
University of Huddersfield Repository

Mencák, Jirí

Extended update plans

Original Citation

Mencák, Jirí (2003) Extended update plans. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/5935/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Extended Update Plans

Jifi Mencdk

A thesis submitted to the University of Huddersfield

in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

The University of Huddersfield

School of Computing and Engineering May 2003

Abstract

Formal methods are gaining popularity as a way of increasing the reliability of systems through
the use of mathematically based techniques. Their domain is no longer restricted to purely
academic environments and examples, as they are slowly moving into industrial settings. The
slow rate at which this transition takes place is mainly due to the perceived difficulty of
formalising the behaviour of systems. While this is undoubtedly true, it is not the case with
all formal methods.

Update Plans are a powerful formalism for the description of computer architectures
and intermediate to low-level languages. They are a declarative specification language with
an underlying imperative machine model. The descriptions using Update Plans are clear,
compact, intuitive, unambiguous and simple to read. These characteristics allow for the
minimisation of possible errors at early stages of the development process even before a
verification takes place.

In this thesis an overview of the Update Plans formalism is given and a number of real-
world applications is shown. The investigation of the application area focuses on computer
architectures for which various specifications already exist. The comparison of Update Plan
specifications to other specifications provides a useful insight into the strengths and shortcom-
ings of the formalism. The shortcomings, in particular the lack of synchronisation primitives
and modularity, are addressed by the development and evaluation of several syntactic and
semantic extensions described in this thesis. The extended formalism is also compared to
other specification languages and conclusions are drawn.

Acknowledgements

The research detailed in this thesis was funded by the Engineering and Physical Sciences

Research Council (EPSRC) and partially by the School of Computing and Engineering of the

University of Huddersfield. I wish to express my gratitude to both of these institutions for

their financial support.
I am indebted to my director of studies Dr. Hugh R. Osborne and my supervisor Dr. Adrian

R. Jackson, for their help and guidance over the past three years.
Special thanks belong to my parents and my girlfriend Kamila for their continuous support

and encouragement.

Statement of Original Authorship

The work contained in this thesis has not been previously submitted for a degree or diploma

at any other higher education institution. To the best of my knowledge and belief, the thesis

contains no material previously published or written by another person except where due

reference is made.

Brno, 4th April 2004

Contents

Introduction I

1 Context 1
2 Update Plans 2

2.1 Research questions 3
3 Organisation 4
4 Notational conventions 6

I Basic Update Plans 7

1 Update Plans 9
1 Basic Update Plans 9
2 Typing .. 13
3 Archetypes 14

3.1 Syntax 15
3.2 Expansion 16
3.3 Syntactic sugar 17

4 Parallelism 19
5 Examples 19

5.1 ADTs 19
5.2 Archetype expansion 20

2 PDP-11 22
1 Addressing modes 22
2 Instructions 24

2.1 Single operand instructions 24
2.2 Double operand instructions 26
2.3 Condition code and program flow operations 27
2.4 Interrupts 28
2.5 Other instructions 29

3 Conclusions 29

I

CONTENTS ii

SPARC-V9 30

1 Types and constants 30

2 Registers 31
2.1 General purpose r registers 31
2.2 Floating-point f registers 33

3 Instructions 33
3.1 Arithmetic and logical operations 33
3.2 Register window manipulation instructions

35

3.3 Load/Store instructions 36
3.4 Floating-point instructions 38
3.5 Control transfer instructions 40
3.6 Miscellaneous instructions 45

4 An example 45

5 Conclusions
..................................... 46

4 Java Virtual Machine 47

1 Types, constants, variables 47

1.1 Types
.................................... 47

1.2 Constants
.................................. 48

1.3 Variables
..................................

48

2 Instructions
..................................... 49

2.1 Operand stack management
49

2.2 Local variable access 50
2.3 Arithmetic instructions 51
2.4 Immediate operands 52
2.5 Control transfer 52

3 Conclusions
..................................... 54

II Extended Update Plans 55

5 Syntactic Extensions 57
1 Everything is an update 57
2 Archetypes

..................................... 58
2.1 Grammar

.................................. 58
2.2 Ambidextrous archetypes 58
2.3 Command archetypes 59
2.4 Archetype parameters 59
2.5 Archetypes in guards 60

3 TýYpes
.. 60

CONTENTS iii

3.1 Constants 60

3.2 Type grammar
61

4 Comments
61

5 Conclusions
62

6 Semantic Extensions 63

1 Parallel blocks
63

2 Sequential update schemes
64

2.1 Background/Motivation
64

2.2 Syntax
66

2.3 Semantics
67

2.4 Canonical form
...............................

69

2.5 Implementation
72

3 Sequential archetypes
76

3.1 Background/Motivation
76

3.2 Syntax
77

3.3 Semantics
..................................

77

3.4 Special types of sequential archetypes
80

3.5 Parameters
81

3.6 Syntactic sugar
82

3.7 Limitations
.................................

83

4 Special cases of archetype expansion
83

4.1 Alternatives
.................................

83

4.2 Parallel blocks
...............................

83

5 Conclusions
.....................................

84

7 PRAM 85

1 Informal description
................................

85

2 2-PRAM memory models 87
3 n-PRAM memory models 89
4 Instructions 91

4.1 Addressing modes 91
4.2 Accumulator loading instructions

93

4.3 General purpose register loading instructions 95

4.4 Program counter loading instructions
95

4.5 Memory read instructions 95

4.6 Memory write instructions
95

4.7 The instruction set
96

5 Conclusion
..................................... 96

CONTENTS iv

8 Other Methods 97

1 Specification methods 97

1.1 Hardware 97
1.2 Concrete machines and instruction sets 100
1.3 Parallelism 10,
1.4 Protocols;......................... 103
1.5 Z/VDM 104

2 Verification 104
2.1 ACL2 105

3 Conclusions 106
3.1 Integrated specification/verification methodologies 106
3.2 Specification methods 106
3.3 Summary 108

9 Conclusions and Future Research 109
1 Update Plans applications 109
2 Update Plans extensions 110
3 Future considerations

3.1 Theory
3.2 Applications 112
3.3 Implementation 113

Bibliography 114

A Extended Update Plans Grammar 121

B PDP-11 129

C SPARC-V9 133

D Java Virtual Machine 140

n-PRAM 144

P Glossary 151

Introduction

I Context

The first recorded ideas about modern formal methods were those of Leibniz (1646-1716),

who dreamt [47] about a machine called "calculus ratiocinator" which would decide any

question given in a language "characteristica universalis" rich enough to describe any kind of

phenomena.
Many years have passed since these ideas surfaced, and formal methods are today ad-

vocated as a means of increasing the reliability of systems as exhaustive testing through

simulation is no longer possible due to the ever increasing complexity of integrated circuits.
Furthermore, the gap between the performance of current systems used for simulation and
the complexity of systems under development is increasing rather than shrinking.

The current uses of formal methods include but are not limited to safety and security-
critical systems in domains such as transport, defence, banking and medical applications,
where the cost of failure is unacceptably high. The losses suffered by bad microprocessor
design in particular can be devastating. For example, the cost of Ariane 5 to the European
Space Agency was $7,000 million and 10 years of design due to an overflow error during a
conversion of a number from a 64-bit format to a 16-bit format [27]. The Pentium floating-

point bug [63] in the division algorithm cost Intel an estimated $500 million. Perhaps not
surprisingly the use of formal methods is spreading from government agencies such as NASA

or MoD into a wider industrial sphere.
The "weakest link" in the development of a system is usually its specification. Many

inconsistencies and ambiguities can be discovered just by going through the process of rigorous
specification. By writing a formal specification and devising a verification strategy one is
forced to think about the system in new ways, new questions are raised, new insights into the
system are gained and thus the number of possible errors is minimised at early stages of the
development.

While there are methods for formal development of high level software (e. g. [7,14]), and
for hardware description (e. g. [36,57,73]), there seems to be a shortage of specification and
development formalisms at the intermediate level of machine architectures and instruction sets

1

INTRODUCTION

as the semantics of low-level languages is still [48,70,77] unjustly assumed trivial. Although

it is possible to describe the semantics of low-level languages by various methods [13,16,34,

66,69), they either lack formal semantics themselves or the readability of specifications aimed

at this level is generally bad.

Update Plans [60], on the other hand, aim to fill the gap among formal languages by

providing a formal, clear, unambiguous and expressive way of describing intermediate to

low-levels of machine architectures.
Many formal method§ (some of which are briefly described and compared with Update

Plans in this thesis) are difficult to grasp. The learning time for the production of usable
designs with such methods is usually very long, and an efficient'use of a specification language

relies heavily on its detailed knowledge. This also results in all sorts of other difficulties.

Firstly, it is very easy to formalise the wrong thing in this environment. Secondly, a hard to

understand design description makes any verification more complicated.
Update Plans, on the other hand, have a short learning curve-they are easy to learn

and understand as its basic concepts are very simple and confidence in using the formalism is

achieved very soon. Designs written in Update Plans are highly communicable and compact
formal descriptions.

2 Update Plans

Update Plans (UP for short) are a formalism for the description of (abstract) machines and
algorithms. A specification produced by UP combines both the structural and behavioural

model of a system. The structural descriptions are concrete, detailed and low-level (although
it is easy to abstract away from irrelevant details). With respect to algorithmic structures the
descriptions are abstract and high-level. These characteristics make UP particularly suitable
as a specification language for the description of large classes of machine architectures [55,
58,59,61] and as a target language in compiler design [54,60].

In [541 the Update Plans formalism (then called Update Schemes) was introduced by Hans
Meijer as a target language in the framework of the design of a translator generator. Since
then it has been extended to the description of machines and algorithms.

Hugh Osborne designed a formal semantics [581 and developed a powerful macro-like mech-
anism called archetypes. He also simplified the typing regime, introduced parallelism [60],

constructed a prototype implementation based on [451, investigated a number of typical ap-
plications [59,61] and approached the problem of the formal verification of UP specifications.

A brief description of most of the above-mentioned past areas of Update Plans research
is given in the following points.

* Semantics. The presence of a formal semantics for any specification language is a ne-
cessity for any kind of formal reasoning about specifications written in that language. In UP

INTRODUCTION

this has been done in [58] by defining the underlying imperative model and the referentially

transparent semantics of UP.

* Archetypes. Archetypes are an abstraction and structure reuse mechanism that has

been introduced into Update Plans in order to further increase their expressiveness [60].

Although the primary motivation was abstracting away the details of addressing modes, they

can be used for a variety of other purposes where -it is desirable to express multiple update

schemes by a single archetype call.

* Parallelism. Parallelism is inherent in Update Plans. While there is (to some extent) no

need for an explicit mechanism to describe it, it has been introduced [60] to increase legibility

by providing a way to allow many update schemes to be combined into one atomic update.

o Typing. The type information introduced to Update Plans in [60] is not only important

for type checking, but it also has serious consequences for the implementability and formal

verification in Update Plans.

9 Verification. Perhaps most importantly, the work on proving semantic equivalence be-

tween update plans (possibly representing various levels of description) has started [601.

9 Applications. A number of machines varying from very abstract to concrete have been
described. One of the first larger applications was a machine for a simple functional lan-

guage [59]. Two lower level specifications have been given for a more realistic machine model,
taken from [25]. The more abstract of these was a machine for a tree language, typical of
intermediate code generated by a compiler. The more concrete was a PDP-11 style machine.
A linearisation of the tree code (register allocation) was given transforming it to concrete
machine code. A proof of the semantic equivalence of the two specifications under the trans-
formation was shown, which verified the register allocation algorithm. A specification of a
pipelined RISC processor has been given [61]. UP have also been applied to a (partial) spec-
ification of the Java Virtual Machine [55]. Using an abstraction mechanism similar to the
archetype mechanism, elementary VLSI components have been specified [53].

Update Plans have also proved very useful in education. Apart from their didactic use in

explaining the intricacies of addressing modes and the semantics of instructions of a computer
architecture simulator [62], they can also be used as a compact means of explaining algorithms
such as rebalancing operations in AVL trees [60].

2.1 Research questions

The main aim of this project is to develop UP as a specification and verification formalism,
primarily at the level of low-level code and hardware. To achieve this a hierarchical modular
specification and validation structure for UP needs to developed. This would provide a
formalism in which multi-level specifications of architectures can be given, each level being
a translation or transformation of its neighbouring levels. The formally defined translation

INTRODUCTION 4

between levels will provide a proof of the semantic equivalence of the specifications.
A second aim is to extend the syntax and semantics of UP to cover a wide range of parallel

paradigms and, in particular, their communication and synchronisation primitives.
To achieve this the problems of parallelism, modularity and formal verification need to be

addressed.

9 Parallelism. More general mechanisms for specifying parallel systems need to be intro-

duced, allowing for the specification of asynchronous parallelism and related communication

primitives. The semantics of the new constructs must be clearly defined. While some pre-
liminary investigation of parallelism in UP has been done, this has not gone much further

than replacing nondeterministic execution of an applicable update scheme with simultaneous

execution of all applicable update schemes; so in order to maintain well-behaviour a host of

artificial semaphore-like constructs have to be used.

e Modularity. A modular structure needs to be introduced into UP in order to provide
the formalism with a mechanism for structure reuse, for information hiding and to encourage
hierarchical specification. A specification at one level, e. g. that of the fetch/execute cycle

could then be defined in terms of a lower level specification such as microcode, and in turn
be used to specify higher level activities such as the instruction set.

* Formal verification. A proof system needs to be developed that, given UP specifica-
tions of two machine architectures and a translation, would prove the semantic equivalence
of the specifications under the translation. This work should be based on the concepts of
semantic equivalence, translation and irrelevance [60].

3 Organisation

This thesis contains an evaluation of Update Plans as a specification formalism for hardware

architectures, and suggests extensions based on this evaluation. It is divided into two parts.
Unless indicated otherwise by marginal notes giving forward references to sections of chapter 5,
the first part uses basic Update Plans as defined by [60], and the suggested extensions are
described in the second part. The first part of this thesis is an evaluation of basic Update
Plans, and consists of three case studies involving instruction set specifications of machines
differing in the degree of abstraction.

A tutorial on basic Update Plans is given in chapter 1. A lot of material in this chapter
was adapted with minor amendments from [60] and [61].

The PDP-11 specification in chapter 2 is the first attempt to specify a large subset of a real
machine's instruction set using Update Plans. It was chosen as a candidate for specification
because some historically important formal specifications of the PDP-11 exist [20,69]. Con-
sideration of a more detailed specification at the fetch/execute cycle drove the development
of some semantic extensions described in chapter 6.

INTRODUCTION

The first chapters to make some advance use of the syntactic extensions to Update Plans

described in chapter 5 are chapters 3 and 4. Both of these chapters feature modern, abstract,

but very different architectures. Chapter 3 has the UP specification for the SPARC-V9 archi-

tecture. Again, there was already a partial specification of the SPARC-V9 architecture [651,

but this is aimed at the specification of connections and communication rather than at a

concise specification of the instruction set. In chapter 4 the Java Virtual Machine (JVM)

was chosen to test UP's suitability for describing more abstract instruction sets using a wide

variety of types.
The second part of this thesis proposes some extensions to Update Plans and contains a

comparison of Update Plans to other formal methods.
Chapter 5 covers the syntactic extensions brought about during the development of the

SPARC-V9 and JVM instruction set specifications in the first part of the thesis. In particular
this chapter discusses the changes in the revised Update Plans grammar and the extensions
to the typing mechanism which, in many cases, allow multi-level specifications.

The concept of sequential update schemes and archetypes is introduced in chapter 6

together with other semantic extensions to make the Update Plans formalism more expressive
and consistent. More importantly, this chapter gives possible answers to the research questions
of parallelism and modularity. The problem with synchronisation of parallel processes is

solved by the introduction of a general synchronisation primitive (sequential update schemes)
that augments non-deterministic model of Update Plans by explicitly stating the order in

which updates will be applied. Sequential archetypes extend the possibilities for information
hiding and structure reuse by encapsulating a series of synchronised updates at one level

of abstraction into a modular update easily identifiable against a corresponding update at
another level of description.

Chapter 7 contains a more comprehensive example of the application of sequential update
schemes and archetypes in a specification of a theoretical model of computation-Parallel
Random Access Machine (PRAM). PRAM provides a useful test-bed for the semantic exten-
sions as it specifies strictly sequential operations (the fetch/execute cycle) within a massively
parallel context.

The penultimate chapter evaluates Update Plans. Other existing formalisms which could
be used for the specification of intermediate levels of hardware architectures are considered.
A brief description of each of the formalisms is given and they are compared to Update Plans.
This chapter uses a few simple examples to show the advantages the introduction of sequences
brings to Up.

Finally, conclusions are drawn and future research directions are suggested in chapter 9.

INTRODUCTION

4 Notational conventions

Throughout this thesis, the following notational conventions are observed.

Production rules used to describe basic and Extended Update Plans grammars given
in this thesis make use of the notational conventions of the specification formalism

ASF+SDF [43,74] in which the notation IS term}+ indicates a list of one or more S's

separated by the terminal term. If the + is replaced by a* the list may also be empty.
The suffix -opt indicates zero or one occurrences of its nonterminal. More notational

conventions used by the ASF+SDF specification formalism can be found in appendix A

on page 121.

Update plans given in this thesis use the typewriter font. This convention has two

exceptions. Firstly, update plan comments and 'meta-variables' such as lhs use the italic

typestyle. The second exception is update plan elements which have been commented

out. They use the slanted typewriter font.

All emphasised words appearing freely in the text are glossary terms explained in ap-

pendix F for quick reference. The only exception are references to update plan 'meta-

variables' which use the emphasised (italic) typestyle.

Whenever a reference to an instruction field is made, a sans serif typeface is used. The
ý symbol designates concatenation of bit vectors, the % symbol is arithmetic modulo,
and x is used for multiplication. Symbols &, 1, and ^ are used for bit-wise AND, OR,

and XOR operations respectively. And finally, symbols =, 0, <, >, :! ý and > have their

usual mathematical meanings.

Marginal notes used in the first part of this thesis are forward references to sections
of chapter 5 where syntactic UP extensions are explained. References to the trivial

extension introduced in section 4 of the same chapter are not made.

e The American spelling 'program' is used to denote computer software.

Part I

BasiC Update Plans

Introduction

Part one of this thesis serves as an introduction to Update Plans with the focus on the
description of hardware architectures. It shows three specifications of instruction sets of
machines at various degrees of abstraction, ordered from the most concrete to the most
abstract. Each of the specifications provide some interesting insights into the formalism

and uncovers its various shortcomings, which are addressed in the second part of the thesis.
Although the specifications use basic Update Plans as described in [60], some advance use (in

chapters 3 and 4) is made of syntactic changes to the formalism described in chapter 5.

8

Chapter I

Update Plans

T Iiis chapter gives an informal overview of basic Update Plans. Only the basic facts neces-

sary to understand the specifications in the first part and the reasons for the extensions
in the second part of the thesis are introduced. More information on Update Plans along

with their complete formal syntactic and semantic definition can be found in [58-611.

1 Basic Update Plans

An update plan specifies state transitions in an abstract machine. This machine consists of
a number of stores, each containing a linear countably infinite sequence of memory cells (e. g.
bytes or machine words) between locators (addresses). Note that it is not the cells themselves
that are addressed, but the boundaries between cells as shown in figure 1.1.

Triples ci[ý], 6 are called locator expressions, where a and 6 are locators, ce <0 and the

cells between the addresses a and 3 contain (a particular representation of) the value of ý.
A set of locator expressions is consistent if there are no two or more expressions in the set
which specify the contents of some cell to have different values. A consistent set of locator

expressions describes a (sub) configuration of the machine.
State transitions in the abstract machine are described by update schemes, which are

constructed from two sets of locator expressions forming the left-hand side (Ihs) and the
right-hand side (rhs), separated by a guard (=qy ý*) which carries an applicability condition
-y- A guard whose condition is always true can be simply written as ==>.

An update plan is a set of update schemes, each of which may contain unspecified values
(variables). Variables are indicated by lower case words, constants are indicated either by
a value or, symbolically, by upper case words. An update scheme containing no unspecified
values is called an update rule. Update schemes yield update rules by instantiation. Both the
left and right-hand sides of the resulting update rule must be self-consistent, i. e. all locator
expressions in the left and right-hand side must be mutually consistent.

9

CHAPTER 1: UPDATE PLANS 10

FUIKE
1230123

'Raditional array addressing Update Plan addressing

Figure 1.1: Addressing in arrays and Update Plans

An update rule is applicable to a given configuration if its left-hand side is a subset of that

configuration and its guard is true. The memory then may be minimally updated such that

thereafter all locator expressions in its right-hand side are satisfied.
An initial configuration, which specifies the initial state of the memory before any update

scheme is applied, and an update plan form an update script. The update plan is executed
by repeatedly (non-deterministically) choosing an applicable update scheme from the plan,

and applying it, until the configuration is such that no scheme is applicable. This final

configuration is the result of the script.
The overview of the basic Update Plans syntax is given by the following grammar.

(script) --+ (configuration) ". " (plan)

(plan) (itern)*

(item) (scheme)

(configuration) --+ (locator expression)*

(scheme) --+ (configuration) (guard) (configuration)

(guard) --4 "=4" (term) "I=#. "

(locator expression) --+ (locator) "[" (text) 'I" (locator)

(locator) --* (term)

(text) - (term)*

A (term) is an expression built from constants, variables and operators. Note that the gram-
mar presented here is a very simplified version of the Update Plans grammar to demonstrate
the basic structure. This grammar will be extended at several places in this chapter, but will
still not be presented in its entirety. The complete basic Update Plans grammar can be found
in [60], and a complete and updated grammar for Extended Update Plans in appendix A.

The classic two-scheme update plan in example 1 demonstrates Euclid's algorithm for

computing the CCD of the number initially between A and B and that initially between B and
C. The constants A, B and C are fixed locators and x and y are unspecified values.

Example 1

A[x]B B[y]C =l x<y ý* B[y - x]C.
A[x]B B[y]C =I x>y j=> A[x - y]B.

r-

CHAPTER 1: UPDATE PLANS 11

If at any stage of the computation the machine configuration contains A [91 B and B [61 C)

(only) the second update scheme (instantiating into an update rule) in example 1 is applicable,

whereupon the 9 is replaced by a 3.

Syntactic sugar

The following points describe notational simplifications which make update plans more legible.

"A superfluous locator may be omitted. A locator is superfluous if its removal does not

lead to any confusion.

" Contiguous sequences may be concatenated. Two expressions x[s]y and y[t]z may be

written as x[s]y[t]z.

" Locators may be also omitted when concatenating contiguous sequences so that x[s]y[t]z

may also be written as x[s t]z.

" Identical left-hand sides may be shared. A repeat of the previous left-hand side is

indicated by the 'repeat' symbol '11'.

" Other notational conventions (1/0, the introduction of the program counter and alter-

natives) are described in sections of their own.

1/0
As input/output instructions are one of most frequently used operations, a mechanism for
hiding the details and so sweetening the syntax is provided. Input streams which are described
by an update scheme

IP[i] i(input]j ... =4 g J* ... IP[j]

may be written as

? IP[input] =4 g ý*

For the standard input stream the '? [input]' can be used when this is unambiguously
defined.

Similarly, output streams
op[o] ... =[g ý* ... op[p] O[Output]p

may be written as

=4 9 J=ý, ---! OP[output]
Again, the '! [output]' can be used for the standard output stream, if it is defined.

Program counter
By acknowledging the existence of a program counter at a fixed locator (by convention PC),
update schemes exhibiting the pattern

CHAPTER 1: UPDATE PLANS

s
J-d

xs tt
uu
vv

PUSH a a[xl SP[t] ==ý. s[x]t SP[s].

Figure 1.2: Visualisation of the PUSH operation on a stack machine

PC[pc] pc[OP argsjqc lc =[g J=: ý- Pc[pc'] pc'[nextlqc rc.

may be written as so-called commands

OP args Ic =4 g Y* next rc.

12

with the program counter hidden, where at least one of OP aryis and next is a non-empty
command sequence, and Ic/rc are left/right contexts. The first term of a command will in

most cases be a constant, known as the opcode. An update plan in which all update schemes
are commands is know as a command driven plan. A configuration is in command form if it

contains a non-empty command sequence, or one in which the contents of the register PC are
not specified.

Example 2
The following two commands may be part of a stack machine.

PUSH a a[xl SP[tj s[xlt SP[s].
POP a SP[s] s[xjt a[xl SP[t].

They will be desugared as

PC[pc] pc[PUSH a]qc a[x] SP[t] =4> PC[qc] s[x]t SP[s].
PC[pcl pc[POP alqc SP(s] sfxlt =* PC[qcl afxj SP(t].

A graphical description of the PUSH operation is in figure 1.2.

Alternatives
A set of update schemes with mutually exclusive guards often performs some form of case
analysis. Such a set

lhs I gi J=#- rhs 1.
IhS2 --Igl A 92 1=ý' rhS2.

n1 lhs,, A --lgi) A 9, ý* rhs,,. i=l

CHAPTER 1: UPDATE PLANS 13

can then be written as a series of n update schemes known as alternatives

ills 1 =1 g,]=-ý- rhs 1;
IIIS2 =f 92 1=ý' rhS2;

lhs,, =q gn I=, - rhsn.

The update schemes are divided by semicolons and only the first applicable update scheme,

reading from top to bottom, will be applied. The following production rules are added to the

basic Update Plans grammar.

(item) ---ý (alternatives) ". "

(alternatives) --ý { (update scheme) "; "

2 Typing

The basic type in Update Plans is the locator. In fact all objects appearing in an update plan
are considered to be locators.

New types may be defined by combining existing types using any of the standard operators
of regular expressions. Such a declaration is said to define a type alias. Store names are lower

case words with an initial upper case letter, and must, therefore, contain at least two letters,
in order to ensure that store names can be distinguished from constants. Stores are declared
by listing them between braces, e. g.

{Bit, Bool, Int, Stack, Heap}.

Each store name is said to be a type p7imitive. Type aliases are declared similarly
f Num = Byte I Short I Long}.

Type aliases may not be recursive, either directly or indirectly. This ensures that any type
alias can be expressed as a regular expression containing only type primitives. Every object
appearing in an update plan must be typed. For some objects this may be done implicitly.
Each symbolic constant is considered to have its own unique type, again unless indicated
otherwise. Other objects-expressions for which no type can be determined automatically-
must have their type indicated. This can be done by means of a global declaration valid
throughout an update plan, e. g. 'v:: Storel. '. A global type definition can be overridden by
casting a term within an update. scheme with a different type, 'e. g. (v:: Store2)' such a cast
determining only the type of the term to which it is applied. The syntax of type declarations
is obtained by adding the following rules to the basic UP grammar

Is (item) ---ý (store declaration) (type declaration)

(store declaration) ---ý "I" I (store) ", " J* "I"

CHAPTER 1: UPDATE PLANS 14

(type declaration) f(store) ", " J+ ":: " (store structure)

(term) --* "("(term) ":: " (store structure) ")"

(store) -
(store name)
(store name) (store structure)

A (store name) is a lower case word with a leading upper case letter, and a (store structure)
is a regular expression over the set of store names. Some extensions have been added to the

typing mechanism, and can be found in chapter 5 alongside an updated type grammar.
A very important concept related to typing and implementability of update plans is

grounding. It is extensively described in [60], but the following terminology is provided
for convenience as it will be used in this thesis.

A ground expression is one for which a unique variable-free expression can be derived,

possibly by instantiation. of variables with respect to the current configuration; a semi-ground
expression is one for which a finite number of such expressions can be derived.

Example 3
This example assumes that the length of an object of the type Bit is 1.
Given the following update plan

x, y:: Bit.

xs, ys :: (Bit)*.

A[x]b[xs]C[ys]d ==#- B[x y]c.

A, B and C are ground as they are constants; b and c are also ground
(b =A+1, c=B+ 2); d is non-ground, since the'length of ys cannot be

established; x is ground, since both of its locators are ground and its value
can be determined by a reference to a configuration. The 'sequence' xs is
ground for b<C<b+1, semi-ground otherwise. Finally, both ys and y
are non-ground.

Archetypes

The expressive power of Update Plans is greatly increased by the use of a macro-like mech-
anism known as archetypes. An update plan often contains a set of similar update schemes
sharing certain parts of their left/right-hand sides. Such patterns can be moved out of up-
date schemes into an archetype definition, and replaced by archetype calls. This will almost
certainly mean a reduction in the number of update schemes necessary for a description as
duplicate update schemes will be omitted from the update plan.

CHAPTER 1: UPDATE PLANS 15

The primary motivation for the introduction of the archetype mechanism was the com-

plexity of many machines due to the number of addressing modes they use. In an update plan,

addressing modes can easily be replaced by a single archetype call, thus making it possible to

express many update schemes as one.
Archetypes can also be viewed as a mechanism of abstraction, where certain frequently

used actions are be grouped into "modular updates". This view will be reinforced in the

second part of the thesis, where the concept of sequential update schemes and archetypes is
introduced.

3.1 Syntax

The basic Update Plans grammar is updated by the following production rules.
(item) ---ý (archetype definition)

(archetype definition) --+
(basic archetype definition)
(command archetype deflnition)

(basic archetype definition) --+ (basic declaration) (basic deflnition)+

(basic declaration) --+ (basic archetype name) (parameters)

(basic deflnition) ---ý "=" (basic body) ". "

(basic body) --ý
(configuration) (guard) (configuration)
(repeat) (guard) (conflguration)
(conliguration) I
(text) (context) (guard) (context)
(text) (repeat) (guard) (context)
(text) (context)

(command archetype definition) ---ý
(command declaration) (command deflnition)+

(command declaration) --ý
(command archetype name) (parameters) (text)

(command deflnition) --ý "=" (command body) ". "
(command body) --+

(context) (guard) (context)
(repeat) (guard) (context)
(context)

(parameters)
---ý "(" {(term)

CHAPTER 1: UPDATE PLANS 16

A basic archetype name is an identifier, a command archetype name is a constant. The syntax

of an archetype call is basically that of an archetype declaration. The only difference is when

archetype calls are 'coupled' by an index.

(term) ---) (archetype call)

(archetype call) --+ (archetype name) (index)-opt (parameters)

(archetype name) - (basic archetype name) I (command archetype name)

(index) --+ (number) I "I" (number) "I"

Again, the archetype grammar has been adapted with minor amendments from [60].

3.2 Expansion

The archetype expansion mechanism consists of two stages, the textual expansion and the

parameter resolution stage.
The parameter resolution phase is necessary due to the fact that parameters do not have

to be variables-they can be complex expressions. The aim of parameter resolution is to
derive semi-ground expressions for non-ground terms. Parameters are resolved by using a
resolution set, to which equations are added as rewriting takes place. If at any point in this

process a non-trivial equation is derived relating two semi-ground expressions in an update
scheme, it is added to the scheme's guard. The method is discussed in great detail in [60].

An archetype's body consists of a left and a right-hand side expansion and context. The

expansion is the text that actually replaces the archetype call, the left/right-hand side ex-
pansion replacing the call on the left/right-hand side. The contexts are simply added to the

call's scheme, again the left/right-hand side context is added to the left/right-hand side of the
scheme. Archetype variables conflicting with variables of the call's scheme will be renamed
before expansion.

See, for example, an archetype autoinc in example 4a which could define an autoincrement
addressing mode. The (output) parameter v obtains its value by means of instantiation against
the current configuration, and the contents of r are updated.

Example 4a

autoinc(v) = AUTOINC r r[b] b[v]c ==> r[c].

In the example, the left-hand side expansion is AUTOINC r and the left-hand side context
r [b] b [vj c.

Archetype calls occur in indexed pairs, with one element of the pair on the left-hand side
of the update scheme or archetype definition in which it occurs, and the other on the right-
hand side. The resolution mechanism is demonstrated in example 4b, which gives a possible
expansion of ADD r autoincl(x) autoinC2(Y) ==> autoinci(x) autoinC2(y) r[x + y].

CHAPTER 1: UPDATE PLANS 17

Example 4b
ADD r AUTOINC r, AUTOINC r2

rl[bi] r2[b2] bj[vjjcj b2[V2]C2 ==* r[vi + V2] ri[ci] r2[C2]-

As will be noted in the following section, syntactic sugar allows one of the elements of an

archetype call pair to be omitted if the corresponding expansion is empty. The indices may
then also be omitted, as they are superfluous. The update plan from the previous example

can then be rewritten as ADD r autoinc(x) autoinc(y) ==* r[x + y].
Archetype calls can be recursive. However, there are several limitations as to where

recursive and non-recursive archetype calls may appear in an update plan. For example, a

guard may not contain an archetype call and a locator and an archetype parameter may not

contain a call of a recursive archetype.

3.3 Syntactic sugar

The bodies of archetype definitions inherit syntactic sugar as described in section 1. Addi-

tionally, syntactic sugar also makes it possible to

1. omit the guard and right-hand side from the body of an archetype definition, if the

right-hand side and the guard are both empty
2. replace irrelevant parameters by the "don't care" symbol
3. share identical archetype declarations (see the grammar)

Other forms of syntactic sugar are left/right-handed, ambidextrous and command arche-
types.

Left /Right-handed archetypes
If the expansions (text) of all right/left-hand sides of a given archetype in all of its definitions
are empty then the right/left-hand side of that archetype may be omitted. If all right/left-
hand side calls are omitted in an update plan, such an archetype is called a left/right-handed
archetype.

Left/Right-handed archetypes further contribute to sweetening of an update plan by the
omission of archetype call's indices which are rendered superfluous as all calls of the same
name appear only on one (left/right) side of an update scheme.

Arnbidextrous archetypes
A left/right-handed archetypes are restricted in that they may only be called on the left/right-
hand side. An ambidextrous archetype is a context independent archetype, which can be called
on both sides of an update scheme.

A definition of an ambidextrous archetype a is equivalent to a pair of left and right
archetype definitions al and a,

CHAPTER 1: UPDATE PLANS 18

al(params) = text lc g)=ý re.

ar(params) = Ic =1 g text re.

which can be 'corhpressed' into one ambidextrous archetype definition

a(params) = text I Ic =[g Y* rc.

One use of ambidextrous archetypes can be to describe repetitive computations occurring
on both sides of an update scheme.

Example 5
Consider the following recursive ambidextrous archetype pad(x) and an

update scheme containing a call of this archetype. The archetype expands
x padding bytes PAD to align address a of the JMP instruction so that a
begins at an address that is a multiple of 4 bytes.

pad(O) =.
pad(n) = PAD pad(n - 1) n>0
PC[pc] pc[JMP pad(4 - (pc + 1) % 4) a] PC[a].

The purpose of making the pad(n) archetype ambidextrous is that it can
be called on both sides of an update scheme without the need to define the
following pad[,,] (n) pair

padl(n) = PAD pad(n - 1) =4 n> 0)=-ý, .# To be called on the lhs

pad, (n) = =q n>0 ý* PAD pad(n - 1). # To be called on the rhs

in which case the padi(n) and pad, (n) archetypes would have to be called
on the left/right-hand side of an update scheme respectively, depending on
the side padding is needed.

Command archetypes
An ambidextrous archetype a whose text part begins with a constant can be further com-
pressed by using this constant as a name of a command archetype, unless this constant has

already been used for this purpose. The cornmand archetype

CONST(params) text = Ic =f g I=-;,. rc.

is the sugared version of

a(params) = CONST text I Ic =1 g ý* re.

with calls of a replaced throughout the update plan by calls of CONST. Note that the syntax
of ambidextrous archetypes changed (see chapter 5) in Extended Update Plans to be more
consistent with command archetypes.

CHAPTER 1: UPDATE PLANS

Parallelism

19

Parallelism is inherent in Update Plans, as application of an update rule is atomic and many
cells may be changed simultaneously as a result. However, relying purely on this mechanism
may create update schemes of unmanageable length. The solution is to have a set of non-
related update schemes, instantiations of which will be applied simultaneously in a parallel
block. These instantiations will only be applied if the conditions for application are satisfied
for every single update rule and their right-hand sides are mutually consistent. An alternative
view of parallel blocks will be given in chapter 6.

Parallel blocks are delimited by the open parallel block symbol, '(11', and the close parallel
block symbol, '11)'. The use of the double pipeline symbol '11' is encouraged to separate the
individual update schemes in a parallel block. An rn update scheme parallel block can then
be written as

Ihsi gi J* rhsi.
IhS2 92 J* 'rhS2-

Ihs, J#- rhs,,,.

or making use of typesetting possibilities as

Ihs, gl rhsl.
IhS2 92 rhS2-

lhs,, =[g, 1=: ý rlls,.
To accommodate for parallel blocks, the following production rules need to be added to

the basic Update Plans grammar.

(item) --+ (parallel block)

(parallel block) --+ "(11" ((alternatives) ". ")+ "11)"

Note that in Extended Update Plans not only alternatives can be in the body of a parallel
block as will be shown in the second part of this thesis.

5 Examples

5.1 ADTs

The use of Update Plans is not limited to specification of hardware architectures although
this is their primary aim. As has already been shown in this chapter, Update Plans can
also be used to describe algorithms. This section shows their use in the description and
implementation of abstract data types (ADTs), in particular singly linked lists.

