley
Department of Engineering and Technology

Huddersfield University. Queensgate, Huddersfield. HD1 3DH

This paper describes a performance analysis of eight different multiple PPM systems with 4, 7, 12, 15,
17, 22, 28, 33 slots operating over a plastic optical fibre (POF) channel. The receiver/decoder uses
slope detection and a maximum likelihood sequence detector (MLSD). As the analysis of any multiple
PPM system is extremely time-consuming, especially when the number of slots is large, a software
solution was used. A measure of coding quality that accounts for efficiency of coding and bandwidth
expansion was applied and original results showed that the middle systems of these multiple PPM
families are the most efficient for a wide range of bandwidths. Although the efficient Gray coding was
used for this investigation, a close to optimum mapping is presented for MPPM systems of the families
mentioned above. The estimated mappings were found to be much more superior to the efficient Gray
codes, linear coding and a series of random mappings. Therefore, an improvement in sensitivity is
demonstrated and an investigation of the bandwidth effects. To measure these optimum mappings a
very efficient mapping is also considered. This mapping minimises the Hamming distance between all
MPPM codewords. This mapping allows repetitions of MPPM codewords and cannot be used in a
MLSD scheme. Therefore, it is only used for comparisons with the (close to) optimum mappings. It is

shown that the optimum mappings are close to ideal.

461
PhD Thesis

Publication 4

Introduction: Digital Pulse Position Modulation (PPM) is a modulation format that codes n bits of
PCM into a single pulse that occupies one of 2" time slots [1. 2]. Digital PPM offers an improvement in
receiver sensitivity that comes from a considerable increase in the final data rate of the original PCM
[5] which makes implementation difficult. Altemnative schemes have been proposed [3-9] of which
multiple PPM [6-9]. the subject of this paper. offers the best sensitivity without the large bandwidth
increase [6]. In multiple PPM, multiple pulses per frame are used, with the pulse positions being
determined by the original PCM word. If' ¥ pulses are transmitted in a frame of X slots, the number of

1.

combinations is M
k) kWn-k))

12
. If two pulses are used in a 12 slot frame, a [2] system, six bits of

PCM can be encoded and the bandwidth expansion will be 2. The use of higher order codes means that

more bits can be encoded leading to further reductions in bandwidth.

The general features of an optical fibre system employing MPPM are shown in figure 1. A PCM source
of information provides the input to the system. The PCM input of M bits in a frame of duration 7 A
PCM to MPPM coder converts these M information bits into k pulses in a timeframe of n slots. In the
hard decision decoding scheme. the decoder takes the first two threshold crossings as the MPPM word
to be decoded. Ifthere is only one crossing within the frame, then the word is decoded according to the
MLSD decoder. The average binary error probability due to an erasure can be determined by mapping
the impact of all possible erasures and averaging over all of the MPPM frames. The other error sources
are treated in a similar way. The logic involved in using a MLSD in a MPPM system is showed in

figure 2 when erasure errors occur.

462
PhD Thesis

Publication 4

12
Sugiyama and Nosu [7] proposed a detailed noise performance of a [2) multiple PPM., optical fibre

system in the presence of erasure errors, A Maximum Likelihood Sequence Detector (MLSD) was used
as the decoder-detector and this same scheme is also used in this paper. They concluded that multiple
PPM is more efficient than digital PPM in terms of power and bandwidth utilization, resulting in a best
predicted sensitivity of 0.58 bits/photon compared to the 0.5 bits/photon for digital PPM, both

operating at an error rate of 1 in 10™. Pulse dispersion and wrong-slot errors were not accounted for.

12
Sibley [6] analysed the performance of a [2 Jmuiliplc PPM when operating over a dispersive optical

fibre channel. The effects of Inter-Symbol Interference (ISI) and Inter-Frame Interference (IFI) were
taken into account as well as erasure, false alarm and wrong slot detection errors. Specific data
sequences were examined to determine the equivalent PCM error rate. The author concluded that this
multiple PPM scheme had a 7.36 dB advantage over PCM when operating under wide bandwidth
conditions and that ISI between pulses in adjacent time slots caused the sensitivity to reduce at low
bandwidths. To counter this, all multiple PPM sequences with adjacent pulses were replaced by three-
pulse sequences which had at least one slot between pulses. This hybrid 2/3 pulse system gave a
sensitivity of -22.74 dBm at a channel bandwidth of 0.7 times the PCM bit rate — a 3.61 dB

improvement over the original two-pulse system.

