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Precision free-form surfaces are widely used in advanced optical and mechanical devices. 

In order to evaluate the form quality of a free-form surface, it is required to fit the 

measurement data with the design template and compare the relative deviation between 

them. A common approach is to minimize the sum of squared differences in the z 

direction. Its solution is not robust enough and may be biased due to outliers. This paper 

presents a fitting algorithm which employs the sum of orthogonal distances to evaluate 

the goodness of fit. The orthogonal projection points are updated simultaneously with the 

shape and motion parameters. Additionally, the l1 norm is adopted to improve the 

robustness of the solution. The Monte-Carlo simulation demonstrated that the bias in the 

fitted intrinsic characteristics of this method is much smaller than the traditional algebraic 

fitting, whereas the fitted motion parameters have no distinct difference. 

1 Introduction 

Compared with traditional industrial elements which have simple geometrical 

shapes, free-form components occupy superior optical and aerodynamic 

properties, and are crucial to the development of optical and mechanical devices 

[1]. Surface form plays an essential role in the characteristics of these 

components. To assess the form quality of a free-form surface, a nominal 

template is required. The form error is obtained from the relative deviation 

between the measurement data and the template. However, usually the two 

surfaces do not exactly lie in the same coordinate system, thus the best fitting (or 

matching) needs to be established between them under some error criterion, e.g. 

least squares, 
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L,2,1  ,']',','[ ==p are the data points after transformation and 

),( yxfz =  is the nominal template function. Sometimes the template is only 

supplied as an analytical function, and some intrinsic characteristics (shape 

parameters) need to be specified as well. 

In the above equation, only the deviation in the z direction is considered, 

which is called algebraic fitting [2]. This approach is commonly adopted 

because of its ease of implementation. However, its definition of error distances 
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does not coincide with measurement guidelines and the estimated fitting 

parameters will be biased, especially when there exist errors in the explanatory 

variables [2-4]. Consequently researchers have developed the orthogonal 

distance fitting (ODF, also termed geometric fitting) method. This technique 

intends to minimize the sum of squared orthogonal distances from the 

measurement points to the nominal surface. It can effectively overcome the bias 

problem of the algebraic fitting. But for free-form surfaces, the orthogonal 

distances are not straightforward to obtain and the computational cost may 

increase dramatically. This paper tries to solve this problem. 

2 The Orthogonal Distance Fitting Algorithm 

Suppose the explicit function of a template is given as ) ;,( ayxfz = . We aim to 

determine the intrinsic characteristics a, an optimal rotation matrix R and a 

translation vector t to minimize the sum of squared orthogonal distances from all 

the measurement points to the template, 
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Here T

iiiii
zyx ]',','[' =+= tRpp is an arbitrary measurement point after 

motion and
i

q  is the closest point on the template corresponding to
i
'p .  

The coordinates of 
i

q are represented as, 
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and the weighting technique is incorporated. Then the error metric in Equation 

(2) can be rewritten as, 
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If regarding }{
i

ξ  and }{
i

ζ  as unknown variables, we can solve them 

simultaneously with the intrinsic characteristics 1×ℜ∈ pa  and the six motion 

parameter
zyx

θθθ ,, ,
zyx

ttt  and ,, . 

Boggs et al [5] proposed a method to solve this nonlinear least squares 

problem based on the Levenberg-Marquardt algorithm. 

Denoting the shape and motion parameters with a vector 1)6( ×+ℜ∈ pm  and 

denoting }{
i

ξ  and }{
i

ζ  with a vector 12 ×ℜ∈ Nβ , then Equation (3) can be solved 

iteratively by, 
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with ,,,1 ,:)6(
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Here 0>λ  is a damping factor and )6()6( +×+ℜ∈ ppS  and NN 22 ×ℜ∈T are two 

scaling matrices. Employing damping terms can greatly improve the numerical 

stability of the system and guarantee the convergence of its solution. The 

damping factor λ need to be selected properly according to the specific problem. 

If the value of λ is too large, the step length of the updates δα and δβ will be very 

small, consequently leading to a rather slow convergence speed; On the other 

hand, a λ too small cannot significantly affect the system’s numerical property. 

The normal function of Equation (4) is, 
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So that )()( 112 DHVEGMJSMJJm −− −+−= TT λδ                                         (6) 

and  ])([ 11 DHDHVEmJGMVEβ +−+−= −− δδ T                                                     (7) 

In the equation TT VEVVVIM 12 )( −+−= . In fact, it is a diagonal matrix  
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and 22
TDE λ+=  is diagonal as well. 

3 Improving the Robustness of the Solution Based on the l1 Norm 

The least squares approach is commonly adopted as in Equation (2) for its ease 

of calculation. It is unbiased when the error is normally distributed [6]. However, 

measurement outliers and manufacturing defects can make the result distorted, 

or even break down. 

To improve the robustness of the fitting results, various improvements have 

been proposed [7]. Among these methods, the l1 norm pays less attention to the 

wild points and concentrates on the vast majority of the data points. But it has 

discontinuous derivatives and consequently difficult to solve. Hunter and Lange 

[8] proposed an algorithm based on the Majorize-Minimize theory. A continuous 

surrogate function is adopted to approximate the initial l1 norm objective 

function. 
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For the l1 norm fitting problem, 
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A small perturbation 0>ε  is introduced, 
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It turns out that for a given residual 
)(k

r  at the k-th iteration, )(rερ  is 

majorized by c
r

r
rr

k

k +
+

=
||

)|(
)(

2

)(

ε
ψ ε

, i.e.




