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Abstract 
 

In this paper, a generalised spline filter, that has a unified description for both the linear spline filter and the nonlinear 
robust spline filter, is proposed. Based on the M-estimation theory, the general spline filter model can be solved by using an 
Iterated Reweighted Least Squared method which is also general for both the linear and nonlinear spline filter. The algorithm 
has been verified to be  effective, efficient and fast. 
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1. Introduction  

 
Filtration has always been important in surface metrology: it is the means by which the surface features of 

interest are extracted from the measured data for further analysis. Filtering techniques can help: (1)Judge whether 
the manufacturing process or manufacturing conditions are effective or out of control, whether specific events in 
the manufacturing processes have occurred; (2)Interpret functional properties of macro, micro and nano geometry, 
which reflect product properties, such as optical quality, tribological properties, service life, safety, reliability, etc 
[1]. 

The Gaussian filter is the most widely used standard filtering technique for surface characterisation. 
However, the following shortcomings have hampered its practical application in industry including: (1) the 
measured profile is truncated due to the boundary effect, especially when the measured data is not much longer 
than the cutoff wavelength; (2) it is unsuitable for surfaces with relatively large form components; and (3) it is 
unable to handle measurement outliers or residual profiles with non-Gaussian distributions.  

Currently, there are two ways to solve the above problems. One is by using improved Gaussian regression 
filters, the other way is by using spline filters. To address the boundary effect and form removal issues with the 
traditional Gaussian filtering, Brinkman et al [2] have proposed a Gaussian regression filtering technique with the 
extension of up to second order polynomial form. By introducing a weighted iteration procedure, the Gaussian 
regression filter can obtain robust results against outliers [3]. A fast algorithm of the higher order nonlinear 
Gaussian regression filter was introduced recently[4]. The linear spline filter was proposed by Krystek [5] as a 
complementary method for the standard Gaussian filter. Compared with the standard Gaussian filter, it has the 
advantages of no boundary effect and follows the form well. ISO/TC213 has drafted a L1-norm based nonlinear 

                                                 
* Corresponding author. Tel: +44-1484-473635, Fax: +44-1484-472161, email: z.wenhan@hud.ac.uk 
 



 
 
 
 

procedure [6] to make the spline filter robust and Goto in Japan has reported a robust spline filter based on L2-
norm [7]. However, both of these robust spline filters are confidential and there are no robust spline filter 
solutions and associated algorithms publicly available. 

In this paper, a generalised spline filter based on spline theory and M-estimation theory is proposed. It makes 
the linear spline filter and the nonlinear robust filter have the same theoretical framework and can be deduced 
directly by choosing different error metrics in the general model. Section 2 gives the model of the generalised 
spline filter, and its solution is provided in section 3. Section 4 gives the detailed solution when using different 
estimators, and experimental results and discussions are shown in section 5. Finally, section 6 gives the 
conclusions. 
 
2. Generalised Spline filter 
 

The ordinary spline filter ( )ks x can be described as follows: Let the data points ( ) ( ), , 0 1i ix z i n= − be given, 
and assume them to be sorted in a strictly ascending order by the pivot points ix , which are equidistant, and of 

width xΔ , i.e. 0 1 2 1... n nx x x x− −< < <  is valid. To find ( )ks x  the residual errors are minimized using the L2-norm 

together with the condition of minimizing the bending energy, which is proportional to 
22
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∫ , and the 

condition of natural boundary condition. According to the well known method of variational calculus, the spline 
filter ( )ks x can be described as the following minimization problem [4,5]:  
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with λ  being the Lagrange parameter. The above minimization problem can be solved by solving the following 
linear equations: 

4α⎡ ⎤+ =⎣ ⎦I Q s z          (2) 

Where, I  is the identity matrix, 1 2sin
c

xπα
λ

⎛ ⎞Δ
= ⎜ ⎟

⎝ ⎠
, cλ is the cutoff wavelength, Q is the coefficient matrix 

depending on the boundary conditions. 
The robust spline filter is introduced by minimizing the L1-norm of the residual errors under the condition of 
minimizing the bending energy and the condition of natural boundary condition. It is defined as: 
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This type of minimization problem can be solved by solving the following equation [6]: 
( ) ( )2 41 SGNβα β α⎡ ⎤+ − = −⎣ ⎦P Q s z s        (4) 

The above equation can only be solved iteratively. It is very difficult to find the relationship between the linear 
and nonlinear spline filters directly, and also the algorithm for solving the nonlinear spline filter can not be found 
in the literature. 
To unify the theory and algorithms of linear and nonlinear spline filters, and to optimize the nonlinear filter by 
using a better estimator,  a generalized spline filter is proposed. It can be defined as the following minimization 
procedure: 
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Comparing this expression with expression (1) and (3), it can be found that the only difference between them is 
that a more general error metric function ( )ρ ⋅ , which is a symmetric, positive-definite function of the residual error 
with a unique minimum at zero, is used in the new model.   
 