Nikolaidis and Sibley [8] proposed a novel automated solution that simplified the task of predicting the
equivalent PCM error rates of specific sequences when a MLSD is used as the decoder-detector. They

also proposed a measure of coding quality that accounts for efficiency of coding and bandwidth

463
PhD Thesis

Publication 4

12
expansion. Results obtained from a mathematical analysis using this measure. showed that a (6]
i e . 12 2 ST 2 9 A
system is the most efficient of the [}' J multiple PPM family for a wide range of fibre bandwidths. In

12
[9] they showed how the performance of a ()’ J multiple PPM system is affected by various PCM to

multiple PPM mappings. Simulations showed that the Gray code is the most effective as it minimizes

the Hamming distance between adjacent multiple PPM words.

In this paper, we present original results obtained from mapping experiments on the following multiple

4 7 15} (17 22 28 33
PPM families: i > 5 g i and . The PCM equivalent data mapping
¥ 53 Y Y Y Y Y

considered for all systems was the Gray code.

Fulise Detection Errors: As with digital PPM, multiple PPM systems suffer from three types of error,
erasure, false alarm and wrong-slot [1. 2]. Erasure errors are generated by noise causing the amplitude
of the pulse to fall below the threshold voltage at the decision (sampling) time and so one pulse is
removed from the multiple PPM frame. With a false-alarm error, noise in an empty slot causes a
threshold violation at the decision time and so an extra pulse appears in the frame. Wrong slot errors
oceur due to noise on the leading edge of a pulse causing it to appear either before or after the current
slot. This depends on the amount of pulse dispersion and the receiver noise. In all three cases, the
equivalent PCM error rate is obtained using the MLSD algorithm as described by Sibley [6]. Wrong

slot errors are only significant when the pulse dispersion and receiver noise is very large.

464
PhD Thesis

Publication 4

In order to study the effects of Inter-Symbol Interference, ISI. and Inter-Frame Interference, IFI, Sibley
[6] considered specific pulse sequences and the error probability was determined by applying the
MLSD decoding and then weighting by the probability that the particular sequence occurs. This

process is very tedious and time consuming with 420 combinations needing to be considered just for

12
false alarm errors in a [2) multiple PPM system. The situation is worse with large systems such

22
as [5] To counter this. a software solution that greatly simplifies the analysis was developed by the

authors [9] and this was used in this investigation.

Results and Discussion: As in a previous publication [8]. the receiver system was taken to be a 1.2
GHz bandwidth PINBIT receiver with a frequency independent, input equivalent noise current spectral
density of 16 x 107" A*Hz (double-sided), followed by a classical matched filter and a threshold
crossing detector. The transmission medium was plastic optical fibre (POF) with a Gaussian impulse
response [11] at an operating wavelength of 650 nm (corresponding to the transmission window in
POF). A photodiode quantum efficiency of 100% was taken, and a PCM data rate of 1 Gbit/s was used
with an error rate of 1 error in 10° pulses. POF was considered because transmission distance is limited
by attenuation and the sensitivity can be increased, and hence transmission distance, by using a PPM
variant such as multiple PPM. PPM systems suffer from problems with the dispersion of the pulses and
s0 the hard decision decoding MLSD scheme was adopted to combat dispersion and inter-symbol
interference. This dispersion is modelled by the channel bandwidth. f;,, normalised to the PCM bit rate
with a range 100 and 1.2. Operation below 1.2 was impossible due to the high level of ISI and IFI.
The number of photons per bit, b, was found given the normalised fibre bandwidth and the subsequent

pulse dispersion. A measure of coding quality. 77. that accounts for efficiency of coding (measured in

465
PhD Thesis

Publication 4

photons per optical pulse) and bandwidth expansion (measured as the fraction of MPPM slots over the

encoded PCM bits) [8] was used for the systems studied.

4 7 12 15
Figure 3 shows a surface plot i‘or[},], [},], [}_] and [},] multiple PPM systems operating with a
normalized bandwidth of 30. This bandwidth was chosen because the dispersion associated with it lies
midway between the dispersion due to the 100 and 1.2 normalized bandwidths. In this figure, the
efficiency factor, 77. has been plotted on the vertical axis to demonstrate the optimum and it is clear
that the middle coding systems are the most efficient (especially for the 50-30 point of interest where

sensitivity is equally weighted with bandwidth expansion). This optimum partly occurs because the

middle systems in the families can code more bits and so are considered more efficient. The exception

El -4
to this is the (}__] family. where the [1] system is the most efficient system of the family. This is

because all systems in this family can only code 2 bits of PCM and so the most efficient system is the
one with the lowest number of pulses. When the sensitivity weighting is greater than 80% the optimum

coding level is generally found in smaller systems.