CHAPTER 1: UPDATE PLANS

LIST[headj head[datal item2l item2[data2 item3l iteM3[data3 NULL].
is-empty(list) = list[item] (item = NULL) =[1i st 0 NULL j#-

.
insert(itemi, iteM2, data) = =[iteM2 54 NULL ý* iteM2[data item,].
insert(iteml, iteM2, data) = item, [- next] =1 item, ýý NULL A iteM2 0 NULL j#-

item, [- iteM21 iteM2[data next].
remove(item) = itemo[- item] item[- next] =[itemo 0 NULL A item =7ý NULL j#-

itemo[- next]-
length(NULL) = 0.
length(item) = item[- next] length(next)+l =[item =A NULL J#-

.

Figure 1.3: ADT list operations

20

An item of a list can be described as item[data itemf]. It consists of a payload data
left of locator item and locator itemf addressing a following item. To make a list, items can
be simply linked in a list of items, and a reference to its head will be added as shown in
figure 1.3.

The easiest operation on a list is to find about its emptiness. The archetype is-empty sim-
ply checks whether the head of a list points to the constant NULL and expands the appropriate
truth value.

Two versions of insert item operation are provided. The difference is only in the place-
ment of item,. Note that an additional update scheme inserting an item at the start of the
list would be required to complete the ADT if a list without a dummy head and the second
version of insert archetype was to be used.

Similarly to the the second insert item archetype, the remove item archetype doesn't
take into account removal of the first item in a list of linked items. Thus a similar function

now removing the first item in a list would be required if a list without a dummy head was
to be used.

Finally, the recursive length archetype calculates length of a list of items. The remaining
ADT operations such as "retrieve n-th item" can be defined in a similar fashion.

5.2 Archetype expansion

The following example uses archetypes and an update scheme from chapter 2 to illustrate the
archetype expansion mechanism. In this example the update scheme

[2.2] arithm(x, ri) dop(a, x) ==> a[rl] cc(ri).

will be expanded into one update scheme showing the effects of the INC instruction in direct

autodecrement mode from the PDP-11 instruction set.
The command scheme 2.2 expands as shown in figure 1.4. The archetypes and their

index numbers from chapter 2 are included in figure 1.4 as comments for convenience. After

substitution using equations derived at each step the full expansion of our update scheme is

CHAPTER 1: UPDATE PLANS

arithm(x, r,) dop(a, x) ==> a[rl] cc(ri).
[2.2] ari tlim (x, x+1)= INC. x= x, r, =x+ l

INC dop(a, x) =* a[rij cc(ri).
[1.4] dop (a, vi) = AUTODEC(a, vj). a=a, x = v,

INC AUTODEC(a, vi) ==ý. a[rij cc(rl).
[1.1] AUTODEC(a, v,) r= r[b] a[vl]b ===ý, r[a]. a=a, v, = v,

INC AUTODEC r r[b] a[vl]b =ý- r[al a[ri] cc(ri).
[2.1] CC(V2) = CCN[(V2 ": ýs 0) (V2 = 0) (-n(M'Ns ! ýs V2 ! ýý, MAX.,))

(V2 >u MAXu)] I- rl = V2

INC AUTODEC r r[b] a[vl]b ==: > r[a] a[ri] CCN[(V2 <s 0) (V2 : -- 0)

(--i(MIN., <, V2 : 5., MAX.,)) (V2 >,, MAX,,)].

Figure 1.4: Example of archetype expansion

INC AUTODEC r r[bl a[xlb ==> r[al a[x + 11

CCN [«X + 1) <- 0) «x + 1) = 0) (-1 (MIN� <, (x + 1) : 5., MAXj) «x + 1) >,., MAX�)] -

21

A slightly more complex example of archetype expansion can also be found in chapter 3.

Chapter 2

PDP-11

T he PDP-11 is one of the most widely known and used machines in the history of computing
science, and its importance in mission-critical applications can hardly be questioned.

Although one might argue the relevance of a specification of a historically dead machine
(although sales of hardware products for the PDP-11 continued until as recently as September
1997), the very fact of its historical importance serves as a counterargument.

The instruction set of the PDP-11 was designed to provide a clean, general, symmetric
instruction set. Word length is 16 bits with the leftmost, most significant bit being bit 15.
There are eight general registers of 16 bits each. Register 7 is the pro-ram counter (PC)

and, by convention, register 6 is the stack pointer (SP). There is also a Processor Status
Register/Word (PSW) which among other things indicates the 4 condition code bits (N, Z,
V, C).

In this chapter, a formal specification (based on [21,23,69]) of the DEC PDP-11 machine
instruction set is given using the Update Plans formalism. Although some formal specifica-
tions of the PDP-11 instruction set already exist (20,69], this chapter gives a clear, compact,
unambiguous [601, and easy to follow specification which can serve as a comparison to those
already existing.

I Addressing modes
Basic addressing modes of the PDP-11 machine are given in 1.1. They define two results-the
effective address of the value and the value (v) itself. The following list describes PDP-11

addressing modes informally. "The register" refers to one of eight general purpose registers
(r), identified by an instruction word. "The displacement" refers to a word in the memory
stored after an instruction (d).

register. Direct access to a general register. The content of the selected register is
taken as the value.

22

CHAPTER 2: PDP-11 23

autoincrement. At the start of an instruction's execution, the register contains the

address of the value, and after the value is accessed and the instruction is executed, the

address is incremented.

* autodecrement. The register has been decremented, before the value is accessed at
this new address.

* index. The content of the register is added to the displacement to produce the address
of the value.

" register deferred. The address of the value is stored in the register.

" autoincrement deferred. Tile register contains a pointer to the address of the value.
Tile pointer is automaticallY incremented after the value is retrieved.

" autodecrement deferred. The content of the register is first decremented and then
it contains a pointer to the address of the value.

" index deferred. The displacement is added to the base address stored in the register.
The result is a pointer to the address of the value.

[1-1] REG(r, v) r rfvj.
AUTOINC(b, v) r r[b] b[vlc r[c].
AUTODEC(a, v) r r[b] a[v]b r[a].
INDEX(b + d, v) rd= r[b] b+d[v].

REGDEF(b, v) r= r[b) blvl.
AUTOINCDEF(b2, v) r= r[bl] bi[b2jcl b2[VIC2 r[cl]
AUTODECDEF(a2, V) r= r[bl) al[19L2]bl a2[vlb2 r[all
INDEXDEF(b2, v) rd= r[bil bl+d[b2l b2[VI.

register mode
autoincrement mode
autodecrement mode
index mode
register deferred mode
autoincrement deferred mode
autodecrement deferred mode
index deferred mode

In addition to these basic addressing modes there are 4 other special PC addressing modes.
These addressing modes (1.2) come into effect when referencing the PC (register 7). Again,
they define (apart from the immediate mode) two results-the effective address of the value
and the value itself. "The word" refers to the contents of the location following the instruction.

9 PC immediate. The Nvord is the resulting value itselL

* PC absolute. The Nvord is interpreted an address of the value.

" PC relative. The value's address is calculated by adding the Nvord to the PC.

" PC relative deferred. A pointer to the value's address is calculated by adding the
word to the PC.

[1-2] IMM(v) v# immediate mode
ABS(a, v) aa [v]. # absolute mode
REL(pc + d, v) d PC[pc] pc+d[v]. # relative mode
RELDEF(a, v) d PC[pcl pc+d[a] a[v). # relative deferred mode

CHAPTER 2: PDP-11 24

Archetypes in 1.3 and 1.4 define two classes of addressing modes-the source (sop), and
the destination (dop) operand.

[1.3] sop(v) = REG(-, v).

= AUTOINC(-, v).

= AUTODEC(-, v)

= INDEX(-, v).

= REGDEF(-, v).

= AUTOINCDEF(-, v).

= AUTODECDEF(-, v).

= INDEXDEF(-, v).
IMM(-, V) -
ABS(-, v).
REL(-, v).
RELDEF(-, v).

2 Instructions

[1.41 dop(a, v) = REG (a, v).

= AUTOINC(a, v).

= AUTODEC(a, v).

= INDEX(a, v).

= REGDEF(a, v).

= AUTOINCDEF(a, v).

= AUTODECDEF(a, v).

= INDEXDEF(a, v).

= ABS(a, v).

= REL(a, v).

= RELDEF(a, v).

2.1 Single operand instructions

In order to make the Update Plans specification closer to the real implementation, the follow-
ing data types are defined. Promotions and conversions between these individual data types

are considered to be defined elsewhere.

{Nibble = Bit Bit Bit Bit, Byte = Nibble Nibble, Word = Byte Bytel.

The following text shows the layout of condition codes in the PSW register. We make use
of the CC[NZVC] locators later on in this specification. The registers CC[NZVC] carry the negative,
zero, overflow and carry bits respectively.

b., b7 b,, b,; :: Bit.

nibble:: Nibble.

byte:: Byte.

PSW[byte nibble]CCN[b,]CCz[b,]CCv[bv]CCC[bc].

Archetype 2.1 sets the condition codes according to the value of the parameter v.

(2.1] CC(V) -'
CCN[(V <s 0) (V: --: 0) (-i(MIN5 <� v <, MAXJ) (V >� MAXJ] 1.

The constants MIN, /MAX, are the smallest/largest negative 16-bit two's complement signed
integer (-32768/32767). MAX, is the largest 16-bit unsigned integer (65535). The operators <,,
<, (signed comparison operators), >.,, (unsigned comparison operator) and = are assumed to
be defined elsewhere.

CHAPTER 2: PDP-11 25

It is assumed that the standard arithmetic operators are already defined. The arithmetic
instructions are then defined as archetypes.

[2.2] arithm(-, 0) = CLR. # clear destination

arithm(x, --ix) = COM. # complement destination

arithm(x, x+ 1) = INC. # increment destination

arithm(x, x- 1) = DEC. # decrement destination

arithm(x, -x) = NEG. # negate destination

arithra(x, x+ c) = ADC CCc[cj- # add carry to destination

arithm(x, x- c) = SBC CCc[c]. # subtract carry from destination

arithm(x, x/2) = ASR. # arithmetic shift right destination

arithm(x, xX 2) = ASL. # arithmetic shift left destination

arithm(-, -1 X n) = STX CCN[n). # sign extend destination

arithm(x, r) dop(a, x) ==> a[r] cc(r).

This specification covers mainly integer operand instructions. The byte operand instruc-
tions could easily be defined. For example SWAB is defined by

[2.3] vi, vo :: Byte.
SWAB dop(a,

-) = a[vi vo] ==* a[vo vil. #swap bytes of destination

The specification of INCB is slightly more complicated. Here is an example of how the
specification would change if we were to specify the instruction set including the byte operand
instructions.

[2.4] arithm(x, x+ 1) = INC ==ý, W. # increment destination

arithm(x, x+ 1) = INCB ==* B. # increment destination byte

arithm(x, r) dop(a, x) ==* rcc(a, r, arithm(-, -)).
The other byte/word operand pairs can be defined similarly. The constants W and B are

used to pass typing information to the new condition code archetype rcc. Note that the left-
hand side call of arithm occurs in the text part of the left-hand side, while the right-hand side
call is a parameter of the rcc archetype so that, e. g. the INC in update scheme 2.4 will appear
in the text of the expansion, while the constant W will be passed to rcc on the right-hand side.
A small example is shown in figure 2.1. As this is a simple example (of a partial expansion),
parameters are resolved every time an archetype is expanded. Some extra archetypes, which
are used for byte operand instructions are shown in 2.5.

[2.5] type(W) = Word

type(B) = Byte

rcc(a, v, w) = cc(v, w) I=* a[(v:: type(w))].
CC(V, W) : -- CCN[(V <s 0) (v = 0) (-l(MINs <, v <., MAX.,)) (v >. MAXJ] 1.

cc(v, B) = CCN((V <bs 0) (v = 0) (-i(MIN-B, <-bs V <-bs MAX-Br,)) (V >bu MAX-B,,)] 1.

CHAPTER 2: PDP-11

arithm(x, r) dop (a, x) ==* rcc (a, r, arithm(-, -)).
[2.4]

[2.41 ari thm (x, x+1)= TNCB =: ý B. x =x, r =x+ I

INCB dop (a, x) ==ý> rc c (a, x+1, B) -
[2.5] rcc (a, v, w) = cc (v, w) I ==ý a [(v :: type (w))]. a=a, x+1=v, B=v

INCB dop(a, x) =ý- cc(x + 1, B) a[(x +1:: type(B))].
[2.5] cc(v, B) = CCN[(v <bs 0) (v = 0) (-, (MIN-Bý, :! ýbs V

-<bs
MAX-Bs))

(v >bu MAX-Bu)] 1, x+I=v

INCB dop(a, x) =#> CCN[(X +1 <bs 0) (X +1= 0) (-(MIN-B., <bs X+1 <bs MAX-B,))
(X +1 >bu MAX-Bu)] a[(x +1:: type(B))]. I

Figure 2.1: An example of archetype expansion

26

Again, the byte constants MIN-B.,, MAX-B,, MAX-B,, and the byte operators <bs) :! ýbsl >bu

have similar meaning to their integer (word) counterparts, and are assumed to be defined

elsewhere.

(2.6] TST dop(-, x) ==: ý> cc(x). #test destination
ROR dop(a, x) CCc[c] ==* a[(x>>1)j(c<<15)] CCc[(x&l :: Bit)].

ROL dop(a, x) CCc[cj ==* a[(x<<l)lcl CCcf(x>>15)gzl :: Bit)].

The TST instruction sets the condition codes according to the contents of the destination

word.
ROR/ROL: the PSW C-bit and the destination word (considered as a 17-bit "word" is rotated

right/left one bit. The vacated high/low-order bit (bit 15/0) is loaded with the contents of
the C-bit. The low/high-order bit of the destination (bit 0/15) is loaded into the C-bit.

2.2 Double operand instructions

The MOV instruction moves a copy of the source word contents to the destination. Its command
archetype definition is given in 2.7.

[2.7] MOV sop(v) dop(a, -) ==* a[v].

The following arithmetic and bit-wise instructions perform the specified operations, and
set the destination operand and the condition codes in accordance with the result.

[2.8] abrithm(x, y, x+ y) = ADD. # add source to destination

abrithm(x, y, x- y) = SUB. # subtract source from destination

abrithm(x, y, -x&y) = BIC. # bit clear destination from source
abrithm(x, y, x1y) = BIS. # bit set destination from source
abrithm(x, y, r) sop(x) dop(a, y) =* a[r) cc(r).

The comparison instructions are similar to the above instructions, however, the destination

operand is not affected.

CHAPTER 2: PDP-11 27

[2.91 cmps (X, Y, x- y) = CMP- # compare source to destination

cmps (X, y, X&y) = BIT. # bit test source and destination bytes

cmps (x, y, r) s op (x) dop (-, y) =#- cc (r).

2.3 Condition code and program flow operations

The condition code operations SEc and CLc, where c is any of the condition codes N, Z, V, and
C are shown in 2.10. The SEc operations set the condition codes, and CLc clear the condition
code. TRUE and FALSE are predefined constants of the type Bit, values of which are 1 and 0
respectively.

[2.10) SEN ==* CCN[TRUE]. CLN =: ý> CCN[FALSE].

SEZ CCz[TRUE]. CLZ CCz[FALSE].

SEV CCv[TRUE]. CLV CCv[FALSE].

SEC CCc[TRUE]. CLC CCc[FALSE].

SCC CCN[TRUEJ ccz[TRUE] CCV[TRUE] CCc[TRUE].

CCC CCN[FALSEJ CCZ[FALSEJ CCv[FALSE] CCc[FALSE].

The full suite of program flow instructions is given in the following definitions. First, the

conditional branches are given (2.11), and then the unconditional jump is defined in 2.12.

[2.11] branch(true) = BR. # branch always
branch(-z) = BNE CCz[z]. #00

branch(z) = BEQ CCz[z]. #=0

branch(-(n ^ v)) = BGE CCN[n] CCv[vj. #>O

branch(n ^ v) = BLT CCN[n] CCv[v]. #<O

branch(-i(z I (n ^ v))) = BGT CCZ [z] CCN [n] CCV [VI
-#>0

branch(z I (n ^ v)) = BLE CCZ[z] CCN[n] CCv [v]. #<0

branch(nn) = BPL CCN[n]. #+

branch(n) = BMI CCN[n]. #-

branch(-(clz)) = BHI CCc[c] CCz[zl- # higher (unsigned comparison)
branch(-c) = BCC CCC[c]. # carry clear

= BHIS CCc[c]- # higher or same (unsigned compar.)

branch(c) = BCS CCC[c]- # carry set

= BLO CCC[c]. # lower (unsigned comparison)
branch(clz) = BLOS CCC[c] CCZ [z]

-
lower or same (unsigned compar.)

branch(--v) = BVC CCv[v]- # overflow clear
branch(v) = BVS CCV[v]. # overflow set
PC[pcl pc[branch(c) d1cp =j c j#- PC[cp + dj; # branch

it =* PC[cp). # no branch

v
CHAPTER 2: PDP-11 28

All branch instructions jump relative to the contents of the program counter based on con-
dition codes. The displacement d is contained in the instruction word. The target absolute
address of the jump instruction defined by the following command is dependent on an ad-
dressing mode encoded in the instruction word.

[2.12] JMP dop(-, a) ==* PC[a].

The following register addressing archetype is defined for convenience. Note that use can
not be made of the register addressing command archetype defined in 1.1, since it expands
the additional REG text.

[2.13] reg(r, v) = r[v] 1.

JSR calculates the destination address (a), saves the contents (v) of the source register
(r) on the hardware stack, and saves the address of the following instruction in the source
register. (This saving of the PC provides the linkage from the subroutine back to the calling
program.) Finally, the PC is given the destination address, which produces the actual jump
to the subroutine. Return to the calling routine is provided by the companion instruction
RTS. The contents of the specified register are loaded into the PC, and the top of the hardware

stack is popped into the register. Note that register 6 is by convention the stack pointer.

[2.14] PC[pc] pc[JSR r dop(a, -)Jqc reg(r, v) reg(6, tp)

==* PC[a] reg(6, sp) sp[v]tp reg(r, qc).
RTS r reg(r, pc) reg(6, sp) sp[v]tp =-: ý> PC[pc] reg(6, tp) reg(r, v).

2.4 Interrupts

Software interrupt instructions perform a trap through the vector at (fixed) memory locations.
The effect of all of these instructions is the same: stack the contents of the PC and PSW
(program status word), and then load the PC and PSW with the contents of a fixed memory
location. The following definitions specify interrupt traps.

[2.15] trap(148,168) = BPT. # break-point trap
trap(208,228) = IOT. #input/output trap
trap(308,328) = EMT. # emulator trap
trap(348,368) = TRAP. # TRAP

trap(Pca, psw,,) reg(6, tp) PCa[PC1 PsWa[PSWI PC[Pcsl PSW[Pswsl

===> sp[pc, pswjtp reg(6, sp) PC[pcj PSW[pswl.

Returns from interrupts, on the other hand, restore the original contents (just before an
interrupt) of the PC and PSW registers from stack.

[2.16] reto = RTL return from interrupt

= RTT. return from trap
reto reg(6, sp) sp[pc psw]tp ==* PC[pcl PSW[psw] reg(6, tp).

CHAPTER 2: PDP-11

2.5 Other instructions

29

The NOP instruction is the standard no operation instruction. It produces no effect, but

occupies one word of memory and requires a complete execution cycle for execution.

[2-17] NOP ==* .# no operation

Conclusions
I

A significant subset of the PDP-11 instruction set has been described using the Update Plans

formalism. Although this specification adheres strictly to the Update Plans formalism as
described in [60], it already raises several issues addressed in the second part of this thesis.
In particular, it prompted the development of sequential update schemes and archetypes as
explained in chapter 6. A new, more complex specification would be based on the concepts
described in the same chapter, possibly on a fetch/execute cycle level description. This

specification is rather an abstract one. Use of the syntactic extensions described in the second
part of the thesis could be made, together with additional typing information to define the

precise layout of instruction words, as is done, for example, in the following chapter.

Chapter 3

SPARC-V9

T he SPARC' has been implemented in processors used in a range of computers from laptops

to supercomputers, and today boasts over 8,000 software application programs. SPARC-

V9, like its predecessor SPARC-V8, is a modern microprocessor specification created by the
SPARC Architecture Committee of SPARC International. SPARC-V9 is not a specific chip.
It is an architectural specification that can be implemented as a microprocessor by those

obtaining a license from SPARC International.
In this chapter, a formal specification of the SPARC-V9 abstract machine instruction set

is given using the Update Plans formalism. Although a partial specification of the SPARC-V9

architecture already exists [50], this is aimed at a different level of description.
The structure of this chapter is as follows. Section 1 defines types and constants used

throughout the specification. The SPARC-V9 has a rich set of registers using a relatively new
concept of windowing which is both informally described and then specified using Update
Plans in section 2. The most important instructions of this architecture are specified in

section 3. An example taken from the specification is shown in section 4. Finally, conclusions
and some future research suggestions are given section 5.

1 Types and constants
Throughout the specification, the following types are used. The remaining types used in this

specification which are not displayed here are declared in sections of their immediate use. Bit
is considered to be a primitive type having the usual meaning.

jBit}.

fByte(012) = jBit}8, Half word(102) = {Bit}16, Word(002) = {Bit}32,5: 3.1,3.2

Extended-word = jBit}64j. 5: 3.2
{Fp-single = jBitJ32, Fp-double = {BitJ64, Fp-quad = (Bitj 128}. 5: 3.2

'Scalable Processor ARChitecture

30

CHAPTER 3: SPARC-V!) 31

In Update Plans, constants are uppercase words. However, as will be shown in chapter 5

any sequence of letters (store) can be made into a constant by assigning it a type Constant.
The main reason for listing these constants is to show their bit values, supply grounding
information where necessary, and use names easily identifiable against the official (informal)

description of the SPARC-V9 architecture [77].

nPC:: Constant.

IMM13(12) :: Bit.

OP: ARM(102), OP: LS(112), OP: BRS(002), OP: CLL(012) fBit}2.

BRZ(012), BRLEZ(102), BRLZ(112) :: {BitJ2.

ADD(0002), SUB(1002), SAVE(1002), RESTORE(1012) {Bit}3.

BPA(10002), BPN(00002), BPNE(10012), BPE(00012) {Bit}4.

LDSTUB(OO 11012) :: {Bit}6.

FADD(O 0100 002), FSUB(O 0100 012) :: fBit}7.

REGRES(O 00 00 00 002) :: {Bit}9.

2 Registers

A SPARC-V9 processor includes two types of registers: general-purpose, or working data

registers, and control/status registers. In the following sections only integer and floating

point registers are described. For the structure of control/status registers, please refer to the
informal specification [77].

2.1 General purpose r registers

An implementation of the instruction unit may contain anything from 64 to 528 general-
purpose 64-bit r registers. At any time, an instruction can access the first 8 global registers
(r[O-7]), and a 24-register window into the r registers. A register window comprises the 8
'in' and 8 'local' registers, together with the 8 'in' registers of an adjacent register set, which
are addressable from the current window as 'out' registers. See figure 3.1 for more graphic
explanation.

5: 3.1

5: 3.1

5: 3.1,3.2

5: 3.1,3.2

5: 3.1,3.2

5: 3.1,3.2

5: 3.1,3.2

5: 3.1,3.2

5: 3.1,3.2

The following two sets of archetypes are provided to facilitate reading (2.1) and writing
(2-2) of r registers, and expansion of a 5-bit (a:: fBitj5) register address in an instruction 5: 3.2
word.

rr(O, 0) =. # reading r[01 yields 0

rr(a, v) = a[v] <a<8 1#- #global registers

= CWP [w] outr (a - 8, v, w) 8<a< 16 J=Ie

= CWP[w] locr(a - 16, v, w) 16 <a< 24 J=>

= CWP [w] inr (a - 24, v, w) 24 <a< 32 1=ýe

CHAPTER 3: SPARC-V9 32

Window NWINDOWS-I Window 1
15 8 31 24

outs WNWINDOWS-I
locals WO

ins W1
- ins WO

II

outs WO

31 24 23 16 15 8

Figure 3.1: Register Window 0

CWP is a constant locator pointing to the left boundary of the CWP (Current Window
Pointer) register containing a 5-bit, (w :: {Bit}5) address of the current 24 r register window. 5-3.2

A typical use of archetypes rr is through archetypes sopi and sop2 (3.1) both of which
will be described in section 3.1.

[2.2] rw(a, v) a= CWP [w] rw (a, v, w). 5: 2.2

rw (a, v, w) = O=aý*. # writing r [01 has no effect
1<a< 8ý*a[v]. #global registers
8<a< 16 outw(a - 8, v, w).

16 <a< 24 locw(a - 16, v, w).
24 <a< 32 1=> inw(a - 24, v, w).

Global register zero r[O] always reads as zero (archetype 2.1), and writes to it have no
program-visible effect (archetype 2.2).

[2.3] outr(a, v, w) = ilocr(a, v, w).

outw(a, v, w)= ==>ilocw(a, v, w).
locr(a, v, w) = ilocr(a + 8, v, w).
locw(a, v, w)= ==ý-ilocw(a+8, v, w).
inr (a, v, w) = ilocr(a, v, w- 1).

inw(a, v, w) = =*ilocw(a, vw-1).

Archetypes outr/outw, locr/locw and inr/inw (used to read/write access 'out', 'local'

and 'in' registers) are defined in terms of archetypes ilocr/ilocw (2.4) which calculate left
locators for these 3 types of r registers.

[2-4] ilocr(a, v, w) = (NWINDOWS -1- (w % NWINDOWS)) x 16 + a[v].
ilocw(a, v, w)= ==ý. (NWINDOWS-1-(w%NWINDOWS))xl6+a[vl.

The number of windows or register sets, NWINDOWS, is implementation-dependent and
ranges from 3 to 32. Note that r register with address o, where 8<o< 16, refers to exactly
the same register as o+ 16 does after the CWP is incremented by I (% NWINDOWS). Likewise,
a register with address i, where 24 <i< 32, refers to exactly the same register as address
i- 16 does after the CWP is decremented by 1 (% NWINDOWS)-

CHAPTER 3: SPARC-V9 33

2.2 Floating-point f registers

The floating-point unit contains

* 32 single-precision (32-bit) floating-point registers, numbered f [0], f [11, f [31]

* 32 double-precision (64-bit) floating-point registers, numbered f [01, f (21, f [621

* 16 quad-precision (128-bit) floating-point registers, numbered f [0), f [4], f [60)

The floating-point registers are arranged so that some of them overlap, that is, are aliased.
Layout and numbering of the floating-point registers is apparent from the following archetypes.

[2.5) fr (a, v, s) a= a[(v:: Fp-single)] =[S= 012 J=ý'
- 5: 2.2

= a[(v:: Fp-double)] =4 S= 102 1=4'
-

= a[(v:: Fp-quad)] =t S= 112 ý*
-

f w(a, v, s) a=S=0 12 a[(v :: Fp-single)]. 5: 2.2

S= 102 a[(v:: Fp-double)).
s= 112 a[(v:: Fp-quad)].

Archetypes (2.5) are provided to encapsulate reading (f r) and writing (f w) of different

types of floating-point values into f registers. Similarly to r registers, address a of an f

register is 5-bit wide (a :: jBit}5). 5: 3.2
Unlike the windowed r registers, all of the floating-point registers are accessible at any

time.

Instructions

3.1 Arithmetic and logical operations

Arithmetic and lo-ical instructions (and some others) use the instruction word format shown
in detail in figure 3.2. The value (major opcode) of two highest bits of all instructions falling
into this category is 10, for which a constant OP: ARM is used. Other fields in the instruction

word are 5-bit addresses of source (rsl, rs2) and destination (rd) registers, minor opcode op3,
and if bit 13 is set to 1, a 13-bit immediate value simm13 always sign-extended to 64 bits.

In order to make our specification as compact and clear as possible, a frequent use of the

archetype mechanism is made. Firstly, we define archetypes for accessing values in source
registers, which at the same time describe the layout of the instruction word.

sopi(v) = rr(a, v) a.

sop2(v) = REGRES(v).

= IMM13(v).

Command archetypes REGRES and IMM13 help in defining the instruction word format and
return a value of a source operand in variable v. The function sign-ext sign-extends an
integer value and is assumed to be defined elsewhere.

CHAPTER 3: SPARC-V9 34

[3.2] REGRES(v) a= rr(a, v). # REGRES = 02 00 00 00 002 5: 2.2
IMM13(sign-ext(v)) = (v:: jBit}13). # IMM13 = 12 5: 3.2

Secondly, there must be a way of reading and writing carry bit in the condition codes
register. Archetypes 3.3 and 3.4 do exactly that. Note that arithmetic and logical instructions

always read the carry bit from integer condition code register (ICC), whereas they write to
both ICC and the extended integer condition code (XCC) registers.

[3.31 iccr(c) = CCR: ICC: C[c].
iccrb(c) = 12 iCCr(C)-

iccrb(O) = 02-

Archetype iccrb reads the carry flag to c, if the carry bit in the op3 field (bit 22) is set.
Similarly, ccwb sets the condition code registers XCC and ICC (only) if the ccwb bit (23) in
the instruction is 1.

[3.4] ccw(v) CCR: XCC[(v <4,0) (V = 0) (-(MIN43 : ý4, v <4, MAX4s» (v >4u MAX4J1 5-. 2.2

CCR: ICC[(v <2, (» (V = 0) (-(MIN2., : 52s V
-<2s

MAX2, » (V >2u MAX2J1-

ccwb(V) 02-

12 ý`* CC'ýI(V)-

The constants MIN,, /MAX,,., are the smallest/largest negative n-byte two's complement signed
integer. MAX,, is the largest n-byte unsigned integer. The n-byte operators <"S, : 5ns (signed

comparison operators), >,, u (unsigned comparison) and = are assumed to be defined else-
where.

[3.5] c :: Bit.

aloper(x, y, x+y+ c) 02 ccwb($3) iccrb(c) ADD. # ADD 0002 5: 2.4

aloper(x, y, x-y- c) 02 ccwb($3) iccrb(c) SUB. # SUB 1002 5: 2.4

Archetype aloper (3.5) shows the behaviour of 8 different arithmetic instructions and defines
the layout of their op3 field making use of the previously defined archetypes iccrb and
ccwb. These instructions include add/subtract, add/subtract and modify condition codes,
add/subtract with carry, and add/subtract with carry and modify condition codes. The Sn

symbol used in archetype bodies is used to reference the archetype's nth parameter. Thus
the $3 of the first aloper archetype is merely shorthand for saying 'x +y+ c'.

Since arithmetic and logical instructions fall into the same category as regards their in-

struction field layout, the following archetypes (and in particular the aloper archetype) are
provided to specify both the op3 field and the appropriate actions for logical instructions.

CHAPTER 3: SPARC-V9 35

10 rd op3 I rs 1,1 01 rs2

10 rd, op3. ýsl 11 1 simm13
..... 31 3029 25 24 19 18 14 13 12 540

Figure 3.2: Format of arithmetic, logical, and SAVE and RESTORE instructions

[3.6] n:: Bit.

op:: fBit)2.

neg(v) = -' =1 V= 12

==> .# empty body if V0 12

1OP(OP) OP = 012 # bit-wise and

OP = 102 # bit-wise or

OP = 112 1=4> # bit-wise xor

aloper(x, y, neg(n) (X 1OP(OP) Y)) = 02 ccwb($3) 02 n op.

If the n bit is set it inverts (by the means of the neg archetype) the logical operation
determined by the op field. Note that archetype neg expands to empty right and left-hand

sides, if the value of the bit n is 0. The archetype lop simply decides on one of 3 logical

operations based on value of its two-bit parameter op. Again, condition codes are set or not
by the archetype ccwb based on the result of logical operations (third argument of archetype

aloper) in the same way as for arithmetical operations.
Many update schemes in this specification are commands. As explained in [60], every

command whose left and right program counters are hidden can be prefixed by 'pco =',
where pco is a unique archetype declaration. As there are two program counters in the
SPARC-V9, PC-containing the address of the current instruction and nPC-containing the

address of the next instruction, the following update scheme can be defined and all commands
instantiated through the expansion in this scheme.

[3.7] PC[pc] pc[pc()]qc nPC[pc'] ==* PC[pc] pc'fpco]qc nPC[pc'+ 4].

F inally, the command update scheme 3.8 specifies the instruction field layout of all arith-
metic and louical instructions defined in this section. 0
[3.8] OP: ARM rw(-, r) aloper(x, y, r) sopl(x) sop2(y) # OP: ARM = 102

3.2 Register window manipulation instructions

All r registers (apart from the first eight) are windowed. This means that there must be

a mechanism to access registers in various windows. There are two instructions that do
that-SAVE and RESTORE.

5: 3.2

5: 2.4

The SAVE instruction provides the routine executing it with a new register window. The

out' registers from the old window become the 'in' registers of the new window.

CHAPTER 3: SPARC-V9 36

The RESTORE instruction restores the register window saved by the last SAVE instruction

executed by the current process. The 'in' registers of the old window become the 'out' registers
of the new window. The 'in' and 'local' registers in the new window contain the previous
values.

[3.9] sr(x, y, x+y+c, w+ 1) =
10 ccwb($3) iccr(c) SAVE CWP[w] #SAVE = 1002 5: 2.4

sr(x, y, x+y+ c, w- 1) =
10 ccwb($3) iccr(c) RESTORE CWP[w] #RESTORE = 1012 5: 2.4

OP: ARM rw(a, r, w) a sr(x, y, r, w) sopl (x) sop2(y) ==* CWP[w % NWINDOWS].

Furthermore, SAVE and RESTORE behave like an ordinary ADD instruction, except that
the source operands r[rsl] and/or r[rs2j are read from the old window (that is, the window
addressed by the original CWP) and the sum is written into r[rd] of the new window (that is,

the window addressed by the new CWP).

3.3 Load/Store instructions

3.3.1 Load-store unsigned byte

The load-store unsigned byte instruction copies a byte from memory into r[rd], and then

rewrites the addressed byte in memory to all ones. The fetched byte is right-justified in the
destination register r[rd) and zero-filled on the left. The format of this instruction is the same
as the format of arithmetic instructions, with the exception of the major opcode.

[3.10] r :: Byte.

ldstub(a, r) = LDSTUB a[r] ==> a[1111111121- # LDSTUB = 00 11012
OP: LS rw(-, r) ldstub(x + y, r) sopl(x) sop2(y) # OP: LS = 112

3.3.2 Load integer from alternate space

The load integer from alternate space instructions copy a byte, a halfword, a word or an
extended word from memory into r[rd]. A fetched byte, halfword, or word is right-justified
in the destination register; it is either sign-extended or zero-filled on the left (to 64 bits),
depending on whether the opcode specifies a signed or unsigned operation, respectively.

For each instruction access and each normal data access, the IU appends an 8-bit address
space identifier (ASI) to the 64-bit memory address. Load/Store alternate instructions can
provide an arbitrary ASI with their data addresses (if bit 13 of the instruction word = 0), or
use the ASI value contained in the ASI register (if bit 13 of the instruction word = 1).

Archetypes defined in 3.11,3.13 and the type alias declaration in 3.12 are provided in
order to make the final command update scheme in 3.14 more compact.

CHAPTER 3: SPARC-V9

Jil l. rd. I - op3 I rsl. 1 0 1 imm-asi I rs2.

1.1 rd. op3. ýsl
,I

II simm13
31 3029 25 24 19 18 14 13 12 540

Figure 3.3: Format of load/store integer or from/into alternate sPace instructions

[3.11] signed(s) = zero-f ill =[s

= sign-ext =f s =:

[3.12] jInteger =Byte I Half word I Word}.

The archetype 3.13 makes sure that we get the correct value of ASI regardless of the value
of bit 13 in the instruction field, fetches values x and y from source registers, and sets the
format of the instruction word for bits 0-18.

[3.13] asi :: Byte.

sopasi(x, y, asi) = SOPI(X) 02 asi sopl(y).

= sopl(x) IMM13(y) ASI[asil.

Load/Store instructions use rather inconsistently different bit values to denote the type
Extended-word, and that is why a separate archetype lias is provided for this type. The

asi: a locator points to a normal or alternative address area.

5: 3.1

[3.14] s :: Bit.

lias(asi, a, signed(s) (r)) S 02 Integer asi: a[(r :: Integer)]. 5: 3.1
lias(asi, a, r) 10112 asi: a[(r:: Extended-word)]-

OP: LS rw(-, r) 012 lias(asi, x+y, r) sopasi(x, y, asi) =#- .

3.3.3 Store integer into alternate space

The store integer into alternate space instructions copy the whole extended (64-bit) integer,
the less-significant word, the least-significant halfword, or the least-significant byte of r[rd]
into memory. Again, due to the inconsistency described in the previous section a separate
archetype sias is provided for the type Extended-word.

sias (as i, a, r) ý 012 Integer=* asi: a[(r:: Integer)]. 5: 3.1

sias(asi, a, r) = 11102 =#> asi: a[(r:: Extended-word)].

OP: LS rr(-, r) 012 sias(asi, x+y, r) sopasi(x, y, asi) =* .

37

CHAPTER 3: SPARC-V9 38

1101
.

rd.
.1 .

