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Abstract 

With the rapid growth of data volumes and complexity in the field of condition 

monitoring (CM) of machinery, the need to automate tasks such as information extraction 

and classification has become more important than ever. Artificial intelligence (AI) 

remains a promising solution to such challenging tasks. From a learning perspective, the 

majority of AI based shallow learning methods for CM have been applied for 

classification, whereas feature extraction task is still manually processed, which requires 

hand-crafted features based on expertise knowledge. Hence, the classification accuracy 

of the shallow learning method relies entirely on the quality of the extracted features. 

Contrariwise, AI based deep learning methods, and in particular the convolutional neural 

network (CNN) for CM have the capability to address the shortcomings of shallow 

learning methods by integrating both feature extraction and classification tasks into a 

single model. With deep CNN architecture, severe problems can appear caused by the 

activation function layer, which significantly affect the network performance, these 

include the vanishing gradient and dying ReLU problems. 

To automate the task of data processing and achieve high classification accuracy for CM, 

an improved AI framework has been developed in this research: Firstly, a CNN 

architecture has been designed for automatic feature extraction and classification. CNN 

was chosen as it has been found to offer several benefits; it can be trained in a supervised 

learning manner, representative features are extracted directly from the raw data, data 

dimensionality can be reduced, and it can automatically identify different classes for a 

given data set. Secondly, to addresses the shortcoming of the existing activation 

functions, and enhance the learning ability of the network, a hybrid activation function 

has been developed called the Improved Rectified Linear Unit and Hyperbolic Tangent 

function (IReLU-Tanh). The developed framework has been implemented and evaluated 

using both simulated and experimental vibration data. The results shown that the 

developed CNN architecture with the proposed IReLU-Tanh yields robust classification 

with high diagnostic accuracy and outperforms the commonly used activation functions 

Tanh, ReLU, LReLU, and ELU. 

Keywords: Artificial intelligence, Deep learning, Convolutional neural network, 

Activation function, Condition monitoring. 
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Chapter One: Introduction 

This chapter presents the importance of condition monitoring for machinery. It starts with 

the different approaches to condition monitoring, including application based, data 

gathering based, and data processing based. Then, an overview is given of the data 

processing based approach including signal processing, data enhancement and artificial 

intelligence methods. The motivation for the research is explained, after which the 

research aim, objectives, and research methodology are presented. Finally, this chapter 

ends with an outline of the contents of the thesis. 
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1.1. Background 

Data processing in the field of industrial applications has become very important due to 

the enormous amount of data generated by modern measurement systems that can be used 

for the condition monitoring (CM) of machines and instruments. CM is the process of 

monitoring and analysing the gathered data in a way that can be used to assess a system’s 

health condition [1]. CM has gained increased importance in industrial applications to 

ensure reliability and system health condition. CM can be described as a data processing 

approach, which can be carried out through signal processing and artificial intelligence 

(AI) methods. 

With the increased amount of data and its complexity, extracting meaningful information 

from a given dataset is becoming a challenging task. Hence, feature extraction and 

selection have attracted significant attention in recent years [2, 3]. Feature extraction and 

selection are generally employed in ways that depend on the application's goal, e.g., for 

dimensionality reduction, extracting representative features from the data, or selecting 

features that are expected to be the most relevant to the problem. However, traditional 

manual methods rely greatly on prior knowledge and expertise to extract and select 

meaningful information from a given dataset [4, 5]. Today, AI can be utilised to automate 

the task of extracting and selecting meaningful and informative information. 

A branch of AI called deep learning has become a popular method as it integrates both 

feature extraction and classification tasks into a single model [6]. Deep learning yields 

automatic feature extraction directly from the raw data through a multi-layered structure. 

It is commonly referred to as a deep neural network (DNN), where multiple levels of 

hidden layers are stacked in the network architecture [7]. Several deep learning methods 

have been developed, such as the deep belief network (DBN), the convolutional neural 

network (CNN), the recurrent neural network (RNN), and the stacked auto-encoder 

(SAE) [8]. Amongst these, CNN is the most widely used as it achieves the state-of-the-

art performance in various applications, including speech recognition, image processing, 

object detection, robotics, and automated fault diagnosis [9, 10]. CNN was originally 

developed for handwritten digit classification [11]. It integrates several features into a 

single deep hierarchical model including; feature extraction, dimensionality reduction, 

and classification. Integrating these features through a multi-layered configuration allows 
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the CNN to perform feature extraction and classification for CM [12]. However, with the 

deep CNN architecture, severe problems caused by the activation function layer begin to 

appear, which affects the training of the network to extract representative features from 

the raw data, and hence affects the classification accuracy of the model [13], as a results 

of using traditional activation functions such as the hyperbolic tangent function (Tanh), 

the rectified linear unit (ReLU), the leaky rectified linear unit (LReLU), and the 

exponential linear unit (ELU) [14]. Therefore, in this research, an automated approach 

based on the deep CNN is investigated for feature extraction and classification. In 

addition, a hybrid activation function is proposed for the deep CNN to address the 

shortcomings in the existing activation functions, enhance the learning ability of the 

network during the training process, and hence improve the overall performance of the 

network. 

1.2. Condition Monitoring 

CM generally comprises of three main steps as shown in Figure 1-1; data acquisition, data 

processing, and decision-making. Recently, a considerable number of researchers have 

extensively studied each step of the CM [15]. Consequently, a wide range of techniques 

and algorithms have been developed. This thesis will focus on the data processing task to 

automate the tasks of feature extraction and classification by adopting deep learning 

methods. 

 

Figure 1-1: CM main steps 

1.2.1. Data Acquisition 

The data acquisition step is the process of collecting the raw data from sensors mounted 

on the monitored system [16]. A number of CM techniques have been developed for the 

data acquisition, including vibration monitoring, oil monitoring, The acquired data can 

be classified into two main categories [15, 17]: 
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 Value type: data collected and stored at a particulate time such as temperature, 

pressure, and oil analysis. 

 Waveform: data collected and stored in a timely manner, as a time-series, such as 

acoustic and vibration data. 

1.2.2. Data Processing  

The data processing step involves analysis, interpretation, and extracting useful 

information from the measured data. Several types of data processing techniques have 

been developed over past decades for analysing the measured data [18]. The data 

processing step aims to provide an accurate description of the health of the system being 

monitored. 

1.2.3. Decision-Making 

The decision-making step will recommend an effective maintenance policy. Over recent 

years, several techniques have been introduced for decision-making. These techniques 

can be classified into the following groups; detection, diagnosis, and prognosis [19]. 

Detection refers to the process of detecting abnormalities in the collected data. Diagnosis 

refers to the process of identifying the location and the severity of the fault. Prognosis is 

the process of predicting the remaining useful life of the monitored system [20]. 

1.3. Condition Monitoring Approaches 

Studying CM is generally carried out through the following three main approaches [21]; 

application based, data gathering based, and data processing based, as shown in Figure 

1-2. 

 

Figure 1-2: CM approaches 
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1.3.1. Application Based Approach 

Application based approach focuses on different types of rotating machinery such as 

planetary gearboxes (PG), induction motors, bearings, etc. In this research, a PG is 

considered as a case study of rotating machinery. 

1.3.2. Data Gathering Based Approach 

The data gathering based approach focuses on developing instruments that are required 

for data sensing and storing, such as accelerometers, microphones, and wireless 

transmitters. 

1.3.3. Data Processing Based Approach 

The data processing based approach plays an important role in a CM study, and it can be 

classified into three main categories as shown in Figure 1-3, signal processing, data 

enhancement, and AI methods [22-24]. 

 

Figure 1-3: Data processing based approaches 

Signal processing methods are used to process and analyse the monitored data. Data 

enhancement methods enhance the important features in the data and suppress noise. AI 

methods implement AI algorithms to automate the diagnostic procedure and minimize 

human interference. AI methods generally can be classified into two main groups, shallow 

and deep learning methods. 

In this research, AI based deep learning is used for CM. The main purpose of adopting 

the deep learning method is to extract the representative features directly from the raw 

data and automatically determine the system’s health condition. 

Data Processing Based Approches

Signal Processing 
Methods

Data Enhancement  
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1.4. Signal Processing Methods 

In CM, a wide range of signal processing methods are based on the analysis of the time 

domain and spectrum of the monitored data. The signal processing methods applied can 

be categorised into the following three main groups [25]; time domain, frequency domain, 

and time-frequency domain analyses, as seen in Figure 1-4. Vibration signals generally 

contain massive amounts of information [26] and therefore a variety of signal processing 

techniques have been developed over past decades to highlight features of interest in the 

monitored signal. 

 

Figure 1-4: Signal processing methods 

1.4.1. Time Domain Analysis 

Time domain analysis is the process of analysing the vibration data as a function of time. 

It is employed to explore statistical features of the monitored vibration data [27]. The 

most common statistical features used for vibration data analysis are: peak value, kurtosis, 

skewness, crest factor, and root mean square (RMS). [28]. These statistical features are 

commonly referred to as time domain features. However, it has been reported that time 

domain analysis shows poor performance in fault diagnosis of rotating machinery [29]. 

Peak value is the maximum amplitude of the vibration data. The peak value can be 

expressed as [28]: 

𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒 = max (𝑥𝑖)        (1.1) 

RMS is used to measure the signal energy of the vibration data, and it can be computed 

as [30]: 

𝑅𝑀𝑆 =  √
1

𝑁
∑ (𝑥𝑖)2𝑁

𝑖=1         (1.2) 

where 𝑥𝑖 is the acquired time-series signal and 𝑁 is the total number of data points. 
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Kurtosis is employed to measure the impulsiveness of the vibration data, and it can be 

calculated as [30]: 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
1

𝑁
∑ (𝑥𝑖−𝜇)4𝑁

𝑖=1

[
1

𝑁
∑ (𝑥𝑖−𝜇)2𝑁

𝑖=1 ]2
        (1.3) 

where 𝜇 is the mean of the signal. 

1.4.2. Frequency Domain Analysis 

Frequency domain analysis is the process of analysing the monitored data based on its 

frequency content, and is a widely used technique for vibration data analysis [31]. The 

primary technique of performing the frequency domain analysis is the Fast Fourier 

Transform (FFT). Using this technique, the raw vibration signal generated by rotating 

components is transformed from the time domain to the frequency domain [32]. The time 

domain signal is transformed into a spectrum which represents the frequency of each 

component [33]. In the frequency domain, the spectral components of the signal exhibits 

much more useful information regarding the details of rotating parts, which can be more 

beneficial for determining the system condition. However, rotating machinery such as 

gears generally produces complex vibration signals. Therefore, identifying gear defects 

by observing only the spectrum signals is difficult. Moreover, it has been reported that 

the FFT technique is not suitable for analysing a non-stationary signal, because it is based 

on the assumption of a stationary signal [25, 34].  

 Envelope Analysis 

Envelope analysis, also called demodulation analysis, can be used for fault diagnosis in 

rotating machinery where the fault exhibits an amplitude modulation (AM) that effects 

the characteristic frequencies of the machinery. In a PG system, multiple gears revolve 

around their own centre and rotate around a fixed sensor mounted on the PG housing. In 

this case, when the gear defect is rotating and passing through the fixed sensor, the 

maximum amplitude of the vibration is recorded, and when the gear defect moves away 

from the fixed sensor, the amplitude of the vibration gradually decreases, resulting in AM 

[35]. Envelope analysis can obtain the diagnostic fault features from the data. The 

envelope of the signal can be calculated as [36]: 
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𝑎(𝑡) = √𝑥2(𝑖) + 𝐻2[𝑥(𝑖)]        (1.4) 

Where 𝐻[𝑥(𝑖)] denotes the Hilbert transform of signal 𝑥(𝑖). 

1.4.3. Time-Frequency Domain Analysis 

The non-stationary characteristic of vibration data makes extracting a representative 

feature demanding. To overcome this drawback, several time-frequency domain analysis 

methods have been developed for processing non-stationary signal [37]. The Short Time 

Fourier Transform (STFT) is one of the well-known time-frequency domain analysis 

techniques. The STFT is based on the idea that the entire vibration data is divided into 

short time signals by using a window function and then each short time signal can be 

processed by applying a FFT [38]. However, it has a disadvantage regarding the time-

frequency resolution, this is due to using a window function of fixed length [39]. The 

Wigner-Ville Distribution (WVD) is another time-frequency domain analysis technique 

developed to overcome the issue of time-frequency resolution. Other time-frequency 

domain analysis methods include wavelet transforms [39, 40]. 

1.5. Data Enhancement Methods 

Data enhancement methods aim to enhance the important features in the vibration data 

and suppress the noise. Recently, it has been widely applied to CM such as time 

synchronous averaging (TSA), empirical mode decomposition (EMD), minimum entropy 

deconvolution (MED), and multipoint optimal minimum entropy deconvolution adjusted 

(MOMEDA). 

1.6. Artificial Intelligence Methods 

The concept of AI was firstly proposed by Turing [41] in 1950 and since its creation, it 

has played a major role in the creation of computers that function as close as possible to 

human brains. AI is a branch of computer science that is concerned with the automation 

of intelligent behaviour [42]. AI has made significant contributions to a variety of 

applications and it has led to innovations in robotics, computer vision, natural language 

processing, and speech recognition. Motivated by the outstanding performance of AI in 

the above domains, it has been widely used in the field of CM [43] 



27 

Automating the diagnostic procedure is gaining importance in industrial applications due 

to machinery systems are more complicated than ever before, and because the volume of 

data produced by modern machines has increased massively [44]. Hence, using AI for 

automatic CM can provide an accurate assessment of the system’s health [45] and 

minimizes the negative effects of human interpretation such as it being time-consuming 

and dependent on well-trained labours [46]. Several AI methods have been applied for 

automatic fault diagnosis including: artificial neural network (ANN), support vector 

machine (SVM), decision tree (DT), k-nearest neighbour (KNN), CNN, DBN, and SAE 

[47, 48]. As shown in Figure 1-5, these methods can be divided into two main groups, 

shallow and deep learning methods [49]. 

 

Figure 1-5: AI methods 

AI methods generally involve three main steps: (1) Data acquisition is the process of 

collecting vibration data from the monitored system; (2) Feature extraction is the task of 

extracting representative features from the monitored vibration data; and (3) 

classification, where the extracted features are used to train AI algorithms [44, 50]. By 

adopting these procedures, the condition of the monitored system can be determined. 

Therefore, discovering valuable features in the observed data plays a vital role in training 

the AI approach [51]. 

1.6.1. Learning Methods 

Training AI methods can be classified into three main learning paradigms: supervised 

learning, semi-supervised learning, and unsupervised learning [52], as shown in Figure 

1-6. Each learning method is used for different tasks such as classification, regression, 

clustering. 

Artificial Intelligence Methods

Shallow Learning 
Methods
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Figure 1-6: AI learning paradigms 

1.6.1.1. Supervised Learning 

The supervised learning method is a learning paradigm that uses labelled data, and the 

goal is to determine a good approximation between a set of input data and desired outputs. 

In supervised learning, the algorithm is trained with a set of training data and their 

corresponding labels, and during the training process the algorithm learns how to produce 

the desired output based on the given examples of input-output (labelled data) [52]. 

Supervised learning is used for classification tasks, where the training data belong to one 

of two possible classes (binary classification), or one of many possible classes (multi-

class classification), or regression tasks, where the output consists of a continuous output 

variable [53].  

1.6.1.2. Semi-Supervised Learning 

Semi-supervised learning is another learning paradigm where partially labelled or 

unlabelled training data are available. In semi-supervised learning, the algorithm is 

trained with a few labelled data. It then uses the trained model to predict the remaining 

portion of unlabelled training data. After labelling the unlabelled training data, the 

algorithm is trained with the complete training data set, which comprises the few labelled 

data together with unlabelled data that has been labelled by the algorithm. Semi-

supervised learning method is a combination of supervised and unsupervised learning 

methods [54]. 

1.6.1.3. Unsupervised Learning 

Unsupervised learning draws inferences from the data itself without using any 

corresponding label (unlabelled data) [55]. Unsupervised learning is commonly used for 

clustering tasks, where the aim is to cluster or group similar data together; or for anomaly 

Learning Methods

Supervised Semi-Supervised Unsupervised
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detection, where the aim is to identify the abnormality in the data that is significantly 

different from the rest of the data; or dimensionality reduction, where the aim is to reduce 

the dimensionality of the data whilst preserving the most important features [51]. 

1.6.2. Classification 

Classification is one of the widely studied tasks in AI. It refers to the process of building 

a model from historical labelled data to predict a target class for unseen data [56]. It is a 

supervised learning algorithm because it is driven by means of labelled data, where the 

input data are provided along with their corresponding labels. The classification model 

learns how to determine a good approximation function that maps the input training data 

to an output of two, or more than two classes [57]. Classification techniques have been 

widely used in various applications including; image classification, speech classification, 

and text classification. Classification generally can be categorized into two main types: 

binary and multi-class classifications [58]. 

1.6.2.1. Binary Classification 

Binary classification is a type of classification technique that is used to map the input 

training data to a unique target class. In other words, binary classification involves 

classifying the training data into either one of two target classes [58], as shown in Figure 

1-7. For example, binary classification can be used to predict the target class of the input 

training data 𝑥1 whether it belongs to class 1 (Y1) or class 2 (Y2). Binary classification 

has been adopted for intelligent fault diagnosis, for instance Nguyen, Prosvirin [59] 

adopted a binary classification technique based on a SVM to classify the input training 

data to one of two target classes. Yuan, Ma [60] implement a binary classification 

technique to classify two types of conditions (baseline and faulty conditions) using a 

CNN. 
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Figure 1-7: Example of binary classification 

1.6.2.2. Multi-Class Classification 

Multi-class classification is a way of classifying a set of input training data [𝑥1, 𝑥2, … 𝑥𝑛] 

to a set of target classes [y1, y2, … yn]. Multi-class classification involves assigning each 

input of the training data to one of several classes [61], as shown in Figure 1-8. The multi-

class classification has been widely implemented in the field of intelligent fault diagnosis, 

for instance, Tiwari, Bordoloi [62] implemented a multi-class classification technique to 

classify four types of vibration data under different conditions (baseline and three 

different types of fault). Sun, Yao [63] adopted a multi-class classification based on a 

deep CNN for intelligent fault diagnosis. In this study, the deep CNN is trained with four 

types of vibration data collected from the gearbox under different conditions. Then, the 

trained model is tested with unseen data to predict the target class for each data set. Chen, 

Liu [64] adopted a multi-class classification technique based on a CNN and SVM for 

intelligent fault diagnosis. In that study, the SVM was combined with the CNN, and 

placed at the end to classify the fault. The CNN model was trained with seven types of 

vibration data, where each data set represents different gearbox conditions. Then, the 

trained CNN model is evaluated to verify its efficiency in predicting the target class of 

unseen data. 
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Figure 1-8: Example of multi-class classification 

1.7. Research Motivation 

Analysing experimental vibration signals collected from machinery system normally is 

not an easy task, because the measured signals are often non-stationary. Moreover, 

machinery systems generally produce complex vibration signals that contain strong 

background noise, making it difficult to extract the representative feature from the data. 

Several data processing techniques have been developed over the past decades to analyse 

non-stationary signals, however, these methods rely on having prior knowledge of the 

machinery system and require expertise in signal processing techniques to apply them 

successfully. 

AI based shallow learning methods have attracted the attention of many researchers in 

the field of CM. However, the vast majority of AI based shallow learning methods are 

applied for classification, while the feature extraction task is still manually processed. 

Thus, the classification accuracy of shallow learning method relies entirely on the quality 

of the extracted features. 

To address the above-mentioned shortcomings, developing an automated approach for 

CM based on deep CNN architecture is the main motivation of this research. The 

developed approach aims to automate the extraction of representative features directly 

from the raw data and then automatically identify different classes for the given set of 

data. Deep CNN integrates several features into a single model including; feature 

extraction, dimensionality reduction, and classification. Integrating these features into a 

deep model would enable CNN to automate feature extraction and classification, and 

provide a promising way of overcoming the above-mentioned obstacles.  
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Although, reasonable results have been obtained from the application of CNN to raw 

vibration data for CM, however, several issues have been reported such as the vanishing 

gradient problem and dying ReLU [13, 14, 65]. These issues are due to the influence of 

the activation function layer, which can affect the overall performance of CNN, and lead 

to a low classification accuracy. Therefore, in this study, a hybrid activation function will 

be proposed to address the shortcomings in the existing activation functions and to 

enhance the overall performance of the network. The automated approach based on the 

developed CNN architecture with the proposed activation function will be evaluated 

using both simulated and real experimental data. 

1.8. Research Aim and Objectives 

The main aim of this research is to develop an automated approach based deep CNN for 

machinery CM that will automate the tasks of feature extraction and classification. The 

second aim of this research, an activation function called improved rectified linear unit 

and hyperbolic tangent function (IReLU-Tanh) is proposed to enhance the learning ability 

of deep CNN architecture and improve the overall performance of the network. 

To achieve the aims, the research will be carried out according to the following prioritized 

objectives: 

Objective One: To review the existing data enhancement methods and automated 

approaches based on AI such as shallow and deep learning methods used for vibration 

data. 

Objective Two: To investigate and evaluate the existing activation functions used for 

deep CNN. 

Objective Three: To develop and implement an optimal CNN architecture for feature 

extraction and classification based on typical CM vibration data. 

Objective Four: To develop an IReLU-Tanh function for deep CNN architecture. 

Objective Five: To evaluate the performance of the developed CNN architecture with 

IReLU-Tanh function using simulated and experimental vibration data. This will include 

a systematic comparison of the performance against the existing activation functions. 
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1.9. Research Methodology 

The research methodology identified for this thesis is typical computer science research 

methods, developed through simulation and real experimentation. Then, comparing the 

outcomes with existing solutions. The proposed approach consists of five work packages. 

The first work package is focusing on a literature review. The next three work packages 

are scientific research packages, which include algorithm development, data collection, 

implementation and evaluation. The last work package is focusing on the writing up of 

the thesis. 

 Work Package 1: Literature Review 

This work package concentrates on reviewing the data enhancement and AI methods 

used for vibration data. It also reviews the existing activation functions used for deep 

CNNs. This work package will include the following milestones: 

(1) Review the existing data enhancement methods used for CM, and highlight the 

limitations of these methods (see Chapter Two). 

(2) Review the application of AI based shallow learning methods for intelligent fault 

diagnosis, including; ANN, SVM, KNN, and DT, and then highlight the 

shortcomings of the shallow learning methods (see Chapter Two). 

(3) Review the application of deep learning methods for automated fault diagnosis, 

including; deep SAE, RNN, and CNN for automatic feature extraction and 

classification (see Chapter Two). 

(4) Review the existing activation functions such as Tanh, ReLU, LReLU, ELU, and 

highlight their drawbacks when applied to deep CNN architecture (see Chapter 

Five). 

 Work Package 2: Algorithm Development (Framework) 

This work package consists of two main tasks: 

(1) The first task is to develop an automated approach-based deep CNN for machinery 

CM. The automated approach aims to automate the tasks of feature extraction and 

classification. This task will include describing the fundamental concepts of the 

developed algorithm, including CNN architecture, learning algorithm and the 

implementation steps of CNN for CM (see Chapter Four). 

(2) The second task is to develop the IReLU-Tanh function for the deep CNN 

architecture, where the proposed function will address the limitations of existing 
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activation functions, and enhance the learning ability of deep CNN architecture. 

In this task, the advantages and disadvantages of each activation function are 

discussed in detail. It will then combine the advantages of two different functions 

(ReLU and Tanh) to create a hybrid IReLU-Tanh function (see Chapter Five). 

 Work Package 3: Data Collection 

This work package is focused on the data collection process to be used to evaluate the 

performance of the developed automated approach. Experimental vibration data will 

be collected from the PG test rig for five different gear conditions (baseline, two levels 

of fault severity on the planet gear, and two levels of fault severity on the sun gear) 

under five different load conditions. In total 25 data sets will be collected for analysis 

(see Chapter Six). 

 Work Package 4: Implementation and Evaluation 

This work package illustrates the practical phase of algorithm development. In this 

work package the architectural design of the deep CNN will be investigated, including 

number of layers, number of convolutional filters, etc., in order to select the optimal 

architecture and parameters for the CNN. The effectiveness of the developed CNN 

architecture will be evaluated and compared with three recent CNN architectures 

using simulated data. Moreover, the performance of the developed CNN architecture 

with the proposed IReLU-Tanh function will be evaluated and compared against the 

existing activation functions including Tanh, ReLU, LReLU, and ELU. Finally, this 

work package presents a conclusion obtained from the simulated and experimental 

results (see Chapter Eight and Chapter Nine). 

 Work Package 5: Writing up 

This work package is focused on writing up the thesis, which is based on the results 

obtained from all previous packages. 

1.10. Thesis Outline 

This thesis is organised into ten chapters as follows: 

Chapter Two outlines the relevant literature reviews, it starts with reviewing data 

enhancement methods including TSA, EMD, MED and MOMEDA. This chapter then 

sheds light on the application of AI methods including shallow and deep learning for CM. 
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Finally, the key findings obtained from the literature review are discussed at the end of 

the chapter. 

Chapter Three presents the PG case study used in this research including PG 

components and characteristic frequencies. Then, fault frequencies including sun gear, 

planet gear and ring gear are illustrated. Finally, gear failure modes and their potential 

causes are described. 

Chapter Four presents the theoretical background of deep CNN and describes the 

fundamental concepts associated with its architecture, including convolution, activation 

function, pooling, and fully connected layers. Followed by, the learning algorithm, 

illustrating its theoretical bases. Finally, the implementation procedure of the deep CNN 

is discussed in detail. 

Chapter Five presents the theoretical background of the activation function. It starts with 

reviewing the most widely used activation functions including Tanh, ReLU, IReLU and 

ELU used for deep CNN. Followed by, highlighting the main shortcomings of these 

activation functions when applied to deep CNN. Then, the chapter presents the proposed 

IReLU-Tanh function, which will be developed to address the limitations of existing 

activation functions. 

Chapter Six presents the experimental facilities used in this study, including test rig 

development, instruments used to carry out the vibration measurement, fault simulation, 

and finally the experimental procedure. 

Chapter Seven presents the results obtained from applying the conventional signal 

processing and MOMEDA methods to the experimental vibration data. It starts with 

analysis of the time and frequency domains of the vibration signals. Finally, it presents 

the results obtained from applying the MOMEDA method to the vibration data. 

Chapter Eight presents the implementation of the CNN architecture with the proposed 

IReLU-Tanh function. The details of the creation of the CNN architecture including 

design, training and parameters tuning, validation and testing are presented. The 

effectiveness of the developed CNN architecture will be evaluated and compared with 

three recent CNN architectures using simulated data. Moreover, the performance of the 
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developed CNN architecture with the proposed IReLU-Tanh function will be evaluated 

and compared against the existing activation functions including Tanh, ReLU, LReLU, 

and ELU. 

Chapter Nine presents the evaluation performance of the developed CNN architecture 

with the proposed IReLU-Tanh function when applied to vibration data. The results 

obtained are presented and compared against the existing activation functions. 

Chapter Ten presents the conclusions with a summary of the thesis achievements, 

contribution to the knowledge, and recommendations for future work. 
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Chapter Two: Literature Review 

This chapter presents a relevant literature review, starting with reviewing data 

enhancement methods including time synchronous averaging, empirical mode 

decomposition, minimum entropy deconvolution, and multipoint optimal minimum 

entropy deconvolution adjusted. Then, the application of AI methods including shallow 

learning and deep learning for CM are reviewed. Finally, the key findings obtained from 

the reviews are presented. 
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2.1. Introduction 

A number of data processing techniques have been developed in the field of CM and 

applied to analyse the monitored data. These techniques are classified into three main 

types, as discussed in Chapter One, namely: signal processing, data enhancement, and AI 

[22-24]. Signal processing techniques are used to process and analyse the monitored data. 

Data enhancement techniques are employed to enhance the important features in the 

monitored data, and have been widely implemented for CM. In this chapter, the data 

enhancement techniques used for CM are presented in section 2.2. AI techniques are used 

to automate the diagnostic procedures and minimize human involvement in CM. AI 

techniques can be classified into two main groups, shallow learning and deep learning 

[49] and these are reviewed with their theoretical bases in section 2.3. 

2.2. Data Enhancement Methods for Condition Monitoring 

A number of studies have applied data enhancement to CM and the most common 

methods are discussed in the next section. 