: ;. 17} (22) (28 33 ; - o
Figure 4 shows the surface plot for the y I'ly Ily and y multiple PPM families. Again it is

obvious that the most efficient systems are those in the middle of the family. A comparison test was
also performed for multiple PPM systems using linear mapping. The results showed that, as before, the

middle systems were the most efficient. In general Gray codes gave better sensitivities than Linear,

466
PhD Thesis

Publication 4

4Y (15
except from some systems commonly the smaller or greater systems of the family such as [I]_. [3],
15 17 22 22 28 28 33 33 33 33
. s . i . . to and from to ;
13) {1 16 20) \1 4 1 8 28 31

Nikolaidis and Sibley [10] described a methodology of how to obtain an optimum or close to optimum
mapping for any MPPM system. The methodology is based on minimising the effects of erasure errors,
because these error rates have the greatest impact on the final error probability. Starting from the all
zero codeword. the mapping should try to minimise the erasure errors between the weighted codewords
and the erasure MLSD weighted codeword. Hence, the choice of suitable erasure MLSD codewords is

vital and very time consuming,.

7
As an example consider the [4] MPPM system. The system can encode 5 PCM bits and generates 35

MLSD (erasure) codewords such as [1.2.3.7]. [1.2.4.7]. [2.3.4.7] and so on. Where (7) symbolises an
erasure error. From these 35 erasure MLSD sequences, six (6) codewords are generated from
codewords used by other erasure MLSD codewords. Thus, dividing the data specimen of 32 by 26 (32-
6). gives a result of 1.23. Rounding the numbers the erasure MLSD codewords are generated. For an

MPPM system with 2 pulses every erasure MLSD codeword uses one codeword from every previous

33
erasure MLSD codeword. Thus, in a [2] MPPM system, that can encode 9 PCM bits, 33 erasure

MLSD codewords are generated ([1.7] to [33.7]). Again. 6 erasure codewords are generated only from
codewords used from other erasure MLSD codewords. Thus, dividing the data specimen 512 by 27 will
generate the target erasure MLSD codewords. Another approach is to divide the data specimen to the

codewords used from each erasure MLSD codeword. Thus, [1.?] uses 32 codewords, [2.?] 31

467
PhD Thesis

Publication 4

codewords, [3.7] 30 codewords, ete. Starting from the all zero codeword, the number of codewords
used. are tumed to the target erasure MLSD codewords. The second approach gave better results and

was easier to follow. All the optimum mappings in this paper are generated using this approach. Figure

33
5 shows a part from the methodology used in a {2] MPPM system.

. 7\ (7 7Y (12 12 12
Tables 1 and 2 shows the percentage change in error rate for a s ; ; 5 5 5
2)\3 4) (2 3 6

2} G EHE)G G -6 G669 G 6

33) (33 33
[9] [IZJ and [16] multiple PPM system, using linear increment as a base and a PCM error rate of 1

bit in 10° bits, at normalised channel bandwidths of 100. 50, 10 and 1.2. It was not possible to obtain
results for f; < 1.2 due to excessive ISI and IFL. For normalised bandwidths greater than 10 it can be
seen that there is little to be gained by using linear coding or Gray codes. The effect of the optimum
code can be clearly seen with significant drops in error rate (in some cases above 30%) especially for
large MPPM systems. This is because the large MPPM systems have a large number of possible
codewords to code the PCM codewords. Thus there is an element of redundancy in the code which
means that the optimisation routine has a larger range of codewords available to it and this increases
performance. Even when a series of random mappings were tested there was a large deterioration in

error rate for most MPPM systems.