1.10100.1. rsl.. 1. fop. Is rs2
31 3029 2524 19 18 14 13 76540

Figure 3.4: Format of the floating-point ADD and SUB instructions

3.4 Floating-point instructions

3.4.1 Floating-point ADD and SUB instructions

The floating-point add instructions add the floating-point register specified by the rsl field

and the floating-point register specified by the rs2 field, and write the sum into the floating-

point register specified by the rd field. The floating-point subtract instructions subtract the
floating-point register specified by the rs2 field from the floating-point register specified by

the rsl field, and write the difference into the floating-point register specified by the rd field.
Note that the command archetype in 3.16 makes use of archetypes fr defined in section 2.2

which read appropriate floating-point type values (based on the value in the two-bit cell s)
into variables x and y. The archetype fw writes the result (r) into a floating-point register
specified by the rd field, again, its type is based on the value of s.

[3.16] s :: f Bit}2.

f arithm(x, y, x+ y) = FADD. # FADD ý0 0100 002

f arithm(x, y, x- y) = FSUB. # FSUB =0 0100 012

OP: ARM f w(-, r, s) 1101002 f r(-, x, s) f arithm(x, y, r) sf r(-, y, s) ==> .

3.4.2 Floating-point compare

These instructions compare the floating-point register specified by the rsl field with the
floating-point register specified by the rs2 field, and set the selected floating-point condition
code (fccn) as specified by the 3.17 archetype.
13.17) f cmp(x, y) X=Y 002-

X<Y 012-

X>Y 102.

X? Y 112- # unordered (x or/and y is NaN)

Archetypes f ccnr and f ccnw read/write a selected floating point condition code field,

and finally, update scheme 3.19 makes use of all the archetypes from this section to specify
floating-point compare instruction and its field layout.

[3.18] v:: {Bit}2.

5: 3.2

5: 3.2

f ccnr(f cc, v) = FSR: FCC: f cc[vj.
fccnw(fcc, v)= ==*. FSR: FCC: fcc[v].

CHAPTER 3: SPARC-V9 39

110 1 000 lccolccil
.

110101 rs 1.0010100 s rs2
31 3029 27262524 19 18 14 13 76540

Figure 3.5: Format of the floating-point compare instructions

[3.19] OP: ARM 0002 CCI CCO 1101012 fr(-, x, -9)
0010102 sf r(-, y, s) 2: ->

f ccnw(ccl ý ccO, f cmp(x, y)).

3.4.3 Load floating-point from alternate space

The load single floating-point from alternate space instruction LDFA (see figure 3.6) copies

a word from memory into f [rd]. The load doubleNvord floating-point from alternate space
instruction (LDDFA) copies a Nvord-aligned double-Nvord from memory into a double-precision

floating-point register. The load quad floating-point from alternate space instruction (LDQFA)

copies a word-aligned quadword from memory into a quad-precision floating-point register.
The command update scheme in 3.20 makes use of archetypes defined earlier in 2.5 and 3.13.

[3.20] ldfa(asi, a, r, 01) 002 asi: a[(r:: Fp-single)]. #LDFA

ldf a(asi, a, r, 10) 112 asi: al(r:: Fp-double)). # LDDFA

ldf a(asi, a, r, 11) 102 asi: a[(r:: Fp-quad)]. # LDQFA

OP: LS f w(-, r, s) 11002 ldf a(asi, x+y, r, s) sopasi(x, y, asi)

3.4.4 Store floating-point into alternate space

The store single floating-point into alternate space instruction (STFA) copies f [rd] into memory.
The store double floating-point into alternate space instruction (STDFA) copies a doublelvord

from a double floating-point register into a Nvord-aligned doubleNvord in memory. The store

quad floating-point into alternate space instruction (STqFA) copies the contents of a quad
floating-point register into a Nvord-aligned quadNvord in memory.

Similarly to load floating-point instructions from ASI (and load/store integer from/into

ASI) store floating-point instructions into ASI contain the ASI to be used for the load in

the imm-asi field if bit 13 =0 in the instruction Nvord, or in the ASI register if the same
bit (i) reads as 1. The effective address for these instructions is r[rsi] + r[rs2] if i=0, or

r[rsil + sign-ext(simml3) if i=1.

[3.21] stf a(asi, a, r, 01) 002 asi: a[(r Fp-single)]. # STFA

stf a(asi, a, r, 10) 112 asi: a[(r Fp-double)]. # STDFA

stf a(asi, a, r, 11) 102 asi: a[(r Fp-quad)). # STQFA

OP: LS f r(-, r, s) 11012 stf a(asi, x+y, r, s) sopasi(x, y, asi)

CHAPTER 3: SPARC-V9

1ý1 rd. op3. rsi. 0 imm-asi rs2

11 rd. op3 rsi. 1 simml3
.... 31 3029 25 24 19 18 14 13 12 540

Figure 3.6: Load/Store floating-point from/into alternate space

10 rd. 1.11.00.0 rsl. 10 1 rs2

1.10 1 rd. 111000 1 rsl II I simm13
31 3029 25 24 19 18 14 13 12 540

Figure 3.7: Format of the JMPL instruction

3.5 Control transfer instructions

3.5.1 Jump and link

40

One of the simplest control transfer instructions is the JMPL instruction. The JMPL writes
the contents of the PC (program counter), which points to the JMPL instruction itself, into
the r[rd] register2 and then causes a delayed transfer of control (the register nPC (next PC]
is written) to the address given by r[rsIj + r[rs2l or r[rsIj + sign-ext(simm13) based on the
value of bit 13 of the instruction word. Note that its format is the same as that of arithmetic
instructions (figure 3.2). Tile value 1110002 is the content of the op3 instruction field and
simply distinguishes the JMPL instruction from other (arithmetic) instructions.

[3.221 PC[pc] nPC[npcl pc[OP: ARM rw(-, pc) 1110002 SOP1(X) sop2(y)] ==* PC[npcl nPC[x+yl.

3.5.2 Branch on integer register with prediction (BPr)

These instructions branch based on the contents of r[rslj. They treat the register contents
as a signed integer value. A BPr instruction examines all 64 bits of r[rsll according to the
cond field of the instruction, producing either a TRUE or FALSE result. If TRUE, the branch
is taken; that is, the instruction causes a PC-relative, delayed control transfer to the address
PC+ (4 X sign-ext(dl6hi ý d161o)). If FALSE, the branch is not taken. If the branch is taken,
the delay instruction is always executed, regardless of the value of the annul bit. If the branch
is not taken and the annul bit (a) is 1, the delay instruction is annulled (not executed)-see
update scheme 3.25.

The predict bit (p) is used to give the hardware a hint about whether the branch is
expected to be taken. AI in the p bit indicates that the branch is expected to be taken; a0
indicates that the branch is expected not to be taken.

First, let us define some stores which will be used later in the specification.
2 The value written into the register is visible to the instruction in the delay slot.

CHAPTER 3: SPARC-V9 41

00 1a 10 1 cond I Oll Idl6hil PI. rs 1. I dl6lo
31 30292827 25 24 22 21 20 19 18 14 13 0

Figure 3.8: Format of BPr instructions

a, p, n :: Bit. # annul, prediction and "negate condition" bits
dl6hi:: {Bit}2. # 2-bit PC-relative displacement 5: 3.2
rsl:: {Bit}5. # address of the 1st source register 5: 3.2
d161o:: jBit}14. # 14-bit PC-relative displacement 5: 3.2

The values of constants BRZ, BRLEZ, BRLZ and OP: BRS can be found in section 1.

[3.231 bpr-cond(v, neg(n) (v = 0)) =n BRZ. # Branch on Register Zero

bpr-cond(v, neg(n) (v < 0)) =n BRLEZ. #" Register Less Than or Equal to Zero

bpr-cond(v, neg(n) (v < 0)) =n BRLZ. #" Register Less Than Zero

Note that the archetypes bpr-cond can expand into 6 different -update schemes, based on the

value of bit 27 (n) of the instruction word. The archetype neg is defined in 3.6 on page 35.
Ambidextrous archetypes ea are used throughout the specification, and expand an effective

jump address to branches.

[3.24] ea(pc, displ) pc + (4 x sýgn-ext(displ)) =.

[3.25] PC[pc] nPC[npc] pc[OP: BRS a 02 bpr-cond(v, c) 0112 d16hi p rw(rsl, v) dl6lol

c J#. PC[npc] nPC[ea(pc, d16hi I d161o)].

-c Aa=0 PC[npcj nPC[npc + 4]. # instruction in delay slot executed

=4 --ic Aa=I PC[npc + 4] nPC[npc + 8]. # instruction in delay slot annulled

3.5.3 Branch on integer condition codes with prediction (BPcc)

Unconditional Branches (BPA, BPN). A BPN (Branch Never with Prediction) in no case
causes a transfer of control to take place. This instruction may be treated as a NOP by an
implementation.

BPA (Branch Always with Prediction) causes an unconditional PC-relative, delayed control
transfer to the address PC + (4 x sign-ext(disp1g)).

If the BPN's or BPA's a field is 1, the following (delay) instruction is not executed. If the a
field is 0, the following instruction is executed.
Conditional Branches. Conditional BPcc instructions (except BPA and BPN) evaluate one
of the two integer condition codes (icc or xcc), as selected by cco and ccl, according to the
cond field of the instruction, producing either a TRUE or FALSE result.

If TRUE, the branch is taken; that is, the instruction causes a PC-relative, delayed control
transfer to the address PC + (4 x sign-ext(displ9)). If FALSE, the branch is not taken. If a

5: 2.2

CHAPTER 3: SPARC-V9 42

00 1aI cond. 1 001 Iccilccol pI displg
31 3029 28 25 24 22 21 20 19 18 0

Figure 3.9: Format of BPcc instructions

conditional branch is taken, the delay instruction is always executed regardless of the value
of the annul (a) field. If a conditional branch is not taken and the a field is 1, the delay
instruction is not executed.

Again, let us define some stores which will be used later in the following sections of this

specification.

n, z, v, c :: Bit. # bits of the ICC/XCC register

ccl, ccO:: Bit. # condition codes selection

cond:: fBit}4. # the condition field

disp19:: jBit}19. # branch's PC-relative displacement

[3.26] bp-cond(-, TRUE) = BPA. # Branch Always

bp-cond(-, FALSE) BPN. #" Never

bp-cond(ncc, -z) CCR: ncc[n zv cl BPNE. #" on
bp-c ond (nc c, z) = CCR: nc c [n zv c] BPE. # on
bp-cond(ncc, -, (z V (n - v))) = CCR: ncc[n zv c] BPG. # on >
bp-cond(ncc, zV (n ^ v)) = CCR: ncc[n zv cl BPLE. # on <

bp-cond(ncc, -, (n - v)) = CCR: ncc(n zv c] BPGE. # on >

bp-cond(ncc, n- v) = CCR: ncc[n zv c] BPL. # on <
bp-cond(ncc, -i(c V z)) = CCR: ncc[n zv c] BPGU. # on > Unsigned

bp-cond(ncc, cV z) = CCR: ncc[n zv cl BPLEU. # on < Unsigned

bp-cond(ncc, -c) = CCR: ncc[n zv c] BPCC. # on > Unsigned

bp-cond(ncc, c) = CCR: ncc[n zv c] BPCS. # on < Unsigned

bp-cond(ncc, -n) = CCR: ncc[n zv c] BPPOS. # on Positive

bp-cond(ncc, n) = CCR: ncc[n zv c] BPNEG. # on Negative

bp-cond(ncc, -iv) = CCR: ncc[n zv cl BPVC. # on Overflow Clear

bp-cond(ncc, v) = CCR: ncc[n zv cl BPVS. # on Overflow Set

The bp-cond archetypes are used for reading condition code values, and making a decision
about a condition's validity. It also defines the cond field in an instruction word (the 4-bit
values of the constants BPA, BPN, ..., BPVS are assumed to be defined elsewhere). COND is a
3-bit offset into the instruction word.
[3-27] PC[pcj nPC[npc] pc: COND[cond]

pc[OP: BRS a]pc-COND[bp-cond(ccl I CCO) C) 0012 CCI ccO p displ9l

=4 -1c Aa=0 PC[npc] nPC[npc + 4].

=1 --ic Aa=1 PC[npc + 41 nPC[npc + 8].

5: 3.2

CHAPTER 3: SPARC-V9 43

cAa=0 ý* PC[npcl nPC[ea(pc, displ9)].

cAa=1A cond BPA PC[ea(pc, displ9)] nPC[ea(pc, displ9) + 4].

cAa=1A cond BPA PC[npc] nPC[ea(pc, displ9)].

Note that the value of the CCR: nc c locator (CCR: ICC or CCR: XCC) depends on the values

of condition codes cci and cco (002 ýý XCC7 102 ICC). The reason for using so many

guards in update scheme 3.27 is mainly the different effects of the annul bit on conditional

and unconditional branches described earlier in this section.

3.5.4 Branch on floating-point condition codes with prediction (FBPf cc)

The effects of these instructions are exactly the same as those of their integer counterparts
described in section 3.5.3 as far as control transfer and annulment of the instruction in a delay

slot is concerned. See figure 3.10 for their format.
The following set of archetypes reads a floating-point condition register selected by a 2-bit

value f cc and compares it to constants: E(002), L(012), G(102)) U(112) :: jBit}2. As a result 5: 3.1,3.2

TRUE or FALSE value is instantiated as the archetype's second parameter. Again, the content
of the cond field of the instruction word is defined by 4-bit constants (FBPA, FBPN, ..., FBPO)

which are assumed to be defined elsewhere.

[3.28] f bp-cond(-, TRUE) = FBPA. # Branch Always

f bp-cond(-, FALSE) = FBPN. #" Never

f bp-cond(f cc, v= U) =f ccnr(f cc, v) FBPU. #" on Unordered

f bp-cond(f cc, v= G) =f ccnr(f cc, v) FBPG. #" on >
f bp-cond(f cc, v=UVv= G) =f ccnr(f cc, v) FBPUG. #" on Unordered or >
f bp-cond(f cc, v= L) =f ccnr(f cc, v) FBPL. # on <
f bp-cond(f cc, v=UVv= L) =f ccnr(f cc, v) FBPUL. # on Unordered or <
f bp-cond(f cc, v=LVv= G) =f ccnr(f cc, v) FBPLG. # on < or >
f bp-cond(f cc, v= --, E) =f ccnr(f cc, v) FBPNE. #)I on
f bp-cond(f cc, v= E) =f ccnr(f cc, v) FBPE. # on
f bp-cond(f cc, v=UVv= E) =f ccnr(f cc, v) FBPUE. # on Unordered or
f bp-cond(f cc, v=GVv= E) =f ccnr(f cc, v) FBPGE. # on >

f bp-cond(f cc, v= --, L) =f ccnr(f cc, v) FBPUGE. # on Unordered or >

f bp-cond(f cc, v=LVv= E) =f ccnr(f cc, v) FBPLE. # on <

f bp-cond(f cc, v= --, G) =f ccnr(f cc, v) FBPULE. # on Unordered or <

f bp-cond(f cc, v= --iU) =f ccnr(f cc, v) FBPO. # on Ordered

A more complex, but concise alternative to archetypes 3.28 is given in 3.29.

[3.29] e :: Bit. lgu:: {Bit}3.5: 3.2
f bp-cond(f cc, neg(e) (dm(-, v) & (-, lgu + 1))) =f ccnr(f cc, v) e l&u.

CHAPTER 3: SPARC-V9

0.0 1aI co. nd. 1 101 Ic: cllccol pI disp19
31302928 2524 2221 20 19 18 0

Figure 3.10: Format of FBPf cc instructions

ol I.. disp30
31 3029 0

Figure 3.11: Format of the Call and link instruction

44

The function dm is an ordinary demultiplexor, which could be defined using the arithmetic

shift left operator << as dm(v): 12 << v Iv IvE jVol.

[3.301 PC[pcl nPC[npcl pc: COND[condl

pc[OP: BRS ajpc: COND[f bp-cond(ccl ý ccO, c) 1012 CC1 ccO p displ9]

=4 --ic Aa=0)=ý, PC[npcl nPC[npc + 4).

=1 -ic Aa=1 J=> PC[npc + 4] nPC[npc + 8].

cAa=0 1=ý PC[npcl nPC[ea(pc, displ9)].

cAa=1A cond = FBPA j#. PC[ea(pc, displ9)] nPC[ea(pc, displ9) + 41.

cAa=1A cond =7ý FBPA J=: ý, PC[npc] nPC[ea(pc, displ9)].

Again, the annul bit has a different effect for conditional branches than it does for uncon-
ditional branches (in this case opcode FBPA). If the annul bit (a) is set, it annuls the delay
instruction for unconditional branches always, whereas for conditional branches it annuls the
delay only if the branch is not taken. Please refer to [77] for details.

3.5.5 Call and link

The CALL instruction writes the contents of the PC into r[151 ('out' register3 7) and then

causes an unconditional delayed transfer of control to a PC-relative effective address.
[3.31) disp30:: jBit}30.5: 3.2

PC[pcl nPC[npcl CWP[w] pc[OP: CLL disp3O) OP: CLL -= 012

==* PC[npcj nPc[ea(pc, disp30)] rw(15, pc, w).

3.5.6 Return

The RETURN instruction causes a delayed transfer of control to the target address and has the

window semantics of a RESTORE instruction; that is, it restores the register window prior to
the last SAVE instruction. The target address is r [rs1j + -r [rs2] if bit 13 of the instruction word
(i) is 0, or r[rsll + sign-ext(simm13) if i=1.

3 see footnote 2 on page 40

CHAPTER 3: SPARC-V9

1.0 7. 1.11.00.1 rsl. 0 rs2

10 1.1100.1 rsl. 1 simm13
..... 31 3029 25 24 19 18 14 13 12 540

Figure 3.12: Format of the RETURN instruction

0,01.09090.1 ýoq 1 00 00000 00000 00000 00000
31 30 29 2524 2221 0

Figure 3.13: Format of the NOP instruction

[3.32] PC[pc] nPC[npc] CWP[w) pc[OP: ARM 000002 1110012 SOP1(X) sop2(y)]

==* PC[npcl nPC[x + yj CWP[(w - 1) % NWINDOWS].

Note that registers r[rsl] and r[rs2] come from the old window.

3.6 Miscellaneous instructions

3.6.1 No operation

The NOP instruction changes no program-visible state (except the PC and nPC registers).

[3.33] OP: BRS 000002 1002 002 000002 000002 000002 000002 ý_-* -

An example

45

The following example uses archetypes from sections 2 and 3 to illustrate the archetype
expansion mechanism. In this example the update scheme

[3.221 PC[pc] nPC[npcl pc[OP: ARM rw(-, pc) 1110002 SOP1(X) sop2(y)) ==* PC[npcl nPclx+y].

will be expanded into one update scheme showing the effects of the JMPL (Jump and Link)
instruction described in section 3.5.1. For maximum simplicity, the instruction uses as its
destination and first source operands global r registers (i <r< 8) and as its second source
operand an immediate value carried by the instruction itself.

The arithmetic command scheme 3.22 expands as shown in figure 3.14. The archetypes
and their index numbers from sections 2 and 3 are included as comments for convenience.
After substitution using equations derived at each step the full expansion of our update scheme
is

PC[pc] nPC[npc] CWP[w] al[xj # initial configuration
pc[OP: ARM

-
1110002 a, IMM13 (V3 :: {Bit}13)] #field format of the current instruction 5: 3.2

=[(1 <-< 8) A (1 < a, < 8) Y* # conditions for application

PC[npc] nPc[x + sign-ext(V3)] -[PC]-
effects of instruction on configuration

CHAPTER 3: SPARC-V9

PC[pcl nPC[npc] pc[OP: ARM rw(-, pc) 1110002 SOP1(X) sop2(y)]
=* PC[npc] nPC[x + y]. # [3.22]

[2.2] rw (a, v) a= CWP[w] rw (a, v, w). a, pc =v

PC[pcj nPC[npcj CWP[w] pc[OP: ARM rw(a, v, w) a 1110002 sopl(x) sop2(y)]
=* PC[npcj nPC[x + yl.

[3.1] sopi (vj) = rr(al, vi) a,. X= V1
PC[pcl nPC[npc] CWP[w] pc[OP: ARM rw(a, v, w) a 1110002 rr(al, vi) a, sop2(y)]

==ý, PC[npc] nPC[vl + y].
[3.1] sop2(v2) = IMM13(v2). Y= V2

PC[pcj nPC[npc] CWP[w] pc[OP: ARM rw(a, v, w) a 1110002 rr(al, vi) al IMM13(V2)]

=#- PC[npc] nPC[vi + V21-
[2.2] rw (a, v, w) = =[I<a<8 ý* a [vj.

PC[pc] nPC[npcj CWP[w] pc[OP: ARM a 1110002 rr(al, vl) a, IMM13(V2)]

=[I<a<8 J#. PC[npcj nPC[vi + V2] a[v].
[2.1] rr (a,, vj) == a, [v,] =4 I<a, <8 ý*.

PC[pc] nPC[npc] CWP[w] al[vlj pc[OP: ARM a 1110002 al IMM13(V2)]

=1 (1 <a< 8) A (1 < a, < 8) Y: ý- PC[npcj nPC[vj + V2] a[v].
[3.2] IMM1 3 (s ign -ext

(v3))
=

(v3
:: {Bi t} 13). v2 = sign -ext

(V3)

PC[pc] nPC[npcl CWP[w] al[vl] pc[OP: ARM a 1110002 a, IMM13 (V3 :: jBitJ13)]

=I- (1 <a< 8) A (1 < a, < 8) J=> PC[npc] nPC[vi + V2] a[v].

Figure 3.14: Example of archetype expansion

46

For a slightly longer example of archetype expansion please refer to appendix C, where
the same instruction uses as its destination operand one of 7 global r registers, as its first

source operand one of 8 'in' registers, and finally as its second source operand an immediate

value.

Conclusions

This chapter gives a (partial) specification of the SPARC-V9 CPU at the instruction set level.
The main achievement is its compactness (the number of update schemes necessary to specify
the whole instruction set of this processor is less then the number of opcodes appearing in the
informal specification [77]) and clarity. The next step could be a specification of a SPARC-V9

compliant specific chip (such as UltraSPARC Hi [70)) and proof of their (partial) equivalence.
Furthermore, since the same formalism can be used to specify lower level representations
(such as the microcode), it would be possible to prove transformations between these levels

and reason about the specifications.

Chapter 4

Java Virtual Machine

T he Java Virtual Machine (JVM) is a platform independent abstract computing machine.
The JVM has a bytecoded instruction set designed to be compact and easily interpreted

in either software or hardware. In this chapter, a formal specification of a subset of the JVM
instructions is given. Instructions are described using the basic Update Plans formalism briefly
introduced in chapter 1. This is not the first attempt at a formal description of Java bytecode

semantics as a similar work has already been done [11], however, the following description

of JVM instruction semantics reflects the readability and flexibility of Update Plans for this

purpose and also demonstrates some of the new Update Plans features introduced to the
formalism by this thesis. The specification is based on informal specifications [19,48,75] and
a part of it was already published in [55].

I Types, constants, variables

1.1 Types

The following types are used throughout the specification. Store Bit is considered to be a
primitive type having the usual meaning.
[1-1] fBit}.

f Boolean =f Bit)32, Byte = {Bit}32, Char =f Bit}32, Short =f Bit}32,5: 3.2
Int =f Bit}32, Float = {Bit}32, Ref erence = jBit}32,5: 3.2
ReturnAddress =f Bit}32, Long =f Bit}64, Double = {Bit}64}. 5: 3.2

Since many JVM instructions are defined in terms of so called category types [48], the
following type aliases are provided.

[1.2] jCategoryi = Booleanj Byte I Char I Short I Int I Float I Reference I ReturnAddress,
Category2 = Long I Double,

Category12 = Categoryl I Category2}.

47

CHAPTER 4: JAVA VIRTUAL MACHINE 48

For the purposes of this specification, additional types Signed/Unsigned Byte/Short are
declared. The main reason is to supply grounding information for Update Plans. Signed

values use two's-complement encoding similarly to Int and Long types.

[1.3] {UnsignedByte = {Bit}8, SignedByte = {Bit}8,5: 3.2
Uns ignedShort = {Bit} 16, SignedShort = jBit} 16}. 5: 3.2

In order to make the definitions of the instructions as compact and clear as possible, an

alias type Word is also defined, which is used mainly by stack manipulation instructions.

[1.4] jWord = Categoryl Categoryl I Category2}.

1.2 Constants

This section contains a list of all JVM opcodes used in this specification with their values.

POP(87), POP2(88), DUP(89), DUP-Xl(90), DUP-X2(91), DUP2(92) 5: 3.1

DUP2-Xl(93), DUP2-X2(94), SWAP(95), 5: 3.1

ILOAD(21), ILOAD-0(26), ILOAD-1(27), ILOAD-2(28), ILOAD-3(29), 5: 3.1

ISTORE(54), ISTORE-0(59), ISTORE-1(60), ISTORE-2(61), ISTORE-3(62), 5: 3.1

IADD(96), ISUB(100), IMUL(104), IDIV(108), IREM(112), 5: 3.1

IAND(126), IOR(128), IXOR(130), ISHL(120), ISHR(122), IUSHR(124), 5: 3.1

INEG(116), IINC(132), 5: 3.1

ICONST-Ml(2), ICONST-0(3), ICONST-1(4), ICONST-2(5), ICONST-3(6), ICONST-4(7), 5: 3.1

ICONST-5(8), 5: 3.1

BIPUSH(16), SIPUSH(17), 5: 3.1

IFEQ(153), IFNE(154), IFLT(155), IFGE(156), IFGT(157), IFLE(158), 5: 3.1

IF-ICMPEQ(159), IF-ICMPNE(160), IF-ICMPLT(161), IF-ICMPGE(162), IF-ICMPGT(163), 5: 3.1

IF-ICMPLE(164), 5: 3.1

GOTO(167), GOTO-W(200), JSR(168), JSR-W(201), RET(169), 5: 3.1

WIDE(196) :: UnsignedByte. 5: 3.1

1.3 Variables

Unless stated otherwise, throughout the whole document the following variables, used for
description of instruction parameters, are assumed to have the following types

b., :: SignedByte.
b,,, opc :: UnsignedByte.

s.,, 5., :: SignedShort.

S, :: UnsignedShort.

i, :: Int.

z :: Categoryl2.

CHAPTER 4: JAVA VIRTUAL MACHINE

Instructions

2.1 Operand stack management

49

A number of instructions are provided for direct manipulation of the operand stack in the

current frame: POP, POP2, DUP, DUP-X1, DUP2-XI, DUP-X2, DUP2-X2 and SWAP. One of many
possible UP definitions is as follows

[2.1] POP Sp[t] sfvlt Sp[s].
POP2 SP[t] S[W]t Sp[s).

DUP Sp[t) S[V]t SP[t'l S[v V)t'.
DUP2 SP [t] S[W]t SP[t'l S(w W]t'.
DUP-Xl SP[t] s(vi VO]t SP[t'j s[vo V, VO]t'.
DUP2-Xl SP [t] s[vi wolt SP[t'l s[wo V, WO]t'.
DUP-X2 SP[t] s[w, VO]t SP[t'j S[VO W, VO]t'.
DUP2-X2 SP[t] s[w, WO]t SP[t'l s[wo W, wolt'.
SWAP SP[t] s[vi VO]t SP[tlj s[vo vljt.

where SP denotes a stack pointer in the current frame and the s, t and t' variables are stack
locators. In the specification above, the variables v, w, and their indexed variants, are of data
types

[2.21 v:: Categoryl.

w:: Word.

where variables of the type Categoryl and Word occupy one and two stack items on the

operand stack respectively.
Variables w) wo and w, in 2.1 can be viewed as two variables of the type Categoryl. Thus

(for example) the definition of the instruction DUP2-X2 also covers definitions such as
[2.3] DUP2-X2 SP[tj S[V2 Vl 'ý7O]t SP[tll S[ý70 V2 Vl WO]tl-

DUP2-X2 SP[t] S[W2 Vl VO]t SP[til S[VI VO W2 Vl Vo]t'.

DUP2-X2 SP[t) S[V3 V2 Vl VO)t ý4' SP[tlj SjVl VO V3 V2 VI VO]tt-

The above specification assumes that the memory for the JVM stack is contiguous and as
such is in fact implementation dependent. One of the ways around this particular problem
is to use generic push and pop archetypes whose exact definitions would be defined later on
in terms of specific/implementation dependent archetypes. For example, assuming there is a
generic popsh(pop, psh) archetype combining the effects of pop and push instructions we can
simply say that

[2-4] push(v) = popsh(, v).
pop(v) = popsh(v,).

5: 2.1

5: 2.1

CIIAPTEP, 4: JAVA VIRTUAL MACHINE 50

The push and pop archetypes from 2.4 are frequently used in the following sections as a
means of defining other JVM instructions which make changes to the operand stack.

2.2 Local variable access

The JVM instruction set includes a number of instructions for accessing local variables of
different types in the current frame. The following ambidextrous archetype is used throughout

this chapter to denote accesses to a local variable at index n.

[2.5) var (n, z) n [z] =.
Note that the value z right of the locator n can be either of type Categoryl or Category2

as declared in section 1.3. As the usual size of local variables is 32 bits (the width of the

computational type (see [481) Int), value z is stored in one or two local variables based on
its size.

Many JVM instructions can be prefixed by the WIDE instruction, which results in different
interpretation of the instruction modified in this way. The WIDE instruction takes one of two
formats, depending on the instruction being modified. Archetypes in 2.6 are provided to
illustrate the modifications. Two non-wide instruction formats are immediately followed by

two wide formats. a and 5 helper archetypes reconstruct (un)signed integer values from bytes

of data.

5: 2.2

[2.61 a (b,,, bu2) (((b,,, << 8) lbu2) :: Uns i gnedShort) =. 5: 2.2
6(bul, bu2) (((bul << 8) lbu2) :: SignedShort) =. 5: 2.2
J(buj, bu2, bu3, bu4) ((bul <<24) I (bu2 << 16) 1 (bu3 <<8)lbu4) 5: 2.2

wide(opc, b,,) = opc bu.

wide(opc, bu, b,) = opc b,, b.,.

wide(opc, ce(bul, bu2)) = WIDE opc b,,, bu2-

wide(opc, a(bul, bu2)7 J(bu3, bu4)) = WIDE opc bul bu2 bu3 bu4-

The most common instructions that access local variables are load and store instructions

which transfer values between JVM local variables and the operand stack. The following

archetypes describe the instruction formats of all Int load/store instructions.

[2.7] i3(O) = 0. i3(I) = 1. i3(2) = 2. i3(3) = 3.

iload(i) = wide(ILOAD, i).
iload(i) = ILOAD--i3(i). 5: 3.1
istore(i) = wide(ISTORE, i).

istore(i) = ISTORE--i3(i). 5: 3.1

The purpose of the i3 archetypes is to condense the specification which would otherwise
had to explicitly list all ILOAD-n and ISTORE-n instructions that implicitly access variables
n. Finally, update schemes in 2.8 show the effects that these instruction have on the JVM
machine.

CHAPTER 4: JAVA VIRTUAL MACHINE

[2.8] iload(n) var(n, v) push(v) ==* .
istore(n) pop(v) ==* var(n, v).

51

All the instructions described in this section operate on the data type Int. Similar arche-
types and update schemes could be specified for the instructions operating on the data types

Float, Long, Double, and Reference; that is, instructions FLOAD, LLOAD, DLOAD, and ALOAD

respectively, plus their implicit immediate operand variants FLOAD-n, LLOAD-n, DLOAD-n, and
ALOAD-n, where n C- {O, 1,2,3}.

2.3 Arithmetic instructions

The Java Virtual Machine set offers a wide range of arithmetic operators. It is assumed that
the standard arithmetic operators are defined in the standard environment, so only these
less common arithmetic operators are informally explained: shift left (<<), shift right (>>),

and unsigned shift right (>>>). Archetypes and an update scheme for all the JVM's double

operand Int arithmetic instructions are given in 2.9.

[2.9] iarithm-binary(ij, i2, il + i2) = IADD.
iarithm-binary(ij, i2, il - i2) = ISUB.
iarithm-binary(ij, i2, il X i2) = IMUL.

iarithm-binary(ij, i2, il/i2) = IDIV i2 0

iarithm-binary(ij, i2, il % i2) = IREM i2 0
iarithm-binary(ij, i2, il & i2) = IAND.
iarithm-binary(ij, i2, il i2) = IOR.
iarithm-binary(ij, i2, il i2) = IXOR.
iarithm-binary(ij, i2, il << i2)

= ISHL.
iarithm-binary(ij, i2, il >> i2) = ISHR.
iarithm-binary(ij, i2, il >>> i2) = IUSHR.
iarithm-binary(ij, i2) ir) popsh(il i2) ir) ==*

Similarly, the only single operand' Int arithmetic instruction present in the JVM instruc-
tion set INEG can be defined as

[2.10] iarithm-monadic(ii, -ii) = INEG.

iarithm-monadic(i, ir) popsh(i, i,)

Note that because of the two's-complement representation used for negative numbers, negation
of the minimum value of the type Int produces the same value, not the maximum value of
this type as one might expect.

'The Int bitwise negation is not present in the JVM instruction set, and is typically carried out by the
instruction NOR with the constant ICONST-MI.

CHAPTER 4: JAVA VIRTUAL MACHINE 52

And finally the last arithmetic instruction defined in this section is the Int increment of
a local variable by a constant. It is the only arithmetic instruction, which can take the wide
instruction format.

[2.11] wide(IINC, s, s.,) var(s, i) ==* var(s,,, i+s,).

All the arithmetic instructions specified here operated on the data type Int. The instruc-

tion set of the Java Virtual Machine contains similar instructions for data types Long, Float,

and Double, and so their formal description would not be beneficial to explanation of their

semantics, or as a demonstration of the UP formalism.

2.4 Immediate operands

The instruction set of the Java Virtual Machine includes a number of instructions pushing an
immediate operand onto the operand stack.

The simplest form of these instructions are pushes of implicit immediate operands. In a
way similar to the i3 archetypes from section 2.2, i5 archetypes are used in an effort to make
the specification as succinct as possible.
[2.121 i5(-l) = M1. i5(0) = 0. i5(1) = 1. i5(2) = 2. i5(3) = 3. i5(4) = 4. i5(5) = 5.

iconst(i) = ICONST--i5(i). 5: 3.1

The rest of the instructions that push Int values onto the operand stack have explicit
immediate operands.
[2.13] iconst(b,,) = BIPUSH b,.

iconst(J(b,,,, bu2)) = SIPUSH b,,, bil2-

iconst(i) push(i) ==* .

Please note that there is an implicit promotion of (un)sign6d types Byte and Short to
Int described by [48].

Again, all the instructions described in this section operated on the data type Int. Similar

archetypes and update schemes could be specified for the instructions operating on data types

" Float: FCONST-n, where nE {0,1,2}

" Long: LCONST-n, where nE {O, 1}

" Double: DCONST-n, where nE fO, 1}

9 Reference: ACONST-NULL pushing a special NULL value

2.5 Control transfer

The control transfer instructions conditionally or unconditionally make the Java Virtual Ma-
chine continue execution with an instruction other than the one following the control transfer
instruction. These instructions can be divided into three categories

CHAPTER 4: JAVA VIRTUAL MACHINE 53

* conditional branches (e. g. IFEQ 5, IF-ICMPEQ J) comparing a top stack item against zero
or comparing two topmost stack items against each other

" compound conditional branches (TABLESWITCH and LOOKUPSWITCH) with a variable num-
ber of operands (branches)

" unconditional branches (GOTO J.,, GOTO-W Ji, JSR J., JSR-W Ji, RET b, and WIDE RET s,,)

As has already been pointed out, there are two groups of conditional branches comparing
Int type values. The first one compares its parameter against an implicit immediate operand
0 and the other one compares its two parameters. Both versions are listed on the same line
for the same type of conditional jump. The 5 archetype defined in section 2.2, is used.
[2.14] jmpc(i, i=0, Ö(bl, b2» = IFEQ bl, b2,

jmpc(i, i zA 0,6(bl, b2» = IFNE bi b2-

jmpc(i, i<0, S(bl, b2» = IFLT bl b2-

jmpc(i, i>0, J(bl, b2» = IFGE bl b2-

j mpc (i, i>0,5(bi, b2» = IFGT bl b2-

jmpc(i, i<0,5(bl, b2» = IFLE bl b2-

jmpc(i, j, i j, J(bi, b2)) = IF-ICMPEQ bl b2-

j mpc (i, j, i j, 5(bi, b2)) = IF-ICMPNE b, b2-

jmpc(i, j, i<j, J(bi, b2)) = IF-ICMPLT bl b2-

i mpc (i, j, i>j, J(bl, b2)) = IF-ICMPGE b, b2-

jmpc(i, j, i>j, J(bi, b2)) = IF-ICMPGT b, b2-

i mpc (i, j, i<j, J(bi, b2)) = IF-ICMPLE b, b2-

The list of conditional branches in 2.14 is not complete. Again, only instructions compar-
ing Int type values are included. There are four other conditional branches comparing values
of the type Ref erence: IF_ACMPEQ J,,, IF-ACMPNE J.,, MULL J., and IFNULL J'; however,
the semantics of these instructions is very similar to that of the instructions already defined
in 2.14.

