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ABSTRACT 

This research sets out to study the effects of turbulence on organ sound and examine ways 
of minimizing it in blowing systems. 

The efficacy of application of statistical and spectral techniques for a quantitative analysis of 
the effects of turbulence on the organ sound has been established. 

The sound generated for different inlet levels of turbulence intensity were analyzed. The 
inlet turbulence variation was achieved by mixing in different proportions, the wind 
generated by a centrifugal fan which has high levels of turbulence and turbulence 
attenuated wind. The latter was obtained by suppressing the levels of turbulence through 
flow stratification in narrow channels. Turbulence attenuation by flow stratification was 
used in this research as it could attenuate turbulence for very high Reynolds number (> 105) 
flows such as encountered in the study. 

The effects of turbulence attenuation were evaluated aurally, in a qualitative manner and 
also analyzed quantitatively. The aural evaluation indicates that changes in the sound with 
changing levels of turbulence were perceivable. In addition, the lower the turbulence levels, 
the better the sound quality - the instrument (organ) is said to have a better "degree of 
articulation... and expressiveness. " Spectral analysis of certain notes with and without 
turbulence attenuation showed changes to the spectral shape. Ripples in the spectra in the 
leading and trailing edges of the fundamental were much reduced. The spectra were 
smoother. The fundamental frequency shifted, on average by 0.3°%, up or down, depending 
on the nicking condition of the pipe. In one note, F#4, the fundamental had two peaks 
without any turbulence attenuation. One of the peaks vanished when turbulence attenuated 
wind was used. 

A technique was developed for quantitatively evaluating the fundamental from the 
frequency spectra. The fundamentals were sampled, normalized and moments taken about 
the central frequency. The 3rd and 4th moments computed gave an indication of the 
changing skewness and "peakedness" of the note with turbulence. It was noted, from 
experiments conducted on a test rig, that the notes got more negatively skewed and peaks 
more with increasing turbulence attenuation. It was also noted that the notes underwent a 
non-monotonical increase in asymmetry with falling levels of turbulence. There were 
similar increments in the "peakedness" of the pipe fundamental amplitude with decreasing 
turbulence. 

An electrical analogous circuit of the organ flue pipe for turbulence studies was developed. 
A circuit model with linear components was simulated and tested. It was found that most 
of the circuit component parameters were dependent on the geometric dimensions of the 
pipe, especially the pipe length. Calculations and a simulation of the circuit using HSPICE 
with parameters determined using the effective length of the pipe gave resonant frequencies 
much less than those obtained from acoustic experiments. The concept of an active length, 
La, which works out to be a third of the effective length, Le, was introduced. Calculations 
and simulations using La, gave more accurate results. A hardware implementation of the 
circuit developed was also done in order to study the effects of turbulence. 

The statistical analysis and electrical analysis studies undertaken in the current work may 
find application in the design of computer organs and other areas were turbulence in flow 
plays a significant role. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction 

The musical organ has been in existence for about 2000 years 34 It would be expected that 

enough work would have been done to explain the acoustics, fluid dynamics and aero- 

acoustics of the instrument by now. This does not seem to be the case. There is still a lot of 

work to be done. In fact, "there are still many problems in understanding details of the 

mechanism by which the sound is produced! "; 34 these "details" are not yet "well 

established"16. The amount of research being carried out around the world - Australia, 

Japan, Hungary, Germany, Holland, France and USA - seems to indicate that a lot of 
knowledge still has to be squeezed out from this domain not only to shed light on the 

behaviour of organ pipes and similar wind instruments but also the behaviour of other 

aero-acoustic mechanisms that are similar to those occurring in organ pipes. 

Some research has also been done to throw more light on the musical acoustics of the 

organ pipe. 3 25 42 49 In Hungary, some studies were conducted to study the build up of 

sound in the organ .3 
Some researchers have also studied the evolution of the timbre with 

changing l#tessitura25. Others have conducted research to understand the interaction 

between the mouths 'of resonating pipes placed on the same soundboard 49 

Several researchers have invested a lot of efforts to studying the jet stream from the flue 

and its interaction with the resonant modes of the pipe, see for example references 10,29- 

36. Different aspects of this flow interaction have been studied. 

Research work on the organ sound production has not been confined to studies on the pipe. 

1. section of total compass of voiced part of an in which most tones lie 

-1- 
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There has been research undertaken to study the flow in the note. channel27 and wind 

trunks delivering wind into the organ 39 59 77 94 96 These studies did not investigate the 

effects of turbulence on the pipe sound quality; they were mainly concerned with the 

effect of pressure pulsations on the pipe sound or reverberation of the bellows. 58 

Caddy and Pollard9 and others3 52 53 69 studied the transient sounds and their implications 

on the steady state resonance of the organ pipe but did not consider turbulence effects. In 

Spain, Agullo and Martrinez, 155 56 have studied the behaviour of pressure waves (not 

turbulence) within cones similar to the organ pipe foot, but did not look at their subsequent 

effects on any resonant column that could be attached to such "conical bores". 

Studies have also been conducted on the voicing of organ pipes, the end corrections and 

resonance frequencies of the pipe, 86 flow at the pipe exit during resonance? o the quality of 
5 the tones28 as well as relation between pipe resonance and its sound spectra. 

Research was carried out on the fluid dynamics of organ pipes not to understand the 

aesthetics of its musical character, but to extend and apply that knowledge to other 

applications. Most of this work has been done in France, Holland and USA. Elder has 

applied some of the findings from his investigations of organ pipe aero-acoustics to study 

jets generated in moving vehicles and flow noise in research conducted for the US Navy. 

In Holland and France, 8 20 26 52 72 73 76 93 considerable research has been conducted on the 

aero-acoustics of organ pipes and subsequently applied to the analysis of flow excited 

resonance in gas pipe lines. Studies have also been conducted in the UK66 67 on the fluid 

dynamics of flow excited resonance in ducts using some of the arguments developed in the 

study of the aero-acoustics of organ pipes. 

The main areas of the research on organs are concentrated around the soundboard, pipe jet 

drive mechanism and the interaction between the jet from the flue and the resonance 

.. 2.. 
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modes of the pipes. Very little effort has been invested in studying the wind delivery 

system of the organ. Studies on organ wind-delivery have mainly been discussion papers 

on the problems faced, mainly one of unsteady wind and insufficient pressure and an 

expression of the desire for smooth flowing wind 59 94 96 Research on wind supply into 

organs has mainly looked at the pressure fluctuations in the wind 39 77 Rooij77 studied the 

effects of pressure waves in the wind system on pipe sound. Gueritey investigated the 

effects of pressure waves on the pipe sound when an organ is being played39 and showed 

that there was a discernible shift in the frequency of the fundamental of a pipe. In the 

investigations carried out to study the effects of pressure waves in the wind-delivery on 

the pipe sound, it has to be borne in mind that pressure waves are deterministic quantities 

unlike turbulent fluctuations which are random. 

Of all the previous research carried out on the organ, apart from Hirschberg who evaluated 

the effects of jet (from the pipe flue) turbulence on pipe tones in his paper on the fluid 

dynamics of speech, no other study was found to have been conducted to study the effects 

of turbulence from the wind-delivery system on the quality of organ sound. Hirschberg 

demonstrated that the jet turbulence produces low levels of broad band spectra which are 

modulated by the pipe modes. 

1.2 Previous Work 

When the St. Paul's organ' was built, in 1977, the organ blower was placed inside the 

organ case behind the console (keyboard). Although the fan was placed in an acoustic box, 

mechanical noise was audible throughout the building. Preliminary tests taken in 1981 

suggested that much of the noise was impeller generated. In 1985 the blower was moved 

to an adjacent cellar. 40 ft (&12 m) of wooden trunking was constructed and installed 

leading from the blower to the organ. The resiting of the fan improved the sound of the 

1. Details of the stop list. compass of notes on the organ console and the pipe scale of the St Paul's organ are 
given in appendix 1 
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instrument, reducing the shrillness of the instrument, and improving the tonal blend of the 

organ stops. An added benefit was the improvement in the touch of manual III (swell). The 

pallets in the soundboard, because of the proximity of the blower, were affected by 

turbulence and vibrations from the impeller - and this was transmitted through the action 

to the keyboard. This characteristic reinforced a basic organ building rule that fans should 

be placed as far away from the instrument as realistically possible, in order to allow the air 

flow from the fan to the pipes to be as smooth as possible. 

Even after removing the fan, the problem of flutter, ripples and unsteady pitch still 

remained in the tonal characterisitics of the organ. In 1990 a fan regulator (air reservoir) 

was installed to steady the air flow. It was found to make no audible difference to the tonal 

quality of the instrument since when the air inlet to the reservoir was open (when the organ 

was played) turbulence passed straight to the organ itself. 

In 1991 the 12 radial blades of the impeller were replaced by 24 backward facing blades 

(together with a new 3 phase ac motor). The impeller speed was unchanged. The wind 

output was increased by 50%. These changes gave some improvement but not a complete 

solution to the problem. The notes now affected by flutter and ripple were shifted upwards 

by an octave, suggesting that the sound of the pipes was affected by the quality of the 

wind. 

What emerged from the foregoing previous work on the organ was that the complete 

solution to the problems emanating from the wind supply was not obvious. Working 

towards a complete solution to the problem therefore required that the turbulence situation 
in the organ wind system be studied. 

13 An overview of the Organ and Organ Pipe 

Figure 1.1 and 1.2 gives a block diagram of a typical organ pipe and organ respectively. 

ý4ý 
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Switch normally on at console for turning on/off fan 

Wind Flow 

Feedback between reservoir and 
valve. Valve automatically 
opened/closed as wind demand 
increases/decreases respectively 

Organ Console 

Pipes are stationed on the sound board. 
Pipes are actuated from the the console (keyboard) 

Figure 1.2 Basic block diagram of the organ 

When the blower is switched on, wind from the fan is fed to the pipes through the 

reserviors. Air into the sound board comes in via a valve, reservoir and wind trunk. The 

pipes are situated on the sound board. Wind is released into the pipe via the pipe foot hole 

(cf figure 1.1) when the corresponding key and stop of that pipe are operated at the 

console. The wind flows downstream of the pipe foot (cf figure 1.1) through the windway 

into the pipe body where it produces sound. 

When a note is played, the key opens a pallet (valve) at the base of the soundboardl to 

admit wind into the note channel. If a stop(stops) is drawn, the wind path from the note 

channel to the pipe foot is open and wind can flow from the note channel to the toe hole of 

the pipe. If the stop is not drawn, the wind path is blocked and air cannot get to the pipe 

1. Details of an overall view of the soundboard are given in appendix 2 



foot. This kind of sound board is the slider soundboard since the movement of a slide by 

the stop is the final control on the wind supply before it enters the pipe. An annotated 

diagram of the sound board is in appendix 2 

The sound production mechanism has been studied by many. One of the studies conducted 

by Yoshikawa & Saneyoshi98 suggested that a "feedback process" at the mouth area of the 

pipe sustains stable oscillations within the pipe resonator. Using a diagram similar to figure 

1.3 below, Yoshikawa & Saneyoshi explained that when air jet from the windway hits the 

upper lip/edge of the pipe, a pressure difference across the air jet, Op, induces a lateral 

displacement on the jet, which in turn produces an excitatory source QQ, by switching the 

jet as it impinges on the edge. QQ yields an acoustic volume velocity at the mouth Qm and 

pipe, Qp. 

Pipe 

-Qe Edge Mouth Lip 

Figure 1.3: Schematic to illustrate the sounding mechanism of organ pipe 

Another generation mechanism explained by Davies103 and othersl04 , relies on vortex 

sheets produced at the upper lip of the pipe to excite the pipe resonator. When the jet from 

the windway impinges on the upper lip, the flow separation from there produces a shear 
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layer/vortex'sheets that serve is an excitatory source for the pipe resonator. The sound in 

the resonantor interacts with the vortex sheet synchronising it to produce "an ordered train 

of vortices"103 which in turn produce self sustained oscillations. It is possible that both 

mechanisms outlined above contribute to the sound excitation mechanism. 

1.4 Thesis outline 

A study of the historical evolution of organ blowing equipment was undertaken and a brief 

account is presented in chapter 2. Organ blowing machinery had evolved over the 

centuries from human operated bellows to today's centrifugal blowers. The evolution from 

one system to another has been driven by the inadequacies of the blowing machinery in 

use at the prevailing time. Which ever type of blower was in use at a particular time, the 

primary objective was to meet the wind demands of the organ in question within an instant 

without any unwanted audible effects such as jolt, jerkiness, flutter and loss of pitch due to 

inefficient supply or pressure. Early electrically driven organ blowing systems produced 

smooth air flow but at low efficiency and high financial and space costs. Developments 

have reduced these two demands but have compromised wind quality. 

In chapter 2, the advantages and disadvantages of the blowing machinery presently in use 

in organ blowing circles, the centrifugal blower, is discussed. It is proposed that the 

fundamental weakness of the centrifugal blower is its propensity, when operating at a high 

efficiency, to generate turbulence, which it is believed, detracts from the quality of organ 

pipe sound. Modifications, prior to this study, to the centrifugal blower to significantly 

curtail this defect had not been completely successful. This prompted the need for this 

research to explore other ways and means through which turbulence could be suppressed 

and or attenuated. 

Chapter 3 contains a discussion of the various techniques for attenuating or suppressing 
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turbulence. Methods of reverting turbulent flows to laminar or near-laminar flow and 

postponing the onset of turbulence are given. These techniques include; channel 

enlargement, channel spanwise axis rotation, helical wound wind trunks, curved flows and 
flow stratification. Most of these techniques work for flows with Reynolds numbers below 

20,000. Flows in wind trunks supplying wind to organs generally have Reynolds numbers 
in excess of 50,000. The technique of flow stratification could handle flows with very large 

Reynolds numbers and will be used to attenuate turbulence. 

An attenuator was designed and built to be used for St. Paul's organ blowing system. This 

was tested in the laboratory (University of Huddersfield) prior to installation. It will be 

shown, via spectral analysis, that the attenuator significantly attenuated the turbulence in 

the flow by up to 30dB. Differences in the organ pipe notes played with turbulent and 

turbulent attenuated wind will be demonstrated through qualitative and quantitative 

analysis. 

The spectrum of pipe sounds recorded when played with the turbulent attenuator 

connected and disconnected are shown in chapter 4. An aural evaluation of the notes 

played with and without the turbulence attenuator is also discussed. Similar experiments 

were repeated in the laboratory using pipes on the windchest of a test rig. It is shown in 

chapter 5 that the improvements encountered in the St Paul's Hall organ were also realised 

in a laboratory environment. 

In chapter 5a model is developed (which supports experimental results) to provide a 

quantitative evaluation of changes in pipe note when played with wind of different 

turbulence flow conditions. The technique used is based on adaptation of the principles of 

statistical moments about some reference point. The skewness (deduced from the 3rd 

moments) and the peakedness or kurtosis (deduced from the 4th moment) will be 

evaluated. It was demonstrated through experimental results that the peakedness and 
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skewness change and that the frequency of the notes tend to shift with changes in flow 

conditions. 

In research conducted elsewhere to study the dynamics and aero-acoustics of the organ 

pipe and note channel, the researchers have resorted to electrical circuit models of the pipe 

or section of the organ under study to assist with their analysis 911 1314A linear equivalent 

circuit model of the organ pipe was developed for turbulence studies in chapter 6. 

Chapter 7 discusses areas where further developments and research can be conducted as 

well as other applications of this research. Most of the studies on the organ pipe have been 

applied to understanding the aero-acoustics of fluid pipelines and other wind instruments. 

Some of the findings here could be applied to research in these sectors. 

In the final chapter, chapter 8, the concluding remarks are presented. 
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CHAPTER TWO 

A REVIEW OF ORGAN BLOWING MECHANISMS 

Organ blowing machinery has had a colourful History. What ever their nature organ 

blowers had to provide wind pressures ranging from 350 Pa to over 5000 Pa2, and 

maximum volumes required over a similar range. Today a typical new organ will 

beoperating at about 2000 Pa requiring wind flow in the region of 0.7 m3/s. 

The blowers used ranged from the human operated blowers, through hydraulic blowers 

and gas engines to centrifugal blowers. The ensuing sections discusses the principal types 

of blowers that have been in use so far. 

2.1 Manual Blowers 

These blowers involved the distension and compression of bellows by hand and/or foot? 

70 as per figures 2.1 and 2.2. 

Figure 2.1 Sketch of four persons handblowing an organ. (Courtesy of Elvin24) 

Bellows that were, and are still, used in organs are similar to the lungs in operation, except 

that in lungs there are no valves and air comes in and goes out the same way. The 

similarity are more pronounced during distension. When the wall(s) is(are) distended, air 

is sucked in through a valve(s). On compression, the valve(s) is(are) closed and the air is 

forced out into the reservoir and downstream via the trunk(duct) into the wind chest or 

soundboard . 
4470 

Al.. 
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I 
Fig 2.2, Two persons blowing an organ with their feet - Halberstadt Cathedral Organ - 16th 

Century -(Courtesy of Elvin 24) 

Human operated blowers provided relatively smooth wind, however, large volume and 

high pressure demands required prolonged stamina and a sizeable human labour force. 

The first organ built in Winchester Cathedral, (circa AD95 1) had 400 pipes and 26 bellows 

that had to be operated by hands and feet of "... 70 strong men. " 2435 
. 
Clearly the logistics 

of labour force requirements posed a fundamental restriction on the size of organ that 

could be built and upon its utilisation. 

Few organs are manually blown nowadays. Of over a dozen organs visited as part of this 

work, one, Thurstonland Anglican Church, West Yorkshire, had a dual blowing system: a 

manual blower and a centrifugal fan. 

.. 12.. 
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2.2 Hydraulic Blower 

The application of hydraulic power in organ blowing machinery dates back to the 

Victortian age. (ie c1850-c1914) 

The hydraulic blower consisted of one or more cylinders with a piston inside each of them. 

The cylinders had two vents - with valves attached to both: one at the water inlet and the 

other at the outlet. By varying the water pressure on either side of the piston, it was moved 

up and down (or left and right for horizontal systems). The (reciprocating) piston 

compressed and distended the bellows. 24 88 The piston was actuated by the controlled 

injection of water above and below the piston via the controlling valves. The pressure 

differential across the piston moved the piston in one direction or the other. 

As the piston moved up and down, it compressed and distended bellows - the bellows 

sucked air in via its inlet valve, while the outlet valve is closed. On the downward stroke 

the inlet valve is closed and the outlet valve forced open by the wind pressure, forcing the 

wind downstream into the wind reservoir and trunks into the soundboard. The system had 

provision for a leakage valve for situations where the air reservoir was full and further 

wind input was superfluous. 2424 

Figure 2.3 An example of a hydraulic machinery used for organ blowing (Courtesy of Elvin 24) 

The principal advantage with hydraulic operated blowers, was their quiet operation, 

attributed to their slow speed (about 50 rpm). The wind generated was not very turbulent 

relative to latter day ones. 70 

.. 13.. 



Water mains controlled hydraulic blowers had one major disadvantage: there were 

variation in the mains water pressure which could cause operational difficulties. 

In fact the cost of maintenance turned out to be more than the cost of the equivalent 

centrifugal fan. 70 

23 The Gas Engine 

After the hydraulic machines came gas engines. These were mainly in use during the late 

19th and early 20th century. 88 

The combustion of a gas mixture in a cylinder, released Energy which in turn was used to 

drive a piston(s) that were attached to bellows via cranks. The compression and distension 

of the bellows supplied wind into the organ. 
In some organs, the kinetic energy of steam was used. Around 1860 (and up to the 1920s) 

the organ in St. George's Hall, Liverpool used a steam engine of 1.9 kW - 2.5 hp (and later 

24 6kW, i. e. 8 hp) to supply up to 5500 Pa (22 inH2O) of wind pressure. 
The gas engines were bulky, and had to be kept at long distances from the organ. 
Furthermore, the fumes and oil from the engine were inevitably sucked into the bellows 

with damaging and costly consequences. 

2.4 The Centrifugal Fan as an Organ Blowing Machine 

Early versions of the centrifugal machine were introduced in the organ blowing circle as 
Kinetic Blowers. 

2.4.1 The Kinetic Blower 

Basically this is a brand of multistage impeller centrifugal machine where all the stages 

are in the same casing, with each stage separated from the preceeding and/or proceeding 

stage by a plate with a circular orifice cut out at the centre of this plate to clear the main 

.. 14.. 
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shaft. Air compressed at the edge of the first set of impellers is channelled to the centre of 

the next set of impellers on the same shaft, as a consequence, progressively increasing the 

pressure of the wind. Where required, wind can be tapped off after any impeller stage. 

'Such blowers are still in use today. The blowers of the Anglican Liverpool and Durham 

Cathedral Organ and St. Peter's Parish Church, Huddersfield, are some of many examples. 
The Liverpool Anglican Cathedral organ is blown by three kinetic blowers: two operating 

at 1440 rpm at 13.5 KW (18 hp) and the other at 1400 rpm at 9.4KW (-12.5 hp). (These 

are rated values). Each occupy a space of about 3m by 0.70 m by 0.8 m; delivering a sum 

volume of about over 3.33 m3/s and an overall wind pressure of 5500 Pa. A comparable 

organ in St. George's Hall in Liverpool, uses two centrifugal blowers rated at 2.83 m3/s 
flow rate, 12.5 KW and 0.233 m3/s at 12 KW, both running at 1450 rpm. These machines 

have outer diameters of 1.5 m and 1m diameters respectively; while both have a breadth 

of 0.25 m. These devices were large, noisy and expensive to run. They also require large 

and expensive reservoir system to support them. Advances were therefore sought that 

were small cheaper and less expensive to operate. The centrifugal blower offered gain in 

all these areas. 

2.4.2 The Centrifugal Blower 

The centrifugal fan is much smaller and more efficient than a kinetic blower, for a given 

wind demand specification. 

Air sucked in via the inlet of the centrifugal blower is imparted kinetic energy by the 

moving blades of the impeller and the pressure rise is then achieved by diffuser action as 

the air flows in the casing (and diffuser where present). This is known as dynamic 

compression 
6ß 

Where a single stage fan can not meet the pressure requirements of a specific organ, 

several centrifugal blowers are used in cascade: the output of one feeding the input of the 

»1S.. 
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next machine in the cascade. The final output or output tapped off at intermittent stages are 

then channelled off, via a reservoir, through appropriate trunking into the organ 

soundboard. 

Between the blower and the reservoir, there usually is a regulator, regulating the volume 
flow rate into the reservoir according to demand. The valve used, undoubtedly introduces 

extra turbulence in the wind and is likely to influence the acoustics of the organ pipe. 

2.4.3 Advantages of the Centrifugal and Kinetic Blowers 

a They are very compact machines. 
b They have no valves and hence fluctuations in pressure which may arise 
from valve motion are absent. 

c Mechanical balance is easily achieved as the construction is mainly axi- 

symmetrical in structure, inherently resulting in less mechanical vibrations. 

d Because direct motor drive of the centrifugal machine is possible, gear noise 
is avoided. 

e These blowers require minimal maintenance. 