≥
=

rrrr

rrr
k

kkk

  allfor   )()|(

)()|(
)(

)()()(

εε

εε

ρψ
ρψ

, thus the 

new objective function will be  

∑∑
==









+

+
==

N

i

ik

i

i

N

i

i
c

r

r
rE

1
)(

2

1 ||
)(

ε
ψ εε

                                                                 (10) 

It can be proved that εεε
ln2 NEE −≤− , hence the constant ε  can be 

determined according to the overall error  threshold εετ ln2 N−= . 

Obviously the constants }{
i

c  do not affect the solution. Therefore, the l1 

norm optimization becomes a reweighted least squares problem with 

( )||/1
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. Here 0, ≥ba  are utilized to measure the relative influence 

of the lateral and vertical deviations onto the error metric. In practice if there is 

noise in all the x, y, and z coordinates, we set 0, >ba . On the contrary, if only z 

coordinates contain errors, we set 0==ba , i.e. algebraic fitting will be adopted. 

4 Numerical Example and Discussion 

A biconic surface is adopted for numerical simulation [9], 
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In the equation, the intrinsic characteristics are set to be 1mm 9/2 −=
x

c , 

1
mm7/2

−=
y

c , 3.0−=
x

k , and 3.0=
y

k . 100×100 points are sampled within the 

area mm 2.5,mm 2.5 ≤≤− yx as measurement data and transformed with 

°=°=°−= 3,4,2
zyx

θθθ and Tmm] 1.5 mm, 2.0 mm, 1.0[ −−=t . Gaussian noise of 

)µm) (0.5 ,0( 2
N  is introduced onto the x and y directions and )µm) (0.1 ,0( 2N  

onto the z direction. 200 points are randomly sampled and Gaussian error of 

)µm) (50 ,0( 2N  is added on them as outliers. Defects are also involved as shown 

in Figure 2. 
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Figure 1. Biconic surface                                          Figure 2. Defects and noise  

Here we compare the l1 norm geometric fitting, l2 norm geometric fitting, 

and l1 norm algebraic fitting. These programs are coded in MATLAB R2007a 

and run on a Pentium 4 PC with 3.0GHz, 2.00GB RAM. In order to make the 

fitting results more reliable, the Monte-Carlo simulation is employed and the 

fitting procedure is run 500 times. The average values of the 500 fitting errors 

are adopted to measure the bias of each method; and the standard deviations (σ) 

to assess the uncertainty. The uncertainty of the three algorithms turns out to be 

not significantly different, with l2 norm ODF a little poorer. The reason is that 

the uncertainty of the fitted parameters is mainly determined by the amplitude of 

the introduced random noise. The biases of the six intrinsic characteristics and 

six motion parameters are listed in Table 1. 

Table 1. Biases of three fitting methods 

Method l1 Norm ODF l2 Norm ODF l1 Algebraic fitting 

cx -2.85×10-6 mm-1 -6.04×10-5 mm-1 -1.17×10-4 mm-1 

cy 1.75×10-5 mm-1 1.36×10-4 mm-1 -1.13×10-4 mm-1 

kx 4.20×10-4 3.62×10-3 1.73×10-3 

ky -3.28×10-4 -4.13×10-3 1.50×10-3 

θx -0.0736
 
° 0.116 ° -0.231 ° 

θy -0.166 ° -0.711 ° -0.0755 ° 

θz 1.22×10-3 ° 2.09×10-2 ° 7.69×10-4 ° 

tx 11.6 µm 49.1 µm 5.33 µm 

ty -3.66 µm 5.34 µm -11.5 µm 

tz -0.0210 µm -0.157 µm 0.108 µm 

Running time 1.570 sec 1.539 sec 0.253 sec 

 

It can be seen that the biases of the intrinsic characteristics of the l1 norm 

geometric fitting are at least one order smaller than the other two methods. It 

demonstrates that ODF technique can effectively overcome the bias problem and 

the l1 norm error metric can greatly improve the system stability and robustness 

against outliers and defects. 
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The geometric fitting shows no significant superiority over algebraic fitting 

on motion parameters. In fact, it holds true for most smooth surfaces. Therefore, 

when the shape of the surface is completely fixed, the motion parameters can be 

calculated using the conventional algebraic fitting algorithm, which is relatively 

simpler and quicker to implement. 

5 Conclusions 

Orthogonal distance fitting shows obvious superiority on accuracy and 

unbiasness over algebraic fitting methods, especially when the surface is highly 

curved and both its lateral and vertical coordinates contain errors. The error 

metric of ODF is consistent with the standard error definition. Numerical 

simulation shows the fitting accuracy of the intrinsic characteristics can be 

greatly improved. Moreover, real measurement data may be polluted by outliers, 

missing data or defects, consequently causing serious error in the least-squared 

fitted parameters. In this case, the l1 norm regression can be adopted to improve 

the robustness of the system. On the other hand, if the specific distribution of the 

noise has been known beforehand, we will try to transform the corresponding 

objective function into an appropriate reweighted least squares problem, so that 

the Boggs algorithm can still be employed. 
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