[2.15] jmpu(TRUE, J(bl, b2)) = GOTO bi b2-

jmpu(TRUE, J(bl, b2, b3, b4)) = GOTO-W bi b2 b3 b4

Note that the only difference between the instructions GOTO J. ' and GOTO-W Ji is the size of
their operands. The wide variant of the unconditional jump takes a four-byte offset, whereas
the standard variant takes only a two-byte offset. The aim of the archetype definitions above
is to compress both the conditional and unconditional branches into one update scheme 2.17.

[2.16] jump(cond, Ji) = jmpc(i, cond, Ji) pop(i).
= jmpc(i, j, cond, Ji) pop(i j).

= jmpu(cond, Ji).

[2.171 PC[pcl pc[jump(cond, Ji)lqc cond ý* PC(pc + Jj].

11 -icond 1=-' , PC[qc].

PC is the JVM program counter, which contains the address of the current instruction. Note
that the target address of a GOTO (-W) instruction must be that of an opcode of an instruction
within the method that contains this instruction. This is not dealt with in this specification,
since this is the responsibility of the JVM bytecode verifier, which is not specified here.

CHAPTER 4: JAVA VIRTUAL MACHINE 54

The format of JSR (-W) instructions is exactly the same as the format of GOTO (-W) instruc-

tions. However, contrary to the GOTO(_W) instructions, the JSR(_W) instructions also push
the return address on the operand stack as shown in 2.19.

[2.18] jsr(J(bj, b2)) = JSR bj b2-
j sr(J(bl, b2, b3, b4)) = JSR_W b, b2 b3 b4-

Note that the asymmetry of JSR and RET instructions is intentional. After a JSR instruc-

tion, the return address is stored into a local variable by one of ASTORE instructions, and this
local variable may in turn be used by a RET instruction.

[2.19] PC[pcl pc[jsr(Ji)]qc push(qc) ==* PC[pc + Jj].

PC[pcj pc[wide(RET, n)jqc var(n, a) =* PC[a].

Conclusions

The specification of the subset of the JVM instruction set is the third and last demonstration

of the original Update Plans, using only minor syntactic extensions from Extended Update
Plans introduced in the second part of this thesis. It provides a proof that even more abstract
instruction sets using a wide variety of types can easily be described by UP. An interesting

exercise for the future could be a specification of a real Java processor (used widely in mobile
devices) which usually implements one of several existing JVM subsets.

Part 11

Extended Update Plans

55

Introduction

The first part of the thesis concentrated mainly on Update Plans as proposed by [601. Several

case studies have been performed testing the formalism on real examples, and a comparison
of UP against other existing formal methods has been made. This prompted a number of
research questions some of which are addressed in this second part of the thesis. This second
part contains a number of syntactic and semantic extensions to Update Plans called Extended
Update Plans (EUP). The main contribution of EUP is a concept of sequential update scheme
and archetypes and improved consistency of the formalism in some areas. Finally, various
other formal methods with similar application domains are examined and comparisons with
the Update Plans formalism are drawn.

56

Chapter 5

Syntactic Extensions

T lie whole Update Plans grammar has been revised, and undergone changes to make it

more compact and consistent in its structure and terminology. As a result, the formalism
became much more simple to use without the need for frequent reference to its grammar. As an
additional benefit, the implementation will be more transparent. Some syntactic changes, such
as parallel blocks in archetypes introduced new possibilities in Update Plans and (inevitably)

resulted in the need to define their semantics. These changes along with a completely new
concept of sequential update schemes and archetypes will be discussed in chapter 6.

This chapter describes most of the important changes and additions to the grammar and
the semantic impact of less significant syntactic changes. The complete revised grammar of
Extended Update Plans can be found in appendix A.

I Everything is an update

Most 'inconsistencies' in the original Update Plans grammar stemmed from the fact that there
was no unifying concept of an 'update'. In the new grammar, an update is either a parallel
block, a sequential block or a set of alternatives. In other words, changes to a configuration
are always caused by an update. Another significant inconsistency was the use of a dot Y
to separate all (top-level) items other than parallel blocks. Strictly only (top-level) items

are separated by a dot now. One of the consequences is that sugared multiple archetype
definitions such as

a(params) = update,
= update2

update,

are perceived as one item. They are separated from other items in an update plan by the dot
behind the last update update,, and from individual updates of the archetype by the'=' sign.

57

CHAPTER 5: SYNTACTIc EXTENSIONS 58

A similar consideration applies to parallel blocks. The use of the double pipeline symbol
to separate alternatives in a parallel block was entirely optional. As only items are now

separated by a dot, it is necessary to separate individual updates in parallel blocks. This is

done by changing the production rule for parallel blocks to

(parblock) --* "(11" f(update) "Il"}+ "11)"

2 Archetypes

2.1 Grammar

The following grammar tries to be as compact as possible while preserving all features offered
by the original grammar.

(item) --+ (archetype deflnition)

(archetype definition) ---)
(basic archetype definition)
(ambidextrous archetype definition)

(basic archetype definition) --+ (basic declaration) (basic deflnition)+

(basic declaration) --+ (basic archetype name) (parameters)

(ambidextrous archetype definition)
(ambidextrous declaration) (basic deflnition)+

(ambidextrous declaration) --ý
(archetype name) (parameters) (text)

(basic definition) --+ "=" (archetype body)

(archetype body) --+ (update) I (conflguration)

(parameters) -+ "(" J(text) ", " J* 't)"

A (basic archetype name) is an identifier, an (archetype name) is a symbolic constant
or an identifier. Note that the pipeline symbol 'I' is no longer used to denote ambidextrous
archetypes. The use of this symbol by ambidextrous archetypes and other means of separating
the text by command (also ambidextrous) archetypes was one of the main inconsistencies.
The consequences of these simplifications are discussed in the following two sections. The

syntax of archetype calls has been left unchanged and can be found in appendix A or in the

original work [60].

2.2 Ambidextrous archetypes

As mentioned earlier, the '1' symbol no longer denotes the text to be expanded on the left or
right-hand side of an update scheme during ambidextrous archetype expansion. Instead, the

CHAPTER 5: SYNTACTic EXTENSIONS 59

text is placed between the parameters of an archetype and its definition, so that the archetype
definitions

al(params) = text Ic g ý* rc.

a, (params) = Ic =[g text rc.

can be 'compressed' into one EUP ambidextrous archetype definition

a(params) text = lc =f g]=-ý rc.

where Ic/rc and text are left/right contexts and text shared among archetypes al, ar and
a. Note that every archetype whose left and right-hand side expansions are empty is an
ambidextrous archetype, which was not the case in basic Update Plans.

If the archetype body of an ambidextrous archetype consists of alternatives

a(params) text = Icl =[gl J=> rcl; IC2 =4 92 ý* rC2; ... ; Ic" =1 g" 1=ý rc,,.

it is interpreted as syntactic sugar for

a(params) text = Icl gl ý* rcl.

a(params) text = IC2 gl A 92 J#' TC2-

n-1
a(params) text = Ic,, `90 1ý gn]=-ý' 7Cn-

Note that text in ambidextrous archetypes is not allowed to appear on the left or right-
hand side of an archetype's body. The semantics of ambidextrous sequential archetypes is
discussed in chapter 6.

2.3 Command archetypes

If a is an ambidextrous archetype and the expansion of all definitions of a begin with the
same constant then that constant may be used as the archetype name, unless it has already
been so used. The remainder of the expansion is then placed immediately after archetype's
parameters. Such an archetype is called command archetype. The command archetype

CONST(params) text = update.
is the sugared version of

a(params) CONST text = update.

with calls of a replaced throughout the update plan by calls of CONST.

2.4 Archetype parameters

An archetype's parameters can be referenced in the archetype's body by the symbol '$' and
a number directly corresponding to the position of the archetype's parameter where the
parameters are numbered from the left starting from 1. For instance, the fourth parameter
4x+ Y' is referred to by $4 in the following archetype.

CHAPTER 5- SYNTACTic EXTENSIONS 60

add (o, b, c, x+ y) =A (o] aa [xj b [y] ==: ý c [$4].

One of the changes to the archetype grammar is that the individual parameters of an
archetype call can be empty. For example add(, b, c, r) is a perfectly valid archetype call, and
an "empty string" is in place of parameter $1. No production rules are added to the grammar
as the preprocessor can expand these references as simple macros.

2.5 Archetypes in guards

The last extension concerning archetypes concerns archetype calls appearing in guards. Ar-

chetype calls were not allowed in guards in basic Update Plans. As there is no reason for this

restriction, archetype calls can be used in EUP guards unless they are recursive.

3 Types

3.1 Constants

Constants are uppercase words in Update Plans. An exception to this rule is when making an
explicit declaration of constants using the predefined type Constant. Then iIt is possible to

compose constants of lowercase letters. For instance, c and nPC are given "a constant status"
by the following definition c, nPC :: Constant.

Variables, on the other hand, are denoted by lowercase words. However, even if a word
uses uppercase letters, it can be assigned an explicit type. Furthermore, individual types can
be viewed as constants when used as an ordinary text in an update scheme. This feature can,
for example, compress the following two update schemes

get-r(a, r) ý 0012 a[(r Byte)].

ý 0102 a[(r Half word)).

into only one

get-r(a, r) = Integer a[(r :: Integer)].

provided that a new type alias Integer is created, and that the constants Byte and Half word
are assianed symbolic values 0012 and 0102 respectively by an explicit list of types with their
symbolic values.

jByte(0012), Half word(0102)},
f Integer = Byte I Half word}.

It is sometimes useful to initialise a variable or a constant to a value. The following

example assumes that we want constants E, L, G and U to have symbolic values 002,012,102

CHAPTER 5: SYNTACTIC EXTENSIONS 61

and 112 respectively. Note that this example makes use of the repeat construct introduced in

section 3.2.

E(002), L(012), G(102), U(112) :: fBit}2.

A new meaning is given to the symbol '-'. It is now used as the text concatenation
symbol. For instance a sequence 'T- E- X- V is interpreted as a constant 'TEXT'. A more
realistic example of its use can be found in section 2.4 of chapter 4.

An updated type grammar for these changes is given in the following section.

3.2 Type grammar

(item) -4 (store declaration) I (type declaration)

(store declaration) "I" {(store) ", " }+ "I"

(type declaration) J((term) (const)-opt) (store structure)

(term) --ý "(" (term) ":: " (store structure)

(store) ---ý
(store identifier)
(store identifler) (store structure)

(store identifier) --+ (store name) (const) -opt
(const) ---ý "(" (number) ")"

Note that (store structure) is a regular expression over a set of (store name)s, i. e. lower

case words with a leading upper case letter.
A new type can be declared reusing an old one provided that the structure of the new

type contains a pattern identical to the structure of the old type. In order to express the

exact number of repetitions of the old structure in the new type, the syntax of the original
Update Plans needs to be extended by adding the following rules.

(store structure) --ý "I" (store structure) "I" (number)

For instance, assuming that the type Bit is already defined, the type Byte could be defined

using the repeat construct as fByte = {Bit}8}.

4 Comments

The last trivial but useful syntactic addition to basic Update Plans are comments. A comment
is started by the symbol'#' and is terminated by the end of the line. They would be removed
by a preprocessor during lexical analysis.

CHAPTER 5: SYNTACTIC EXTENSIONS

Conclusions

62

Although not significant, the changes described in this chapter contribute to the usability of
the formalism in three ways. Firstly, the grammar has now a slightly less restrictive syntax.
As a result several simple semantic rules had to be added to the formalism, and the more
will follow in the following chapter. This, however, is a small price to pay for its increased

consistency and more intuitive use of the whole formalism. Secondly, the introduction of a
few simple conventions improves the type reuse mechanism and allows even more compact,
multi-level UP specifications. And finally, the changes to the grammar open new possibilities
to UP such as nesting of sequential/parallel blocks within an update which will be described
in the following chapter.

Chapter 6

Semantic Extensions

W llile parallel blocks form a useful extension to basic Update Plans by making them more
readable, they do not add much power to the formalism as they can be interpreted as mere

syntactic sugar. Moreover, one of the drawbacks of a parallel block lies in the nondeterministic
execution of its constituent update schemes which makes any synchronisation of these schemes
impossible.

Not only do the extensions described in this chapter address these problems, but they also
provide Update Plans with modularity, which with the exception of the archetype mechanism
was not present in basic Update Plans.

The layout of this chapter is as follows. Firstly, a simple convention concerning parallel
blocks making Extended Update Plans more consistent is introduced in section 1. Secondly,
the syntax, semantics and the implementation of sequential update schemes is presented in

section 2. An extension, known as sequential archetypes, closely related to the archetype
mechanism makes the concept of sequential update schemes more powerful and is introduced
in section 3. The EUP grammar allows (in contrast to the basic UP grammar) any kind of
update to appear in the body of an archetype. The consequences of this change are considered
in section 4. Finally, conclusions are drawn in section 5.

I Parallel blocks

Parallel blocks were introduced in [60] as a way of expressing synchronous parallelism. In the
original Update Plans, a parallel block is a set of independent alternatives which are applied to
a configuration simultaneously. The application of a parallel block is naturally atomic, so all
changes to the configuration contributed by any of its alternatives will appear simultaneously.
The only way to share data between the individual alternatives is to use constant locators.

The introduction of a simple convention allowing variables to be shared across all updates
in a parallel block not only simplifies sharing of data among these updates and makes a
parallel block consistent in this respect with its sequential counterpart, but it also makes

63

CHAPTER 6: SEMANTIC EXTENSIONS 64

transformation of parallel blocks into canonical form slightly easier as there is no need to

rename unrelated variables of the same name among the parallel block's updates.

Example 1
Consider the following update plan, which best illustrates the difference
between the semantics of parallel blocks in basic and Extended Update
Plans.

A[O] B[11. # initial configuration
A[a] A[a + 1] # basic Update Plans require '. ' here

B[a] B[a - 1].

In basic Update Plans, the first application of the parallel block will
result in the configuration A[l] B[01. In Extended Update Plans, the parallel
block is not applicable, as the cells right of A and B have different values and
as such the set of locator expressions on the left-hand side of the resulting
update scheme is not consistent.

Sequential update schemes

2.1 Background/Motivation

Apart from improving modularity in Update Plans, the motivation for sequential update
schemes had two sources. Firstly, at the formalism level, it was necessary to provide some
synchronisation for update schemes, and on a related note, at the application level, the
introduction of explicit sequential execution proved to be very useful as there is often a need
to express a sequential execution of update schemes without resorting to techniques which
would make the specification less transparent.

At the instruction level, consider any PDP-11-like instruction, but with three operandsi,
e. g. ADD zxy, with x and y source operands and z the destination operand. The semantics
of this instruction seems simple. Source operands x and y are added and the result is written
into the destination z. Consider, however, what happens if two of the operands use address-
ing modes that address the same register, and change the value in that register e. g. x is

postincrement on register R1 (Rl+) and y is predecrement on the same register (-Rl). It is
then not clear what values are being addressed. Should x be addressed first and then y-i. e.
get x from QR1, increment R1 then decrement R1 and get y from QR1, or is y addressed first

and then x, or are they in some way accessed in parallel. In the original Update Plans such
an instruction was illegal.

'PDP-11 instructions have a maximum of only 2 operands

CHAPTER 6: SEMANTic EXTENSIONS 65

The specification of the above-mentioned addressing modes and the arithmetic instruction
is in 2.1

(2.11 POSTINC(b, v) r=r [b] b [v] cr [c]. # postincrement mode
PREDEC (a, v) r= r[b] a[v]b r[a]. #predecrement mode

arithm(x) Yi X+ Y) = ADD. # addition
arithm(x, y, r) r3 POSTINC(b, x) PREDEC(a, y) ==* r3 [r]

.

In the following text the expansion of an ADD R2 R1+ -R1 instruction is examined. First,

before an archetype's expansion, it is necessary to rename all archetype's variables so that

they do not conflict with variables within the scheme the archetype is being called from.

[2.2] POSTINC(b, v) r, = ri[b] b[vlc ==* ri[c].

The POSTINC archetype is now used and its parameters added to the resolution set.

[2.31 arithm(x, y, r) r3 POSTINC ri ri[b] b[vlc PREDEC(a, y) =* r3[r] ri[c].

#{b = b, x = v}

Similarly, all conflicting local variables of the PREDEC archetype are renamed.

[2.41 PREDEC(a, vl) r2 = r2[bl] a[vilb, ==> r2[al-

Finally, after the PREDEC's archetype expansion, the original update scheme becomes

[2.51 arithm(x, y, r) r3 POSTINC r, rl[b] b[vlc PREDEC r2 r2[bl] a[vllbl ==ý. r3[r] rl[c] r2[al-
fa = a, y = vl}

If r, and r2 refer to the same register (RI) then b= bl, so it must be the case that

a : 7ý c. This is therefore a conflict between the cells ri[c] and r2[a], i. e. R1[c] and Ri[a] (the

right-hand side of the update scheme 2.5 is inconsistent). Although the update scheme is not
yet fully expanded, we can already recognise the inconsistency at this early stage of archetype
expansion.

Although there is a good reason for making these instructions illegal, there are situations
when instruction operands are accessed sequentially in a clearly defined order during a f/e

cycle. While even such cases can be specified using basic Update Plans, there would be a
significant loss of clarity in the specification.

On most PDP-11 implementations, operands of an instruction are accessed in some se-
quence. In this example operand access order of the ADD zxy instruction is x, then y and
finally z. Using the extension to the UP formalism introduced in this chapter, the behaviour

of our arithmetic instruction can be described in terms of sequential update scheme S in 2.6.

[2.6] S3
arithm(x, y, r) r3 ==: ý r3 [r) 11

POSTINC(b, x)=ý,
2 PREDEC(a, y) ==* .

CHAPTER 6: SEMANTIC EXTENSIONS 66

Informally, the above definition says: expand archetypes POSTINC, PREDEC, and arithm

and apply their locator expressions to the configuration in this exact order (the application

order). However, the ordering of text expanded from sequence's archetypes is from left to

right/top to bottom (the textual order).

2.2 Syntax

Similarly to parallel blocks [60), sequential blocks are delimited by the open sequential block

symbol, '(SEQI' which takes an identifier (sequencer) here 'SEQ', and the close sequential
block symbol, 'I)'. The reason for using the identifier in the open sequential block symbol will
become clear in section 3 where sequential archetypes are discussed.

While the double pipeline symbol '11' is entirely optional (with the exception of the

open/close parallel block symbol) in basic Update Plans, the (single) pipeline symbol is essen-
tial in sequential blocks, in order to separate updates in these blockS2. The pipeline symbol
takes an additional number which is the order in which updates nested in the sequential block

are applied to a configuration.
A basic notation for sequential update schemes (sequences for short) is

(SEQla updatea
lb updateb

Im update.
1)

or making use of typesetting possibilities
SEQ a updatca

b updateb

update.

where updates are either alternatives, a parallel block, or a sequence.
Sequences either have all stages (sequence numb ers/indicators; in the above generic se-

quential update scheme a, b,..., m) in a sequential block tagged, or all stages left untagged.
Such 'untagged' sequences are so-called stageless. A sequence with no sequential block iden-
tifier is referred to as an anonymous sequence. Sequencers do not have to be unique, but if
they are not, the risk of creating an incorrect specification by an oversight is increased as
a sequential archetype can expand into two or more unrelated sequences as will be seen in
section 3.3

The following production rules need to be added to the UP grammar.
2 Note that in EUP the double pipeline symbol is no longer optional.

CHAPTER 6: SEMANTic EXTENSIONS 67

(item) --+ (seqblock)

(seqblock) --+ "(" (seqblock id)-opt "I" fflstage)-opt (update)) "I"}+ "j)"

(seqblock id) --- ý (symb-const)

(stage) --+ (symb-const) I (variable)

The complete grammar of Extended Update Plans can be found in appendix A.

2.3 Semantics

Consider the generic sequential update scheme from section 2.2. There are n= Ila, b.... IM11
updates in the sequence, where the variables a, b, .--, m are stages of application. All the

stage-representing variables can be grouped into a countable set of variables V= {a, b,..., M}.
Every variable vEV instantiates a value i c- 1, where Y is a countable instantiation set. The

mapping between V and Y is a many-to-one mapping, in other words, two or more stages in a
sequential block can have equal instantiations, which allows for non-deterministic sequential
updates schemes. The stages represent the application order for all the updates within a
sequence and for every instantiation a

{a IaE (I - {wl)}, where w= max(l)

of these variables there is a direct successor function succ(a). If for any {a I succ(ce) V 11, the

sequence is always only partially applicable, as explained later. If for all {a I succ(a) E -T},
stages do not restrict the applicability of the sequence, and it can be fully applicable depending

on the applicability of its updates. The application/temporal order of updates in a sequence
is defined as

min(l), succ(min(-E)), succ(succ(min(l))),..., succ'-'(min(l)) =- max(l)

where min(l) is the first stage, and succ'-1(min(l)) is the last stage of application.
Although the application of a sequence takes place in individual stages (steps), it is still

atomic (as is for example the application of a parallel block) in relation to the rest of the
updates outside the sequence. The syntax and the semantics of any of these n updates
(including their atomicity of application) is naturally preserved. The semantics of seque ntial
blocks nested in parallel blocks is slightly more complicated, and is explained in section 2.4.

Unlike parallel blocks, which are either applicable as a whole or simply not applicable at all,
we define a full and partial applicability of sequences. A sequence is fully applicable if all of its
constituent updates are applicable in the application order. A sequence is partially applicable,
if one or more but less than n updates are applicable in the application order. For example,
sequence 2.1 in chapter 7 will always be only partially applicable unless some sequential
archetype expands its stage two. The effects of a sequential update scheme S which is only
partially applicable are permanent, unless there was another update which was applicable
(in the case of a sequential update scheme this may be either fully or partially) before the

CHAPTER 6: SEMANTIC EXTENSIONS 68

application of the scheme S. This behaviour is especially useful when simulating fatal failures

of a system, when the system retains the state when the failure occurred. Breaking the

application order by omitting a stage {a I succ(a) V 1} results in a sequential block which is

always only partially applicable.
Since text can be expanded as a result of a sequence's application, we need to define the

placement of the text for the sequence as a whole, and also an internal textual orde7ing. The

placement of text expanded as a result of a top-level sequence's application fits nicely with
the concept of a command driven update plan. An update plan's top-level update is also an
item in the update plan. In other words, a top-level update is always separated from other
update plan's items by the Y symbol. Since the application of a sequence can be viewed as
an atomic action, it can also be viewed as a command update scheme

ltxt lc =4 g J=: ý rtxt rc

which can be desugared for top-level sequences as

PC[pcl pc[ltxt]qc Ic =1 g J=ý, PC[pc) pc[rtxt]qc 7-c.

where ltxt/rtxt or both are non-empty left/right-hand side texts, and Ic/-rc is the left/right-
hand side context before/after application of a sequence, and PC is a program counter.

The (internal) textual ordering of left/right-hand side text 1txtj1TIxtj, iE ja, b,..., in}
from updates of the form

ltxti lci =j gi Y=> rtxti rci

is then
ltXta ItXtb

,*, ItItia IC 9]'-: * rtXta rtltb *, * rtItm rc

which can again be desugared for top-level sequences as
PC[Pr-I PC[Itlta ltltb ,** ltxt. lqc Ic =[g 1#. PC[pc'] pc'[rtxt, rtxtb ,** 71xtlqc rc.

Not only are variables shared between left and right-hand sides of an update scheme, but
they are also shared across all updates of a sequence. This further reduces the complexity
of an update plan as it is possible to share data between updates directly rather than using
additional constant locators. However, as will be shown in section 3.7, no forward references
to variables are allowed.

The temporal ordering of stageless sequences is equivalent to its textual ordering. In other
Nvords, the stageless sequence

SEQ update,, I

updateb

I update.
is syntactic sugar for

CHAPTER 6: SENIANTic EXTENSIONS 69

SEQ min(l) update,,

succ(min(l)) updateb

succ"-'(min(. T)) =- max(. E) update,.

2.4 Canonical form

A sequential block is said to have a canonical form if all of its updates are update schemes. The

canonical form of sequential blocks is introduced to simplify the implementation of sequential
update schemes and to define the semantics of sequential blocks nested in parallel blocks.

Every sequential block has its canonical form. The following text shows how a sequential
update scheme can be translated into its canonical form.

One of the requirements for transformation of a sequential update scheme into canonical
form is that all its stages and stages of all nested sequences must be ground. At first sight
this might seem as a limitation, but as temporal ordering is also required for the implemen-

tation, and transformation into canonical form is primarily required as the first step of the
implementation, this is not an issue.

The algorithm can be divided into two independent parts. Firstly, the sequential block

is 'linearised' by three transformations so that all of updates in the block are alternatives or
parallel blocks. Then, in the second part, any parallel blocks and alternatives are replaced
by update schemes. Due to the possible presence of alternatives (or alternatives nested in

parallel blocks), this step (conversions 4 and 5) may produce two or more sequential update
schemes in canonical form.

The algorithm

while(sequential block contains other sequential blocks) {

convert:
1) sequential blocks in 11 blocks /* -ri
2) sequential blocks in sequential blocks /* 7-2
3) 11 blocks in 11 blocks /* -r3

I

/* assertion: the only type of nested updates are 11 blocks or alternatives

convert:
4) all 11 blocks into update schemes /* 74a) 74b
5) all alternatives into update schemes /* 75 */

All five individual steps of the algorithm are explained in more detail in the following sections.

Sequential blocks in a parallel block

Of all the transformations used in the algorithm the transformation of sequential blocks nested
in a parallel block has the most noticeable impact on the structure of the resulting sequential

CHAPTER 6: SEMANTIC EXTENSIONS 70

block. As a side effect, the transformation also shows the semantics of sequential blocks nested
in a parallel block. The main idea is demonstrated by the following example. There are

two sequential updates A and B, and two non-sequential updates update, and update2 in the

parallel block. Let there be instantiation sets ITA and _TB containing instantiations of sequential
blocks' A and B stages. The parallel block can then be replaced by a sequential block

containing n parallel blocks/stages, where n= ITA UIBI. Each of these parallel blocks/stages

will contain updates to be applied at the same time. All non-sequential updates are grouped
in the first stage of the newly created sequential block.

update,
A

aA updateaA
bA updatebA
CA update CA

BI
aB updateaB
bB updateb,

update2

Ti

AB
aA=aB update,

update ZIA

updatCaD
update2

bA=bj3 updatebA 11

updateb,
CA

11
update CA

Provided stages aA = aB and bA = bB, the parallel block can be split into three separate
parallel blocks as demonstrated above (7-1). As all updates in a parallel block are guaranteed
to be desugared, no special care needs to be taken about textual ordering.

Sequential blocks in a sequential block

Let there be a sequential block A with a nested sequential block B in stage bA. Then it
is possible to transform (T2) the original sequential block A into a sequential block AB by
simply splitting B's stages and adding them to the the newly created sequential block.

A
aA update, AB

aAB update,
bA BlaB

update,, B bAB updateaB
bB 72 updatebB

- CAB updatebB

CA update2 dAB update2

Values of stages of the new block AB must preserve the application order to ensure the
semantic equivalence of sequential blocks A and AB. Values of all stages temporally preceding
stage bA are left unchanged. For instance, assuming that bA temporally follows both the aA

and CA stages, aAB = aA and dAB = CA. All stages B introduced from the block B will have

their value changed to bA +b- min(B), where bEB.

Values of all stages temporally following stafre bA need to be incremented by the difference
0

between the last and the first stage to be applied in block B, i. e. max(B) - min(B). Textual

ordering is naturally preserved.

CHAPTER 6: SEMANTic EXTENSIONS

Parallel blocks in a parallel block

71

The third step of conversion of a sequential block into its canonical form is the simplest one.
A parallel block in the sequential block S having as its updates other parallel blocks will
be transformed into a new parallel block using a simple manipulation demonstrated by the
following figure.

update, update,

update2 update2

update3
7'3

update3

update4 update4

Parallel blocks

In contrast to the three transformations described above, transformation of parallel blocks
into canonical form can produce two or more updates (update schemes) derived from a single
parallel block. This fact is due to the possible presence of alternatives, which will now be

separated into update schemes.
A parallel block P containing m alternatives with a variable amount of update schemes

(us,,) for each of the alternatives

US11; US12; ... usla

US21; US22; ... US2b

USml; USm2; ... ; USmn

can be transformed (-r4,,) into x=axbx... xn parallel blocks

UsIl US11 UsIl UsIl UsIl US12 ... USla

US21 US21 US21 US22 ... US2b US21 ... US2b

Usrnl USm2 usm, UsTnj usm, USM1 usm,

This means that the sequential block containing the parallel block P will be replaced by

multiple (x) instances of the sequential block where P's occurrence will be replaced in each
of the instances by a parallel block transformed as shown above.

Every parallel block consisting of only update schemes

Ilts 1 =[g, rhs 1
IhS2 =f 92 rhS2

lhs,,, g rhs,,,

is said to be in canonical form and can be rewritten (74b) as a single update scheme simply
by taking the unions of all left/right-hand sides and combining the guards.

CHAPTER 6: SEMANTIc EXTENSIONS 72

Ihs I IhS2 *** Ihs.. =Jgl Aq2 A ... A gm J* rhsi rhS2 ,- rhs,,,

Alternatives

Linearised sequential blocks containing alternatives will be normalised (7-5) into multiple se-
quential blocks using exactly the same principal as described in the previous section.

An alternative A containing n update schemes

lhsi =[g, ý* rhsi; ... ; Ihs,, =1 g,, I=: >. rhs,,.

can be rewritten as n update schemes

Ihs 1 =1 gl)=-ý, rhs 1.

n-1
Ihs,, A --19j) A 9, Y: ý- rhsn.

i=1
The sequential block containing alternative A will then be replaced by n instances of the se-

quential block where A's occurrence will be replaced in each of the instances by the individual

update schemes shown above.

2.5 Implementation

In this section a simple translation of sequential update schemes to basic update schemes
is presented. The advantages of such a translation are obvious. As an algorithm for im-

plementation of basic Update Plans has already been described [60], it is not necessary to

redesign the whole implementation. In other words, the proposed translation is a front-end,
independent of the actual implementation of basic UP. The implementation is divided in three

sections. Firstly, the main idea is presented in the following section. Secondly, the algorithm
is described in section 2.5.2. Finally, section 2.5.3 gives an example of the implementation.

2.5.1 Preliminaries

The algorithm described in the following section assumes that the sequential update scheme
under transformation is already in its canonical form and that all of its sequential archetypes
have been expanded. For the expansion of sequential archetypes please refer to section 3.3.
The main idea is to translate all sequential update schemes at compile-time into basic update
schemes and adding a mechanism to synchronise the translated update schemes and existing
top-level updates. Synchronisation is made possible by the introduction of a shared central
update plan synchroniser UP: SEQ, which is a locator addressing the synchroniser's stack. The

role of the stack is twofold. Firstly, it serves as an extra guard to allow the application of
only a particular update scheme from a sequential block, and secondly, if the application
of a sequential block finished, or has yet to start, it allows the application of only top-level

updates

CHAPTER 6: SEMANTIc EXTENSIONS

2.5.2 The algorithm

73

For the purposes of the implementation, the following popsh archetype is defined. It is a
two-parameter stack management archetype, which combines the effects of the classical pop
and push operations.

[2.7] popsh(vl, V2) = UP: SEQ[q] p[vl]q =* UP: SEQ[q] P[V2]ql- #pop and push

In order to prevent existing top-level update schemes from interfering with half-completed

sequential update schemes, it is necessary to add an archetype call popsh(UP: TOP, UP: TOP) to

every top-level update scheme in an update plan. The initial synchroniser's configuration
is UP: SEQ[p] (UP: TOP]p, which enables the application of all top-level update schemes. The

algorithm for the actual translation of sequential update schemes into basic update schemes
is described below.

Consider the following generic top-level canonical sequential update scheme S
[2.8) Sa ltxt,, Ic,, ga rtxt, rc,,

b ItXtb ICb 9b 7'tltb rCb

m ltxt 1c. =4 -Q,
J* 71xt, rc,

where ltxtilrtxti is the left/right-hand side text and Ici/rej is the left/right-hand side context

of an update scheme iE ja, b,... 'M}.
As already explained in section 2.3, not only are variables shared between left and right-

hand sides of an update scheme, but they are also shared across all updates in a sequence.
As the aim is to convert a sequential block into top-level update schemes, and the only way
to share data across top-level updates is using ground (in other words constant) locators,

additional ground locators will be used as addresses of the shared variables.
Let there be a set A of update schemes which share a variable v in the sequence S. Let

there also be a universe of locators U used in the transformed update plan and a locator
V, where VýU. Then all update schemes from A need to be adapted by adding a locator

expression V[v] using the following two rules.

1. An update scheme from A in which v is ground is subject to transformation 'r,

Ihs =[g rhs T, Ihs =[g ý* rhs V[vl

2. An update scheme from A in which v is not ground is subject to transformationT2

Ihs =[g J* rhs 72 ths V[vJ =[g J* rhs

It is also necessary to make the textual ordering of a sequence's text explicit, to conform
to the semantics of sequences described in 2.3. Let there be an ordering B of n update
schemes in the sequence S ordered textually in the order text is arranged in a configuration

CHAPTER 6: SEMANTIC EXTENSIONS 74

after expansion as described in section 2.3. Then every update scheme from that ordering
is assigned a number t in the range 1 to n representing the position it appears in B and is

subject to transformation

ltxt Ic =[g ý* rtxt rc
'r3

t-1 n
PCIPCI (PC + lltXtjl)[ItXt) IC =4 g J=> (PC +E irtXtjl)[7'iXt] M PC

i=t

where J= Eý' . 7=1
Ilt. Ttjl and pc -= PC[pc +5- Ej'ý_t Irtxtjlj if the update scheme under trans-

formation is in the last (temporal) stage of S, otherwise pc is empty. The 'I - I' symbol is the C,

length operator.
Lastly, the application order of update schemes within S needs to be made explicit together

with an explicit statement of its entering and leaving.

Rule 1. The first update scheme jif of the sequence S can only be applied if there is an
appropriate unique value a corresponding to 1-if on the synchroniser. The following update
scheme needs to be added for (top-level) sequence S in order to enter sequential application
of Ss schemes.
[2.9] popsh(UP: TOP, UP: TOP a) ==* .

#preamble, the first update scheme (rule 1)

Rule 2. Let there be a temporal ordering C of all sequence's S stages given by the successor
function succ(a) as described in section 2.3. Then for every stage aEC there is an update
scheme /z in that stage (already adapted by transformations 7-1,72 and T3) which will be
translated into a basic update scheme

[2.10] popsh(v, , V2) P- # sequential block itself (rule 2 and 3)

where v, and V2 are both unique constants-the first one identifying the update scheme in

stage a, the second one identifying the update scheme in stage succ(a). The uniqueness of
these constants in combination with the popsh archetype ensures sequentiality of application
of all update schemes within the sequence S and no interference with other updates.
Rule3. The update scheme yj in the last stage of S's application-succ'- '(min (1)), where
I is a countable instantiation set of the sequence S as explained in section 2.3-is not subject
to rule 2, as its successor function is not defined. There is, however, a need to transfer

control back to (or enable execution of) top-level updates, in other words exit the sequential
application of S. This is ensured by adding an update scheme 2.10 where 11 _ý /11) V2 = 'UP: TOP'

and v, = 'UP: TOP 0', where V) is the constant which was used by rule 2 as V2 for /-z in stage
SUCC n-2 (min(l)).

Anonymous and stageless sequences are mere syntactic sugar for ordinary sequences as
described in sections 2.2 and 2.3. As such they do not need to be considered as a special case
for implementation.

CHAPTER 6: SENIANTIc EXTENSIONS

2.5.3 Example

75

Continuing with the 'PDP-11' example introduced in this chapter as one of the motivations
for sequential update schemes, the implementation of the sequential update scheme S shown
in section 2.1 on page 65 is now examined. It is given again for convenience in 2.11.
[2.11] S3

arithm(x, y, r) r3 ===> r3 [r] ji

POSTINC(b, x)==ý>
2 PREDEC(a, y) ==* .

As the sequential update scheme is already in canonical form, Ave can start with transfor-

mations rl and -r2 and thus make sharing of variables between update schemes explicit.
[2.12] S3 arithm(x, y, r) r3 X[XI Y[y] =* r3[r] # -r2, T2 (x and y not ground by ari t; hm)

i POSTINC(b, x)==>X[x] # -ri (archetype POSTINC grounds x)

2 PREDEC(a, y) => Y[y]. #, ri (archetype PREDEC grounds y)

Note that variables a, b, r3 and r are not shared among the individual update schemes of S,

and as such are not subject to transformations T, and -r2.
As mentioned in section 2.5.1, this is a compile-time transformation and so all text-

expanding archetypes of a sequence must be expanded before the sequence can be translated
into basic update schemes. This step is demonstrated by the update scheme 2.13.

(2.131 '3 ADD r3 X[xl Y(y] ==#- r3[r] #{x =xy =y, r =--x+y}

1 POSTINC r, rl[b] b[v]c ==* X[x] rl[c) #fb = b, x = v}

2 PREDEC r2 r2[bl] a[vl]bl ==: ý Y[Y] r2[a]. # {a = a,. v = vl}

Note that the variables of archetype definitions have been renamed before the expansion of
archetype calls as in section 2.1. As a sequential update scheme shares variables among its
individual updates, variables in all updates within a sequence have to be taken into account
during the renaming process.