2.4.4 The Disadvantages of the Centrifugal and Kinetic Blowers. 

In spite of the several advantages of the centrifugal blower, they have disadvantages for 

organ blowing purposes. 

Among the disadvantages are: - 

a The process of raising wind in the centrifugal blower, is by dynamic 

compression; involving the conversion of a velocity head into a pressure head. This 

generally yields a temperature rise which tends to increase with decreasing efficiency; 

b Centrifugal machines raise wind that has pressure fluctuations which are 
dependent on the rotational speed and impeller blade count of the machine. Guelich and 

.. 16.. 



Bolleter38 have studied and discussed the effects and mechanisms of pressure pulsations in 

other applications, wherein it is proposed that there are two principal types of pressure 

pulsations that matter. - 

i those that have discrete frequency peaks, and 

broadband pressure fluctuations (ie flow noise and turbulence). 

Pressure pulsations with discrete frequency peaks are determined by the Blade Rate 

Frequency and the Blade Pass Frequency. 19 37 38 

c The flow path from the inlet to the outlet of the centrifugal machine involves 

a complicated and contorted geometry, which generates considerable turbulence and 

pressure fluctuations. It has to be mentioned that pressure fluctuations are different from 

turbulence: the former is not random and covers a wider range on the frequency spectrum. 
The finite number of blades and the eddy separation at the blade tips gives rise to pressure 
fluctuations. 

Basically, the overall machine concept wherein rotating blades are enclosed within a 

confined space is inherently a turbulence generating situation. This further makes it 

difficult to design a low turbulent wind supply using a centrifugal machine; 

d There is a conflict of requirements for smooth flow dynamics and for high 

pressure. The centrifugal machine is principally a low pressure rise machine; typically 

25OPa to 5,000Pa in a single stage. 

The pressure head, P, is generated by converting a velocity head, due to a bulk velocity of 
U, as given in the basic equation outlined below, assuming no viscous effects,. 

U2 (P ) 
..................................................................... 2.1 2 

Because the air density, p, is low, a high velocity is required to realise a high pressure rise. 
A high velocity inherently produces more turbulence as this increases the Reynolds 

.. 17.. 
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Number, Re; where 

R 
(PUDe) 

Re = ....................................................:............. 2.2 

De =a characteristic length dimension, hydraulic (equivalent) diameter and 

µ= viscosity of the fluid. 21 

Where: 
De _ 

4xDuctArea ° ........................................................ 
23 

DuctPerimeter, 

2.5 Surmounting the defects of the Centrifugal Machine 

There are two possible ways of tackling the short comings of the centrifugal fan. The two 

approaches are: 

a) minimising turbulence through design and/or 
b) eliminating the turbulence down stream. 
The first method is discussed in the ensuing section, while the later will be treated in more 
detail in chapter 3. 

2.5.1 Modifications to the Impeller Blade Geometry 

The different configurations (see figure 2.4) of the centrifugal machine impellers 

include: 

a forward facing impellers; 

b backward facing impellers and' 

c paddle (radial) impellers. 

The shape of the blade used in most applications depends on the pressure rise, flow rate 

and impeller diameter required. 

In many organs, the centrifugal machine providing the required wind have radial blades. 

The modifications on the impeller geometry involed using backward facing blades with a 
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split impeller configuration. 

Why use backward facing blades? This question will be answered with the aide of figure 

2.4 overleaf. An examination of the pressure versus volume curves of the different blade 

geometries indicate that the backward facing blade provides the most stable operation. 

The pressure versus volume curve of the forward facing blade impeller (fig 2.4, II-a) 

shows some non-uniformity in the changes in pressure with increasing volume. There are 

operating pressures that have two and even three possible volumetric flow rates. Operating 

the fan at such pressures may result in instabilites that cause stalling. The Paddle/Radial 

bladed impeller configuration also has a non-uniform pressure versus volume curve (c. f. 

fig 2.4, III-a). As the volumetric flow rate increases, the pressure increases before falling. 

At certain operating pressures, there are two possible volumetric flow rates. Operating the 

radial bladed centrifugal fan at such pressures can result in stalling. Judging from the 

pressure versus volume curve of the backward bladed centrifugal fan (c. f. fig 2.4, I-a), it 

can be inferred that at any operating pressure, there is only one volumetric flow rate. This 

uniform pressure versus volume flow characteristic is what gives the backward facing 

bladed impeller fan its operational stabily and superior performance relative to the other 

blade configurations, they are also more efficient and give rise to less turbulence. It has to 

be said that efficiency is not necesarily an advantage. In chapter 4, section 4.3, this will be 

dealt with further further when a discussion on some experiments with a blower borrowed 

from Harrison & Harrison Organ Builders, Durham, is given. 

Another modification of the blade geometry involves the use of a split impeller 

configuration. This is especially so for large pressure rise applications. The split blade 

geometry increases the radial depth of the blade which helps in reducing the boundary 

layer separation around the blades, thereby also reducing the formation of eddies that do 

induce turbulence. Plate 2.1 depicts a modified impeller geometry that is in use in the 

centrifugal machine in St. Paul's Hall, University of Huddersfiel09 

.. 19.. 
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The aforementioned improvements of the blade geometry have been implemented in a 

centrifugal machine designed and fabricated within the University. The improvements 

achieved do not go far enough in alleviating the fundamental problems of unsteadiness, 

flutter and ripple in the acoustics of the organ pipe. Indicating that the problem of 

turbulence persists. 

Plate 2.1 Impeller geometry of centrifugal blower in St. Paul's99 

This impeller configuration shifted the turbulence problem upwards by one octave, i. e. 

doubling the frequency, on the organ in St. Paul's Hall, University of Huddersfield. 8 This 

is due to the doubling of the number of blades previously used from 12 to 24. It becomes 

.. 21.. 
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increasingly clear therefore that pursuing further improvements- on the centrifugal 

machine for the application of interest in this research may only lead to a further marginal 
improvements. Some experiments carried out, indicate that the level of turbulence in the 

flow depends on the operating point on the efficiency versus flow rate curve of the 

Centrifugal Blower in use (will be discussed in chapter four). 

An innovative solution to this problem was to consider designing a machine centred on 

new concepts apart from the centrifugal machine. Before that, another remedy for the 

turbulence situation was considered: that of minimizing the turbulence generated by the 

centrifugal machine. The research work pursued this avenue as will be discussed in the 

next chapter. 

The development of the organ blowing systems can therefore be suniarised in the chart in 

figure 2.5. 
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Fig 2.5 Flow diagram of organ blowing machinery 
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CHAPTER 3 

TURBULENCE SUPRESSION AND ATTENUATION 

3.1 Principles of Turbulence Attenuation and Suppression' 

A distinction, has to be made between turbulence attenuation and turbulence suppression. 

In the latter case, the flow is controlled to avoid the generation of turbulence or to delay 

the onset of turbulence. In the case of turbulence attenuation, turbulence already within the 

flow is reduced, or eliminated so that the flow becomes laminar. 

Several techniques have been exploited in suppressing turbulence in fluid flow. 

Theoretical analysis as well as experimental investigations have been conducted by 

Sreenivasan and Strykowski; 85 Narasimha and Sreenivasan; M Sreenivasan; M Manlapaz 

and Churchill; and Viswanath 95 

Using the equations of conservation of momentum and mass; Narasimha and 
Sreenivasan 74 deduced that the turbulence energy, q, consisted of five catergories, namely: 

i) Energy generated by Reynolds stresses 
ii) Work done against fluctuating body forces 

iii) Viscous losses - ie the conversion of Kinetic Energy into Thermal 

Energy 

iv) Viscous diffusion and 

v) Diffusion due to pressure and turbulent fluctuations. 

1. A theoretical overview of turbulence is outline in appendix 3 together with a discussion on method of 
analysing turbulence for the for the purposes of this work. 
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Techniques that contributed to minimise q, would result in relaminarization. 

It turns out that the decorrelation of the principal velocities that directly contributed to the 

level of the Reynolds stresses contributed significantly in reducing turbulence 64 84 This 

concept shall be treated in more detail in subsequent sections. 

Parameters used to determine the onset of relaminarized flow were: 

cessation of bursting, 

change in the stress gradient at the wall, 
fall in the skin friction, 

fall in Reynolds numbers to below its critical value, 

flow profile approaches the laminar velocity profile and 
6484 a drop in the heat transfer coefficient. 

Photographs of turbulent to laminar reversion in fluid flow as well as oscillograms of Hot 

Wire Anemometer traces were given to corroborate experimental findings 84 85 95 

Manlapaz and Churchill on their part carried out detailed studies on skin friction and the 

helical number (the modified Deans number) to study relaminiarization in helically coiled 

channels of finite pitch. 

The investigations of the researchers cited principally concluded that there are three 

methods of turbulent to laminar flow reversion, namely: dissipative reversion, Richardson 

type reversion and reversion by domination. 

3.1.1 Dissipative Reversion. 

In this process, molecular transport agents, e. g., friction, causes the loss of turbulence 

energy, demonstrated by the changes in the Reynolds number. Pipe flow experiments 

conducted by Narasimha and Sreenivasan, 64 concur that the weakened Reynolds stresses 
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indicated that the turbulence energy has been attenuated. 

3.1.2 Richardson Type Reversion (Dissipation via Stabilized Stratified Flows) 

Here turbulence is suppressed by a "stabilizing density gradient"M as proposed by 

Richardson circa 1920. This can be demonstrated by injecting a strand of dye in a water 

tank of uniform temperature. The dye is injected at the base and allowed to flow towards 

the ceiling. The flow is observed to be turbulent as it progresses downstream. 

If the top of the tank is heated, such that the water nearer the ceiling becomes hotter and 

less dense relative to the base, the strand of dye flowing upwards towards the ceiling now 

has the perilous task of working against the density gradient: the turbulent energy of the 

dye is now converted into gravitational potential energy. This dissipation of turbulence 

energy yields reversion from turbulent to laminar flow. Viswanath95 and Sreenivasan85 

took some pictures illustrating this phenomenom. 
This phenomenon also occurs in the atmosphere when turbulent smoke reverts to laminar 

flat clouds as the smoke moves towards the stratosphere. The hot atmosphere nearer the 

sun and the cooler earth surface (cooled by convection currents) leaves a density gradient 

not conducive for sustaining turbulence flow - hence the turbulence suppression. 

3.1.3 Reversion by Domination. 

This occurs when a turbulent boundary layer is subjected to strong streamwise 

acceleration. Viswanath95 have conducted experiments with supersonic flows to 

demonstrate this type of reversion. Narasimha and SreenivasanM found evidence of 

decorrelation of the velocity components that determined Reynolds stresses. They also 

noted that there was a drastic fall in the skin friction. The foregoing corroborate the 

retransition into laminar flow. Here the observation of relaminarisation was principally in 

the boundary layer and not within the entire flow. This kind of reversion is found to be 

dominant in flow reversion that takes place in helically coiled ducts? 95 
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3.2 Some Techniques used to realise reversion. 

Some of the techniques used include: curved flows, spanwise axis rotation of the flow 

channel, helically wound ducts and channel enlargement. , t- 

3.2.1 Curved Flows 

The diagram of figure 3.2 gives an illustration of the process involved. 

2a 

Outwards radial flow 

Inwards flow 

I 

Outwards radial flow 

r No 
Oil 

Fig 32 - Schematic diagram to demonstrate reversion by means of curved flows 
The incoming flow at the centre is converted into outward radial Poiseuille Flow between 

the two parallel discs. It turns out that the Re(r) at a radius, r, from the centre of the feeder 

pipe is inversely proportional to, r, and directly proportional to, a, the pipe radius 64 

3.2.2 Turbulence Attenuation via Spanwise Axis rotation of the Flow Channel 

Flow visualisation techniques have been used to illustrate that turbulent flow reverted to 

near laminar flow especially near the walls 64 The skin friction was found to have dropped 

significantly. Narasimha and Sreenivasan's64 experiments were conducted with flows that 

have Re not exceeding 2x104. 
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Chapter Three: Turhulence Suppression & Attenuation 

3.2.3 Channel Enlargement 

Laminarisation is realised by gradually enlarging the wind trunk from a smaller to larger 

(hydraulic) diameter (cf Fig. 3.3), while ensuring that the half angle of divergence, 8, is 

small enough to avoid flow separation. 

Flow direction D 
u 

D 
u= urstream diameter 

Dd 
= downstream diameter 

Fig 3.3 Reversion due to channelenglargement 

Dd 

Experimental results reported by other researchers and cited by Sreenivasan84 illustrate an 

attenuation in turbulence by as much as 80%, for half angles of deviation, 0, of 1° and 3°. 

Channel enlargement is believed to be a typical example of dissipative reversion. 64 

The velocity profile was found to approach the Poiseuille solution downstream after the 

enlargement. Add to that, a drop in skin friction. Narasimha and Sreenivasan, M further 

noted from experimental measurements that at 20a and 180a downstream, after the 

enlargement, the correlation coefficient of the two dimensional (x and y) velocity 

components fell from 0.36 to 0.13 (-70% attenuation) respectively. They thus concluded 

that a "decorrelation mechanism" was destroying the "coherent motions" and weakening 

the Reynolds stresses, with the net result that turbulence was being destroyed far more 

than it was being created. 

0 

....................... 
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3.2.4 Turbulence Reversion using Helically Coiled Pipes 

By using helically coiled pipes as depicted in Fig 3.4 below, turbulent flow has been 

shown to revert to laminar flow. 

Re-conversion to turbulent flow further downstream, occured, at much higher critical 
54 Reynolds numbers. 958589 

b 

2a 

2r 

Fig 3.4 Turbulence reversion in flow through helically coiled pipes. 
Viswanath, 95 conceded that though the reversion process in these types of flow have been 

known since the 1920s, there was still a lot of ambiguity surrounding it, however, they did 

postulate that it could be due to the Richardson effect -a change in density gradient 

between the inner and outer wall. It can be infered from experiments conducted by 

Manlapaz and Churchill , 
54 and the arguments of Narasimha and Sreenivasan, 64 that a 

combination of the Richardson effect and suppression by domination are taking place in 

the flow. The faster flow in the outer wall dominates the turbulent fluctuations taking place 

in the inner wall. 
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3.2.5 Turbulence attenuation by flow stratification 

If the fluid flowing upstream is conveyed from one large channel to several narrower 

ducts, with significantly smaller hydraulic diameters, the Reynolds number of the flow 

could be reduced significantly. The narrow ducts are stacked next to each other. 

The total area of the narrow channels being equivalent to the area of the preceeding duct. 

The narrower channels on the whole tend to take up a greater area because of their wall 

thickness: this makes it necessary for outer walls of the duct to be gradually enlarged to 

accommodate the strata of narrow channels. After the stack of narrow channels, the duct is 

again narrowed down to itsoriginal dimensions upstream. 

-_9 

Fig. 3S: Section of schematic for turbulence attenuation by stratified flow 

The strata of narrow channels can be a stack of honeycombs or tiny polygonal ducts. The 

channels should be sufficiently long enough to attain steady flow conditions: i. e. the length 

should be atleast 20 times the hydraulic diameter of the narrow ducts. 

So if the dimensions of the trunk went from say 20 mm by 20 mm in the main trunk to say 
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3 mm by 3 mm in the rectangular "honeycomb", there would be a change in hydraulic 

diameter from 20 to 3 respectively. The change in hydraulic diameter would yield a 

proportionate change in the Reynolds number. 

If the narrower channels have a wall thickness of 500µm, say, then the main trunk would 

have to be enlarged to 625 mm2 from 400 mm2 to accommodate a strata of narrow 

channels with identical flow area. 

3.2.6 Choice of turbulence attenuation or suppression technique 

Where curved flows are used to realise reversion, reversion has been demonstrated for 

flows with Reynolds numbers (Re) not exceeding 104. Much less than the turbulence 

conditions experiences in organ blowing situations, where Re in excess of 5x104 are 

encountered. 
In organ blowing situations, the ducts have large hydraulic (equivalent) diameters and are, 

made of clay or wood in most cases. Spanwise axis rotation as a means of curbing 

turbulence would prove unwieldy and not cost effective. 

Channel enlargemnent techniques used in realising relaminarization have been shown to 

work for Re < 13000, a rather small Re, compared to Reynolds numbers encountered in 

organ wind supply sytems. 

The experiments conducted to study reversion in helically wound ducts process have been 

done with radius ratios: air, of less than 0.1. The technique was found to be valid for 

maximum upstream Reynolds numbers of less than 104. Further downstream if re- 

conversion (retransition) into turbulence flow occurred, it did so at a much higher critical 

Reynolds number of - 520085. 

Typical organ wind trunks supplying church and hall organs with wind tend to have 

diameters in the neighbourhood of 200 nun or more. To achieve a radius ratio of less than 
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0.1, would require a coil radius, r, of greater than 2000 mm. There is hardly such large 

space to spare for trunking within organ systems. Besides their wind supply Reynolds 

number of upstream flow is in excess of 104. 

Realising that many of the prevailing schemes for attenuating or suppressing turbulence 

are not suitable for organ applications, the technique of turbulence attenuation by flow 

stratification was adopted. 

In determining whether turbulence had been attenuated to revert to laminar or near laminar 

flow. conditions, the energy spectral density and the time domain oscillographs of the 

turbulence signal were measured, before and after the attenuation process, with a hot wire 

anemometer. The Reynolds number before and after attenuation was also evaluated. 
The hot wire anemometer could only measure turbulent fluctuations in one dimension, 

meaning that we could not evaluate the correlation of the principal velocities in 2 or 3 

dimensions. The instrumentation for measuring boundary layer bursting and skin friction 

were unaffordable or unavailable. Though other sophisticated measuring instrumentation 

could have been used, the hot wire anemometer was adequate for the application in hand. 
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CHAPTER FOUR 

EFFECTS OF TURBULENCE ATTENUATION 

4.1 The Turbulence Attenuator (Filter) 

The turbulence attenuator was designed for the St Paul's Hall organ to reduce the 

Reynolds number of the flow without compromising the flow rate. The method that will be 

proposed also seeks to decrease the scale/intensity of turbulence by decreasing the space 

over which the "random motions" of turbulence can fluctuate and hence its fluctuation 

amplitude thereby realising reversion by dissipation. 

The turbulence attenuator was made up of a stack of small rectangular "honeycomb" 

passages of length L. where L. is chosen such that a steady flow is obtained downstream 

of the stack length before the wind exits the attenuator. 

The rectangular passages in use have an area of 822 mm2. The leading edge of the duct 

into the entrance of the attenuator was gradually expanded to accommodate the increase in 

area due to the wall thickness of the narrower channels . The channel expansion decreases 

the flow speed and increases the pressure of the wind before it gets into the passages. This 

also helped to compensate for the very small, but extant, decrease in pressure (found to be 

less than 50 Pa; ie less than 0.2 inches H20) that comes with the increased wind speed as 

the wind flows downstream into the passage. After the honeycomb, the duct is funnelled 

down to its original dimensions. The angle of the leading and trailing funnels were both 

less than 10° so as to minimize any flow separation, especially after the honeycomb (see 

fig. 4.0 below) Fig 4.0 depicts the attenuator (with an L0,, of 100 mm) designed for the St. 

Paul's Hall organ. 

. 33.. 



Chapter Four Effects of'Iurbulence Attenuation 

It is speculated that the flutter and ripple on sustained notes at certain stops on the organ 

are due to the turbulence in the wind flowing into the soundboard. Experiments carried out 

to investigate the influence of turbulent wind on the quality of organ sound will be 

described in chapter four. Ideally this should be done by taking measurements (recordings) 

of some pipe sounds at wind possessing different levels of turbulence flowing into the 

soundboard. 

The first phase of this scheme involved introducing the turbulence attenuator outlined 

above in the path of the wind and qualitatively analyse whether any improvements in 

sound quality have occurred. This was done by comparing the spectrum of the sound of 
400 500 

. 

146 

rfirý of. 

TOP VIEW 

u 
2.4 

o. 
3.5 

D= 100 

Note: Not to scale 
All Dimensions are in mm 

Fig. 4.. 0: Turbulence attenuator built for the St. Paul's Organ, Univ. of Huddersfield. 

the organ pipe under investigation before and after the attenuator was installed. 

,... .............. 
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4.2 Evaluation of therbulence Attenuator 

Flow velocity and turbulence measurements were made on a test rig in the laboratory with 

wind supplied by a centrifugal blower that has a flow rate of 0.6 m3/s (i. e. 1200 ft 3/min. ); 

driven by a Brook Crompton 1.5 KW, 3 phase motor. This is identical to the blower in use 

in St. Paul's with the exceptions that the blades were radial, and the finish inside of the 

casing was coarse. For the given duct dimensions, this meant a mean flow velocity of 9.258 

m/s and a duct hydraulic (equivalent) diameter, De, of 216.5 mm. (The details of these 

calculations are given in appendix 4). Using 1.8 x 10-5 Ns/m2 and 12 Kg/m3 as the 

viscosity, µ, and density, p, of air respectively, an Re of 133723 is obtained (calculated 

with the help of equation 2.2). This being the Reynolds number of the flow before the 

attenuator was introduced. 

The attenuator constructed was inserted in a portion of the wind duct. The duct internal 

dimensions of the St. Paul's organ are 419 mm by 146 mm. The inlet and outlet 

dimensions of the attenuator was built to match the duct internal dimensions. 

To satisfy the condition of steady and developed flow; a duct length of 2.4 m, (over 10 

times the hydraulic diameter, De) was used. Turbulence spectral measurements were made 

of the wind just before the exit of the straight duct. Comparative measurements were taken 

after the attenuator designed for St. Paul's was attached at the end of this duct. 

As the wind flowed down stream through the attenuator, the wind mean velocity through 

the "honeycomb" increased with an associated pressure drop Ap, where Ap is given by 

equation 3.11 below; 

Ap = 4(pfLWUp)/4 4.1 
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with f= 16/Re for laminar flow conditions 

and f=0.079/(Re)0-25 for turbulent flow21 

where f= friction factor, and Up = mean flow velocity in passage. 

4.2 

With the "honeycomb" dimensions of 2.4 mm by 3.5 mm, => de = 2.85 mm, yielding a 

Reynolds number, Re of 1085. 

Re has decreased by a factor of more than 120; transforming the flow into the laminar 

flow regime. 

The turbulence reduction is at the expense of a small pressure drop, calculated from 

equation 4.1 to be 40.62 N/m2, (in organ builders language: 4.14 mmH2O or 0.163 

inH2O). Using a TECquipment AF10 multitube manometer, a pressure drop of 0.4 mbar 

(- 4053 N/m2) was measured across the "honeycomb", in agreement with theoretical 

calculations. 