2.2.1. Time Synchronous Averaging 

TSA or synchronous averaging is a well-known time domain technique developed by 

McFadden in 1991 [66]. It is based on the idea of removing random background and non-

synchronous features from the periodic signal by averaging the obtained signal over many 

rotations. TSA can be computed as follows [67]: 

𝑔(𝑖) =
1

𝑁
∑ 𝑥(𝑖 + 𝑛𝑇)𝑁−1

𝑛=0         (2.1) 

where: 𝑔(𝑖) is the averaged signal, 𝑥(𝑖) is the measured signal, 𝑇 is the averaging period, 

and 𝑁 is the number of averaged segments. 

TSA has been widely applied to enhance the vibration signal, for instance, Fan, Zhou [68] 

implemented TSA to enhance the periodic vibration signal related to a gear of interest, 

then the enhanced signal was fed to train a SVM to classify the gear’s condition. Zuber, 

Bajrić [69] combined TSA with an ANN for analysis of vibration signals. In this study, 

the TSA was used for suppressing background noise and non-synchronous features from 
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the periodic vibration signal, then the enhanced signal was fed to train the ANN to classify 

different types of faults. 

2.2.2. Empirical Mode Decomposition  

EMD was developed by Huang [70] for analysing non-linear and non-stationary data [71]. 

The basic idea of the EMD method is that the input data can be decomposed into a set of 

Intrinsic Mode Functions (IMFs) based on local characteristic time scales [72]. According 

to the EMD method, the input data 𝑥(𝑡) can be decomposed into a set of IMFs as follows 

[73]: 

𝑥(𝑖) =  ∑ 𝑐𝑛 + 𝑟𝑁
𝑁
𝑛=1          (2.2) 

Where 𝑐𝑛 represent the intrinsic mode function (IMF) and 𝑟𝑁 is the residue of data 𝑥(𝑖). 

2.2.3. Minimum Entropy Deconvolution 

The MED technique was developed by Wiggins in 1978 [74] and has proved its efficiency 

in enhancing fault impulse features [75]. The basic idea of the MED is to find an inverse 

filter that counteracts the effect of the transmission path by assuming the original input 

signal was impulsive and hence having a high kurtosis value [75]. Kurtosis is an indicator 

that reflects the “peakiness” of a signal, and therefore its impulsive features [76]. The 

maximum kurtosis value is used as the termination condition for the iteration. The MED 

technique was successfully applied by Endo and Randall [77] for removing the effect of 

the transmission path and to enhance the clarity of the fault impulse features. Li, Ji [78] 

combined MED and variational mode decomposition for gear fault diagnosis and claimed 

that the developed method enhanced fault impulse features. MED has also been widely 

applied to enhance the fault impulse features for gear fault detection and diagnosis [79-

81]. Despite its successes in enhancing fault impulse features, it has been reported that 

the MED is only able to enhance a single fault impulse feature as opposed to periodic 

fault impulses. In addition, MED is an algorithm that finds a good filter solution 

iteratively, as a result of adopting the maximum kurtosis value as the objective function 

for the iteration termination process [82, 83]. 
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2.2.4. Multipoint Optimal Minimum Entropy Deconvolution Adjusted 

MOMEDA is an improved method of the MED proposed by McDonald and Zhao [82], 

to overcome the shortcomings of MED method [84]. MOMEDA has the capability to 

extract periodic impulse features instead of single fault impulse feature. Moreover, it is a 

non-iterative solution for the filter selection, which means that the MOMEDA method 

has the capability to reach the optimal filter solution without the iterative process [85].  

In general, the vibration signal generated from the machinery system is composed of 

several parts and it can be expressed as in equation (2.3) [86]: 

𝑥(𝑖) = ℎ(𝑖) ∗ 𝑣(𝑖) + 𝑒(𝑖)        (2.3) 

where 𝑥(𝑖) is the measured signal, ∗ represents the convolution operation, ℎ(𝑖) is the 

transfer function, 𝑣(𝑖) is the periodic impulse feature, and 𝑒(𝑖) is the noise added into the 

signal. 

The process of recovering the properties of the input signal 𝑣(𝑖) is referred to as 

deconvolution. Deconvolution can be carried out by applying an inverse filter 𝑓(𝑖) to the 

measured signal 𝑥(𝑖) that aims to restore the properties of the input signal 𝑣(𝑖). The 

deconvolution can be expressed as [84, 87]: 

𝑣(𝑖) = 𝑓(𝑖) ∗ 𝑥(𝑖) =  ∑ 𝑓𝑙𝑥𝑖−𝑙
𝐿
𝑙=1        (2.4) 

Where 𝐿 is the length of the deconvolution filter of 𝑓(𝑖), 𝑥(𝑖) is the measured signal, and 

𝑣(𝑖) is the recovered signal. 

To obtain the periodic impulse features, McDonald and Zhao introduced a target vector 𝑡 

that represents the location of the impulses to be deconvolved, and which can be 

determined by the period of the fault [82], for example: 

𝑡 = [0000100001000]𝑇        (2.5) 

The target vector 𝑡 aims to deconvolve two impulses in the signal. The first impulse is 

located at 𝑛 = 5 and the second impulse at location 𝑛 = 10. The normalised level is 

between 0 and 1, where a value of 1 indicates that the optimal target solution was reached, 

and the fault impulse feature has been extracted. Therefore, the target vector 𝑡 can be used 
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to separate and determine the location of the fault impulse feature to be deconvolved [82]. 

In order to measure the extracted fault feature, multipoint kurtosis (MKurt) was 

introduced as a measure of the fault at multiple impulses [84]: 

𝑀𝐾𝑢𝑟𝑡 =  
(∑ 𝑡𝑛

2𝑁−𝐿
𝑛=1 )2 ∑ (𝑡𝑛𝑣𝑛)4𝑁−𝐿

𝑛=1

∑ 𝑡𝑛
8(∑ 𝑣𝑛

2𝑁−𝐿
𝑛=1 )2𝑁−𝐿

𝑛=1
       (2.6) 

where 𝑁 is the length of the input signal and 𝐿 is the length of the filter. 

The definition is based on kurtosis and has been extended to multiple impulses at the 

controlled locations as determined by the target vector. Wang, Wang [85] applied 

MOMEDA to a vibration signal in order to de-convolve the effect of the transmission 

path and enhance the fault impulse features in the signal. Cai and Wang [88] recently used 

a combined ensemble local mean decomposition (ELMD) and MOMEDA to extract a 

series of fault impulses features from a vibration signal. ELMD was used to decompose 

the measured signal into several product functions, MOMEDA was then used to extract 

the periodic fault impulse features from the decomposed signal. Cai, Yang [89] applied 

MOMEDA to extract a series of multiple fault features generated by a gearbox defect. 

2.3. Artificial Intelligence Methods for Condition Monitoring 

2.3.1. Shallow Learning Methods 

Shallow learning is a branch of AI that is concerned with processing and analysing the 

manually extracted features. Shallow learning can be used for solving different tasks 

including regression, classification, and anomaly detection [54, 90]. Learning methods, 

including unsupervised and supervised learning, can be implemented based on shallow 

learning methods. Supervised based shallow learning can be employed to build a 

classifier that learns how to produce the desired output based on the given examples of 

input-output (labelled data). Unsupervised based shallow learning draws inferences from 

the data itself without using any corresponding label (unlabelled data) [91]. Methods such 

as ANN, SVM, KNN and DT, belong to shallow learning, have attracted significant 

attention in a variety of applications, and since then it has been widely applied for 

intelligent fault diagnosis [53]. The construction of shallow learning methods generally 

comprises three main steps; data acquisition, feature extraction or selection, and 

classification [92], as shown in Figure 2-1. 
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Figure 2-1: Application of shallow learning 

Feature extraction is the process of extracting the representative features from the data 

[93]. Feature selection aims to reduce the dimensionality of the data by selecting only 

discriminative features that are expected to be the most relevant to the problem [94]. For 

intelligent fault diagnosis, the feature extraction and selection have attracted most 

attention by many researchers in recent years [95]. In the classification step, the extracted 

features are used to train the shallow learning methods. A number of studies have applied 

shallow learning methods for classification, these have included ANN, SVM, KNN, and 

DT [96]. However, the features are still extracted using conventional signal processing 

techniques and the classification performance of shallow learning methods relies entirely 

on the quality of the extracted and selected features [93]. 

2.3.1.1. Artificial Neural Network 

ANN is an information processing paradigm inspired by the nervous systems of the 

human brain [97]. It has been widely applied in several applications including image 

processing and speech recognition, etc. ANNs can be trained based on supervised or 

unsupervised learning. As shown in Figure 2-2, ANN consists of three different kinds of 

layers: input layer, hidden layer, and output layer. Each ANN layer is composed of a 

number of interconnected processing units called neurons, where each neuron has 

connections to neurons in the preceding and succeeding layers via weighted connections. 

These interconnected processing neurons work together to solve a specific task [98]. 

During training of ANNs, the network updates the interconnection weights of the model 

until the error value between the desired target output and the network output predictions 

is minimised as close as possible to the minimum error value [99]. 
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Figure 2-2: Typical ANN structure 

To better understand the ANN structure, Figure 2-3 shows an example of a simple ANN, 

which consists of a single neuron. 

 

Figure 2-3: Simple neuron structure 

The neuron in an ANN is a computational unit that multiplies the input data 𝑥1, 𝑥2,𝑥3, 𝑥𝑛 

with individual weights 𝑤1, 𝑤2, 𝑤3, 𝑤n, see equation (2.7) [100]: 

𝑦 = ∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1           (2.7) 

where 𝑦 is the neuron output, 𝑥 is the input data and 𝑤 is the weights. 

The sum of the products of multiplication between the input data and weights is fed into 

an activation function to introduce a non-linear characteristic to the ANN model. A 

common activation function is Tanh, and it can be computed as in equation (2.8) [101]: 
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𝑓𝑇𝑎𝑛ℎ(𝑦) =
(𝑒𝑥𝑝𝑦−𝑒𝑥𝑝−𝑦)

(𝑒𝑥𝑝𝑦+𝑒𝑥𝑝−𝑦)
        (2.8) 

where 𝑓 is the activation function. 

The Tanh function output ranges between −1 and 1. However, a number of activation 

functions have been developed in recent years, such as ReLU, LReLU, and ELU. These 

activation functions will be discussed in more detail in Chapter Five. 

2.3.1.2. Support Vector Machine 

SVM is a supervised learning method proposed by Vapnik [102] for solving a variety of 

tasks such as classification and regression. It was originally designed for solving binary 

classification problems [103]. The basic idea of the SVM is to separate the data into two-

classes by finding an optimal hyper-plane between the classes so that class A and class B 

are separated by a clear gap that is as wide as possible, i.e. the margin is maximized as 

shown in Figure 2-4 [104]. 

 

Figure 2-4: SVM for binary class classification 

SVM can be applied to solve multi-class classification problems by using a combination 

of several binary SVM classifiers, such as One-Versus-One (OVO) and One-Versus-All 

(OVA). For a multi-class classification of 𝑁 classes, the OVO method constructs 
𝑁(𝑁−1)

2
 

classifiers, where each classifier is trained on data having two different classes [105]. In 

the case of OVA, it constructs 𝑁 multi-class SVM models where each model is trained 

using all the training data in which the data belonging to class A has a positive label and 

the rest (i.e., class B, C) have a negative label [106], see Figure 2-5. 
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Figure 2-5: Examples of using One-Versus-All for multi-class classification SVM 

SVM has been successfully applied in many real world problems such as image 

classification, handwritten character recognition, and speech recognition. For rotating 

machinery, it has been widely used to classify the machine condition, for instance Zhang, 

Peng [107] employed a multi-class classification SVM to classify three types of gear 

condition. Chao, Lu [108] applied the SVM method to spectrum data to classify different 

types of gearbox condition. Kang, Zhang [109] presented intelligent fault diagnosis for a 

gearbox based on wavelet packet analysis and SVM. In this study, the standard deviations 

of the wavelet packet coefficients were selected to identify the faults as the feature vector. 

Then, the selected features were used to train the SVM method to diagnose several types 

of faults. 

2.3.1.3. K-Nearest Neighbour 

KNN is a supervised learning method developed by Cover and Hart [110] and is 

commonly used for solving classification and regression tasks. The objective of KNN is 

to assign data samples into one of the predefined classes based on k nearest (closest) 

neighbour in the training data. A sample is assigned by the majority vote of its neighbours, 

with the sample being assigned to the most common class amongst its k nearest 

neighbours [111]. Figure 2-6 shows an example of KNN used to classify a sample into 

one of two predefined classes, A and B. 
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Figure 2-6: A simple example of KNN model for different values of k 

For example, in Figure 2-6, assume that there are two classes (A and B), and a data sample 

(star point) needs to be classified. i.e., If k is set to be 3, (samples in the smaller circle), 

then the test data sample (star point) will be classified as class B; this is because there are 

two samples belonging to class B and only one sample belonging to class A. Whereas, if 

k is set to be 7 (samples in the larger circle), then the test data sample will be classified 

as class A because the majority (four) of its seven neighbours belong to class A and only 

three data samples belong to class B. 

2.3.1.4. Decision Tree 

DT is a well-known classification method developed by Quinlan [112]. The training of 

the DT is based on a supervised learning paradigm in which a set of decision rules are 

created to classify unseen data. A DT is structured in a way that progressively breaks 

down the data set into smaller sub-divisions, starting from the root node to the final leaf 

node. Figure 2-7 shows an example of a DT, samples at the root node will be divided into 

left and right nodes according to the inferred features from the data set [113]. Each branch 

represents one of the possible outcomes that lead to the target class, and each leaf node 

represents the class label. This process is applied iteratively for each node of the tree until 

the leaf node is reached, where the data cannot be divided to any further nodes. The final 

leaf node of the tree returns the final classification for all the samples that end up in that 

node [114] 
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Figure 2-7: Example of DT 

2.3.1.5. Application of Shallow Learning Methods to CM 

Several studies have taken advantage of shallow learning methods to analyse extracted 

features and classify a system’s health condition. For instance, Guolian, Pan [115] in 2010 

implemented an intelligent fault diagnosis based ANN for identifying different types of 

fault in a wind turbine control system. The results confirmed the ANN as an effective and 

accurate fault diagnosis method. Yang, Hoi [116] in 2011 proposed intelligent fault 

diagnosis based on the combination of two shallow learning methods ANN and genetic 

algorithm (GA). In this study, GA was used for feature selection and then the selected 

features were fed to the ANN classifier to detect nine types of faults in a gearbox. 

Khazaee, Ahmadi [117] in 2012 applied the Least-Squares SVM (LS-SVM) to detect and 

classify three PG conditions: healthy, and two different gears, each with a worn gear 

tooth. Statistical features were extracted from the frequency domain signals. The 

extracted features were fed to the SVM classifier for fault classification. The results 

demonstrated that the LS-SVM classifier was able to detect and classify the PG 

conditions. Praveenkumar, Saimurugan [118] in 2014 implemented a SVM to diagnose 

the condition of a gear using statistical features (mean, median, RMS, and kurtosis) 

extracted from the time domain signal. The extracted features were fed to a SVM 

classifier which successfully identified several faults, and it was claimed that the SVM 

could be used for intelligent fault diagnosis. Yang, Liu [119] in 2015 used ensemble EMD 

for feature extraction and the extracted features were fed into a SVM classifier to detect 

different types of gear defects. Heidari, Homaei [120] in 2016 compared two intelligent 

SVM models: wavelet-SVM and LS-SVM to detect several types of faults in a gearbox. 
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Features were extracted using a wavelet packet transform and then the extracted features 

were fed into the two SVM models. The results of the classification accuracy showed that 

the wavelet-SVM had better diagnostic performance and was more accurate than the LS-

SVM. Montaña and Sanz-Bobi [121] in 2018 extracted statistical parameters from the 

time and frequency domain signals obtained from a wind turbine gearbox, and then used 

princple component analysis (PCA) to reduce the dimensionality of the data and select 

representative features. The selected features were fed to a self-organizing map and 

Gaussian mixture model to detect anomalies in the gearbox. Stetco, Dinmohammadi [53] 

in 2019 reviewed the recent literature on shallow learning methods that have been used 

for machine CM. 

2.3.1.6. Limitations of Existing Shallow Learning Methods 

Based on the recent studies outlined in Section 2.3.1.5, it can be said that the vast majority 

of the AI based shallow learning methods for CM are applied for the classification task, 

while the features are still manually extracted [122]. Such an approach has the following 

deficiencies: 

 Feature extraction and classification tasks are two independent processes and as a 

result of that, the feature extraction task must be redesigned for every diagnostic task 

[123, 124]. 

 The classification accuracy of the shallow learning method relies entirely on the 

quality of the extracted features [125, 126]. 

These inherent shortcomings in shallow learning methods presently used for CM need to 

be overcome. Therefore, it is important to employ an automated technique based on deep 

learning that is able to extract representative features directly from the raw data and 

automatically classify the machine condition [127, 128]. 

2.3.2. Deep Learning Methods 

With the continuous development of AI, a branch called deep learning was proposed by 

Hinton, Osindero [129] for the automatic learning of features and has become a popular 

method for a variety of applications [49, 130]. The key difference between shallow 

learning and deep learning methods is in how the features are extracted. As discussed in 
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section 2.3.1, shallow learning methods require hand-crafted features based on expertise 

knowledge. In the case of deep learning, the features are learned automatically from the 

raw input data by means of a multi-layered structure [131], as shown in Figure 2-8. The 

deep learning method integrates both feature extraction and classification tasks into a 

single hierarchical model and by doing so, it provides an effective solution to the current 

problems that occur in AI-based shallow learning methods for CM [132]. 

 

Figure 2-8: Application of deep learning method 

Deep learning is commonly referred to as DNN, where multiple hidden layers are stacked 

in the network architecture to perform feature extraction and then automatically identify 

different classes for a given set of data. The term “deep” refers to the number of hidden 

layers present in the network architecture, which can range from tens to thousands of 

hidden layers [133]. A number of deep learning methods have been developed in recent 

years, such as CNN, SAE, and RNN [134, 135]. These methods will be discussed in more 

detail in section 2.3.2.3. 

2.3.2.1. Fundamentals of Deep Learning 

As with the ANN, deep learning also refers to a neural network model inspired by the 

nervous system of the human brain. The difference is, as the name suggests, deep learning 

is based on a deep architecture obtained by stacking multiple hidden layers between the 

input and output, hence giving the name Deep Neural Network (DNN), as shown in 

Figure 2-9. Each hidden layer is made up of a number of neurons to perform an operation 

on their inputs, with each neuron connected to a neuron in the next layer using weighted 

connections. The deeper the neural network, the more hidden layers and neurons the 

architecture will contain. With multiple levels of hidden layers, the DNN architecture can 

automatically learn more complex representations than a shallow architecture [136]. 
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Figure 2-9: Deep neural network architecture 

The implementation of DNN is generally consists of three main steps: training, validation, 

and testing. In the training step, the DNN is fed with training data to learn the 

representative features directly based on labelled or unlabelled data depending on the type 

of learning algorithm. The training step, with DNN mainly involves forward and 

backward propagation. In forward propagation (from the input layer to the output layer), 

the training data is passed through the DNN architecture to produce an initial network 

output. Then, the network calculates the error value based on the current network 

parameters. In the backward propagation (from the output layer towards the input layer), 

the network iteratively minimises the error value by updating the network parameters to 

minimise the error value. The validation step is carried out by feeding the DNN with a 

set of unseen data to be used for producing the final model and to avoid overfitting 

problem through the early stopping technique. The testing step is the final step of applying 

the DNN and is conducted by feeding the trained DNN model with unseen data called 

testing data, to measure the classification accuracy of the trained model [137, 138]. 

2.3.2.2. Training Deep Neural Network 

DNNs can be used to solve a variety of tasks such as classification, anomaly detection 

and regression. Several studies have adopted deep learning methods for automated fault 

diagnosis in order to take advantage of its automatic learning of features, its high 

classification accuracy, and to avoid hand-crafted features [139-142]. Training DNN 

generally is carried out using one of the three main learning paradigms: 
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 Supervised learning, the DNN is trained using a set of labelled data, each input data 

has a target output, and during the training process the network learns how to produce 

the desired output based on examples of input-output (labelled data). Common 

supervised learning methods for deep learning include CNN, RNN, long short term 

memory (LSTM), and gated recurrent units (GRU) [52]. See also Section 1.6.1.1. 

 Semi-supervised learning, is a mix between supervised and unsupervised learning, 

in which the DNN is trained with partially labelled data and then uses the trained 

DNN model to predict the remaining portion of unlabelled training data. Typical 

semi-supervised learning methods for deep learning are the generative adversarial 

network (GAN), LSTM and GRU [143]. See also Section 1.6.1.2. 

 Unsupervised learning, the DNN is trained with a set of unlabelled data without 

using any corresponding target output. Common unsupervised learning methods for 

deep learning include auto-encoders (stacked, de-noising, and contractive), the 

restricted boltzmann machine [136]. See also Section 1.6.1.3. 

2.3.2.3. Types of Deep Neural Network Algorithms 

2.3.2.3.1. Auto-Encoder 

Auto-encoder (AE), is a type of unsupervised neural network proposed by Rumelhart, 

Hinton [144], to learn feature representations from unlabelled data. An AE with deep 

architecture will be stacked with multiple levels of hidden layers between the input and 

output layers, as shown in Figure 2-10. The key difference between the deep AE and the 

ANN is the number of neurons in the output layer is equal to a number of neurons in the 

input layer [145]. 

 

Figure 2-10: Deep auto-encoder 
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Training deep AEs generally involves two main stages, encoder and decoder. The encoder 

is used for mapping the input data into a hidden layer with a smaller number of neurons 

to force the network to learn representative features from the input data. The decoder 

refers to the process of reconstructing the input data from the hidden layer representation 

[146]. It is generally based on the idea that the AE will try to make the outputs as equal 

as possible to the inputs. In other words, AE approximates the identity function to obtain 

an output of AE �̃�𝑖 that is similar to the input 𝑥𝑖, by minimizing the reconstruction error, 

possibly in the form of the mean square error (MSE). The encoder and decoder steps of 

AE can be computed as shown in equations (2.9) and (2.10) [147]: 

ℎ𝑖 = 𝑓(𝑤𝑖
𝑒𝑥𝑖 + 𝑏𝑖

𝑒)         (2.9) 

�̃�𝑖 = 𝑓(𝑤𝑖
𝑑ℎ𝑖 + 𝑏𝑖

𝑑)         (2.10) 

where ℎ𝑖 is the hidden encoder obtained from input data 𝑥𝑖, 𝑓 is the activation function, 

𝑤𝑖
𝑒 is the encoder weight matrix, 𝑏𝑖

𝑒 is the encoder bias vector, �̃�𝑖 is the reconstructed 

data, 𝑤𝑖
𝑑 is the decoder weight matrix, and 𝑏𝑖

𝑑 is the decoder bias vector. 

During training of the AE, model parameters including 𝜃 = [𝑤𝑖
𝑒 , 𝑤𝑖

𝑑, 𝑏𝑖
𝑒 , 𝑏𝑖

𝑑] are 

optimized to minimize the reconstruction error between input data 𝑥𝑖 and the 

reconstructed data �̃�𝑖. The reconstruction error of AE can be computed using equation 

(2.11) [148]: 

𝐸 =
1

2
∑ (𝑥𝑖 − �̃�𝑖)2𝑁

𝑖=1          (2.11) 

where 𝐸 is the reconstruction error between the input data 𝑥𝑖 and the reconstructed data 

�̃�𝑖. 

The deep AE is trained to minimize the MSE by optimizing the AE parameters to 

reconstruct the output �̃�𝑖 from the input data 𝑥𝑖 so that the reconstruction error 

1

2
∑ (𝑥𝑖 − �̃�𝑖)

2𝑁
𝑖=1  is minimised [144]. Once the output is reconstructed from the hidden 

layer representation, it can be said that the deep AE has learned the important features 

contained in the input data and mapped those features into the hidden layers [145]. 
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2.3.2.3.2. Recurrent Neural Network 

RNN is a type of DNN architecture developed by Williams and Zipser [149] for 

processing sequential data such as text, video and time series data. The key idea of the 

RNN architecture is that it processes the input data in a recurrent manner. With a flow 

path going from the input layer to the hidden layer, where the hidden layer contains cyclic 

connections, and finally to the output layer [150]. 

  

Figure 2-11: A simple recurrent neural network architecture 

As shown in Figure 2-11, the RNN consists of multiple neurons, each neuron has a 

function for generating the current hidden state ℎ𝑡, and the output 𝑦𝑡, using the current 

input 𝑥𝑡, and the previous hidden state ℎ𝑡−1, and therefore ℎ𝑡 and yt can be computed 

according to equations (2.12) and (2.13) [52, 151]: 

ℎ𝑡 = 𝑓(𝑤ℎℎ𝑡−1 + 𝑤𝑥𝑥𝑡 + 𝑏ℎ)       (2.12) 

𝑦𝑡 = 𝑓(𝑤𝑦ℎ𝑡 + 𝑏𝑦)         (2.13) 

where 𝑤ℎ, 𝑤𝑥, and 𝑤𝑦 are the weights for the recurrent connections of hidden-to-hidden, 

input-to-hidden, and hidden-to-output, respectively, 𝑏 is the bias vector, and 𝑓 denotes 

the activation function. 

2.3.2.3.3. Convolutional Neural Network 

CNN is a type of deep learning method proposed by LeCun, Bottou [152]. It is a 

supervised DNN and based on the idea that the training data needs to be labelled and then 

the network is allowed to model a relationship between the input data and the 

corresponding target output [153]. CNN integrates several features into a single deep 
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hierarchical model including; feature extraction, dimensionality reduction and 

classification [154]. The feature extraction task consists of several hidden layers, 

including convolution, activation function, and pooling layers. The convolution layer is 

intended to extract the representative features from the input data. The activation function 

is used to introduce non-linear characteristics to the model. The pooling layer is employed 

to reduce the dimensionality of the data whilst preserving the most important features. 

Stacking several convolution, activation and pooling layers allows the CNN to learn the 

representative features directly from the raw data. Finally, fully connected and softmax 

layers are applied at the end of the architecture for performing classification [155]. CNN 

has gained the special attention of many researchers and has been widely applied in 

several applications, including speech recognition, image classification, and object 

detection [154]. It has been reported that CNN can cope with different types of data, 

including three-dimensional (3D) data for videos, two-dimensional (2D) data for images, 

and one-dimensional (1D) data for signals [156-158]. It has recently been applied in the 

field of CM [63, 159, 160]. This research focuses on the development of CNN method 

for CM, which will be discussed in more detail in Chapter Four. 

2.3.2.4. Application of Deep Learning Methods to CM 

Several studies have attempted to use deep learning methods for automated fault 

diagnosis. For instance, Chen, Li [161] in 2015 implemented a deep CNN for automated 

diagnosis of a gearbox fault. Statistical parameters were extracted from the signal in the 

time and frequency domains and the extracted features were used to train a deep CNN 

using a supervised learning paradigm. Experimental vibration data was used to evaluate 

the developed deep CNN method, and the classification accuracy obtained was compared 

with that of a shallow learning model (SVM). It was claimed that the deep CNN 

outperformed the SVM model. Jing, Zhao [92] in 2017 developed a CNN to learn fault 

features directly from the frequency domain of the vibration data. A supervised learning 

paradigm was adopted to train the CNN method and classify the vibration data into six 

predetermined classes. Vibration data was collected experimentally from the gearbox and 

PG. The developed CNN method was compared with shallow learning models such as 

SVM, fully connected neural network and random forest. It was reported that the 

developed CNN method achieved higher classification accuracy and outperformed the 

shallow learning models. 
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Liu, Cheng [162] in 2018 proposed feature extraction and fault classification based on 

variational mode decomposition and CNN for automated fault diagnosis. Experimental 

vibration data was collected for different PG conditions, and training was by a supervised 

learning paradigm. It was claimed that the proposed method could successfully extract 

the fault features and accurately identify different PG fault conditions with high 

classification accuracy. Liu, Bao [147] also in 2018 presented automated fault diagnosis 

based on a deep SAE method that learned fault features directly from the frequency 

domain signals. The presented method was applied to vibration data collected from a 

gearbox with different health conditions. An unsupervised learning paradigm was used to 

train the deep SAE method. The study claimed that the deep SAE method was more 

effective and outperformed conventional intelligent diagnostic methods. 