Assuming that JADD r3l = 16, IPOSTINC r, I=8, and JPREDEC r2l = 8, internal and external
textual orderings are made explicit by the transformation -13 (see section 2.3) as shown by 2.14.

(2.141 S3 PC[pcl pc[ADD r3l X[xl Y[y] => r3[r] pc+32[l PC[pc + 321 #t=1, n=3

i PC[pc] pc+16[POSTINC ril ri[b] b[v]c ===ý, X[x] rl[c] pc+32[l #t=2

2 PC[pc] pc+24[PREDEC r2] r2[bil a[vl]bl ==* Y[y] r2[a] pc+32[j. #t=3

Finally, S can be split into individual top-level update schemes using rules 1-3 from the
previous section. As no text is expanded on any of the right-hand sides the 'empty' locator

expressions pc+32[l are discarded for better readability.
[2.15] popsh(UP: TOP, UP: TOP S 1) : --=> .# rule I

popsh(S1, S2) PCfpc] pc+16[POSTINC r1l r, (b] b[vlc ==* X[xj r, [c]. # rule 2

popsh(S2, S3) PC[pcj pc+24[PREDEC r2j r2 [bl] a[vljbl ==> Y[y) r2 [a]
-# rule 2

popsh(UP: TOP S3, UP: TOP) PC[pc] pc [ADD r3l X[x] Y[y] ==> r3 [r] PC[pc + 32]. # rule 3

CHAPTER 6: SEMANTIC EXTENSIONS 76

Figure 6.1: A simple logic circuit

Since in our example r, and r2 are identical registers, r2 can be substituted by rl. Also,

based on the resolution set derived in 2.13, v, v, and r variables are replaced by x, y and
x+y respectively.

[2.16] popsh(UP: TOP, UP: TOP Sl) ==* .
popsh(Sl, S2) PC[pcl pc+16[POSTINC ri] rl[b] b[x]c X[x] ri[c].

popsh(S2, S3) PC[pc] pc+24[PREDEC rij r, [bl] a[y]bl Y[y] r, [a].

popsh(UP: TOP S3, UP: TOP) PCfpc] pc [ADD r3l X[xl Y[y] ==*'r3[X+Yl PC[pc +32).

To complete the example, all popsh archetypes are expanded.

[2.17] UP: SEQ[q] p[UP: TOP]q ==> UP: SEQ[q'j p[UP: TOP Sl]qý.

UP: SEQ[qýj q[Sllq' PC[pc] pc+16[PDSTINC ri) rilb) b[xlc

X[x] rl[c] UP: SEQ[(ý] q[S2]qý.
UP: SEQ[qýj qfKjqý PC[pcj pc+24[PREDFC ril ri[bil a[ylbl

Y[y] ri[a] UP: SEQ[cfl q[S3]qý.
UP: SEQ[qýj p[UP: TOP S31qý PC[pcj pc[ADD r3l X[XI Y[Yj

r3[X + Yl PC[pc + 32] UP: SEQ[q] p[UP: TOP]q.

Note that b, = c, and since x and y are of the same type, x=y (and b= a). Also note
that the value b in ri[b] does not change with respect to the value before application of the

update scheme 2.6 on page 65.

Sequential archetypes

3.1 Background/Motivation

While sequential update schemes have already proved to be a good step towards more trans-
parent and hierarchical UP specifications, they still provide only a limited improvement on
the original model.

Consider the example of a simple logic circuit in figure 6.1. A basic Update Plans speci-
fication for AND and OR gates is as follows.

l] and(a, b, c) = a[0] b[0] ==> c [0]. or(a, b, c) = a[0] b[0] ==> c[O].

= a[0] b[l] c[O]. = a[0] b[l] c[I].

= a[l] b[0] c[O]. = a[l] b[0] c[1].

= a[l] b[l] c[1]. = a[l] b[l] c[lj.

CHAPTER 6: SEMANTic EXTENSIONS 77

To connect the output D of the AND gate to the input D of the OR gate, sequential update
scheme 3.2 is defined.

[3.2] '1 and (A, B, D) 12

or (D, C, E).

In the situation shown in figure 6.1 only one of 16 possible expansions is applicable

[3.3] 1 A[l] B[l] D[l] # AND gate 12

D[l] C[01 E[11. # OR gate

This example demonstrates that archetypes can be used in sequential update schemes in the

same manner as in basic update schemes. Note that it would be possible to assign delays (or

other metrics) to the individual and and or gates/archetypes, and that the overall delay of
the logic circuit could then be easily calculated simply by adding maximum delays occurring
in every stage of the sequential update scheme.

However, the main limitation of using basic archetypes in sequential update schemes is that

sequences would be unduly complicated to encapsulate into non-sequential archetypes. Not

only do sequential archetypes address this issue, but they also make it possible to explicitly
predetermine locations of sequential archetypes' updates in the hierarchy of the top-level
sequential update scheme these archetypes are called from. They also provide the formalism

with additional information-hiding facility with tile help of which modular specifications can
easily be defined.

3.2 Syntax

The syntax of sequential archetype definitions is that of ordinary archetype definitions where
the (update) (see page 58) appearing in the archetype body is a sequential block. The syntax
of archetype calls is the same for all types of archetypes. Using typesetting possibilities a
sequential archetype a is defined

a(params) = SEQJ. update,,

b updateb

updatem.

The new archetype grammar can be found in chapter 5, or alternatively refer to appendix A
for the revised complete Extended Update Plans grammar.

3.3 Semantics

Syntacticly, sequential archetype calls are equivalent to basic archetype calls. A sequential
archetype definition, on the other hand, has a sequential block in its body instead of an update
scheme. The individual stages (together with their updates) of this sequential block are then

CHAPTER 6: SEMANTIC EXTENSIONS 78

matched during expansion against corresponding stages of the sequential update scheme they

are called from.
As matching is done using sequencers and stages, both of these must be ground in the

archetype body and in the sequential update scheme before any expansion can take place.
The sequencer/stage pair has a similar purpose to that of indices in basic archetype calls, as
described in [60], i. e. to ensure the correct placement of archetype bodies during an expansion.

In a sense, sequential archetypes are not as 'dynamic' as normal archetypes, and serve
only as a framework to place update schemes in their predetermined locations of a sequential

update scheme. Nevertheless, this is still a powerful concept, examples of which will be shown
in chapter 7.

Expansion

if

(AX. (SEQ al updateaý

a2 updatea2

a. update,,.))(a(pararns))

is equivalent to a (top-level or nested) sequential update scheme S containing one or more
calls of the archetype a(pararns) and the definition of this archetype is

a(params) = SEQjbj updatebi
b2 updatO-b2

b. updateb.

then the result of expanding the archetype in S is

SEQ c, updatec,

C2 updateC2

co update,.

where f cl , c2, ... co} = faj, a27---iam} U fbj, b21
... 7

bn}, and the individual updatecj up-
dates, where jE o} are constructed as described in the following four sections.

As has already been shown in the introduction to this section, expansion of non-sequential

archetypes in sequential blocks is allowed and they expand in the same manner as they do in

the original UP.

3.3.1 Non-matching sequencers

If the archetype's sequencer does not match any of the sequencers of the top-level sequential
update scheme it is called from, it is matched against the sequencer of the closest sequence
in which the archetype call a(params) appears-i. e. the lowest level sequence containing the

CHAPTER 6: SEMANTIC EXTENSIONS 79

archetype call. Note that due to the syntactic sugar introduced in section 3.6.2, this is in

effect an in situ expansion.

3.3.2 Non-matching stages

If during the archetype expansion any a(params) b-stage does not match any of the (sequencer

matched) sequential update scheme's S stages, it is added temporally after the previous stage
of S.

Example 2
The sequential archetype a

ao = ID13 update3

2 update2.

in a sequential update scheme
IDI,

ao lhs ==* rhs.

expands as

IDI I Ihs ==: ý> rhs

2 update2 #1<2

3 update3, #2<3

Although it might seem attractive to preserve textual ordering as it is in the sequential
block of an archetype, this is not the primary aim. The primary aim is an accurate placement
of a sequential archetype's updates in a sequence regardless of the order in which sequen-
tial archetypes expand (resulting in the normal form). This kind of expansion is also more
consistent with the way placement of matching updates is performed.

3.3.3 update,,, and updateb are alternatives

In case sequencer and stage matched updates update,, and updateb are both alternatives,
the expansion mechanism is identical to the expansion mechanism in basic Update Plans.
Consider the following sequential archetype and update scheme containing its calls.

a(params) = SEQ i ltxt, Ic, g, rtxt, rc,

2 ltlt2 IC2 92 rC2

. ltxt, ic. =4 g, I=> rtxt, rc,.

CHAPTER 6: SEMANTIc EXTENSIONS 80

SEQ i s-lhs, a(pararns) s-gl a(params) s-rhs, 12

a(params) s-lhS2 S-92 s-rhs2

s-lhs. =f S--qn ý* s--rhs,,.

Note the intentional omission of an archetype call a(params) on the right-hand side of
the alternative in stage 2. The archetype call can be omitted on the right/left-hand side

provided the corresponding right/left expansion of the sequential archetype is empty. This is

equivalent to the notion of left/right-handed archetypes introduced in [60].

Provided m does not match any stage in the sequential update scheme and ra >n the

expansion is
SEQ 1 s-Ihs, ltxtl lci S-gl A yj rtxtl s-rhs, rc,

2 It--rt2 s-IhS2 1C2 S-92 A g2 S-rhS2 7-C2

n s-lhs. S-9n ý* s-rhs,,

m ltxt,,, 1c. A,,]--ý rtxt. rem.

Note that the text in stage m does not require any archetype call to be present since there
is no matching stage m in the sequential update scheme and the stage is simply added as
described earlier in section 3.3-2.

Although alternatives, all a and b updates in this section Nvere in fact only plain update
schemes. The expansion of true alternatives, however, is no more complicated than the

expansion presented here as every sequential update block containing alternatives can be

replaced by multiple instances of the sequential block containing only update schemes as Nvas
described in section 2.4.

3.3.4 update,, or updateb is a parallel or a sequential block

If one of sequencer and stage matched updates update,, or updateb is a parallel or a sequential
block, the newly constructed updatec will consist of both updates arranged in parallel in
the matching stage. For example, see the expansion of the xor archetype in example 4 in

section 3.6.2.

3.4 Special types of sequential archetypes

3.4.1 Ambidextrous sequential archetypes

Ambidextrous sequential archetypes have a slightly different semantics to ambidextrous ar-
chetypes from basic Update Plans. Again, consider the definition of the archetype a and the
sequential update scheme SEQ containing its calls.

CHAPTER 6: SEMANTIc EXTENSIONS 81

a(params) text = SEQ i ltxt, Ic, g, j=#, rtxt, rc,
2 ltXt2 1C2 g2 1=: ý, rC2

m ltxt. lcm q,, j#- rtxt. rc..

SEQ I s-Ihs, a(params) s-gl a(params) s-rhsi

2 a(params) s-IhS2 S-92 s-rhS2

n s-lhs,, =1 S-9n J* S-Tlls--

Ambidextrous sequential archetypes have an additional text, which is substituted for ev-
ery instance of its call. This text precedes any text expanded as a result of expansion of
left/right-hand side of an update scheme in a particular stage. Apart from this, the expansion
mechanism of ambidextrous sequential archetypes is equivalent to the expansion mechanism
of sequential archetypes described in the previous section.

Again, provided ra does not match any stage in the sequential update scheme and in >n
the expansion is

SEQ 1 s-lhs, text Itxt, 1c, s-gl A g, text rtxt, s-rhs, rc,
2 text ItXt2 s-IhS2 IC2 S-92 A g2 S-TIIS2 rC2

n S-lhs,, s-g. 1#. s-rhs,,

m ltxt. Ic. g,, ý* rtxt. rcm.

3.4.2 Command sequential archetypes

Command archetypes in general are a special case of ambidextrous archetypes and their
semantics has already been explained in section 2.3 on page 59.

3.5 Parameters

Parameters of sequential and parallel archetypes have to be ground expressions before arche-
type expansion. The primary reason for this restriction is that the structure of a sequential
block that is to be expanded must be known before transformation into canonical form which
is an important part of the implementation of sequential update schemes.

Example 3
The following archetype definition is perfectly valid as long as n is known
(ground) before archetype expansion and n>0.

a(o) =.
a(n) = Sln b(n) a(n - 1).

CHAPTER 6: SEMANTIC EXTENSIONS 82

Parameter resolution of archetype calls inside a sequential block is slightly complicated by

the fact that variables are shared across individual stages of the sequential block application
and the parameter resolution set has to reflect this.

3.6 Syntactic sugar

3.6.1 Update schemes in sequential and parallel blocks

If the right-hand side of an update scheme in a sequential or parallel block is empty and its

guard is true, then the transition symbol can be omitted.

3.6.2 An update is a sequential update

Every update update (excluding the updates which form archetype bodies) can be viewed as
syntactic sugar for an anonymous one-stage sequential update I update. 0

The impact of this syntactic sugar is bigger than it may at first sight seem. It is significant
as sequential archetypes do not necessarily have to be called from within sequential update
schemes. The intention is to use this sugar in conjunction with the rule from section 3.3.1.

Example 4
The following update plan defines a half adder.

xor(x, y, s) and(x, y, c) =: ý> .# half adder

It can be vieNved as syntactic sugar for

I xor(x, y, s) and(x, y, c) ==* .# half adder

Given an archetype definition

xor(x, y, s) = not (x, W2)

not (y, wi)

and(x, Wl, W3)

and(W21 Yi ý14)

or(W3, W4, S)-

expanding the xor archetype in the definition of a half adder using the rule
from section 3.3.4 gives

1 llnot(x, T172)

not (y, wi)
2

jjand(x,
ý71043)

and(rIJ2) Yj W4)
13 lior(W3, W4, S)

and (x, y, c).

which can be transformed as

and (x, y, c)
not (x, ý72)

not(y, wl)

and(x, I'll 1 1'13)

and(Td2, Y, 1ý74)

or
(TI73

7 T44) -9) -

CHAPTER 6: SENIANTic EXTENSIONS

3.7 Limitations

83

With the introduction of sequential update schemes a new set of problems needs to be ad-
dressed. The most obvious one stems from allowing variables to be shared among all stages
of a sequential block. Consider example 5.

Example 5
This rather forced example uses two sequential archetypes and a (sugared)

sequential update scheme which calls these archetypes. One of these ar-
chetypes (r) reads a value of variable v, and the second one (w) writes a
value of variable v.

r(v) = Sl 2 A(v].

w(v)=sli ýý-B[v].

r(v) ==ý. w(v).

Clearly, the expansion of these archetypes the results in a "forward refer-
ence" to the variable v (v is not ground in stage 1), which is not a valid
specification.

1 ==* B[v]

2 A[v] ==* .

However, problems such as these are not exclusive to Extended UP, they were also present
in basic UP, and can easily be detected by a trivial data flow analysis [1]. Any update scheme
containing such a forward reference is illegal.

4 Special cases of archetype expansion

4.1 Alternatives

As a result of syntactic changes, alternatives can now (in Extended Update Plans) be bodies

of archetypes. A single update scheme in which such an archetype is called will, assuming
there are n update schemes in the archetype's alternative, expand into n update schemes.
In other words, the archetype definition of such an archetype can be viewed as n archetype
definitions of the same archetype containing update schemes with their guards adapted as
shown by the transformation -r. 5 in section 2.4. Again, consistency is the primary reason for
introducing alternatives into archetype's bodies.

4.2 Parallel blocks

The original Update Plans formalism does not allow the use of parallel blocks in archetypes.
While this may seem unnecessary in the original Update Plans, in Extended Update Plans

CHAPTER 6: SEMANTic EXTENSIONS 84

parallel blocks can appear in archetypes not only as a part of a sequential update scheme,
but also entirely on its own. This increases consistency and adds a degree of modularity and
information hiding to the formalism.

An archetype definition

a(params) = 11 update,

update,,.

is syntactic sugar for

a(pararns) update

update,

that is the same parallel block is embedded in a one-stage anonymous sequence. Thanks

to the existence of the expansion rule introduced in section 3.3.1 and the syntactic sugar in

section 3.6.2, the expansion of this kind of archetype is governed by the rule in section 3.3.4,

which is thus in effect an in situ expansion.

Conclusions

In this chapter sequential update schemes and sequential archetypes were introduced as se-
mantic extensions to basic Update Plans. They contribute to the usability of the formalism
in two major areas.

Firstly, the obvious area of synchronisation. Synchronisation, or more precisely explicit
temporal ordering of update schemes, was already possible in basic Update Plans. How-

ever, this required an introduction of artificial constructs unrelated to the architecture under
description and made the whole specification less readable and elegant. Sequential update
schemes augment the non-deterministic model of execution of basic Update Plans by explic-
itly stating the order in which updates will be applied and expressing a number of consecutive
updates as one.

Secondly, the introduction of sequential archetypes extended the possibility for information
hiding and structure reuse by encapsulating a series of synchronised updates rather than just

a single atomic update. As a series of actions can be encapsulated into a module (a sequential
archetype), it is possible to provide multiple definitions for exactly the same series of actions,
but perhaps on a different level of abstraction. The next step is to design a mechanism
proving equivalence of these levels or ideally a refinement methodology to automatically derive

provably correct levels of description.
Overall, Extended Update Plans present a real improvement in readability of descriptions

where sequential behaviour is required. These may include fetch/execute cycle and lower-level
descriptions such as gate-level models of (a)synchronous circuits.

Chapter 7

PRAM

To demonstrate the power, compactness and intuitiveness of the use of sequential update
schemes and archetypes, a specification of the parallel random access machine (PRAM)

has been developed. The PRAM specification has been chosen in particular not only because

of its historical importance as one of the first models of parallel computing [221, but also
because of its ongoing relevance and the interest of researchers in this model [2,40,46,51,76].

A PRAM is characterised by its "memory models" which determine the PRAM's be-
haviour when two or more random access machines (RAMs) attempt to read from or write to
the same memory all. An informal description of these memory models is given in section 1.
Section 2 gives an EUP specification of the memory models for PRAMs with two RAMs.
More general n-RAM PRAM memory models are defined in section 3. The EUP specifica-
tions are used in section 4 where they are placed in the context of the remainder of a PRAM's
instruction set. Conclusions are drawn in section 5. The full specification for n-PRAM can
be found in appendix E.

I Informal description

The parallel random access machine is a theoretical uniform memory access shared memory
model (UMA/SMP) (35] of parallel computing. This description and the formal specification
is based on the informal PRAM specification given in [30]. PRAM consists of n random access
machines [67,72] with infinite shared memory and a common clock. Each of the RAMs can
access shared memory independently from any other RAM in constant time.

Figure 7.1 shows a RAM consisting of R general-purpose registers, a program counter
(PC), a signature register (SIG), an accumulator (ACC) and a memory address register (MAR).
Note that the signature register is only used in the priority model, which will be explained
later in this section.

A PRAM's instruction set can be divided into four classes: arithmetic/logic instructions,
load/store instructions, flow control instructions and read/write instructions. These instruc-

85

CHAPTER 7: PRAM

I SHARED MEMORY

Figure 7.1: The structure of a PRAM's RAM and data flow inside it

86

tions are specified in section 4, but it is worth noting that only the read/write instructions

access shared memory.
All RAMs execute the same program, but each one can be executing a separate code

segment within the program. Execution of any instruction on the PRAM machine takes

one clock cycle, i. e. a constant unit of time. One clock cycle is divided into four sequential
phases (in a sense a f/e cycle) which are synchronous between processors (RAMs). In the first

phase program counters of all processors that are not yet halted are increased to point to the
following instruction. The second phase is a register read/write access phase and instruction

execution phase. A read/write instruction will, on execution, prepare for shared memory
access in the next two phases by loading the memory address register. All other instructions

will update tile contents of local registers. Finally the third and the fourth phases are shared
memory read and write access phases respectively.

Depending on whether simultaneous reads of a same shared memory cell are allowed, two
read models, the concurrent read model (CR), and the exclusive read model (ER) can be
defined.

Similarly, two memory write models exist-a concurrent write (CW), and an exclusive
write (EW). However, concurrent write models need further consideration. The result of two

or more processors trying to write simultaneously into a same shared memory cell c has to be
defined. There are many different write conflict resolution rules. Some of the most common

ones are as follows.

WEAK Simultaneously writing the value zero to c by two or more RAMs is allowed and the
value zero is stored into the cell. Simultaneously writing any other value to the cell by

CHAPTER 7: PRAM 87

two or more RAMs is forbidden and the execution of the PRAM ends in a write conflict
if such a write is attempted.

COMMON Simultaneously writing a common value to c by two or more RAMs is allowed
and the common value is stored into the cell. Writing two or more different values
simultaneously to c by two or more RAMs is forbidden and the execution of the PRAM

ends in a write conflict if such a write is attempted.

TOLERANT If two or more RAMs simultaneously try to write to c, then the value of the

cell is not changed. The value of c is changed only if just one RAM is writing to it at
the time.

COLLISION If two or more RAMs simultaneously try to write to c, then a special collision

symbol (COLL) is written to the cell, even if they are writing the same value.

COLLISION+ If two or more RAMs simultaneously try to write two or more different

values to c, then a special collision symbol (COLL) is written to the cell. The value of c
is changed normally if the RAMs are writing the same value.

ARBITRARY If two or more RAMs simultaneously try to write to c, then an arbitrarily
chosen RAM writing to the cell succeeds in writing. There is no way to determine

prior to the write which RAM will succeed, or determine after the write which RAM

succeeded.

PRIORITY If two or more RAMs simultaneously try to write to c, then the RAM with
the smallest RAM identifier, i. e. with the smallest value of the SIG register, succeeds in

writing. In other words, RAM identifiers define an unequivocal and RAM-wise order of
priority of RAMs so that the RAM with the smallest RAM identifier has the highest

priority.

2-PRAM memory models
The aim of this section is to show a compact and elegant specification of a 2-RAM PRAM

using EUP. This specification will serve as the basis for an n-PRAM specification presented
in the following section. The EUP RAM instruction set specification is shared by 2- and n-
PRAM specifications, and can be found in section 4.

As already mentioned in the previous section, the execution of an instruction on a PRAM

machine is divided into four stages. The following sequential update scheme defines three of
these stages. Phase two of the f/e cycle (the register read/write phase) is defined in terms of
the instr archetype which is part of the definition of the pc archetype-i. e. when the instr

archetype is expanded, appropriate actions for (not only) phase two of the f/e cycle will be

added to the specification. The pc, shr, and shw archetypes are defined later in this section.

CHAPTER 7: PRAM 88

[2.1] FE 1 pc(l) pc(2) # update PCs, block (stage 2) if neither PI or P2 is running

3 shro # read shared memory

4 shwo- # write shared memory

The pc archetype in 2.2 increases program counters on both RAMs. C is the number of
instructions in the pro-ram each of the RAMs are executing. A RAM having the value of its 0
program counter pc <0 or pc ý! C is halted. The constants P1 and P2 are used to distinguish
between processor (RAM) 1 and 2. Note the use of the symbol '-' to expand these constants.
For example, for P=1, P-p expands to P-1 which is equivalent to Pi. The 'empty' update
scheme in stage two of the pc archetype prevents unwanted blocking behaviour of the FE za

sequence caused by the absence of the register access stage.
[2.2] pC(p) FE 1 P-P: PC[pcj pc[inst; r(p)]qc =[0< PC <C ý* P-p: PC[qc] # running 12

=#ý .#
don't block

PC(P) P-P: PC[PCj =1 0> PC v PC >C J#-
.# not running

In order to make the specification more concise, operators (9 and 0 are introduced.

{al E) a2 a, a2 A al : 7ý NULL}
{al@a2 al a2 Val =NULLVa2 =NULL}

Memory read conflicts occur only if the PRAM's memory read model (given by the memory
read model register MR) is ER, and both RAMs are trying to read the same shared memory
cell. The shr (shared memory read) archetype is defined to read values from shared memory
to the processors' accumulators, and to act as a barrier to halt the entire ER PRAM should
a read conflict occur.

[2.3] shro = PRAM: MR[mr] Pl: MAR[al] P2: MAR[a2l =[a, E) a2 A mr = ER j#- Pl: PC[C] P2: PC[C];

11 ==* read(l, a,) read(2, a2)-

If no read conflicts occur and the current instruction is a memory read instruction, a value
is read from shared memory into a RAM's accumulator by the following archetype.

[2.4] read(p, a) = a[vl =1 a: 7ý NULL ý* P-p: ACC[vl; # read value v from shared memory
==> .# not a memory read instruction

The MAR on every RAM contains a special value NULL when the currently executed instruction
doesn't access shared memory.

The shw performs similar function to the shr archetype, but it writes values into shared
memory. The PRAM's memory write model is given by the memory write model register
(MW).

CHAPTER 7: PRAM 89

[2.51 shwo = PRAM: MW[mw) P1: MAR[ajj P2: MAR[a2l P1: ACC[vj] P2: ACClv2] Pl: SIG[si] P2: SIG[S2]

=j aE) a2 A mw = EW j#- P1: PC(C] P2: PC(C].

= 11 =[a, a a2 A mw = CW-WEAK A ((vi = 0) A (V2 = 0)) J=: ý- write(al, 0).

a, E) a2 A mw = CW-WEAK A ((vi 0) V (V2 0 0)) J#' P 1: PC (C] P2: PC (C].

a, a2 A mw = CW-COMMON AvI V2 ý* write (a,, vj).

a, a2 A mw = CW-COMMON A v, 7ý V2 1=ý Pl: PC[C] P2: PC[Cl.

=f a, 0 a2 A mw = CW-TOLERANT ý*
.# value not changed

a, (9 a2 A mw = CW-COLLISION J#- write(al, COLL).

a, E) a2 A mw = CW-COLLISIONP A v, V2 j#- write(al, vi).

a, (E) a2 A mw = CW-COLLISIONP A V1 V2 Y* write(al, COLL).

a, (E) a2 A MW = CW-ARBITRARY write (a,, vj).
a, E) a2 A mw = CW-ARBITRARY write (a,, V2)-

a, (S a2 A mw = CW-PRIORITY A si < S2]=-> write(al, vi).

a, (B a2 A mw = CW-PRIORITY A si ý' S2 J* write(al, V2)-

a, @ a2 Y* write(al, vj) write(a2, V2)- # no conflict

Note that writing the constant C into a p's program counter register is effectively a HALT

instruction.

If the addresses in MAR registers are not the same, there are clearly no write conflicts and
both values are written to shared memory using the following archetype.

[2.6] write(a, v) a0 NULL ý* a(vj; # write value v into shared memory

===> .# not a memory write instruction

n-PRAM memory models

This section has a specification for an n-RAM PRAM. It is a relatively high-level specification
abstracting away implementation details and giving only two memory write models. Tile

complete EUP specification can be found in appendix E.
We first define the instruction cycle, as we did for the 2-PRAM. This time the PRAM is

defined by the archetype pram (3.1), rather than just a sequential update scheme as for the
2-PRAM (2.1). The number of processors and memory read/write models are parameters
of the specification rather than of the machine configuration. Again, only three out of four

stages are included in the FE sequence, as the second (execution) stage of the instruction

execution will be expanded by the pc archetype which was defined in section 2. As will be

explained later, the enforced blocking behaviour when no RAM is running is intentional. The

pcs, shr and shw archetypes now take additional arguments. The variable n is the number
of RAMs in the PRAM machine (n > 0), rm and wm are the memory read and write models
respectively. For example, a 5-PRAM with concurrent read and common concurrent write
would be specified by pram(5, CR, CW-COMMON).

CHAPTER 7: PRAM 90

pram(n, rm, wm) = FE i pcs(n) # update PCs, block (stage 2) if no RAM is running
3 shr(n, rm) # shared memory reads
4 shw(n, wm). # shared memory writes

As mentioned at the start of this section, this specification is relatively abstract. It uses
the 'limits' notation (e. g. in 3.2) to define 'multi-processor' archetypes, and the (multi)set

notation (e. g. in 3.6) to simplify guards. This notation can easily be implemented as recursive
archetypes as shown in appendix E. For example, the pcs archetype (which expresses the
first stage of an instruction execution) can be defined using the limits notation as

n [3.2] pcs (n) = p4p).
P=1

which is shorthand for 'pc(l) pc(2) ... pc(n). '. The same archetype in 3.3 is an example of a
recursive implementation. It increases the PC on every running RAM p using the archetype 2.2
from the previous section. If there are no running RAMs, execution is blocked (the FE sequence
is only partially applicable), and the whole PRAM stops.

[3.3] pcs(O) =. #0 RAMs

pcs(p) = pc(p) pcs(p - 1) =1 p>0

The following halt archetype serves to stop a specific RAM and also the whole PRAM.
This archetype is used by shr/shw archetypes in terminal conflict models when a read/write
conflict occurs.

n
[3.4] halt(p) P-p: PC[C]. # halt (p) stops the whole PRAM

P=1
The shr archetype checks simultaneous reads from shared memory. It uses set theory in

order to discover read accesses to the same memory location. Addresses waiting to be read in

shared memory are stored in each one of RAM's MAR registers. The archetype shr checks a
RAM's (non-NULL) MAR register value against the values in all the other RAM's MARs, and if it
finds a conflict, the entire PRAM is halted. The read archetype is defined in 2.4. The shrd
archetype in 3.5 provides the address (ap) from the memory address register of processor p.

[3.5] shrd(p, a)= P-p: MAR[a].

The notation fl ap R is the bag or multiset containing the elements ap, and an element
aNnL =a if and only if ap =A NULL, otherwise it is equivalent to an empty/non-existent pp
element.

nn [3.61 shr(n, CR) = shrd(p, ap) read(p, ap).
P=j P=j

nn
shr(n, ER) = shrd(p, ap) halt(p) =[

fI
aEU-LL NU

P=j P=j p
110faPLLIý* #readconflict

Shrd(p, ap) read(p, ap) =tjja'pý-UýL-11+ýPýL -11#-
.# no read conflict

P=j P=l

CHAPTER 7: PRAM 91

A similar approach will be used to determine shared memory write conflicts, but simple
detection of the fact that 1 or more write conflicts are due to occur is not sufficient. Different

actions need to be taken in different memory models.
The number of RAMs (n) and the memory write model are noxv parameters of shw arche-

types. The write archetype is defined in 2.6. The shwr archetype reads the address (ap) from
the memory address register of processor p and the value (vp) to be written at this address
in shared memory.

(3.71 shwr(p, a, v) = P-p: MAR(al P-p: ACC[v].

An archetype is defined for each memory write model. Only the exclusive write and the

weak concurrent write models are described in detail here. The full specification is in the

appendix E.

[3.8] shw(n, EW)
nn

shwr(p, ap, -) halt (p) aýN-ULL P
11541a-NPULLJý* #write conflict

P=1 P=1
nn

shwr(p, ap, vp) write(ap, vp) a-F-LL L
P a7ý- # no write conflict

P=1 P=1
shw(n, CW-WEAK)

nn
shwr(p, ap, vp) halt(p) # write conflict
P=1 P=I

=[3(ap, vp), (a., v.) Ef (a-NPU-LL, vp) pqA ap = a. A (vp .00v vq =0 0) 1=41

nn
shwr(p, ap, vp) write(ap, vp) #0 or no write conflict
P=1 P=1

V(ap, vp), (a NULL
qý Vq) EI (ap , Vp) ap = aq =* (Vp = Vq = 0) 1#'

Instructions

4.1 Addressing modes

4.1.1 Implicit modes

There are three implicit addressing modes on the PRAM-Le. addressing modes that are
implicit in the opcode, rather than being explicitly provided as an operand. Access to these
addressing modes always takes place in the register read/write phase. The three implicit

addressing modes are accumulator addressing,

[4.1] accr(p, v)
FEI 2 P-p: ACC[vl. # accumulator read

aCCW(p, V) FEI 2 ==> P-p: ACC[vl. # accumulator write

signature register addressing

CHAPTER 7: PRAM

(4.2] sigr(p, v) = FE12 P-p: SIG[vl. # signature register read

SigW(p, V) = FEI 2 =ý> P-p: SIG[v]. # signature register write

and program counter addressing.

[4.3] pcr(p, v) = FEI 2 P-P: PC[V]. #program counter read

pcw(p, v) = FEI 2 ==* P-p: PC[v]. #program counter write

4.1.2 Register modes

92

We first define two 'textless' register addressing archetypes that can be used to read/write

values from/to local registers.

[4.4] regr(p, r, v) = F11 2 P-p: r[vl. # local register read
regw(p, r, v) = FEI 2 ===> P-p: r[v]. # local register write

These archetypes can, among other things, be used to define the operand register addressing

modes. These are direct register addressing mode

[4,51 DR(p, r, v) r= regr (p, r, v). # direct register (read)

and indirect register addressing mode.

[4.6] IR(p, ri, v) r= regr(p, r, ri) regr(p, ri, v). # indirect register (read)

Note that archetypes in 4.5 and in 4.6 are command archetypes generating addressing

mode mnemonic for a PRAM instruction. These two addressing modes are known as register
modes.

[4.71 rm(p, a, v) = DR(p, a, v) # register modes
= IR(p, a, v).

Parameter p is the processor number, a is the effective (register) address, and v is the

value accessed. Register modes are the only addressing modes that may be used by a STORE
instruction (the STORE instruction must have an effective (register) address in which to store
the value--see section 4.3).

4.1.3 Immediate/Register modes

Most of the remaining instructions (jump instructions, arithmetic/logical instructions, the

LOAD instruction) may also take an immediate value. Adding this to the register modes
defines the set of immediate/register modes.

[4.8] irm(p, v) = IMM v immediate mode and register 7-nodes
rM(p, -, V).

CHAPTER 7: PRAM

4.1.4 Memory Modes

93

Memory read and memory write accesses can be direct or indirect. A direct memory read is
defined by

[4.91 DMR(p) M= FE 2 P-p: MAR[m] # direct memory read 13

P-p: MAR[NULL].

The MAR is loaded with the address in phase two (register read/write), and cleared in phase
three (memory read).

The indirect memory read is

[4.10] IMR(p) r= FE 2 P-p: r[mil P-p: MAR[mil # indirect memory read 13

P-p: MAR[NULL].

The addressing modes in 4.9 and 4.10 are combined to form a set of memory read modes
for use with the READ instruction-see section 4.5.

[4.11] mrm(p) = DMR(p)
IMR(p).

The memory write modes are defined similarly.

[4.12] DMW(p) M= FE 3 14

IMW(p) r=
FE 2 P-p: r[mi]

3

4

P-p: MAR[znj # direct memory write
P-p: MAR[NULL].

indirect memory write

P-p: MAR[mil

P-p: MAR[NULL].

These two addressing modes form the memory write mode set.

[4.13] mwm(p) = DMW(p)
Imw(p).

A read from shared memory will take place in the memory read phase (phase three), and a
write to shared memory will take place in the memory write phase (phase four). A processor
will read from memory if and only if its MAR contains a non-NULL address at the onset of phase
three, and write to memory if and only if its MAR contains a non-NULL address at the onset
of phase four. The mrm and mwm addressing modes are designed to load the processors' MARs

with non-NULL addresses at the correct stage of the f/e cycle.

4.2 Accumulator loading instructions

There are two groups of (local) accumulator loading instructions-the arithmetic/logic in- 0
structions and the load instructions. We will first define the way in which these instructions

access the value to be written to the accumulator.

CHAPTER 7: PRAM

Arithmetic instructions

94

All arithmetic/logical instructions use only (local) registers (the imr addressing mode set),
and hence take place wholly in phase two (the register read/write phase).

Arithmetic/logical operators can be distinguished as being binary operators

[4.14] binary(x, y, x+ y) = ADD.
binary(x, y, x- y) = SUB.
binary(x, y, xx y) = MUL.
binary (x, y, x/y) = DIV.
binary(x, y, x% y) MOD.
binary(x, y, x << y) SHI
binary(x, y, x& y) AND.
binary(x, y, x y) = OR.
binary(x, y, x y) = XOR.

or monadic operators

addition
subtraction
multiplication
division
modulo

FT. # shift left
bitwise and
bitwise or
bitwise xor

(4.15] monadic(x, log(x)) = LOG. # loga7ithm

monadic(x, not(x)) = NOT. # bitwise not

Both binary and monadic operators access one argument from the instruction (immedi-

ate/register addressed) operand. Binary operators access their other (first) argument from
the processor's accumulator.

[4.16] arlog(p, r) = binary(x, y, r) irm(p, y) accr(p, x)

= monadic(y, r) irm(p, y).

Load instructions

There are three load instructions on the PRAM. They all load the processor's accumulator
with a value. We will first define the value access and corresponding opcode. Note that
LOADINDEX and LOADPC are zero operand instructions.

[4,17] load(p, v) =LOAD irm(p, v)
- LOADINDEX sigr(p, v)
- LOADPC pcr(p, v).

Writing the result

We now combine these two sets of instructions and define the write to the accumulator.
[4.18] toacc(p, v) = arlog(p, v) ==: ý, accw(p, v)

= load(p, v) ==ý accw(p, v).

CHAPTER 7: PRAM 95

4.3 General purpose register loading instructions

The store instruction writes the contents of the accumulator to a local register. The following

update scheme defines the value and effective address access.