4.2.1 Choice of Flow Measurement Equipment 

Several measurement systems do exist with different forms of sensors for measuring 

turbulence motions. The HWA technique used is just one of several techniques that uses a 

probe operating on electrical principles. 

The thermistor operates on similar principles to the HWA. However its poor sensitivity 

and unpopularity in measurements systems required for such application ruled it out 41 

Other electrical probes exploit electrochemical and electric discharge techniques which 

make them more suitable for liquid than gaseous applications. 

Mechanically based probes include: - the total head tube, based on the hypodermic needle 

with a pressure transducer at one end. Unfortunately the needle behaves like a resonator 

usually requiring compensation for or annulment of these effects. The multiplicity of 
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coupled systems involved: acoustic, mechanical and electrical systems together with their 

low frequency response (typical bandwidth of 3KHz41), makes - this approach a 

complicated and unsuitable choice for our measurements. 

Other mechanical systems like the static pressure tubes amongst others could not be used 

because of their unnecessary complication relative to the application and/or low frequency 

response: usually less than 5 KHz. 

Most contemporary flow measurement techniques do involve some form of flow 

visualisation, e. g. the Hydrogen bubble technique, light refraction techniques, others that 

take advantage of the absorption and scattering of light by the fluid etc. These techniques 

were not used because of their bulkiness, prohibitive costs and complexity relative to 

application in hand. 

With the other schemes discounted, the HWA was resorted to. In Hot Wire Anemometry, 

there is the Constant Current and the Constant Temperature approach. Though the former 

is the simpler method, however, the wire time constant (impulse response) and hence 

frequency response, changes with change in operating point 41 65 making the constant 

current approach undesirable. Add to that, there are very few manufacturers of the 

Constant Current Anemometer. The constant temperature HWA is much simpler to use. 

Furthermore, its sensitivity does not change significantly with the operating point of the 

device, hence its use in our measurements. 

4.3 Fluid Dynamic Evaluation of the Thrbulence Attenuator 

4.3.1 Spectral measurement of turbulence 

The turbulence spectrum of the wind from the duct attached upstream to the centrifugal 

machine was measured using a film type Hot Wire (HWA). 
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The turbulence spectrum was measured with a TSI 1210-20 HWA (from BIRAL UK Ltd., 

Bristol, TSI's UK representative) film probe placed in contra flow to the wind flowing 

downstream. The probe was connected to a TSI constant temperature anemometer bridge 

model 1750 and its output in turn fed into the B&K dual channel spectrum analyser 

(model 2034). When required, the data displayed on the screen of the analyser was plotted 

on a Hewlett-Packard HP 7475A plotter. Only data displayed on screen could be plotted. 

The display scales of the spectrum analyser are not under operator control and hence it 

was not possible to plot/generate displays which readers will wish to compare to common 

scales. Hence when reading the plots from the spectrum analyser, attention should be paid 

on the scale as in some cases it varies. The block diagram of figure 4.1 is a schematic of 

the experimental setup. 

Direction of airflow 

t 
/1" 

I 

51 t Wire 
Anemometer 
(Sensor) r' 

Constant 
Temperature 

. ̀anemometer 

91CP Plotter 
6A? 9999999999999W 

ooooooclýý, 

Spectrum slnatyser 

Fig. 4.1: Experimental Setup for the Evaluation of the Turbulence attenuator 

Before these measurements were taken, the frequency response of the film sensor was 
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evaluated as prescribed by TSI (appendix 5) and found to have a bandwidth of 50 KHz; 

implying, the probe can track turbulence motions, fluctuating between 0 Hz and 50 KHz 92 

The turbulence measurements were made with and without the attenuator connected. With 

the probe at the outlet of the duct, the spectrograph of the turbulence signal was evaluated. 

After the attenuator was installed, similar measurements were again made at the outlet of 

the attenuator. Prior to these measurements, the spectrograph of still air was measured. 

Fig: 4.2- Spectrograph of still air 
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Fig 4.3- Spectrum of wind before attenuator was installed. 
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Fig 4.4- Spectrum of wind after attenuator was installed 

Figures 4.2,4.3, and 4.4 are plots of the spectrographs taken: a- still air; b- before 

attenuator installed and c- after attenuator installed. 

Some comments on Figs 4.2 - 4.31 

Fig: 4.2- Spectrograph of still air. 

This measurement was taken to be used as the reference level (a sort of ground level) for 

1. A note on the scale of figures 4.2-4.4 

The scale of the spectra are different. This unfortunate occurence was due to the limitations of the measuring 
equipment used. (B &K spectrum analyser) The area of screen available for viewing displayed data is lim- 
ited. The range on the magnitude axis had to be adjusted to bring the data on display into view and so that it 
could be printed. 
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other turbulence measurements. The observed still air (reference) level is -60dB (fig 4.2) 

4.3- Spectrum of wind before attenuator was installed. 

Note here that thte spectrum has a peak at -4 dB (at 0Hz) falling to the reference (still air) 
levels of -60dBat 20kHz. This gives a peak magnitude of -56dB. 

4.4- Spectrum of wind after attenuator was installed . 
After turbulence attenuation, the peak of the turbulence spectrum falls to -23 dB from (- 

4dB) at OHz, rapidly decreasing to the reference level at 3.8 kHz. The peak magnitude has 

dropped by almost 20dB from -56dB to 37dB. In addition, after attenuation, some bumps 

became more prominent on the spectrum, at just over both 500Hz and 1000Hz plus 

another at 700Hz. The first two are harmonics of the Blade Pass Frequency (BPF), while 

the 700Hz bump is likely to be due to coupling between the modes of the BPF. 

Figures 4.3 and 4.4 show a attenuation in the intensity of turbulence from a maximum of - 

-4 dB to -23 dB. It should be further noted that turbulence is attenuated to still air levels at 

3.8 KHz and beyond. 3.8 KHz could therefore be regarded as the cut off frequency of the 

attenuator. Figure 4.4 further illustrates an average attenuation of turbulence intensity of 

about 20 dB (a factor of 100) with a maximum attenuation of 30 dB (a factor of 1000) at 4 

KHz. All measurements of turbulence were made while the spectrum analyser was 

programmed to a reference voltage level of 10mV. 

It can be argued that the narrowness of the filter channel/passage contributed significantly 
in curtailing the intensity of turbulence. The boundary conditions changed as the flow 

went from a wide to a set of narrow channels. The change in boundary conditions caused a 

restriction in fluctuations and eddie generation. The fall in the Reynolds number meant an 
increase in the friction factor, and hence increased viscous losses. 

This turbulence attenuation technique can be thought of as reversion by dissipation . 
618195 
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From figure 4.3 it can be conjectured that the turbulent fluctuations are predominant at 

lower frequencies. Figure 4.3 depicts a cut off frequency before installation of 20 KHz 

when the attenuator was not installed. 

4.3.2 Turbulence in the time domain 

Figure 4.5 and 4.61 are snapshots of the time domain turbulence signals before and after 

the attenuator was installed respectively. Figure 4.7 is a more elaborate picture of figure 
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Fig 4.7 Time domain oscillograph (zoomed in) of turbulence signal after f ltering 

There is a similarity in figures 4.5,4.6 and 4.7 to figure 3.1-i, (repeated below for clarity) 

of a typical statistically stationary signal: endorsing the presumption that turbulence is 

statistically stationary. There has been a reduction in the peak to peak amplitude (from 

0 Units to below ±5 Units; a 75% or 4: 1 reduction) of the turbulence time domain 

signal after the turbulence attenuator. 

r(t) 

t 
Fig4.8 An example of a statistical stationary random signal r(t) 

The performance of the organ in St. Paul's Hall was evaluated before and after this device 

was installed will be given in section 4.4. 
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4.4 Relationship Between Attenuator Honeycomb Length L(, and Cutoff 
Frequency of Turbulence 

Four other filters were built to be geometrically similar to the attenuator installed in St. 

Paul's, to determine whether there was any obvious relationship between the cut off 

frequency, fo, of turbulence and the length of the honeycomb in the attenuator, L, 

The source of wind used was a B. O. B. Blower (with 12 paddle/radial blades), propelled by 

a single phase DC drive Brook Crompton Motor, running at 2800 rpm on 0.54 kW (0.75 

hp). 

Attenuators with L,, of 150 mm, 200 mm, 250 mm, and 300 mm, were built. The 

turbulence spectrum of the filtered and unfiltered wind were taken as earlier discussed and 

the cutoff frequencies and pressure drops measured. Results obtained are as in the Table I 

below. Details of their behaviour are as in Figures 4.10,4.11 and 4.12 below. 

The increase in pressure loss, Op, with increasing L. is to be expected as Ap is directly 

proportional to L, all the other parameters being equal. The turbulence bandwidth, as 

expected, grows narrower with increasing L(,,. This is because there is more time over 

which the eddies have to dissipate their internal kinetic energy as a result of the increased 

passage length: as would be expected of dissipative relaminarisation. 6484 95 

There is also a small but extant pressure drop across the attenuator which increase with LL,,, 

understandably so, knowing that Ap is proportional to L(,, (equation 4.1).. 

Table 1: Cut Off Frequencies & Pressure Drop for Different Attenuator Lengths 

L. (mm) fo (KHz) Op mmH2O 

300 10 12.5 

250 12.5 11.7 

200 14 10.5 

150 19 8.7 
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Chapter Four Effects oflwbulence Attenuation 

Fig 4.9 Changing cut-off freq. & pressure loss with filter length 

Fig. 4.10 Turbulence spectrograph before filtering 
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Fig. 4.11 Turbulence spectrograph after filtering, L(, = 250 
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Fig. 4.12 Turbulence spectrograph after filtering, L. = 300 

Figures 4.11 and 4.12 are plots of the turbulence spectrum of two of the attenuators in 

table 1. Case of L. = 250 mm (figure 4.11) and 300 mm (figure 4.12); while figure 4.10 

gives the turbulence spectrum of homogenous wind flow before the attenuator was 

installed. 

The peaks on the graph correspond to the 12th, the 18th and the 24th harmonic of the 

Blade Pass Frequency-BPF - (of 560 Hz) of the centrifugal blower used. These 

frequencies had previously been swamped by turbulence. 

The still air spectrum is the reference spectrum. It has a different level to that 

measured in figure 4.2. This is hardly surprising as these ex[eriments were conducted on 

separate days, with each day obviously having different ambient conditions. 

Note 

BPF = (Nb xRPM)160; Nb = Number of blades on the impeller of centrifugal blower (= 12) 

and RPM = Number of rotations per minute of the impeller (=2800rpm) 

The filters were found to have an average wind speed of 22.5 m/s. The wind speed and 

pressure drop were measured using a hand held HWA model TA6000 and a Mark 4 
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Chapter FOIIT. Effitrs ofrlWbulanu Attenuation 

manometer respectively, both by AIRFLOW Developments Ltd. 

4.5 Acoustic Evaluation of the Turbulence Attenuator. 

To appreciate the effects of the turbulence filter on the quality of organ pipe sound, it is 

essential to evaluate its performance both qualitatively and quantitatively as well as have 

an aural assessment of its efects on the musical character of the instrument. 

4.5.1 A Qualitative Evaluation 

Figure 4.13 portrays the schematic block diagram of the method used for this evaluation 
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Fig. 4.13: Block Diagram of System used for Qualitative Evaluation of attenuator 
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This technique involves recording individual notes on certain stops on the organ where the 

problem of flutter and ripple thought to be induced by turbulence is most prominent. These 

recordings were done on HHb PQ92 digital audio tapes with the help of a CASIO DA-7, 

digital audio tape (DAT) recorder. The recordings were taken before and after the 

turbulence attenuator was installed in the organ wind trunk. 

Samples taken included recordings of about three dozen notes on the Gedackt 8ft, the 4ft 

Rohrflöte and the 2ft Principal stops. 

On play back, the output of the recorder was channelled into the spectrum analyser to 

evaluate the characteristics of fundamental of some of the pipes. 

In figures 4.14-4.27 are spectrographs of some notes before and after the attenuator was 

installed on the St. Paul's organ. 
Fig. 4.14- The 143 on the 8ft Gedackt stop before turbulence filtering 

4.15 -The F#43 on the 8ft Gedackt stop after turbulence filtering 

4.16 -The C37 on the 8ft Gedackt stop before turbulence filtering 

4.17 -The C37 on the 8ft Gedackt stop after turbulence filtering 

4.18 - The E29 note on the 8ft Gedackt stop before turbulence filtering 

4.19 - The E29 note on the 8ft Gedackt stop after turbulence filtering 

4.20 -The A 23 note on the 2ft Pricipal stop before turbulence filtering 

4.21 - The A 
23 note on the 2ft Principal stop after turbulence filtering 

4.22 - The Cl note on the 2ft Principal stop before turbulence filtering 

4.23 -The Cl note on the 2ft Principal stop after turbulence filtering 

4.24 -TheF30 note on the Rohrflute 4ft stop before turbulence filtering 

4.25 -The F30 note on the Rohrflute 4ft stop after turbulence filtering 

4.26 -The C#30 note on the Rohrflute 4ft stop before turbulence'filtering 

4.27 -The C#30 note on the Rohrflute 4ft stop after turbulence filtering 

(The verical axis = magnitude; horizontal axis = frequency for figs. 4.144.27) 
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Fig. 4.14- The F#43 on the 8ft Gedackt stop before turbulence filtering 
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Fig. 4.15- The 43 on the 8ft Gedackt stop after turbulence filtering 

Note how the note had a spectrum with bumps and troughs as well as two peaks (at 738 Hz & 

742Hz with a diference of -2dB beween them) before turbulence attenuation. After 

attenuation, the note is much smoother, i. e. it is less bumpy and has just one peak. 

Some notes on figures 4.14 - 4.27 

In some of the ensuing figures, serious attention should not be paid to the scales of the vertical 
axis. The figures should be regarded more as an illustration to aid the qualitative evaluation of 
the note. This is because the recordings were done on different days. In addition, the 
microphone position was not the same for every note or corresponding pairs of notes recorded 
with and without the turbulence attenuator. 
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Fig. 4.16 -The C37 on the 8ft Gedackt stop before turbulence filtering 
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Fig. 4.17 -The C37 on the 8ft Gedackt stop after turbulence filtering 

Note that the peak at 610Hz has been eliminated. A rough looking note before turbulence 

attenuation is now much smoother apart from the much attenuated bumps in the 

neighbourhood of 480Hz and 560Hz. 
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4.18 - The E29 note on the 8ft Gedackt stop before turbulence filtering 

20 

So 

-so 

_20 

-60 

0 

-30 

-40 

aw i60 aso Soo Sao 

I 

I 

340 ! SO imbo 400 . a0 

4.19 - The E29 note on the 8ft Gedackt stop after turbulence filtering 

The bumps between 240Hz and 260Hz have been suppressed with turbulence 

attenuation. Bumps at 340Hz and beyond have been significantly attenuated. 
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Fig 4.20 -The A#23 note on the 2ft Principal stop before turbulence filtering 
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Fig. 4.21 -The A#23 note on the 2ft Principal stop after turbulence filtering 

The note has a much smoother spectrum with turbulence attenuation. The peak at near 

900Hz is still prominent. The peak could be a component of some resonant effect in the 

soundboard or a component of the Blade Pass Frequency of the fan. 
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Fig. 4.22 - The Cl note on the 2ft Principal stop before turbulence filtering 
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Fig. 4.23 - The C, note on the 2ft Principal stop after turbulence filtering 

The ripples on the note have been attenuated with turbulence attenuation. The peaks at 

256Hz and 300Hz have also been curtailed. 
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Fig. 4.24 -The F30 note on the Rohrfiute Oft stop before turbulence filtering 
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Fig. 4.25 -The F30 note on the Rohrflute 4ft stop after turbulence filtering 

The peaks at 673Hz and 688Hz have been attenuated with turbulence attenuation. The 

rise to and fall from the peak is gradual. There is also a decrease in the bumpiness of the 

note. 
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Fig. 4.26 -The C30 note on the Rohrflute 4ft stop before turbulence filtering 
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Fig. 4.27 -The C'#30 note on the Rohrflute 4ft stop after turbulence filtering 

The peak at -2.05kHz and 2.18kHz are still prominent, however, the spectrum of this note 

is much smoother 

Overall, the plots reveal much reduction in the bumps of the leading and trailing edge of 

the fundamentals of the notes under examination. The overall shape of the fundamental is 

smoother. In Chapter five it will be shown that the shift in frequency is a characteristic that 

comes with the change in the turbulence condition of the wind supply. 

Prior to turbulence attenuation, F#43 spectrum has two peaks, the lower frequency peak 

has disappeared after the wind was subjected to turbulence attenuation. 
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4.5.2 A Quantitative Evaluation 

While the plots of figures 3.11 clearly show some improvements in the sound quality, they 
do not however give any indication quantitatively on how much improvement have been 

achieved. 

Having examined the statistical nature of turbulence in chapter 3, a quantification of the 

changes experienced by installing the turbulence filter could be done by means of 

statistical procedures. 
Further discussion of this is delayed till chapter 5, where the effects on frequency, note 

symmetry and peakedness would be studied. 

4.5.3 An aural evaluation 

At the authors request, Jarvis48 conducted a musical evaluation of some of the perceived 

changes in the quality of music of the St. Paul's organ after the turbulence attenuator was 
installed. The improvements cited have been independently corroborated by the 

manufacturers of the instrument, Wood of Huddersfield. 

A decrease in the non-harmonic noise of the instrument as a whole was experienced. The 

pipe work of the 8 ft Gedackt stop, one of the stops on which some notes on the manual 

were recorded - has undergone "considerable improvement" as well as a steadier pitch. 
Some of the pipes still exhibit unsteadiness, however, this is more likely due to the non- 
harmonic noise generated by the pipework after the filter. 

On other stops where the influence of the turbulence was thought not to be too significant, 

there has also been some notable improvements. Amongst these stops are the 16ft Gedackt 

Pommer, 4ft Spitzflöte, 8ft Principal (manual 2), the Cromhome (manual 1), 2ft Flute 

(manual 3); the 16ft and 8ft Principal, 16ft Sub-bass and Reeds (all pedal). There has also 
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been considerable improvement to the 16ft and 8ft Trumpets (manual 2). 

The 16ft Gedackt Pommer (manual 2) has lost its "acidity ... in the treble registers". It also 
blends in much better with the pipework in that division. The 4ft Spitzflote and, the 8ft 

Principal (manual 2) speak much more clearly, as well as the Reeds, which have a "more 

penetrating tone. " 

The pedal stops have generally undergone an improvement in tonal quality. They now 

exhibit a greater depth and steadiness of tone. 

The 8ft flute and the 2ft Blockflöte (manual 3) are less shrill: furthermore the pipework of 

these stops now have a much better blend. 

In all, Jarvis48 adds that there is a "pronounced degree of articulation from the instrument 

[along with a greater possibility] to control the speech of the pipes to a much greater 

degree of accuracy". 

These improvements clearly augment the expressiveness of the St. Paul's Organ. 

4.6 Use of Centrifugal Fan at off Optimum Design Condition as means of 
Minimizing Turbulence 

A turbulence filter was also installed on the trunking system of an organ built by Harrison 

& Harrison (Durham -UK) destined for USA, while it was being erected at their 

workshop. A Centrifugal blower (1425 rpm, 1.125 kW -1.5hp- 12 paddle/radial blades) 

was used for supplying wind to the organ. It turned out that the filter did not produce any 

perceivable improvements. It was speculated that the machine maybe unexpectedly 

producing near laminar wind by feeling the wind flow emanating from it. Tests had to be 

conducted to confirm this. 

The blower was tested in Huddersfield. 
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The flow from the blower was varied between -0% and 100% output by blocking the 

outlet of a duct with orifice plates. The diameters of the orifices were not more than the 

duct diameter. The power consumption of the motor driving the blower was measured as 

the flow was varied. From these, the power (as well as head and efficiency) versus flow 

rate curves were plotted to determine the optimum operating point of the centrifugal 

blower. The curves are as in figure 4.28 and 4.29 below. 

The blower was delivering wind into the organ destined for USA, to a pressure of 6.4mbar 

(ie 2.5inches H20). From the curves of figure 4.28 and 4.29, this corresponds to an 

efficiency of 26% and a power consumption of 914.5 Watts 
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Fig 4.28 Head, Power & Efficiency vs flow rate for Harrison Centrifugal Blower(before 
turbulence filter installed 
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Fig 4.29 Head, Power & Efficiency vs flow rate for Harrison Centrifugal Blower(after turbulence 
filter installed) 

[6.4mbar of pressure corresponds to 26.1% efficiency and 906.3Watts of power] 

(Note: The Power and Efficiency values were multiplied by 10 for 
clarity - when reading these values - divide by 10) 

These parameters are below the optimum operating point (>33% efficiency) of the blower. 

It is possible that the relative absence of turbulence in the centrifugal blower could be 

because it is operating below optimum efficiency. 
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CHAPTER 5 

AN EVALUATION OF THE EFFECTS OF TURBULENCE 
ATTENUATION. 

5.1 Introduction 

One of the questions this research aims to answer is whether organ pipe sound changes 

with varying degrees of turbulence. Furthermore, whether these changes are aurally 

perceivable. To answer these questions some qualitative analysis was conducted with 

sound from the St. Pauls Organ (reported in section 5.4) and later from a laboratory test 

rig (reported in section 5.5). Remarks were solicited from individuals and members of an 

audience after they had listened to the pipes blown with filtered and unfiltered wind. It was 

noted that the pipes on the test rig were "noticeably clearer" with turbulence attenuation as 

will be discussed in section 5.3. 

An experiment was conducted on a test rig that had 4 Principal pipes of various 

frequencies. Wind with five different mixtures of turbulent to laminar flow was pumped 

into the windchest (soundboard) holding the pipes. Over three dozen students were used as 

guinea pigs in a blind test to evaluate the sound produced. This experiment was conducted 

to establish whether varying the levels of turbulence of wind into the pipe is perceivable 

and whether there is a threshold of turbulence in the wind that is acceptable. In section 

5.3.2, more details on this experiment and results will be given 

Aural perception of changes in sound is largely subjective because the frequency response 

of the ear varies from person to person. It is essential therefore to seek to quantify the 

changes in the note as the flow condition changes. To achieve this, statistical principles 
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were used. The statistical concept used are derived from the concept of moments. The 3rd 

and 4th moments about a reference point were used to determine changes in skewness and 

peakedness/kurtosis of the note. The mathematical procedure used is discussed in 

appendix 7 while the results of the qualitative evaluation are outlined in section 5.5 for 

data from St. Paul's and the test rig. 

Each pipe produces sound consisting of its fundamental and harmonics. When a pipe is 

said to have a frequency, fp; fp is the fundamental - therefore it is the fundamental that 

defines the frequency of a pipe not its harmonics, hence the quantitative evaluations 

carried out in the ensuing sections were with the fundamental only. 