To measure the efficiency of these mappings an “ideal™ mapping is proposed. This mapping is referred
as ideal because the total Hamming distance (THD) is minimized as it is demonstrated in table 3. This

mapping allows repetitions of MPPM codewords and cannot be used in a MLSD scheme (used only for

468
PhD Thesis

Publication 4

comparison reasons with the optimum mappings). Table 4 shows the percentage change in error rate for

O LI)l e

linear increment as a base and a PCM error rate of 1 bit in 107 bits, at normalised channel bandwidths
of 100, 50, 10 and 1.2 using optimum and ideal mappings. The optimum mappings were generally
found to have 30% to 50% lower efficiency from the ideal mapping. This consist evidence that the

optimum mappings are very efficient coding.

e
Conclusion: This paper has examined the theoretical performance of a series of (Y] multiple PPM

families coding 1 Gbit/s PCM data with Gray code mapping. The receiver/decoder used slope detection
and a maximum likelihood sequence detector (MLSD) together with slope detection. The results show,
that for small multiple PPM families, the smaller systems within that family are generally the most
efficient because the coding efficiency (number of bits coded) does not drastically affect the efficiency
of the system. However, for higher order multiple PPM families (the majority of the systems tested) the
middle systems were generally found to be the most efficient. That means that using MPPM if
bandwidth expansion is an issue then middle systems of the MPPM family should be used. On the
other hand smaller systems of a family are more efficient to use. Optimum mappings were also
generated. for a number of MPPM systems which were found much more superior than linear and gray
codes. Also, they found to be close to ideal mappings that retain minimum THD (but cannot be used
because of codeword repetition). Therefore, we show that altering the PCM mapping in a certain way

an enhancement of the final error probability of the MPPM system can be achieved.

469
PhD Thesis

Publication 4

References

1. GARRETT, I.: “Digital pulse-Position Modulation over dispersive optical fibre channels™,
Presented at Int. Workshop on Digital communications, Tirrenia. Italy, 15-19 August 1983.

2. GARRETT. L: ‘Digital pulse-position modulation over slightly dispersive optical fibre
channels’, International symposium on fnformation theory, St. Jovite, 1983, pp. 78-79

3. D. SHIU and KAHN. ILM..: “Differential Pulse-Position Modulation for Power-Efficient
Optical Communication”, IEEE Trans. in Communications, vol. com-47. Number &, pp 1201-
1210, August 1999,

4. SIBLEY. M.IN.: “Dicode pulse-position modulation: a novel coding scheme for optical-fibre
communications™, IEE Proc. Optoelectronics. vol.150, no.2. pp 125-132. April 2003.

5. SIBLEY. M.IN.: “Design Implications of High Speed Digital PPM”, SPIE Conference
Proceedings. 2024, pp 342-352, 1994,

6. SIBLEY, M.IN.: “Analysis of multiple pulse position modulation when operating over graded-
index, plastic optical fibre”, IEE Proc.-Optoelectron., vol. 151, no.6, December 2004,

7. SUGIYAMA, H. and NOSU, K.: “multiple PPM: A Method for Improving the Band-Utilization
Efficiency in Optical PPM™. Journal of Lightwave Technology. vol. 7. no.3, pp 465-472, 1989.

8. NIKOLAIDIS, K., SIBLEY, M.LN.: “Investigation of an Optical Multiple PPM Link over a
Highly Dispersive Optical Channel”, IET Optoelectronies, June 2007, Volume 1, Issue 3, p.
113-119.

9. NIKOLAIDIS, K., SIBLEY. M.J.N.: “Investigation into the Effects of Data Mapping in an
Optical multiple PPM Link™, Electronics Letters, September 2007, Volume 43, Issue 19, p.

1042-1044.

10

470
PhD Thesis

Publication 4

10. NIKOLAIDIS, K., and SIBLEY. M.JLN.: “Optimum Mapping in an Optical Multiple PPM link
using a Maximum Likelihood Sequence Detection Scheme™, IET Optoelectronics. Volume 3,
Issue 1, p. 47-53, February 2009,

11. SHIN, B.-G.. PARK. I.-H. and KIM. lI.-I: “Low-loss, high-bandwidth graded-index plastic
optical fiber fabricated by the centrifugal deposition method’, Applied Physies Letters, 2003,

Volume 82, Issue 26, pp. 4645-4647

11

471
PhD Thesis

Publication 4

| FCM to MPPIM Laser Pulsing
PEM DR Coder Circuit

RECEIVER

MPPM 10 PCM

Pre-detaction Filter —» Threshold Detection |— Decoder &

Post Amplifier
Synchronisation

Pre Amplifier

PCM OUT

Figure 1: The optical fibre digital MPPM system features.