[4.19] store(p, r, v) == STORE rm(p, r, -) accr(p, v).

The write to the register is defined by

[4.201 toreg(p, r, v) z-- store(p, r, v) =* regw(p, r, v).

4.4 Program counter loading instructions

The jump family of instructions will load a processor's program counter. The value to be

loaded is defined by

[4.2 1] i ump (p, v>0, a) = JPOS irm(p, a) ac cr (p, v).
jump(p, v=0, a) = JZERO irm(p, a) accr(p, v).
jump (p, TRUE, a) = JUMP irm(p, a). # unconditional jump

jump(-, TRUE, C) = HALT.

The program counter is only updated if the condition in the second parameter of jump is
TRUE.

[4.221 topc(p) jump(p, cond, a) =1 cond Y* pcw(p, a)
j ump(p, cond, a) =f --iýond I=>.

.

4.5 Memory read instructions

The READ instruction moves a value from shared memory into a RAM's accumulator. As

mentioned earlier, the values are read from shared memory in phase three of the f/e cycle by
the shr archetype, which checks memory read conflicts. The read archetype only generates
the instruction and addressing mode mnemonic, and moves shared memory address into the
MAR for the shr archetype.

[4.23] read(p) = READ mrm(p).

4.6 Memory write instructions

The WRITE instruction stores values from a RAM's accumulator into shared memory. Similarly
to the READ instruction, the actual write is done by the shw archetype, which checks and
resolves memory write conflicts.

[4.241 write(p) = WRITE mwm(p).

CHAPTER 7: PRAM 96

4.7 The instruction set

Finally, all 5 types of instructions are added to the instruction set.

14.251 instr(p) = toacc(p,

= toreg(p,

= topc(p,

= read(p)
= write(p).

Conclusion

Although [611 contains a specification of a parallel machine, this was only of pipelining in a
relatively simple RISC processor. This specification, on the other hand, is a simple demon-

stration that a massively parallel system can easily be formally described with EUP. It could
also be relatively easily adapted to describe more recent PRAM models such as (76].

While a similar specification of the PRAM machine would be possible using basic Update
Plans, this could only be done at a more concrete level of description by enforcing sequential
behaviour through constructs unspecified by the PRAM model-Le. effectively preempting
design decisions about the implementation of parallelism which the PRAM model was devel-

oped to avoid. The Extended Update Plan specification preserves the level of abstraction of
the PRAM model, with the shr and shw archetypes containing all the characteristics of the

various access models.
In addition the Extended Update Plan specification encapsulates most of the PRAM

instructions in single sequential archetype definitions-corresponding to the descriptions with
which a user would be familiar-even though the effects of these instructions take place across
several clock cycles. This greatly simplifies the task of verification between multiple levels of
specifications as a direct correspondence between these levels can easily be found.

Chapter 8

Other Methods

T his chapter provides an overview of the most frequently used formal methods in the area
of formal specification of hardware architectures. It is almost impossible to provide a

complete list of methods that serve this purpose. For a fuller picture the reader is referred
to comprehensive surveys in [18,29,42,52,68,801, where methods for specification and
verification, not only of computer hardware, have been described.

A group of specification methods (e. g. [31]) which is not considered in this chapter is
based on process algebras. Although they are based on rigorous, well developed mathematical
theories providing a variety of techniques for proving and verifying properties, this approach
is still in its infancy and readability of such specifications is generally po6r.

Several examples that demonstrate most of the formalisms and compare them to UP are
given. Although the examples are too basic to exercise a wide range of language features, or to

give a true test of ease of expressibility, they should provide some insight into the formalisms.

1 Specification methods
It is difficult to separate various formalisms into distinct classes as some of them overlap

and every generalisation is bound to introduce some inaccuracies. Nevertheless, they will be

categorised here by their area of predominant use.

1.1 Hardware

Hardware Description Languages (HDLs) have been used in the industry since the 1960s to
document and simulate designs, mainly at the circuitry level of machine architectures. The

most widely used HDLs are VHDL, Verilog and ELLA.

97

CHAPTER 8: OTHER METHODS

Verilog
module half -adder(a,

b, s, c);
input a, b;
output S, C;
xor gI (a, b, s);
and g2 (a, b, c);

endmodule

Update Plans
half -adder(a,

b, s, c) == xor(a, b, s) and(a, b, c).

Figure 8.1: Verilog vs. UP

1.1.1 VHDL

98

VHDL [3,36] stands for VHISC (Very High Speed Integrated Circuit) HDL-an international
IEEE standard (1987) specification language for describing digital hardware.

Each VHDL description contains three main parts: the ENTITY section describing the

entity interface, the ARCHITECTURE section of which there may be several instances for a
particular entity and the CONFIGURATION section which defines the particular architecture to
be used for an entity by its environment.

A rich set of tools and has been written for VHDL which aid the development, synthesis,
testing and verification of hardware designs. There are also IEEE standard libraries for some
pre-defined components.

Several methods have been developed to translate a VHDL subset into formats suitable
for formal verification by both model checking and theorem proving [49,71]. However, as
VHDL semantics (in contrast to UP) is not formally defined, any such translations must be
taken as only 'provisional'.

1.1.2 Verilog

Verilog HDL [73] and VHDL are essentially identical in function, however, Verilog is simpler
(less general) than VHDL, and syntactically different. Its programming constructs are based

on C, while those of VHDL are based on ADA. Verilog was made IEEE standard 8 years after
VHDL in 1995. Similarly to VHDL, Verilog has a large library of predefined components.

Figure 8.1 shows a structural specification of a half adder in both Verilog and the UP
formalism. An example of a sequential logic circuit is given in 8.2, no-%v comparing Verilog to
Extended UP as described in chapter 6.

The attempts [28] to formalise Verilog in order to facilitate formal verification are (in

common with VHDL) still in very early stages. Unlike UP, Verilog is (in common with
VHDL and ELLA) a deterministic language, so non-determinism must be emulated.

CHAPTER 8: OTHER METHODS

Verilog
module f ull-adder(a, b, i, s, o);

input a, b, i;
output S, o;
wire wl, w2, w3;
half

-adder g1 (a, b, wl, w2);
half

-adder g2(wl, i, s, w3);
or g3 (w2, w3, o);

endmodule

Extended Update Plans
f ull-adder(a, b, i, s, o) =

half
-adder(a,

b, wl, w2)
half

-adder(w1,
i, s, w3)

or(w2, w3, o).

Figure 8.2: Verilog vs. EUP

ELLA
FN MUX == (bit: c il i2) -> bit:

CASE c
OF hi- il,

lo: i2
ESAC.

Update Plans

mux(c, il, i2, il) = c[HI].
mux(c, il, i2, i2) = c[LO].

Figure 8.3: ELLA vs. UP

1.1.3 ELLA

99

ELLA [571 has been developed for circuit design, with the aim of supporting automatic syn-
thesis from high-level behavioural descriptions to low-level structural descriptions. ELLA is

a parallel language and describes circuit behaviour by defining nodes, connections and signal
flows in that circuit.

One of the marked differences between ELLA and VHDL is that in VHDL the structural,
behavioural and procedural design descriptions must be separate, whereas in ELLA they can
be freely mixed. Also, ELLA is primarily a functional language, whereas VHDL relies on
state transitions. It is not only the regional use' and features described in this section that
separate VHDL and ELLA. For a fuller comparison between VHDL and ELLA the reader is

referred to [79].
As with other HDLs, though a complete formal semantics for ELLA does not currently

exist, various verification strategies (based on model checking and theorem proving) for a
subset of this specification language have been developed (5,6,12].

Two simple examples are provided to compare specification capabilities of ELLA and
(E)UP. The first one (figure 8.3) is a two-bit multiplexer, the second one (figure 8.4) is a
sequential parity checker. Note the clear arrangement of the parity checker modules in the
EUP definition which makes the layout and the connections between the modules immediately

obvious
1VHDL is the standard language for the US DoD, ELLA is likely to become its equivalent for the UK Alol)

CHAPTER 8: OTHER METHODS

ELLA
FN PARITY-IMP = (bit: in) -> bit:

BEGIN
MAKE INV: 11,

MUX: 13 out,
REG: 12 14.

JOIN (in, 11,12) 13,
hi -> 14,
(14,13, hi) out,
out 12,
12 11.

OUTPUT out
END.

Extended Update Plans

parity-imp(in, out) =
inv(12,11)

mux(in, 11,12,13)

reg(HI, 14)

mux(14,13, HI, out)
reg(out, 12).

Figure 8.4: ELLA vs. EUP

1.2 Concrete machines and instruction sets

1.2.1 RTL, ISPS

100

Historically, the best known formalisms specifically aimed at the description of instruction sets
are register transfer languages (RTL) and Instruction Set Processor Specification (ISPS) [69].

There is a variety of slightly differing RTL notations for describing the workings of com-
puters at the register level. They all, however, semi-formally describe behaviour of computers
as stepwise transformations on register contents, where variables correspond to hardware

registers, using some FORTRAN, PASCAL or C constructs.
ISPS has its origins in the Instruction Set Processor (ISP) notation and has been fre-

quently used in the past as a design tool to cover a wide area of applications. One of the

most significant applications is the PDP-11 specification [201. However, the specification was
ambiguous and various implementations of the PDP-11 machine exhibited differing behaviour

of several instructionS2. Formal semantics of the Update Plans formalism ensures that only
unambiguous specifications are written.

1.2.2 RAPIDE

RAPIDE is a high level, event-based, concurrent, object-oriented specification and simulation
language. It was designed for prototyping system architectures. Instruction sets are modelled
by communicating modules forming an 'architecture'. The formalism started as an effort to

complement often over-specific and hard to understand HDL descriptions.

Unfortunately, RAPID E lacks a formal semantics, which makes any rigorous formal verifica-

tion methodology impossible. The only way to verify properties of a system under description

'For example, the MOV Rn, (Rn)+ instruction resulted in Rn having either the original value or the original
value+2 depending on the processor.

CHAPTEP, 8: OTHER METHODS 101

RAPIDE

type Producer is interface
action out Serid(data: integer);
action in ReadyO;

behavior
function GenDatao return integer;

begin
Start =* Send (GenData
Ready =: ý Send(GenDatao);;

constraint
observe from Start, Send, Ready

match (Start --+ Send) --ý [* rel
(Ready --+ Send);

end
end Producer;

Update Plans

RECEIVED[O] START[l] READY[O].
Producer
START[s] READY[vj =4 sVv

SEND[gendatao] START[O] READY[O).

Consumer
RECEIVED[r] SEND[data] READY[Ol

RECEIVED[r + 1] READY[l] r[data].

Figure 8.5: RAPIDE VS. UP

is traditional simulation. The authors [50,661 argue that the strength of the RAME for-

malism lies in partially ordered sets of events (posets) which are generated by executing a
RAPIDE model. Where other concurrent event-based simulation languages produce linear
traces of events, RAPIDE simulation shows dependency between events. However, the same
effect (building posets) could easily be achieved by an UP simulator by annotating special
"communication cells".

Tile power of Update Plans to describe concrete data manipulations in a parallel environ-
ment is demonstrated in figure 8.5 which shows the classic "pro ducer/consumer" problem.
The very first 'Send' is initiated by 'Start' and subsequent 'Send' signals causally follow
'Ready' (acknowledgement) signals. The RAPIDE specification of the 'Consumer' interface is

not shown here for the sake of brevity, as its description is even longer than that of 'Producer'.
On the other hand, the UP specifications of both the 'Producer' and 'Consumer' processes
are included. The 'Consumer' simply stores data sent by the 'Producer' into a buffer.

1.3 Parallelism

1.3.1 UNITY

The UNITY formalism [16) consists of two parts: a programming language based on transition

systems, and a specification language, based on a linear temporal logic. Similarly to other
formalisms, such us UP and CHAM, the UNITY computational model is liberated from

control management.
A minimal UNITY program consists of three parts: a collection of variable declarations

called the 'declare' section, a set of initial conditions called the 'initially' section, and a

CHAPTER 8: OTHER METHODS

UNITY Update Plans
program TrafficLi_qht

declare

ns, ew : fred, gm, yell
initially

ns, ew = fred, red)
assign

ns grn if (ns = red) A (ew = red)
ns yel if (ns = gm)
ns red if (ns = yel)
ew: =grn if (ns = red) A (ew = red)
ew := yel if (ew = gm)
ew: = red if (ew = yel)

end TrafficLight

EW[RED) NS[RED].

NS[RED] EW[RED] =: > NS[GRNI.
NS[GRNj NS[YEL].
NS[YEL) NS[RED].
NS[RED] EW[RED] =#> EW[GRN].
EW[GRNj EW[YELI.
EW[YEL] EW[RED].

Figure 8.6: UNITY vs. UP program for a traffic light controller. 0

102

finite set of statements in the 'assign' section. The standard UNITY execution model is a
non-deterministic, fair interleaved selection of all statements from the 'assign' section.

An example of a program for a traffic light controller in both UNITY and UP is given in 0
figure 8.6. Although very similar to UP, UNITY lacks an appropriate abstraction mechanism
and is more suited for the description of concurrent programs, rather than architectures. Also,

as opposed to Extended UP, as described in the second part of this thesis, there is no concept
of a sequence which is often needed to describe hardware architectures.

1.3.2 r, CHAM

The Chemical Abstract Machine (CHAM) model of computation [9,10,37] is fashioned on
chemicals and chemical reactions. The model is build upon the 17 language [4) for parallel
programming. 17 computation is a set of reactions that consume elements of a multiset and
produce new ones according to the rules that constitute the program. As reactions can take 0
place in any order (or even simultaneously), the model is inherently parallel in common with
other formalisms such as UP and Petri Nets.

The r language is extended by the CHAM formalism by the provision of a classification
scheme for reaction rules and a membrane construct which extends the use of multisets in such
a way that they can form parts of molecules. The second extension allows the formalism to
deal with abstraction and hierarchical programming, as a membrane can be porous to allow
communication between an encapsulated solution (multisets of molecules) and its environ-
ment. Perhaps an overused example, but one which effectively demonstrates the philosophy
of CHAM is that a solution originally made of all integers from 2 to n along with a rule that

any integer destroys its multiple will result in a solution of prime numbers between 2 and n.
CHAM, as opposed to UP, is predominantly aimed at formally specifying and analysing

CHAPTER 8: OTHER METHODS 103

software achitectures. In contrast to CHAM, UP specifications are also reasonably simple to

implement on concrete machines.

1.4 Protocols

There are many competing, well established protocol description languages/environments.
The main contributors are SDL, Estelle and LOTOS.

SDL stands for Specification and Description Language [15]. It is an object-oriented, for-

mal language standardised by The International Telecommunications Union-Telecommunica-

tions Standardization Sector (formerly CCITT). It was developed to describe real-time and
distributed communicating systems. The major drawback in using SDL for protocol speci-
fication, however, is that both the graphical and textual protocol specification descriptions

tend to be large, and therefore difficult to understand and maintain.
Estelle (Extended State Transition Language) [38] is an ISO standardised, partly for-

malised technique for the specification of distributed and concurrent processing systems based

on an extended state transition model (non-deterministic finite state machine augmented by

the addition of variables). Estelle has been successfully used on the specification and analysis
of many real protocols.

LOTos and especially DILL deserve further attention as they have been used for the
description of hardware, specifically sequential digital circuits.

1.4.1 LOTOS, DILL

LOTOS (Language Of Temporal Ordering Specification) [391 is a by-product of the effort of 0

standardisation of the Open Systems Interconnection (OSI) within ISO. It is a standardised
formal description technique designed to describe distributed concurrent information process-
ing systems, in particular the OSI architecture and the related standards.

DILL (Digital Logic in LOTOS) [33,34] uses LOTOS to formally specify digital hardware

making use of a library of typical components and is realised through translation into LOTOS.
The analysis and verification of properties takes place at the LOTOS level.

For a comparison between DILL and UP see figure 8.7. The basic component of a logic

circuit (a NAND gate) is described using (only) a behavioural style in DILL, and both the
behavioural and stuctural styles in UP. It turns out that great care must be taken to avoid
non-deterministic behaviour of components when writing DILL specifications. Even if such
care has been taken there is another problem-the DILL model is not suitable for circuits
containing cyclic connections. Although the NAND gate is modelled in the manner "when

all inputs arrive, then output happens" as in UP, the DILL specification will deadlock [33] if
there is a cyclic connection within each stage.

Another disadvantage of this approach is that DILL only has a limited set of components
in the hardware library and the construction of new components requires knowledge of both

CHAPTER 8: OTHER METHODS 104

DILL

process Nand2 [1pl, Ip2, Opl: noexit: =
(Ipl ? dtIpl Bit; exit (dtIpl, any Bit)

Ip2 ? dtlp2 Bit; exit (any Bit, dtIp2))
>> accept dtlpl, dtIp2 : Bit in

(Op ! (dtIpl nand dtIp2);
Nand2 [1pl, Ip2, Op])

endproc (* Nand2 *)

Update Plans (behavioural description)
ipl, ip2:: Bit.
nand(ipl, ip2, -1(ipl & ip2)).

Update Plans (structural description)
nand(ipl, ip2, op) = ipi (0] ip2[0] ==ý op[l].

= ipl[O] ip2[1] opf0j.
= ipl[l] ip2[0] op[O].
= ipl[l] ip2[l] op[O).

Figure 8.7: DILL Vs. UP modelling a NAND gate

DILL and LOTOS. However, it seems to be convenient for giving higher-level architecture
specifications.

1.5 Z/VDM

The list of formal methods would not be complete without at least mentioning the pioneering
Z notation and the Vienna Development Method (VDM) [32] both of which still have a large

user base. Z and VDM are based on set theory and first order predicate calculus. ISO

standards exist for both of them.
Z is a non-executable specification language developed mainly by the Programming Re-

search Group at the Oxford University Computing Laboratory from the late 1970s. The most
noticeable difference between Z and VDM are structures called schemas, by which programs
are described.

VDM, being a method rather than just a notation for expressing software specification
design and development, also contains an inference system for constructing correctness proofs
and a methodolog for developing software from a specification in a formally verifiable manner. oy

While different in syntax and structure, Z and VDM do not differ radically from one
another. Unfortunately, neither Z nor VDM can handle concurrent systems [78].

Although there has been some work [241 in describing computer architectures using both
these methods, they are used primarily for software requirements specification and program 0
development.

Verification

While formal specification of a system often forms an important part of its design, it is

sometimes not sufficient and needs to be complemented by some sort of a verification strategy.
This section gives a short overview of different verification techniques.

The traditional method of trying to ensure correctness is through simulation and testing.

CHAPTER 8: OTHER METHODS 105

However, as Moore's prediction3 turned out to be very accurate, these techniques have their
limitations as with ever-increasing complexity of hardware it is impossible to simulate all
inputs or sequences of inputs. Formal techniques, on the other hand, are better able to scale
with complexity by using various mathematical methodologies rather than exhaustive testing.

While there have been some attempts at the "ideal solution" -correct-by-construction
synthesis [641, designers are still using hand-crafted custom design [44) in an effort to optimise
performance of systems, which necessitates some post-design verification.

Formal post-design verification involves the use of analytical methods to prove that the
implementation of a system conforms to the specification. Formal proofs are based on estab-
lishing that universal properties about the design hold independently of any particular set of
inputs, or on showing the equivalence between several layers of a system specification with
differing degree of abstraction. Verification methods can be classified into two major groups:
model-checking and theorem-proving, based on these criteria.

In model-checking, the implementation description (model) is given as (or transformed to)

a finite state machine (FSM), and the specification description by properties given in some
kind of temporal logic. Correctness is then established by showing whether some property
holds in the FSM model, or if not, a counter example is provided. Model-cliecking tools

are fully automated, and perform exhaustive searches through the state space of the model.
Unfortunately, this method is not scalable to larger circuits due to the state explosion problem.
Various methodologies have been developed to alleviate the state explosion [171 usually by
treating the sets of states symbolically or replacing the system to be checked by a simpler one
in which irrelevant details are suppressed.

Some specification methods use first-order (Boyer-Moore/ACL2) or higher-order logic
(HOL, PVS) for both the specification and implementation description. Theorem-proving
then tries to establish whether the specification and implementation are equivalent or the
language representing the implementation is contained in the language representing the spec-
ification. The main advantages of this approach are that the formal proof can be mechanically
checked and, in contrast to model checking, theorem proving can deal directly with infinite

state spaces. However, as opposed to model-cliecking the derivation of a formal proof is ex-
tremely tedious, as the theorem-proving tools are semi-automatic and need a large degree of
expertise for efficient use. Moreover, a theorem-prover is not guaranteed to always give an
answer because of decidability problems.

2.1 ACL2

One integrated specification and verification method for computer architectures that stands
out of the rest mainly because of its use in the industry, is A Computational Lo jc for 0
Applicative Common Lisp (ACL2) [13,411. ACL2 is a re-implementation of the Boyer-Moore

'31n 1965 Cordon Moore predicted that complexity of hardware devices would double every 18 months.

CHAPTER 8: OTHER METHODS 106

system Nqthm. Like Nqthm, ACL2 supports a Lisp-like, first-order mathematical logic.

Most of the Common Lisp functions were axiornatised or defined as functions or macros
in ACL2. In contrast to Common Lisp, all functions in ACL2 are total.

There are two large scale verification projects based on ACL2. The first one is a formal

executable specification of the Motorola CAP [26) digital signal processor. The second, per-
haps even more important project was the application of ACL2 to formalise and prove the

correctness of the microcode for the kernel of the floating point division operation used on
the AMD5K86 microprocessor [56).

As ACL2 is based on theorem proving, it is more reliant on the user. Authors themselves

admit (131 that ACL2 proofs require many skills including great familiarity and insight into

the applications areas, engineering issues, mathematics, formal logic, the workings of the
ACL2 proof tool, and a lot of persistence and dedication.

Conclusions

This chapter briefly described several specification and verification methods relevant to the

area of the Update Plan formalism.

3.1 Integrated specification/verification methodologies

The most significant challenge to UP are integrated specification and verification method-
ologies such as ACL2. However these require a great deal of skill from the user, both in
designing the specification in order to make it amenable to verification, and in performing the
verification itself. A verification methodology is only useful if it is used. While Update Plans

are not, as yet, embedded in a verification formalism (e. g. HOL) there do not seem to be

any major obstacles to achieving this. This would provide a useful mechanism for producing
intuitive, structured and verifiable specifications.

3.2 Specification methods

It is noticeable that all of the Update Plan specifications in section 1 are more compact
but, arguably, more easily understood than the corresponding specifications using alternative
methods. In contrast to many of the methods in section I the Update Plans formalism has

a formal semantics, and can be applied to the specification of both hardware and software
architectures.

3.2.1 Hardware

None of the HDLs described in section 1.1 has a formal semantics which has hindered the
development of formal verification methodologies [791. Although some pioneering work has 0

CHAPTER 8: OTHER METHODS 107

been done on verification of HDL specifications, this was either only a preliminary work to
inspire further research (28], or developed verification methodologies for only a restricted
subset/core of that language [5]. UP on the other hand has a simple but formally defined

semantics.
The HDLs in section 1.1 are also generally not not very well suited to specification of

software architectures.
Furthermore they are deterministic. This makes it relatively simple to specify sequences

and modules consisting of sequentially connected elements, but difficult to specify parallel
and/or synchronous processes-in general these must be emulated. On the other hand non-
determinism is an inherent part of the semantics of Update Plans making the specification
of parallel processes relatively easy. Indeed basic Update Plans were somewhat weak in

specifying sequential behaviour. The introduction of sequential schemes and archetypes in
Extended Update Plans has solved this, and sequential systems can now be specified with
ease.

3.2.2 Concrete machines and instruction sets

Again, none of the methods described in section 1.2 has a formal semantics-and RTL in par-
ticular does not even have a standard syntax, as can be seen from the number of differing RTL

notations. ISPS dates from the 1970s and is essentially an imperative procedural language

with all the difficulties in formal reasoning that this entails. Though both RTLs and ISPS can
provide detailed descriptions of the hardware/software interface neither is particularly suited
to either the specification of hardware or the specification of software at a more abstract level.
Nor are they strong in the description of parallel processes.

Though RAPIDE is a more recent development it still lacks a formal semantics, and ver-
ification can only be achieved through simulation. RAPIDE specifications also tend to be

considerably longer than the corresponding UP specifications.

3.2.3 Parallelism

None of the specification methods discussed so far would be the tool of choice for defining

parallel processes. The methods discussed in section 1.3 (UNITY, r and CHAM) were de-

signed with parallelism explicitly in mind. However they are all far more suitable for the
description of parallel pro-rams rather than hardware. They also lack mechanisms, such as
sequential Update Schemes and archetypes, for imposing the sequentiality and synchronisa-
tion that is almost always an essential part of hardware behaviour. In addition 17 and CHAM

specifications are considerable harder to implement on real machines than the corresponding
UP specifications.

CHAPTER& OTHER METHODS

3.2.4 Protocols

108

Of the specification methods discussed in section 1.4 LOTos and DILL are the most suited to
the description of systems across the hardware/software interface. LOTOS provides the higher
level (protocol) specification, while DILL uses LOTOS to provide a limited hardware specifica-
tion facility. This means, however, that writing non-trivial DILL specifications requires a good
knowledge of both LOTOs and DILL. Also DILL is limited in the class of systems that it can
specify-it cannot even be used to specify a simple RS flip-flop, since this contains cyclical
connections. It also tends to introduce unexpected non-determinism unless used carefully.

3.2.5 Z/VDM

These methods are again more suited to higher level (software) specifications rather than
hardware. In contrast to UP they do not produce executable specifications.

3.3 Summary

Though there is a large number of specification methods across the application area of Update
Plans none is as suited to describing systems at the hardware/software interface as Update
Plans. Almost all of the methods tend to be either hardware or software oriented. Most of
the methods lack a formal semantics making verification of the systems specified difficult.
Also the Extended Update Plans formalism can be used equally well for the specification of
sequential and parallel systems, and the interaction between sequential and parallel processes.
The other methods surveyed here are mostly suitable for describing sequential or parallel
systems, but not both. In general Extended Update Plans provide a powerful method for

specifying and reasoning about all the most common processes and systems that exist at the
hardware/software interface.

Chapter 9

Conclusions and Future Research

U pdate Plans constitute a very flexible, clean formalism in which clear, elegant, compact,
intuitive, simple to read and unambiguous low level specifications can be written. Con-

tributions to the Update Plans formalism presented in this thesis can be divided into two

major areas.
Firstly, in the application domain, instruction sets of four different machines (ranging from

concrete to purely mathematical models) have been described using both original Update
Plans and UP with the extensions described in the second part of the thesis.

Secondly, syntactic and semantic extensions to Update Plans made the whole formalism

even more consistent and expressive. The semantic extensions in particular provide a way to

make UP descriptions more compact and readable. This is mainly due to the advances in the

area of synchronisation between parallel and sequential processes and the provision of a tool
to design specifications with a better degree of modularity.

I Update Plans applications

Update Plans applications featuring both in the first and second part of the thesis provide
a good deal of evaluation of the Update Plans formalism which drove both the syntactic
and semantic extensions. Specifications Nvere produced for a variety of concrete and abstract
machines.

The PDP-11 machine instruction set specification provided a useful comparison of an UP

specification to the historically important formal specifications in [20,691. A significant subset
of the PDP-11 instruction set, including the complete set of addressing modes, single and
double operand instructions, condition code and program flow instruction, and the interrupt

mechanism, was developed. This specification was unambiguous (in contrast to, for example,
[20]), more compact than [20,691 and significantly clearer. Consideration of a more detailed

specification at the fetch/execute cycle drove the development of sequential update schemes-
a semantic extension to the Update Plan model.

109

CHAPTER 9: CONCLUSIONS AND FUTURE RESEARCH 110

The SPARC-V9 was chosen to test UP's suitability for specifying modern RISC archi-
tectures. A partial specification of the SPARC-V9 architecture exists [50,651, but this is

aimed more at the specification of connections and communication than at a concise specifi-
cation of the instruction set. The UP specification covers the SPARC-V9 register architecture
(general purpose and floating-point registers, the SPARC-V9 register window mechanism and
instructions); arithmetic, logical and floating-point instructions; data transfer instructions;

and control transfer instructions. The main achievement of this specification, apart from
its clarity and compactness, is that the extensions to the Update Plan formalism allowed
simultaneous specification of the SPARC-V9's assembly language and machine code.

The Java Virtual Machine (JVM) was chosen to test Update Plans' suitability for de-

scribing more abstract instruction sets using a wide variety of types. Again a compact and
readable specification of the JVM instruction set subset was produced. This specification
exercise lead to some syntactic changes to the original Update Plans formalism.

The Parallel Random Access Machine (PRAM) [22] was chosen as a specification target
because it provided a useful test-bed for the semantic extensions to Update Plans described in

chapter 6. It was also a test of the expressive power of Update Plans in that the specification
should be able to describe all of the PRAM's memory models within one spe cification. The
"n-PRAM" specification is thus a family of specifications, parameterised by the number of
RAMs, and the particular read/write model under consideration.

2 Update Plans extensions

The second class of advances achieved by the thesis are the extensions to the previous Update
Plans formalism.

The syntactic extensions have a more significant impact than might at first sight seem.
They now allow, in many cases, for specifications at multiple levels of abstraction within one
update plan. The equivalence of the specifications is then implicit in that single specification,
rather than requiring explicit proof through transformation. The SPARC-V9 specification is

an example of such a specification, since it describes both SPARC-V9 assembly language and
machine code.

The typing mechanism has been extended to allow a clearer match between "hardware
types" (e. g. bits, bytes, words, etc.; registers, memory, etc.) and "software types" (e. g.
integers, booleans, etc.; opcodes, operands, condition codes, instruction words, etc.). The
JVIVI specification, for example, defines both the abstract and the physical structure of Java
bytecode.

The problem in specifying parallel processes is often not the parallelism in itself, but
the interaction between, and the synchronisation. of, sequential and parallel processes. In
the PRAM, for example, the massive parallelism of the memory access model must be syn-

CHAPTER 9: CONCLUSIONS AND FUTURE RESEARCH ill

chronised with the sequentiality of the fetch/execute cycles of each of the individual RAMs
in the PRAM. When this research started parallel system could be specified using Update
Plans, but synchronisation of the parallel processes thus specified required the introduction

of artificial constructs unrelated to the architecture under consideration, leading to inelegant

specifications that were hard to read. The introduction of sequential update schemes provides
the formalism with a general synchronisation primitive that augments the non-deterministic
model of Update Plans by explicitly stating the order in which updates will be applied. As a
result it is now also possible to give more abstract descriptions in EUP than in UP.

The development of sequential update schemes led naturally to the development of sequen-
tial archetypes. These greatly extend the possibilities for information hiding and structure
reuse by encapsulating a series of synchronised updates into a "module" (a sequential arche-
type). A sequential archetype can express an atomic action at one level of abstraction (e. g.
an instruction execution) as a series of atomic actions at a lower level of specification (e. g.
phases of the f/e cycle). This simplifies the task of proving the equivalence of the two levels

of specification.

3 Future considerations

Suggestions for further UP-related work can be classified into three different areas. Firstly,
the Nvork on theoretical aspects of the formalism itself. Secondly, more research should be

carried out on the application area of Update Plans. Finally, the implementation for the
Update Plans formalism consisting of appropriate CAD tools should be developed.

3.1 Theory

3.1.1 Metrics

An annotation to indicate cost of applying an update or expanding an archetype coupled
with a cost-derivation methodology should be developed. This (with a working UP simulator)
would not only make the application of Update Plans to compiler optimisations possible as
suggested in (601, but it would also prove useful in a variety of other applications such as
automatic calculation of delays of (networks of) components in a logic circuit, simulation of
latencies in a network environment or answering other performance-related questions.

3.1.2 Modularity

It would be useful to have a mechanism for restricting access of updates to only a selected set
of cells in the memory by means of some kind of a modular structure or simply by restricting
the domain of variables in some way. Not only would this automatically protect accesses
to undesired parts of memory, but the current set of grounding rules [60] could be further

CHAPTER 9: CONCLUSIONS AND FUTURE RESEARCH 112

extended. The impact on the compactness and readability of UP specifications would in some
cases be significant.

3.1.3 Verification

Verification, and possibly transformation methods should be developed, together with appro-
priate heuristic rules. Although a first step in this direction has been taken [60], further work
is necessary.

On a higher level of abstraction, it is more likely that complex data manipulations will be
described by a well-defined external function rather than Update Plans. On a lower level of
abstraction, this function will in some cases be specified in terms of Update Plans. Therefore
it will be necessary to find such a formalism and develop a methodology of proving semantic
equivalence or containment between these two descriptions.

The majority of successful general-purpose proof checking systems that have proved them-

selves on several industrial-scale- microprocessors are based on theorem proving in first or
second order logic. Therefore a promising approach seems to be the formalisation of Update
Plans in such a system (e. g. ACL2, PVS, HOL, Isabelle, IMPS or Nuprl).

Alternatively, use of existing model-checking tools (e. g. SPIN) could be made after the
development of methodologies to transform UP descriptions into specification languages the
tools use. It would then be possible to use the tool's logic to specify and check desired

properties.
As no method or tool is general enough and appropriate for all the varied, and sometimes

conflicting requirements of hardware architecture description and analysis, a combination of
existing methodologies will almost certainly need to be used. UP should be used in con-
junction with other formal techniques and the traditional approaches such as testing through

simulation.
Finally, methodologies to translate specification languages used by general theorem provers

to hardware specification languages have'been developed [8]. A similar approach could be

taken to facilitate automatic synthesis and implementation of chips.

3.2 Applications

Although there have already been a lot of UP-based specifications of concrete and abstract
machines, further validation of the Update Plans formalism is needed. This effort should
concentrate on the specification of one of the concrete machines already specified, but on a
lower level, e. g. microcode. These two levels should then be subject to formal verification for

equivalence or containment by one of the methods suggested in section 3.1.3. As Extended
Update Plans introduced a convenient, way to describe sequences, libraries of components to
describe the behaviour of basic building blocks starting from basic elements of logic circuits
to blocks such as multipliers for an Update Plans simulator could be defined.

CHAPTER 9: CONCLUSIONS AND FUTUpE RESEARCH 113

A true test of the (Extended) Update Plans formalism will be more sophisticated models
of parallel computation such as F-PRAM [76], which introduce a communication network
with latency and a synchronisation barrier among asynchronously running processors. On

a slightly related note, attempts to enter into neighbouring domains such as communication
protocol specification 'could be tried.

3.3 Implementation

A prototype implementation of Update Plans [601 which has been successfully used as a di-
dactic aid has been developed. Completion of this work will greatly enhance the usefulness of
the formalism not only in automatic derivation of specified properties, but also in prototyping
and validation. A full implementation of UP (an UP simulator) will lead to better popular-
isation of UP, and helping to prompt more research in certain features of Update Plans and
their refinement.

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques and Tools.

Addison-Wesley, 1986.

12) A. G. Alexandrakis, A. V. Gerbessiotis, D. S. Lecomber, and C. J. Siniolakis. Bandwidth,

space and computation efficient PRAM programming: The BSP approach. In Proceedings

of the SUPEUR '96 Conference, Sep 1996.

[3] J. H. Aylor, R. Waxman, and C. Scarratt. VHDL - feature description and analysis.
IEEE Design and Text Of Computers, 3(2), April 1986.

[4] J. -P. Banitre and D. L. M6tayer. Programming by multiset transformation. Communi-
0

cations of the ACM, 36(l): 98-111,1993.

151 H. Barringer, G. Cough, T. Longshaw, B. Monahan, M. Peim, and A. Williams. A seman-
tics and verification framework for ELLA. Technical Report UMCS-92-4-6, Department

of Computer Science, University of Manchester, Oxford Road, Manchester, UK, March

1992. URL f tp: //f tp. cs. man. ac. uk/pub/TR/UMCS-92-4-6. ps. Z [cited May 20031.

[61 H. Barringer, G. Cough, B. Monahan, and A. Williams. A process algebra foundation for

reasoning about core ELLA. Technical Report UMCS-94-12-1, Department of Computer
Science, University of Manchester, Oxford Road, Manchester, UK, December 1994. URL

f tp: //f tp. cs. man. ac. uk/pub/TR/UMCS-94-12- 1. ps. Z [cited May 2003].

[7] F. L. Bauer. The Munich Project CIP, volume 183 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin/Heidelberg/New York, 1985.

[8] C. Berg, S. Beyer, C. Jacobi, D. Kr6ning, and D. Leinenbach. Formal verification of the
VAMP microprocessor (project status). In Symposium on the Effectiveness of Logic in
Computer Science (ELICS02), pages 31-36, September 2002. URL http: //busserver.

cs. uni-sb. de/publikationen/BBJKL02. pdf [cited May 20031.

(9] G. Berry. The chemical abstract machine. 1998. URL http: //www-sop. inria. fr/

me ij e/personnel/Gerard. Berry/ cham. ps [cited May 2003].

114

BIBLIOGRAPHY 115

[10] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer Science,
96: 217-248,1992.

(111 P. Bertelsen. Semantics of Java byte code. Technical report, 1997. URL f tp: //f tp.
dina. kv1. dk/pub/Staf f /Peter. Bertelsen/jvm-semantics. ps. gz [cited May 2003].