It was noted that changing the levels of the turbulence causes a frequency shift in the note. 
These observations are also outlined in this chapter (section 5.5.2 and 5.5.1 for data from 

St Paul's and the test rig respectively) 

In the organ building trade, there is a strong perception that organs that use human 

operated blowers provide a superior wind supply relative to fans and other wind 

machinery in use. A quatitative analysis was conducted on notes recorded from an organ 

in a local church that has a dual blowing system, a centrifugal fan and a manually operated 
bellows. Some notes were recorded when the organ was fed wind from either blowing 

systems for a comparative analysis. The details of this analysis is also given in this chapter 
in section 5.7. 

Before embarking on a discussion of the aural evaluation of data from St. Paul's and the 

lab test rig, an outline of the test rig used will be given. 
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5.2 Evaluation of data from test rig 

A laboratory test rig was designed and built to evaluate the effects of different levels of 

turbulence on the quality of sound. 

The aims of the experiments were: 

-i- 

-ii- 

-111- 

To numerically evaluate the effects of changing the level of turbulence, 

To ascertain whether the effects of turbulence are aurally perceivable; 
To find out whether there is a threshold of turbulence at which the effects of 

turbulence on the quality of organ pipe sound can be tolerated. 

5.2.1 Test rig design. 

Figure 5.1 (overleaf) is an illustration of the test rig used for this exercise 
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TOP VIEW 
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5.2.1.1 The test rig. i 

Wind from a fan(not shown) is blown in to the system via a resevoir(not shown) from 

where it flows downstream into the test rig. Some of the wind is leaked through valve V3, 

to provide the design pressure(6.4 mbar - 25 inches H20) of the pipes on the windchest. 

The wind into the system flows through anus Al and A2 downstream into the windchest. 

Wind flowing down arm Al flows through the turbulence attenuator, while that through 

A2 does not. The wind through Al and A2 meet at a confluence before flowing down 

stream into the windchest. 

The attenuator used in the test rig was designed such that it was geometrically similar to 

that built for St. Paul's. The dimensions of the duct to which the filter was connected was 

80mm by 80mm. The duct was gradually expanded to 200mm by 200mm to accommodate 

the filter. The reader should recall that the filter is made up of narrower channels, whose 

total cross sectional area equals the area of the duct. However, because of the finite 

thickness of the walls of the narrow channels, the total area they take up is more than the 

area of the duct. 

orifice plates VI (of arm A 1) and V2 (of arm A2) are used to control the mixture of wind 

flowing into the windchest/soundboard. When VI is fully open and V2 closed, the 

turbulence of the wind flowing into the windchest is attenuated. When V2 is open and VI 

is closed, the wind flowing into the windchest is turbulent. When V1 and V2 are both half 

open, the wind mixture is 50% turbulent attenuated and 50% turbulent and so on for VI 

25% open and V2 75% open; and V1 75% open and V2 25% open. V1 and V2 were 

operated such that the sum of turbulent attenuated and turbulent wind flowing into the 

windchest was (ideally) always 100% as per table 2. 
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The pipes, Pipe 1 to Pipe 4 sit on the windchest. Four switches open or close the inlet into 

the toe hole to each pipe. When switch one is open, air flows into the toe hole of Pipe 1 to 

produce sound. Pipes 2,3 and 4 can be similarly switched on. 

The switches were energized from a Farrell E30/2 power supply. The switches controlled 

a the solenoid magnet that closed and opened the pallet at the foot of the pipe. An opened 

pallet allowed wind to flow into the pipe and vice versa for the closed pallet. 

Table 2: Flow Conditions of Test Rig 

Percentage turbulent flow Percentage laminar flow 

100 0 

75 25 

50 50 

25 75 

0 100 

The bifurcating Y' junction before Vl and V2 and converging Y junction after, were 

designed such that their angle of separation was small enough to minimise boundary layer 

separation. 

On the windchest were four flue pipes, with the following frequencies: Pipe 1,260Hz; 

Pipe 2; 520Hz; Pipe 3,1078 Hz and Pipe 4 2084 Hz 

The windchest was built to the following internal dimensions: length 300mm, width 

150mm, and height 150mm. 

Each pipe was played under the five different flow conditions of table 2, above, and the 

sound recorded on a DAT recorder. 
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The wind into the system was provided by a DISCUS centrifugal blower, propelled by a 

Brook Crompton 250W motor, running at 2850 rpm; with an output pressure of 

-560Pa(2.25 inches H2O) 

53 An aural assessment of the tones from test rig 

5.3.1. An assessment via individual remarks 

About a dozen students taking organ studies as their main option within the Music 

Department of the University. were invited to listen to the four pipes on the windchest of 

the test rig under two flow conditions: 100% turbulence and 100% lamina flow. They were 

invited to write a brief report on what they heard for the different blowing conditions. 

Some of the remarks they made are given below. 

-1- "There was a marked difference in the turbulence free pipe sounds in that it was a 

generally cleaner, more pure sound. However this was only reall y noticeable in the lower 

registers... " 

-2- "A slight difference in sound can be detected by ear in lower frequency pipes. " 

-3- "With the high-pitched pipes it was not possible to hear an audible difference, though a 

slight difference was heard when the largest pipe was used. The filtered wind gave the pipe 

a smoother speech quality. " 

-4 "It was easy to detect the improvement of sound with filtered wind compared with 

turbulent wind, with the lower frequencies, but no change was detectable with the higher 

frequencies. " 



(YiapterS: An Evaluation of tfu Elects of? ur6ulcnu Attenuation 

-5- "... the sound heard with the presence of the air filter was more pure, it was closer to the 

center of the particular pitch ... The difference in sound was noticeably clearer ... " 

=6- "... without a filter, you are able to hear an unevenness of tone as the note wavers. This 

is more apparent in the lower registers.... with a filter the notes are more stable. " 

-7- ".. it was the two higher pitched pipes which sounded better on filtered air ... the lower 

pitched pipes produced a barely obvious difference. " 

-8- ".. the experiment proved to me that there is a difference to sound quality with the use 

of filtered wind, but I think the difference is appreciated at lower pitches. " 

-9- ".. [the] lower sounding pipes were clearer with more `bite' to the sound. Higher 

sounding [frequency] notes were not heard so much... " 

-10- "Even though the difference to me was slight on one note, I can imagine that on a 

large scale (full organ) the difference is quite considerable. " 

These remarks suggest that the changes in tone due to changing wind flow conditions are 

perceivable. The changes seem to be more perceivable for the lower registers (pitches). 
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5.3.2. An assessment via questionnaire 

For each of the different flow conditions, each pipe was switched on to an audience of 

music students from the Department of Music of the University. The students were asked 

to give a subjective appreciation of the tone produced by the pipe. To assist the students in 

their response, each of them was given a questionnaire - reproduced in appendix 6. About 

4o students took part in the exercise. Their responses are tabulated in table 3 overleaf, with 

corresponding bar charts in figure 5.2.. 

A clear pattern emerged from table 6 overleaf. The tone changes with changing levels of 

turbulence is aurally perceivable. However, there is no clear distinction as to which 

turbulence condition is the most preferred - which comes as no surprise as each person's 

ear has his/her own particular frequency response. As such, the judgement of each `guinea 

pig' remains wholly subjective. 

Consider row 6, containing results for 50% laminar flow. For pipe 1, none in the audience 

thought the note was poor. About 3% felt the note was poor: a similar percentage 

perceived the note as brilliant for this flow mixture. 51% perceived the note to be good, 

while 43% thought the note was better. 

For Pipe 2, the story is different: 54% judged the note was poor, 3% thought the note was 

poor, while 35% judged it to be good. Only 8% judged the note to be better, while 35% 

thought the note was good. 

Pipe 3 attracted responses dissimilar to those of pipes 1 and 2. About 38% of the audience 
felt the note was better with this wind mixture. 19% judged the note to be poor; a similar 

percentage perceived the note to be good. Under 25% of the audience judged that the note 
had become horrible. 
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For pipe four: over 5% of the audience felt the note had become brilliant, while 11% 

judged it to be horrible. 32% thought the note was poor and 14% thought it was better, 

while 38% judged the note to be good. 

Additional analysis can be undertaken with the charts of figure 5.2. Consider the 

percentage of respondents who expressed an opinion that the sound was "Good" - 4- or 

`Brilliant" -5-. For pipe 1, the largest percentage of Good & Brilliant reponses combined 

was for the case of 75% turbulence attenuated (or 25% turbulent) flow, closely followed 

by 50% laminar (50% turbulent) flow. In the case of pipe 2,75% & 0% turbulent 

attenuated flow provided the largest percentage of Good & Brilliant reponses combined. 

For pipe 3, the largest percentage of Good & Brilliant reponses combined was the 

situation of no turbulence attenuation, closely followed by 50% turbulence attenuated 

flow. For pipe 4, the largest percentage of Good & Brilliant reponses combined was the 

situation of no turbulence attenuation followed by 75% turbulence attenauted flow. 

We see that for each pipe, we get a different response from the audience for the same flow 

condition. The different percentages that indicate the appreciation of the audience of a 

pipe tone under different flow conditions, confirm that changing the turbulence level 

produces perceivable changes in the tonal quality. 

The figures also indicate that it is probably not possible to determine an acceptable 

threshold of turbulence in organ wind supply, because musical appreciation is primarily 

subjective. However analysis from the chats using "Good" and "Brilliant" responses seem 

to indicate that turbulent attenuated wind is the preferred or next best option. 

Having carried out a qualitative analysis of the effects of turbulence, a quantitative 

analysis was also undertaken. The method of analysis applied the principles of statistical 

moments. A derivation of the mathematical technique is outlined in appendix 7. In the 
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ensuing sections, the results from the calculations of data from St Paul's and the test rig 

are discussed. 

5.4 An aural evaluation of St. Paul's Data 

At the authors request, Jarvis, 48 conducted a musical evaluation of some of the perceived 

changes in the quality of music of the St. Paul's organ after the turbulence attenuator was 

installed. The improvements cited have been independently corroborated by the 

manufacturers of the instrument, Wood of Huddersfield. 

A decrease in the non-harmonic noise of the instrument as a whole was experienced. The 

pipe work of the 8 ft Gedackt stop, one of the stops on which some notes on the manual 

were recorded - has undergone "considerable improvement" as well as a steadier pitch. 

Some of the pipes still exhibit unsteadiness, however, this is more likely due to the non- 

harmonic noise generated by the pipework after the filter. 

On other stops where the influence of the turbulence was thought not to be too significant, 

there has also been some notable improvements. Amongst these stops are the 16ft Gedackt 

Pommer, 4ft Spitzflöte, 8ft Principal (manual 2), the Cromhorne (manual 1), 2ft Flute 

(manual 3); the 16ft and 8ft Principal, 16ft Sub-bass and Reeds (all pedal). There has also 

been considerable improvement to the 16ft and 8ft Trumpets (manual 2). 

The 16ft Gedackt Pommer (manual 2) has lost its "acidity ... in the treble registers". It also 

blends in much better with the pipework in that division. The 4ft Spitzflote and the 8ft 

principal (manual 2) speak much more clearly, as well as the Reeds, which have a "more 

penetrating tone. " 

The pedal stops have generally undergone an improvement in tonal quality. They now 

exhibit a greater depth and steadiness of tone. 
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The 8ft flute and the 2ft Blockflöte (manual 3) are less shrill: furthermore the pipework of 

these stops now have a much better blend. 

It was also observed that there is a "pronounced increase in the degree of articulation from 

the instrument [along with a greater possibility] to control the speech of the pipes to a 

much. greater degree of accuracy". These improvements clearly augment the 

expressiveness of the St. Paul's Organ. 

5.5 Quantitative Evaluation of Pipe Data 

Data collected from both the test rig and St Paul's were quantified using the concept of 

statistical moments as outlined in appendix 7. The 3rd momernts which measured the 

change in skewness of the data and the 4th moment which gave a measure of the 

"peakedness" of the note were calculated. The results outlined in the rest of section 5.5 are 

from the test rig data and St. Paul's respectively. 
t- ý 

5.5.1- Evaluation of moment of data from test rig 

The recordings of the notes taken under different flow conditions were played back into 

the B&K spectrum analyser and their fundamentals sampled (as earlier described in 

appendix 7) for analysis. 

The 3rd and 4th moments were computed using the statistical software package 

MINITAB. The flow chart of the programme used is as in appendix 8a. The moments 

calculated are given in the next two. 

5.5.1.1 Third moments of test rig data 

Table 4 below contains the 3rd moments of the different pipes under different flow 
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conditions. 

Table 4: Data Table of Skewness with Increasing Laminar Flowa 

Flow Condition(lamina) % Pipe 1 (Pl) Pipe 2 (P2) Pipe 3 (P3) Pipe 4 (P4) 

0 -0.4498 -0.4317 -0.2976 -0.23223 
25 -0.4845 -0.4186 -0.3161 -0.32786 

50 -0.5161 -0.4362 -0.2684 -0.34267 

75 -0.4888 -0.4618 -0.343 -0.3591 

100 -0.5045 -0.4388 -0.3168 -0.3123 
a. Example of sampled data from test rig is presented in appendix 8 together with the dimensions of 
pipes 1-4 

It is evident that all the third moments are negative, further indicating that the shape of the 

organ pipe tone generally has negative asymmetry (skewness). 

The data of table 4 was plotted. The curves in figure 5.3 depicts the behaviour of the third 

moment with increasing laminar flow 

PN = Pipe N 

Fig 5.3 - Plots of skewness with increasing laminar flow 

There is a pattern in the curves. The curves exhibit a non-monotonical increase in 

asymmetry of the shape of the pipe fundamental with increasing laminar flow. 
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5.5.1.2 Fourth moments of test rig data 

Table 5 contains the fourth moments of the different pipes under different flow conditions. 

Table 5: Fourth Moments for Different Flow Conditions 

Flow Condition(lamina) % Pipe One Pipe Two Pipe Three Pipe Four 

0 0.38276 0.36603 0.2382 0.16648 

25 0.42306 0.34915 0.25558 0.25371 

50 0.45863 0.36812 0.2069 0.26752 

75 0.42487 0.39861 0.28373 0.28734 

100 0.43878 0.41275 0.2557 0.23301 

The data in table 5 was plotted to yield the family of curves in figure 5.4 below. 

PN = Pipe N 

Figure 5.4: Plots of the fourth moments vs flow for test rig data. 

The curves bear some pattern. There is a non-monotonical increase in peakedness of the 

pipe fundamental with increasing laminar (decreasing turbulence) flow. 
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5.5.2 Evaluation of moments of data from St. Paul's 

The statistical software package, MINITAB6170 was used to evaluate the moments. 

5.5.2.1 Moments of St Paul's Data 

The 3rd and 4th moments were computed using the statistical software package 

MINITAB. The flow chart of the programme used is as in appendix 8a. The moments 

calculated are given in tables 6 (3rd moments) 7 (4th moments) overleaf. 

Table 6: TDrbulence Effects on Note Symmetry, (St. Paul's) 

Stop Notes 
3rd Moment before 

filtering 

3rd Moment after 

filtering 

Gedackt 8ft E29 -0.3321 -0.4022 
Gedackt 8ft F#43 -0.3262 -0.3212 

Gedackt 8ft A47 -0.393 -0.326 
Gedackt 8ft G56 -0.4107 -0.2997 

Gedackt 8ft C61 -0.2778 -0.2925 
Principal 2ft A#23 -0.3396 -0.4395 

Principal 2ft C1 -0.4527 -0.5351 

Principal 2ft F18 -0.3661 -0.3806 
Rohrflute 4ft B12 -0.3813 -0.4211 
Rohrflute 4ft C#50 -0.2017 -0.3547 

L! 
fhLflute 4ft F30 -0.3724 -0.4269 

It is clear that the 3rd moments of all the notes are negative, suggesting that the natural 

state of the note is one of negative skewness or negative asymmetry. Of the eleven notes 

analysed, eight have become more negatively asymmetrical (in bold) after turbulence 
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attenuation: suggesting that the lower the amount of turbulence in the flow, the more 

negative is the asymmetry within the note. 

Turbulence tends to even things out. The tendency for a tone to become more symmetrical 

when generated by turbulent wind could be due to the "evening out" process. 

For instance, if milk were poured into the centre of a still cup of tea, the tea principally 

stays dark, with a white central area: stirring the tea, i. e., introducing turbulence in the tea, 

spreads the milk evenly within the tea. 

It is likely that turbulence in wind supplied to an organ, also evens out the tone - aspiring 

to give it symmetry about the centre frequency. 

Table 7 below contains the calculations of the fourth moment. 

Table 7: Turbulence Effects on Physical Sharpness (St. Paul's) 

Stop Notes 
4th Moment before 

filtering 

4th Moment after 

filtering 

Gedackt 8ft E29 0.258 0.3243 

Gedackt 8ft F#43 0.2596 0.2539 

Gedackt 8ft A#47 0.3166 0.2499 

Gedackt 8ft G56 0.3366 0.2319 

Gedackt 8ft C61 0.2166 0.2271 

Principal2ft A#23 0.2549 0.359 

Principal 2ft C1 0.3762 0.468 

Principal 2ft F18 0.2891 0.3036 

Rohrflute 4ft B 12 0.3075 0.3529 

Rohrflute 4ft C#50 0.1464 0.3032 

Rohrflute 4ft F30 0.3044 0.3553 

It is realised here that the 4th moments generally increase after turbulence attenuation - 

suggesting an increase in the peakedness of the note. Eight of the eleven notes studied 
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have peaked more with the turbulence attenuator in place. This can be associated with the 

improved brightness48 and "more bite" [See remarks section 5.3.1 ] encountered. 

5.6 Effects of changing flow conditions on frequency 

It was also noted that changing the levels of turbulence resulted in a frequency shift in the 

note. These effects were observed both in data from St. Paul's and the test rig. 

5.6.1 Frequency variations and Turbulence in St Paul's Organ 

The frequency of the fundamentals of some of the pipe tones were determined using the 

B&K spectrum analyser. It was noticed that there were changes in the value of the 

frequency before and after the turbulence attenuation. These changes are illustrated in 

table 8 below. 

Table 8: Frequency Shift With Change in Turbulence Condition 

Stop Note 
Frequency 

before Fb(Hz) 

Frequency 

after Fa (Hz) 

Frequency change 

Fa-Fb (Hz) -(in %) 

Rohrflute 4ft B 12 246.625 246.125 -0.5 (0.2%) 

Principal 2ft C1 260.75 261 +0.25 (0.1%) 

Gedackt 8ft E29 329.75 328.5 -1.25 (0.4%) 

Rohrflute 4ft F30 698.5 696.625 -1.875 0(. 3%) 

Gedackt 8ft F#43 740.625 738.25 -2.375 (0.32 %) 

Principal 2ft A#23 929 929.5 +0.5 (0.05%) 

Gedackt 8ft A#47 932.875 929.75 -3.125 (0.34%) 

Rohrflute 4ft D40 1244.375 1240.375 -4 (0.32%) 

Principal 2ft F18 1388 1390.5 +2.5 (0.2%) 

Gedackt 8ft G56 1571.375 1566 -5.125 (0.33%) 

Gedackt 8ft C61 2096.625 2089.375 -7.25 (0.35%) 

Rohrflute Oft C#50 2219.25 2211.875 -7.375 (0.33%) 
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, 
Table 8 shows a general decrease in the magnitude of the centre frequency: 75% of the 

notes have experienced a decrease. In musical terms, this is equivalent to a flattening of 

the note. The flatness observed in table 8, coincides with perceptions from aural 

evaluation 48. 

It is observed that only the Principals have gone sharper while the flutes have become 

flatter. The principals, unlike the other pipes, were nicked. Their behaviour, though out of 

pattern with those of the other pipes, is a characteristic of nicked pipes as shall be 

discussed later in section 5.6.2. 

It will seem that the frequency shifts increase with increasing pipe frequency, however as 

a percentage, the shifts are broadly the same, sw 0.3% shifts. The percentage change may 

look small, however, the changes are perceivable. Experiments conducted by Gueritey39, 

has shown that a pressure drop of 10% in an organ system caused a frequency shift in the 

"D-major chord" of the St. Jean de Losne organ, in France, from 1064Hz to 1058Hz. A 

shift of 6Hz or 0.56%, which Gueritey described as "fully perceptible to the ear! "39 

5.6.2 Frequency variations and Turbulence in Test Rig 

Measurements of the centre frequency of the note, taken on the spectrum analyser showed 

some variation. The centre frequency was found to shift with changing flow conditions. 

Table 9 below contains the frequency shifts measured. 
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Table 9: Measured Frequency Shifts 

Flow 
Pipe 1 Pipe 2 Pipe 3 Pipe 4 

diti C 
Pipe Frequencies at Full Turbulence Flow 

on on 260.5 Hz 520.312 Hz 1078.812 Hz 2084.5 Hz 

(lamina) % 
Freq Shift (Hz) Freq Shift (Hz) Freq Shift (Hz) Freq Shift (Hz) 

0 0 0 0 0 

25 0.062 -0.062 0.063 3.5 

50 0.125 0 -0.125 4.5 

75 0.125 0 0.25 1 

100 0.187 0.125 0.5 6 

From table 9, it is observed that there is an increase in frequency with increasing laminar 

flow condition. This frequency shift was normalised to enable the appreciation of the 

changes taking place. 

The normalised value of the frequency shift, Of, was obtained using equation 5.12 below: 

o. f= 
FpF100T 

............................................. 5.12 F100T 

where FP is the pipe frequency for a given flow condition, and F, 00T is the pipe frequency, 

when the wind is unfiltered - 100% turbulence flow. 

Ordinarily, a blower would have been used to supply air into the organ without a 

turbulence attenuator, hence it was appropriate to use the pipe frequency generated by 

unfiltered wind as a frame of reference. 
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Using equation 5.12, the data of table 10 below was computed from table 9. Table 10 

therefore contains the normalised frequency shift experienced under different flow 

conditions. 

Table 10: Normalised Frequency Shifts with Changing Flow Conditions 

Pipe 1 Pipe 2 Pipe 3 Pipe 4 

Flow Condition(lamina) % Of (x 10-4) 

0 0 0 0 0 

25 2.38 -1.192 0.584 16.79 

50 4.798 0 -1.16 21.59 

75 4.798 0 2.317 4.797 

100 7.179 2.4 4.635 28.78 

The normalised frequency shifts were plotted as in figure 5.5. The horizontal axis 

represents the change in laminar flow condition. The vertical axis represents the 

normalised value of the frequency change. 

PN=PipeN 

P4 

Fig. SS: Ef vs flow condition 
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The curves confirm that the pipe note has expressed a positive (upward) shift in frequency, 

with increasing laminar flow. The pipe note has grown sharper with increasing laminar 

(decreasing turbulent) flow. 

It is also observed that the higher the pipe frequency, the greater the frequency shift. 

This is unlike the observation experienced with the data from St. Paul's. 