12

472
PhD Thesis

Publication 4

PCM Ts
000000 110000000000
000001 101000000000 R MLSD
000010 100160000000
000011 100010000000 HOIBE X 100000000000 000000
010000000000 000000
I T 01000000000 1100
oibic 010000000601 RT00C0G etk
oo g II(\' 001100000000 | COCO10000800 w1118
010110 ! 001010000000 3
1¥z¥slalsfelziglolrlnle L] | oo
000000100000 110101
w0 12 SLOT 2 PULSE MPPM 000007100000 H00R00076000 hiL
FRAME [1 0000001000 11100
Wi . 000001010000 o
01111 000001001000 000000000100 1190
m 000000000010 TNIXKY
00000000000 1110
T 000000001070
111110 000000001001
i 000000000110

Figure 2: The logic involved in using a MLSD in a MPPM system. PCM data are turned to
optical pulses. If an error occurs (i.e. an erasure) the word is decoded according to the MLSD

detector.

13

473
PhD Thesis

Publication 4

Weight (yy') 4 \ 1) 40.80 weight(yy)

74 4

4-¥ systems [xx') 7-¥ Systems [or')

Weight (yy') = Weight (yy')

Y
100_0 oo

R
e

n

12-Y Systems {ox') 15-¥ Systems fx’)

Figure 3: Efficiency (surface weighted sum) plot of a 4Y, 7-Y, 12-Y and 15Y multiple PPM
systems for a normalized bandwidth of 30 (in the yy’ axis from 0 to 49, Bandwidth expansion is

dominant from 51 to 100 sensitivity is dominant with equality in 50)

14

474
PhD Thesis

Publication 4

30_10
! Weight (yy')}
Weight (yy')

VY 4100 o o S8y 0-100

22-Y Systems [xx')
17-Y Systems ()

0_100

50_10 0 = e
WY weight (yy") 2 ‘Weight (yy'}
- ol 1Y
w' m

28-¥ Systems pox’) 33-Y Systems (yy')

Figure 4: Efficiency (surface weighted sum) plot of a 17-Y, 22-Y, 28Y and 33-Y multiple PPM
systems for a normalized bandwidth of 30 (in the yy’ axis from 0 to 49, Bandwidth expansion is

dominant from 51 to 100 sensitivity is dominant with equality in 50)

15

475
PhD Thesis

33-2 MPFM system
9 PCM bits encoded

000000001 00000010 0A0000100

0ODD0O0AT 00001000

a3 Erasure

2°=512 codewords

[4.71=83
29
Bz
28
16.7]=150 &
27
FAR1TT &
26
[B.71=203 &
=
71228,
2
[10.7]=2524&
23
111.7]=275&
e
(12 7}=20 %
13.7)=318%,
20
[14.7]-3304
G
[15.7)=3574
18
[16,7]=375%
g
17, 7]:392{16
8. 7]=nnaf‘5
i19~°]=423:1‘
[20,71=437% 3
pdsE
2171480
[22_7]=45é:; "
2ar=arad®,
|24,v]=453<q
1259];492(5
25 v]:ﬁun‘t'?
-ig 7]‘50#5
[28.7)=512%

[29.7]=X
[30.7]=X

Figure 5: The methodology used to obtain optimum mapping in a

000010000

1000¢——— 0001

000100031

e
000110000 0011

fooao 010000000

000100010

10000 —————»000100100

r ¥
0000 010100000

1001

00000

16

476

MPPM system

Publication 4

PhD Thesis

Publication 4

f 100 50 10 i 100 50 10 1.2
7 15
S 4130 | -128 | -13.2 | -25.6 i -10.8 | <109 | <109 | 0.0
7 15
5 142 | 105 | 139 | 248 ", 1.8 1.8 | -10 13.6
7 15
4 1.5 1.5 1.2 0.8 o 43 | =53 | -56 | 167
GC
12 17
[J 22 | 02 0.8 | -50.1 [J 0.0 03 0.0 0.0
% 2
12 17
. 24 | -s51 56 | -21.8 48 | -49 | -5.4 | <169
12 17
b -102 | 92 | 92 | -89 . -11.2 | -102 | -9.8 | -193
5
7 15
[2] 2331 | 331 | =317 | -658 (ﬁ] 4125 | -135 | -164 | 0.0
i 15
5 352 | -35 | -347 | -23.7 | |, 4.9 52 4.1 4.7
7 15
[4] -23.4 | 229 | <223 | -243 L7 J 6.6 6.2 7.1 0.1
oPT
12 17
-20.3 | -19.1 | -17.0 | -24.8 8 89 | -86 0.0
2 2
12 17
N 233 | 253 | -26.0 | -30.0 | | 56 | 46 | 82 | 42
12 17
i 142 | -15.1 | -16.2 | -4.9 g 4191 | =199 | <203 | 0.2
D