Park, Marco [163] in 2019 proposed an integrated deep learning approach based on auto-

encoder and LSTM for automated fault diagnosis. In this study, the auto-encoder was 

used to detect the anomalies in the input data in an unsupervised learning manner, and 

then the predicted anomalies were fed into LSTM network to classify different types of 

faults using a supervised learning paradigm. It was claimed that the proposed auto-

encoder and LSTM method achieved an outstanding performance in detecting and 

classifying different types of fault. Zhang, Lin [164] and Zhao, Yan [165] both in 2019 

reviewed the application of deep learning methods including SAE, CNN, RNN, and the 

restricted Boltzmann machine for automated fault diagnosis. 

Yin, Yan [141] in 2020 developed LSTM for automated fault diagnosis. Experimental 

vibration data was collected from a wind turbine gearbox to evaluate the effectiveness of 

the developed LSTM method. A supervised learning paradigm was used to train the 

developed method and classify the input data into ten predetermined class conditions. It 

was reported that the developed method gave superior classification performance 

compared to so-called “classical methods” including SVM and KNN. Lin, Han [166] in 

2020 developed a feature learning method based on CNN. The developed method was 

applied to learn features directly from the spectrum data of a vibration signal. A 

comparison of various input data types was carried out using both time domain and 

frequency domain data. A supervised learning paradigm was used to train the developed 

CNN method. The study confirmed that learning features from the spectrum data provide 

better fault classification performance than the time domain features. 



56 

2.3.2.5. Challenges of Existing Deep Learning Methods 

Based on the studies listed in Section 2.3.2.4, deep architectures are observed to learn 

better feature representations from the data through a multi-layered structure. However, 

it has been reported that severe problems can appear within the deep architecture that is 

caused by the activation function. This affects the training of the network to extract 

representative features from the raw data, and hence the classification accuracy of the 

model [13, 14, 65]. Common problems include the vanishing gradient problem during the 

backward propagation through a multi-layered neural network, this is due to the value of 

the gradient decreasing exponentially to zero as it is propagated backwards [167]. This 

problem is exacerbated when an activation function such as the Tanh function is used. 

This is due to the fact that the Tanh function saturates at −1 and +1 for large negative 

and positive inputs, with the value of the gradient close to zero [168]. To overcome the 

vanishing gradient problem, a number of activation functions such as ReLU, LReLU, and 

ELU have been developed in recent years [169-171]. However, these activation functions 

still have some drawbacks such as the dying ReLU problem, non-zero fixed value, and 

adding a hyper-parameter to the network architecture. These shortcomings will be 

discussed in more detail in Chapter Five. 

2.4. Key Findings 

 A number of data enhancement methods have been developed for CM as discussed in 

Section 2.2. However, these methods rely on prior knowledge of the machinery 

system and well-trained technical to apply them successfully. 

 Most of the AI based shallow learning methods for CM are applied for the 

classification task, while the features are still manually extracted using conventional 

signal processing techniques. Thus, the classification accuracy of shallow learning 

method relies entirely on the quality of the extracted features. 

 Despite the wide implementation of automated fault diagnosis based deep learning 

methods, several studies have claimed that the activation function can also influence 

the overall performance of the deep architecture model and hence can lead to low 

classification accuracy of the model. 

 As discussed in Section 2.3.2.5, the vanishing gradient caused by use of the Tanh 

activation function is the most common problem in deep architecture. This has a 
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significant effect on the network training process and hence on the overall 

performance of the model. 

To address the obstacles mentioned above, an automated approach based on a deep CNN 

architecture with a proposed activation function is investigated for CM. The developed 

approach aims to automate the tasks of feature extraction and classification. In addition, 

an activation function will be developed to address the shortcomings in the existing 

activation functions, enhance the learning ability of deep CNN architecture during the 

training process, and consequently improve the overall performance of the model. The 

effectiveness of the developed deep CNN architecture with the proposed activation 

function will be evaluated and compared against existing activation functions, named 

Tanh, ReLU, LReLU, and ELU using simulated and experimental vibration data. 
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Chapter Three: Planetary Gearbox Failure 

Modes and Vibration Responses (Case Study) 

This chapter presents a brief introduction to PG case study used in this research, 

beginning with PG components and their characteristic frequencies. Then, it introduces 

fault frequencies for the sun, planet and ring gears. Gear failure modes and their 

potential causes are presented, followed by a list of key findings. 
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3.1. Introduction  

PGs are widely utilized in many industrial applications such as wind turbines and 

helicopters, owing to their high transmission efficiency [172]. The PG can offer different 

speed ratios, which means that different speeds can be achieved from the same planetary 

set, depending on which component remains stationary, which component is the input, 

and which component is the output. This makes PG an ideal option to be used in several 

industrial applications [173]. The reliability of the gears in a PG depends on its smooth 

operation inside the machine. However, most gears are subject to failure after long-term 

operation. A failure of the PG could cause a shutdown of key components or the entire 

system and may lead to significant economic losses and catastrophic accidents [174]. 

Generally, a PG is a compound gear system, see Figure 3-1, and consists of an externally 

toothed sun gear located at the centre, several externally toothed planet gears inserted 

between the sun gear and an internally toothed ring gear, and a carrier that holds the planet 

gears. The planet gears not only rotate around their own unfixed centres but also revolve 

around the centre of the sun gear [175], thus, the planet gear meshes simultaneously with 

both the ring gear and sun gear. With this structure, the PGs have several unique 

behavioural characteristics that pose great challenges for fault detection and diagnosis 

[176]. 

 According to the planet gear’s structure there are multiple time-varying vibration 

transmission paths from the meshing points to the sensor [175, 177]. 

 The fault characteristics are easily affected by heavy noise in the low-frequency range, 

because at least one component in the PG rotates at low speed to achieve a large 

transmission ratio [25]. 

 Multiple planet gears meshing simultaneously (planet-ring and planet-sun) will 

generate similar vibrations with different meshing phases [177]. 

According to the unique behaviours described above, the vibration data acquired by a 

fixed accelerometer will be complicated. Therefore, CM of PG has attracted considerable 

attention aimed at solving the challenge of detection and diagnosis of PG [178]. 
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3.2. Planetary Gearbox Components 

A PG consists of four basic parts: sun gear, several planet gears, ring gear, and carrier, as 

seen in Figure 3-1.  

 

Figure 3-1: Planetary gearbox [173] 

 Sun Gear 

The sun gear rotates around its own centre and it is mounted can be either the input or 

output rotating shaft, depending on the planetary gear configuration. 

 Planet Gear 

Several planet gears are inserted between the sun and ring gears. These planet gears are 

held by the carrier, and they not only rotate around their own unfixed centres but also 

revolve around the centre of the sun gear. 

 Ring Gear 

The ring gear is mounted in the gearbox housing and it is usually the fixed component. 

 Carrier 

The carrier holds the planet gears and is mounted on the input or output rotating shaft, 

depending on the planetary gear configuration. 

3.3. Characteristic Frequencies of the PG 

The characteristic frequencies of the PG can be defined in terms of meshing frequency, 

rotational frequencies of the carrier, sun, and planet gears. For the PG used in this study, 

 𝑍𝑟𝑖 = 62 is the number of teeth on the ring gear, 𝑍𝑝𝑖 = 26 is the number of teeth on each 

planet gear, 𝑍𝑠𝑖 = 10 is the number of teeth on the sun gear, and 𝑖 = 7.2 is the gear 
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transmission ratio. The characteristic frequencies calculated based on this PG structure 

are given below [25]: 

The PG transmission ratio can be expressed as: 

𝑖 = 1 +
𝑍𝑟𝑖

𝑍𝑠𝑖
          (3.1) 

The rotational frequencies of the carrier (𝑓𝑟𝑐𝑖), planet gears (𝑓𝑟𝑝𝑖) and sun gear (𝑓𝑟𝑠𝑖) can 

be computed using the following equations, respectively: 

𝑓𝑟𝑐𝑖 =
𝑍𝑠𝑖

(𝑍𝑟𝑖+𝑍𝑠𝑖)
∗ 𝑓𝑟𝑠𝑖         (3.2) 

𝑓𝑟𝑝𝑖 =
(𝑍𝑟𝑖−𝑍𝑝𝑖)∗𝑍𝑠𝑖

(𝑍𝑟𝑖+𝑍𝑠𝑖)∗𝑍𝑝𝑖
∗ 𝑓𝑟𝑠𝑖        (3.3) 

𝑓𝑟𝑠𝑖 = (
𝑍𝑟𝑖+𝑍𝑠𝑖

𝑍𝑠𝑖
) ∗ 𝑓𝑟𝑐𝑖         (3.4) 

The meshing frequency (𝑓𝑝𝑚𝑖) can be calculated as: 

𝑓𝑝𝑚𝑖 =
(𝑍𝑟𝑖∗𝑍𝑠𝑖)

(𝑍𝑠𝑖+𝑍𝑟𝑖)
∗ 𝑓𝑟𝑠𝑖         (3.5) 

3.4. Characteristic Frequencies of Faulty Gears in a PG 

Defects in PGs can be classified into three types: sun gear fault, planet gear fault, and ring 

gear fault. The characteristic frequencies of each of these faulty gears are calculated in 

this section [179]: 

 Characteristic Frequency of Faulty Sun Gear 

The characteristic frequency of the sun gear with fault (𝑓𝑠𝑓) can be expressed as: 

𝑓𝑠𝑓 = 𝐾
𝑓𝑝𝑚𝑖

𝑍𝑠𝑖
          (3.6) 

Where 𝐾 denotes the number of planet gears. 

 Characteristic Frequency of Faulty Ring Gear 

The characteristic frequency of the ring gear with fault (𝑓𝑟𝑓) can be computed as: 

𝑓𝑟𝑓 = 𝐾
𝑓𝑝𝑚𝑖

𝑍𝑟𝑖
          (3.7) 
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 Characteristic Frequency of Faulty Planet Gear 

The characteristic frequency of the planet gear with fault (𝑓𝑝𝑓) can be calculated as: 

𝑓𝑝𝑓 = 2
𝑓𝑝𝑚𝑖

𝑍𝑝𝑖
= 2(𝑓𝑟𝑝𝑖 + 𝑓𝑟𝑐𝑖)        (3.8) 

3.5. Gear Failure Modes 

Components such as gears in machinery systems are all subject to failure after long-term 

operation [180]. Gear defects can be classified into two groups: distributed defects and 

local defects. The main difference between distributed and local defects is that a 

distributed defect affects a number of gears, while a local defect affects a localised area 

of a gear and tends to increase rapidly once initiated. Thus, it is important to monitor the 

gear condition and detect any gear defect at an early stage as possible to avoid machine 

breakdown and catastrophic accidents [181]. 

 Pitting: is a surface fatigue failure of the gear tooth. It occurs in a localised area on 

the gear tooth surface, and tends to extend rapidly to adjacent regions until the whole 

surface is covered [182]. 

 Scoring: this type of failure occurs as a result of inappropriate lubrication between 

the gear teeth. It takes place in a localised area along the contacting surfaces of the 

gear teeth. The result can be a high temperature with weld spots appearing on the 

contacting surfaces of the two-mating gears. This can in turn, result in the gear teeth 

becoming distorted or even to break away as the gear rotates [183]. 

 Tooth Breakage: this type of failure is considered as the most dangerous, and can 

cause serious damage to other rotating parts or the entire system. Tooth breakage 

generally occurs due to excessive load on the gear teeth, it starts with small cracks in 

a single tooth and then it increases in size until the entire tooth breaks off [184]. 

 Wear: wear failure can be considered as removal of the surface material of the gear 

tooth due to repetitive contact on its surfaces, and it can take three forms: Adhesive 

wear: occurs when the force between two-mated gears teeth is sufficient to produce 

a weld spot over the area of contact. As a result, the weld spot breaks away as the 

gears rotate, and metal particles are released from the gear surfaces and contaminate 

the system. Abrasive wear: the occurrence of this type of wear is usually due to 

contamination of the gear lubricant by internal sources such as metal particles, dust, 
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and sand, and takes place on the meshing area between gear teeth [185]. Corrosive 

wear: this type of wear is caused by chemical action, which is often caused by active 

ingredients in the lubricating oil, such as acid, water, or moisture [186]. 

3.6. Key Findings 

To summarize, the key finding of this chapter are as follows: 

 Multiple vibration transmission paths from the gear meshing points to the sensor are 

time-varying.  

 The fault characteristics are easily affected by high noise levels in the low-frequency 

range, because at least one component in a PG rotates at low speed to achieve a large 

transmission ratio. 

 Multiple planet gears meshing simultaneously (planet-ring and planet-sun) will 

generate similar vibrations with different meshing phases. 

 Defects in PGs can be classified into three types: sun gear fault, planet gear fault, and 

ring gear fault. The characteristic frequencies of these faulty gears are given in Section 

3.4. 

 Tooth breakage failure is considered as the most dangerous, and can cause a serious 

risk to other rotating components or the entire system. 

Thus, the vibration signal acquired by a fixed accelerometer mounted on the PG housing 

is complicated in nature. CM of a PG based on conventional signal processing techniques 

requires skilled technicians and will be costly and time-consuming. Thus, an automated 

approach based deep CNN could be a promising way to automate the diagnostic 

procedure and provide an accurate diagnosis of the system’s health. 

  



64 

Chapter Four: Convolutional Neural Network 

This chapter presents the background of deep CNNs and their architecture layers, 

including convolutional, batch normalization, activation function, and pooling. Followed 

by learning algorithms including loss function, backpropagation, gradient decent and 

learning rate, with their theoretical bases illustrated. Finally, the implementation of the 

CNN for CM is discussed in detail. 
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4.1. Introduction 

One of the successful deep learning methods is the CNN. This method has achieved 

remarkable success in a variety of applications including image processing, speech 

recognition, natural language processing, and has been recently used in the field of CM 

[49, 130]. 

4.2. Convolutional Neural Network 

CNN is a deep learning method proposed by LeCun, Bottou [152] for handwritten digit 

classification. It is a special type of neural network that employs a deep architecture with 

multiple hidden layers. CNN is a supervised DNN algorithm and based on the idea that 

the training data needs to be labelled, and then allow the CNN to model a relationship 

between the input training data and the corresponding target classes [143]. CNN 

integrates several features into a single deep hierarchical model, including: feature 

extraction, dimensionality reduction, and classification [128]. As shown in Figure 4-1, 

the feature extraction task comprises several of the hidden layers, including 

convolutional, batch normalization, activation function, and pooling, followed by a fully 

connected and softmax for performing classification. Integrating these hidden layers 

through a multi-layered configuration, allows the CNN to learn representative features 

directly from the raw data. 
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Figure 4-1: Schematic of a convolutional neural network 

CNN is composed of three architectural ideas that play a significant role in its learning 

process: comprising local receptive field, shared weights, and pooling layer [156]. In the 

case of the traditional ANN, each neuron in the hidden layer is connected to all the 

neurons in the previous layer and each connection between neurons has its own weight, 

as discussed in Section 2.3.1.1, but in the case of CNN, each neuron in the hidden layer 

is only connected to a local region of neurons in the previous layer, referred to as the local 

receptive field [152, 187]. Another architectural idea of the CNN is that it shares the same 

weights in a particular layer. By sharing the same weights, CNN is forced to detect the 

same feature but at different locations of the data [157]. Figure 4-2 illustrates the idea of 
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the local receptive field and shared weights in a CNN. Typically, the final layer of feature 

extraction is the pooling layer. The basic idea of the pooling layer is that it reduces the 

dimension of the data while preserving the most important features [128], this leads to a 

reduction of connections or parameters to the next layers. Based on the above three 

architectural features, the CNN has several benefits including: (1) reducing the number 

of learnable weights to train the CNN, (2) reducing the network complexity and the 

dimensionality of the data, (3) reducing the potential risk of overfitting, (4) learning 

robust features from the data, and (5) achieving better learning and classification [143, 

152, 157, 158]. 

 

Figure 4-2: The idea of the local receptive field and shared weight in the CNN 

Due to its unique architecture, CNN has gained the special attention of many researchers 

as a promising form of deep learning, and has been successfully applied in several 

applications. It has been reported that CNN can cope with different types of data, such as 

three-dimensional (3D) data for videos, two-dimensional (2D) data for images, and one-

dimensional (1D) data for signals [156-158], and has been recently applied to CM [63, 

159, 160]. 

4.3. CNN Architecture 

As discussed in the previous section, the typical CNN architecture consists of several 

hidden layers, see Figure 4.1, with each layer having a different role and operation. The 

arrangement of these layers play a crucial role in designing the CNN architecture to 
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achieve better feature extraction and classification. In this section, the role of these layers 

is discussed in detail. 

4.3.1. Convolutional Layer 

The convolutional layer is the core building block of the CNN. It is employed as a feature 

extractor to extract representative features from the data. It uses the strategies of shared 

weights and local receptive field by means of the convolution operation instead of matrix 

multiplication as in the traditional ANN [152, 157]. In the convolutional layer, the input 

data is convolved with one or multiple convolutional filters or kernels and is applied 

systematically by moving (also known as striding) over the input data, creating an output 

feature map for each convolutional filter [12]. All convolutional filters have the same size 

as the local receptive field, which is connected to local region of neurons via a set of 

learnable weights. Each convolutional filter shares the same weights within the same 

convolutional layer [188]. The output of the convolutional layer consists of multiple 

output feature maps; each created using different convolutional filters with different 

weights [189]. The output feature map of the convolutional layer can be computed as 

[137]: 

𝑥𝑗
𝑙 = 𝑓(∑ 𝑥𝑖

𝑙−1 ∗ 𝑤𝑖𝑗
𝑙 + 𝑏𝑗

𝑙𝑁
𝑖=1 )        (4.1) 

Where xj
l is the output value of 𝑗𝑡ℎ neuron in the feature map at the 𝑙𝑡ℎ layer, 𝑓 denotes 

the activation function, 𝑥𝑖
𝑙−1 is the input data at (𝑙 − 1), 𝑤𝑖𝑗

𝑙  is the convolutional filter 

connecting the 𝑖𝑡ℎ input feature map at (𝑙 − 1) with 𝑗𝑡ℎ feature map at 𝑙, and 𝑏𝑗
𝑙 denotes 

the bias. 

The size of the output feature map generated by the convolutional layer is determined by 

several hyper-parameters, which play a key role in extracting the representative features 

from the data. These hyper-parameters are as follows; number of convolutional filters, 

size of convolutional filters, and stride [190]. The number of convolutional filters refers 

to the number of features to be learned within a single convolutional layer. The size of 

the convolutional filter refers to the size of the local receptive field that is convolved with 

the input data. The stride refers to the step size of the convolutional filter being slid over 

the input data [191]. 
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4.3.2. Batch Normalization Layer 

Training CNNs can be complicated because for each input layer the distribution of the 

input data varies during the training process as the network parameters are updated. The 

change in the input data distribution of each layer in the network is referred to as the 

“internal covariate shift” [137, 192]. It leads to slow down the convergence of CNN by 

requiring lower learning rates and appropriate initialization of network parameters. In 

order to address this issue, Ioffe and Szegedy [193] proposed a batch normalisation layer 

to reduce the shift of internal covariate. In doing so, it significantly accelerates the training 

process of CNNs. It draws its power from making the normalisation as a part of the 

network architecture itself [143]. Batch normalisation works by normalising the output 

feature map of the convolutional layer by first subtracting the mini-batch mean and 

dividing it by the mini-batch standard deviation. Then, the normalised values are shifted 

and scaled using two learnable parameters (beta 𝛽 and gamma 𝛾), whose values are 

learned during the training process [194]. The mathematical expressions for the batch 

normalisation are described in the following steps [193]:  

A. Equations 4.2 and 4.3 are used to calculate the mean (𝜇𝐵) and the variance (𝜎𝐵
2) of the 

mini-batch training data: 

𝜇𝐵 =
1

𝑚
∑ 𝑥𝑗

𝑚
𝑗=1          (4.2) 

𝜎𝐵
2 =

1

𝑚
∑ (𝑥𝑗 − 𝜇𝐵)2𝑚

𝑗=1         (4.3) 

B. Equation 4.4 is used to calculate the normalised value (�̂�𝑖) by subtracting the mini-

batch mean (𝜇𝐵) from (𝑥𝑗) and dividing by the mini-batch standard deviation (𝜎), a 

small number (𝜖) is added to avoid division by zero (𝜖 = 1𝑒 − 5)): 

�̂�𝑖 =
𝑥𝑗−𝜇𝐵

√𝜎𝐵
2+𝜖

         (4.4) 

C. Equation 4.5 is used to calculate the batch normalisation output (𝑦𝑖) by multiplying 

the normalised value (�̂�𝑖) with a learnable scale (𝛾) and adding a learnable shift (𝛽): 

𝑦𝑖 = 𝛾�̂�𝑖 + 𝛽         (4.5) 

Where 𝐵 denotes a mini-batch of size 𝑚; 𝑥𝑗 is the output feature map of the previous 

layer; 𝛾, and 𝛽 are learnable parameters that are updated during training. 
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4.3.3. Activation Function layer 

The activation function is applied to the output of the convolutional layer, as shown in 

Figure 4-1 and according to Equation (4.1). It is used to determine whether a neuron 

should be activated or deactivated. The main role of the activation function is to introduce 

nonlinearity characteristics into the model [195, 196]. The activation function generally 

transforms the feature map of the convolutional layer to produce a non-linear output in 

the range of [−1, +1], or [0, ∞], depending on the choice of activation function [197]. 

Hence, the activation function allows the CNN to observe non-linear expressions of the 

data so that many complex problems can be resolved [198]. A number of non-linear 

activation functions have been developed in recent years, a common activation function 

used for CNN is the ReLU function, which can be computed as: 

𝑓𝑅𝑒𝐿𝑈(𝑦𝑖) = 𝑚𝑎𝑥(0, 𝑦) = {
𝑦, 𝑦 > 0
0, 𝑦 ≤ 0

       (4.6) 

The ReLU function output ranges between [0, ∞], however, other types of activation 

functions such as Tanh, LReLU, and ELU [169-171] exist and will be discussed in more 

detail in Chapter Five. 

4.3.4. Pooling Layer 

Another important architectural feature in the CNN model is the pooling layer. It is 

employed to reduce the dimension of the feature map while preserving the most important 

features [128]. The pooling layer partitions each feature map into a set of non-overlapping 

pooling regions, and then extracts the maximum value (max-pooling) or computes the 

average value (average pooling) for each pooling region [188]. The max-pooling 

operation refers to extracting the maximum value for each non-overlapping pooling 

region in the feature map. Average pooling computes the average values for each non-

overlapping pooling region [143]. Thus, it reduces the size of each feature map and the 

amount of computation needed in the network [137, 198]. Figure 4-3 illustrates the max-

pooling and average pooling operations. 
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Figure 4-3: Max pooling and average pooling operation 

The max-pooling and average pooling operations can be calculated as follows [198, 199]: 

𝑝𝑖
𝑙 = Max

(𝑗−1)𝑊+1≤𝑦≤𝑗𝑊
[𝑓i

l−1(𝑦)]       (4.7) 

𝑝𝑖
𝑙 = 𝐴𝑣𝑔

(𝑗−1)𝑊+1≤𝑦≤𝑗𝑊
[𝑓𝑖

𝑙−1(𝑦)]       (4.8) 

Where 𝑓i
l−1(𝑦) denotes the value of 𝑦𝑡ℎ neuron in the 𝑖𝑡ℎ feature map at layer 𝑙 − 1, 𝑊 

is the width of the pooling region, 𝑗 denotes the 𝑗𝑡ℎ moving step of the pooling operation, 

and 𝑝𝑖
𝑙 denotes the output value of 𝑖𝑡ℎ neuron in the feature map at 𝑙𝑡ℎ layer of the pooling 

operation. 

Previous studies [200-202] have shown that max-pooling significantly outperforms the 

average pooling operation for image classification, and it also leads to a faster 

convergence rate and reducing the amount of computation, resulting in better efficiency 

during the training process. The max-pooling operation is the most widely used in modern 

CNN architecture and has been successfully implemented in CNN architecture for CM 

[198, 203, 204]. 

4.3.5. Fully Connected Layer 

A fully connected layer is commonly used in the classification task for CNN architecture, 

see Figure 4-1. The main role of this layer is to combine all of the features learned by the 

previous layers (convolutional and pooling layers) to classify the representative features 
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[205]. During training of the CNN, the output feature map of the previous layer (e.g., 

pooling layer) is typically flattened, e.g., transformed into a one-dimensional (1D) vector 

and as the name ‘fully connected’ suggests, all neurons in the fully connected layer are 

connected to all the neurons in the previous layer by a learnable weight [206]. For the 

classification task, the fully connected layer has the same number of K target classes. The 

output of the fully connected layer is then forwarded to the softmax layer in order to 

calculate the probabilities for the predictions of each target class in a supervised learning 

manner [207]. The fully connected layer can be computed as: 

𝑧𝑗
𝑙 = 𝑞(∑ 𝑝𝑖

𝑙−1 ∗ 𝑤𝑖𝑗
𝑙 + 𝑏𝑗

𝑙)𝑀
𝑖=1        (4.9) 

Where 𝑧𝑗
𝑙 is the output of 𝑗𝑡ℎ neuron in the fully connected at layer 𝑙, 𝑞 is the softmax 

function, 𝑝𝑖
𝑙−1 is the input feature map at (𝑙 − 1) generated from the previous layer, 𝑤𝑖𝑗

𝑙  

is the weight connecting the 𝑖𝑡ℎ feature map at (𝑙 − 1) with 𝑗𝑡ℎ feature map at 𝑙, and 𝑏𝑗
𝑙 

donates the bias. 

4.3.6. Softmax Layer 

A softmax layer is employed at the end of the CNN architecture for a multi-class 

classification task, see Figure 4-1. It normalises the output of the fully connected layer of 

K values into a probability distribution, creating an output consisting of K probabilities 

[208]. The output probability of each value ranges between [0 and 1], and the total output 

probabilities sum to 1. The softmax function returns the output probabilities of each class 

and the highest output probability among K probabilities will be taken as the predicted 

class [209]. The softmax function can be computed as [204]: 

𝑞(𝑧𝑖) =
𝑒𝑥𝑝𝑧𝑖

∑ 𝑒𝑥𝑝
𝑧𝑗𝐾

𝑗=1

         (4.10) 

Where 𝐾 is the number of classes and 𝑞(𝑧𝑖) is the estimated probability value of an 

observation data 𝑧 that belongs to 𝑖𝑡ℎ class. 

4.4. Learning Algorithm 

Learning algorithms can be achieved in different ways as explained in Chapter Two, these 

include supervised learning, unsupervised learning, or semi-supervised learning. In this 
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thesis, supervised learning is used to train the CNN with a labelled-data set. The main 

goal of the learning algorithm is to find the optimal model parameters by iteratively 

minimising the error value between the desired target output and the network output 

prediction. To find such optimal parameters, the gradient descent (GD) optimisation 

algorithm was used during the training of the CNN. It is an iterative process, where the 

model parameters are repeatedly being optimised during the training process to produce 

better results. 

4.4.1. Loss Function 

Cross entropy is employed as a loss function for multi-class classification. It is used to 

measure the error between the desired target output and the network output prediction 

[210, 211]. During training, the GD algorithm updates the model parameters to obtain the 

best relationship between the training data and its target class. This is done by iteratively 

updating the parameters until the lowest level or minimum error value is reached, where 

the cross-entropy loss function cannot be further minimized. At this stage, it can be said 

that the training process has achieved it’s optimum value, where the model is best 

matched to the training data and its target class [212]. The mathematical expression of 

the cross-entropy loss function can be computed as [157]: 

𝐿𝑜𝑠𝑠 = − ∑ 𝑡(𝑧𝑖)𝑙𝑜𝑔 (𝑞(𝑧𝑖))𝐾
𝑖=1       (4.11) 

Where 𝐾 is the number of classes, 𝑡(𝑧𝑖) is the target class, and 𝑞(𝑧𝑖) is the estimated 

probability value of an observation data 𝑧 that belongs to 𝑖𝑡ℎ class. 

4.4.2. Backpropagation 

Backpropagation (backward propagation) is a well-known algorithm proposed by 

Rumelhart, Hinton [144] for training neural networks. It is used in conjunction with the 

GD algorithm to calculate the gradient of the loss function, e.g., the rate at which the loss 

function is minimised with respect to the model parameters [213]. Training a CNN 

generally involves two main steps, forward and backward propagations. 