All the pipes on the test rig had nicked languids (cf. figure 5.6). Nicked pipes behave 

differently from non-nicked pipes. Fletcher and Rossing, 35 reported that nicking 

introduces "homogeneous turbulence" in the jet emanating from the windway. This 

turbulence, in the pipe mouth area, may be contributing to the sharpening of the note. If 

less turbulent wind flattens the note, it would be reasonable to assume that more turbulent 

wind would sharpen it. 

Nicks on a pipe languid 

Fig. 5.6 Pipe languid with nicking 

5.7 Comparison between the Human Blower and Centrifugal Blower. 

There is a strong perception amongst organists and organ builders that organs that use 

human operated blowers provide a superior wind supply relative to fans and other wind 

machinery in use. To establish whether this is the case, it is useful to do a comparative 
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analysis on some notes played under both blowing systems. 

Amongst the organs visited as part of this project was the organ of St. Thomas' Church, 

Thurstonland, West Yorkshire, UK. The organ here has two types of blowers, a hand 

operated blower and a centrifugal fan. During a trip to the Church, two notes of the organ; 

C25 and G32 were played on different stops and recorded. Recordings were made under 

both blowing situations: centrifugal blowing and hand blowing. The 3rd and 4th moments 

of five of the notes were evaluated for both types of blowing processes; the following 

results were obtained. 

5.7.1 Third moments 

Table 11: Third Moments Human vs Centrifugal Blowing 

C25 

Stops Centrifugal Blowing Hand Blowing 

3rd Moment 3rd Moment 

Clarabella -0.373029 -0.455812 

Clear flute -0.353894 -0.447778 

Bourdon -0.469239 -0.473469 

Flageolet -0.386599 -0.386631 

Oboe -0.418355 -0.473616 

G32 

Clarabella -0.360975 -0.373340 

Clear Flute -0.393398 -0.399334 

Bourdon -0.422367 -0.291883 

Flageolet -0.343035 -0.312154 

Oboe -0.460199 -0.559633 
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It was also observed that the 3rd moments here are all negative. 

Most of the third moments have become more negative with hand blowing. It has been 

reported that hand blowing generally produced less turbulent wind. 102 The increase in 

negative asymmetry, ties in with previous results for air flow that underwent turbulence 

attenuation. 

5.7.2 Fourth moments 

Table 12: 4th Moments - Human vs Centrifugal Blowing 

C25 

Centrifugal Blowing Hand Blowing 

Stops 4th Moment 4th Moment 

Clarabella 0.297336 0.391654 

Clear Flute 0.287781 0.381484 

Bourdon 0.401227 0.407070 

Flageolet 0.319795 0.320191 

Oboe 0.350667 0.384380 

G32 

Clarabella 0.287940 0.299676 

Clear Flute 0.322797 0.329257 

Bourdon 0.356184 0.224966 

Flageolet 0.287144 0.248795 

Oboe 0.395498 0.488303 

The fourth moments have largely increased from centrifugal blowing to hand blowing. 

This increment ties in with previous results for air flow that underwent turbulence 

attenuation. 
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5.73 Frequency variations 

The center frequency of the pipes analysed manifest a shift in frequency. The ensuing 

table depicts the frequency changes measured. 

Table 13: Frequency Shifts from Human to Centrifugal Blowing 

C25 

Frequency -Hz 

C25 

Frequency -Hz 

G32 

Frequency -Hz 

G32 

Frequency -Hz 
STOPS 

Centrifugal 

Blower 
Hand Blower 

Centrifugal 

Blower 
Hand Blower 

Clarabella 260.062 260.187 390.625 390.937 

Clear Flute 130.062 130.187 781.250 781.875 

Bourdon 520.812 520.812 194.875 194.937 

Flageolet 1040.937 1041.5 1562.75 1564.625 

Oboe 779.5 780.25 777.25 777.437 

The fundamentals have shifted to the right (increased) with hand blowing - i. e. the pipe 

tones have become slightly sharper. Attention should be drawn to the fact that all the pipes 

on this organ [Thurstonland Organ] are nicked. 

The results here mentioned follow a similar trend to the nicked pipes of the test rig. 

The differences in tonal quality for pipes that have wind fed directly from a fan and that 

supplied via a turbulence attenuator are similar to the differences between fan wind and 

wind supplied by hand blowing via feeders. The turbulence filter will therefore enable a 

quality of wind to be fed to an organ similar to that produced by hand blown feeders, thus 

enabling organ builders to recreate the highly admired qualities of instruments pre-1900 in 

modern instruments. 
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CHAPTER 6 

ON AN ELECTRICAL ANALOGOUS CIRCUIT OF THE 
ORGAN PIPE FOR TURBULENCE STUDIES 

6.1 Electrical Analogues of Mechanical Elements. 

Electrical analogues circuits have been used to study the production of sound in several 

tubular musical wind instruments by many researchers including: Yoshikawa & 

Saneyoshi98, Coltman'1-15 , 
Nolle and Finch69, Caddy and Pollard9, Finch and Nolle27 and 

Elder22. These instruments are made of several constituent parts. Morse63 argues that when 

the constituent parts of these musical instruments are longer than the wavelength of the 

sound they produce, the instrument can be modelled in electrical terms as a transmission 

line. When the elements of the instrument are shorter relative to the sound wavelength it 

produces, the instrument can be modeled as an electrical circuit with lumped elements such 

as Resistance, Capacitance and Inductance. An explainanation as to how the lumped circuit 

components are determined will be given later. 

In the model developed in this research the air supply portion and part of the generator have 

been reduced to a driving potential (or electromotive force) into the equivalent circuit. The 

resonator or resonance portion of the pipe is conceptually split into several interconnected 

entities: the mouth (M) ans input segment (I), oscillator (0) and oscillator-air interface(A). 
M 

IO A 

Sound Generator 
Portion 

Resonance Column/Portion 

Figure 6.0: Basic Configuration of Pipe 
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6.1.1 Impedance 

The acoustic impedance of sound vibrations is analogous to electrical impedance of an AC 

circuit since sound vibrations alternate like AC currents 5087 

The acoustic impedance is defined as the excess pressure divided by volume rate of flow in 

the direction of propagation. 32 50 63 87 pressure is analogous to the electromotive force 

(emf) and the volume rate of flow is analogous to the electrical current. , 

The units of measurement of volume flow rate and pressure are customarily taken to be in 

cubic centimeters per second (cc/s) and in grams per centimeter per second squared (gcnf 

"1s 
2) respectively. 

The, equivalent electrical impedance is also given by the specific acoustic impedance 

divided by the cross sectional area of the pipe. The impedance is a complex quantity; the 

real part is the resistive component, while the imaginary part is the reactive component. 

6.1.2 Capacitance 

The capacitance is that characteristic which resists any change in applied pressure on an 

acoustic system. 

In electrical terms, 

Capacitance, C= Qe/Ve; 6.1 

where Qe = charge and V. = emf or voltage(potential) difference across the capacitance 

plates. 

The electrical charge, Qe is given by the equation. 

-87- 



()4ter 6: On an Fluaical Analogous Cu=i. t of the Organ lipe for7ur6ulcnu Stuä'us 

Qe = Jldt ...................................................... 
6.2 

where I is the electrical current. 

In acoustic terms, the charge will be the volume displacement, in a tank say. This follows 

from the knowledge that the volumetric flow rate is equivalent to the electrical current. The 

volume displacement is usually due to a change in pressure (or voltage difference). 

A capacitance is usually represented by a "buffer volume", 87 which introduces a stiffness 

in a manner similar to a spring. 

If the pressure changes from P to P+ Ap, and the volume displacement from V to V+ AV, 

then the acoustic capacitance, C will be given by; 

C= AV/Op. 6.3 

The bulk modulus of a given medium, K, is given by the expression: 

K= stress/strain = pressure change/fractional change in volume 
,"ýz, 

i. e. K= Ap/(AV/V) 

The velocity of sound, c, in a fluid is given by the equation; 

c= (K/P)03 

6.4 
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where p= density of the fluid. 

C2 = Op/(, &V/V) (1/p) 

= (V/C) 1/p 

C= V/pct 6.5 

If V is in cc, p in g/cc and c in cm/s; then the capacitance Ca will be in cm4s2g-1. 

6.1.3 Inductance 

The electrical inductance(inertance) is equivalent to the mechanical inertance 87 The 

inertance resists any change in volume current in a similar manner to the way that an 
inductance opposes electrical current flow. 

Inertance effects are usually exhibited at constrictions 63 At constrictions the air within is 
mass controlled. 

If the total mass, m, of air in a constriction, were subjected to an excess pressure, Op, then 

the fluid in the constriction will acquire some Kinetic Energy due to the velocity, X, of the 

fluid. The KE can be expressed as: 

KE=OSmX2 

:. KE = 0. m () 
2 
.......................................... 6.6 
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The volume displaced due to the excess pressure = SpX = AV 

KE = 
OS2 ( XSp) 2 

.................................... 6.7a 
P 

2 
KE = OSS2 (d 0ý ....................................... 

6.7b 
p 

KE = 0.5M (d V) 2 
....................................... 6.7c 

Where the inertance, 87 M, is equal to m/(Sp)2. The inertance is analogous to the 

6387 inductance 

The mass can be determined from the density, p, using the expression; 

M =pSpL 

substituting the above equation into the expression for inertance, we have an equivalent 

inductance, L, given below. 

L= pSpLp/Sp 

L= pLp/Sp 

LP = pipe length 

Sp = pipe cross sectional area 

6.8 

6.3 Development of Analogous Electric Circuit of Organ Pipes 

The basic configuration of organ pipes is as in figure 6.1 belowl. The pipe foot and languid 

can be represented as sound generator; 3 the area around the mouth as the feedback sector98 

1. A detailed schematic of a crgan pipe given earlier in chapter one is also repeated in appendix 10. 
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and the rest of the pipe as the resonantor column. 

S 

Sound Generator' 
Portion 

Resonance Column/Portion 

Fig 6.1: Basic Configuration of Organ Pipe 

As a musical wind instrument, the organ pipe can be illustrated conceptually in the block 

diagram of figure 6.2; after Fletcher, 32 33 Mahu, 52 and Maclntyre 58 

Energy 
(Wi d Supply 
constant pressor 

GENERATOR . 

FEEDBACK 

DRIVE/EXCITATIO 

COUPLING 

CO- UPLING 

RESONATOR F-ºý 

Acoustic output 

Fig 6.2: Block Diagram of Musical Wind Instrument 

McIntyre58 states that the generator is a non-linear element that is both coupled to and feeds 

into the resonator. The resonator is made up of passive linear elements. Their idealized 

model was developed as part of an investigation of the time domain description of 

oscillation of musical instruments. 
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Fletcher32 also states that the resonator portion can be treated in principle as linear in 

behaviour, whereas the generator is non-linear. The non-linearity could be due to the 

coupling with the resonantor . 

In analyzing the generator; which in fluid dynamic terms is the jet excitation mechanism of 

the sound in the pipe, Fletcher32 concedes their theoretical and experimental analysis are 

limited to the laminar flow regime. In other words, the influence of turbulence has been 

ignored or excluded. The jets are turbulent. The effects of turbulence from the wind supply 

into this jet was not considered. 

While the jet behaviour is not investigated in this work, understanding its impact on sound 
generation is relevant. Later, it will be shown that the input impedance experienced by the 

jet is useful in determining the electrical analogue of the input impedance to the electrical 

equivalent circuit. 

6.2.1 The Pipe Input Impedance 

For open pipes, Fletcher32 shows that the input impedance, Z., is: 

. Zin = nj(S )tan(K-jK) .............................. 6.9 
P 

K= wave propagation number= w/c; w= angular frequency and c= speed of sound 

K' = loss parameter of K; j is the square root of minus one. 

K' is proportional to the square root of the angular frequency 

In arriving equation 6.9, Fletcher32 assumes free air propagation conditions and negligible 

energy loss at the open end (i. e. I (wavelength) » pipe circumference) 
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Yoshikawa and Saneyoshi98 derived an expression for the input impedance, Z; a, of an open 

pipe as in equation 6.10 below. 

1. 
Zin = nn ( 

Sp )( ZQn +1(S2n -1) ) .................. 6.10 

Sp = pipe cross sectional area 

Qn = Quality factor of the nth resonant mode 

Stn = f/fo; where f= pipe resonant frequency, n= modal number of f 

and fo = calculated fundamental of pipe. 

In both equations 6.9 and 6.10, Z. has a reactive and a resistive term. 

Z1( of eqn. 6.9) = Z. (of eqn 6.10) if; 

jtan(K-jKl) = n(2Qn+j(Q. -1)) ............... 6.11 

Morse63 gave the equation for the specific acoustic impedance at the driving end of an open 

pipe with an infinite flange, zi, (i. e. the input specific acoustic impedance) as: 

tan (2nLe) +j2n2(a)2 ý 
Zi = jpc 

2a2 
Le ............... 6.12 

1- j2n (X) tan (2n ) 

for X> 8na 

and 

I0C2 (i4n 
L')) 

P ,ý z- c- e ............................. 6.13 i= ýrr... n ". w- i 

for ,%< nal3 
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where Le = acoustic (effective) length of the pipe =L+ 8a/3n 

If the pipe flange is infinitisimally small, Le becomes L+0.6a. The pipes under study were 
flangeless, assummed to have infinitisimally small flanges. 

X= the wavelength of the sound, a= pipe radius, c= speed of sound in air 

and p= the density of air. 

The pipe under study met the requirements stipulated for equation 6.12 (i. e. X> 8na), 

hence that equation was used. 

For a pipe cross sectional area of, Sp, the analogous electrical input impedance, Zin is given 

by the equation 

Zin = zl/Sp 
2nL 2 

_. 
Pc 

tan( e) +. 12n2(ý) 
Zen -j 

pc 

2a2 2nLe ......... ...... 6.14 
1- j2n () tan( ) 

Z; n is made up of a real and an imaginary part, i. e. a resistance and a reactive component. 

Fletcher's formula32 for Zm has the loss parameter K' which is proportional to w0.5. The 

constant of proportionality has to be determined. Determining Z; ý from Fletcher's formula 

is not straight forward. 

Yoshikawa and Saneyoshi's98 formula require prior knowledge, or experimental 

measurements of acoustic data from the test rig that would in turn be used to determine the 

pipe. resonance quality factor. The input impedance can be wholly resistive if 
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Morse's formula63 for Zin looks complicated but is easier to compute. It relies mainly on 

geometric measurements of the pipe for its parameters. The Morse formula (equation 6.14) 

was used to evaluate Zi.. 

Fletcher's (equation 6.9)32, Yoshikawa and Saneyoshi's(equation 6.10)98 and 

Morse's(equation 6.14)63 equation for Zj will yield the same result if 

1 tan(2 e) +j2n2(2 
jntan(K-jKl) = nn(2Q +j(S2n-1)) =j2 2nL n 1-j2n2(ý) tan( X 

ý) 

6.2.2 Pipe Mouth Impedance 

In their investigation of the feedback excitation mechanism of organ pipe sound, 

Yoshikawa and Saneyoshi, 98 developed an equation for the acoustic mouth impedance, Zm 

as in equation 6.15, 

PCO 
Zm =jSý (nS2n) Lm ................................. 6.15 

e 

where, Seff = effective cross sectional area of mouth (Seff = (Sm$p)0.5) 

Sm = mouth area; Sp = cross sectional area of the pipe 

L, n = length of pipe mouth; f2. n = f/nfo = 0)/nw, uo 

fo = calculated fundamental frequency of the pipe; i. e. fo = c/2Le 

Le = pipe acoustic length; c= speed of sound 

.. 95.. 



iaptcr 6: On an £(cttica(J nalogous Granit of tfu Organ -fpt for7w6uknu Stu& 

n= modal number of the pipe excitation 

Yoshikawa and Saneyoshi estimated L. to be; 

LM 
3d 

-S os ........................... 6.16 
+SP m+ (Ssmp) 

and Sg _ (SmSp)os 6.17 

d= distance between the lip (jet nozzle of pipe) and edge 

Sm = mouth area 
Sp = cross sectional area of the pipe 

ý if Sp » Sm ; I. m = 3d 

ifSm _Sp; I"m^'d 
1,11 

Yoshikawa and Saneyoshi's98 estimations of I. m and Seff were based on the assumption that 

the pipe mouth was equivalent to the circular truncated cone of height Lm, whose volume 

was equivalent to the mouth volume. 

In their study of jet-resonator interaction in organ pipes, Fletcher and Rossing35 derived an 

expression for the mouth impedance for pipes with resonant frequencies that are "not too 
WýO», Zm, as 

Z JpcuAL , ºý_ S ....................................... 6.18 
P 

where AL = end correction of the open mouth. 
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From his analysis of the pipe as an electrical circuit, Morse suggested that a hole in the 

wall of a cylindrical tube is analogous to a shunted resistance and inductance. Morse 

worked out the mouth inductance Lm and resistance, Rm as given below; 

Rm = pw2/2nc = po)/, % 6.19a 

'.. 

I: m = 0.5p/am 

where the mouth impedance Zm = Rm + jwL 

where am = mouth radius 

p= density of air; X= wavelength; c= speed of sound. 

6.19b 

6.20 

t1A 

The Fletcher & Rossing35 (equation 6.18) as well as the Yoshikawa -and SaneyoS08 

(equation 6.16) formulas for the mouth impedance are purely reactive. They probably 
assumed, though did not state, that the resistive component of the mouth impedance was 

negligible. 

If the value of the inductance was to be deduced from either Fletcher & Rossing's35 or 
Yoshikawa and Saneyoshi's98 formula, then Zm would be considered to be equivalent to the 
impedance, ZL, of the inductor, L, where ZL = jwL 

such that, using Yoshikawa and Saneyoshi's formula (equation 6.15): 

w .. jcoL =JwP(n)Lm(S )-1 6.21 

L= p(nS2)1 m(Seff)*l 6.22 

Using Fletcher & Rossing's formula (equation 6.18)35 
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ý 

jtOL = jWpOI. (v-1 6.23 

L= pAI. (Sý-1 6.24 

If O)nS2 Ps 1; Sp sw Seff and the length of Yoshikawa and Saneyoshi's98 conceptual cone PS 

AL; then the Yoshikawa and Saneyoshi, & Fletcher and Rossing35 formula would yield 

similar results for Z. 

AL(Sp)'1 , and Lm(S )" have the limiting value of 1/(2am). 

and w(n. ) =1, then all three formulas should yield similar values for (inductance) L. 
Y 

Morse's formula was used for consistency. The equation for the input impedance was based 

on the equation of the specific acoustic impedance of the pipe input as derived by Morse. 

6.2.3 Pipe Resonator Impedance 

The pipe resonant column can be considered to have a distributed inductance per unit 

length, Lp = p/Sp per unit length; and a distributed capacitance per unit length; C'p; given 

by 

C'p = Sp(PC2)-1 6.25 

The analogous capacitance and impedance of the resonance column becomes 

Lp = pLe/Sp 6.26 
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Cp =V p 
(PC2)-I; . 6.27 

where VP = pipe volume (= SPLe). 

The impedance due to the inductance (ZL) and capacitance (Zc) are given by the equations: 

ZL = jWPLe/Sp 

and Zc = j(Pc2)(wVY 1 6.28 

Morse63 and Lighthill50 have showed that the pipe resonant frequency 4 is related to Cp 

and Lp by the equation: 

fr =1 j2n(LpCp)OS 

6.2.4 Pipe Termination Impedance 

6.29 

Morse63 worked out the limiting values of the specific acoustic impedance at the open 

termination of an organ pipe with an infinite flange, zo, as: 

z 
pcu2a 

2 

ford>8na 

j2 pc2 
zo = PC. ... ... ... ... ... ... ...... ... ... ... naw ...... 6.30b 

ford, <na/3 

The imaginary term in equation 6.30a is equivalent to a mass air of value 8pa/3n gcni 2 For 

flangeless pipes, this term reduces to . 0.6pa. Recalling that the analogous electrical 

impedance is obtained by dividing the specific acoustic impedance by the cross sectional 

area of the pipe, Si,, the equivalent electrical termination impedance, Zr, for flangeless 
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pipes becomes: 

Pco ZT = 2cS 

2+0.6ýpa 

......... ........................ 6.31 
P 

iP 

The reactive component of Z1 Capacitance. The impedance, Zr, of a capacitance, Cr, is 

given by the expression: 

Zc - jcuCT ............................................. 
6.32 

0.6wpa 
if.. Zý _ iSF 

Sp 
ý* CT = 0.6uopa .................................... 6.33a 

and 
2 

_ 
pcoa 

2 
R- 2cS .................................... 6.33b 

P 

6.5 Rules of Arrangement of Circuit Components 

It was shown earlier that the resonance column of the pipe is made up of a distributed 

capacitance and inductance. The position of these two components in the circuits is 

determined using guidelines outlined by Stephen and Bates Y They give a set of guidelines 

for determining whether a specific circuit component should be placed in parallel or series 

relative to the rest of the circuit. 

The rules they gave were: 

(a) when a set of equivalent mechanical elements undergo the same 

displacement, they are to be connected in series, 

(b) elements under the influence of the same force are to be connected in parallel, 
(c) the stiffness between two consecutive elements in motion is equivalent to a 

shunt capacitance, 
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(d) a moving element attached to a fixed support is equivalent to a series 

capacitance. 

6.4 Arrangement of Circuit Components of Electrical Equivalent Circuit 

Let the mouth, input, pipe inductance, pipe capacitance and termination impedances be 

represented respectively by, Zm, Z1 
, 
ZLp, Zcp, and ZT. 

It has been shown that a hole on the side of a tube, which is what the pipe mouth is, is 

equivalent to an inductance and resistance shunted across at the appropriate point 63 

Coltman" applied this concept in his electrical analogy of a flute. His impedance was 

purely reactive. A legitimate assumption if the hole is very narrow relative to the tube 

perimeter . 
63 

Following the arguments of Morse, 63 the pipe equivalent circuit can be perceived to be 

equivalent to a circuit similar to figure 6.3. 

E(s) 

E(s)=the 
driving 
potential 

Z' eq 

Zm = Mouth Impedance 
Zeq = combination of 
ZID. ZLP. Zp, and Zr 

Fig 6.3. Pipe circuit model - development stage 1 

The mouth impedance Zm in parallel with the equivalent impedance, Zq, of the 

combination of the input, pipe and termination impedances (Z; 
m, ZLp, Zcp and ZT). 
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As the full circuit is developed in the ensuing stages outlined below, the manner in which 

Z; n, 
(input impedance) ZLp, (reactance due to pipe inductance) Zcp (reactance due to pipe 

capacitance) and ZT (termination impedance) combine will be shown. 

Zý is taken as being in parallel rather than in series following Fletcher and Rossing's35 

electrical analogue of the regenerative excitation mechanism that describes jet excitation of 

organ pipe resonators. In it, they show the generator admittance, Yg linked to the overall 

pipe admittance in a parallel combination as per figure 6.4. This scheme was adopted from 

Yoshikawa and Saneyoshi's98 analysis - an analysis which produced fairly accurate results. 