[12] R. Boulton, M. Gordon, J. Herbert, and J. V. Tassel. The HOL verification of ELLA
designs. Technical Report TR199, University of Cambridge Computer Laboratory, Cam-
bridge, UK, 1999. URL http: //www. f tp. cl. cam. ac. uk/f tp/papers/reports/TR199-

rjb-mj cg-jmjh-jvt-HOL-verif ication-ELLA. ps. gz [cited May 20031.

[13] B. Brock, M. Kaufmann, and J. S. Moore. ACL2 theorems about commercial micropro-
cessors. 1166: 275-293,1996. URL http: //www. cs. utexas. edu/users/moore/ac12/v2-
1/reports/bkm96. ps [cited May 2003].

[14] R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(l): 44-67, Jan 1977.

(151 CCITT. Red book - Functional Specification and Description Language (SDL). Recom-

mendations Z. 101-Z. 104, volume VI. CCITT, Geneva, 1985.

[16] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988.

[17] E. Clarke, 0. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the state explosion
problem in model checking. Lecture Notes in Computer Science 2000, pages 176-194,
2001.

[18] E. Clarke and J. Wing. Formal methods: State of the art. and future directions. Journal

of the ACM, 28(l): 626-643, Dec 1996.

[19] R. M. Cohen. The Defensive Java Virtual Machine specification, version 0.53. Technical

report, Austin Technical Services Center, 98 San Jacinto Blvd, Suite 500, Austin, TX
78701,1997.

(201 PDP-11 Processor Handbook. Digital Equipment Corporation, 1971.

[21] H. R. Eckhouse, Jr. and L. R. Morris. Minicomputer Systems - Organization, Program-

ming and Applications (PDP-11). Prentice-Hall, 1979. ISBN 0-13-583914-9.

[22] S. Fortune and J. Willie. Parallelism in random access machines. In Proceedings of the
10th Annual Symposium on Theory of Computing, pages 114-118,1978.

[231 T. S. Rank. Introduction to the PDP-11 and its Assembly Language. Prentice-Hall, Le

Moyne College, Syracuse, New York, 1983. ISBN 0-13-491704-9.

BIBLIOGRAPHY 116

124) S. Gerhart, D. Craigen, and T. Ralston. Observations on industrial practice using formal

methods. In 15th International Conference on Software Engineering (ICSE), Baltimore,
Maryland, USA, May 1993.

[25] R. Giegerich. Implementierung von Programmiersprachen. Technische Fakultfit, Univer-

sitdt Bielefeld, Postfach 86 40,4800 Bielefeld 1, BRD, 1992. Lecture notes for a course
in compiler construction. (In German).

[26] S. Gilfeather, J. Gehman, and C. Harrison. Architecture of a complex arithmetic pro-
cessor for communication signal processing. In SPIE Proceedings, International Sym-

posium on Optics, Imaging, and Instrumentation, pages 624-625, March 1994. URL

http: //www. cli. com/hardware/cap. eps [cited May 2003].

[27] J. Gleick. A bug and a crash: Sometimes a bug is more than a nuisance. 1996. URL

http: //www. around. com/ariane. html [cited May 2003].

[28] M. J. C. Gordon. The semantic challenge of Verilog HDL. In Tenth Annual IEEE
0

Symposium on Logic in Computer Science (LICS'95), pages 136-145,1995. URL http:
//www. math. chalmers. se/-gpace/HDL/papers/V. ps [cited May 20031.

[29] A. Gupta. Formal hardware verification methods: A survey. In Formal Methods in System
Design, volume 1, School of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213,1992. Kluwer Academic Publishers, Hingham, MA, USA.

[30] P. Hdmiildinen. PRAM emulator, user's manual. Technical Report B-1992-2, University

of Joensuu, PO Box 111,80101 Joensuu, Finland, 1992. URL f tp: //cs. j oensuu. f i/

pub/Reports/B-1992-2. ps [cited May 2003].

[311 E. Harcourt, J. Mauney, and T. Cook. Formal specification and simulation of instruction-
level parallelism. In Proceedings of the 1994 European Design Automation Conference.
IEEE Press, October 1994.

[32] A. Harry. Formal Methods: VDM and Z. Wiley, 1996. ISBN 0-471-95857-3.

[33] J. He and K. J. Turner. Modelling and verifying synchronous circuits in DILL. Techni-

cal Report CSM-152, Department of Computing Science and Mathematics, University

of Stirling, Scotland, April 1999. URL ftp: //f tp. cs. stir. ac. uk/pub/staf f /kjt/

res earch/pubs/sync- dill. ps. gz (cited May 2003].

(34] J. He and K. J. Turner. Specification and verification of synchronous hardware using
LOTOS. October 1999. URL ftp: //f tp. cs. stir. ac. uk/pub/staf f /kjt/research/

pubs/sync-lot. ps. gz [cited May 2003].

BIBLIOGRAPHY 117

[35) J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, 3rd edition, June 2002. ISBN 1-55860-724-2.

[361 IEEE Standard VHDL Language Reference Manual. IEEE, New York, 1988. IEEE Std.
1076-1987.

[37] P. Inverardi and A. L. Wolf. Formal specification and analysis of software architectures

using the chemical abstract machine model. IEEE Transactions on Software Engineering,

21(4), 1995.

[38] ISO. Information Processing Systems - Open Systems Interconnection - Estelle -A
Formal Description Technique based on an Extended State Transition Model. ISO 9074.

International Organization for Standardization, Geneva, 1989.

[39] ISO/IEC. Information Processing Systems - Open Systems Interconnection - LOTOS

-A Formal Description Technique based on the Temporal Ordering of Observational

Behaviour. ISO/IEC 8807. International Organization for Standardization, Geneva, 1989.

[40] S. Juvaste. Modelling Parallel Shared Memory Computations. PhD thesis, University of
Joensuu, 1998. URL f tp: //f tp. cs. joensuu. f i: /pub/Dissertations/juvaste. ps. gz
[cited May 20031.

(411 M. Kaufmann and J. S. Moore. An industrial strength theorem prover for a logic based

on Common Lisp. Software Engineering, 23(4): 203-213, March 1997. URL http: //www.

cs. utexas. edu/users/moore/publications/km97. ps. Z [cited May 2003].

[421 C. Kern and M. R. Greenstreet. Formal verification in hardware design: A survey. A CM

Transactions on Design Automation of Electronic Systems, 4(2): 123-193,1999.

[431 P. Klint. A meta-environment for generating pro-ramming environments. ACAT Trans-
0

actions on Software Engineering and Methodology, 2(2): 176-201, April 1993. ISSN 1049-

331X.

[44] A. Kuehlmann, A. Srinivasan, and D. P. LaPotin. Verity-a formal verification program
for custom CMOS circuits. IBM Journal of Research and Development, 39(1/2): 149-165,
March 1995.

[45] W. Lamain. Update Plans, implementatie aspecten. Master's thesis, University of Ni-

jmegen, Toernooiveld 1, Nijmegen, The Netherlands, 1992. (In Dutch).

[46] D. S. Lecomber, K. R. Sujithan, and J. M. D. Hill. Architecture-independent locality

analysis and efficient PRAM simulations. In ffPCN'97, Vienna, April 1997. Springer-
Verlag.

BIBLIOGRAPHY 118

[47] G. W. Leibniz. (Huvre philosophiques, latines et franýaises, de feu Mr. de Leibniz, tirdes
de ses manuscHts, qui se conservent dans la bibliothdque royale ä Hanovre et publiges
par M. Rud. Eric Raspe. Amsterdam/Leipzig, 1765.

[48] T. Lindholm and F. Yellin. The Java Virtual Machine Specification (Second Edition).
Addison-Wesley, 1999. URL http: //j ava. sun. com/docs/books/vmspec/index. html
(cited May 20031.

[491 J. Lolise, J. Bormann, M. Payer, and G. Venzl. VHDL-translation for BDD-based for-

mal verification. 1994. URL http: //tech-www. inf ormatik. uni-hamburg. de/vhdl/

papers/verif ication/vhdl2f sm. ps. gz (cited May 2003].

[50] D. C. Luckham, J. L. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann. Specifi-

cation and analysis of system architecture using RAPIDE. IEEE Transactions on Software

Engineering, 21(4): 336-355,1995.

[511 M. Marin. Binary tournaments and priority queues: PRAM and BSP. Technical Report

PRG-TR-7-97, Oxford University, January 1997.

[52] M. C. McFarland. Formal verification of sequential hardware: A tutorial. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 12(5), May 1993.

[531 E. Meijer. Calculating Compilers. PhD thesis, University of Nijmegen, Tbernooiveld 1,
Nijmegen, The Netherlands, 1992.

[54] H. Meijer. Programman A Translator Generator. PhD thesis, University of Nijmegen,
Toernooiveld 1, Nijmegen, The Netherlands, 1986.

[55] J. MencAk. Java target code optimization. Master's thesis, Department of Computer
Science and Engineering, Brno University of Technology, The Czech Republic, 1999.

[56] J. S. Moore, T. W. Lynch, and M. Kaufmann. A mechanically checked proof of the

correctness of the kernel of the AMD5K86 floating point division algorithm. March 1996.
URL http: //www. cli. c om/news /divide. ps [cited May 2003].

[57] J. D. Morison and A. S. Clarke. ELLA200: A Language for Electronic System Design.
McGraw-Hill, 1993.

158] H. R. Osborne. The semantics and syntax of Update Schemes. In Code Generation -
Concepts, Tools, Techniques (Proceedings of the International Workshop on Code Gen-

eration, Dagstuhl, Gennany, 20-24 May 1991), Workshops in Computing, pages 210-
223. Springer Verlag, 1992. URL http: //scom. hud. ac. uk/scomhro/Papers/CODE91/
code9l. ps [cited May 2003].

BIBLIOGRAPHY 119

(59] H. R. Osborne. Update Plans. In Proceedings of the 25th Hawaii International on Sys-

tem Sciences (Volume II: Software Technology), pages 488-496. IEEE Computer Soci-

etyPress, 1992. URLhttp: //scom. hud. ac. uk/scomhro/Papers/HICSS25/hicss25. ps
[cited May 20031.

[60] H. R. Osborne. Update Plans -A High Level Low Level Specification Language. PhD

thesis, University of Nijmegen, 1995. URL http: Hscom. hud. ac. uk/scomhro/Papers/
PhD/phd. ps [cited May 2003).

[61] H. R. Osborne. Update Plans for parallel architectures. In Abstract Machine Models for
Parallel and Distributed Computing, pages 79-90, Amsterdam, 1996. IOS Press. URL

http: //scom. hud. ac. uk/scomhro/Papers/AMW/amw. ps [cited May 2003].

[621 H. R. Osborne. The Postroom Computer. Journal of Educational Resources in Com-

puting, 1(4): 81-110, December 2001. URL http: //scom. hud. ac. uk/scomhro/Papers/
JERIC/jeric. ps [cited May 2003].

[631 V. Pratt. Anatomy of the Pentium bug. In TAPSOFT95: Theory and Practice of Soft-

ware Development, pages 97-107. Springer Verlag, 1995. URL http: //boole. stanf ord.
edu/pub/anapent. ps. gz [cited May 2003].

[641 P. S. Rajan. Transformations in high-level synthesis: Formal specification and efficient
mechanical verification. October 1994. URL http: //www. csl. sri. com/papers/c/s/
csl-94-10/csl-94-10. ps. gz [cited May 2003].

[65] A. Santoro, W. Park, and D. Luckham. SPARC-V9 architecture specification with
RAPIDE. Technical Report CSITR-95-677,1995. URL ftp: //pavg. stanford. edu/
pub/Rapide- 1. O/sparc. ps. Z [cited May 2003].

[66] A. Santoro, W. Park, and D. Luckham. Specifying instruction set architectures with
RAPIDE. Technical report, Computer Systems Lab, Stanford University, to appear.

[67] J. Savage. Models of Computation. Exploring the Power of Computing. Addison-Wesley,
1998.

(68] C. -J. H. Seger. An introduction to formal verification. Technical Report 92-13, Depart-

inent of Computer Science, Vancouver, B. C., Canada, June 1992.

[69] D. P. Siewiorek, C. G. Bell, and A. Neivell. Computer Structures: Principles and Exam-

ples. McGraw-Hill, 1982.

[701 UltraSPARC IR - User's ManuaL Sun Microelectronics, 1999. URL http: //www. sun.
com/oem/products/manuals/805-0087. pdf [cited May 2003].

BIBLIOGRAPHY 120

[711 J. V. Tassel and D. Hernmendinger. Toward formal verification of VHDL specification.
In L. Claesen, editor, Applied Formal Methods For Correct VLSI Design, pages 261-270,
Amsterdam, November 1989. Elsevier Science Publishers.

[72] R. G. Taylor. Models of Computation and Formal Languages. Oxford University Press,
1998. ISBN 0-19-510983-X.

[73] D. Thomas and P. Moorby. The Verilog Hardware Description Language. Kluwer Aca-
demic, 1991.

[74] M. G. J. van den Brand and P. Klint. ASF+SDF Meta-Environment User Manual,

Revision 1.125. kruislaan 413,1098 SJ Amsterdam, The Netherlands, 2002. URL

http: //www. cwi . nl /proj e ct s /Met aEnv/met a/do c /manual. ps. gz [cited May 2003].

[75] B. Venners. Inside the Java Virtual Machine. McGraw-Hill, 1998.

[761 J. Veriijiintausta. An F-PRAM emulator. Technical Report B-1998-1, University of

Joensuu, PO Box 111,80101 Joensuu, Finland, 1998. URL ftp: //cs. joensuu. fi/pub/

Reports/B-1998-1. ps. gz [cited May 2003].

[771 D. L. Weaver and T. Germond, editors. The SPARC Architecture Manual. Prentice

Hall, 2000. ISBN 0-13-825001-4. URL http: //www. sparc. com/standards/v9. ps. Z

[cited May 20031.

[78] B. A. Wichmann. A personal view of formal methods. March 2000. URL http: //WWW.

npl. co. uk/ssf m/download/documents/baw-f m. pdf [cited May 20031.

[79] A. Williams. Comparison of ELLA and VHDL. Technical Report IED 4/1/1357,

Department of Computer Science, University of Manchester, Oxford Road, Manch-

ester, UK, 1994. URL f tp: //f tp. cs. man. ac. uk/pub/hardware-verif ication/ELLA-

PROJECT/D2.1b. ps. gz [cited May 2003].

180] P. J. Windley. Formal modeling and verification of microprocessors. IEEE Transactions

on Computers, 44(l), October 1995.

Appendix A

Extended Update Plans Grammar

This appendix gives a full context free grammar for Extended Update Plans as specified in
this thesis. The grammar is given as an ASF+SDF [43,74] specification, a specification
formalism developed at the University of Amsterdam and the Centrum voor Wiskunde en
Informatica. The specification can be read as a context free grammar, with production rules
reading from right to left. The following notational conventions apply

" S* defines zero or more repetitions of a symbol (non-terminal or literal) S;

" S+ defines one or more repetitions of a symbol S;

" {S sep}* defines zero or more repetitions of a symbol S separated by the literal sep;

" {S sep}+ defines one or more repetitions of a symbol S separated by the literal sep,

0 (.) defines grouping of two or more symbols '. ';

0 [s] represents any one of the literals in the string s;

0 -[s] represents any character not in the string s;

0 \t is the horizontal tabulation character;

0 \n is the newline character.

The fleft} and {bracket} annotation is applied to disambiguate parsing, as is the in-
formation provided under a priorities header. The symbols appearing in the sorts section
denote start symbols for the grammar.

121

APPENDix A: EXTENDED UPDATE PLANS GRAMMAR

module Main
imports Layout Schemes Types Stores Archetypes Updates

exports

sorts SCRIPT

context-free syntax
CONFIGURATION ". " PLAN --+ SCRIPT

(ITEM ". ")* --+ PLAN

TYPE-DECLARATION ITEM
STORE-DECLARATION ITEM
ARCH ETYPE-DEFIN ITION ITEM
UPDATE ITEM

module Updates
imports Alternatives ParallelBlocks Sequentia I Blocks

exports

context-free syntax
ALTERNATIVES --ý UPDATE
PARBLOCK -+UPDATE
SEQBLOCK -4 UPDATE

module Alternatives
imports Schemes

exports

context-free syntax
ISCHEME "; "}+ --ý ALTERNATIVES

module ParallelBlocks
imports Updates

exports
context-free syntax

"(11" JUPDATE "11"}+ "11)" --+ PARBLOCK

122

APPENDix A: EXTENDED UPDATE PLANS GRAMMAR 123

In the production rules for sequential blocks layout is forbidden between the pipeline
symbol '1' and the symbol/variable indicating a stage.

module Sequential Blocks
imports Lexicon Updates

exports

context-free syntax
"(" SEQBLOCK-ID-OPT "I" I(STAGE-OPT UPDATE) "I"}+ "j)" --* SEQBLOCK

SYMB-CONST -4SEQBLOCK-ID-OPT
--ý SEQBLOCK-ID-OPT

SYMB-CONST I VARIABLE STAGE-OPT
STAGE-OPT

In the production rules for update schemes layout is forbidden between a locator and the

or 'j' of the cell sequence of which it is a locator.

module Schemes
imports Terms

exports

context-free syntax
CONFIGURATION GUARD CONFIGURATION SCHEME
REPEAT GUARD CONFIGURATION SCHEME

TEXT CONTEXT

TERM* TEXT

LOC-EXPR* --ýCONTEXT
REPEAT

TERM GUARD
"==> " --+GUARD
LEFT-SECTION+ LOCATOR LOC-EXPR

TERM-OPT TEXT LOC-EXPR
TERM-OPT TEXT LOC-EXPR

LOCATOR "[" TEXT LEFT-SECTION

TERM-OPT LOCATOR

APPENDix A: EXTENDED UPDATE PLANS GRAMMAR

module Archetypes
imports BasicArchetypes AmbidextrousArchetypes Lexicon Schemes Updates

exports
context-free syntax

BASIC-ARCHETYPE-DEFINITION ARCHETYPE-DEFINITION
AMBID-ARCHETYPE-DEFINITION ARCH ETYPE-DEFINITION

"=" ARCHETYPE-BODY
UPDATE I CONFIGURATION

ARCHETYPE-CALL

-+ BASIC-DEFINITION

--4ARCHETYPE-BODY

--) TERM

ARCHETYPE-NAME INDEX-OPT PARAMETERS --+ ARCHETYPE-CALL

INDEX

"(" ITEXT ", "}* ")"

INDEX-OPT
INDEX-OPT

--ý PARAMETERS

module BasicArchetypes
imports Archetypes Lexicon

exports
context-free syntax

BASIC-DECLARATION BASIC-DEFINITION+ BASIC-ARCHETYPE-DEFINITION
BASIC-ARCHETYPE-NAME PARAMETERS BASIC-DECLARATION

module AmbidextrousArchetypes
imports Archetypes Lexicon

exports
context-free syntax

AMBID-DECLARATION BASIC-DEFINITION+ --4AMBID-ARCHETYPE-DEFINITION
ARCHETYPE-NAME PARAMETERS TEXT --ý AMBID-DECLARATION

124

APPENDix A: EXTENDED UPDATE PLANS GRAMMAR

module Stores
imports Lexicon

exports

context-free syntax
STORE-NAME STORE-STRUCTURE
"(" STORE-STRUCTURE lbracket}
STORE-STRUCTURE "++" STORE-STRUCTURE STORE-STRUCTURE fleft}
STORE-STRUCTURE "I" STORE-STRUCTURE STORE-STRUCTURE lleft}
STORE-STRUCTURE 'Y'
"I" STORE-STRUCTURE "I" NUMBER

"I" fSTORE ", "}+ "I" --ý STORE- D ECLARATI ON

STORE-IDENTIFIER STORE
STORE-IDENTIFIER "=" STORE-STRUCTURE

STORE-NAME CONST-OPT STORE-IDENTIFIER

context-free priorities
STORE-STRUCTURE 'Y' >
STORE-STRUCTURE "++" STORE-STRUCTURE -4 STORE-STRUCTURE >
STORE-STRUCTURE "I" STORE-STRUCTURE --ý STORE-STRUCTURE

module Types
imports Terms Lexicon Stores

exports

context-free syntax
J(TERM CONST-OPT) STORE-STRUCTURE --ý TYPE-DECLARATION

module Terms
imports Archetypes BasicTerms Arithmetic Logic Ordering Memory

exports
context-free syntax

"(" TERM ":: " STORE-STRUCTURE TERM

TERM 'Y' TERM
TERM "++" TERM TERM fleft}
TERM "I" TERM TERM (left}
"(" TERM TERM {bracket}

TERM TERM-OPT

-*TERM-OPT

125

context-free priorities
TERM "*" --ý TERM > TERM "++" TERM -4 TERM > TERM "I" TERM -4 TERM

APPENDix A: EXTENDED UPDATE PLANS GRAMMAR

module BasicTerms
imports Lexicon

exports

context-free syntax
NUMBER --+ TERM
CHAR -ýTERM
SYMB-CONST TERM
VARIABLE TERM
DONTCARE -ýTERM

module Arithmetic
imports BasicTerms

exports

context-free syntax
TERM TERM TERM {left}
TERM TERM TERM {left}
TERM "x" TERM TERM {left}
TERM TERM -4TERM fleft}
TERM TERM TERM {Ieftj
TERM TERM TERM {left}
"-" TERM TERM

context-free priorities
"-" TERM -) TERM > TERM "' TERM TERM
{left: TERM TERM --ý

TERM TERM TERM
TERM "x" TERM TERM}>

fleft: TERM TERM --4TERM
TERM TERM -ý TERM

module Logic
. imports BasicTerms

exports

context-free syntax
TERM "A" TERM TERM fleft}
TERM "V" TERM TERM jIeft}
"ý" TERM TERM

context-free priorities
"ý" TERM - TERM > TERM "A" TERM --+ TERM > TERM "V" TERM --ý TERM

126

APPENDix A: EXTENDED UPDATE PLANS GRAMMAR

module Ordering
imports BasicTerms

exports

context-free syntax
TERM TERM TERM
TERM TERM TERM
TERM TERM TERM
TERM TERM TERM
TERM TERM --4TERM
TERM '5" TERM --+ TERM

module Memory
imports Lexicon BasicTerms

exports

context-free syntax
"I" STORE-NAME "I" --+ TERM
"La" "(" TERM ", " TERM TERM
"La" TERM TERM

module Lexicon
exports

lexical syntax
[0-9]+
""' -['\n] ""'
[A-Z][A-Z'0-9-1*
[a-z][a-z'0-9]*

--4 NUMBER
CHAR
SYMB-CONST

--4VARIABLE
--+ DONTCARE

[A-Z][A-Z'0-9-]* [a-z][A-Za-z'0-9_]* - STORE-NAME

[a-z][a-z'0-9-]* BASIC-ARCHETYPE-NAME
[A-Z][A-Z'0-9]* COMMAND-ARCHETYPE-NAME
BASIC-ARCHETYPE-NAME ARCHETYPE-NAME
COMMAND-ARCHETYPE-NAME ARCHETYPE-NAME

NUMBER INDEX
NUMBER INDEX
NUMBER --4CONST-OPT

-+ CONST-OPT

127

APPENDix A: EXTENDED UPDATE PLANS GRAMMAR

module Layout
exports

lexical syntax
[\\t\n]* -4 LAYOUT
"#" [\n]* [\n] -4 LAYOUT

context-free restrictions
LAYOUT? -/- [\\t\n]

128

Appendix B

PDP-11

REG (r, v) r = r[v].
AUTOINC(b, v) r = r[b] b[v]c r[c].
AUTODEC(a, v) r = r[b] a[v]b r[a].
INDEX(b + d, v) rd = r[b] b+d[v].

REGDEF(b, v) r = r[b] b[vj.

AUTOINCDEF(b2, v) r = r[bi] bi[b2lcl b2[VIC2 r[cil

AUTODECDEF(a2, v) r = r[bi] al[a2]bl a2[v]b2 r[al]
INDEXDEF(b2, v) rd = r[bl] bl+d[b2] b2[VI.

register mode
autoincrement mode
autodecrement mode
index mode
register deferred mode

autoincrement deferred mode
autodecrement deferred mode
index deferred mode

IMM(V) V# immediate mode
ABS (a, v) a= a[v]- # absolute mode
REL(pc + d, v) d= PC[pc] pc+d[v]. # relative mode
RELDEF(a, v) d= PC[pc] pc+d[a] a[v]. # relative deferred mode

sop(V) = REG(-, v).

= AUTOINC(-, v).

= AUTODEC(-, v).

= INDEX(-, v).

= REGDEF(-, v).

= AUTOINCDEF(-, v).

= AUTODECDEF(-, v)

= INDEXDEF(-, v).

= IMM V) -
= ABS v).

= REL(-, v).

= RELDEF(-, v).

dop (a, v) = REG (a, v).

= AUTO INC (a, v).

= AUTODEC(a, v).

= INDEX(a, v).

= REGDEF(a, v).

= AUTOINCDEF(a, v).

= AUTODECDEF(a, v).

= INDEXDEF(a, v).

= ABS (a, v).

= REL(a, v).

= RELDEF (a, v).

129

APPENDix B: PDP-11

{Nibble = Bit Bit Bit Bit, Byte = Nibble Nibble, Word = Byte Byte}.

b,, b,, b,, bc :: Bit.

nibble:: Nibble.

byte:: Byte.

PSW[byte nibble]CCN[b,,]CCZ[b,]CCv[bv]CCC[bc].

cc(v) : -- CCN[(v <, 0) (v = 0) (--, (MIN, <, v <, MAXJ) (v >, MAXJ] 1.

arithm(-, 0) = CLR. # clear destination

arithm(x, -x) = COM. # complement destination

arithm(x, x+ 1) = INC. # increment destination

arithm(x, x- 1) = DEC. # decrement destination

arithm(x, -x) = NEG. # negate destination

arithm(x, x+ c) = ADC CCc[c). # add carry to destination

arithm(x, x- c) = SBC CCc[c). # subtract carry from destination

arithm(x, x/2) = ASR. # arithmetic shift right destination

arithm(x, xX 2) = ASL. # arithmetic shift left destination

arithm(-, -I x n) = STX CCN[n). # sign extend destination

arithm(x, r) dop(a, x) ===* a[r] cc(r).

vl, vo :: Byte.

SWAB dop(a, -) = a[vl vol =: ý> a[vo vl]. #swap bytes of destination

arithm(x, x+ 1) = INC =* W. # increment destination

arithm(x, x+ 1) = INCB ==* B. # increment destination byte

arithm(x, r) dop(a, x) ==* rcc(a, r, arithm(-, -)).

type(W) = Word

type(B) = Byte

rcc(a, v, w) = cc(v, w) a[(v:: type(w))].

CC(V7W) CCN[(V <s 0) (v = 0) (-n(MIN, <, v <,, MAX,)) (v >,, MAXJ] 1.

cc (v, B) CCN [(V <bs 0) (V = 0) (- (MIN-B., <-bs V
-<bs

MAX-B.,)) (V >bu MAX-Bu)]

TST dop(-, x) ===> cc(x). #test destination

ROR dop(a, x) cCc[c] ==> a[(x>>1)j(c<<15)] CCc[(x&l :: Bit)].

ROL dop(a, x) CCc[c) ===> a[(x<<l)lc] CCc[(x>>15)&l :: Bit)].

130

MOV sop(v) dop(a,
-) ==* a[v].

APPENDix B: PDP-11

abrithm(x, y, x+ y) = ADD. # add source to destination

abrithm(x, y, x- y) = SUB. # subtract source from destination

abrithm(x, y, -x&y) = BIC. # bit clear destination from source

abrithm(x, y, x1y) = BIS. # bit set destination from source

abrithm(x, y, r) sop(x) dop(a, y) ==: > a[r] cc(r).

cmps(x, y, x- y) = CMP. # compare source to destination

cmps(x, y, x&y) = BIT. # bit test source and destination bytes

cmps(x, y, r) sop(x) dop(-, y) =* cc(r).

SEN ==> CCN[TRUE]. CLN ==> CCN[FALSE].

SEZ CCz[TRUE]. CLZ CCz[FALSE].

SEV CCv[TRUE). CU CCv[FALSE).

SEC CCc[TRUE]. CLC CCc[FALSE].

SCC CCN[TRUE] CCZ[TRUE] CCv[TRUE] CCc[TRUE].

CCC CCN[FALSE] CCZ[FALSE] ccv[FALSE] ccc[FALSE].

branch(true) = BR. # branch always
branch(-z) = BNE CCzfzl- #00

branch(z) = BEQ CCZ[z]. #=O

branch(-(n ^ v)) = BGE CCN[n] CCv[v]. #>0

branch(n - v) = BLT CCN(n] CCV[Vl- #<0

branch(-i(zl(n - v))) = BGT CCz [z] CCN [n] CCv [v]. #>0

branch(zl(n - v)) = BLE CCz[z) CCN[n] CCV [VI. #<0

branch(-in) = BPL CCN[n]. #+

branch(n) = BMI CCN[n]. #-

branch(-(ciz)) = BHI CCc[c] CCZ[z]. # higher (unsigned comparison)
branch(-c) = BCC CCc[c]. # carry clear

= BHIS CCc[c]. # higher or same (unsigned compar.)

branch(c) = BCS CCC[c]. # carry set

= BLO CCc[c]. # lower (unsigned comparison)
branch(clz) = BLOS CCc[c] CCZ [z]. # lower or same (unsigned compar.)

branch(-v) = BVC CCv[vl- # overflow clear
branch(v) = BVS CCV[v]- # overflow set
PC[pc] pc[branch(c) djcp =1 c 1#- PC[cp + dj; # branch

11 =: ý PC[cp]. # no branch

JMP dop(-, a) ==: > PC[a].

131

reg(r, v) = r[v] 1.

APPENDix B: PDP-11

PC[pc] pc[JSR r dop(a, -)]qc reg(r, v) reg(6, tp)

==* PC[a] reg(6, sp) sp[v]tp reg(r, qc).
RTS r reg(r, pc) reg(6, sp) sp[v]tp =#. PC[pc] reg(6, tp) reg(r, v).

trap(148,168) = BPT. # breakpoint trap

trap(208,228) = IOT. # input/output trap

trap(308,328) = EMT. # emulator trap

trap(348,368) = TRAP. # TRAP

trap(Pca7 pswa) reg(6, tp) Pca[Pcl Pswa[PSWI PC[Pc.,] PSW[Psw.,]

==> sp[pc, psws]tp reg(6, sp) PC[pc] PSW[psw].

reto = RTI. # return from interrupt

= RTT. # return from trap

reto reg(6, sp) sp[pc psw]tp ==* PC[pc] PSW[psw] reg(6, tp).

132

NOP =* .# no operation

Appendix C

SPARC-V9

{Bit}.

jByte(012) = jBit}8, Half word(102) = {Bit}16, Word(002) = jBit}32,

Extended-word = {Bit}64}.

jFp-single = jBit}32, Fp-double = jBit}64, Fp-quad = fBit}128}.

nPC:: Constant.

IMM13(12) :: Bit.

OP: ARM(102), OP: LS(112), OP: BRS(002), OP: CLL(012) fBitJ2.

BRZ(012), BRLEZ(102), BRLZ(112) :: {Bit}2.

ADD(0002), SUB(1002), SAVE(1002), RESTORE(1012) {Bit}3.

BPA(10002), BPN(00002), BPNE(10012), BPE(00012) fBit}4.

LDSTUB(OO 11012) :: f Bit}6.
FADD(O 0100 002), FSUB(O 0100 012) :: fBit}7.

REGRES(O 00 00 00 002) :: f BitJ9.

rr(O, 0) =. # reading r[01 yields 0

rr (a, v) =a [vj <a<8 J=> # global registers

= CWP[w] outr(a - 8, v, w) 8<a< 16 1#>

= CWP[w] locr(a - 16, v, w) 16 <a< 24

= CWP [w] inr (a - 24, v, w) 24 <a< 32

rw(a, v) a= CWP[w] rw(a, v, w).
rw(a, v, w) 0 =a ý*

.# witing r [01 has no effect

1<a<8 a[v]. # global registers

8<a< 16 outw(a - 8, v, w).

16 <a< 24 locw(a - 16, v, w).

24 <a< 32 inw(a - 24, v, w).

133

APPENDIX C: SPARC-V9

outr(a, v, w) = ilocr(a, v, w).

outw(a, v, w)= =#-ilocw(a, v, w).
locr(a, v, w) = ilocr(a + 8, v, w).
locw(a, v, w) = ==>ilocw(a+8, v, w).
inr(a, v, w) = ilocr(a, v, w+ 1).
inw (a, v, w) = ==: ý>ilocw(a, v, w+l).

ilocr(a, v, w) = (NWINDOWS -1- (w % NWINDOWS)) x 16 + a[v].
ilocw(a, v, w)= ==>(NWINDOWS-1-(W%NWINDOWS))xl6+a[v],

f r(a, v, s) a= af(v:: Fp-single)] =4 S= 012 J=>
-

= af(v:: Fp-double)] =1 S= 102 14>

= al(v:: Fp-quad)) =1 S= 112 ý*
-

f w(a, v, s) a= =4 S= 012)=ý'
af(v :: Fp-single)).

=4 S= 102 I=> a[(v :: Fp-double)].

=4 S= 112 I=> af(v :: Fp-quad)).

s op 1 (v) = rr (a, v) a.

sop2(v) = REGRES(v).

= IMM13(v).

REGRES(v) a= rr(a, v). # REGRES =: 02 00 00 00 002

IMM13(sign-ext(v)) = v:: {Bit}13. # IMM13 = 12

iccr(c) = CCR: ICC: C[c].

iccrb(C) ' 12 iccr(c).

iccrb(O) = 02.

ccw(v) CCR: XCC[(v <4, Ö) (v = 0) (-(MIN4s : 54, V
-<4s

MAX4, » (V >4u MAX��)]

CCR: ICC[(V <2,0) (V = 0) ('(MIN2s : 52s V
-<2s

MAX2s» (V >2u MAX2J)-

ccwb(V) ý 02-

ý-- 12 CCW(V)-

Bit.

134

aloper(x, y, x+y+ c) 02 ccwb($3) iccrb(c) ADD. # ADD 0002

aloper(x, y, x-y- c) 02 ccwb($3) iccrb(c) SUB. # SUB 1002

APPENDIX C: SPARC-V9

n:: Bit.

op:: {Bit}2.

neg(v) V 12 1*;

==: > # empty body if V 54 12

1OP(OP) & OP 012 Y* # bit-wise and

OP 102 J#> # bit-wise or

OP 112 1=ý # bit-wise xor

aloper(x, y, neg(n) (X IOP(OP) Y)) --"= 02 ccwb($3) 02 n op-

PC[pc] pc[pcoJqc nPC[pc'] ===> PC[pc] pc'fpco]qc nPC[pc'+ 4].

OP: ARM rw(-, r) aloper(x, y, r) sopl(x) sop2(y) ==* .
#OP: ARM= 102

sr(x, y, x+y+c, w+ 1) =
10 ccwb($3) iccr(c) SAVE CWP[w] SAVE = 1002

sr(x, y, x+y+c, w- 1) =
10 ccwb($3) iccr(c) RESTORE CWP[w] #RESTORE = 1012

OP: ARM rw(a, r, w) a sr(x, y, r, w) sopl(x) sop2(y) =ý- CWP[w % NWINDOWS].

r:: Byte
ldstub(a, r) = LDSTUB a[r] ==ý. a[l 111111121

-# LDSTUB = 00 11012

OP: LS rw(-, r) ldstub(x + y, r) sopl(x) sop2(y) # OP: LS = 112

signed(s) = zero-f ill =4 s=0 ý*
.

= sign-ext =4 s == 1 1=-->
-

f Integer = Byte I Half word I Word}.

asi :: Byte.

sopasi(x, y, asi) = SOP1(X) 02 asi sopi(y).

= sopl(x) IMM13(y) ASI[asi].

s :: Bit.

lias(asi, a, signed(s) (r)) S 02 Integer asi: a[(r:: Integer)].
lias(asi, a, r) 10112 asi: a[(r:: Extended-word)].
OP: LS rw(-, r) 012 lias(asi, x+y, r) sopasi(x, y, asi) ==* .

sias(asi, a, r) 012 Integer ==. > asi: a[(r :: Integer)].

sias(asi, a, r) 11102 ==* asi: a[(r:: Extended-word)].
OP: LS rr(-, r) 012 sias(asi, x+y, r) sopasi(x, y, asi) =* .

135

APPENDIX C: SPARC-V9

s :: fBit}2.

f arithm(x, y, x+ y) = FADD. # FADD 0 0100 002

f arithm(x, y, x- y) = FSUB. # FSUB 0 0100 012

OP: ARM f w(-, r, s) 1101002 f r(-, x, s) f arithm(x, y, r) sf r(-, y, s) ==> .

f cmp(Xl Y) = =1 X=Y ý* 002-

X<Y J#'012-

X>Y 102-

X? Y 112- # unordered (x or/and y is NaN)

v:: fBitJ2.

f ccnr(f cc, v) = FSR: FCC: f cc[v].
fccnw(fcc, v)= ==t-FSR: FCC: fcc[vj.