Forward Propagation (from the input layer to output layer) - passes the training data 

through the network to produce initial network predictions based on the current model 



74 

parameters. Then, the network output predictions are fed into the cross-entropy loss 

function to calculate the error between network output predictions and the desired target 

output [214]. 

Backward Propagation (from the output layer towards the input layer), the model 

calculates the gradient of the loss function with respect to the current model parameters. 

Then, the GD algorithm updates the model parameters by taking a step size of 𝜂 in the 

direction of minimising the loss function.  

The process of forward and backward propagations are repeated during training the CNN 

until the loss function is minimised [137]. 

4.4.3. Gradient Descent Algorithm 

GD is an optimisation algorithm used in training CNNs to minimise the loss function by 

iteratively taking a step size of 𝜂 which can be in the opposite direction of the gradient in 

order to reach the lowest or minimum error value [156]. There are three variant algorithms 

of GD [215-217]: 

 Stochastic GD: calculates the gradient of the loss function for each training data and 

then performs a single update for the model parameters for each training data, one by 

one. The advantages of stochastic GD are that the frequent updates to the model 

parameters give an insight into the performance of the model and the rate of 

improvement. However, the two main disadvantages of stochastic GD are that; (1) it 

is more computationally expensive than other GD methods as a result of the frequent 

updates to the model parameters for each training data, (2) frequent updates to the 

model parameters can cause the gradient of the loss function to fluctuate severely. 

The mathematical expression for updating the model parameters using stochastic GD 

can be written as: 

θ𝑛𝑒𝑤
𝑙 = θ𝑜𝑙𝑑

𝑙 − η
𝜕

𝜕θ𝑜𝑙𝑑
𝑙 𝐽( θ; 𝑥𝑖, 𝑡𝑖)       (4.12) 

Where θ𝑛𝑒𝑤
𝑙  is the updated model parameter value at 𝑙𝑡ℎ layer, θ𝑜𝑙𝑑

𝑙  is the current or 

old model parameters at 𝑙𝑡ℎ layer that needs to be updated, η is the learning rate and it 

is referred to as the step size of the model parameters being  updated during the training 

process, 
𝜕

𝜕θ𝑜𝑙𝑑
𝑙 𝐽( θ; 𝑥𝑖 , 𝑡𝑖) is the derivative of the loss function with respect to the 
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current model parameter θ𝑜𝑙𝑑
𝑙 , 𝑥𝑖 is the training data and its corresponding target class 

is 𝑡𝑖. 

 Batch GD: calculates the gradient of the loss function for the entire training data and 

then performs only one update for the model parameters. This process is called a cycle 

and it is referred to as a training epoch. The advantages of batch GD are that; (1) it is 

more computationally efficient than stochastic GD, as it performs only one update of 

the model parameters for every training epoch. (2) it produces a stable gradient and 

more rapid convergence due to fewer updates to the model parameters. However, the 

disadvantages of batch GD are that; (1) stable gradient can sometimes result in a state 

of convergence that is not optimal, (2) it requires a huge consumption of 

computational resources as the entire training data needs to remain in the memory and 

be available to the algorithm. The mathematical expression for updating the model 

parameters using batch GD can be formulated as: 

θ𝑛𝑒𝑤
𝑙 = θ𝑜𝑙𝑑

𝑙 − η
𝜕

𝜕θ𝑜𝑙𝑑
𝑙 𝐽(θ)        (4.13) 

 Mini-Batch GD: is the most commonly used algorithm for training the CNN [92, 

128, 204]. It is a combination of stochastic and batch GD. Mini-batch GD splits the 

training data into mini-batches and updates the model parameters for every mini-batch 

of training data 𝑥𝐵, and its corresponding class 𝑦𝐵. The hyper-parameter 𝐵 represents 

the batch size, e.g., how many training data are processed simultaneously to perform 

an update to the model parameters. According to [215, 217] the most common mini-

batch sizes range between 50 and 256. However, the mini-batch size 𝐵 should not be 

very large and its value depends on the size of the training data. The advantages of 

mini-batch GD are; (1) it produces more stable convergence than batch and stochastic 

GD, (2) the mini-batch algorithm is a more computationally efficient process, 

especially for extremely large sets of training data. The mathematical expression for 

updating the model parameters using mini-batch GD can be written as: 

θ𝑛𝑒𝑤
𝑙 = θ𝑜𝑙𝑑

𝑙 − η
𝜕

𝜕θ𝑜𝑙𝑑
𝑙 𝐽(θ; 𝑥(𝑖:𝑖+𝐵), 𝑡(𝑖:𝑖+𝐵))     (4.14) 
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4.4.4. Learning Rate 

The learning rate is a hyper-parameter that needs to be tuned. It refers to the step size of 

updating the model parameters during the training process [218]. The learning rate 

parameter plays an important part in training the CNN, due to two reasons. Firstly, if the 

learning rate is set too high, it is likely to overshoot or fluctuate around the minimum 

error value, secondly, if the learning rate is set too small, it may lead to slow convergence. 

As shown in Figure 4-4, the idea is to have a smooth minimisation process in order to 

have the loss function as close as possible to the optimal minimum value [219]. It is 

usually recommended to use a lower learning rate when training the neural network as it 

improves the network training performance compared to a higher learning rate [220-222]. 

 

Figure 4-4: Effects of different learning rates [223] 

4.5. The Implementation of a CNN  

The application of the CNN to CM involves building a model to discover a relationship 

between the training data and its target class using supervised learning. Then, the 

performance of the trained model is evaluated by predicting the target class for new data 

(called testing data) based on the model relationships learned during the training process. 

The implementation step of the CNN begins by dividing the measured vibration data into 

𝑁 segments. Each data segment length being set to cover more than one period of the 

expected fault feature. Next, divide the entire set of data segments into three data groups 

called training data, validation data, and testing data. Following previous studies [224-

226], the entire data segments will be divided randomly into 60% for training, 20% for 
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validation, and 20% for testing. Each data set serves a different purpose as discussed 

below. 

4.5.1. Training Stage 

The training stage is the first process of using CNN for CM. In this stage, the training 

data is fed to the CNN to find the optimal model parameters that best explain the model 

relationships between the training data and its target class. As discussed in Section 4.4.2, 

training CNN involves two main steps; forward and backward propagations. These two 

processes aim to find optimal model parameters by iteratively minimising the error 

between the desired target class and the network output prediction. The CNN training 

process involves the following steps: 

1. Divide the measured vibration data into 𝑁 segments. Each data segment length being 

set to cover more than one period of the expected fault feature  

2. All data segments are divided randomly into 60% for training, 20% for validation, 

and 20% for testing. 

3. Initialise the model parameters with a random value during the forward propagation 

process. 

4. Starting with the forward propagation process, passing mini-batch training data and 

its target classes into several hidden layers of the CNN model, as discussed in Section 

4.4.2 and their calculations from Equation 4.1 to Equation 4.9. 

5. Implement the softmax function to generate the network output prediction, as seen in 

Equation 4.10. 

6. Calculate the error between the desired target output and the network output 

prediction by implementing the cross-entropy loss function, see Equation 4.11. 

7. Perform backward propagation by calculating the gradient of the loss function with 

respect to the current model parameters. 

8. Update the model parameters for every mini-batch of training data and its 

corresponding target classes by iteratively taking step size of η in the direction of 

minimising the loss function, as seen in Equation 4.14. 

9. Repeat steps 4 to 8 until the loss function is minimised. 
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4.5.2. Validation Stage 

This is done by feeding the CNN with a set of unseen data (called validation data) that 

were not used in the training but follow the same distribution and model relationship as 

the training data. The validation step is commonly used for producing the final model and 

to avoid overfitting problem through early stopping. 

Overfitting is a common problem that mostly occurs during the training process. It refers 

to a model that performs very well on the training data but poorly on new data which is 

not a part of the training data. This is because the model learned features that were specific 

to the training data and not present in other data, and consequently impacts negatively on 

the performance of the model on new data [227]. Therefore, early stopping is being 

adopted during training CNN to reduce the effect of overfitting and to improve the 

generality of the model. Early stopping defines the number of times that the loss on the 

validation data can be equal or larger to the previously smallest loss value before the 

training process is terminated [137]. Put simply, the early stopping process is the 

continuous monitoring the loss on the validation data after each training epoch. When the 

loss on the validation data improves (e.g., loss decreases to a lower error value), that 

would mean the generalisation ability of the model is improved, thus the model continues 

the training process. However, when the loss on the validation data starts to degrade (e.g., 

loss begins to increase to a higher error value), that would mean the model at this stage 

had reached the stage of beginning to over-fit the training data. Consequently, the training 

process is terminated (early stopping) to avoid overfitting. 

4.5.3. Testing Stage 

The testing stage is the final process of applying the CNN and is carried out to test the 

overall performance of the trained model on unseen data (called testing data) that were 

not used in the training and validation stages. The testing stage is conducted by feeding 

the trained CNN model with unseen data to evaluate its performance. The accuracy of 

any supervised classification model can be calculated from four possible classification 

outcomes (true positive, true negative, false positive and false negative) derived from the 

confusion matrix. These four possible classification outcomes will be discussed in more 

detail in Chapter Eight. 
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4.6. Key Findings 

To summarize, the main key findings of this chapter are as follows: 

 CNN is a type of deep learning method proposed by LeCun, Bottou [152] for 

handwritten digit classification. 

 CNN has gained special attention as a promising form of deep learning. It has been 

successfully applied in several applications such as object detection, natural language 

processing and automated fault diagnosis. 

 CNN is a supervised DNN algorithm and based on the idea that the training data needs 

to be labelled, and then allow the CNN to model a relationship between the input 

training data and the corresponding target classes. 

 CNN integrates several features into a single deep hierarchical model, including: 

feature extraction, dimensionality reduction and classification. By integrating these 

features via a multi-layered configuration, it allows the CNN to learn representative 

features directly from the raw data and automatically identify different classes for a 

given set of data. 

 The implementation procedure of the CNN for CM consists of three main steps, 

training, validation, and testing. In the training step, the input training data is fed to 

CNN to find the optimal model parameters that best model the relationships between 

the training data and its target class. In the validation step, a set of unseen validation 

data are fed into the CNN model to produce a final model and to avoid overfitting 

problem through early stopping. Testing is the final step of applying a CNN and is 

conducted by feeding the trained model with new data to measure the classification 

accuracy of the trained model. 

Based on the key findings listed above, an automated approach based on a deep CNN is 

investigated for machinery CM. This automated approach has the capability to address 

the shortcomings in conventional manual methods by integrating both feature extraction 

and classification into a single model. Deep CNN applied for CM can be used to extract 

representative features directly from the raw vibration data and automatically determine 

the system’s health condition with high diagnostic accuracy. 
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Chapter Five: Activation Functions for the 

Convolutional Neural Network 

This chapter aims to look at the theoretical background of the activation functions. It 

starts with reviewing the most commonly activation functions used for deep CNN: Tanh, 

ReLU, LReLU and ELU. Then, the limitations of these activation functions are presented 

and discussed. Followed by, the hybrid IReLU-Tanh function proposed as a means of 

addressing the shortcomings, enhance the learning ability of the network, and improve 

the classification accuracy of the model. Finally, this chapter ends with a review of key 

findings. 
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5.1. Introduction 

Existing automated approach based on deep CNN for CM focus on the design of the 

network architecture and the hyper-parameters tuning, including the number of layers, 

the use of batch normalisation, size of the convolutional filter etc [199]. However, several 

studies have claimed that the commonly used activation functions have critical drawbacks 

such as vanishing gradient problem and dying ReLU, which can affect the overall 

performance of deep architecture and result in low classification accuracy of the model 

[228, 229]. This chapter reviews existing activation functions used for deep CNNs, 

highlights their main shortcomings, and then proposes an IReUL-Tanh function to 

overcome the drawbacks and enhance the overall performance of deep CNN architecture. 

5.2. Activation Function for a CNN 

The activation function is a critical layer within the CNN architecture that has a crucial 

impact on the training process and hence on the overall performance of the network, see 

Section 4.3.3. It is used in CNNs to compute the weighted sum of the input, as shown in 

Figure 5-1, which is used to determine whether a neuron should be activated or not [197]. 

The main role of the activation function is to introduce nonlinear characteristics into the 

model [195, 196]. Generally, it transforms the feature map of the convolutional layer to 

generate a non-linear output in the range of [0, ∞] or [−1, +1]  depending on the type of 

activation function. The activation functions allow the CNN to observe non-linear 

expressions of the data so that many complex problems can be resolved [198]. 

 

Figure 5-1: Typical neuron structure 
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Nowadays, deep CNN architecture can consist of many hidden layers. The activation 

function is applied to the output of the convolutional layer to introduce a nonlinear 

characteristic into the network and then pass its output to the next layer. As discussed in 

Chapter Four, during training of the CNN, forward propagation passes the training data 

from the input layer to the output layer to produce initial network output predictions [214]. 

The backward propagation step updates and adjusts the network parameters until the loss 

function is minimised. This update greatly depends on the behaviour of the activation 

function, and hence the choice of the activation function has a significant effect on the 

network training process. The mathematical expression for updating the network 

parameters during backward propagation can be written as [230]: 

𝜃𝑛𝑒𝑤
𝑙 = 𝜃𝑜𝑙𝑑

𝑙 − η
𝜕𝐿

𝜕𝜃𝑜𝑙𝑑
𝑙          (5.1) 

where 𝜃𝑛𝑒𝑤
𝑙  is the new or the updated model parameter, 𝜃𝑜𝑙𝑑

𝑙  is the current or old model 

parameter at 𝑙𝑡ℎ layer that needs to be updated, η is the learning rate, and 
𝜕𝐿

𝜕𝜃𝑜𝑙𝑑
𝑙  is the 

derivative of the loss function with respect to the current model parameters at 𝑙𝑡ℎ layer. 

and 
𝜕𝐿

𝜕𝜃𝑜𝑙𝑑
𝑙  can be computed as: 

𝜕𝐿

𝜕𝜃𝑜𝑙𝑑
𝑙 =

𝜕𝐿

𝜕𝑍𝑙 ∗
𝜕𝑍𝑙

𝜕𝑓𝑙 ∗
𝜕𝑓𝑙

𝜕𝜃𝑜𝑙𝑑
𝑙         (5.2) 

where  
𝜕𝐿

𝜕𝑍𝑙 is the derivative of the loss function with respect to the neuron output at the 𝑙 

layer, 
𝜕𝑍𝑙

𝜕𝑓𝑙 is the derivative of the activation function after applying the function to the 

neuron output, and 
𝜕𝑓𝑙

𝜕𝜃𝑜𝑙𝑑
𝑙  is the neuron output with respect to the current model parameters 

at the (𝑙 − 1) layer. 

Deep CNNs architecture are observed to learn better representations of the features in the 

data sets, layer by layer. However, it has been reported that severe problems can appear 

within the deep CNN architecture caused by the activation function [14]. Common 

problem include vanishing gradient problems during the backward propagation through 

a multi-layered neural network, this is due to the value of the gradient decreasing 

exponentially to zero as it is propagated backwards [167]. This problem is exacerbated 
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when an activation function such as the Tanh function is used. This is due to the fact that 

the Tanh function saturates at −1 and +1 for large negative and positive inputs, with the 

value of the gradient close to zero [168]. 

During back propagation, the gradients of the loss function with respect to the current 

network parameters are updated (i.e., re-calculated), as shown in Equation 5.2. If a value 

close to zero is multiplied several times by other values close to zero, the output becomes 

very close to zero. In this way, the value of the gradient can decreases exponentially to 

zero as the backward propagation process goes deeper into the network [231]. This means 

the network parameters are not updated properly, and the loss function stops approaching 

the lowest error value [232]. At this stage, it can be said that the network is not being 

properly trained to produce the best model relationship between the training data and its 

target class. Thus, in the backward propagation process, the choice of activation function 

has a significant impact on the performance of the network training task of the CNN 

model [233]. To overcome the vanishing gradient problem, a number of activation 

functions have been developed in recent years, including ReLU, LReLU, and ELU [169-

171], which are discussed in following subsections. 

5.2.1. Hyperbolic Tangent Function 

Tanh is a type of activation function used in neural network architecture [197]. It is a 

smooth zero-centred function whose output ranges between [−1, +1] with an S-shape, 

see Figure 5-2. It can be considered a saturating activation function because it squashes 

large positive values to +1, and large negative values to −1, with the value of the gradient 

close to zero as shown in Figure 5-2. The Tanh function and its gradient can be expressed 

as [195, 234]: 

𝑓𝑇𝑎𝑛ℎ(𝑥) = 𝑡𝑎𝑛ℎ (𝑥)         (5.3) 

𝑓𝑇𝑎𝑛ℎ′(𝑥) = 1 − 𝑡𝑎𝑛ℎ2(𝑥)        (5.4) 

where 𝑓𝑇𝑎𝑛ℎ(𝑥) is the output of the tanh function, 𝑥 is the input data, 𝑒𝑥𝑝 is the 

exponential, and 𝑓𝑇𝑎𝑛ℎ′(𝑥) is the gradient of the tanh function.  
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Figure 5-2: Tanh function and its derivative 

In the past few decades, the Tanh function has been used as a standard activation function 

for neural network architecture [143]. However, with the introduction of deep CNN 

architecture, it was found that severe problem called the vanishing gradient problem 

caused by the form of the Tanh function. This begins to appear during the back 

propagation process as a result of the saturation of the Tanh function, which occurs at +1 

and -1 for large positive and negative inputs, see Equation 5.3 [235]. This results in the 

value of the gradient of the neuron approaching to zero [171], as shown in Figure 5-2 and 

Equation 5.4. Thus, the Tanh function has shortcomings when used for local optimisation, 

this is because the value of the gradient for large positive and negative inputs become 

close to zero as the backward propagation process goes deeper into the network [236]. 

This process leads to the network parameters not being optimised and failing to provide 

the best possible relationship between the training data and its target class, resulting in 

poor training performance and low classification accuracy [65]. 

5.2.2. Rectified Linear Units 

The ReLU function is one of the most widely used activation function in CNN 

architecture. It was proposed by Nair and Hinton [170] to address the shortcoming of the 

vanishing gradient problem that occurs with the Tanh function [237]. As seen in equation 

5.5, the ReLU function performs a threshold operation, when the input value is less than 

or equal to zero (𝑥 ≤ 0), the function output will be equal to zero, and the gradient will 

also be zero. A non-saturation feature for the positive value, when the input value is 
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greater than zero (𝑥 > 0) the ReLU function output is equal to the input and the gradient 

will be equal to +1 [212]. Thus, the ReLU function addresses the vanishing gradient 

problem associated with the Tanh function and improves the overall performance of the 

network [169]. The ReLU function and its gradient can be written as: [238, 239]: 

𝑓𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) = {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

       (5.5) 

𝑓𝑅𝑒𝐿𝑈′(𝑥) = {
1, 𝑥 > 0
0, 𝑥 ≤ 0

        (5.6) 

 

Figure 5-3: ReLU function and its derivative 

The ReLU function is one of the most widely used activation function for training deep 

CNNs [240]. However a major drawback of the ReLU function is that it produces a value 

of zero for the gradient (𝑓𝑅𝑒𝐿𝑈′(𝑥) = 0) when (𝑥 ≤ 0) for all negative values, hence it 

discards important information contained in those values and generates the so-called 

“dead neuron” or “dying ReLU” problem [239]. A dead neuron once generated will 

output zero value and remain deactivated. This can lead to those dead neurons 

(deactivated) never be updated, and not participate in the training process. If a large 

number of neurons remain deactivated the overall performance of the model will be badly 

affected [232]. 

5.2.3. Leaky Rectified Linear Units 

The LReLU is an improved version of ReLU function proposed by Maas, Hannun [171], 

to address the dying ReLU problem. The LReLU addresses the problem of deactivated 
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neurons in the ReLU function by giving negative inputs a non-zero fixed value, as seen 

in Figure 5-4 so that the information associated with the negative values is not lost [241]. 

In this way, the LReLU function enables neurons that would otherwise be deactivated, to 

remain active, preserving and updating them, and having them continue to participate in 

the training process. The non-zero fixed value for the negative input is determined by the 

hyper-parameter alpha (𝛼) which is normally set as 𝛼 = 0.01, prior to the commencement 

of training [242]. 

 

Figure 5-4: LReLU function and its derivative (𝛼 = 0.01) 

The LReLU function is the same as the ReLU function in terms of its non-saturation 

feature for the positive values. The output of the LReLU function for positive input (𝑥 >

0) is equal to the input itself, and the gradient is equal to +1, as shown in Figure 5-4, 

Equations 5.7 and 5.8. For negative input, the LReLU function output will be 

(𝑓𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝛼 ∗ 𝑥), and the gradient is equal to 𝛼, as seen in Equations 5.7 and 5.8 [137] 

and Figure 5-4. The LReLU function and its gradient are computed as [171]: 

𝑓𝐿𝑅𝑒𝐿𝑈(𝑥) = {
𝑥,     𝑥 > 0
𝛼𝑥, 𝑥 ≤ 0

        (5.7) 

𝑓𝐿𝑅𝑒𝐿𝑈′(𝑥) = {
1, 𝑥 > 0
𝛼, 𝑥 ≤ 0

        (5.8) 

where 𝛼 is a small real number. 

Xu et al., have reported that the LReLU function performs slightly better than the ReLU 

function for image [238] and time series classification tasks [243]. However, the 
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downside of the LReLU function is that it adds a hyper-parameter (𝛼) to the CNN 

architecture, which means that the hyper-parameter needs to be specified based on a trial 

and error, limiting the enhancement provided by LReLU over ReLU [244]. Additionally, 

a non-zero fixed value (𝛼 = 0.01) for negative inputs (𝑥 ≤ 0), may still lead to a risk of 

the occurrence of the vanishing gradient, and consequently the network parameters may 

not be adequately updated during the training process [232, 245]. 

5.2.4. Exponential Linear Unit 

The ELU is another type of activation function used in CNN architecture developed by 

Clevert, Unterthiner [169] to enhance the training process and hence improve the overall 

performance of the model. As shown in Figure 5-5, the ELU function avoids the 

occurrence of a non-zero fixed value and dying neurons during training by using the 

exponential function for negative inputs. However, it saturates for large negative inputs 

with the saturation level controlled by the hyper-parameter (𝛼), which is normally set to 

𝛼 = 1.0 [239, 246]. 

As with the ReLU and LReLU, the output of the ELU function for positive inputs is equal 

to the input, and its gradient value is equal to +1, as shown in Equations 5.9 and 5.10, and 

Figure 5-5. Thus, the ELU function is the same as the ReLU and LReLU functions in 

terms of its non-saturation feature for positive values. For negative input values, the ELU 

function is similar to the Tanh function as shown in Figure 5-5. The ELU function 

smoothly approaches a value equal to (−𝛼) for negative inputs (𝑥 ≤ 0) [244] as seen in 

Figure 5-5. The ELU function output ranges between [−𝛼, ∞]. The ELU function and its 

gradient can be expressed as [137, 242]: 

𝑓𝐸𝐿𝑈(𝑥) =  {
𝑥,                                𝑥 > 0
𝛼 ∗ (𝑒𝑥𝑝(𝑥) − 1), 𝑥 ≤ 0

      (5.9) 

𝑓𝐸𝐿𝑈′(𝑥) = {
1,                   𝑥 > 0
𝑓(𝑥) + 𝛼,    𝑥 ≤ 0

       (5.10) 
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Figure 5-5: ELU function and its derivative (𝛼 = 1.0) 

It has been shown that the ELU function outperforms both ReLU and LReLU for both 

image classification [169] and time-series classification [247]. However, the ELU 

function is similar to the LReLU function in terms of adding a hyper-parameter (𝛼) to 

the CNN architecture. The saturation level for the negative values is controlled by the 

hyper-parameter, the optimum value of the (𝛼) parameter needs to be determined by a 

trial and error process. However, if the hyper-parameter (𝛼) is set to a velue less than one 

(e.g., 𝑎 = 0.5), the ELU function will saturate at (−0.5) and the value of the gradient 

becomes close to zero which means the model parameters not being sufficiently optimised 

during the training process [244, 245, 248]. 

5.3. Recent Reviews of Activation Functions 

Several studies have applied the above activation functions to automated fault diagnosis 

using CNNs, recent works are as follows: 

 Jiang, He [158] in 2018 proposed automated fault diagnosis for a wind turbine 

gearbox based on multi-scale CNN (MSCNN). The proposed MSCNN architecture 

consisted of three different multi-scales, and each scale comprised of a convolutional 

layer, ReLU function and pooling layer followed by a concatenation layer, fully 

connected, and finally a softmax layer. In this study, the author stated that the ReLU 

function was selected for the proposed MSCNN architecture to prevent vanishing 

gradient problems and accelerate the convergence of the CNN. Experimental 

vibration data was used to evaluate the proposed MSCNN architecture, and it was 
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claimed that an outstanding classification accuracy was obtained using the proposed 

architecture compared to a traditional CNN with a single scale. 

 Gong, Chen [128] in 2019 proposed the CNN-SVM method for automated fault 

diagnosis of rotating machinery. The proposed method consisted of convolutional 

layer, ReLU function, pooling, global average pooling, softmax layer, and finally a 

SVM as a classifier. In this study, it was reported that the ReLU function is the most 

widely used than the Tanh function and was employed in the proposed CNN-SVM 

method to avoid the vanishing gradient problem. A comparison was carried out 

between the Tanh and ReLU functions and it was claimed that the proposed CNN-

SVM method with the ReLU function outperformed the Tanh function giving more 

accurate diagnoses. 

 Wu, Jiang [249] in 2019 developed a one-dimensional (1-D) CNN method to learn 

features directly from the raw vibration data collected from a PG. The developed 1-D 

CNN method was constructed with convolutional layer, ReLU function and pooling 

layer, followed by a fully connected layer and finally a softmax layer. In this study, it 

was reported that the ReLU is the most widely used activation function for CNN, and 

that was the reason it was employed in the 1-D CNN method. Experimental vibration 

data was used to evaluate the effectiveness of the developed 1-D CNN method, and it 

was reported that the developed method had a higher classification accuracy 

compared to shallow learning method. 

 Han, Tang [250] in 2019 presented an enhanced CNN (ECNN) with enlarged 

receptive fields to improve the feature learning ability of a CNN for automated fault 

diagnosis of a PG. In this study, it was again reported that the ReLU function is the 

most widely used activation function in CNN methods and it was selected for the 

ECNN method to alleviate the risk of a vanishing gradient and to accelerate the 

convergence of the network. The proposed ECNN method was evaluated through the 

use of experimental vibration data and it was claimed that superior classification 

performance was achieved. 

 Chen, Hu [203] in 2019 proposed a deep CNN (DCNN) based multi-sensor data 

fusion technique for identifying the health of a PG. The proposed method was 

constructed with convolutional, batch normalisation, ReLU function and pooling 

layers, followed by a fully connected, dropout layer, and finally a softmax layer. In 

this study, the ReLU function was adopted to prevent vanishing gradient problem and 
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its effectiveness was evaluated using experimental vibration data. The DCNN method 

was compared with SVM and BPNN methods and it was claimed that the proposed 

DCNN method gave better identification. 

 Hsiao, Shivam [243] in 2020 proposed automated fault diagnosis using a 1-D CNN 

with ensemble learning. The proposed method consisted of convolutional, batch 

normalisation, LReLU function, pooling, fully connected, and softmax layers. In this 

study the performance obtained using the LReLU function was compared with ReLU 

function. The two methods were evaluated using experimental vibration data and it 

was claimed that a higher classification accuracy was achieved using LReLU 

compared to the traditional CNN with the ReLU function. 

 He, Shao [251] in 2020 proposed an ensemble transfer CNN for automated fault 

diagnosis of a gearbox. The proposed method was constructed with convolutional, 

LReLU function, pooling, fully connected, and finally softmax layer. In this study it 

was reported that the LReLU successfully addressed the problem of dying ReLUs by 

giving the negative inputs a non-zero fixed value. The proposed method was 

evaluated using experimental vibration data and a comparison was carried out with 

other deep learning methods, including LSTM, SAE, and DBN. It was claimed that 

superior classification accuracy was achieved using the presented method compared 

to the others. 

 Li, Li [247] in 2020 developed automated fault diagnosis based on a DNN for gear 

fault diagnosis. In this study, the ELU function was employed in the proposed DNN 

method to avoid the vanishing gradient problem, and to overcome the limitation of 

the ReLU function due to dead neurons. The developed DNN method was evaluated 

using experimental vibration data. The classification accuracy achieved from the 

developed DNN method was compared with the results obtained from the DNN with 

the ReLU function. It was reported a better classification accuracy was achieved using 

the DNN method with the ELU function compared to the ReLU function. 