Yp 

Fig. 6.4 Pipe circuit model - development stage 11 

Yp represents the input, pipe and termination impedances, assuming z= 1/Yp. 

Logically, the current flow encounters the input impedances after the mouth. The input 

impedance had earlier been shown to be made up of a reactive and resistive term. Figure 

6.3 can now be modified to include input impedance Z. as illustrated in figure 6.5 below. 
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Zin 

U E(s) 

Fig. 6.5 Pipe circuit model - development stage III 

It Zý 

Zm = mouth impedance and Z, = input impedance 

Z", q now comprises the pipe and termination impedances: ZLp, (reactance due to pipe 

inductance) Zq, (reactance due to pipe capacitance) and Zr (termination impedance) 
. 

The pipe distributed capacitance and inductance are subjected to the same pressure force 

and can therefore be connected in parallel following rule b (section 6.5). Expanding figure 

6.5 to include the pipe capacitance and inductance; Zcp and ZLp respectively, we have figure 

6.6 below. 
Z; n Output 

L 

0 E(s) 

ý 

Lp ftl Ze9 

Fig. 6.6 Pipe circuit model - development stage IV 

ZLP = reactance due to pipe inductance Zcp = reactance due to pipe capacitance, Zm = 
mouth impedance and Zi. = input impedance - Z"T = equivalent circuit impedance of remain- 
ing components. 
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This leaves just the positioning of the termination impedance Zr. 

The "buffer volume" of the surrounding atmosphere at the open end of the pipe can be 

constructed as a termination capacitance. The termination impedance at the outlet was 

shown to be made of a resistive and a reactive element. This "buffer volume" subjects the 

motion of the vibrating column that extends just beyond the open end to some frictional 

resistance. Stephen and Bates87 referred to this resistance as the "viscous resistance". The 

buffer volume in the viscinity of the pipe mouth is subjected to the displacement of the 

vibrating air column. Following the rules outlined by Stephen and Bates87 the elements that 

make up Zr (= RT + 1/0(oCT): termination resistance and Capcitance respectively) can be 

connected in series and then introduced as a shunt impedance in place of Z"eq as depicted 

in Fig 6.7 below 

Output 

1 

C-D Lp ZT 
E(s) 

Fig 6.7 Pipe circuit model - final stage 

ZLp = reactance due to pipe inductance Zcp = reactance due to pipe capacitance, Zm = mouth 
impedance, Z; m = input impedance, ZT = termination impedance and Zm = input impedance 

6.5 Calculation of Circuit Impedances 

The equations for the different circuit elements were used to evaluate the resistances, 

capacitances and inductances of the different circuit elements. Equation 6.14 was used in 

evaluating Z; n, 
Zm was determined using equation 6.20, ZLp and Zcp were determined using 
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equations 6.26 and 6.27 respectively, while equation 6.33 was used to calculate RT and CT. 

The component values were calculated using the mathematical package MapleTN1 Version 

2.100 (Maple is a software used to perform symbolic or numerical mathematical 

calculations). The program flow chart is given in appendix 10. 

6.6 Computer Simulation of Pipe Analogous Circuits 

The values of the circuit components were used to simulate the circuit using the circuit 

simulation package HSPICE 47 The circuit was designed on the ECAD package 

Powerviewl, where from a wire listing of the circuit was automatically generated for 

HSPICE simulation. 

6.6.1 Circuit Simulation Results 

Using the parameter values computed the simulation yielded resonance frequencies with 

much lower resonant frequencies than the acoustic resonance frequencies as shown below 

in table 14 

Table 14: Calculated f,. Based on Pipe Effective Length vs Actual Acoustic Frequencies 

Pipe Calculated fr(Hz) Acoustic ff(Hz) 

1 93.89 260.5 

2 193.22 520.3 

3 397.62 1078.8 

4 784.28 2085.5 

The results of the calculations yielded inaccurate frequencies, as such an ECAD 

simulations was not undertaken, for these set of component values. 

1. Powerview is an electronic CAD package for designing circuits in preparation for HSPICE simulation. 
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In figure 6.7 (repeated below for clarity) it was indicated that the driving mechanism not 

only excites the resonance column of the pipe. There is coupling between the generator and 

the resonance column as well as feedback. 

FEEDBACK 

Energy Source 
(Wind Supply atý 
constant pressur ) 

GENERATOR 

DRIVE/EXCITATIOAº 
III- 

COUPLING 
ý--ý 

No 

COUPLING 

RESONATOR 

Acoustic output 

Fig 6.7 Block Diagram of Pipe Resonator 

The mouth area and the pipe input both have inductance elements. If there is coupling 

between these two segments, it can be inferred that there will be some "coupling" between 

the passive elements. This would mean there is some coupling between the mouth and input 

inductance. The coupling gives rise to a mutual inductance, ML which is proportional to the 

square root of the product of the input and mouth inductance; i. e. 

ML « (Lin Lm)o. s 

Lin depends on the pipe length, from equation 6.17. 

Lm also depends on pipe length and of course, ML. 

It can thus be argued that the whole pipe length does not fully participate in the resonance 

process. Resonance could only be taking place within a certain active length of the pipe, La. 

The sound generated propagates within the entire pipe, with the portion that constitutes the 
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active length, La serving as the radiation source. La would therefore be only a fraction of 

Le, the acoustic length of the pipe. 

The pipe resonator capacitance and inductance values (equations 6.25 and 6.34) were 

recomputed substituting La in place of Le. The amount of coupling is not exactly known, 

hence La was determined by trial and error. A value of La - Le/3 was found to yield a 

resonant frequency very close to the acoustic resonance frequency. 

6.6.2. Circuit Simulation using the Pipe Active Length. 

The component values were recompute using La. The new values of the circuit parameters 

are as in table 15 below. 

Table 15: Circuit Component Values 

component Pipe 1 Pipe 2 Pipe 3 Pipe 4 

Rm (S2) 38.8 155.16 667.8 2493.3 

Lm (mH) 0.729 1.24 1.97 3.13 

Rin(92) 0.3 0.618 0.732 0.958 

Li. (mH) 99.6 7.59 . 
36 2.1 

C, (µF) 246.9 53.6 8.11 1.21 

LP (mH) 1.421 1.6 2.54 4.42 

RT02) 0.015 0.06 0.3 1 

CT(PF) 2693.4 14.88 19.2 2.78 

fr (Hz) 268.7 543.8 1109.2 2177.7 

The circuit simulation produced the resonance curves given in figures 6.16 - 6.19. The 

resonant frequencies are very similar to theoretically calculated values as well as those 

obtained from acoustic experiments as shown in table 16 below 
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Table 16: Calculated Simulated and Acoustic Resonant Frequencies of Pipe 

Pipe Calculated fr(Hz) Simulated f, (Hz) Acnusitc fr (Hz) 

1 268.7 269.153 260.5 

2 543.8 529.645 520.312 

3 1109.2 1064.14 1078.812 

4 2177.7 2114.26 2084.5 

Note: For figures 6.8 - 6.11, the horizontal axis is on a log scale 

50 

1 fr = 269.2 

d 
8 

V 
0 

5 

-501 100 1k 

FREQUENCY (Hz) 

Fig 6.8 Response of HSPICE simulation of the equivalent circuit of pipe I 
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40 

30 

d 20 
8 

V io 
0 

tU 
5 

-10 

-20 

-30 

100 

fr=329.6 

1k 

FREQUENCY (I-b) 

Fig 6.9 Response of HSPICE simulation of the equivalent circuit of pipe 2 

15 

d 
B 

V 
0 

s 10 

100 

FREQUENCY (I-b) 
ik 

Fig 6.10 Response of HSPICE simulation of the equivalent circuit of pipe 3 

.. 109.. 



Chapter 6: On an Flectrica[Ana(ogous Circuit of tfu Organ lipe forTurbulen e Studies 

100 1k 

FREQUENCY (Ftr) 

Fig 6.11 Response of HSPICE simulation of the equivalent circuit of pipe 4 

6.6.3 The Study of Turbulence Effects by Electrical Circuit Simulation. 

After establishing that the appropriately adjusted circuit operates at the approximate 

resonant frequency, simulation experiments were conducted to evaluate the effects of 

turbulence on its performance. 

The electronic CAD package, Powerview has standard input signals that can be used as 

input into a circuit for simulation. The signals are sinusoidal, digital and exponential 

functions. None was random or white noise. 

In chapter 3, it was shown that grids of the turbulence spectrum has a Guassian distribution. 

Since noise has a similar distribution, it implies that turbulence could be simulated as 

broadband noise. 

A noise generator circuit, as per figure 6.12 101 was designed, built on a vero board and 
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found to produce broadband white noise. The circuit was similarly designed on the ECAD 

package, Powerview and simulated. It produced no output. 

i 

16V, 1W 1 1KQ 

DD 

470µF, 
25V 

680pF 

I KS2 

T (2N2219A) 

group/ 

Fig 6.12: Circuit of Noise Generator 

22092 

20V dc 

1µF 

o/p 

The noise generator circuit of figure 6.12 produces noise thanks to the break down noise 

generated by the diode, DD, which is in turn amplified by the transistor amplifier, T. While 

break down materializes physically, the simulation package could not deliver this effect, 

hence the there was no noise output. It turns out that HSPICE can only produce output to 

a circuit if the circuit is excited by a specific input. The noise generator has no input. As 

stated before, it relies on the break down noise of the diode DD. 

The noise generator circuit was connected through a unity gain summing circuit that had 

two inputs into the pipe equivalent circuits. The other input to the summing circuit was an 

a. c. signal that swept through a range of frequencies. It is capable of sweeping through 

frequencies ranging from 1Hz to several mega Hertz. The a. c. sweep was programmed to 

sweep from a range of 1 Hz to 10KHz as the frequency response is not expected to provide 

any additional information beyond 10KHz. 
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Figure 6.13 gives a block diagram of the circuit arrangement. 

NOISE 
GENERATOR 

Probe 

PIPE 
CIRCUIT ýt 

SIGNAL 

GENERATOR f Output 
Unity gain summing amplifier 

Fig 6.13 Block Diagram of Circuit Layout 

When it was realised that the noise generator could not deliver noise during the ECAD 

simulation, Gaussian noise was numerically simulated and inserted as a signal input into 

the programme routine of the wire listing automatically generated by Powerview for 

HSPICE simulation. The set of random numbers that simulated the Gaussian distribution 

(noise) were generated using l NTABTM. 61 Even then, HSPICE could not handle the 

computation and the excercise was discontinued. An example of a modified program listing 

as described above is in appendix 12). 

As the noise circuit was not producing the expected result, it was left out of the simulation 

and the system as per the block diagram of figure 6.14 was used. 
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SIGNAL 

GENERATOR 

Output 

Fig 6.14 Block Diagram of Circuit Simulated 

The simulation experiments produced the frequency responses given earlier in figures 6.8 

-6.11. 

As the noise generator could not be relied on to provide a computer simulation of 

turbulence, it was necessary to carry out a hardware implementation of the system. 

6.6.4. Evaluating Pipe Analogous Circuits by Experiment. 

Each of the pipe circuits was constructed. A noise generator and function generator 

supplied a signal, into the circuits via a unity gain summing amplifier. 

The function generator used was a FG600 Function Generator by Feedback. An HP HO 1- 

3722A Noise Generator by Hewlett Packard was used to provide the noise. The noise 

generator has a maximum output amplitude of 3.16 V rms. The control panel was tuned to 

deliver broadband white noise. The sequence length of the shift registers in the noise 

generator was set to infinite. The clock period was set to 50KHz. The Hewlett Packard 

noise generator provides analogue and digital noise outputs. The analogue output is 

obtained by converting the pseudo random digital noise output. Horowitz and Hill45 have 

shown that if the sequence length of a pseudo random bit sequence is infinite, the digital 

noise will require an infinitely large amount of time to repeat itself. The repeat time being 
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the (sequence length)/(clock frequency). The numerator is infinite; dividing the numerator 

by a small finite denominator yields an infinite result, i. e. an infinite repeat time of the 

sequence. 

The summing circuit was built around a 741 operational amplifier. The amplifier was 

powered with a Farrell Standard Power Supply, delivering ±30V maximum. 

On the acoustic test rig, the flow into the wind chest was arranged such that different 

proportions of filtered (laminar) wind and turbulent wind flowed downstream into the wind 

chest. Valves were used to deliver wind in the proportions as per table 5 (chapter 5) 

repeated below in table 17 for clarity. 

Table 17: Flow Conditions 

Percentage turbulent flow Percentage laminar flow 

100 0 

75 25 

50 50 

25 75 

0 100 

The flow combinations of the above table had to be mimicked electrically. The volumetric 

flow current, Q, is analogous to the electrical current. 

Q=USd 6.34 

Where Sd = duct cross sectional area. U implicitly will be directly proportional to the 

analogous electric current. 

Hinze41 showed that the instantaneous velocity of flow; 
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U=U+u 6.35 

where U is the mean flow velocity and u the fluctuation about the mean. Hinze further 

defines the turbulence intensity as; 

u'/U, 6.36 

where u' is the root mean square value of u. 

U can be taken to represent the sinusoidal electrical current emanating from the function 

generator and the current from the noise generator to represent the turbulent fluctuations 

about the mean flow, u'. Then 

u'/UxlOO% 6.37 

would be a percentage of turbulence flowing into the system. 

A Blackstar 3210 true rms multimeter was used to measure the output currents of the noise 

and signal generators. 

The current output for the different control knob position of both the signal and noise 

generators are as in table 18 below. 
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Table 18: Current Output of Signal and Noise Generators 

Signal Generator Noise Generator 

Control Knob 

Position 

Output current 

(mA rms) 

Control Knob 

Position 

Output current 

(mA rms) 

0 0 - - 
1 0.428 0.1 0.32 

2 0.947 0.2 0.91 

3 1.46 0.3 1.29 

4 2.27 0.4 1.81 

5 2.86 0.5 2.17 

6 3.42 0.6 2.65 

7 3.95 0.7 3.12 

8 4.6 0.8 3.51 

9 5.18 0.9 3.96 

10 5.81 1 4.42 

From the above table, the turbulence/laminar conditions are worked out using equation 6.37 

are given in table 19. 

Table 19: Electrical Equivalence of Flow Conditions 

Turbulence 

Flow % 

Laminar 

flow % 

Signal 

Current (mA) 

Noise 

Current (mA) 

Noise/Signal 

% 

0 100 3.95 0 0 

25 75 5.18 1.29 24.9 

50 50 4.6 2.17 47.17 

75 25 5.81 3.51 76.1 

100 0 0.16 4.42 100 
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These settings were used to simulate the appropriate turbulence/laminar flow conditions 

into the circuit. 

The function generator, unlike that used for the computer simulation, does not 

automatically sweep through a range of frequencies, it could only be set to one frequency 

at a time. 

While the noise generator was switched off, the function generator was panned till the 

resonant frequency of the circuit was reached - as observed on an oscilloscope. The noise 

generator output was then set accordingly and then switched on. The output was spectrally 

analyzed on the B&K spectrum analyser and the spectrum printed on an HP plotter. The 

circuit outputs for the different combinations of noise and sinusoidal inputs (representing 

the different combinations of turbulent and laminar flow) are given in figures 6.15 - 6.34 

0 ACT T'JqAULENCC PS 

Fig 6.15 Response of hardware equivalent circuit of pipe 1 (0% Turbulence) 
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Table 20: Calculated, Simulated, Acoustic and Hardware f1. of Pipe Circuits 

Pipe Calculated fr(Hz) Simulated f. (Hz) Acousitc fr (Hz) Hardware fr (Hz) 

1 268.7 269.153 260.5 270.625 

2 543.8 529.645 520.312 518.250 

3 1109.2 1064.14 1078.812 990.875 

4 2177.7 2114.26 2084.5 2044.625 

It is observed that the output curve does not change significantly for the different input 

combinations. A closer examination of the pipe analogous circuits indicates that they are 

principally passive resonant circuits. At resonance, such circuits behave like narrow band 

pass filters, neglecting all input except those with frequencies at or very near the resonance 

point. The pipe circuits exhibited the characteristic behaviour expected of resonant circuits. 

Another approach is therefore required to conduct this study. In studying the transient 

sounds produced by organ pipe action, Caddy and Pollard9 developed electrical equivalent 

circuits. They intimated that the parameters of the pallet control action electrical circuit 

analogue were non- linear. It is possible that the equivalent circuit parameters of the circuit 

analogue of the pipe also exhibit non-linear characteristics. 
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6.6.5 Non-linearity of Circuit Components of Organ Pipe Analogous Circuits. 

It is well known that the pitch of the organ pipe changes with blowing pressure and flow 

speed 12 32 39 40 60 Recalling that the pressure is analogous to voltage potential and volume 

flow current (and hence flow speed) analogous to current, it can be argued that the 

resonance frequency of the pipe analogous circuit should be dependent on the current 

flowing through the circuit components (or the voltage drop across each component). The 

circuit parameters should be capable of delivering a higher or lower resonant frequency 

with changing current. This suggests that the circuit parameters should be a function of the 

current flowing into the circuit. It could be either the function of current or voltages since 

one is dependent on the other. 

Lets re-examine the equivalent pipe circuit developed earlier and illustrated below in figure 

6.35. 

Rin Lin 

E(s) I Cp 

Cm 

RT 

CT 

Fig 6.35 : Electrical Equivalent Circuit of Organ Flue Pipe 

Rm Mouth resistance; Cm Mouth capacitance; Rin Input resistance; Lin Input inductance; CP 
Pipe capacitance; LP Pipe inducatance; RT Termination resistance and CT Termination 

capacitance - E(s) is the driving potential 

The components can be reduced into impedance blocks such that figure 6.35 can be 
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redrawn in the manner depicted in figure 6.36. 

I; n 
Zin IT Output 

Im 

... 

E(s) 
ZT 

Fig 6.36: Electrical Equivalent Circuit of Organ Pipe in Impedance Blocks 

Zp = reactance due to pipe inductance & capacitance, Zm = mouth impedance, Z. r = 
termination impedance and Z;,, = input impedance - IS source current, I;. pipe input current, 
Im mouth current 

The exact non-linear behaviour of the different components is not known. The thrust of this 

research is not aimed at determining the expression that defines the non-linear conduct of 

the analogous circuit components. However, it is within the remit of this work to suggest a 

method of analysis that could be used to study the effects of turbulence on the pipe sound 

quality, using the analogous electrical circuit. In the ensuing theoretical analysis, a proposal 

is given as to how turbulence studies can be carried out once the non-linear character of the 

circuit parameters can be physically defined. 

If the assumption that the circuit parameters are functions of voltage or current is correct, 

then the impedances can be expressed as follows: 

Zin = Zi. (Iin) 

Zo, = Zm(Im) 

Zp = ZP(IP) 
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Zt = Zt(I) 6.38 

where Zp = Zip//ZLp 

Since the current in the circuit will be time dependent, it implies the impedances will also 
be time dependent. At a particular time, t, say, there will be a specific value of E(s) and I(s) 

flowing into the circuit and hence -instantaneous values of, Im, Iin, Ip and It giving an 
instantaneous value of the impedance elements: Zm, Zing Zp and ZT. At this instant, the 

overall equivalent impedance, Zi(t) of the circuit can be computed using the expression: 

= (Zp//Zt + Z; )//Zm 6.39 

For any two dummy variables, A&B expressed in the form A//B, it implies: 

A/B = (1/A + 1B)'1; 

From the current divider rule; 

6.40 

= ISZm/(Z; + Zm) 6.41 

It = Ii Zp/(Zp + ZT) 6.42 

It ={ Zp/(Zp + ZT) }{Z. /(Z. + Zi) }IS 6.43 

E(S) = IMIZm 6.44 

Using equations 6.51-654, an expression for the system function can be worked out. The 

system function at a particular instant, t, following Papoulis71 is given by the expression: 
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It/E(s) = IS/Im{ Zp/(Zp + ZT) }{ 1/(Zm + Z; ) }= h(t) . 6.45 

The magnitude of h(t) can then be plotted against time, to give the time domain response. 

The frequency domain response (spectral characterisitic) of the equivalent circuit(s) can be 

determined by taking the Fourier transform of the time domain response. 

If the current into the circuit is a combination of the noise and sinusoidal currents, then the 

spectral response mentioned above would be the frequency response of the pipe equivalent 

circuit. By combining different ratios of noise and signal, different flow conditions can be 

simulated and different frequency response curves obtained that would provide some 

information on the effects of turbulence on the pipe sound quality. 
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CHAPTER 7 

OTHER APPLICATIONS AND PROPOSALS FOR 
FURTHER RESEARCH 

Some of the developments from this research could be applied in other areas of aero 

acoustics. Further developments can be added to what has been achieved. The ensuing 

discussion advances suggestions as to how the foregoing can be attained. 

7.1 Other Applications of this Research 

The findings of this research are likely to find applications beyond the realms of musical 

organs. 

Research carried out in USA, France, Holland, Germany, Hungary UK and Australia in the 

different domains of aero-acoustics have borrowed from the hypothesis advanced from 

investigations into the flow acoustic interaction in organ pipes. 

7.1.1 Resonance Effects in Moving Vehicles 

In USA Elder has applied some of the theories developed from the studies of the jet drive 
mechanism of organ pipes 1118 22 to the understanding of cavity resonance generated by jets 

in moving vessels in research conducted for the US Navy. Some of his findings involved 

modelling the jet drive mechanism as an electrical analogous circuits. Perhaps some of the 

developments in chapter 6, dealing with the electrical analogue of an organ pipe could find 

application in the research they are conducting. 
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7.1.2 Studying Pulsations in Gas Plants 

Research conducted in Holland has made use of the aero-acoustics mechanism in organ 

pipes to understand pulsations at T -junctions, closed side branches, stilling chambers and 

compressor stations at, the gas plants of Nederlandse Gasunie (NG). Peters72 73 also 

conducted experiments to evaluate flow induced pulsations at safety relief valves which can 

cause fracture. The research for NG were conducted for flow that had low Mach numbers 

with high Reynolds numbers. The research was geared mainly to eliminate the resonance, 

unlike in the organ pipe situation where it is desirable. 

As customers to the gas plant switch on and off their gas appliances, the volumetric flow 

rate of gas through the pipelines will change, changing the Reynolds number of the flow 

and hence turbulence flow condition. How would these variations affect the pulsations at 

the compression stations, stilling chambers, valves and junctions? The analysis of the 

effects of changing levels of turbulence on pipe sound could be adapted for such a study. 

Some investigations were carried out to understand the effects of changing flow speeds on 

the pressure fluctuations. Braggeman, 8 showed there was a shift in pulsation frequency 

with changing speed. In organ pipes increasing the flow rate of wind into the pipes produces 

sound of higher pitch. Braggeman's work may need to be extended to take into 

consideration the effects of various levels of turbulence, at constant flow speeds on these 

pulsations as well the nature of the deleterious effects they cause. 