7 7 12 12 12 15 15 15
Table 1: Percentage change in error rate for a 5 . 5 5 5 3§ i 5
2 3 2 3 6 2 3 7

17y (17 17
[2 J (3] and [8 J multiple PPM system using linear increment mapping as the reference and

a OCM error rate of 1 bit in 10° pulses. The mapping considered are Gray Cide (GC) and

Optimum (OPT).

17

477
PhD Thesis

Publication 4

fu 100 50 10 1.2 f 100 50 10 1.2
=3 10.8 | -10.6 8.8 0.0 [28\\ 7.0 9.4 10.1 13.7
2 -, . - O -, N \14/ =7l - o =13,
22 33
@ -32 | -51 6.7 | 7.7 5 -10.3 | -10.6 | -9.8 0.0
22 33

{8 J -87 | 91 [-103 | -112 [‘ J 74 6.7 | -8.8 12,
GO -

22 33

(] -5.8 | 9.3 | -12.0 | -11.9 [] -89 | -9.4 | -10.1 | -11.4

11 9

28) 33

(1 | 52 | -5.2 -4.2 0.0 v -10.4 | -13.7 | -16.7 | -17.1

(zs‘ 33

- ™ - i~ il -13.3 o -19.2

Lo J 6.1 7.9 8.1 10.4 ‘6 1.1 133 | -15.7 | -19.

22 28)

[] <117 | -135 | <166 | 0.0 (J 2187 | -20.7 | -25.6 | -4.7

z (14

22 33

[6.7 7.1 -83 0.4 214 | 22 | <223 0.0

3 2

22 33

[s J -17.8 | -19.2 | -20.1 | -5.6 [}] -22.1 | -248 | -25.7 | o8
OPT -

22 (33)

-22.0 | -21.8 | 204 | -89 \ J -286 | -29.9 | -31.8 | -0.5

11 Lo

(28" = 33 iy o .

\\1 -6.7 -7.8 | <132 | 02 i -31.2 | -33.7 | -37.7 | -5

‘/18\ a8 33.3 3 3

Lo -10.1 | -122 | -15.7 | -0.8 S 2333 | -37.8 | -392 | 7.8

228 (223 (22 (22 28 28 28Y (33
Table 2: Percentage change in error rate for a R i R i R i s !
2 3 8 11 2 9 14 2

33 33 33 33
2 F e %)y and 1% multiple PPM system using linear increment mapping as the

reference and a OCM error rate of 1 bit in 10° pulses. The mapping considered are Gray Cide

(GC) and Optimum (OPT).

18

478
PhD Thesis

Erasure Error Mapping
[1,2,7] Optimum Ideal
[1.2] 000001 000000
[1,3] 000100 000001
11,4] 011000 000010
[1,5] 000110 000100
[1,6] 001100 001000
[1.7] 000010 010000
[1,8] 100000 100000
[1,9] 010000 000001
[1,10] 000000 000010
[1,11] 001000 000100
[1,12] 010000 001000
Averaged [1,?] codeword 000000 010000
Averaged Hamming Distance 13 11

Publication 4

Table 3: Total Hamming distance for “Optimum” and *Ideal” mapping of the [1,7] ER averaged

12
codeword in a [2] multiple PPM system.