 Cao, He [252] in 2020 presented automated fault diagnosis for rotating machinery 

based on a multi-scale 1-D CNN. The presented method consisted of three different 

multi-scales, and each scale had a different convolutional filter size, followed by batch 

normalisation layer, ELU function, pooling layer, fully connected, and finally softmax 

layers. In this study, the ELU function was employed to avoid the vanishing gradient 

problem and address the shortcoming of the ReLU function due to its setting negative 
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input values to zero. Experimental vibration data was used to evaluate the multi-scale 

1-D CNN method. In addition, a comparison was carried out between using ELU and 

ReLU functions. It was claimed that the presented method with ELU function 

outperformed the ReLU function with a better diagnostic performance. 

5.4. Limitations of Existing Activation Functions 

This section summarises the shortcomings of the existing activation functions, including 

Tanh, ReLU, LReLU, and ELU as follows: 

 Vanishing gradient: The Tanh activation function saturates at −1 and +1 for large 

positive and negative inputs, and the gradient value of the Tanh function approaches 

zero, as shown in Figure 5-2. This means that when the number of CNN layers 

increases, the gradient value decreases exponentially towards zero as it is back 

propagated through a multi-layered neural network. Consequently, the network 

parameter updates become very small which is a particular problem for deep CNN 

architecture [65, 171, 235, 236]. 

 Dying ReLU: An activation function such as ReLU can generate a dead neuron as 

output and be deactivated for the duration of the training process. This occurs because 

the gradient value of the ReLU function is zero when the input is equal to or less than 

zero, as shown in Figure 5-3. Hence, it discards important information contained in 

these values. Consequently, the dead neurons (deactivated) are never updated or 

contribute to the final output [232, 239]. 

 Hyper-Parameter alpha (𝜶): Activation functions such as LReLU and ELU add a 

hyper-parameter (𝛼) to the CNN architecture. This hyper-parameter determines the 

gradient value for the negative input, as seen in Equations 5.8 and 5.10. However, the 

hyper-parameter needs to be manually specified based on a trial and error process, 

limiting the enhancement provided. As discussed in Section 5.2.3, the gradient value 

of the LReLU function is a non-zero fixed value for all negative inputs. Consequently, 

it may lead to a risk of occurrence of the vanishing gradient problem and consequently 

the network parameters may not be adequately updated during the training process. 

On the other hand, as illustrated in Section 5.2.4, the gradient value of the ELU 

function is controlled by the hyper-parameter that determines the saturation level for 

negative inputs. This means that if the hyper-parameter is set to a value less than one 
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(e.g., 𝑎 = 0.5), the ELU function will saturate at (−0.5), and hence the gradient value 

of the ELU function become close to zero [232, 244, 245, 248]. 

5.5. Proposed Activation Function 

Based on the challenges and limitations of the existing activation functions described 

above, this research proposes an improved activation function called IReLU-Tanh 

function for deep CNN architectures. The proposed IReLU-Tanh function is inspired by 

the shared feature of several activation functions including ELU, LReLU and ReLU for 

covering the positive region, and the properties of the Tanh function for covering the 

negative region. The IReLU-Tanh function is developed to enhance the network training 

in both the forward and backward propagation processes, and hence improve the overall 

performance of the network to obtain the best model relationship between the training 

data and its target class with minimum error value. The mathematical expression of the 

proposed IReLU-Tanh function and its gradient are computed as: 

𝑓𝐼𝑅𝑒𝐿𝑈−𝑇𝑎𝑛ℎ(𝑥) =  {
𝑥,                          𝑥 > 0
𝑡𝑎𝑛ℎ(𝑥) ,             𝑥 ≤ 0

      (5.11) 

𝑓𝐼𝑅𝑒𝐿𝑈−𝑇𝑎𝑛ℎ′(𝑥) = {
1,                           𝑥 > 0

1 − 𝑡𝑎𝑛ℎ2(𝑥),    𝑥 ≤ 0
      (5.12) 

The proposed IReLU-Tanh function is the same as the ELU, LReLU and ReLU functions 

in terms of its non-saturation feature for positive values. During the forward propagation 

process, when the input value is greater than zero (𝑥 > 0), the proposed IReLU-Tanh 

function generates an output that is equal to the input as seen in Equation 5.11. In the case 

of the backward propagation process, the value of the gradient is equal to  +1, as shown 

in Figure 5-6 and Equation 5.12. By adopting the non-saturation feature for covering the 

positive region, the proposed IReLU-Tanh function addresses the vanishing gradient 

problem in the same manner as the ELU, LReLU, and ReLU functions. 
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Figure 5-6: The proposed IReLU-Tanh function and its derivative 

For negative input values, the IReLU-Tanh function is inspired by the Tanh function for 

covering the negative region. The IReLU-Tanh function smoothly approaches a value 

equal to −1, as shown in Figure 5-6, and Equation 5.11, but like the Tanh function, 

saturates for large negative inputs. By adopting the feature of covering the negative region 

from the Tanh function, the IReLU-Tanh function addresses the shortcomings of dying 

neurons in the ReLU function and a non-zero fixed value in LReLU function. This is 

because the IReLU-Tanh function generates an output for all negative input values during 

both the forward and backward propagation processes. Consequently, the IReLU-Tanh 

function allows the network to preserve neurons with negative values being optimised 

during the backward propagation process. Hence, the IReLU-Tanh mitigates the 

vanishing gradient problem for negative inputs, to some extent, and improves the overall 

performance of the network during the training process. 

Besides the above advantages, the IReLU-Tanh function does not require adding a hyper-

parameter to the architecture. This means that the saturation level for the negative input 

is determined by the Tanh function, instead of adding a hyper-parameter that needs to be 

tuned based on a trial and error process, as required by the LReLU and ELU functions. 

Another reason for adopting the Tanh function for covering the negative region instead 

of an exponential function as in the ELU, is because the Tanh function saturates earlier 

than the ELU function for negative inputs, consequently, it enhances the stability of the 

network during forward propagation. In addition, as seen in Figure 5-7, the Tanh function 
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has a higher gradient value for small negative inputs compared to the ELU function, and 

hence it enables a higher update for the model parameters in the earlier layers. 

 

Figure 5-7: Comparison between (a) the proposed IReLU-Tanh function and the existing functions, (b) 

corresponding derivatives 

The flowchart shown in Figure 5-8 demonstrates the proposed IReLU-Tanh function for 

CNN. The implementation steps of the CNN architecture with the proposed IReLU-Tanh 

function start with feeding the training data into the deep CNN to obtain the best model 

relationship between the training data and its target class with the minimum error value. 

Then, the trained model will be tested with unseen data to evaluate the overall 

performance of the trained CNN model in the classification task. 
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Figure 5-8: Flowchart of the proposed IReLU-Tanh function for CNN 
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5.6. Key Findings 

To conclude, the following key findings are as follows: 

 The activation function is a critical layer within the CNN architecture that has a 

crucial impact on the training process and hence on the overall performance of the 

network. 

 Several studies have demonstrated that existing activation functions have severe 

drawbacks, which can affect the overall performance of CNNs and lead to a lower 

classification accuracy. 

 It has been reported that the vanishing gradient is the most common problem in deep 

architecture caused by the Tanh activation function. This leads to a significant effect 

on the network training process and hence on the overall performance of the model. 

 A number of activation functions have been developed in recent years to overcome 

the vanishing gradient problem, such as ReLU, LReLU, and ELU functions. 

However, these activation functions still have some critical drawbacks such as the 

dying ReLU problem, non-zero fixed value, and adding a hyper-parameter to the 

network architecture. 

As a result of the above key findings, a hybrid activation function (IReLU-Tanh) has been 

developed to address the shortcomings in the existing activation functions. The 

advantages of the proposed IRaLU-Tanh function are: (i) it shares the non-saturation 

feature with several activation functions such as ReLU, LReLU and ELU for covering 

the positive region and so addresses the vanishing gradient problem of the Tanh function; 

(ii) for the negative region, it adopts the advantage of covering the negative region from 

the Tanh function, and so addresses the shortcomings of dying neurons in the ReLU 

function and non-zero fixed value; and (iii) unlike the LReLU and ELU functions, the 

proposed IReLU-Tanh function does not require adding a hyper-parameter to the network 

architecture. Therefore, the proposed IReLU-Tanh function can enhance the learning 

ability of the network during the training process, and hence improve overall performance 

of the network to obtain the best model relationship between the training data and its 

target class with minimum error value. 
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Chapter Six: Experimental Facilities and Data 

Acquisitions 

This chapter describes the test system used in this study. It starts with the test rig 

components and then the instruments used to carry out the measurements including the 

accelerometer, thermocouple, encoder and data acquisition system. Finally, the fault 

simulation and the experimental procedure are presented in detail. 
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6.1. Introduction 

An important element of CM research is the introduction of defects in a controlled manner 

into a practical system to provide real data similar to that found in industrial applications. 

A test rig was developed in the Centre for Efficiency and Performance Engineering 

Laboratory (CEPE) at the University of Huddersfield. This laboratory provides easy 

access to all necessary experimental facilities and required instruments. 

In order to evaluate the method proposed in Chapters Four and Five for experimental data 

analysis, an experiment was carried out on the PG. The test rig is carried out in a way that 

is similar to real industrial applications where the faults can be simulated in a controlled 

manner, and the sensor data can be measured accurately. The reason for choosing a PG is 

its wide use in industrial applications such as wind turbines and helicopters. The test rig 

and experimental procedure will be discussed in this chapter. 

6.2. Test Rig Development 

The experimental work was performed on the PG test rig, as shown in Figure 6-1 and 

Figure 6-2. It is consisted of two parts: the first part consists of a drive motor, two types 

of PGs and a DC generator to act as load. The second part consists of the instrumentation 

required to acquire the vibration data, temperature, and shaft speed. 

 

Figure 6-1: Schematic diagram of the test rig 
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Figure 6-2: Test rig 

6.2.1. Motor 

A Brook Crompton induction motor is employed in the test rig to drive the system, see 

Figure 6-2. Motor specifications are shown in Table 6-1. A flexible coupling is used to 

connect the motor with the PG reducer.  

Table 6-1: Motor specifications Brook Crompton 

 

6.2.2. Planetary Gearbox 

Two types of PG manufactured by STM Power Transmission Ltd were used in this 

research, as shown in Figure 6-2. The first PG with transmission ratio of 5.76 was 

connected with the input shaft of the motor to reduce the rotational speed. It consists of 

the sun gear, four planet gears, fixed ring gear, and the carrier connected to the output 

shaft. The specifications of the PG reducer are shown in Table 6-2. 
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Table 6-2: PG reducer specifications 

 

The second PG with transmission ratio of 7.2 was connected with the PG reducer and acts 

to increase the rotational speed. As shown in Figure 6-2, the carrier of the PG increaser 

was connected to the input shaft of the PG reducer and the sun gear was connected to the 

output shaft. The PG increaser consists of carrier, three planet gears, sun gear and fixed 

ring gear. In this study, the simulated defects were in one of the planet gears and sun gear 

of the PG increaser. The specifications of the PG increaser are listed in Table 6-3. 

Table 6-3: PG increaser specifications 

 

6.2.3. DC Generator 

As seen in Figure 6-2, the DC generator is employed in the test rig to provide different 

loads to the system. The DC generator converts mechanical energy of rotation to 

electricity, which is dissipated as heat in a resistor bank. The specifications of the DC 

generator are shown in Table 6-4. 
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Table 6-4: DC generator specifications 

 

6.2.4. Data Acquisition System 

A typical way of transforming a physical phenomenon into a digital format is to use a 

data acquisition system (DAQ). It is used to collect different types of data such as 

vibration, temperature and current. It converts the signal to a series of numeric (digital) 

values which can then be stored and manipulated by a computer. For example, the 

accelerometer converts movement due to vibration to an electrical signal which is then 

amplified to increase the magnitude of the signal to be input to the DAQ for recording. 

The DAQ converts the signal from analogue to a digital format and then sends the 

acquired signal to the computer for analysis task. The specifications of the DAQ are 

presented in Table 6-5. 

As seen in Table 6-5, the vibration data was collected and measured at a sampling rate of 

100 kHz.  The reasons for choosing a high sampling rate are as follows: (i) according to 

the Nyquist theorem, the sampling frequency must be at least twice the maximum 

frequency of interest to avoid aliasing, and since the accelerometer has an upper limit of 

12 kHz, a sampling rate of 100 kHz is more than adequate. (ii) A high sampling rate 

provides better time resolution of the waveform. 
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Table 6-5: DAQ PD2-MF-16-500/16L PCI specifications 

 

6.2.5. Accelerometer 

The accelerometer is employed to measure the vibration signal. In this test rig, the 

vibration signal is collected using a piezo-electric accelerometer, PCB model 338C04, 

see Figure 6-2, mounted vertically on the housing of the PG increaser. This type of 

accelerometer is the most commonly used for vibration measurement. The piezo-electric 

accelerometer has a wide frequency range to capture the vibration signals, both low and 

high frequency. The accelerometer is connected to a charge amplifier, and then the 

amplified output signal is passed to the DAQ for recording and then to the computer for 

analysis. The specifications of the accelerometer are listed in Table 6-6. 

 

Figure 6-3: Accelerometer PCB model 338C04 
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Table 6-6: Accelerometer specifications 

 

6.2.6. Encoder 

A typical way of measuring instantaneous angular speed is via an encoder installed at the 

end of the motor shaft. The incremental encoder used in the test rig is a Hengstler type 

R132, as shown in Figure 6-4. The specifications of the encoder used in the test rig are 

presented in Table 6-7. 

 

Figure 6-4: Hengstler encoder 
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Table 6-7: Encoder specifications 

 

6.2.7. Thermocouples 

A typical way of measuring temperature is to use a thermocouple. It has been fitted on 

the PG housing and connected to the DAQ system. The specifications of the thermocouple 

are shown in Table 6-8. 

Table 6-8: Thermocouple specifications 

 

6.2.8. Fault Simulation and Seeding 

In this research, five gear conditions were used to study the effects of tooth breakage 

faults with different levels of severity. The first condition was for healthy condition (no 

fault exist in the system). Fault simulation was performed sequentially, with one fault 

present at a time. Two types of fault severities were seeded into the sun and planet gear, 

as shown in Figure 6-5. The small fault was seeded by the removal of 30% of the length 
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of one tooth on the gear. The larger fault was seeded by extending the first fault to remove 

60% of the length of one tooth of the gear. For ease of reference, the faults are labelled 

as follows: Sun-F1 and Planet-F1 refer to the 30% defects in the sun and planet gears 

respectively. Sun-F2 and Planet-F2 refer to the 60% defects in the sun and planet gears 

respectively, see Table 6-9. 

Table 6-9: Seeded defect size and label for sun and planet gears 

Gear No. Condition Percentage Tooth 

Removed 

Defect Label 

1 “Healthy” --- Baseline 

2 Sun gear with small fault 30% Sun-F1 

3 Sun gear with large fault 60% Sun-F2 

4 Planet gear with small fault 30% Planet-F1 

5 Planet gear with large fault 60% Planet-F2 

 

Figure 6-5: Seeded defects (a) 30% (b) 60% on sun gear, and (c) 30% (d) 60% on planet gear 
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6.3. Experimental Procedure 

The vibration data was collected using the following experimental procedure: 

1. The PG test rig was allowed to run for 30 minutes to warm up before collecting 

the vibration data. 

2. All vibration data was collected under 60% ≈ 894 𝑟𝑝𝑚 of the full motor speed 

and under different load conditions: zero, 25%, 50%, 75%, and 90% of full load.  

3. The first PG reduces the shaft speed from 894 to 155.2 rpm. Then, the second PG 

increases the speed from 155.2 to 1117 rpm. 

4. The vibration data was collected and measured at a sampling rate of 100 kHz for 

a period of 30 seconds. The length of the recorded vibration data for each data 

was 100000*30=3x106 data points. 

5. The collected vibration data was for five different gear conditions, baseline and 

two types of fault severities on one of the planet gears and the sun gear. 

6. The vibration data was collected using the accelerometer mounted vertically on 

the PG increaser housing.  

7. The baseline data was measured first. 

8. The second set of measurements was for the planet gear fault, first with the small 

fault and then the large fault. 

9. The third set of measurements was for the sun gear fault, first with the small fault 

and then the large fault. 

10. For each measurement, three sets of vibration data were recorded to ensure that 

the obtained data are consistent. 
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Chapter Seven: Vibration Analysis Using 

Conventional and Enhancement Methods 

In this chapter, the collected vibration signals are analysed using conventional signal 

processing methods and Multipoint Optimal Minimum Entropy Deconvolution Adjusted 

(MOMEDA). The chapter starts with the analysis of time and frequency domains. Then it 

presents the results obtained from applying the MOMEDA method to the collected 

vibration signals. Finally, the results obtained from these methods are discussed. 
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7.1. Introduction 

The collected vibration data from the baseline and four defective gears will be analysed 

in this chapter, beginning with the time domain signal. Statistical parameters such as RMS 

and kurtosis are calculated to explore trends in the time domain data. This is followed by 

frequency domain analysis to investigate vibration features caused by rotating 

components. Next, the MOMEDA technique will be applied to the collected vibration 

data to enhance the periodic fault impulse features, and then envelope spectrum analysis 

is applied. Finally, the results are discussed and summarized at the end of this chapter. 

7.2. Experimental Results Obtained Using Conventional Signal 

Processing Techniques 

The analysis of the collected vibration data begins with time domain analysis Section 

7.2.1, and frequency domain analysis Section 7.2.2. 

7.2.1. Time Domain Analysis 

The analysis of the vibration data begins with exploring the time domain of different 

cases; baseline, Sun-F1, Sun-F2, Planet-F1, and Planet-F2, under loads of zero, 25%, 

50%, 75% and 90% of full load, as shown in Figure 7-1 to Figure 7-4. In all four figures 

the blue trace is for the baseline. In Figures 7-1 and 7-3 the black trace is for the Sun-F1 

and Planet-F1 faults, respectively. In Figures 7-2 and 7-4 the red trace is for the Sun-F2 

and Planet-F2 faults, respectively. 

Figure 7-1 and Figure 7-2 show the time domain vibration signals for baseline, Sun-F1 

and Sun-F2 under different loads. It can be seen that, generally, increasing the load results 

in an increased in the amplitude of the vibration signal. For both fault cases, under loads 

of 50%, 75% and 90% of full load, the signals show peaks produced by both the Sun-F1 

and Sun-F2. However, for both fault cases under low load conditions, the time domain 

signals do not show any clear differences. 
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Figure 7-1: Time domain signal for baseline (blue) and Sun-F1 (black) 

 

Figure 7-2: Time domain signal for baseline (blue) and Sun-F2 (red) 
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Figure 7-3 and Figure 7-4 show the time domain signals for the baseline (blue trace), 

Planet-F1 (black trace), and Planet-F2 (red trace), respectively. It can be observed that 

the signal amplitude measured with the Planet-F2 fault at 90% of full load demonstrates 

the presence of peaks generated by the defect. However, for both fault cases Planet-F1 

and Planet-F2, under low loads, there are no significant changes in signal amplitude due 

to the presence of either fault. 

 

Figure 7-3: Time domain signal for baseline (blue) and Planet-F1 (black) 

As shown in Figure 7-1 to Figure 7-4, it can be said that the amplitude of some peaks that 

appeared in the vibration signals of the faulty sun gear are higher than the peaks that 

appear in the signals for the faulty planet gear. This is because the PG consists of three 

planet gears that not only rotate around their own centres but also revolve around the 

centre of the sun gear. This leads to the fault impulse generated by the planet defect being 

masked by other vibration components. 



111 

 

Figure 7-4: Time domain signal for baseline (blue) and Planet-F2 (red) 

Based on analysing the vibration data using the time domain analysis for baseline, Sun-

F1, Sun-F2, Planet-F1 and Planet-F2, it can be concluded that the time domain signal 

alone is not adequate to detect the defects occurred in the fault cases. This is because the 

raw vibration data will be contaminated by many rotating components and masked by the 

background noise of the entire system. Therefore, the fault cases and their severities 

cannot be detected from the raw time domain signal alone. 

Statistical parameters such as RMS and kurtosis will be used to explore trends in the 

vibration data. Figure 7-5 and Figure 7-6 display the RMS and kurtosis values obtained 

for each case. In Figure 7-5 (a), it can be seen that the RMS value of vibration signal for 

the Sun-F1 fault has a higher amplitude than the baseline data, with slight further increase 

in amplitude in the case of Sun-F2. Figure 7-6 (a) shows the RMS value of the vibration 

signal for baseline and faulty planet gears. It can be seen that both Planet-F1 and Planet-

F2 show a slight increase in the RMS amplitude compared to the baseline, but the RMS 

amplitude for Planet-F2 does not provide any clear difference from that for Planet-F1. 
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Figure 7-5 (b) and Figure 7-6 (b) show the results obtained from calculating the kurtosis 

value for each case, it can be observed that the kurtosis is unable to detect the presence 

of the faults for either sun or planet gears, or in the case of different severities. 

 

Figure 7-5: RMS and kurtosis for time domain (baseline, Sun-F1 and Sun F2) 

 

Figure 7-6: RMS and kurtosis for time domain (baseline, Planet-F1 and Planet F2) 

7.2.2. Spectrum Analysis 

Spectrum analysis begins by determining the characteristic frequencies of the PG, in 

terms of meshing frequency and the rotational frequencies associated with the sun, carrier, 

and planet gears. These characteristic frequencies are crucial in the detection of gear faults 
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and can be calculated from Equation 3.2 to Equation 3.8, as discussed in Chapter Three. 

The calculated characteristic frequencies of the PG used in this research are listed in Table 

7-1. 

Table 7-1: Characteristic frequencies of PG at 1117 rpm 

𝑓𝑟𝑠𝑖 Sun gear rotational frequency 18.60 Hz 

𝑓𝑟𝑐𝑖 Carrier rotational frequency 2.58 Hz 

𝑓𝑟𝑝𝑖 Planet gear rotational frequency 3.58 Hz 

𝑓𝑝𝑚𝑖 Meshing frequency 160.22 Hz 

𝑓𝑠𝑓 Sun gear fault frequency 48.12 Hz 

𝑓𝑝𝑓 Planet gear fault frequency 12.34 Hz 

Figure 7-7 to Figure 7-9 show the vibration spectrums for the baseline, Sun-F1 and Sun-

F2 up to the third meshing frequency. From these figures, it can be seen that the 

amplitudes of the first three harmonics of the meshing frequency (𝑓𝑝𝑚𝑖 = 160.2 𝐻𝑧, 

2𝑓𝑝𝑚𝑖 = 320.4 𝐻𝑧 and 3𝑓𝑝𝑚𝑖 = 480.7 𝐻𝑧) under zero load increase noticeably with 

increasing load. As shown in Figure 7-7 to Figure 7-9, the signal amplitudes at zero load 

condition, are of relatively small amplitude, while at higher load condition the amplitudes 

of the peaks increase, which confirms that the load has an effect on the magnitude of the 

vibration signal obtained. 
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Figure 7-7: Spectrum analysis for baseline (blue) 

 

Figure 7-8: Spectrum analysis for Sun-F1 (black) 
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Figure 7-9: Spectrum analysis for Sun-F2 (red) 

Figure 7-10 shows the spectrum of the vibration data for baseline (blue), Sun-F1 (black) 

and Sun-F2 (red), under 50% load. The amplitudes peaks produced by the faults can be 

used to diagnose the presence of the faults. As shown in Table 7-1, the sun gear fault 

frequency (𝑓𝑠𝑓) is around 48.12 Hz. However, it can be seen that the vibration spectrum 

does not show any dominant peaks at this frequency for either Sun-F1 or Sun-F2. 

However, Figure 7-10, presents a clear peak belonging to Sun-F2 close to 240 Hz, which 

happens to be between the first and second harmonics of the meshing frequency. This 

peak has the highest amplitude of any in the spectrum and relates to the fifth harmonics 

of the sun gear fault frequency (5 x 48.12 = 240.60 Hz). It has sidebands spaced at 2.58 

Hz due to the carrier rotational frequency. For the Sun-F1, the spectrum does not show 

any significant increase in the amplitude compared with the baseline data and it was 

concluded that it is not possible to identify the presence of the Sun-F1 fault from this 

spectrum. 
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Figure 7-10: Spectrum analysis for baseline (blue), Sun-F1(black) and Sun-F2 (red) under 50% load 

Figure 7-11 and Figure 7-12 show the vibration spectrums for Planet-F1 and Planet-F2 

under zero, 25%, 50%, 75% and 90% of full load, up to the third meshing frequency. 
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Figure 7-11: Spectrum analysis for Planet-F1 (black) 

 

Figure 7-12: Spectrum analysis for Planet-F2 (red) 
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Figure 7-13 shows the spectrum of the vibration data for baseline (blue), Planet-F1 (black) 

and Planet-F2 (red) under 50% full load. The planet gear fault (𝑓𝑝𝑓) was calculated as 

12.34 Hz, see Table 7-1. However, unlike the case of the sun gear, no clearly discernible 

peaks belonging to Planet-F1 and Planet-F2 can be observed to identify faulty planet gears 

even under the more severe fault condition. 

 

Figure 7-13: Spectrum analysis for baseline (blue), Planet-F1(black) and Planet-F2 (red) under 50% load 

7.3. Experimental Results Obtained Using Multipoint Optimal 

Minimum Entropy Deconvolution Adjusted 

This section presents the results obtained from applying MOMEDA to the collected 

vibration data for baseline, Sun-F1, Sun-F2, Planet-F1, and Planet-F2. 

7.3.1. Time Domain Analysis 

The application of the MOMEDA method to the collected vibration data begins by 

investigating the detection performance of the MOMEDA technique under different filter 

lengths from 600 to 1200. Figure 7-14 shows the MKurt values under different filter 

lengths for baseline, Sun-F1, and Sun-F2 under 90% load. The figure shows that under 

all filter lengths, the MKurt value for the baseline is smaller than the value for the Sun-
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F1 and Sun-F2 faults. A filter length of L=1000 is selected for this experiment as a balance 

between a lower value and a higher value of MKurt. A filter length above 1000 needs a 

huge computer memory to calculate it. 

 

Figure 7-14: MKurt values for baseline, Sun-F1 and Sun-F2 with different filter lengths 

In order to extract periodic fault features generated by the sun gear defect, the MOMEDA 

requires a fault location period that represents the fault features in data points. The fault 

features generated by the sun gear defect can be calculated as 𝐹𝑠/𝑓𝑠𝑓, where 𝐹𝑠 is the 

sampling rate 100 kHz, and 𝑓𝑠𝑓 is the sun gear fault frequency 48.12 Hz (𝐹𝑠/𝑓𝑠𝑓= 

100000/48.12 = 2078), hence the period corresponding to this peak is used as the range 

of the sun gear fault feature. 

Figure 7-15 toFigure 7-17 show the results obtained from the MOMEDA technique for 

baseline, Sun-F1, and Sun-F2 under five different load conditions (zero, 25%, 50%, 75% 

and 90% of full load). From the results obtained, it can be seen that the MOMEDA is able 

to extract periodic fault features in the signal generated by the faults (Sun-F1 and Sun-

F2). However, neither Sun-F1 and Sun-F2 show any clear change in signal amplitude 

compared with the baseline. In addition, it can be seen there is an unexpected peak in the 

baseline data at multiples of about 2080 Hz, depending on load. This could be explained 

as due to a non-uniform force between gear components may cause a feature to be 

extracted, as stated in a previous study by McDonald and Zhao [82]. 
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Figure 7-15: MOMEDA results for baseline signal 

 

Figure 7-16: MOMEDA results for Sun-F1 
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Figure 7-17: MOMEDA results for Sun-F2 

Following the same procedure as adopted for the sun gear, Figure 7-18 shows the MKurt 

values under different filter lengths for baseline, Planet-F1, and Planet-F2. It can be seen 

that for all filter lengths, the MKurt value for both Planet-F1 and Planet-F2 are higher 

than the value of the baseline. A filter length of L=1000 is selected in this experiment. 