3. M-estimation 
 

Let kr  be the difference between the thk measurement data kz  and its fitted value ks . The standard least-

squares method tries to minimize 2
kk

r∑ , which is not robust if there are outliers present in the data because the 

objective functions increase indefinitely. The M-estimators try to reduce the effect of outliers by replacing the 
squared residuals 2

ir  by another function of the residuals, yielding  

min ( )kk
rρ∑          (6) 

where ρ  is a symmetric, positive-definite function with a unique minimum at zero, and is chosen so its rate of 
increase is less than square when the residual increases. Instead of solving this problem directly, one can 
implement it as an iterative reweighted least-squares problem. Let 0 1,..., T

ns s −= ⎡ ⎤⎣ ⎦s  be the vector to be estimated. 
The M-estimator of s  based on the function ( )krρ  is the vector s  which is the solution of the following n 
equations: 

( ) 0, 0,..., 1k
k

jk

rr for j n
s

ψ ∂
= = −

∂∑            (7) 

where the derivative ( ) ( )x d x dxψ ρ=  is called the influence function. If we now define a weight function: 
( ) ( )r r rδ ψ=          (8) 

the equation (7) becomes 

( ) 0, 0,..., 1k
k k

jk

rr r for j n
s

δ ∂
= = −

∂∑            (9) 

this is exactly the system of equations that we obtain if we solve the following Iterative Re-weighted Least-
Squares (IRLS) problem 

( 1) 2min ( )m
kk

k

r rδ −∑         (10) 

here the superscript m  indicates the iteration number. The weight ( )( 1)m
krδ −  should be recomputed after each 

iteration in order to be used in the next iteration. 
 
4. Iteratively Re-weighted Least Square solution for generalised spline filter 
 

According the above discussion of M-estimation theory the minimization problem defined in (5) can be 
generally solved by using the IRLS method as follows: 
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By using Euler-Lagrange calculus,  
( )( 1) 2 4 ( ) ( 1)1m m mβα β α− −⎡ ⎤+ + − =⎣ ⎦δ P Q s δ z       (12) 



 
 
 
 

Where:  
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Equation (12) can be written more concisely and conveniently as:  
( ) ( )2 4 ( ) ( 1) ( 1) ( 1)1 m m m mβα β α − − −⎡ ⎤+ + − = + −⎣ ⎦I P Q s s δ z s     (13) 

The other advantage of the equation (13) is that, at every iteration the matrix ( )2 41βα β α⎡ ⎤+ + −⎣ ⎦I P Q is constant 

and only needs to be calculated once.  

4.1.  L2 norm - Linear spline filter  

Let 21( )
2

r rρ = , then according to equations (7) and (8), ( ) 1rδ = , and equation (13) can be simplified as: 

( )2 4 ( )1 mβα β α⎡ ⎤+ + − =⎣ ⎦I P Q s z        (14) 

Thus, the superscript m  can be removed. Solving equation (14) only one step is needed, it is equivalent to the 
linear spline filter as defined in the ISO standard. 

4.2.  L1 norm -  Nonlinear spline filter  

Let ( )rρ be the L1-norm: ( )r rρ = , according to equation (7) and (8): ( ) 1r rδ = , one has: 
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Let SGN be the sign function and ignore the superscript, equation (15) can be simplified as: 

( ) ( )2 41 SGNβα β α⎡ ⎤+ − = −⎣ ⎦P Q s z s , which is same as the robust spline filter as drafted in the ISO standard. 

4.3.  Proposed nonlinear spline filter  

Other widely used M-estimators including Huber, Cauchy, and Tukey functions. Among them the Tukey function 
has been verified to be highly robust against outliers and converges very well [2]. 
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In this paper Tukey function have been chosen as the standard error metric.  
 
5. Experimental results and discussion 
 

The developed linear and nonlinear robust spline filters are applied to some measured data. The processed 
results are shown in figure 1 and figure 2. Figure 1 shows that the linear spline filter can process data with 
significant form component very well, and with no boundary effect. Figure 2 is used to compare the linear and 
nonlinear spline filter. The left and the right figures are the results from a measured honing surface profile and a 
measured worn milled surface profile respectively. The upper figures show the original profile and the mean 
profile by using linear and nonlinear spline filters respectively; and the lower figures show the residual profiles. 
From these figures one can clearly see that both the linear and nonlinear spline filters can follow large form well 
with almost no boundary effects, while the nonlinear spline filters are robust against data outliers(extremely high 



 
 
 
 

peak or deep valley). Also the computation speed is very fast. For a typical 64,129 pts dataset, the linear spline 
filter only takes 16ms, while the nonlinear spline only needs two iterations to get the converge result (32ms). 
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Fig.1 linear spline filter (left: mirolens mould profile, right: chattered milled profile) 
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Fig.2 linear and nonlinear spline filter (left: honing surface profile, right: worn milled surface profile) 

 
6. Conclusions 

A new generalised spline filter is proposed based on M-estimation theory. Both the linear and nonlinear 
spline filters can be deduced directly from the general model. The algorithms for the new model based on the 
IRLS are also very general, effective, efficient and very fast.   
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