If gas pipe lines are modeled as electrical circuits (perhaps using transmission line theory) 

and subsequently analysed, more light could be shed on the nature of the pulsations. The 
ýýý.,., , 

electrical analysis could also provide an alternative method for analysing the problem, 

theoretically and by simulation. 
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7.13 Other Applications in Organs 

In some organs bass pipes are stood off the sound board and wind supply is tubed to them 

via a small flexible hose, usually less than 3 cm in diameter. In chapter 4, it was shown that 

one of the methods for suppressing turbulence was by using a helically coiled wind trunk. 

If the turbulence of the wind into the sound board was attenuated, then channelling wind 

via a helically wound hose into the organ pipe foothole will suppress any further generation 

of turbulence in the transit of the air to the pipe. 

7.2 Proposals for Further Research 

In the development of electrical analogous circuits of the organ pipe, this study did not look 

into the feedback mechanism around the mouth of the pipe. The analogue of coupling 

between the mouth and input as well as the pipe outlet and surrounding atmosphere were 

not incorporated within the circuit. The initial objective was to get an approximate linear 

model. On achieving this it was realised that a more accurate model of the circuit would 

require non-linear electrical components. More work will have to be done to develop a non- 
linear analogue circuit of the pipe. When this has been achieved, introducing the 

phenomenon of feedback and coupling encountered in acoustic systems will shed even 
more light on the behaviour of the organ pipe. 

It is possible that organ wind trunks, sound boards and the key chamber can be modelled as 

electrical circuits, it may not be long before an electrical model of the entire system is 

developed. 

Such techniques could be adapted to model gas pipelines, stilling chambers and compressor 
stations. In chapter 6, a suggestion is given as to how a non-linear electrical equivalent 

circuit of the organ pipe, when worked out, could be analysed. It maybe less time 
consuming, and perhaps even cheaper, to simulate the performance of a pipe via its 

electrical analogue than by aero-acoustic experiments or Finite Element Analysis. 
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CHAPTER 8 

CONCLUSIONS 

This research began by surveying the development of organ blowing mechanisms from 

human operated blowers through to centrifugal blowers, giving their advantages and 

disadvantages. Several trips were undertaken to over a dozen different sites to look at the 

blowing mechanisms used to supply wind to the organs and also observe the sound quality 

produced. 

In order to understand the effects of turbulence on organ sound, the nature of turbulence 

itself had to be understood. Investigations showed that turbulence had similar statistical 

characteristics to broad band noise. 

Investigating the effects of turbulence on pipe sound quality required the turbulence levels 

to be varied to see how varying it affects pipe sound. Different techniques for suppressing 

and or attenuating turbulence were examined. Amongst those considered were: channel 
I 'I, 
enlargement, spanwise axis rotation of the flow channel, helically coiled pipes as well as 

flow stratification. Of all these techniques only that of flow stratification could attenuate 

turbulence in flows with Reynolds numbers (Re) exceeding 20000. In organ blowing 

situations, Reynolds numbers greater than 50000 are usually encountered. 

Aturbulence attenuator designed for St. Paul's Hall, University of Huddersfield was built 

and tested and found to have a cut off frequency of 3.8 KHz. The organ pipe sound with 
and without the turbulence filter installed was evaluated aurally, qualitatively and 

quantitatively. 
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0 Turbulence effects can be represented qualitatively using spectrographs 

It was noted there'was a shift in resonance frequencies. Ripples in the leading and trailing 

edges of the spectrum of the different fundamentals were much reduced after turbulence 

attenuation. Two resonant peaks observed in the F#43 8 ft Gedackt resolves to one after the 

pipe was supplied with turbulence attenuated wind. 

Q Turbulence effects are significant and percievable 
An aural evaluation of the turbulence attenuator (St. Paul's) also indicates there were 

significant improvements in the tonal quality of the pipes. Some registers lost their acidity, 

others had a better blend, while others had a more penetrating tone. Additional experiments 

on a laboratory test rig corroborated the aural perceptions observed in St. Paul's. It has been 

established that changing the levels of turbulence of wind flowing into organ pipes, 

perceivably influences the pipe sound quality. This inference was drawn from an aural 

evaluation of the sound from pipes on the laboratory test rig blown with wind with a variety 

of turbulence levels, by a number of music students. With less turbulence the pipes on the 

test rig were found to produce "more pure ... and clearer sound" which had more "bite". In 

addition, the notes were considered more stable and smoother. Most of these improvements 

where thought to be experienced largely with the lower registers. 

C3 Turbulence effects can be quantified using the concept of moments 
A mathematical technique was developed to quantify the changes in pipe sound with 

changing effects of turbulence. The concept of statistical moments was used to achieve this. 

The spectrum of the fundamentals of the different pipes on the test rig were normalized and 

the third and fourth moments about the fundamental evaluated. 

It was found that the spectrum of the pipe fundamentals all have a negative symmetry (i. e. 

were skewed to the left). The skewness was accentuated with increasing laminar flow. The 

fourth moment, which measured the "peakedness" of the pipe fundamental, was found to 
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increase with increasing laminar flow of wind into the organ. 

3 Turbulence causes frequency shifts in the pitch 
It was further observed that decreasing turbulence intensity produces a frequency shifted to 

the right (got sharper) or to the left (got flatter) depending on whether the pipes were nicked 

or not, respectively. Frequency shifts of about 0.3% were observed. These shifts are 

perceivable. This behaviour maybe explained only after a detailed analysis of the effects of 

fluid flow and pressure have on the acoustic propagation of the the whole system. 

0 Organ pipes can be modelled as electrical circuits for turbulence studies 

Several other researchers have conducted their studies into the sound generation 

mechanism of organ pipes by using electrical analogous circuits. They used circuit 

analogues for studying the effects of pressure fluctuations within the key chamber, 

feedback mechanism at the pipe mouth, the jet drive mechanism of the pipe resonator and 

initial transients that occur when the pipe foot hole is first opened. A technique for 

modeling the pipe circuit as an electrical circuit for turbulence studies was also undertaken. 

A circuit model of the flue organ pipe similar to those used on the experimental test rig was 

developed. The components of the electrical equivalent circuit were calculated from 

appropriate equations. These equations contain physical properties of air. They are also 

dependent on the geometric dimensions of the pipe. An electrical simulation of the circuit 

on HSPICE gave resonant frequencies well below expected/measured values. - 

The aero-acoustics of organ pipes involves coupling between the pipe mouth and pipe inlet 

as well as the outlet and atmosphere. The coupling, it was argued, gives rise to a mutual 

inductance between the pipe mouth and pipe resonant column. The mutual inductance is 

also dependent on the pipe length. It is inferred that the whole pipe length may not fully be 

participating in the resonant process. Resonance is most likely taking place within a certain 

active length, La, which is less than the geometric of the pipe, L,.. The sound generated 
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propagates within the entire geometric length of the pipe, however, only the active length 

is the radiation source. Through trial and error, an La = Leta was found to give circuit 

component values that yielded resonant frequencies closer to the experimental values. 

Electronic CAD (EGAD) simulation studies on the pipe circuits for turbulence were 

successfully carried out to evaluate the resonance frequencies of the circuits. However this 

technique could not be fully realised because the CAD package, HSPICE, available could 

not simulate a noise circuit to represent turbulence. Modifications to the wirelisting 

program generated by the drawing package, POWERVIEW for HSPICE simulation, to 

include numerical values of noise (turbulence) could not be compiled because the package 

could not handle tasks of such complexity. 

Hardwired circuits of the pipes were built and tested. Various magnitudes of noise signal 

simulating turbulence and a sinusoid signal voltages tuned to the pipe resonant frequency, 

were applied to the circuit. The circuits are found to exhibit resonance effects at frequencies 

similar to those obtained by computer simulation and experimental test rig. However no 

major changes in spectral characteristics were observed with changing levels of turbulence 

(noise). The analogous electrical circuits of the different pipes are principally passive 

resonance circuits. At resonance, such circuits usually behave like narrow band pass filters, 

transmitting only frequencies at or very near the vicinity of the resonant point. The pipe 

circuits are most likely to have been exhibiting a similar behaviour. It is likely that a non- 

linear circuit model of the pipe may exhibit a behaviour similar to the behaviour of the 

observed organ pipe. 

The detailed analysis of a circuit with non-linear components is beyond the scope of this 

work, however, it appears that such a study may be useful for simulating the effects of 

turbulence in a general case, including the organ pipe and wind delivery system. 

.. 135.. 



Appendices 

APPENDICES 

APPENDIX 1 

Some notes on the St Paul's organ 
The stop list, details of wind pressures plus some information on the console as well as pipe 
scaling are outlined below. 

Stop List 

The stops on the 3 manuals and pedal are as outlined in table 1 below 

Table 21: Pipe stops for St Paul's 

Manual I Manual II Manual III Pedal 

Tremulant Tremulant Tremulant Tremulant 

Cromhorne (8) Trompete (8) Trompete (8) Schalmei (4) 

Cymbel III (2) Trompete (16) Basson (16) Trompete (8) 

Sesquialtera II (23) Scharf IV (1) Scharf IV (1) Posaune (16) 

Octave (1) Mixture IV-VI Tierce (i 3) Mixture VI (23 ) 

Quinte (i. ) Gemshom (2) Waldflute (2) Nachthorn (2) 

Principal (2) Spitzflute (4) Nazard (23) Octave (4) 

Rohrflute (4) Octave (4) Koppelflute (4) Rohr Gedackt (8) 

Praestant (4) Rohrflute (8) Principal (4) Octave (8) 

Gedackt (8) Principal (8) Holz Gedackt (8) Subbass (16) 

III _Ia Gedacktpommer (16) Spitzgamba (8) Principal (16) 

Cymbelsternb III - IIa Celeste tc (8) III - Pedal' 

I- IIa II - Pedal' 

II & Pedal Combs. d I- Pedaic 

III on Pedal pistonsd 

I on Pedal pistonsd 

a. III-I: III-II: I-II are manual couplers (i. e. when down, manual III plays on manual 1 etc. ) 
b. A series of small bells hit by hammer 

c. III-P: II-P: I-P are manual to pedal couplers (i. e. when drawn, the bottom 32 notes of manual III are coupled 
to the pedals etc. 1 

d. These stops offer methods of controlling the computer based registration system fitted to the organ 

.. 1 36.. 



ApptnýlicGs 

Wind Pressure 

The design pressure for the manuals and pedals are as follows: 
Manual I, 53 mmH2O; Manual H, 60mmH2O; Manula III, 63mmH20 and Pedal, 70mmH2O 

Pipe Scales 

The pipe diameter (in mm) for the stops used in the experiment are as given in table 2 below: 

Table 22: Some Pipe Scales for St Paul's 

Stop Pitch (ft) C1 C13 C25 C37 C49 C61 

Gedackt 8 102 65 42 27 17 G#57 
gemshorna 

Rohrflute 4 70 44 27 16 G#45 
gemshorn 

- 

Principal 2 44 25 15 9 5.6 4 

a. Stopped pipes can not be made above G56 at 8ft pitch, the corresponsing pipe at 4 ft pitch, G"57 gemshorn 
is used. A similar rule applies for the C49, Rohrflute 

The author was informed by the organ builders that the pipes were scaled using the Rensch 
System. The a22 (4 ft Principal) was set to 440 Hz. This settling is usally determined by the organ 
builder on the basis of the specification supplied by the person/organisation commissioning the 
organ. 

The organ builders also indicated that the diameter of the flue pipes, except flutes, were halved not 
on every octave but on the 17th note. The flutes were halved on the 16th note. 

Details of the scales of the other pipes are available in: The Concert Organ of St Pauls, Nov 1977, 
published by the University of Huddersfield 

The Organ Console 

The organ console is made up of 3 manuals (equivalent to the Keyboard - played by hand), the 
pedals (equivalent to a keyboard operated with feet) and the stops. Each manual has 61 notes. The 
notes are the same for each manual. The three manuals are: manual I (choir organ); manual II 
(great organ) and manula III (swell). The method of indicating notes is as follows: 

Manuals: - Compass, C1 C#2 D3 D#4 E5 F6 F#7 G8 G#9 A10 A#11 B 12 CI3 
.. 
C25 

.. 
C37 

... 
C49 

... 
C61 

C1 is bottom C (bass), C25 (middle C) and C61 top C (treble) 

Pedals: - Compass, C1 C#2 D3 D#4 E5 F6 F#7 G8 G#q Alp A#11 B12 C13 
... 

C25 
... 

G32 
C1 is bottom C13 (bass) and G32 top G (treble) 

Pitches are indicated by stop and note e. g. 4 ft Principal A22 is tuned to 440Hz 
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APPENDIX 2 

Sc. rpEQ 

ABCDEG 

Figure al: Overall view of sound board 

A-G are sliders. 
Each slider is marked with a letter appropriate to its position on scale. 
When the a stop is pulled it pulls a slider(s). Each slider has holes in it which when the slider is 
pulled, is aligned with the toe hole of the pipe and allows wind into the pipe foot. 
(More details on the soundboard can be found in The Organ, by J. Perrot, Oxford University 
Press, 1971, chl2) 
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A3 A Theoretical Overview of Turbulence 

All Turbulence: Some Definitions 

11 

Imagine some fluid, say, air or water, flowing in a channel with rigid walls. The flowing 

fluid molecules encounter frictional forces at the walls as it flows, giving rise to 

"spinning" of the fluid at the wall boundary. This "spinning" is similar to the spinning of a 

moving ball when it hits a rigid wall. The "spinning" gives rise to eddies and vortices that 

introduce fluctuations within the mean flow of the fluid. These fluctuations can either be 

velocity or pressure fluctuations or both. These fluctuations in motion are referred to as 

turbulence. 

If appropriate sensing devices are used to monitor the turbulence, it should exhibit a 

random amplitude and spread across a broad frequency band. 

3_ a 

Bradshaw,? has a more complex definition of turbulence. He defines it as: A three 

dimensional time-dependent motion in which vortex stretching causes velocity fluctuations 

to spread to all wavelengths between a minimum determined by viscous forces and a 

maximum determined by the boundary conditions of thefow. [This is the] state offlow in 

all fluid motion except those with low Reynolds numbers. " 

Defining turbulence in terms of "wavelengths" or wavenumber is a misnomer as this 

implies that turbulence has a velocity of propagation and can accommodate the sort of 

analysis that would be used in electromagnetic waves, acoustic waves etc. It is more 

sensible to consider turbulence fluctuations to be spread across different frequencies 

within the spectral band of turbulence under study. 
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Hinze41 argues that the fundamental characteristics of turbulence in-fluids is "irregular 

motion". These irregular motions are random in space and time; -83 i. e. for a given point in 

the flow, the instantaneous values of the turbulence motions are not predictable, rendering 

it difficult to define the function of turbulence motion. Accepting Hinze's arguments to be 

valid, these fluctuations, could be better understood by using some principles of 

probability and statistics. 

A3.2 The Statistical Nature of Thrbulence 

The statistical analysis of turbulence, borrows from amongst several, the works of 

Hinze, 41 Bradshaw, 7 Bendat and Piersol6 and the Russian Physicists Smol'yakov and 

Tkachenko. 83 Correlation techniques shall be used in the spectral analysis of the 

turbulence. The turbulence signal emanating from a turbulence sensor, shall be analysed 

using spectral techniques. 

Measurements on the turbulent nature of the airflow were taken using a hot wire 

anemometer and spectrum analyser. 

A3.2.1 Assumptions made on the statistical nature of turbulence 

The measurements taken were analysed exploiting some assumptions based on concepts in 

Statistics and Probability, namely: 

1 That the turbulence signal from the transducer, is a continuous random 

variable. That is; in the observation of the turbulence signal in the time domain, over a 

definite or indefinite interval (impractical), the signal continuously has an unpredictable 

(or indeterminate) value 83 

2- In the experiments conducted for this work, turbulence measurements were 

made on the assumption that the flow was homogenousl. Smol'yakov and Tkachenko83 
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argue that flow-is homogenious along streamlines parallel to the duct wall if the duct has a 

constant cross-section and is "long enough". The long rectangular ducts used in our 

experiments ensured these conditions were met. As far as practicable, flow measurements 

were taken at distances of 20 times the hydraulic (equivalent) diameter, De, of the duct 

down stream. 

Where De is given by the equation; 21 

De = (4 x Area)/Perimeter 3.1 

3 It is further assumed that the turbulence fluctuations are statistically 

stationary (see illustration of figures al & Q. This assumption is only valid if the one 

dimensional probability density function of the turbulence signal is time independent. 

1. A note on homogenousfuidfow: 

If a plane perpendicular to the duct wall and the flow of a fluid in a duct is taken, 

and turbulence monitiored at different points within the plane, and it is observed 

that the turbulence situation is different at each point, then the flow exhibits spatial 

inhomogenity. In other flow situations, the turbulence at the same point in the plane 

may vary with time: this varation yields a time inhomgenous situation. 
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Fig a2 An example of a statistical stationary random signal r(t) 

r(t) 

t 

Fig a3 An illustration of a non-stationary random signal rl (1) 

The moment, µn,, of a continous signal [x(t)] is prescribed by the equation: 

.. 
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µm = x"`p (x) dx ......................................................... 3.2 

such that for m=1, µl = the mean of the value of the flow characteristic under 

consideration. 
So if p(x) was describing the probability density of the velocity fluctuations, µl would 

yield the mean flow velocity. If the probability density function, p(x), is not constant, the 

moment of the signal will not be constant. 

4 If in addition to the homogenous and the statistically stationary property, the 

time and ensemble average of the turbulence fluctuations are assumed to be identical, then 

the turbulence signal can be described as ergodic. 

This is a very useful assumption as measurements and subsequently spectral analysis of 

the turbulence signal, involves the averaging of this signal in individual realisations over a 

time period rather than an ensemble of realisations. 

A3.3 Spectral Analysis of Turbulence 

It can be assumed that the velocities of the fluid in the different turbulent motions have 

their corresponding frequency band. Because of the random nature of these motions, an 

average amount of their Kinetic Energy would be expected to be devoted to some very 

small but finite individual frequency band over a range of frequencies 41 

It would be unrealistic to say that this energy is concentrated on discrete frequencies 

because this would imply that turbulence exhibits wave characteristics; a phenomenon 

earlier discounted. 

The spreading or distribution of this average energies over the different frequencies yields 
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the Energy Spectral Density (also called, the Power Spectral Density or Energy Spectrum 

or Spectral Density) 

The purpose of studying the spectrum of turbulence of the air supplied to organs, is to 

elucidate the acoustic effects of turbulence rather than its fluid dynamic character. 

The spectrum of the turbulence signal was obtained using the B&K dual channel spectrum 

analyser (model 2340). 

A3.3.1 Principles of Correlation Techniques in the Spectral Analysis of 
Turbulence 

The superposition of the vortices and various eddies within the flowing fluid generally 

induce (turbulence) random motions about the mean flow velocity such that the 

instantaneous value of the velocity could be written as: 

U= II+u ........................................................................... 3.3 

where; it = average velocity and u velocity of random fluctuation, with the time average 

of random fluctuations, ü, =0 and the average of the absolute value of the turbulence 

fluctuations, lül a measure of the aggression of the fluctuation: 41 (these should not be 

confused with u' (= 4u-2), the intensity of turbulence). 

If two temporal history records of the turbulence signal are taken from two sensors Sx and 

Sy providing signals X(t) and Y(t) say, then the procedure for determining the dependence 

of Y(t) on X(t) or vice versa, for continuous ergodic data, following Bendat and Piersol6 is 

via the cross covariance function, Cyx, between the signals of Sx and Sy as given in 

equation 3.4 below. 
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Cyx(-r) = E[{Y(t) -µy} {X(t+ti) -µX}] ................................. 3.4 

E[] = Expectation of []; µx and p. = mean values of X(t) and Y(t) respectively 

ti = spatial distance in the time domain between sensors. 

Following appendix 3B: 

CyX(ti) = Tlim 
Tj({Y(t) 

-µy}) {X(t+ti) -µx} )dt ..................... 3.5 . 
0 

:.. 3.6 
.............. = Ry, r (T) + µyµX......................................................... 

where; 

T 
. Ryx 

Tlý T( 
Y .......................................... 3.7 

0 

RyX(ti) = crosscorrelation between Y(t) and X(t) 

Using Fourier transform techniques, the cross power spectral density of the continuous 

and ergodic time history records of the signals Y(t) and X(t) can be determined? 41 65 83 

This is realised by taking the Fourier Transform of the cross correlation function of these 

records in the manner prescribed by equation 3.8 below, 

00' 
SyX (ý -j RyX (, r) e712 ndT ...................................................... 3.8 

-a* 

.. 14S.. 



Jlppcnsua 

Sy. (f) = Cross power spectral density function. .. I 

If Y(t) = X(t) i. e. the signals are from the same source then equation 3.8 transforms into: 

co 

Syy (t) =` Ryy (, z) e j27rftdz 
...................................................... 3.9 

-. 00 

Since Ryy(r) is an even function; 

i. e. Ryy(-ti) = Ryy('r) Syy(fl is also an even function. 

In this situation, Syy(f) a Auto power spectral density function or Autospectrum. 

In practice, signal analysis is mainly concerned with the positive frequencies, hence 

if this practical understanding were applied to the equation 3.9; only evaluations from zero 

to oo would be considered which after a few arithmetic manipulations would yield the one- 

sided auto power spectral density function, Gyy(f), where; 

co 

Gyy (t) = 2Syy (1) = 21 Ryy (, r) e j2"f1 di............ `d (f 2 0) ......... 3.10 

-. 00 

=p V (f<0) 

i. e. 
Go 

Gyy (f) = 2Syy (f) =2J Ryy (t) { cos (2nft) +j sin (2nft) } dt......... 3.11 
-00 

`df2O 

=0 `df<0 

Knowing that Ryy(T) = Ryy(-T) it implies that the one-sided autospectrum can be extracted 

from the real part of the Fourier transform in equation 3.11, such that: 

00 

Gyy (f) = 4,1 Ryy (T) cos (2nft) di ............................................. 3.12 
0 

that is: the one-sided power spectral density function (or one-sided autospectrum, when Sy 
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= SX) of the turbulence signal emanating from the turbulence sensor can be obtained by 

taking the real component of the positive frequencies of the Fourier transform of the cross 

correlation (or autocorrelation) of the signal. 

Given the random nature of the turbulence fluctuations, its time domain signal is expected 

to be similar to broadband noise. The autospectrum should reveal the frequency span of 

the turbulence signal. 