 

Figure 7-18: MKurt values for baseline, Planet-F1 and Planet-F2 with different filter lengths 
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As for the sun gear, when extracting periodic fault features generated by the planet gear 

defect, the fault feature can be calculated as 𝐹𝑠/𝑓𝑝𝑓, where 𝑓𝑝𝑓 is the planet gear fault 

frequency 12.3 Hz (𝐹𝑠/𝑓𝑝𝑓= 100000/12.34 = 8103), and hence the period corresponding 

to this peak is used as the range for the planet gear fault feature. 

The results obtained from the MOMEDA technique for baseline, Planet-F1 and Planet-

F2 under five different loads are shown in Figure 7-19 toFigure 7-21. It can be observed 

that MOMEDA is unable to extract periodic fault features generated by Planet-F1 or 

Planet-F2. This can be explained by the PG consisting of three planet gears that mesh 

simultaneously with both the sun and ring gears, which could affect the fault features 

generated by a single planet gear defect. Moreover, it can be observed that there are peaks 

that appeared in the baseline data, which were not expected, and which could lead to 

misdiagnosing the planet gear condition. 

 

Figure 7-19: MOMEDA results for baseline signal 



123 

 

Figure 7-20: MOMEDA results for Planet-F1 

 

Figure 7-21: MOMEDA results for Planet-F2 
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From Figure 7-15 toFigure 7-21, it can be concluded that the presence of the sun and planet 

gear faults and the level of their severities cannot be detected using MOMEDA. 

Therefore, a further investigation is carried out using spectrum analysis, see the next 

section. 

7.3.2. Envelope Spectrum Analysis of the Filtered Data 

For further investigation, the filtered signal obtained in the previous section was 

demodulated using envelope analysis. Figure 7-22 and Figure 7-23 show the envelope 

spectrum for baseline, Sun-F1 and Sun-F2 under five different load conditions. From 

Figure 7-22, it can be observed that the amplitude of the Sun-F1 spectrum at the sun gear 

fault frequency is slightly greater than the baseline. However, the diagnostic features 

cannot be readily detected from the envelope spectrum for the Sun-F1. 

 

Figure 7-22: Envelope spectrum analysis for the baseline and Sun-F1 

It can be seen in Figure 7-23 that the amplitude of the Sun-F2 spectrum is clearly higher 

than that of the baseline particularly at the sun gear fault frequency and its harmonics. 

From these results, it can be observed that the more severe fault (Sun-F2) generates a 
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higher amplitude signal than both Sun-F1 and the baseline, and the diagnostic features 

for the Sun-F2 are readily identified using the envelope spectrum. 

 

Figure 7-23: Envelope spectrum analysis for the baseline and Sun-F2 

Figure 7-24 and Figure 7-25 show the envelope spectrum for baseline, Planet-F1 and 

Planet-F2. Similar to the Sun-F1 case, the results in Figure 7-24 shows that the amplitude 

of the Planet-F1 is slightly higher than the baseline at the planet gear fault frequency and 

its harmonics, especially at low loads (zero and 25% of full load). However, at medium 

loads (50% and 75% of full load), the amplitudes do not provide any clear differences. 

Therefore, the diagnostic features cannot be readily detected from the envelope spectrum 

for the Planet-F1. 
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Figure 7-24: Envelope spectrum analysis for the baseline and Planet-F1 

Figure 7-25 shows the envelope spectrum for baseline and Planet-F2 under five different 

load conditions. From the figure below, it is clear that the peak amplitude at the planet 

gear fault frequency and its harmonics are higher than that of the baseline, indicating the 

more severe fault (Planet-F2) generates a higher amplitude signal. Thus, the diagnostic 

features for the Planet-F2 can be observed and identified using the envelope spectrum. 
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Figure 7-25: Envelope spectrum analysis for the baseline and Planet-F2 

7.4. Results and Discussion 

Conventional signal processing methods (time and frequency domains) have been widely 

used for fault detection and diagnosis. However, these methods are limited to diagnose 

and identify the defect that has occurred in a given case. As observed in Section 7.2.1, it 

can be said that the time domain analysis is not adequate to detect the defects occurred in 

the faulty cases. Section 7.2.2 showed that frequency domain analysis was unable to 

detect the peaks at 48.12 Hz and 12.3 Hz generated by the sun and planet gear faults, even 

under different fault severities. 

From the results obtained using the MOMEDA method, it can be seen that the MOMEDA 

is able to extract periodic fault features generated by the defect for both Sun-F1 and Sun-

F2 faults. While for Planet-F1 and Planet-F2, it has difficulties in extracting periodic fault 

features generated by the planet gear defect. Moreover, the results presented in Figure 

7-15 toFigure 7-21 show that there is a presence of peaks in the baseline data, which were 

not expected and which could lead to misdiagnosing the gear condition. 
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The filtered signal obtained in Section 7.3.1 was then demodulated using envelope 

analysis. From the results presented in Figure 7-23 andFigure 7-25, it can be seen that the 

amplitude of the peaks at the corresponding fault frequencies and their harmonics increase 

with the magnitude of the faults for both the sun and planet gears. Hence, it can be 

demonstrated that the larger amplitude peaks for the Sun-F2 and Planet-F2 are an 

indication of the presence of a fault. However, for Sun-F1 and Planet-F1, the diagnostic 

features cannot be readily detected using the envelope spectrum. Hence, in the next 

chapter, further investigation will be carried out using an automated approach based on a 

deep CNN method. 
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Chapter Eight: Automated Data Processing 

Using Convolutional Neural Network for 

Simulated Data 

To evaluate the performance of the developed CNN-Three architecture with IReLU-Tanh 

function, this chapter begins by presenting the implementation steps of the CNN-Three 

model. It starts with the details of the CNN-Three architecture including architecture 

design, training and parameters tuning, validation, and testing. Then, it applies the CNN-

Three architecture to simulated data to evaluate its performance in classifying different 

levels of fault. The effectiveness of the developed CNN-Three architecture is evaluated 

and compared with three commonly used CNN architectures. In addition, the 

performance of the proposed CNN-Three architecture with IReLU-Tanh function is 

evaluated and compared against the most widely used activation functions, Tanh, ReLU, 

LReLU, and ELU. Finally, the results obtained are discussed. 
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8.1. Introduction 

This chapter presents an evaluation of the performance of the developed CNN-Three 

architecture with the proposed IReLU-Tanh function using simulated data. It starts with 

the details of the CNN-Three architecture, including architecture design, training and 

parameters tuning, validation, and testing. Each step has a different purpose in the 

development of the CNN-Three architecture. The effectiveness of the developed CNN-

Three architecture will be evaluated and compared with three recent CNN architectures. 

In addition, the performance of the CNN-Three architecture with the proposed IReLU-

Tanh function will be evaluated and compared against the most widely used activation 

functions, Tanh, ReLU, LReLU, and ELU. Finally, the results obtained are discussed at 

the end of this chapter.  

8.2. CNN Architecture Creation 

The developed CNN-Three architecture consisted of four main steps: architecture design, 

training and parameter tuning, validation, and testing. These four main steps are discussed 

in detail below. 

8.2.1. CNN Architecture Design 

This section focuses on designing a CNN architecture appropriate for feature extraction 

and classification. Figure 8-1 shows the developed CNN architecture and it consists of 

three CNN feature extraction groups, followed by the fully connected and softmax layers 

for performing multi-class classification. Each CNN feature extraction group contains 

four layers including a convolutional layer employed to extract the features directly from 

the data, a batch normalisation layer to reduce the internal covariate shift and significantly 

accelerate the training process of the CNN model, the proposed IReLU-Tanh function 

was used to introduce nonlinear characteristics into the model by transforming the input 

feature map of the previous layer to a non-linear output in the range of [−1, ∞], and a 

max-pooling layer was applied at the end of each CNN feature extraction group to reduce 

the dimension of the output feature map whilst preserving the most important features. 
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Figure 8-1: The developed CNN architecture 

As discussed in Chapter Four, the CNN architecture generally includes several hyper-

parameters that need to be tuned including, the number of CNN layers, number of 

convolutional filters, convolutional filter size, learning rate, mini-batch size, etc. Tuning 

these hyper-parameters will be discussed in detail in the next section. 

8.2.2. Training and Parameter Tuning 

As discussed in Chapter Four (see Section 4.5.1), for both simulated and experimental 

data, the training of the network starts by dividing the vibration data into 𝑁 segments. 

Each data segment length was set to cover more than one period of the expected fault 

feature. Then, the entire set of data segments are divided randomly into three data groups: 

training, validation, and testing. Following previous studies [224-226], 60% of the data 

segments will be for training, 20% for validation, and 20% for testing. The 

implementation of the developed CNN architecture starts with model training using the 

labelled-data set so as to let the model learn representative features directly from the raw 

data. In this step, the CNN model tries to map the input training data to a unique target 

class. 

The hyper-parameters of the developed CNN model were optimised using trial and error 

strategies to find the optimal parameters for the network. Three sets of signals with three 
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different fault severities were generated and used during the optimisation process. In this 

study, the simulated signal model was adopted from a previous study by Feng and Zuo 

[253], which modelled gear vibrations including two common frequencies: gear meshing 

frequency and gear fault frequency. Additive random noise was included in the signal, 

see Equation 8.1: 

𝑥(𝑡) = 𝐴(𝑡) 𝑐𝑜𝑠(2𝜋𝑓𝑚𝑒𝑠ℎ 𝑡) + 𝑒(𝑡)       (8.1) 

and 𝐴(𝑡) can be written as: 

𝐴(𝑡) = 𝐴 𝑐𝑜𝑠 (2𝜋𝑓𝑝 𝑡)        (8.2) 

where 𝐴 is the amplitude modulation, 𝑓𝑚𝑒𝑠ℎ is the meshing frequency, 𝑓𝑝 is the fault 

frequency, 𝑡 is the time, and 𝑒(𝑡) is the added noise. 

The network is trained with the three sets of simulated data with three different fault 

severities (small, medium, large) using Equation (8.1), and a small amount of noise with 

SNR of (4 dB) was added to each simulated signal, as shown in Figure 8-2. To simulate 

a signal similar to the experimental vibration data, the following parameters were 

adopted; gear meshing frequency 𝑓𝑚𝑒𝑠ℎ =160 Hz, gear fault frequency 𝑓𝑝= 50 Hz, 

sampling rate 𝐹𝑠 = 100 kHz, and time 𝑡 set to 15 seconds. 

 

Figure 8-2: Training data - simulated signals with SNR=4 dB 
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After training the network, the trained model was tested using the same simulated signal 

but with different levels of SNR ranging from -1 dB to -5 dB, as seen in Figure 8-3. The 

different levels of noise were used to evaluate the effect of noise strength on the 

performance of the CNN architecture. 

 

Figure 8-3: Testing data - simulated signals with different levels of SNR ranging from (-1 dB) to (-5 dB) 

After testing the CNN architecture with the different SNR levels, several parameters 

including, number of CNN layers, number of convolutional filters, convolutional filter 

size, etc., were tested using Equation (8.1) and the parameters giving the best 

classification performance were selected, see Table 8-1. 
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Table 8-1: Optimal network parameters of the developed CNN-Three architecture 

No. Layer Type Filter Size Number of Filters Stride 

1 Convolution 128 ∗ 1 16 6 ∗ 1 

2 Max-Pooling 2 ∗ 1 16 2 ∗ 1 

3 Convolution 4 ∗ 1 24 1 ∗ 1 

4 Max-Pooling 2 ∗ 1 24 2 ∗ 1 

5 Convolution 4 ∗ 1 32 1 ∗ 1 

6 Max-Pooling 2 ∗ 1 32 2 ∗ 1 

Training Parameters Value 

Mini-batch size 90 

Learning rate 0.04 

Epoch 50 

The process of selecting the optimal parameters is discussed in the following subsections: 

8.2.2.1. Number of CNN Groups 

The number of CNN groups determines the depth of the network, i.e., the deep structure 

of the network refers to the number of hidden layers present in the architecture, and these 

can range from tens to thousands. It has been claimed that the network depth is a high 

priority for improving the classification performance of the network [254]. Generally, the 

deeper the network, the better its ability to learn representative features from the raw data. 

However, while the depth of the network is important, the classification accuracy 

becomes degraded if the number of layers (depth) is excessive [255]. Hence, adding more 

layers to the network means a large number of model parameters to train, which makes 

the deeper networks are more prone to overfitting [203]. Thus, it is important to evaluate 

the effect of network depth on the performance of the CNN architecture.  

In this study, three configurations of CNN architecture were investigated: CNN with two 

feature extraction groups (CNN-Two), CNN with three feature extraction groups (CNN-

Three), and CNN with four feature extraction groups (CNN-Four). Each feature 

extraction group consists of four layers: convolutional, batch normalisation, activation 
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function layer and pooling. Table 8-2 shows the parameters of the CNN architecture using 

various configurations (feature extraction groups). Here, FS1, FS2, FS3 and FS4 denote 

the convolutional filter size and NF1, NF2, NF3, and NF4 refer to the number of 

convolutional filters, in the first, second, third and fourth convolutional layers of the 

feature extraction group. 

Table 8-2: Parameters of the CNN architecture using various configurations (feature extraction groups) 

Model FS1 NF1 FS2 NF2 FS3 NF3 FS4 NF4 

CNN-Two 128x1 16 4x1 24 - - - - 

CNN-Three 128x1 16 4x1 24 4x1 32 - - 

CNN-Four 128x1 16 4x1 24 4x1 32 4x1 32 

Ten trials were carried out to ensure the reliability of the result. The average classification 

accuracies obtained using various configurations with different SNR levels are shown in 

Table 8-3. 

Table 8-3: Comparison of average classification accuracies obtained using various configurations of CNN 

feature extraction groups with SNR levels ranging from (–1 dB) to (–5 dB) 

Model SNR 

-1 dB -2 dB -3 dB -4 dB -5 dB 

CNN-Two 99.80% 98.97% 97.66% 96.16% 93.47% 

CNN-Three 99.91% 99.25% 98.11% 96.72% 94.22% 

CNN-Four 99.91% 99.22% 97.94% 96.36% 94.11% 

Figure 8-4 shows in graphical form the classification accuracies presented in Table 8-3. 

The classification accuracy obtained is shown using three different bar colours: orange 

for CNN-Two, blue for CNN-Three, and yellow for CNN-Four. 
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Figure 8-4: Classification accuracy using various configurations of CNN feature extraction groups 

As shown in Table 8-3 and Figure 8-4, CNN-Three achieved the highest classification 

accuracy compared to CNN-Two and CNN-Four. Whereas, the CNN-Four is lower than 

CNN-Three for all SNR levels confirming that when adding more hidden layers into the 

network, it indicates a large number of model parameters to train, and it can lead to 

overfitting problem, resulting in a decrease in the classification accuracy of the model. 

However, a lower classification accuracy was obtained when using CNN model with two 

feature extraction groups, showing that the CNN-Two is not deep enough and too simple, 

to learn the representative features effectively from the raw data, which resulted in lower 

classification accuracy of the model on the testing data. 

Based on the classification accuracy obtained in Table 8-3 and Figure 8-4,, it can be said 

that CNN-Three achieved the best classification accuracy for the three sets of simulated 

data with SNR levels ranging from (-1 dB) to (-5 dB). CNN-Three was considered the 

optimal structure for developing the CNN architecture. 

8.2.2.2. Convolutional Filter Size 

Convolutional filter size refers to the size of the receptive field that is convolved with the 

input data. The size of the convolutional filter plays a vital role in extracting the 

representative features from the input raw data. It has been reported that a large 

convolutional filter has a larger receptive field than a small filter, and hence more 

information can be obtained with a wide filter, while small filters are expected to extract 

more detailed features [198, 203, 204, 211, 256].  
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In recent years, a number of studies have used a large receptive field in the first 

convolutional filter and then employed smaller receptive fields in later layers, which 

makes the network deeper to extract more detailed features from the early layer. Some 

recent work, for instance, Zhang, Peng [198] employed a large receptive field in the first 

convolutional layer with filter size of (64x1) and small receptive field in a later layer with 

size of (3x1). Jiao, Zhao [204] used a wide filter size of (51x1) in the first convolutional 

layer and a narrow filter size of (5x1) in the second convolutional layer. Sadoughi, 

Downey [257] employed a large filter size of (48x1) in the first layer and then a small 

filter size in the later layers. 

Based on recent studies, it is important to evaluate the effect of using a large receptive 

field in the first convolutional layer on the performance of the developed CNN 

architecture. In this study, several experiments were conducted, setting different receptive 

field sizes in the first convolutional layer varying from 32 to 160 using the optimal CNN-

Three architecture. Small receptive fields with filter size of (4x1) were used in the second 

and third CNN groups to make the network deeper and acquire better feature 

representation. Average classification accuracies obtained using various configurations 

of convolutional filter size are shown in Table 8-4. 
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Table 8-4: Comparison of classification accuracy obtained using different convolutional filter sizes with 

SNR levels ranging from (-1 dB) to (-5 dB) 

Filter Size SNR 

-1 dB -2 dB -3 dB -4 dB -5 dB 

32 98.94% 97.16% 94.88% 92.69% 89.22% 

48 99.25% 98.16% 95.58% 93.91% 91.50% 

64 99.44% 98.19% 96.55% 95.22% 92.36% 

80 99.52% 98.69% 96.69% 95.33% 92.13% 

96 99.50% 98.72% 96.77% 95.97% 93.33% 

112 99.66% 98.86% 97.16% 95.88% 93.83% 

128 99.91% 99.25% 98.11% 96.72% 94.22% 

144 99.88% 99.19% 97.91% 96.66% 94.05% 

160 99.91% 99.13% 98.02% 96.83% 94.11% 

In Table 8-4, it can be observed that the average classification accuracy increases as the 

filter size in the first convolutional layer increases, especially at SNR= -5 dB, e.g., the 

average classification accuracy was only 89.22% when the filter size was set to 32, and it 

reaches 94.22% when the filter size increased to 128. It can also be seen that, the best 

classification accuracy occurs at filter sizes 128, 144, and 160, which confirms that a 

larger filter size can obtain better fault information features with a longer convolutional 

filter. Based on the average classification accuracy obtained in Table 8-4, a filter size of 

(128x1) was selected as optimal filter size for the first convolutional layer for the CNN-

Three architecture, as it achieved the highest classification accuracy compared to other 

filter sizes with an accuracy value of 94.22%. 

8.2.2.3. Number of Convolutional Filters 

The number of convolutional filters plays an important role in the feature extraction step 

of deep architecture models. It refers to the number of features to be learned during the 



139 

training process. It has been reported that the number of convolutional filters has great 

impact on the training efficiency and the overall performance of the model [258], the 

more convolutional filters used, the more features are extracted in each convolutional 

layer. However, using too many convolutional filters in the architecture means increasing 

the number of model parameters, which results in increasing the computational 

complexity [259]. On the other hand, using too few convolutional filters means the feature 

extraction will be insufficient and unable to extract the representative features from the 

raw data, leading to a decrease in the classification accuracy of the model [123]. Thus, it 

is necessary to evaluate the effect of the number of convolutional filters on the 

performance of the CNN architecture. 

Recently, a number of studies have employed different numbers of convolutional filters, 

for instance, Jian, Li [211] employed three different convolutional filters (16/32/64). 

Sadoughi, Downey [257] used 8, 16, 32 and 32 convolutional filters for the first, second, 

third, and fourth layers. Zhang, Li [256] used four convolutional layers with different 

number of filters 8, 16, 32 and 64. Chen, Hu [203] applied six different convolutional 

filters, 16, 32, 64, 64, 64, and 64. Based on these studies, four types of convolutional filter 

configurations were investigated using the optimal CNN-Three architecture, see Table 

8-5. 

Table 8-5: Parameters of the CNN-Three architecture using various configurations of filter size (FS) and 

number of filters (NF) 

No. Filters FS1 NF1 FS2 NF2 FS3 NF3 

8/16/24 128x1 8 4x1 16 4x1 24 

8/16/32 128x1 8 4x1 16 4x1 32 

16/24/32 128x1 16 4x1 24 4x1 32 

16/32/64 128x1 16 4x1 32 4x1 64 

The average classification accuracy obtained using four types of convolutional filter 

configurations with five SNR levels are shown in Table 8-6. 
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Table 8-6: Comparison of classification accuracy using four different configurations of convolutional 

filters with five SNR levels 

No. Filters SNR 

-1 dB -2 dB -3 dB -4 dB -5 dB 

8/16/24 99.88% 99.16% 97.75% 96.13% 93.44% 

8/16/32 99.75% 99.22% 97.41% 96.55% 94.02% 

16/24/32 99.91% 99.25% 98.11% 96.72% 94.22% 

16/32/64 99.83% 99.02% 98.02% 96.25% 93.44% 

Figure 8-5 shows the average classification accuracy using different numbers of 

convolutional filters under five different noise levels, the green bar is for the 8/16/24, the 

orange for 8/16/32, the blue bar for 16/24/32, and the yellow bar for 16/32/64. 

 

Figure 8-5: Classification accuracy using four different number of convolutional filters 

In Figure 8-5 it can be observed that the CNN-Three with 16, 24 and 32 convolutional 

filters (blue bar) achieved the highest classification accuracy for all five SNR levels. As 

demonstrated in Figure 8-5, it can be confirmed that using too few convolutional filters 

(e.g., 8, 16 and 24), the feature extraction will be insufficient or unable to extract the 

representative hidden features from the raw data, leading to decreases the classification 

accuracy of the model. On the other hand, increasing the number of convolutional filters 

for the first, second and third convolutional layers, increases average classification 

accuracy, but only up to a point. Too many convolution filters (e.g., 16, 32 and 64) 
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reduced the classification accuracy, especially at SNR= -5 dB. This decrease in the 

classification accuracy is indicative of the architecture containing too many model 

parameters to train, leading to an overfitting problem.  

Based on the classification accuracy presented in Table 8-6, it can be seen that the CNN-

Three architecture with 16, 24 and 32 convolutional filters achieved the best classification 

accuracy when classifying the three sets of simulated data. Therefore, CNN-Three with 

16, 24 and 32 convolutional filters were selected as optimal parameters for the CNN-

Three architecture. 

8.2.2.4. Stride 

The number of strides determined the step size of the convolutional filter as it is slid over 

the input data. For example, if the number of the stride was set to 1, then the convolutional 

filter moved one step at a time over the input data. As discussed in Section 8.2.2.2, the 

earlier convolutional layer is generally responsible for extracting representative features 

from the raw data, whereas the later layer is to acquire better feature representation. Thus, 

it is helpful to use a larger stride in the earlier convolutional layer to speed up the 

calculations, reduce the amount of overlapping and produce an output feature map with 

lower dimension, then use small strides in the later convolutional layers for extracting 

more detailed features. In this study, a large convolutional stride in the earlier layer was 

set to 6x1, and then a small stride of 1x1 was used in the second and third convolutional 

layers. 

8.2.2.5. Max-Pooling 

Max-pooling is employed to reduce the dimension of the output feature map, while 

preserving the most important features. The max-pooling operation is used to extract the 

maximum value for each non-overlapping pooling size (when the stride is equal to 

pooling size), see Section 4.3.4. In most CNN architectures, the max-pooling layer is 

commonly applied after the convolutional layer with a pooling window of size 2x1 and 

stride of 2x1. In this study, the max-pooling layer was employed at the end of each CNN 

feature extraction group, as seen in Figure 8-1 and Table 8-1. 



142 

8.2.2.6. Mini-Batch Size 

Mini-batch size is one of the parameters that needs to be tuned. It represents the number 

of input training data in a batch to be fed into the network to make one update for the 

model parameters. As discussed in Section 4.4.3, the mini-batch GD splits the training 

data into N mini-batches, each mini-batch is fed into the network to compute the gradient 

of the loss function and then updates the model parameters. Passing the entire N mini-

batch of the training data into the network corresponds to one complete cycle of the 

training epoch. It has been reported that the number of input training data per mini-batch 

has a significant impact on the training performance [128]. Selecting a small value will 

result in each mini-batch comprising of few training data, leading to faster convergence 

than a large mini-batch, but a large mini-batch can reach a local optimum with minimum 

error. Thus, it is important to evaluate the effect of the input training data per mini-batch 

on the performance of the CNN architecture. 

As discussed in Section 8.2.2, training of the network starts by segmenting the input data 

into N segments. For the generated simulated signal in Section 8.2.2, a sampling rate of 

𝐹𝑠 = 100 kHz, and fault frequency 𝑓𝑝 = 50 Hz, then each data segment length was set to 

2500 (𝐹𝑠/𝑓𝑝=100000/50=2000) to cover more than one period of the expected fault 

feature. For 15 seconds, a total number of 600 data segments were obtained for each 

simulated data (small, medium and large). In this way 1800 data segments were obtained 

for the three levels of fault severity. In this study, 60% of the 600 data segments for each 

fault severity (360 data segments) were selected randomly as the training data, 20% (120 

data segments) were selected randomly as the validation data, and the remaining 20% 

(120 data segments) were used for testing data. Table 8-7 shows the data segmentation 

used in this study. 
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Table 8-7: Details of data segmentations used for simulated data  

Severity Total Data Segments Dataset Percentage Data Segments 

 

Small 

 

600 

Training 60% 360 

Validation 20% 120 

Testing 20% 120 

 

Medium 

 

600 

Training 60% 360 

Validation 20% 120 

Testing 20% 120 

 

Large 

 

600 

Training 60% 360 

Validation 20% 120 

Testing 20% 120 

As a total number of 1080, 360 and 360 data segments were selected for the training, 

validation and testing data respectively, hence the mini-batch size should be factor of 360, 

such as 120, 90, 60 and 30; otherwise, the network will discard the remaining part of any 

training data that does not equal to the size of previous mini-batch of training data. In 

order to study the effect of input training data per mini-batch on the performance of the 

CNN-Three architecture, four experiments were conducted: setting different sizes for the 

mini-batch including 30, 60, 90 and 120. The average classification accuracy obtained 

using these mini-batch sizes with different SNR levels are shown in Table 8-8. 

Table 8-8: Comparison of classification accuracy using different mini-batch size for five SNR levels 

Mini-Batch 

Size 

SNR 

-1 dB -2 dB -3 dB -4 dB -5 dB 

30 99.80% 98.44% 97.27 96.22% 93.05% 

60 99.88% 99.11% 98.08% 96.58% 93.72% 

90 99.91% 99.25% 98.11% 96.72% 94.22% 

120 99.86% 98.97% 97.52% 96.63% 94.02% 
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Figure 8-6 presents the results shown in Table 8-8 graphically, the green bar represents a 

mini-batch size of 30, orange is for 60, blue is for 90, and yellow is for 120. It can be seen 

from Figure 8-6 that for a given level of the SNR the best classification accuracy was 

achieved when the mini-batch was set to 90. It is noticeable in Figure 8-6 that mini-batch 

size of 120 (yellow bar) gave a lower classification accuracy than achieved by the 90 

mini-batch, for all five SNR levels, confirming that increasing the mini-batch size will 

result in each mini-batch comprise of many training data and hence fewer updates per 

training epoch, this can lead to in a state of convergence that is not the local optimum. 

 

Figure 8-6: Classification accuracy using different mini-batch sizes for five levels of SNR 

A lower classification accuracy was obtained when using a small mini-batch size (30 and 

60) as a small mini-batch size will result in each mini-batch containing relatively few 

training data, and the frequent updates can cause unstable gradients and may overshoot 

or fluctuate around the minimum error value. 

Based on the classification accuracy shown in Table 8-8 and Figure 8-6, it can be seen 

that the CNN-Three architecture with mini-batch size of 90 achieved the best 

classification accuracy compared to the others mini-batch sizes (30, 60 and 120). 

Therefore, a mini-batch size of 90 was used as the optimal parameter for the developed 

CNN-Three architecture. 

8.2.2.7. Learning Rate 

As discussed in Section 4.4.4, the learning rate refers to the step size taken when updating 

the model parameters during the training process. As studied previously in [220, 221], it 
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is usually recommended to use a lower learning rate when training the neural network as 

it improves network training performance compared to a higher learning rate [222]. In 

this study, the learning rate was selected to be as small as possible to obtain smooth error 

minimisation during the training process with a learning rate value of 0.04. 

8.2.2.8. Epoch 

The training epoch refers to the number of iterations of the entire 𝑁 mini-batches training 

data into the model required to complete one cycle training epoch. The epoch parameter 

is dependent on the selection of other parameter to complete the specified epoch number, 

e.g., using the early stopping technique during the training process. If the validation loss 

decreases to a lower error value, this means that the generalisation ability of the model is 

improved and the model continues the training process until it reaches the specified value 

of the training epoch. However, if the validation loss increases to a higher error value, 

this means that the model at this stage has begun to over-fit the training data. 