19

479

PhD Thesis

Appendix G

APPENDIX G

Project Plan

480
PhD Thesis

Project Plan

T+ Tzsk Name Curaton stan 2004 2005 2006 2007 200
a 23 a4 o1 [ez|es [ed]ar ez [os (a4 a1 [a2 [Jod [a1 Jez]as ot [ad
1 ‘an Investigation oTMPPM over 2 Highly Disparsive Oplical Channsl T84 days Mon 03A1/03 =
I Yaari 50 dayE| MOnOIA10E| e
3 Literaturs Survey TO days| Mond3N1103 =y
i ,/ Background 2nd Matvaton 30 -:Ia.';s: Maon 0311/03 .:l:ﬂmu.mu
5 o Modultlon Formats 10 days| Maon1512/03 FKOLAIDI
g Coding Theo 1y 15 days| Mon2942/03 NIKOLAIDN S
7T | Theary 15 days| Mon19/01/04 j}rﬂmmims
3 | Books 10days| Mon 190104 g NIKOLAIDIE
8 | Joumals 10 days| Mon 1901004 § MIKOLAIDIS
10 | ImEmel S 10 days| Mion 19/01/04 § NIKOLAIDIS
T | Design Phass 120 days| Mon 0302104
-] Softwars B0 days| Mon 0502104 :
13 | Dlagrams-Chans 30 days| Mon0902/04 D5
4 | T+ Ovenkew 30days| Mon2203/04 HIK LA!IZ:HS
15 |y Hardwars €0 days| Mon 030504
16 | Dlagrams-Chans 30days| Mon 030504 oLAIDN S
7 | VHDL/Verio g Oveniew 30days| Mon1406/04 IKOLAIDIS
18 |y Review/Papers/Trans=rProgess 60 days| MonZ6M7/04 WIKOLAIDI 5. 51BLEY. MATHER
13 Yearz 230 days| Mon 01H1/04 g
0 Implamentation 120 days| Mon 01/1/04 e
I | Hardware 60 days| MonO1A1/04 5 MIKOLAIDIS
22 |7 Sofwarz 60 days| Mon 2401705 -i NIKOLAIDIS
23 Testing 150 days| Mon 2401105 p—
74 |FH Hardware 90 days| MonZ401/05 = NIKOLAIDIS
25 o Sofware 90 days| Mon 180405 &= "HoLL IS
P Transfer Report 20 days| Mon 220805 W
T |u Wi g Up Trans® 1 Repon 20 days| Mon 22/08/05 .fmuuums MATHER SIBLEY
28 |7 Subm R Transter Repon Q days Fri16/09/05 18103
| Paper Prepa raton a0 days| Mon 0171104 f=—] mnummis SIBLEY,MATHER
30 Mathem atical Analysis 30 days| Mon 1505/05 P
3 | Matzned 30 days| Mon 1909/05] Minumln:s
iz |FH Ralked Coshe 10 days| Mon 190905] N!l':'-DLMEIS
33 o Exparimants 30 days| Mon 31 H00S Ll
T Mappihg Experments 30 days| Mon31A0/05 -] NIKOLAIDIS
3 o Paper Prepa ratan s0days| Friotadios = "IKOLAIDISSIBLEY, MATHER
Task [F—— R E L] Ex®maiTasks [F—
Criical Task ey Folled Up Crical Task [Project Summary L
Efﬁ{é;r%eﬁf% Progress s Rolld Up Milkston: Group By Summany
Miesione & Rolled Un Progress Ceadiine I
Summary Fo—— Epin
Page 1
481

PhD Thesis

Project Plan

T+ Tazk Name Curaton e 2004 2005 2006 2007 200
a | o3 fodforJezos[odjer ez JosJod Jer oz [os [ed Jat [oz]es [ad [a1
36 Yoar 3 213 M]Ii Mon 02 M01/08 ﬁ
7 | Cplimum Mapphg 30 days| Mon0201/06 & MIKOLA DI §
3@ | Algorimm ke Design 30days| Mon 1302006 HIKOLAID S
38 | Teslhg 60 days| Mon 270306 MK OLA 1D S
[T Expariments 30 days| Mon 130E/0E
IR Higher Order MPPM Syaems 90 days| Mon 19/06/06 RO
2 | Experiments 90 days| Mon 1906/06 HIKOLA DS
[EI P Paper Fregz raon 90 days| Mon 0201106 i NIKoLLIDIS
| Thesls 115 days | Mon 2205008] i
TN P Wkl g Up Thesks 90 days| Mon 2205006 B MIKOLAIDIS MATHE R,
[T SubmE Thesks Odays| ThodZA1/06 & 021
7 |FH Via 0 days Frig3/11/06 @ 03N
Task] Rolied Up Task] ExemalTasks [F—
Criical Task e TLOlEd U el Tk e Praject Summary 9
Project: Projecti o By,
i Togre £5 s Rolled Up Mllestone roup By Summary g
Date: Sat 15/11/08 g ¢ 3 t ¥
Mlizstone & Ralled Up Progress Deadiine i
Summary P SpiR
Page 2

PhD Thesis