OP: ARM 0002 CCI CCO 1101012 fr(-, x, s) 00101002 sf r(-, y, s) ==>
f ccnw(ccl ý ccO, f cmp(x, y)).

ldfa(asi, a, r, 01) 002 asi: a[(r:: Fp-single)]. #LDFA

ldf a(asi, a, r, 10) 112 asi: a[(r Fp-double)). # LDDFA

ldf a(asi, a, r, 11) 102 asi: a[(r Fp-quad)]. # LDQFA

OP: LS f w(-, r, s) 11002 ldf a(asi, x+y, r, s) sopasi(x, y, asi)

stf a(asi, a, r, 01) 002 asi: a[(r :: Fp-single)]. # STFA

stf a(asi, a, r, 10) 112 asi: a[(r:: Fp-double)]. # STDFA

stf a(asi, a, r, 11) 102 asi: a[(r:: Fp-quad)]. # STQFA

OP: LS f r(-, r, s) 11012 stf a(asi, x+y, r, s) sopasi(x, y, asi)

PC[pc] nPC[npc] pc[OP: ARM rw(-, pc) 1110002 SOP1(X) sop2(y)] ==* PC[npc] nPc[x+y].

a, p, n :: Bit. annul, prediction and "negate condition" bits

d16hi:: jBitj2.2-bit PC-relative displacement

rsl:: {Bitl5. address of the Ist source register
d161o:: jBitj14.14-bit PC-relative displacement

bpr-cond(v, neg(n) (v = 0)) =n BRZ. # Branch on Register Zero

bpr-cond(v, neg(n) (v < 0)) =n BRLEZ. #" Register Less Than or Equal to Zero

bpr-cond(v, neg(n) (v < 0)) =n BRLZ. #" Register Less Than Zero

136

ea(pc, displ) pc + (4 x sign-ext(displ)) =.

APPENDIX C: SPARC-V9

PC[pc] nPC[npc] pc[OP: BRS a 02 bpr-cond(v, c) 0112 d16hi p rw(rsl, v) d161o]

c J* Pc[npc] nPc[ea(pc, d16hi ý d161o)].

--ic Aa=0 1=> PC[npcl nPC[npc + 4]. # instruction in delay slot executed

=1 --ic Aa=1 j#- PC[npc + 41 nPC[npc + 8]. # instruction in delay slot annulled

n, z, v, c :: Bit. # bits of the ICC1XCC register

ccl, ccO:: Bit. # condition codes selection

cond:: {Bit}4. # the condition field

displ9:: {Bit}19. # branch's PC-relative displacement

bp-cond(-, TRUE) = BPA. #Branch Always

bp-cond(-, FALSE) BPN. # Never

bp-cond(ncc, --1z) CCR: ncc[n zv c] BPNE. # on
bp-cond(ncc, z) = CCR: ncc(n zv c] BPE. # on
bp-cond(ncc, -, (z V (n ^ v))) = CCR: ncc[n zv c] BPG. # on >
bp-cond(ncc, zV (n ^ v)) = CCR: ncc[n zv c] BPLE. # on <

bp-cond(ncc, -, (n ^ v)) = CCR: ncc[n zv c] BPGE. # on >

bp-cond(ncc, n ^ v) = CCR: ncc(n zv c] BPL. # on <
bp-cond(ncc, -(c V z)) = CCR: ncc[n zv c] BPGU. # on > Unsigned

bp-cond(ncc, cV z) = CCR: ncc[n zv c] BPLEU. # on < Unsigned

bp-cond(ncc, -ic) = CCR: ncc[n zv c] BPCC. # on > Unsigned

bp-cond(ncc, c) = CCR: ncc[n zv c] BPCS. # on < Unsigned

bp-cond(ncc, --in) = CCR: ncc[n zv c] BPPOS. # on Positive

bp-cond(ncc, n) = CCR: ncc[n zv c] BPNEG. # on Negative

bp-cond(ncc, -iv) = CCR: ncc[n zv cl BPVC. # on Overflow Clear

bp-cond(ncc, v) = CCR: ncc[n zv c] BPVS. # on Overflow Set

PC[pc] nPC[npc] pc: COND[cond]

pc[OP: BRS ajpc: COND[bp-cond(ccl ý ccO, c) 0012 ccl ccO p displ9]

=4 -nc Aa=0 PC[npc] nPC[npc + 4].

--ic Aa=1 PC[npc + 4] nPC[npc + 8].

cAa=0 ý* PC[npc] nPC[ea(pc, displ9)].

cAa=1A cond = BPA PC[ea(pc, displ9)] nPC[ea(pc, displ9) + 4].

cAa=1A cond =7ý BPA PC[npc] nPC[ea(pc, displ9)].

f bp-cond(-, TRUE) = FBPA. # Branch Always

f bp-cond(-, FALSE) = FBPN. #" Never

f bp-cond(f cc, v= U) =f ccnr(f cc, v) FBPU. #" on Unordered

f bp-cond(f cc, v= G) =f ccnr(f cc, v) FBPG. #" on >
f bp-cond(f cc, v=UVv= G) =f ccnr(f cc, v) FBPUG. #" on Unordered or

137

APPENDIX C: SPARC-V9

f bp-cond(f cc, v= L) =f ccnr(f cc, v) FBPL. # on <
f bp-cond(f cc, v=UVv= L) =f ccnr(f cc, v) FBPUL. # on Unordered or <

f bp-cond(f cc, v=LVv= G) =f ccnr(f cc, v) FBPLG. # on< or>
f bp-cond(f cc, v= -iE) =f ccnr(f cc, v) FBPNE. # on 54
f bp-cond(f cc, v= E) =f ccnr(f cc, v) FBPE. # on =
f bp-cond(f cc, v=UVv= E) =f ccnr(f cc, v) FBPUE. # on Unordered or
f bp-cond(f cc, v=GVv= E) =f ccnr(f cc, v) FBPGE. # on >

f bp-cond(f cc, v= -iL) =f ccnr(f cc, v) FBPUGE. # on Unordered or >

f bp-cond(f cc, v=LVv= E) =f ccnr(f cc, v) FBPLE. # on <

f bp-cond(f cc, v= -G) =f ccnr(f cc, v) FBPULE. #" on Unordered or <

f bp-cond(f cc, v=-, U) =f ccnr(f cc, v) FBPO. #" on Ordered

#e:: Bit. lgu:: {Bit}3.

#f bp-cond(f cc, neg(e) (dm(-, v) & (-, lgu + 1))) =f ccnr(f cc, v) e lgu.

PC[pc] nPC[npcj pc: COND[cond]

pc[OP: BRS a]pc: COND[f bp-cond(ccl ý ccO, c) 1012 ccl ccO p displ9]

-ic Aa=0]=-ý- PC[npc] nPC[npc + 4].

-, c Aa=1 j#- PC[npc + 4] nPC[npc + 8].

cAa=0 ý* PC[npcj nPC[ea(pc, displ9)].

cAa=1A cond = FBPA J#ý PC[ea(pc, displ9)] nPC[ea(pc, displ9) + 4].

cAa=1A cond =7ý FBPA J=: ý PC[npc] nPC[ea(pc, displ9)).

disp30:: IBit}30.

PC[pc] nPC[npc] CWP[w] pc[OP: CLL disp30] # OP: CLL -= 012

==#. PC[npc] nPC[ea(pc, disp30)] rw(15, pc, w).

PC[pc] nPC[npc] CWP[w] pc[OP: ARM 000002 1110012 SOP1(X) sop2(y)]

=* PC[npc] nPC[x + yj CWP[(w - 1) % NWINDOWS].

138

OP: BRS 000002 1002 002 000002 000002 000002 000002 `ý -

APPENDIX C: SPARC-V9 139

I PC[pc] nPC[npc] pc[OP: ARM rw(-, pc) 1110002 sopl(x) sop2(y)]
2 =* PC[npc] nPC[x + y]. # [3.22]
3# [2.2] rw (a, v) a= CWP [w] rw (a, v, w). a, pc =v

4 PC[pc] nPC[npc] CWP[w] pc[OP: ARM rw(a, v, w) a 1110002 SOP1(X) sop2(y)]
5 ==* PC[npc] nPC[x + y].
6# [3.1] s op 1 (vl) =- rr (a,, v,) a, X=V,

7 PC[pc] nPC[npc] CWP[w] pc[OP: ARM rw(a, v, w) a 1110002 rr(al, vi) a, sop2(y)]
8 ==* PC[npc] nPC[vi + y].
9# [3.1] sop2(v2) = IMM13(v2). Y= V2

10 PC[pcj nPC[npc] CWP[w] pc[OP: ARM rw(a, v, w) a 1110002 rr(al, vi) a, IMM13(V2)]
11 ==* PC[npc] nPc[vi + V21-
12 # [2.2] rw (a, v, w) = =1 I<a<8 J=ý a [vl.

13 PC[pc] nPC[npcj CWP[w] pc[OP: ARM a 1110002 rr(al, vl) a, IMM13(V2)]
14 =[1<a<8 ý* PC[npc] nPC[vi + V21 a[v).
15 # [2.1] rr (a,, v,) = CWP [w, j inr (a, - 24, vi, wi) =[24 < a, < 32

16 PC[pc] nPC[npcj CWP[w] CWP[wi] pc[OP: ARM a 1110002 inr(al - 24, vi, wi) a, IMM13(V2)]
17 =4 (1 <a< 8) A (24 < a, < 32) ý* PC[npc] nPC[vj + V2] a[v].
18 # [3.2] IMM13 (sign

-ext
(v3)) = (v3 :: jBitJ13). v2 = sign-ext(V3)

19 PC[pc] nPC[npcl CWP[w] CWP[wl]
20 pc[OP: ARM a 1110002 inr(al -24, vl, wl) a, IMM13 (V3 Bit} 13)]
21 =[(I <a< 8) A (24 < a, < 32) ý* PC[npc] nPC[vj + V2] a[vl.
22 # [2.3] inr(a2, V4, VI) = ilocr(a2, V4, VI + I)- a, -24 = a2, VI = V4

23 PC[pc] nPC[npc] CWP[w] CWP[wll
24 pc[OP: ARM a 1110002 ilocr(a2, V4, Wl + 1) a, IMM13 (V3 :: fBit}13)]

25 =f (1 <a< 8) A (24 < a, < 32) ý* PC[npc] nPC[vj + V2] a[v].
26 # [2.4] ilocr (a2

,
V4 i T72) = (NWINDOWS -I- (w2 % NWINDOWS)) x 16 + a2 [V41

27 # Wl +I= W2

28 PC[pc] nPC[npc] CWP[w] CWP[wl] (NWINDOWS -1-
(TI72 % NWINDOWS)) x 16 + a2[V4]

29 pc[OP: ARM a 1110002 a, IMM13 (V3
:: fBit}13)]

30 =1 (1
-< a< 8) A (24 <- a, < 32) 1* PC[npc] nPC[vl + V2] a[v].

31 # after resolution and rearrangement of locators and text
32 PC[pc] nPC[npc] CWP[w] (NWINDOWS -1- ((w + 1) % NWINDOWS)) x 16 + (a, - 24)[x]
33 pc[OP: ARM - 1110002 a, IMM13 (V3 :: {Bit}13)] #field format of current instruction
34 =4 (I <-< 8) A (24 < a, < 32) ý* # conditions for application
35 PC[npc] nPC[x + sign-ext(V3)] -[pc].

effects of the instruction on configuration

Figure CA: Example of archetype expansion

Appendix D

Java Virtual Machine

{Bitl.

jBoolean = {Bit}32, Byte = (BitJ32, Char = {BitJ32, Short = jBit}32,

Int = jBitJ32, Float = {Bit}32, Reference = {Bit}32,

ReturnAddress = {Bit}32, Long = jBit}64, Double = fBit}64}.

{Categoryl = Booleanj Byte I Char I Short I Int IFloat I Reference I ReturnAddress,

Category2 = Long I Double,

Category12 = Categoryl I Category2j.

fUnsignedByte = fBit}S, SignedByte = fBit}8,

UnsignedShort = fBit}16, SignedShort = fBit}16}.

(Word = Categoryl Categoryl I Category2}.

POP(87), POP2(88), DUP(89), DUP-Xl(90), DUP-X2(91), DUP2(92)

DUP2-XI(93), DUP2-X2(94), SWAP(95),

ILOAD(21), ILOAD-0(26), ILOAD-1(27), ILOAD-2(28), ILOAD-3(29),

ISTORE(54), ISTORE-0(59), ISTORE-1(60), ISTORE-2(61), ISTORE-3(62),

IADD(96), ISUB(100), IMUL(104), IDIV(108), IREM(112),

IAND(126), IOR(128), IXOR(130), ISHL(120), ISHR(122), IUSHR(124),

INEG(116), IINC(132),

ICONST-Ml(2), ICONST-0(3), ICONST-1(4), ICONST-2(5), ICoNST-3(6), ICONST-4(7),

ICONST-5(8),

BIPUSH(16), SIPUSH(17),

IFEQ(153), IFNE(154), IFLT(155), IFGE(156), IFGT(157), IFLE(158),

IF-ICMPEQ(159), IF-ICMPNE(160), IF-ICMPLT(161), IF-ICMPGE(162), IF-ICMPGT(163),
IF-ICMPLE(164),

GOTO(167), GDTD-W(200), JSR(168), JSR-W(201), RET(169),
WIDE(196) :: UnsignedByte.

140

A11111, M)ix D: JAVA VIRTUAL MACHINE

bs :: SignedByte.

b, opc :: UnsignedByte.

s S,
6., :: SignedShort.

S, :: UnsignedShort.

i, j, 6i :: Int.

z :: Categoryl2.

POP SP[t] S[V]t ýý> SP[S].
POP2 spit] S[WIt =z> SP[sl.

DUP SP[t] S[V]t SP[t'] S[V V]t'.

DUP2 SP[tl S[WIt SP[t'] S[W wit'.

DUP-Xl SP[t] s[vl vo]t ==> SP[t'] s[vo vi vo]t'.

DUP2-Xl SP[t] s[vl wo]t ==zý> SP[t'] S[wo vi wolt'.

DUP-X2 SP[t] S[W, VO]t ==> SP[t'] s[vo wi vo]t'.
DUP2-X2 SP[t] s[wl wo]t ==> SP[t'] S[wo wi wolt'.

SWAP SP[t] s[vl vo]t =z> SP[t'] s[vo vl]t.

v:: Categoryl.

w:: Word.

push(v) = popsh(, v).

pop(v) = popsh(v,).

var(n, z) n[z] =.

(v(b,,,, bu2) (((bul << 8) 1 bu2) :: UnsignedShort) =-

(S(bul, bu2) (((b,,, << 8) JbI12) :: SignedShort) =.
6(b,,,, bu2, bu3, bu4) ((b,,, << 24) 1 (bU2 << 16) 1 (bu3 << 8) lbu4)

wide(opc, b,) = opc b,,.

wide (opc, b, bs) = opc b,, bs.

wide(opc, (v(bul, bu2)) ý WIDE opc bul bu2
-

wide(opc, a(bul, bu2)i 6(bu3, bu4)) = WIDE opc bul b112 bu3 bu4-

i3(O) = 0. i3(1) = 1. i3(2) = 2. i3(3) = 3.

iload(i) =wide(ILOAD, i).

iload(i) = ILOAD--i3(i).

istore(i) = wide(ISTORE, i).

istore(i) = ISTORE--i3(i).

141

iload(n) var(n, v) push(v) ==#ý .
istore(n) pop(v) --ý, var(n, v).

APPENDix D: JAVA VIRTUAL MACHINE

iarithm-binary(il, i2, il + i2) = IADD.

iarithm-binary(ii, i2, il - i2) = ISUB.

iarithm-binary(ii, i2, il X i2) = IMUL.

iarithm-binary(ii, i2, il/i2) = IDIV =4 i2 0 J=: ý'

iarithm-binary(ii, i2) il % i2) = IREM =q i2 0 1=4'

iarithm-binary(ii, i2, il k i2) = IAND.
iarithm-binary(ii, i2, il i2) = IOR.
iarithm-binary(ii, i2, il i2) = IXOR-

iarithm-binary(ii, i2, il << i2) = ISHL.

iarithm-binary(il, i2, il >> i2) = ISHR.
iarithm-binary(il, i2, il >>> i2) = IUSHR.

iarithm-binary(ii
,
i2; i.) popsh(il i2, ir) ==*

iarithm-monadic(il, -ij) = INEG.

iarithm-monadic(i, ir) popsh(i, i,)

vide(IINC, s,, s,,) var(s, i) ==*- var(s, i+s,.).

i5(-1) = Ml. i5(O) = 0. i5(1) = 1. i5(2) = 2. i5(3) = 3. i5(4) = 4. i5(5) = 5.

iconst(i) = ICONST--i5(i).

iconst(b,) = BIPUSH b..

iconst(J(b,,,, bu2)) = SIPUSH bul bu2-

iconst(i) push(i) =: > .

jmpc(i, i=0, d(bl, b2» = IFEQ bl, b2-

jmpc(i, i z7ý 0, d(bl, b2» = IFNE bi b2-

jmpc(i, i<0, Ö(bi, b2» = IFLT bi b2-

jmpc(i, i>0, &(bl, b2» = IFGE bl b2-

j mpc (i, i>0, d(bl, b2» = IFGT bl b2-

j mpc (i, i<0,5(bl, b2» = IFLE bl b2-

j mp c (i, j, i j, 5(bi, b2)) = IF-ICMPEQ bl b2-

jmpc (i, j, i j, J(bl, b2)) = IF-ICMPNE bl b2-

jmpc(i, j, i<j, J(bl, b2)) = IF-ICMPLT bl b2-

jmpc(i, j, i>j, 6(bi, b2)) = IF-ICMPGE bl b2-

jmpc(i, j, i>j, J(bl, b2)) = IF-ICMPGT bl b2-

jmpc(i, j, i<j, 5(bi, b2)) = IF-ICMPLE bi b2-

jmpu(TRUE, 5(bl, b2)) = GOTO b, b2-

j mpu(TRUE, 5(bl, b2, b3, b4)) = GOTO-W bl b2 b3 b4

jump(cond, Ji) = jmpc(i, cond, Ji) pop(i).
= jmpc(i, j, cond, Ji) pop(i j).

= jmpu(cond, Ji).

142

PC[pc] pcfjump(cond, Ji)]qc =q cond ý* PC[pc + Jil.

81 =[-cond j#- PC[qc].

APPENDix D: JAVA VIRTUAL MACHINE

j sr(J(bl, b2)) = JSR b, b2-

j sr(J(bl, b2, b3, b4)) = JSR-W bl b2 b3 b4-

PC[pc] pc[j sr(Ji)]qc push(qc) =: ý> PCýc + Jil.

PC[pc] pc[wide(RET, n)]qc var(n, a) ==ý PC[a].

143

Appendix E

n-PRAM

{MrModel = Int, MwModel = Int}. # type aliases for the memory read and write models

fER, CR:: MrModel,

mr:: MrModel}.
{EW, CW-WEAK, CW-COMMON, CW-TOLERANT, CW-COLLISION, CW-COLLISIONP,
CW-ARBITRARY, CW-PRIORITY:: MwModel,

mw:: MwModell-

pram(n, rm, wm) = FE 1 pcs(n) # update PCs, block (stage 2) if no RAM is running
3 shr(n, n, rm, O) # shared memory reads
4 shw(n, n, WM, O). # shared memory writes

pcs(O) =. #0 RAMs

pcs(p) = pc(p) pcs(p - 1) =1 p>0

pC(p) = FEI 1 P-p: PC[pcl pc[instr(p)lqc =1 0< pc <C j#- P-p: PC[qc]

2 =.

pC(P) = P-P: pc[pcl =[0> PC V PC >C J#- .

halt(O) =- #halt 0 RAMs

halt(p) = halt(p - 1) =f p>0 ý* P-p: PC[C]. # halt p RAMs

shrd (p, a) =P -p: MAR [a].

n
shr (n, CR) = shrd (p, ap)

P=j
n # shr (n, ER) = shrd (p, ap)

P=j
n #= shrd(p, ap)

P=j

running
don't block

not running

n
read (p, ap).
P=j

halt(p) apFffL -. jjOjaWaLjj#> #readconflict E-
P=j p

n
. read(p, ap) =Jfl apýL-jj=f aRVfL
P=l p# no read conflict

144

APPENDix E: n-PRAM

shr(O, -, -7 -) ý-#0 RAMs, no conflicts

shr(p, n, CR, P-p: MAR[a] shr(p - 1, n, CR, -) read(p, a)

=4 p>0)=#,
-# CR, no conflicts

shr(p, n, ER, s) = P-p: MAR[al shr(p - 1, n, ER, s) halt(n)

=1 a =7ý NULL AaCsAp>0 1=ý
.# conflict

shr(p, n, ER, s) = P-p: MAR[a] shr(p - 1, n, ER, sUf al) read(p, a)

=4 (a = NULL Vaý s) Ap>0# no conflict

read(p, a) = a[vj =[a -7ý NULL J* P-p: ACC[vj; # read value v from shared memory

==ý> .# not a memory read instruction

shw(O, -, -, -) =. #0 RAMs, no write conflicts
shw(p, n, wm, s) = P-p: MAR[a] shw(p - 1, n, wm, s) =f aEsAp>0 1=4, #a resolved

= P-p: MAR[a] shw(p - 1, n, wm, sU ja}) sw(p, n, wm) =[aýsAp>0

sw(p, n, EW) # exclusive write

= P-p: MAR[a] P-p: ACC[vl ew(p, a, v, n, n).

sw(p, n, CW-WEAK) # concurrent write, weak model

= P-p: MAR[a] P-p: ACC[vl weak(p, a, v, n, n).

sw(p, n, CW-COMMON) # concurrent write, common model

= P-p: MAR[a] P-p: ACC[vl common(p, a, v, n, n).

sw(p, n, CW-TOLERANT) # concurrent write, tolerant model

= P-p: MAR[a] P-p: ACC[v] tolerant(p, a, v, n, n).
sw(p, n, CW-COLLISION) # concurrent write, collision model

= P-p: MAR[al P-p: ACC[vl co11ision(p, a, v, n, n)-
sw(p, n, CW-COLLISIONP) # concurrent write, collision+ model

=P -p: MAR [a] P ~p: ACC [vl co 11 isi onp (p, a, v, n, n).

sw(p, n, CW-ARBITRARY) # concurrent write, arbitrary model

= P-p: MAR[a] P-p: ACC[v] arbitrary(p, a, v, n, n).

sw(p, n, CW-PRIORITY) # concurrent write, priority model

= P-p: MAR[a] P-p: ACC[v] P-p: SIG[s] priority(p, a, v, S, n, n).

fal E) a2 I al = a2 A al 0 NULL}

fal(jDa2 I al 54a2 Val =NULLVa2 =NULL}

#shwr(p, a, v)=P-p: MAR[al P-p: ACC[vi.

sh w (n, EW)
#= shwr (p, ap, -)

halt (p) aa
-11#, # w7ite conflict

P=j P=j pp

nn
shwr(p, ap, vp) write (ap, vp) aNTL-11=

I
alýýLjj=#- .

#no wTite conflict
P=j P=j pp

145

APPENDIX E: n-PRAM

ew(-, a, v, 0, -) = write (a, v).

ew(pt, at, vt, p, n)

= P~p: MAR[a] halt(n)

=[pt 7ý pA atE)a Ap>0# write conflict

= P-p: MAR [a] ew(pt, at, vt, p-1, n)

=1 (pt =pV at (Da) Ap>0 Y=>.
.# no conflict

shw(n, CW-WEAK)
nn

#= shwr(p, ap, vp) halt (p) # write conflict
P=1 P=1

#3 (ap, vp), (aq
, Vq) EI (apWffL, vp) p0qA ap = aq A (vp =0 0V Vq 0 0)

nn
shwr (p, ap, vp) write (ap, vp) #0 or no write conflict
P=j P=j

L V(ap, vp), (aq, v.) (ar, vp) ap = a. =ý
(Vp

= Vq

weak(-, a, v, 0,
-) = write(a, v).

weak (pt, at, vt, p, n)

= P-p: MAR[a] P-p: ACC[v] weak(pt, at, vt, p-1, n)

=Ipt OpAatE)aAvt = OAv= OAp > 01#. #write 0 conflict

= P-p: MAR[a] P-p: ACC[vj halt(n)

=fpt =OpA atE)aA (vt OOVvOO) Ap > Oý* #conflict, halt

= P_p: MAR[aj weak(pt, at, vt, p-1, n)

=4 (pt =pV at @ a) Ap>0]=#>
.# no conflict, check fuTiher

shw(n, CW-COMMON)
nn

sh wr (p, ap, vp) h al t (p)
P=j P=l

3(ap, vp), (a., Vq) Ef (aP751ýL, vp) ap = a. A vp =A Vq
nn

shwr(p, ap, vp) write (ap, vp)
P=j P=j

V(ap, vp), (aq, Vq) EI (aplýu'--L, vp)
II

ap = aq =4> (Vp = Vq = 0) J=>
.

common(-, a, v, 0, -) = write(a, v).

common(pt, at, vt, p, n)

= P_p: MAR[aj P-p: ACC[v] common(pt, at, vt, p-1, n)

=[pt /= pA at (E) aA vt =vAp>0 conflict, same value, proceed

= P-p: MAR[a] P-p: ACC[v] halt(n)

=[at E) aA vt 0vAp>0 ý* # conflict, halt

=P -p: MAR (a] common (pt, at, vt, p-1, n)

=j (pt =pv at @ a) Ap>0 1=ý
.# no conflict

146

APPENDix E: n-PRAM

nn # shw(n, CW-TOLERANT) shwr(p, ap, vp) write(a,, p, vp)
P=j P=l

I(ap, vp), (aq, Vq) E (ap7ýLL, vp) (a,,
p := (p =A qA ap = a.) ? NULL: ap p

tolerant(-, a, v, 0, -) = write(a, v).
tolerant (pt, at, vt, p, n)

= P_p: MAR[a]

=4 pt 0pA atE) aAp>0

= P_p: MAR[a] tolerant (pt, at, vt, p-1, n)

=[(pt =pV at (D a) Ap>0 J*
.

conflict, value not changed
no conflict

shw (n, CW-COLLISION) = shwr (p, ap, vp) wri te (ap, v,, p)
P=j P=j

(ap, vp), (aq
, Vq) Ef (aP5ý'-", vp) (v,,

p := (p 0qA ap = aq) ? COLL : vp)

collision(-, a, v, 0,
-) = write(a, v).

collision(pt, at, vt, p, n)

= P_p: MAR[aj

=4 pt : ýý pA at E) aAp>0 1=4> write (at, COLL) # conflict, wTite a collision symbol
P-p: MAR[a] collision(pt, at, vt, p-1, n)

=1 (pt =pV at @ a) Ap>0]=#-
.# no conflict

nn # shw(n, CW-COLLISIONP) = shwr(p, ap, vp) write (ap, v,, p)
P=j P=j

3(ap, vp), (a., vq) EI (aWTLL, vp) (vW := (ap = aq A Vp :A Vq) ? COLL : vp
p)

1=>
-

collisionp(-, a, v, 0,
-) = write(a, v).

collisionp(pt, at, vt, p, n) =

= P~p: MAR[a] P-p: ACC[v] collisionp(pt, at, vt, p-1, n)

=tpt Op A at E)a A vt =vAp> Oý* # conflict, same value, proceed

= P-p: MAR[a] P-p: ACC[v]

=f at E) aA vt 0vAp>0 1=-e write (at, COLL) # conflict, wTite a collision symbol
P-p: MAR[a] collisionp(pt, at, vt, p-1, n)

=4(pt =pV at (B a) Ap> 01* .# no conflict

nn # shw (n, CW-ARBITRARY) = shwr (p, ap, vp) write (ap, v,, p)
P=l P=j

#=4E](ap, vp), (aq, Vq)EI(aplýý", vp))I(V,, p: =(p: 7ýqAap=aq)? rand(I a'}): vp)ý*- VP

147

APPENDix E: n-PRAM

arbitrary(-, a, v, 0, write (a, v).

arbitrary(pt, at, vt, p, n)

= P_p: MAR[a] arbitrary(pt, at, vt, p-1, n)

=[pt =7ý pA at (9 aAp>0 ý* # conflict, choose vt

= P-p: MAR[a] P-p: ACC[v] arbitrary(pt, at, v, p-1, n)

=4 pt : 7ý pA at (E) aAp>0 ý* # conflict, choose v

= P~P: MAR[a] arbitrary(pt, at, vt, p-1, n)

=4 (pt =pV at 0 a) Ap>0]=-ý>
.# no conflict

148

12 n # shw(n, CW-PRIORITY) = shwr(p, ap, vp, sp) write (ap, vp)
P=j P=l

#=[I(ap, vp), (aq, v,)EI(alpýULL, vp)ll(v,, p: =(p54qAap=a,)? min,, P(f
'P}): vp)ý*. VP

priority(-, a, v, -, 07 -) = write (a, v).

priority(pt, at, vt, st, p, n)

= P-p: MAR[a] P-p: ACC[v] P-p: SIG[s] priority(pt, at, vt, st, p-1, n)

=[pt =5k pA at E) aA st <sAp>0 J* # conflict, p has lower priority

= P-p: MAR[a] P-p: ACC[v] P-p: SIG[s] priority(pt, at, v, s, p-1, n)

=4 pt 0pA at E) aA st >sAp>0]=-ý> # conflict, p has higher priority

= P-p: MAR[a] P-p: ACC[vl P-p: SIG[s] priority(pt, at, vt, st, p-1, n)

=[(pt =pV at 0 a) Ap>0 ý*
.# no conflict

write(a, v) a NULL ý* a[v]; # wite value v into shared memory

===> # not a memory write instruction

accr(p, v) = FEI 2 P-p: ACC[v]. # accumulator read

accw(p, v) = FEI 2 ===> P-p: ACC[v]. # accumulator write

sigr(p, V) = FEI 2 P-p: SIG[vj. # signature register read

SigW(p, V) = FEI 2 ==> P-p: SIG[v]. # signature register w7ite

pcr(p, v) = FEI 2 P-P: PC[VI. #program counter read

pCW(p, V) = FE12 ===> P-p: PC[v]. #program counter write

regr(p, r, v) = FEI 2 P-p: r[vl. # local register read

regw(p, r, v) = FE12 =* P-p: r[vl. # local register write

DR(p, r, v) r= regr(p, r, v). # direct register (read)

IR(p, ri, v) r= regr(p, r, ri) regr(p, ri, v). # indirect register (read)

APPENDix E: n-PRAM

rm(p, a, v) = DR(p, a, V) # register modes

= IR (p, a, v).

irm(p, v) = IMM v# immediate mode and register modes

rm(p, -, v).

DMR(p) M= FE 2 P-p: MAR[m] # direct memory read 13

P-p: MAR[NULL].

IMR(p) r= FE 2 P-p: r[mij P-p: MAR[mi] # indirect memory read 13

P-p: MAR[NULL].

mrm(p) = DMR(p)

IMR(p).

DMW(p) M= FE 3 P-p: MAR[m] # direct memory write 14

P-p: MAR[NULL].

IMW(p) r= FE 12 P-p: r[mi] # indirect memory write
P-p: MAR[mi]

P-p: MAR[NULL].

mwm(p) = DMW(p)

imw(p).

binary(x, y, x+ y) = ADD.

binary(x, y, x- y) = SUB.

binary(x, y, xx y) = MUL.

binary(x) Y7 X/y) = DIV.

binary(x, y, x% y) MOD.

binary(xy Yi X'ýý Y) = SHI

binary(x, y, xk y) AND.

binary(XIYIX y) = DR.

binary(x, y, x y) = XOR.

addition
subtraction
multiplication
division
modulo

FT. # shift left
bitwise and
bitwise or
bitwise xor

monadic(x, log(x» = LOG. # logarithm

monadi c (x, not (x» = NOT. # bitwise not

arlog(p, r) = binary(x, y, r) irm(p, y) accr(p, x)

= monadic(y, r) irm(p, y).

load(p, v) = LOAD irm(p, v)

= LOADINDEX sigr(p, v)

= LOADPC pcr(p, v).

149

APPENDix E: n-PRAM

toacc(p, v) = arlog(p, v) =ý. accw(p, v)

= load(p, v) =ý- accw(p, v).

store(p, r, v) = STORE rm(p, r, -) accr(p, v).

toreg(p, r, v) = store(p, r, v) =ý. regw(p, r, v).

jump(p, v>0, a) = JPOS irm(p, a) accr(p, v).

jump(p, v=0, a) = JZERO irm(p, a) accr(p, v).

jump (p, TRUE, a) JUMP irm(p, a). # unconditional jump

jump(-, TRUE, C) HALT.

topc(p) jump(p, cond, a) cond)=-ý pcw(p, a)
j ump (p, c ond, a) -c ond j#.

.

read(p) = READ mrm(p).

write(p) = WRITE mwm(p).

instr(p) = toacc(p,

= toreg(p,

= topc(p,

= read(p)

= write(p)-

150

Appendix F

Glossary

This glossary contains basic terminology for Extended Update Plans. Many terms have
been adopted from the original work on Update Plans [601, others have been changed to

accommodate for changes introduced in this thesis, and there is also a number of completely
new terms exclusive to EUP.

alternatives, 14

a series of update schemes; the first applicable scheme in the series is applied

ambidextrous archetype, 18

a pair of archetypes of the same name, one left-handed, the other right-handed

anonymous sequence, 67

a sequence with no sequential block identifier

applicable, 11

an update rule is applicable if its left-hand side is consistent with the current config-
uration and its guard evaluates to true

application order, 68

the order updates are applied to a configuration in a sequence

archetype, 15

a macro-like mechanism

archetype expansion, 17
the mechanism by which archetypes are expanded to give update schernes

canonical form, 70

a sequential or a parallel block is in canonical form if it has only one type of updates-

update schemes

151

APPENDIX F: GLOSSARY 152

casting, 14

forcing the value of a term to be of a different type than the type globally declared for
that term

cell, 10

an element of configuration or memory

command, 13

an update scheme in which both the left and right-hand sides are in command form

command archetype, 19

an ambidextrous archetype whose name starts with a constant

command driven, 13

an update plan in which all update schemes are commands

command form, 13

a configuration containing a non-empty command sequence, or one in which the
contents of the register PC are not specified

command sequence, 13

a sequence of terms

conflguration, 10

a partial function from locators to values; a consistent set of locator expressions

consistent, 10

a set of locator expressions is consistent if it does not specify conflicting contents for

one and the same cell

context, 17
the non-text part of a configuration, in particular in an archetype body

expansion, 17

see archetype expansion; the text that actually replaces tile archetype call

final configuration, 11

a configuration to which none of the update schemes in an update plan are appli-
cable

full applicability, 68

a sequence is fully applicable if all of its constituent updates are applicable in the

application order

ground term, 15

a term for which a unique variable free value can be derived

APPENDix F: GLOSSARY 1 153

guard, 10

a condition for applicability

initial configuration, 11

specifies the initial state of the memory before any update scheme is applied

left-handed archetype, 18

an archetype having an empty right-hand side expansion

locator, 10

an index to a memory

locator expression, 10

a sequence of cells delimited on the left and right by a locator

memory, 11

a function from locators to values

opcode, 13

the first element of a command sequence

parallel block, 20

a set of update schemes to be applied simultaneously

parallel block symbol (open), 20

'(11': indicates the start of a parallel block

parallel block symbol (close), 20

'11)': indicates the end of a parallel block

parameter resolution, 17

the mechanism by which parameters of an archetype are rewritten to evaluable expres-
sions

partial applicability, 68

a sequence is partially applicable, if more than one but not all its constituent updates
are applicable in the application order

program counter, 12

the register PC

register, 12

a constant locator

repeat, 12
Ell ': indicates a repeat of the previous left-hand side

APPENDix F: GLOSSARY

right-handed archetype, 18

an archetype having an empty left-hand side expansion

semi-ground term, 15

a term for which a finite number of variable free values can be derived

sequence, 67

a synonym for a sequential update scheme

sequencer, 67

a synonym for the sequential block identifier

sequential archetype, 78

an archetype whose body is a sequential block

sequential block, 67

a set of updates to be applied sequentially

sequential block symbol (open), 67
'(SI': indicates the start of a sequential block S

sequential block symbol (close), 67
'I)': indicates the end of a sequential block

sequential update scheme, 67

a top-level sequential block

stage, 67

one step of a sequence

stageless sequence, 67

a sequence with all of its stages left untagged

store, 10

a two-way countably infinite set of cells

store structure, 15

a regular expression over store names

154

synchroniser, 73

central update plan synchroniser (UP: SEQ), a constant used in the implementation of se-
quences

text, 17

a sequence of terms

APPENDix F: GLOSSARY

textual expansion, 17

the replacement text of an archetype call, before parameter resolution

textual ordering, 69
the way text expanded in individual stages of a sequence is arranged

top-level, 69

an update plan's top-level update is also an item in the update plan

type alias, 14

a type declaration

type primitive, 14

a type name not appearing as the left-hand side of a type alias

update, 58

a parallel block, a sequential block or alternatives

update plan, 10

a set of updates, type and store declarations

update rule, 10

155

an update scheme which contains no variables and both its left and right-hand sides are
self-consistent

update scheme, 10

consists of a left-hand side, a right-hand side (both configurations) and a guard

update script, 11

an update plan and an initial configuration