Consequently, the training process will be terminated (early stopping) before completing 

the specified epoch number to avoid overfitting. 

8.2.3. Validation 

The validation step is carried out by feeding the developed CNN-Three architecture with 

a set of unseen data (validation data) that were not used in training but follow the same 

distribution and model relationship. This step is commonly used for producing the final 

model and to avoid overfitting via early stopping technique. Validation patience is the 

number of times that the loss on the validation data can be equal or larger to the previously 

smallest loss value before the training process is terminated. It involves stopping the 

training process if the validation loss does not improve (start to increase to a higher error 

value) with a validation patience number of 5 epochs. 

8.2.4. Testing 

Testing is the final step of applying the developed CNN-Three architecture to simulated 

data. It is carried out by feeding the trained model with a set of unseen data (testing data) 

to evaluate the overall performance of the model. In any supervised classification task, 

the results obtained from the classifier are built from an 𝑁𝑥𝑁 dimensional confusion 

matrix, where 𝑁 is the number of target classes. This matrix is commonly used to evaluate 
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the performance of classification models. It compares the predicted classes against the 

target/actual classes [260]. Each class in the confusion matrix has one row and one 

column (𝑁𝑖,𝑗), where 𝑖𝑡ℎ  denotes the predicted class, and 𝑗𝑡ℎ represents the target/actual 

class. Ideally, a high classification accuracy will be obtained by having large numbers of 

the predicted samples on the main diagonal, where 𝑖 = 𝑗 [261]. In general, the confusion 

matrix provides four possible classification outcomes with respect to one target class. 

Figure 8-7 shows the confusion matrix for a multi-class classification model with 3 

classes. 

 

Figure 8-7: Examples of how to present TP, TN, FN, and FP in confusion matrix for each class in multi-

class classification 

In Figure 8-7 True Positive (TP) refers to positive samples (baseline data) correctly 

classified as positive (baseline data), False Positive (FP) is when negative samples (fault 

data) are incorrectly classified as positive (baseline data), False Negative (FN) is when 

positive samples (baseline data) are incorrectly classified as negative (fault data), and 

True Negative (TN) is when negative samples (fault data) are correctly classified as 

negative (fault data). 

In order to evaluate the performance of any supervised classification model, the 

classification accuracy can be calculated from the above four possible outcomes (TP, TN, 

FP, and FN). The classification accuracy is defined as the percentage of correctly 

classified samples (TP) in relation to the total number of samples (TP, TN, FP, and FN) 

[262]. From the confusion matrix in Figure 8-8, the correct classifications are the sum of 

the TP samples for each class divided by the total number of samples. The classification 

accuracy of the model is calculated as in Equation 8.3 [263]: 
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𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑖

𝑁
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

∑ 𝑇𝑃𝑖
𝑁
𝑖=1

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∗ 100    (8.3) 

Where 𝑖 is the number of classes. 

 

Figure 8-8: Determination of classification accuracy of the model using a confusion matrix for multi-class 

classification 

8.3. Evaluation of the Developed CNN-Three Architecture Using 

Simulated Data 

This section presents the evaluation of the performance of the developed CNN-Three 

architecture using the simulated data with five SNR levels from (-1 dB) to (-5 dB). The 

effectiveness of the developed CNN-Three architecture will be evaluated and compared 

with three recent CNN architectures. To ensure consistency in the comparison, the default 

activation function (ReLU) is employed in all the architectures. The results obtained from 

applying the developed CNN-Three and the three recent CNN architectures to the 

simulated data are presented and discussed in Section 8.5. 

8.3.1. Training Step 

The developed CNN-Three architecture was trained using three sets of simulated data 

with different fault severities, and a small amount of noise was added to the data with 

SNR of (4 dB), as seen in Figure 8-2. The training step starts with segmenting the 

simulated data into N segments, each of length 2500 sufficient to cover more than one 

period of the expected fault feature. For the simulated data of duration 15 seconds, a total 
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number of 600 data segments were obtained for each level of fault severity (small, 

medium and large). As discussed in Section 8.2.2.6, 60% of the 600 data segments for 

each severity (360 data segments) were selected randomly as the training data, 20% (120 

data segments) were selected randomly as the validation data, and the remaining 20% 

(120 data segments) were selected for the testing data. The developed CNN-Three model 

parameters listed in Table 8-1, were set to the optimal values as found in the network 

optimisation described in Section 8.2.2. In this study, the developed CNN-Three model 

was trained using the simulated data shown in Figure 8-2, and then the trained CNN-

Three model was tested with the same simulated data but with five SNR levels ranging 

from (-1 dB) to (-5 dB), see Figure 8-3. 

8.3.2. Testing Step 

The trained CNN-Three model was tested with the 120 data segments for each severity 

(in total 360 segments for the three levels of fault severity) of simulated data with five 

SNR levels. Figure 8-9 shows the classification accuracy obtained from using the CNN-

Three model with ReLU function to classify three sets of simulated data with increasing 

SNR levels. It can be seen that the classification accuracy achieved by the developed 

CNN-Three architecture was 99.31% accuracy for the simulated datasets with SNR of (-

1 dB) and 85.11% accuracy with SNR level (-5 dB). The classification accuracy obtained 

in Figure 8-9 shows that the developed CNN-Three architecture is an effective and 

reliable model. 
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Figure 8-9: Classification accuracy for the developed CNN-Three architecture using simulated data with 

five SNR levels 

8.3.2.1. Comparison of the Developed CNN-Three Architecture Against Existing 

CNN Architectures 

To evaluate the effectiveness and performance of the developed CNN-Three architecture, 

the following three recent CNN architectures were used as comparisons. 

 CNN [92]: this study proposed CNN architecture to learn features directly from raw 

data and then evaluated using experimental vibration data collected from a PG. In this 

study, the proposed CNN architecture consisted of five layers: convolutional, ReLU 

function, max pooling, fully connected, and finally softmax layers. More details of 

the CNN architecture can be found in [92]. Details of the network parameters used 

for the CNN are shown in Table 8-9. 

Table 8-9: Network parameters for the CNN architecture 

No. Layer Type Filter Size Number of Filters Stride 

1 Convolution 32 ∗ 1 10 32 ∗ 1 

2 Max-Pooling 2 ∗ 1 10 2 ∗ 1 
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 1D-DCNN [123]: this study used a one-dimensional deep convolutional neural 

network (1D-DCNN) architecture for machinery CM, which was evaluated using 

experimental vibration data collected from a gearbox. The proposed 1D-DCNN 

architecture comprises of two CNN feature extraction groups, each group consisted 

of convolutional, ReLU function, and max pooling layers, followed by fully 

connected, dropout and softmax layers. More details of the 1D-DCNN architecture 

can be found in [123]. The network parameters used for the 1D-DCNN are shown in 

Table 8-10. 

Table 8-10: Network parameters for the 1D-DCNN architecture 

No. Layer Type Filter Size Number of Filters Stride 

1 Convolution 257 ∗ 1 24 2 ∗ 1 

2 Max-Pooling 2 ∗ 1 24 1 ∗ 1 

3 Convolution 127 ∗ 1 48 2 ∗ 1 

4 Max-Pooling 2 ∗ 1 48 1 ∗ 1 

 DCNN [203]: this study also used a deep convolutional neural network (DCNN) 

architecture for data fusion of vibration measurements made in two-directions to 

identify the health condition of a PG. The proposed DCNN architecture consisted of 

six CNN feature extraction groups, each group comprised of convolutional, batch 

normalisation, ReLU function, and max pooling layers, followed by fully connected, 

dropout and softmax layers at the end of the model. The proposed DCNN architecture 

was evaluated using experimental vibration data collected from the PG. More details 

of the DCNN architecture can be found in [203]. Details of the network parameters 

used for the DCNN are shown in Table 8-11. 
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Table 8-11: Network parameters for the DCNN architecture 

No. Layer Type Filter Size Number of Filters Stride 

1 Convolution 512 ∗ 1 16 2 ∗ 1 

2 Max-Pooling 2 ∗ 1 16 2 ∗ 1 

3 Convolution 65 ∗ 1 32 1 ∗ 1 

4 Max-Pooling 2 ∗ 1 32 1 ∗ 1 

5 Convolution 3 ∗ 1 64 1 ∗ 1 

6 Max-Pooling 2 ∗ 1 64 1 ∗ 1 

7 Convolution 3 ∗ 1 64 1 ∗ 1 

8 Max-Pooling 2 ∗ 1 64 1 ∗ 1 

9 Convolution 3 ∗ 1 64 1 ∗ 1 

10 Max-Pooling 2 ∗ 1 64 1 ∗ 1 

11 Convolution 3 ∗ 1 64 1 ∗ 1 

12 Max-Pooling 2 ∗ 1 64 1 ∗ 1 

The above-mentioned CNN, 1D-DCNN and DCNN architectures were applied to the 

simulated data shown in Figure 8-2, and then the trained CNN, 1D-DCNN and DCNN 

models were tested using the same simulated data but with five SNR levels ranging from 

(-1 dB) to (-5 dB), as shown in Figure 8-3. The classification accuracies obtained from 

CNN, 1D-DCNN and DCNN were used for comparison with the developed CNN-Three 

architecture. 

To evaluate the effect of different CNN architecture configurations on the learning 

performance of the network, unseen validation data was fed into the trained CNN-Three, 

DCNN, 1D-DCNN and CNN models using the same simulated data but with different 

SNR levels. Figure 8-10 (a) and (b) show the average validation accuracy and loss curves 

for the developed CNN-Three, DCNN, 1D-DCNN and CNN architectures with SNR of 

(-3 dB). 
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Figure 8-10: Validation accuracy and loss curves for different CNN architectures with SNR of (-3 dB) 

Figure 8-10 (a) and (b) show the accuracy and loss curves after 120 iterations (10 epochs). 

It can be observed in Figure 8-10 (a) that the accuracy curve for the developed CNN-

Three architecture is slightly higher than DCNN, 1D-DCNN and CNN architectures. It 

reaches a maximum classification accuracy of 90% with an SNR level of (-3 dB). A lower 

classification accuracy was achieved using the DCNN, 1D-DCNN and CNN 

architectures, with accuracy values of 88%, 88% and 87%, respectively. 

It can also be seen in Figure 8-10 (b) that the loss curve for the developed CNN-Three 

architecture decreased to a lower error rate. Therefore, it can be said that the developed 

CNN-Three architecture learned better feature representation from the simulated datasets 

and the model parameters reach its optimum values with a lower error rate compared to 

the other CNN architectures. It can also be observed in Figure 8-10 (b) that the loss curve 

reached its minimum error value after 24 iterations (2 epochs) and remained stable until 

the training process was terminated (early stopping) at iteration number 120 (10 epochs) 

to avoid over-training and over-fitting the data. A higher error rate was obtained using 
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DCNN, 1D-DCNN and CNN architectures, as shown in Figure 8-10 (b). Therefore, it can 

be said that the network depth, filter size, number of filters, etc., have a significant impact 

on the network training and hence on the overall performance of the network on unseen 

data. 

Table 8-12 presents the multi-class confusion matrix obtained from ten trials for the 

developed CNN-Three, DCNN, 1D-DCNN and CNN architectures with SNR (-3 dB). As 

seen in Table 8-12, the vertical axis of the confusion matrix represents the predicted class 

of the unseen testing data under three fault severities (small, medium, large), and the 

horizontal axis represents the actual class under the three fault severities. Appendix A 

presents the other multi-class confusion matrix results obtained for the four architectures 

using simulated data with SNR levels of (-1 dB), (-2 dB), (-4 dB) and (-5 dB). 

As shown in Table 8-12 for the small severity class, the DCNN achieved the highest 

classification, correctly classifying 1179 out of 1200 samples, but incorrectly classifying 

21 samples as medium severity class. The second and third highest predictions were 

obtained when using 1D-DCNN and CNN-Three architectures, they correctly predicted 

1104 and 1102 samples out of 1200 samples, respectively, as belonging to the small 

severity class. The lowest classification was achieved when using CNN architecture, only 

1005 samples were correctly classified as belonging to the small severity class and 195 

samples incorrectly classified as medium severity class. 
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Table 8-12: Multi-class confusion matrix for CNN-Three, DCNN, 1D-DCNN and CNN using simulated 

data with SNR (-3 dB) 

 

As shown in Table 8-12, for the medium severity class, the highest classification was 

achieved using the CNN architecture, 982 out of 1200 samples were correctly predicted 

as medium severity class, 23 and 195 samples incorrectly predicted as belonging to the 

small and large severity classes, respectively. The developed CNN-Three architecture 

achieved the second highest prediction, correctly classifying 966 samples out of 1200 

samples, and 234 samples incorrectly predicted as large severity class. The lowest 

classification was obtained using the DCNN architecture, only 802 samples out of 1200 

samples were correctly classified, 380 samples incorrectly classified as belonging to the 

large severity class, and the remaining 18 samples incorrectly classified as small severity 

class. 

For the large severity class, it can be seen in Table 8-12 that the highest classification was 

obtained by both the developed CNN-Three and DCNN architectures. Both models 

correctly classified all 1200 samples as belonging to the large severity class. The 1D-

DCNN correctly classified 1197 samples out of 1200 samples as belonging to the large 

severity class, and only 3 samples incorrectly classified as belonging to the medium 

severity class. The lowest classification was obtained using the CNN architecture, 1154 
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samples out of 1200 samples were correctly classified, and 46 samples incorrectly 

classified as belonging to the medium severity class. 

Based on the classification presented in the multi-class confusion matrix in Table 8-12 

and Appendix A, the average classification accuracies for the ten trials for CNN, 1D-

DCNN, and DCNN architectures using simulated data with five SNR levels are shown in 

Figure 8-11 to Figure 8-13. 

Figure 8-11 shows the classification accuracy obtained from applying the CNN 

architecture to classify three sets of simulated fault data (small, medium, and large) with 

five SNR levels. The CNN architecture achieved a lowest classification accuracy 

compared to 1D-DCNN, DCNN, and the developed CNN-Three architectures. Table 8-12 

shows that the CNN architecture correctly classified 3141 samples out of a total of 3600 

samples, achieving 87.25% accuracy with a SNR level of (-3 dB). For the other SNR 

levels, the CNN architecture achieved 96.19%, 92.27%, 83.91%, and 77.13% 

classification accuracies for SNR levels of (-1 dB), (-2 dB), (-4 dB), and (-5 dB), 

respectively. 

 

Figure 8-11: Classification accuracy for CNN architecture using simulated data with five SNR levels 

Using the 1D-DCNN architecture gave an improvement when classifying the three sets 

of simulated data with five different SNR levels, see Figure 8-12. The average 

classification accuracy for 1D-DCNN was higher than the CNN architecture. The 1D-

DCNN architecture achieved 97.77%, 92.72%, 88.22%, 85.86%, and 82.61% 
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classification accuracy for five SNR levels (-1 dB), (-2 dB), (-3 dB), (-4 dB), and (-5 dB), 

respectively. 

 

Figure 8-12: Classification accuracy for 1D-DCNN architecture using simulated data with five SNR 

levels 

A further slight improvement in the classification accuracy was achieved by using the 

DCNN architecture, see Figure 8-13, with an accuracy values of 98.44%, 93.05%, 

88.36%, 86.08%, and 84.30% for SNR levels of (-1 dB), (-2 dB), (-3 dB), (-4 dB), and (-

5 dB), respectively. 

 

Figure 8-13: Classification accuracy for DCNN architecture using simulated data with five SNR levels 
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Based on the results obtained from Figure 8-9 to Figure 8-13, it can be said that the 

developed CNN-Three with the default ReLU activation function achieved the highest 

classification accuracy for the three sets of simulated data with five SNR levels. Table 

8-12 shows that the developed CNN-Three model correctly classified 3268 samples out 

of a total of 3600 samples, achieving 90.78% classification accuracy for the simulated 

datasets with SNR level of (-3 dB). The developed CNN-Three architecture confirmed its 

improvement in classifying three sets of simulated fault data (small, medium, and large) 

with a classification accuracy improvement of 1% compared to the DCNN model, 2% 

improvement compared to the 1D-DCNN model, and 4% improvement compared to the 

CNN model. Therefore, it can be said that applying the developed CNN-Three 

architecture to simulated data yields a robust classification with high diagnostic accuracy 

and outperforms the CNN, 1D-DCNN, and DCNN. 

8.4. Evaluation of the Proposed IReLU-Tanh Function Using 

Simulated Data 

In this section, the developed CNN-Three architecture with the proposed IReLU-Tanh 

function will be applied to the simulated data generated using Equation 8.1, in a manner 

similar to that used in Section 8.3. The effectiveness of the developed CNN-Three 

architecture with the proposed IReLU-Tanh function will be evaluated and compared 

with the most widely used activation functions, Tanh, ReLU, LReLU, and ELU. The 

results obtained are presented and discussed in Section 8.5. 

Figure 8-14 shows the classification accuracy obtained from applying the developed 

CNN-Three with the proposed IReLU-Tanh function for the simulated datasets with five 

SNR levels. It can be seen that the classification accuracy achieved by the developed 

CNN-Three architecture with the proposed IReLU-Tanh function was 99.91% accuracy 

for the simulated datasets with SNR of (-1 dB) and 94.22% accuracy with SNR level of 

(-5 dB). 
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Figure 8-14: Classification accuracy for CNN-Three with IReLU-Tanh function for simulated data with 

five SNR levels 

8.4.1. Comparison of the Proposed IReLU-Tanh Function Against 

Existing Activation Functions 

To evaluate the effect of the activation functions, Tanh, ReLU, LReLU, ELU and IReLU-

Tanh on the learning performance of the developed CNN-Three architecture, unseen 

validation data was fed into the trained CNN-Three model using the same simulated data 

but with different SNR levels. Figure 8-15 (a) and (b) show the average validation 

accuracy and loss curves for the different activation functions: the proposed IReLU-Tanh, 

ELU, LReLU, ReLU and Tanh with SNR of (-3 dB). 
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Figure 8-15: Validation accuracy and loss curves for different activation functions with SNR (-3 dB) 

Figure 8-15 (a) and (b) show the accuracy and loss curves after 120 iterations (10 epochs). 

It can be seen in Figure 8-15 (a) that the accuracy curve for CNN-Three with IReLU-

Tanh function is higher than the existing activation functions (ELU, LReLU, ReLU and 

Tanh). With an SNR of (-3 dB), the developed CNN-Three with the proposed IReLU-

Tanh achieved the highest classification accuracy of 98%. A lower classification accuracy 

was achieved by the other activation functions, with an accuracy values of 96%, 92%, 

90% and 89% for ELU, LReLU, ReLU and Tanh functions, respectively. 

It can be seen in Figure 8-15 (b) that the loss curve of the proposed IReLU-Tanh function 

decreased to a lower error rate compared to the other activation functions. Therefore, it 

can be said that the developed CNN-Three architecture with the proposed IReLU-Tanh 

function learned better feature representation from the raw data and yields a higher 

classification accuracy curve with a lower error rate compared to the existing activation 

functions. It can also be seen in Figure 8-15 (b) that the loss curve has reached its 

minimum error value after 24 iterations (2 epochs) and remained stable until the training 

process was terminated (early stopping) at iteration number 120 (10 epochs) to avoid 



160 

over-training and over-fitting the data. A higher error rate was obtained when using the 

CNN-Three with the other activation functions, ELU, LReLU, ReLU and Tanh, as 

illustrated in Figure 8-15 (b). Therefore, it can be said that the drawbacks reported in 

Chapter Five, including vanishing gradient, dead neuron, and fixed gradient value have a 

significant impact on the network training and hence on the overall performance of the 

model, and consequently lead to decreased the classification accuracy of the network on 

unseen data. 

The results obtained from applying CNN-Three with different activation functions to 

simulated data is evaluated by constructing a multi-class confusion matrix and calculating 

the classification accuracy of the model using Equation 8.3. Table 8-13 presents the multi-

class confusion matrix from ten trials under different activation functions (the proposed 

IReLU-Tanh, ELU, LReLU, ReLU and Tanh) with SNR of (-3 dB). Appendix B presents 

the other multi-class confusion matrix results obtained for the given activation functions 

using simulated data with SNR levels of (-1 dB), (-2 dB), (-4 dB) and (-5 dB). 

As shown in Table 8-13 for the small severity class, the highest classification was 

achieved when using the developed CNN-Three with the proposed IReLU-Tanh function, 

as it correctly classified 1180 samples out of 1200 samples belonging to the small severity 

class, and 20 samples incorrectly classified as medium severity class. The second highest 

classification was obtained using the CNN-Three with ELU function, it correctly 

classified 1174 samples as belonging to the small severity class, and 26 samples 

incorrectly classified as belonging to the medium severity class. The lowest classification 

was obtained when applying the CNN-Three with the ReLU function, only 1102 samples 

were correctly classified and 98 sample incorrectly classified as belonging to the medium 

severity class. 
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Table 8-13: Multi-class confusion matrix for different activation functions using simulated data with SNR 

(-3 dB) 

 

For the medium severity class, it can be seen in Table 8-13 that the proposed IReLU-Tanh 

function achieved the highest correct classification, 1163 samples correctly classified as 

medium severity class, 10 and 27 samples incorrectly classified as belonging to the small 

and large severity classes, respectively. The developed CNN-Three with ELU function 

achieved the second highest correct classification, it classified 1137 samples out of 1200 

samples as correctly belonging to the medium severity class, 22 samples incorrectly 

classified as small severity class, and the remaining 41 samples misclassified as large 

severity class. 

As seen in Table 8-13 for the large severity class, it can be seen that a highest correct 

classification was obtained using CNN-Three with the ReLU and LReLU functions. In 

both scenarios, all 1200 samples were correctly classified as belonging to the large 

severity class. The developed CNN-Three with the proposed IReLU-Tanh function 

correctly classified 1189 samples as belonging to large severity class, and 11 samples 

incorrectly classified as belonging to medium severity class. The lowest classification 
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was obtained when using the developed CNN-Three with Tanh function, only 996 

samples out of 1200 samples were correctly classified as belonging to the large severity 

class, and 204 samples incorrectly classified as belonging to the medium severity class. 

Based on the classification obtained from the multi-class confusion matrix in Table 8-13 

and Appendix B, the average classification accuracy for the ten trials for Tanh, ReLU, 

LReLU and ELU functions using simulated data with five SNR levels are shown in Figure 

8-16 to Figure 8-19. 

Figure 8-16 shows the classification accuracy obtained from applying the CNN-Three 

with Tanh function to classify three sets of simulated data (small, medium and large) with 

five different SNR levels. It can be seen that the CNN-Three with Tanh function achieved 

the lowest classification accuracy compared to ReLU, LReLU, ELU and the proposed 

IReLU-Tanh functions. For example, Table 8-13 shows that CNN-Three with Tanh 

function correctly classified 3228 out of the total number of 3600 samples, achieving 

89.67% accuracy when classifying the three sets of simulated data with SNR level of (-3 

dB). For the SNR levels of (-1 dB), (-2 dB), (-4 dB), and (-5 dB), it achieved 98.14%, 

94.64%, 85.56%, and 83.81% classification accuracies, respectively. 

 

Figure 8-16: Classification accuracy for CNN-Three with Tanh function using simulated data with five 

SNR levels 

Figure 8-17 shows the classification accuracy achieved when using the CNN-Three with 

ReLU function for the three simulated datasets with five different SNR levels. It can be 
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seen that the average classification accuracy obtained for CNN-Three with ReLU 

function is higher than Tanh function, it achieved 99.31%, 95.97%, 90.78%, 87.47%, and 

85.11% classification accuracies for SNR levels of (-1 dB), (-2 dB), (-3 dB), (-4 dB), and 

(-5 dB), respectively. 

 

Figure 8-17: Classification accuracy for CNN-Three with ReLU function using simulated data with five 

SNR levels 

Figure 8-18 shows that a slight improvement of around 1% was achieved when using the 

developed CNN-Three with LReLU function compared to the ReLU function. The 

average classification accuracy decrease from 99.42% accuracy with SNR level of (-1 

dB) to 86.36% accuracy with SNR level of (-5 dB). 
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Figure 8-18: Classification accuracy for CNN-Three with LReLU function using simulated data with five 

SNR levels 

Figure 8-19 shows the classification accuracy achieved when using the CNN-Three with 

ELU function, there was a further improvement in the classification accuracy compared 

to LReLU function. The CNN-Three with ELU function achieved classification 

accuracies of 99.83%, 98.83%, 96.94%, 95.08%, and 92.94% for SNR levels of (-1 dB), 

(-2 dB), (-3 dB), (-4 dB), and (-5 dB), respectively. 

 

Figure 8-19: Classification accuracy for CNN-Three with ELU function using simulated data with five 

SNR levels 
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Based on the results obtained from Figure 8-14 to Figure 8-19, it can be said that the 

developed CNN-Three with the proposed IReLU-Tanh function achieved the highest 

classification accuracy for the three sets of simulated data with five SNR levels. Table 

8-13 shows that the developed CNN-Three with the proposed IReLU-Tanh function 

correctly classified 3532 samples out of a total of 3600 samples, achieving 98.11% 

classification accuracy for the simulated datasets with SNR level of (-3 dB). In addition, 

the classification accuracies shown in Figure 8-14 are all above 94% when classifying 

three sets of simulated data with SNR levels from (-1 dB) to (-5 dB). Therefore, it can be 

said that the developed CNN-Three with the proposed IReLU-Tanh function to simulated 

data yields a robust classification with high diagnostic accuracy and outperforms the 

existing activation functions: ELU, LReLU, ReLU and Tanh. 

8.5. Results and Discussion 

Based on the results obtained in Section 8.3, the developed CNN-Three architecture has 

shown its effectiveness and ability to learn the representative features directly from the 

simulated datasets and yield a robust classification with high diagnostic accuracy. The 

developed CNN-Three model achieved the highest classification accuracy and 

outperformed the CNN, 1D-DCNN and DCNN architectures. As seen in Table 8-14 that 

the developed CNN-Three architecture confirmed its improvement in classifying three 

sets of simulated data (small, medium, and large) with a classification accuracy 

improvement of 1% compared to the DCNN model, 2% improvement compared to the 

1D-DCNN model, and 4% improvement compared to the CNN model. 

Table 8-14: Average classification accuracies of ten trials for the developed CNN-Three and three other 

models with SNR levels from (-1 dB) to (-5 dB) 

Model SNR 

-1 dB -2 dB -3 dB -4 dB -5 dB 

CNN 96.19% 92.27% 87.25% 83.91% 77.13% 

1D-DCNN 97.77% 92.72% 88.22% 85.86% 82.61% 

DCNN 98.44% 93.05% 88.36% 86.08% 84.30% 

CNN-Three 99.31% 95.97% 90.78% 87.47% 85.11% 
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The advantage of the developed CNN-Three architecture is that it consists of three CNN 

feature extraction groups, each group contains convolutional, batch normalisation, 

activation function, max pooling layers, followed by fully connected and softmax layers 

and therefore the CNN-Three is deeper than CNN and 1D-DCNN architectures. Table 

8-14 shows that the CNN, 1D-DCNN models achieved lower classification accuracies 

compared to DCNN and the CNN-Three models, this is because their architectures are 

not deep enough and too simple to learn the representative hidden features effectively 

from the raw data. As discussed in Section 8.2.2.1, the network depth is a high priority 

for improving the classification performance of a network [254]. The deeper the network, 

the stronger its ability to learn representative features from the data. However, 

classification accuracy gets degraded if the number of layers is overly increased [255] 

because adding more layers means a large number of model parameters to train, which 

makes deeper networks are more prone to overfitting problem [203]. The DCNN 

architecture achieved the second highest classification accuracy, however, from the 

results obtained in Table 8-14, it can be confirmed that when adding more layers into the 

network, it meant a large number of the DCNN parameters to train, hence it led to 

overfitting problem and resulted in a lower classification accuracy than the developed 

CNN-Three architecture. 

 

Figure 8-20: Comparison between the developed CNN-Three architecture and three other architectures 

using simulated data with five SNR levels 

Figure 8-20 compares the classification accuracy obtained from the developed CNN-

Three architecture and three other architectures (CNN, 1D-DCNN and DCNN). It can be 

clearly observed that the developed CNN-Three architecture yielded robust classification 
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with high diagnostic accuracy and outperformed the other architectures. The 

classification accuracy achieved by the developed CNN-Three architecture was 99.31% 

for the simulated datasets with SNR of (-1 dB) and 85.11% with SNR level (-5 dB). 

