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ABSTRACT 
Great interest is being made by manufacturers and end users in the reduction of inherent errors which 
occur in the design and manufacture of machine tools. This paper describes offline methods used for 
simulation and analysis of a three axis vertical machining centre (VMC) for the reduction and 
compensation of non-rigid errors. Models of the kinematic linked structural elements are described 
and the methods used for verification of results. 
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1 INTRODUCTION 
In today’s highly competitive manufacturing environment industry demands reductions in rework, scrap 
and warranty costs together with tighter manufacturing tolerances to improve product reliability and 
interchangeability of parts. This places an ever increasing requirement on machine tool manufacturers 
to increase the accuracy and production rates of the machine tools (Blake 1995) and yet to remain 
competitive, machine tool builders have to reduce design and build times and manufacturing costs. If 
the anticipated trend for in-process measurement increases, then the machine tool is used for 
measuring the component and must be of an even higher order of accuracy. 
 
It has been recognised for many years that all machine tools contain errors and previous work (Wang 
et al 2006) determined that total machine errors comprised of geometric or rigid body errors, thermal 
errors, non-rigid body errors and dynamic effects. 
 

Etotal = erigid + ethermal + enon-rigid + edynamic  (1) 
 

Numerous researchers (Ramesh et al (2000), Liang et al (1997) and Chen (1995)) indicate that 
geometric and thermal effects make the largest contribution to machine tool errors and so concentrate 
the greatest efforts for research. (Fletcher et al) quote the use of error compensation to achieve a 97% 
reduction of rigid errors, from 65 microns to 2 microns. This indicates that rigid errors can be rendered 
negligible but, as tighter manufacturing tolerances are imposed and developments made in materials 
and cutting technologies a greater emphasis is being placed on compensation of non-rigid errors, 
cutting forces and dynamic effects. 
 
Non-rigid effects occur due to deformation of the structural elements caused by applied loads and 
gravitational effects as the structural elements are moved through the working volume of the machine. 
The moving elements are incremented along their axes and online measurement used to obtain the 
combined geometric and non-rigid error components using laser interferometery with static data 
capture at each position. Figure 1 shows the layout of the linear motion guide carriages of a Beaver 3 
axis VMC (Longstaff et al (2005)), the effect on variation in loading of the carriages and hence 
displacement of the table can be seen as the saddle is moved along its axis. The non-rigid effects on 
‘x’ axis linear positioning errors obtained via online measurement are shown in figure 2. This indicates 
a 55 micron error due the kinematic linking effects of the movement of the table and saddle. The 
effects of the ‘z’ axis have been neglected as, due to the machine configuration, it imposes no 
kinematic linking effect on the ‘x’ and ‘y’ axes. 
 
Dependant on the machine size and configuration an extensive amount of online, non-productive 
machine downtime may be required for measurement of the 21 standard geometric error components 
of 3 axis VMC (Blake 1995). Additional time is then required for interpretation of the results and 
installation and calibration of the error compensation system. However the pressures on 
manufacturing schedules dictate that time required for installation and calibration of the error 
compensation must be reduced. 
 
Finite Element Analysis is used by machine designers to optimise structural elements for weight 
reduction, stress distribution and limit deformation structural elements. This research investigates the 
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methodology required using commercial FEA software as an offline technique to provide an efficient 
method to determine the spatial resolution for online measurement and as an effective platform for 
analysis and reduction of machine tool non-rigid errors. 
 

2 SIMULATION 
The investigations are being carried out on a Cincinnati 500x500x500mm three axis VMC. Initially the 
mass and position of the component, work holding fixtures, cutting forces and dynamic effects have 
been neglected as this allows direct verification of the results with online measurement of the 
combined geometric errors and non-rigid effects. 
 
For the simulation to be useful for error compensation each error component must be determined by 
incrementing the table, saddle and spindle carrier through their working axis. Abaqus CEA version 6.7-
1 was selected to carry out the analyses due its ability to automate multiple analyses using scripting 
language, coupled with improvements in the solid modelling user interface. Due to the potential large 
number of analyses required, several stages of simplification or idealisation of the table, saddle, base, 
column and spindle carrier have been created to reduce the analysis run time and quantify their 
significance on the non-rigid error components. 
 
The models were discretised (meshed) using the Abaqus auto-generation mesh and the analyses 
carried out using a 2.4GHz 64 bit Quad core processor with 4Gb RAM. Figure 3 shows the model of 
the table containing the maximum amount of manufacturing detail. Manufacturing drawings were used 
to remove unnecessary details such as drilled and tapped holes, fillets and fine machined details, 
however a large amount of detail has been retained including weight reduction pockets, internal ribs, 
table overhang and tee slots. Figure 4 shows how the manufacturing detail has been reduced to form 
a channel section, the section properties were proportioned in relationship to the second moment of 
inertia of the ‘as made’ table and the overall length reduced to that of the tee slots. To ensure the 
mass distribution of the machine was retained through the working volume the material density was 
modified to retain the overall table mass. 
 