The size of the eddies inducing the turbulence depends on the duct size and the character 

of the vortices; the latter resulting in a decrease in the size of the eddies with increase in 

wind speed. 41 These in turn are expected to influence the frequency span of the turbulence 

signal. 
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APPENDIX 3B 

A-3.4 Derivation of the Covariance for two Random Continuous Data 

Given a random variable, Y(t), with fly and aye as its mean and variance respectively and with 

a probability density p(y): if (like a turbulence signal) the random variable, Y, is a Continuous 

function f(Y) V real Y, then the mathematical eapectaton of f(Y) is given by the equation: 

00 

E[f(Y)] =f f(Y)p(y)dy ............................................................ al 

_00 
Let f(Y) = Ym VmE{ I+ > 01; equational will become 

0o 

EýýYm)ý = µy, m = JY"`P(y)dy 
................................................... a2 

-00 

E(Ym) is known as the mth moment of f(Y) 

when m=0; (i. e. 0 th moment) 

m =1; (i. e. 1st moment) 

m=2; (i. e. 2nd moment) 

i1yA=1 

117. i =Iy 

µy,, 2 =T2 (the mean sq. value of y(t)) 
If f(Y) is substituted by (Y- P , )l instead, then; 

00 

E[(Y-µy)"] =j (y-µy)"P(y)dy ............................................. a3 
-. 00 

E[(Y - [iy, )°] is known as the nth central moment of f(Y) 

[Note: when n=2; eqn. a3 yields, a, the variance i. e. the 2nd central moment] 

If f(Y) is continuous and ergodic data in the time domain, and captured over a time frame, T, 
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then the 2nd central moment from equation a3 can be re-written as: 

T 

EI(y(t) -µy)2] = ]UM Tf (y (t) -µy)2dt .................................... a4 
0 

Consider two ergodic and continuous data y(t) and x(t) with a time delay of, r, between them. 

If in addition we wish to determine the linear relationship between them, this can be obtained 

by evaluating the cross covariance, Cý(r), of these datum via equation a5 below: 

C, Y,. (ti) = E[{Y(t) - µs, } {x(t+ ti) - µx}] ............................................................... a5 

substituting eqn. a5 into eqn. a4, yields eqn. a6, below 

T 

Cy, (-r) - TýýTJ {y (t) -µy} {x(t+T) -µx}dt............ a6 
0 

TTTT 

_ýT jy (t) x (t+T) dt-T, lim T Jµyy (t) dt T- lim T Jµý (t+T) dt +Tim Tf µyµxdt 

0000 

I II III IV... a7 

Expression: I= Ryx(T) 

II = III = 0: y(t) & x(t+ti) are Continuous random variables, while µ is 
constant; the time average of such variables always yield zero .6 

N= T- 
T[µyµXtJö=tLyµx 

ý c,, X =Ryx +Ny14 
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APPENDIX 4 

A-4 Calculations for the Turbulence Suppressor Built for St. Paul's 

Given that honeycomb dimensions of suppressor are: (ID) 2.4 mm x 3.5 mm and an OD of 2.8 

mm x 3.7 mm, the blockage ratio of the honeycomb, ß, = (3.5x2.4)/(3.7x2.8) = 0.8108. 

3.5 mm 
lp- 

2 7mß- 

Effective area of each passage 

Fig. a 4; Dissection of Suppressor Passage. 

Determination of Re before honeycomb passage: 

Given duct dimensions (of St. Paul's) of 419 mm by 146 mm; 

and maximum flow rate, Q, of centrifugal blower of 1200 cubic ft. /min. (i. e. = 0.5663 m3/s) 

Mean flow velocity, U, of Q/A (= 9.258 m/s) and a Hydraulic Diameter; 

De = 4A/P of 0.2165; where P= perimeter of duct and A= Area of duct. 

Assuming viscosity, }. t, and density of air, p, to be 1.8 x 10-5 Ns/m2 and 1.2 Kg/m3 

respectively, R, {= (UDp)/µ} evaluates to 133723 (» 2300, the laminar to turbulent 

transition Re) 
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Determination of Rý, p within honeycomb passage 

Dimensions of honeycomb = 100 mm x 419 mm x 292 mm. 

Effective area of honeycomb, A., =0 (419x292) mm2 = 0.0992 m2. 

Mean velocity through passage Up = Q/Ae = 5.7087 m/s 

Passage hydraulic diameter, de, = 4A. /Pp = 2.85 mm; 

where Pp = Perimeter of each passage of the honeycomb. 

These parameters yield an R., p = (pUpde/µ =1085 

Now, the pressure drop across the passage, Op, is given by: 

Ap = (4pf L., Up)/2de; where, the friction factor, f, =16/RQ, P, 
The foregoing parameters yield a Op of 40.62N/m2 
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APPENDIX 5 

A-5 Procedure for Checking the Frequecy Response of the Constant Tempera- 
ture Anemometer(CTA) 

The frequency response of the HWA is determined using the experimental set up of figure a-2. A 

1 KHz sgaure wave from a signal generator is fed into the bridge input. The output of the CTA is 

displayed on an oscilloscope. The output should be similar to the simulated trace of figure a-3. 

If the Pulse has a width, -c, (for hot films), then the frequency response, f= z-1 

aTUE- - MADE IN USA 

Fig. a5: Setup for measuring CTA frequency response (Scanned from TS/ Manual92) 

100 mvT 

I 

ý 
T P"- -:? - 

1iii 
b 

Fig a6: Output trace for probe frequency response test (Scanned from TSI Manual92) 
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APPENDIX 6 

A-6 Questionaire on Research on the Effects of Turbulence on Organ Pipe 
Sound. 

Year ................................................................................ 

Instrument(s) Studied (i) ................................................ (ii)........................................ .................... 

GROUP: ......................... 

FOUR pipes will be played under FOUR different conditions. On a Scale of 1 to 5 (1 = Horrible, 
2= Poor, 3= Okay, 4= Good, 5= Brilliant) describe your appreciation of each note in the 
second row of the table below. In the space provided in row three- use words from the list of 
adjectives given in table two to further qualify your appreciation. 
Note: There is a separate table for each pipe. 

Pipe l 

Table 23: Musical Appreciation of Turbulence Effects 

Flow Conditions I II III IV 

Describe Quality 
of Sound 
(Using 1-5) 

Using Adjectives 
in Table 2 

Table 24: List of Adjectives 

Smoother Harsh 
Pitch (SP) (H) 

Clearer Coarse 
Sound(CS) (C) 

Brighter Wobbles 
(B) (W) 

Purer Aggressive 
(P) (A) 

Steady Shrill 
(St) (Sh) 
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APPENDIX 7 

A7.2 On (statistical) moments 

A measure of the spread about the mean can be calculated in terms of the 2nd, 3rd and 4th 

moments. The 2nd moment is the variance of the data. The 3rd moment provides 

information on the degree of asymmetry relative to the mean. The 4th moment is a 

measure of the amount of peakedness or physical sharpness of the distribution relative to 

the mean. 

A7.2.1 On the fourth moment 

Figure a7.1 is an illustration of curve shapes that describe the variation in the 4th 

moments. A very flat distribution is platykurtic, a rounded peak is described as 

mesokurtic, while a sharp peak, leptokurtic 

- , if 
Platykurtic mesokurtic leptokürtic 

Figure a7.1 Curve shapes for different types of 4th moments. 

A7.2.2 On the third moment 
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When the distribution is not skewed, the 3rd moment is zero. 

A distribution can be skewed to the right or left. Skewness to the right (or positive 

skewness) implies the distribution tails more to the right than left and vice versa for 

skewness to the left (or negative skewness), 

Left skewness (-ve) Symmetry Right skewness (+ve) 

Fig. a7.2 Distributions illustrating types of 3rd moments 

When moments relative to the mean are evaluated they are generally referred to as central 

moments. 

The frequency of the note falls at the origin of the distribution of the curve of the 

fundamental. It is the changes in the distribution about the origin (rather than the mean) 

that is of interest. To quantify these changes, it would be reasonable for the moments to be 

taken about the magnitude of the origin, i. e. about the magnitude of the origin or centre 

frequency. 

A7.3 Numerical analysis of pipe fundamentals. 

If a variable, X, has N different values; such that X= Xn, Vn=1,2,3 
.... N, the Ktý' 

moment of the variable, X, is given by equation a7.1 below: 
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i. e. Xk = Kth moment of X 

For K=1; 

X1= Arithmetic mean of X 

The Kt' moment about the mean, 'Mk, is defined as the Kth central moment, and is 

prescribed by the equation: 

N 

............................................. a7.1 

a7.2. 

L. r 
(X 

n-ýk 
im 

k_ 
Rat 

N ....................................... a7.3 

When K=2, 'M2 = second central moment or variance about the mean. 

K=3, 'M3 = 3rd central moment or degree of asymmetry relative to the 

mean. 
K=4, 'M4 = 4th, central moment or degree of peakedness relative to the 

mean. 

If the moments are computed about the magnitude of the origin, ' say, such that 

jN 
L: 

(Xn 

n-l 
N ....................................... a7.4 
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Mk becomes the 0 moment about , 4f. 

If Xn and yr are not dimensionless, the dimensionless form of M3 and M4 would have to be 

determined in a manner given in equations a7.5 and a7.6, to yield, the moment coefficient 

of skewness, Mcs, and the moment coefficient of kurtosis, Mck, respectively; where: 

M3 
- .......................................... a7S MCS 
- iS Mz 

M 
Mý, ý =i............................................. a7.6 

MZ 

If the shape(distribution) of the fundamental changes about the centre frequency is to be 

studied, then, it would be proper to take moments about the centre frequency -in other 

words, compute Mk (equation a7.4). 

A7.4 Application of principles of moments to evaluation of experimental data 

Notes that were to be analysed were played back into the spectrum analyser, and their 

power ' spectral density taken. The fundamental was zoomed into at ±50Hz about the 

central frequency. The cursor of the spectrum analyser was used to sample the readings of 

the magnitude of the curve at frequencies ±10Hz about the fundamental. 

The change in the data within ±1Hz of the centre frequency was more drastic, hence 

samples within this range were taken in steps of 0.125Hz or 0.0625Hz; then 0.25Hz, 
0.5Hz, later progressing to, steps of 1Hz on either side of the centre frequency. An example 
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of the sampled data, with the precise points of measurement for the different notes 

analysed is presented in appendix 8. 

The peak magnitude of the fundamental varied from note to note. This varied for the same 

note under different blowing conditions. Though the microphone was held in the same 

position under laboratory conditions, all the measurements were not conducted on the 

same day. 

In circumstances where the recordings where taken inside the organ of St. Paul's, it was 

difficult to maintain the position of the microphone as recordings where done on different 

days - in addition, the microphone position had to be adjusted frequently to obtain a high 

recording level on the DAT recorder. 

In order to ascertain some level of uniformity in the data before analysis, the sampled 

spectrum was normalised. The illustration below describes the approach used. 

Assume a note had a central (fundamental) frequency, fc Hz, say, and the shape given in 

the example of figure a7.3 below. 

fc - 10 fc -x 
fc fc 

Fig a7.3 Sampling of frequency data for analysis 

10 
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The cursor was moved say to fc -x Hz and its amplitude, Ax was read, through to fc-10 Hz. 

Similarly the amplitude of fc Hz, Ate; fc +y Hz, Ay; etc. were taken till the frequency 

range, f±10 Hz was covered. 

Amax varied for different notes. To get the same frame of reference for comparison, the 

data was normalised; such that An, =1 and Amin =0 for all the data evaluated. 

To transform a data point Ap, to its normalised value Anp, the following expression was 

used. 

_ 
Ap -Amin Anp - ......................................... Amax - Amin 

Examples 

Ax - Amin 
A 

Amax -Amin 

_ 
Amax-Amin 

Aa1 
nmax - Amax-Amin 

Amin -Amin 
Anmin = Amax-Amin 

............................................. a7.8 

.......................................... a7.9 

........... " ............................. "a7.10 

Anj Vj are now dimensionless entities. 
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It was earlier discussed that the moments are to be taken about the centre frequency, fc. 

Since the magnitude of fc for the normalised curve is one for all notes, it implies the kth 

moment about the magnitude of fc would be equivalent to the kt moment about unity; 

from equation a7.5. This transforms equation a7.4 to equation a7.11 below 

(Xn-1) 

Mk = °1 
N ....................................... a7.11 

As such, when k=4, it can be reasonably assumed that we have a measure of the physical 

sharpness of the fundamental. For k=3, equation a7.11 computes the skewness of the 

data. 

A comparative examination of M4 and M3 about the fundamental frequency under 

different turbulence conditions would therefore provide some information on how 

turbulence affects the shape of the notes and therefore tonal quality. 
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APPENDIX 8a 

A-8a Flow chart of MINITAB programme used to calculate moments 

START 

ENTER 
EQUATIONS OF 

MOMENTS 

C 
READ PIPE DATA FROM 
PRE-PREPARED TABLE 

CALCULATE 
MOMENTS 

I OUTPUT 
RESULTS OF 

CALCULATIONS 

END 

EXIT PIPE DATA TABLE 
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APPENDIX 8b 

A-8b Sampled Data from St Paul's (an example) 

Generally: [ ]B4 = Data sample of note [] before turbulence attenuation. 

NB4 = Normalised data before turbulence attenuation 

NAFT = Normalised data after turbulence attenuation 

FREQ[note] = Frequency at which samples of note were taken 

Table 25: Gedackt C61 

FREQC61 GEDC61B4 GEDC61AF NB4 NAFT 

-10 -89.9 -96.6 0.092402 0 

-9 -89.6 -94.2 0.098563 0.050209 

-8 -86.4 -90.9 0.164271 0.119247 

-7 -87.7 -90.3 0.137577 0.131799 

-6.5 -83.8 -88.2 0.217659 0.175732 

-6 -82.7 -88.9 0.240246 0.161088 

-5.5 -81.8 -86.4 0.258727 0.213389 

-5 -79.8 -84.6 0.299795 0.251046 

-4.5 -81.2 -88.2 0.271047 0.175732 

-4 -78 -84.8 0.336756 0.246862 

-3.5 -78.4 -85.4 0.328542 0.23431 

-3 -77.3 -82.5 0.351129 0.294979 

-2.5 -75.7 -79.1 0.383984 0.366109 

-2.25 -74.2 -76.1 0.414784 0.42887 

-2 -72.6 -75.8 0.447639 0.435146 

-1.875 -70.9 -76.6 0.482546 0.41841 

-1.75 -69.5 -73.5 0.511294 0.483264 

-1.5 -70.6 -73.3 0.488706 0.487448 
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Table 25: Gedackt C61 

FREQC61 GEDC61B4 GEDC61AF NB4 NAFT 

-1.375 -69.1 -72.3 0.519507 0.508368 

-1.25 -67.7 -70.2 0.548255 0.552301 

-1.125 -67.5 -70.7 0.552361 0.541841 

-1 -64.8 -69.9 0.607803 0.558577 

-0.875 -64.2 -69.2 0.620123 0.573222 

-0.75 -63.1 -67.3 0.642711 0.612971 

-0.625 -59.3 -64.3 0.720739 0.675732 

-0.5 -58.3 -62 0.741273 0.723849 

-0.375 -55.1 -60.3 0.806982 0.759414 

-0.25 -50 -55.4 0.911704 0.861925 

-0.125 -46.7 -50 0.979466 0.974895 

0 -45.7 -48.8 1 1 

0.125 -45.9 -51.1 0.995893 0.951883 

0.25 -48.3 -56.5 0.946612 0.838912 

0.375 -54.9 -61.1 0.811088 0.742678 

0.5 -58.1 -62.4 0.74538 0.715481 

0.625 -58.2 -65.9 0.743326 0.642259 

0.75 -61.5 -68.2 0.675565 0.594142 

0.875 -64.3 -69.6 0.61807 0.564854 

1 -66.5 -71.2 0.572895 0.531381 

1.125 -67.3 -72 0.556468 0.514644 

1.25 -68.1 -73.8 0.540041 0.476987 

1.375 -69.6 -73.4 0.50924 0.485356 

1.5 -71.2 -74.3 0.476386 0.466527 

1.75 -74.3 -75.7 0.412731 0.437239 

1.875 -75.5 -76.1 0.38809 0.42887 

2 -74.6 -75.3 0.406571 0.445607 

2.25 -75.4 -78.3 0.390144 0.382845 
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Table 25: Gedackt C61 

FREQC61 GEDC61B4 GEDC61AF NB4 NAFT 

2.5 -77.7 -79.6 0.342916 0.355649 

3 -77.7 -83.7 0.342916 0.269875 

3.5 -80.8 -84.3 0.279261 0.257322 

4 -82.2 -83.8 0.250513 0.267782 

4.5 -83.9 -87 0.215606 0.200837 

5 -85.6 -85.9 0.180698 0.223849 

5.5 -86.2 -87.4 0.168378 0.192469 

6 -87 -88.6 0.151951 0.167364 

6.5 -88.9 -89.5 0.112936 0.148536 

7 -89.3 -88.5 0.104723 0.169456 

8 -91.1 -91.2 0.067762 0.112971 

9 -93.4 -90.9 0.020534 0.119247 

10 -94.4 -92.4 0 0.087866 
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A-9 Example of Test Rig Sampled Data 

Table 26: Pipe 1 Data 

FREQ LOT1 L2T7 L5T5 L7T2 L1T0 

-10 -53.4 -54.1 -53.6 -54.7 -54.3 

-9 -52.7 -54.1 -53 -54 -54.3 

-8 -53.6 -56.7 -53.1 -53.5 -54.3 

-7 -52.9 -53.8 -52.8 -54 -52.3 

-6 -52.8 -51.6 -53.1 -55.4 -51.9 

-5 -51.3 -51.4 -48.3 -52.5 -52.6 

-4 -48.8 -49.4 -51.6 -49.4 -52.4 

-3 -47.7 -50.9 -50.3 -48.9 -52.4 

-2 -45.7 -44.2 -44 -45.1 -46.2 

-1.5 -43.2 -41.5 -43.7 -41.5 -42.8 

-1.375 -39.8 -39.9 -42 -42.5 -42.1 

-1.25 -40.2 -38.1 -38.7 -39.3 -40.4 

-1.125 -37.7 -39.1 -38.6 -36.5 -39.6 

-1 -35.9 -39.3 -37.4 -36.7 -38 

-0.875 -34.8 -37.3 -34.5 -36.2 -37 

-0.75 -33.4 -33.3 -33.1 -32.7 -34.5 

-0.625 -30.1 -32.4 -30.6 -33.3 -33.9 

-0.5 -28.1 -27.7 -27.4 -29 -28.7 

-0.375 -24.1 -23.7 -25.9 -27.1 -28.6 

-0.25 -18.8 -19.9 -20.1 -20.7 -23.1 

-0.187 -13.9 -13.9 -15.6 -17.1 -18.5 

-0.125 -2.8 -7.3 -10.1 -10.9 -10.2 

-0.062 3.3 1.8 -0.6 2 2.3 

0 3.5 4 4 4.2 3.8 
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Table 26: Pipe 1 Data 

FREQ LOT1 L2T7 L5T5 L7T2 L1T0 

0.062 -3.5 -1.3 1.2 -4.7 -5.9 

0.125 -13.1 -10.8 -9.4 -16.3 -17.7 

0.187 -18.5 -19.3 -19.1 -19 -22.9 

0.25 -22.9 -23.3 -22.8 -22.3 -23.8 

0.375 -27 -24.9 -24.4 -29.3 -32 

0.5 -30.6 -31.8 -30.5 -31.1 -31.1 

0.625 -31.4 -32 -30 -33.4 -34.1 

0.75 -34.1 -32.1 -33.3 -34.8 -38.5 

0.875 -35.1 -36.3 -32.4 -36.9 -38.8 

1 -37.5 -38.6 -37 -37.9 -39.8 

1.125 -37.9 -38.5 -39.8 -37.4 -41.3 

1.25 -41 -38.5 -38.9 -43.1 -40.5 

1.375 -41 -39.5 -43.6 -44.2 -43 

1.5 -42 -41.1 -45.1 -42.5 -42.9 

2 -45.6 -45 -45.1 -44.3 -45.9 

3 -46.3 -49.6 -49.8 -48.8 -51.9 

4 -51.9 -50.2 -50.6 -50.1 -54 

5 -49.7 -53.9 -51.8 -50.6 -53.5 

6 -54.2 -53.5 -53 -55.1 -51.6 

7 -53.2 -53 -53.5 -56.5 -53.2 

8 -55.1 -53 -55.6 -54.6 -52.8 

9 -52.7 -56 -51.8 -54.2 -52.9 

10 -50.8 -54 -53.2 -54 -54.9 
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A-10 Flow Chart of Maple Program used to determine pipe circuit parameters. 

START 

I DEFINE CIRCUIT 
COMPONENT 

PARAMETERS & 
VALUES 

ENTER 
COMPONENT 
EQUATIONS 

z 

CALCULATE 
COMPONENT 

VALUES 

DISPLAY 
COMPONENT 

VALUES 

END 
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APPENDIX 11 
All. l Pipe Outline and Dimensions used in calculations 

Dimension (mm) Pipe 1 Pipe 2 Pipe 3 Pipe 4 

H 569 274 132.5 67 

h 179 171 149.3 154.8 

D 11.16 6.14 4.2 2.6 

d 1.1 0.65 0.65 0.4 

w 32.44 24.14 11.15 7.5 

R 47 31.15 17.31 9.36 

r 6.85 5.1 3.6 2.6 

t 1 . 
95 .5 .5 

h+H 748 445 281.8 221.8 

1 12 6 2 1.5 

D' 8.85 4.8 3.5 1.9 

A11.2 Pipe segments (annotated diagram of pipe is overleaf) 
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A-12 Manipulating the Wirelisting to Introduce a Zürbulence(noise) input 

Let N random variables with a Guasdsian Distribution that 'have a mean t and standard deviation 

a be required to simulated noise. Let in additon the N variables be required to be put in cell Cl 

say. The macro that realises this in MINITAB is: 
RANDOM N Cl; 
GUASSIAN µ a. 
By usinga µ of 1 and aa of 0.25,. 5 75 and 1 gives simulated turbulence intensities of 25%, 50%, 
75% and 100% respectivelywhen the noise is combined wiht a sinusiodal signal (µ) with input of 
1V. 

If the N random variables were X1, X2, X3 ... XN say, then the input segment of the wirelisting 
programme generated ib POWERVIEW for HSPICE simulation could be modified as the input in 
N time steps, T1, T2, T3 ... TN to the corresponding variable. 
As an example, if using the input pait of XN and TN in the wirelisting for Pipe 1 say, then the 
modified programme will become(modifications in bold): 
* Project PIPEC 
* Powerview Wirelist Created with Version 5.1.2 
* Inifile : wspice. ini 
* Options : -m -f -n -z -q -v -x 
* Levels : 

RTOUTN1190.3 
RO N164 N130 667.8 
LO N130 0 0.001967 
Cr N119 019.2E-6 
LIN N1107 OUT 0.0003603 
RIN N164 N1107 . 814 
LPP OUT 0 0.00253789 
CPP OUT 0 0.8112E-5 
VIN N164 0 PWL ( Tl Xl 
+T2 X2 
+T3 X3 
+.. 

+TNXN) 

. 
AC DEC 10001 HZ 10KHZ 

. 
PROBE AC VDB(OUT) VP(OUT) 

. OPTIONS INGOLD=2 CSDF=2 

. END 
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