Applying the developed CNN-Three with the proposed IReLU-Tanh function to the 

simulated data demonstrated that the network could reliably learn better feature 

representation from the raw data. As discussed in Section 8.4.1, the developed CNN-

Three with the proposed IReLU-Tanh function reduces the loss curve to the lowest error 

rate, and consequently achieved the highest classification accuracy with a maximum 

value of 98% with SNR of (-3 dB). The developed CNN-Three with the proposed IReLU-

Tanh function showed its effectiveness in achieving the highest classification accuracy 

and outperforming the most widely used activation functions, see Table 8-15. 

Table 8-15: Average classification accuracies of ten trials for different activation functions with SNR 

levels from (-1 dB) to (-5 dB) 

Function SNR 

-1 dB -2 dB -3 dB -4 dB -5 dB 

Tanh 98.14% 94.64% 89.67% 85.56% 83.81% 

ReLU 99.31% 95.97% 90.78% 87.47% 85.11% 

LReLU 99.42% 96.11% 92.72% 89.55% 86.36% 

ELU 99.83% 98.83% 96.94% 95.08% 92.94% 

IReLU-Tanh 

(Proposed) 

99.91% 99.25% 98.11% 96.72% 94.22% 

The advantage of the proposed IRaLU-Tanh function is that it addresses the vanishing 

gradient problem in the Tanh function, by adopting the non-saturation property from the 

ReLU function for covering the positive region. As discussed in Section 5.5, during the 

forward propagation process, when the input value is greater than zero (𝑥 > 0), the 

proposed IReLU-Tanh function output is equal to the input itself (𝑓(𝑥) = 𝑥). In the case 

of backward propagation, the gradient value of the proposed IReLU-Tanh function is 

equal to (𝑓′(𝑥) = 1). Moreover, the proposed IReLU-Tanh function addresses the 

shortcomings of dying neurons in ReLU function and fixed gradient value in the LReLU 
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function, by having (𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥)) for (x ≤ 0). Also, the proposed IReLU-Tanh 

function does not require a hyper-parameter (𝛼) to be included in the architecture. This 

means the saturation level for negative inputs is determined by the Tanh function, instead 

of requiring the addition of a hyper-parameter as the LReLU and ELU functions that need 

to be tuned based on a trial and error process. Therefore, the proposed IReLU-Tanh 

function enhances the network training by learning the representative features directly 

from simulated datasets, and consequently improves the overall performance of the 

network to obtain a higher classification accuracy compared to the ELU, LReLU, ReLU, 

and Tanh functions. 

 

Figure 8-21: Comparison between the proposed IReLU-Tanh function and the existing activation 

functions using simulated data with five SNR levels 

Figure 8-21 compares the classification accuracy obtained from the proposed IReLU-

Tanh function with the existing activation functions, Tanh, ReLU, LReLU and ELU. It 

can be clearly seen that the highest classification accuracy was achieved using the 

developed CNN-Three with the proposed IReLU-Tanh function. It has been demonstrated 

that applying the developed CNN-Three with the proposed IReLU-Tanh function to 

simulated data yields robust classifications with high diagnostic accuracy and 

outperforms the most widely used activation functions. 
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Chapter Nine: Automated Data Processing 

Using Convolutional Neural Network for Real 

Data 

This chapter presents an evaluation of the performance of the developed CNN-Three 

architecture with the proposed IReLU-Tanh function using experimentally recorded 

vibration data. The results obtained are presented and compared against the most widely 

used activation functions, Tanh, ReLU, LReLU, and ELU. Finally, the results obtained 

are discussed. 
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9.1. Introduction 

This chapter presents the evaluation of the performance of the developed CNN-Three 

architecture with the proposed IReLU-Tanh function using vibration data obtained 

experimentally. It starts with the training step using five sets of vibration data (baseline, 

Sun-F1, Sun-F2, Planet-F1 and Planet-F2) to train the CNN-Three model with the IReLU-

Tanh function. Then, the trained model was validated using unseen validation data. This 

was followed by the testing step where the trained model was tested with unseen testing 

data. The results obtained from applying the developed CNN-Three with the proposed 

IReLU-Tanh function to the experimental vibration data is presented and compared 

against the results obtained using the most widely used activation functions. Finally, the 

results are discussed at the end of the chapter. 

9.2. Evaluation of the Proposed IReLU-Tanh Function Using Real 

Data 

This section presents the evaluation of the performance of the developed CNN-Three with 

the proposed IReLU-Tanh using experimental vibration data collected from the PG test 

rig under different load conditions (zero, 25%, 50%, 75% and 90% of full load). The 

results obtained are compared with those obtained using existing activation functions, and 

finally the results are discussed in Section 9.3. 

9.2.1. Training Step 

The CNN-Three architecture was trained using five sets of vibration data under different 

fault severities on the sun and planet gears. Data set one was collected for the normal 

(baseline) condition, data sets two and three were collected from the sun gear under two 

different tooth breakage severities (Sun-F1 and Sun-F2), data sets four and five were 

collected from the planet gear under two different tooth breakage severities (Planet-F1 

and Planet-F2). As previously, each data set was collected and measured at a sampling 

rate 100 kHz for a period of 30 seconds, hence each data set contained (3 x 106 samples). 

As shown in Section 7.2.2, the planet gear fault frequency is calculated as 12.34 Hz, the 

period of the expected fault feature corresponded to 8103 data points (
𝐹𝑠

𝑓𝑝𝑓
=

100000

12.34
=
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8103). Therefore, each data segment length was set to 8330 data points in order to ensure 

each data segment covered more than one period of the expected planet fault feature. 

For 30 seconds measurement, a total number of 360 data segments were obtained for each 

of the five data sets (baseline, Sun-F1, Sun-F2, Planet-F1 and Planet-F2). In this way a 

total of 1800 data segments were obtained. For each data set, 60% of the 360 data 

segments (216 data segments) were selected randomly as the training data, 20% (72 data 

segments) were selected randomly as the validation data, and the remaining 20% (72 data 

segments) were selected as the testing data. Therefore, for all five data sets, a totals of 

1080, 360 and 360 data segments were obtained for the training, validation, and testing 

data respectively, and each load condition had the same number of data segments. Table 

9-1 shows the data segmentation used in this study. 

Table 9-1: Details of the data segmentations used for experimental vibration data 

Severity Total Data Segments Dataset Percentage Data Segments 

 

Baseline 

 

360 

Training 60% 216 

Validation 20% 72 

Testing 20% 72 

 

Sun-F1 

 

360 

Training 60% 216 

Validation 20% 72 

Testing 20% 72 

 

Sun-F2 

 

360 

Training 60% 216 

Validation 20% 72 

Testing 20% 72 

 

Planet-F1 

 

360 

Training 60% 216 

Validation 20% 72 

Testing 20% 72 

 

Planet-F2 

 

360 

Training 60% 216 

Validation 20% 72 

Testing 20% 72 
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For experimental vibration data, the CNN-Three model parameters were set to the same 

values found in the network optimisation reported in Section 8.2.2, but with a decrease of 

the learning rate to 0.01, as the collected vibration data is more complicated and contains 

more components than the simulated data. In this experiment, the developed CNN-Three 

architecture was trained with five sets of vibration data (baseline, Sun-F1, Sun-F2, Planet-

F1 and Planet-F2) under one load, and then the trained model was tested with five sets of 

vibration data under the same load condition. 

9.2.2. Testing Step 

Figure 9-1 shows the average classification accuracy of ten trials obtained from applying 

the developed CNN-Three with the proposed IReLU-Tanh to all five sets of experimental 

vibration data under five different load conditions. It can be observed from the 

classification accuracy obtained that the developed CNN-Three with the proposed 

IReLU-Tanh function is an effective and reliable method, achieving 93.03% 94.14%, 

93.39%, 94.00%, and 94.11% for zero, 25%, 50%, 75%, and 90% loads, respectively. 

 

Figure 9-1: Classification accuracy for CNN-Three with IReLU-Tanh function using experimental 

vibration data under different load conditions 
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9.2.2.1. Comparison of the Proposed IReLU-Tanh Function Against Existing 

Activation Functions 

In order to evaluate the effect of the activation functions Tanh, ReLU, LReLU, ELU and 

IReLU-Tanh on the learning performance of the developed CNN-Three model, unseen 

validation data was fed into the trained CNN-Three model under the same load condition. 

Figure 9-2 (a) and (b) show the average validation accuracy and loss curves for different 

activation functions, including the proposed IReLU-Tanh, ELU, LReLU, ReLU and 

Tanh, under 50% of full load. 

 

Figure 9-2: Validation accuracy and loss curves for different activation functions (50% Load) 

Figure 9-2 (a) and (b) show the accuracy and loss curves after 144 iterations (12 epochs). 

It can be seen in Figure 9-2 (a) that the accuracy curve for CNN-Three with the proposed 

IReLU-Tanh function is higher than the existing activation functions, ELU, LReLU, 

ReLU and Tanh. It reached a maximum classification accuracy of 93% (under 50% load). 

A lower classification accuracy was obtained for the ELU, LReLU, ReLU and Tanh 

functions, achieving 91%, 90%, 90% and 87%, respectively as shown in Figure 9-2 (a). 
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It can also be observed in Figure 9-2 (b) that the loss curve of the proposed IReLU-Tanh 

function decreased to a lower error rate compared to the other activation functions. 

Therefore, it can be said that developed CNN-Three with the proposed IReLU-Tanh 

function enhanced the overall performance of the network in two aspects; firstly, in the 

training task the model parameters reach the optimum values with lower error rate so the 

network can learn the hidden features more effectively from the raw data. Secondly, it 

improves the classification accuracy of the network and yields better diagnostic accuracy 

compared to the other activation functions. It can also be seen in Figure 9-2 (b) that the 

loss curve has reached its minimum error value after 36 iterations (3 epochs) and 

remained stable until the training process was terminated (early stopping) at about 

iteration number 144 (12 epochs) to avoid over-training and over-fitting the data. A higher 

error rate was obtained when using the CNN-Three with the other activation functions, 

ELU, LReLU, ReLU and Tanh, as illustrated in Figure 9-2 (b). Therefore, it can be said 

that the existing activation functions have a significant impact on the network training 

and hence on the overall performance of the model, consequently lead to decreased the 

classification accuracy of the network on unseen data. 

Table 9-2 presents the multi-class confusion matrix obtained from ten trials under 

different activation functions (IReLU-Tanh, ELU, LReLU, ReLU and Tanh) under 50% 

load. Appendix C presents the other multi-class confusion matrix results obtained for the 

given activation functions using experimental vibration data with zero, 25%, 75% and 

90% loads. 

As seen in Table 9-2 the developed CNN-Three with the proposed IReLU-Tanh achieved 

the highest classification predictions, it correctly classified 3362 samples in relation to 

the total number of 3600 samples, achieving 93.39% classification accuracy for 

classifying five sets of vibration data under 50% load condition. For other load conditions, 

see Appendix C. It can be said that the developed CNN-Three with the proposed IReLU-

Tanh function to experimental vibration data yielded a robust classification with high 

diagnostic accuracy and outperformed the most widely used activation functions, ELU, 

LReLU, ReLU and Tanh. 

As shown in Table 9-2 for baseline and Sun-F2 classes, it can be observed that there are 

four activation functions (IReLU-Tanh, ELU, LReLU, and ReLU) achieved almost the 
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same classification predictions. The lowest classification was obtained when using CNN-

Three with Tanh function, in both classes it correctly classified 712 samples out of 720 

samples belonging to baseline and Sun-F2 classes. 

For Sun-F1 and Planet-F2 classes, it can be seen from Table 9-2 that the CNN-Three with 

the proposed IReLU-Tanh achieved the highest correct classification. It correctly 

classified 656 samples out of 720 samples as belonging to Sun-F1 class, and 608 samples 

correctly classified as belonging to Planet-F2 class. The second highest classification was 

obtained using ELU and ReLU, both functions correctly classified 601 samples out of 

720 samples as belonging to Sun-F1 class, while for Planet-F2 class, 583 and 566 samples 

out of 720 samples were correctly classified using ELU and ReLU functions, respectively. 

The lowest classification was obtained when using CNN-Three with Tanh function, only 

549 and 543 samples were correctly classified as belonging to Sun-F1 and Planet-F2 

classes, respectively. 
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Table 9-2: Multi-class confusion matrix for different activation functions with 50% load 

 

As seen in Table 9-2 for Planet-F1 class, a highest classification was achieved using 

CNN-Three with ELU function, 688 samples were correctly classified as belonging to 

Planet-F1 class. The second and third highest classification were obtained when using 

LReLU and IReLU-Tanh functions, as they correctly classified 673 and 663 samples out 

of 720 samples as belonging to Planet-F1 class. The lowest classification was achieved 

when using CNN-Three with Tanh function, only 616 samples were correctly classified 

as belonging to Planet-F1 class, 26, 7 and 71 samples incorrectly classified as belonging 

to baseline, Sun-F1 and Planet-F2 respectively. 
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Based on the classification obtained from the multi-class confusion matrix in Table 9-2 

and Appendix C, the average classification accuracy for the ten trials for Tanh, ReLU, 

LReLU and ELU functions under different load conditions are shown in Figure 9-3 to 

Figure 9-6. 

Figure 9-3 shows the classification accuracy obtained from applying the CNN-Three with 

Tanh function to classify five sets of vibration data under different load conditions. It can 

be seen that the CNN-Three with Tanh function achieved the lowest classification 

accuracy. For example, Table 9-2 shows that the CNN-Three with Tanh function correctly 

classified 3132 out of the total number of 3600 samples, achieving an overall 87.00% 

accuracy for classifying the baseline and the four fault datasets Sun-F1, Sun-F2, Planet-

F1, and Planet-F2 under 50% load. For the other loads, the CNN-Three with Tanh 

function achieved 88.67%, 86.75%, 87.33%, and 87.06% classification accuracies for 

zero, 25%, 75%, and 90% load conditions, respectively. 

 

Figure 9-3: Classification accuracy for CNN-Three with Tanh function using experimental vibration data 

under different load conditions 

Figure 9-4 andFigure 9-5 show the improvement obtained when using CNN-Three with 

ReLU and LReLU functions. Both functions achieved almost the same classification 

accuracy for classifying the five sets of vibration data under different load conditions. 

The average classification accuracy for both ReLU and LReLU functions is improved by 
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around 3% than CNN-Three with Tanh function. The CNN-Three with ReLU function 

achieved 90.92%, 90.69%, 90.36%, 90.75%, and 90.44% classification accuracies, 

whereas the LReLU function achieved 90.50%, 90.92%, 90.78%, 90.87%, and 90.94% 

classification accuracies for zero, 25% 50%, 75%, and 90% load conditions, respectively. 

 

Figure 9-4: Classification accuracy for CNN-Three with the ReLU function using experimental vibration 

data under different load conditions 

 

Figure 9-5: Classification accuracy for CNN-Three with the LReLU function using experimental 

vibration data under different load conditions 
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It can be seen in Figure 9-6 that a slight improvement of about 1% is achieved when using 

CNN-Three with the ELU function compared to the ReLU and LReLU functions. The 

CNN-Three with ELU function achieved the second highest classification, with an 

accuracy values of 91.78%, 91.42%, 91.86%, 92.33%, and 92.31% for zero, 25%, 50%, 

75%, and 90% load conditions, respectively.  

 

Figure 9-6: Classification accuracy for CNN-Three with ELU function using experimental vibration data 

under different load conditions 

9.3. Results and Discussion 

Based on the results reported in Section 9.2, the developed CNN-Three with IReLU-Tanh 

function has shown its effectiveness in minimising the error rate to the minimum value, 

and consequently improving the overall performance of the network with an average 

classification accuracy of more than 93% under five load conditions, as seen in Table 9-3. 

The developed CNN-Three with the proposed IReLU-Tanh function achieved the highest 

classification accuracy and outperformed the most widely used activation functions. It 

can be shown in Table 9-3 that the developed CNN-Three with the proposed IReLU-Tanh 

function achieved 93.03%, 94.14%, 93.39%, 94.00%, and 94.11% classification 

accuracies for zero, 25%, 50%, 75% and 90% loads, respectively. 
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Table 9-3: Average classification accuracies of ten trials for different activation functions under different 

load conditions 

Function Load 

0 25% 50% 75% 90% 

Tanh 88.67% 86.75% 87.00% 87.33% 87.06% 

ReLU 90.92% 90.69% 90.36% 90.75% 90.44% 

LReLU 90.50% 90.92% 90.78% 90.87% 90.94% 

ELU 91.78% 91.42% 91.86% 92.33% 92.31% 

IReLU-Tanh 

(Proposed) 

93.03% 94.14% 93.39% 94% 94.11% 

The proposed IReLU-Tanh function enhanced the ability of the network to learn the 

hidden features directly from raw vibration data, and consequently improved the overall 

performance of the developed CNN-Three architecture in classifying five sets of unseen 

vibration data. Section 8.5 explains the advantage of the proposed IRaLU-Tanh function, 

it addresses the vanishing gradient problem in the Tanh function, by adopting the non-

saturation property from the ReLU function for covering the positive region. Section 8.5 

also explains that for the negative region, the proposed IRaLU-Tanh function shares the 

property of Tanh function (𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) for x ≤ 0), and so addresses the shortcomings 

of dying neurons in the ReLU function, a fixed gradient value in the LReLU function and 

the need to add a hyper-parameter to the network architecture as in the LReLU and ELU 

functions. 
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Figure 9-7: Comparison between the proposed IReLU-Tanh function and the existing activation functions 

using experimental vibration data obtained under different load conditions 

Figure 9-7 compares the classification accuracy obtained from the proposed IReLU-Tanh 

function with the existing activation functions, Tanh, ReLU, LReLU and ELU. It can be 

clearly observed that a highest classification accuracy was achieved using the developed 

CNN-Three with the proposed IReLU-Tanh function. It has been demonstrated that when 

applying the developed CNN-Three architecture with the proposed IReLU-Tanh function 

to experimental vibration data, it yielded a robust classification with high diagnostic 

accuracy and outperformed the existing activation functions. 
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Chapter Ten: Conclusions and Future Work 

This chapter summarises the research work and discusses how the aims and objectives of 

this research as stated in Chapter One were achieved. This is followed by the 

contributions to knowledge achieved by the research, and finally recommendations for 

future work are suggested at the end of the chapter. 
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10.1. Introduction 

To conclude, the study of CM is usually conducted through the following three main 

approaches; application based, data gathering based and data processing based. In this 

thesis, the data processing based approach, including signal processing, data enhancement 

and AI methods was considered, and particularly an automated deep CNN approach was 

the main focus of this research. A hybrid IReLU-Tanh function has been proposed for the 

deep CNN architecture to address the shortcomings in existing activation functions and 

enhance the overall performance of the network. The aim of this research was met through 

achieving of the research aims and objectives as described in the next section. 

10.2. Aims, Objectives and Achievements 

The first aim of this research, to develop an automated approach based deep CNN for CM 

that would automate the tasks of feature extraction and classification has been achieved. 

The second aim of this research, to propose an activation function called improved 

rectified linear unit and hyperbolic tangent function (IReLU-Tanh) to enhance the 

learning ability of deep CNN architecture and improve the overall performance of the 

network has also been achieved. Both were extensively evaluated and successfully 

demonstrated as described below. The objectives presented in Chapter One and the 

achievements are detailed as follows: 

Objective One: To review the existing data enhancement methods and automated 

approaches based on AI such as shallow and deep learning methods used for vibration 

data. 

Achievement One: A comprehensive review was carried out covering existing data 

enhancement methods used for vibration data, in particular TSA, EMD, MED and 

MOMEDA. In addition, the application of AI based shallow learning methods for CM 

have been presented. AI based deep learning methods including SAE, RNN and CNN 

have been reviewed in Chapter Two. 

Objective Two: To investigate and evaluate the existing activation functions used for 

deep CNN. 
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Achievement Two: The existing activation functions, Tanh, ReLU, LReLU, and ELU 

used for deep CNN have been reviewed. Moreover, common problems inherent in the use 

of these activation functions have been discussed individually in Chapter Five. 

Objective Three: To develop and implement an optimal CNN architecture for feature 

extraction and classification based on typical CM vibration data. 

Achievement Three: An automated approach based on a deep CNN algorithm was 

investigated in Chapter Four and successfully implemented to automate feature extraction 

and classification for CM using both simulated and experimental vibration data was 

demonstrated in Chapters Eight and Nine. 

Objective Four: To develop an IReLU-Tanh function for deep CNN architecture. 

Achievement Four: The proposed IReLU-Tanh function was developed in Chapter Five 

to address the shortcomings in the existing activation functions. The proposed IReLU-

Tanh function was successfully implemented to both simulated and experimental 

vibration data in Chapters Eight and Nine. 

Objective Five: To evaluate the performance of the developed CNN architecture with 

IReLU-Tanh function using simulated and experimental vibration data. This included a 

systematic comparison of the performance against the most widely used activation 

functions. 

Achievement Five: The developed CNN-Three architecture with IReLU-Tanh function 

has been successfully applied to both simulated and experimental vibration data. It has 

been demonstrated that the developed CNN-Three with the proposed IReLU-Tanh 

function is a reliable and effective method in classifying several unseen datasets with high 

diagnostic accuracy. The proposed IReLU-Tanh function outperformed the most 

commonly used activation functions, Tanh, ReLU, LReLU and ELU. 

10.3. Conclusions 

Based on the theoretical and experimental studies achieved in this thesis, a number of 

conclusions have been drawn as follows: 
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Conclusion 1: Conventional signal processing methods, including time domain and 

frequency domain, have been investigated and implemented for fault detection and 

diagnosis of a PG. However, it was found from the results presented in Chapter Seven 

that these methods are limited to diagnose and identify the defect that has occurred in 

faulty cases. 

Conclusion 2: Data enhancement based on the MOMEDA method was investigated and 

applied in this research for the purpose of enhancing periodic fault features in the 

vibration data. The results presented in Chapter Seven showed that the MOMEDA 

method was able to detect the presence of the large defects seeded into the Sun-F2 and 

Planet-F2. However, a small defects seeded into both the Sun-F1 and Planet-F1 were not 

readily detected and diagnosed. Also, the implementation of such technique rely entirely 

on prior knowledge and experience of well-skilled technical staff. 

Conclusion 3: Automating the diagnostic process using AI based deep learning, and 

particularly the CNN method facilitates the tasks of feature extraction and classification 

for machinery CM. Automated fault diagnosis based on deep CNN method has been 

successfully applied to extract representative features directly from the raw data and 

automatically determine the PG health condition with high diagnostic accuracy. 

Conclusion 4: An automated approach based on applying the developed CNN-Three 

architecture to simulated data showed that the developed architecture reliably learns the 

hidden features from the simulated datasets. The effectiveness of the developed CNN-

Three architecture was compared with three recent architectures. The results presented in 

Chapter Eight showed that the developed CNN-Three architecture confirmed its 

improvement in classifying three sets of simulated data (small, medium, and large) with 

a classification accuracy improvement of 1% compared to the DCNN architecture, 2% 

improvement compared to the 1D-DCNN architecture, and 4% improvement compared 

to the CNN architecture. 

Conclusion 5: The developed CNN-Three architecture with the proposed IReLU-Tanh 

function to simulated data achieved the highest classification accuracy and outperformed 

the most widely used activation functions, Tanh, ReLU, LReLU and ELU. As presented 

in Chapter Eight that the CNN-Three with the proposed IReLU-Tanh function achieved 
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99.91% classification accuracy for the simulated datasets with an SNR of (-1 dB), and 

94.22% classification accuracy with an SNR level of (-5 dB). 

Conclusion 6: The proposed IReLU-Tanh function has shown its effectiveness in 

minimising the error rate to the minimum value, and hence improving the overall 

performance of the network to obtain a higher classification accuracy, see Figure 8-15 

and Figure 9-2. 

Conclusion 7: The CNN-Three with the IReLU-Tanh function is an effective and reliable 

method for vibration data. It was found in the results presented in Chapter Nine that the 

CNN-Three architecture with the proposed IReLU-Tanh function can achieve more than 

93% accuracy for classifying five sets of vibration data with different severities. It has 

been shown that the developed CNN-Three with the proposed IReLU-Tanh function to 

experimental vibration data achieved high diagnostic accuracy and outperformed the 

existing activation functions, Tanh, ReLU, LReLU and ELU. 

10.4. Contribution to Knowledge 

In this thesis, a number of contributions were obtained as follows: 

First Contribution: A CNN architecture called CNN-Three has been developed that can 

effectively learn hidden features directly from raw vibration data. The developed CNN-

Three architecture was shown to be highly effective in automating the feature extraction 

and classification tasks for machinery CM. It has been demonstrated that the developed 

CNN-Three architecture was robust in classifying different types of fault severities and 

outperformed three recent CNN architectures. 

Second Contribution: A hybrid IReLU-Tanh function for deep CNN architecture has 

been proposed to address the shortcomings in existing activation functions and enhance 

the overall performance of deep CNN architecture. The proposed IReLU-Tanh function 

has shown an outstanding performance and outperforms the most widely used activation 

functions. 

Third Contribution: The developed framework based CNN-Three architecture 

combined with the proposed IReLU-Tanh function is a novel and fully automated 

approach for CM of PGs. This fully automated approach can be applied to extract the 
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representative features directly from the raw data and automatically identify different 

classes for a given set of data. It has been shown that the fully automated approach yields 

robust classification with high diagnostic accuracy. The developed automated approach 

has been found to be a reliable and effective method for automating the diagnostic 

procedure and automatically determine the PG condition. 

10.5. Recommendations for Future Work 

 Deep CNN has a large number of hyper-parameters that need to be tuned, such as the 

number of layers, convolutional filter size, the number of convolutional filters, and so 

on. The selection of these hyper-parameters has a significant influence on the network 

training task and the classification accuracy of the model. In this research, these 

hyper-parameters were optimised using a trial and error strategy, and it was 

demonstrated in Chapter Eight that selecting different hyper-parameter values can 

affect the overall performance of the CNN. Optimisation algorithms could be 

developed to select the optimal hyper-parameter configuration for deep CNN. 

 The developed CNN-Three in this research has been evaluated using simulated and 

experimental vibration data. However, the weights learned by the convolutional layer 

in both scenarios, simulated and experimental data, were not interpreted in detail. 

Further research can interpret and analyse the underlying meaning of these weights in 

association with the monitored data sources. 

 The proposed IReLU-Tanh function has been successfully applied to simulated and 

experimental vibration data for machinery CM. However, such a proposed activation 

function could be used in other domains such as image processing, speech 

recognition, etc. The contribution of the IReLU-Tanh function generally to DNNs 

could be investigated. 
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Appendices 

A. Appendix A: Multi-Class Confusion Matrix Results for CNN-Three 

and Three Different CNN Architectures Using Simulated Data 

Table A-1: Multi-class confusion matrix for CNN-Three, DCNN, 1D-DCNN and CNN using simulated 

data with SNR (-1 dB) 
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Table A-2: Multi-class confusion matrix for CNN-Three, DCNN, 1D-DCNN and CNN using simulated 

data with SNR (-2 dB) 

 

Table A-3: Multi-class confusion matrix for CNN-Three, DCNN, 1D-DCNN and CNN using simulated 

data with SNR (-4 dB) 
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Table A-4: Multi-class confusion matrix for CNN-Three, DCNN, 1D-DCNN and CNN using simulated 

data with SNR (-5 dB) 
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B. Appendix B: Multi-Class Confusion Matrix Results for Different 

Activation Functions Using Simulated Data 

Table B-1: Multi-class confusion matrix for different activation functions using simulated data with SNR 

(-1 dB) 
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Table B-2: Multi-class confusion matrix for different activation functions using simulated data with SNR 

(-2 dB) 
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Table B-3: Multi-class confusion matrix for different activation functions using simulated data with SNR 

(-4 dB) 
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Table B-4: Multi-class confusion matrix for different activation functions using simulated data with SNR 

(-5 dB) 
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C. Appendix C: Multi-Class Confusion Matrix Results for Different 

Activation Functions Using Experimental Vibration Data 

Table C-1: Multi-class confusion matrix for different activation functions using experimental vibration 

data with zero load 
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Table C-2: Multi-class confusion matrix for different activation functions using experimental vibration 

data with 25% load 
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Table C-3: Multi-class confusion matrix for different activation functions using experimental vibration 

data with 75% load 
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Table C-4: Multi-class confusion matrix for different activation functions using experimental vibration 

data with 90% load 

 