A sub-assembly of the base was constructed from instances of individual models of the base, saddle 
and table using 3D tetrahedral elements. Linear motion guide ways were modelled and manual 
techniques used to align and increment the moving elements in relationship to the actual machine 
axes. Whilst cutting forces and dynamic effects have been neglected in the initial analyses, the table 
and saddle ball screws were included in the model using beam elements as this allows the applied 
forces to be transferred along their line of action in subsequent analyses. 
 
Partitioning and node sets have been used to force nodes at discrete points and ensure node 
numbers remain unchanged as the moving elements are incremented. Nodes were created for 
attachment of the linear motion guide carriages and to determine the deformation at the points of 
interest on the table, the node sets being dimensioned to ensure that efforts required for scripting are 
minimised when moving the elements along their axes. 
 
Figure 5 shows the discretised model of the sub-assembly of the base saddle and table with the table 
incorporating the manufacturing detail. Initial analysis indicates a vector sum of +16 micron non-rigid 
error with machine axis components of x = +0.14 microns, y = -0.13 microns, z = -14 microns at the 
modelled coordinates. Idealised models can be analysed later to allow informed choices to be made to 
quantify the relative significance of manufacturing details on the non-rigid error components and 
computer processing time. 
 
During previous work (Widiyarto (2006)) the base was mounted on six legs which were fully 
constrained on an infinitely stiff ground. It was considered that the mounting feet have a negligible 
effect on the magnitude of the non-rigid error components and, to reduce its complexity and 
processing time, they have been omitted from the model. The fixed constraints were subsequently 
added to the mounting plate fixing holes which allows for flexing of the mounting brackets. 
 
The degree of displacement at the cutting tool has a direct relationship to the length of the cutting tool 
and therefore a dummy tool was incorporated into the spindle but as no cutting forces are applied, it is 
not necessary to include the stiffness of the spindle bearings, this allowed the use of surface to 
surface contact elements between the cast iron spindle carrier and the carbon steel spindle. The 
spindle motor was considered to comprise of a relatively high mass but the deformation of the motor is 
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not of interest and its inclusion only contributes to additional processing time, therefore the motor 
mass was applied as a pressure load, smeared over the motor mountings. 
 
Figure 6 shows the solid model of the column and spindle carrier assembly used to confirm the 
modelling principles of the linear motion guide carriages and ball screws. The spindle carrier was 
incremented along the vertical ‘z’ axis to define the methods required to write the output data in a 
format for error compensation. Preliminary values were used for the material properties, ball screw 
and guide carriage stiffness to check the constraints and behaviour of the model. Using these 
preliminary values the model behaviour was as predicted and a vector sum of +34.0 micron was 
obtained for the non-rigid error with components of x = -0.86 microns, y = -19.9 microns, z = -28.0 
microns. Following online validation of the simulation, the refinement of constraints and properties will 
be reviewed.  
 

3 VERIFICATION 
To corroborate validity of the simulated results, online measurement of moving axes with static data 
capture is being carried out throughout the working volume of the machine using current state-of-the-
art technology laser interferometer and additional standard metrology equipment as shown in figure 7. 
This equipment provides the standard 21 geometric error components for the three axis VMC from 
which the non-rigid effects can be determined and a direct correlation made to the offline simulated 
data. 
 

4 CONCLUSION 
Methods have been developed using Abaqus CAE v6.7-1 for offline simulation of a three axis VMC to 
manually increment the structural elements along their axes to determine the non-rigid error 
components. Methodologies have been developed to determine the significance of manufacturing 
details, stiffness of linear motion guide ways and ball screws on non-rigid error components and 
further work is being carried out to refine the simulation of the ball screws. 
 
The simulation indicates a vector sum of 16 microns for the table displacement and 34 micron 
displacement of the spindle carrier, the magnitude of these errors now becomes significant when rigid 
errors are being compensated and controlled to within 2 microns. 
 
Generated data files have been extracted for use in error compensation and further work is being 
carried out to automate the simulation process for multiple analyses throughout the working volume. 
 
A number of manufacturers of state-of-the-art laser interferometer equipment have been investigated 
for online measurement and verification of the simulated data. At present this technology is proving to 
be time consuming for practical use in a manufacturing environment which further emphasises the 
need for offline simulation.  
 
Validation of the simulated data is yet to be made and the next stage in the analysis is to combine the 
two sub-assembly models to form the simulation of the machine assembly and increment the tables, 
saddle and spindle carrier through the working volume to determine the ‘x’, ‘y’, ‘z’ displacement at the 
points of interest along the table and tool point. Later work will also include applied cutting loads, 
component mass and position, applied fixture loads and dynamic effects, all of which can readily be 
applied to the existing models. 
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Fig 1.  Beaver VMC variation of ‘y’ axis guide loading due to change in ‘x’ axis position [1] 

 

 

 
Fig. 2 Non-rigid errors Beaver 3 axis VMC [2] 

 
 

 
 

Fig. 3 Table with manufacturing details
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Fig. 4  Idealised table 

 
 

 
Fig. 5 Table, saddle and base assembly 
 
 

 
Fig. 6 Assembly of column and spindle carrier 

 

 
 

 
 

Fig. 7 Interferometer equipment used for online measurement 
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