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Abstract

Background

Transposable elements are mobile DNA sequences, which are ubiquitous in the majority of eukaryotic

genomes. Unicellular eukaryotes have limited research on transposable elements and therefore

the picture of evolution is far from conclusive. Similarly, codon usage bias, the frequency of

synonymous codons present in a host species coding DNA, has been focused on multicellular

organisms, with no clear explanation of the evolutionary pressures that drive bias in unicellular

eukaryotic species.

Methods

Eight Kazachstania budding yeast species, and choanoflagellate species, Salpingoeca rosetta,

were screened for the presence of mobile elements, with use of homology based methods. Protein

and nucleotide phylogenies were constructed to review ancestral patterns and similarity across

superfamilies. Codon usage statistics were employed to review patterns of bias in the host genes

and mobile elements of theKazachstania species, andS.rosetta, as well as two additional holozoan

species, Monosiga brevicollis and Capsaspora owczarzaki.

Results

A diverse repetoire of transposable element families were uncovered in the species reviewed. A

complete absence of DNA transposons was found in the Kazachstania species, however both

classes of elements were uncovered in S. rosetta. Element phylogenies indicated vertical transfer

for the majority of families, with the exception of one family inS. rosetta, which suggested acquisition

by horizontal transfer. Patterns of codon usage were revealed in the genus Kazachstania and

conservation was seen in the three holozoan species, with similar trends observed in the majority

of host species mobile elements.

Conclusions

The known diversity of TE families for the yeast superfamily, and Choanoflagellatea has increased

as a result of the study presented here. Codon usage bias for host genes and mobile elements

provided evidence of selection, as well as mutational bias, suggesting that models of evolutionary

pressures are more complex in unicellular eukaryotes.





xi

Acknowledgements
I have so many people I would like to share thanks over the duration of my research at the

University of Huddersfield, including my fellow Postgraduate Researchers, who have been the best

councillors, experts and friends. I would like to thank my thesis supervisor Dr. Martin Carr, of the

School of Applied Sciences at the University of Huddersfield. His breadth of knowledge, expertise

and support have been continual, and allowed the work to evolve in a direction we hadn’t originally

anticipated! An additional thanks goes to my secondary supervisor, Dr. Jarek Bryk, for his infinite

bioinformatic expertise. I would also like to thank my brother, Richard Southworth, for his critique,

enthusiasm and brilliant mind, and my dear friend, Holly Dawson, who without her support and lab

skills, I would not have been able to complete the project, which seemed like an impossible task

towards the end of my final year. A further acknowledgement is to Dr. Cooper Grace, of the School

of Applied Sciences at the University of Huddersfield. For every bioinformatic query, transposable

element hypothesis, writing suggestion and general office companion, I thank him greatly. I would

also like to thank my wonderful Mum for all the inspirational quotes and encouragement, and my

partner, Adam, for convincing me to move to the North East and his unwavering support. Finally,

I would like to thank the three golden boys - Finlay, Stevie and Aero, who have been the best

distraction when I have needed to be separated from my research for a long walk.





xiii

Contents

Copyright Statement iii

Declaration of Authorship v

Abstract ix

Acknowledgements xi

List of Figures xxi

List of Abbreviations xxix

1 Introduction 1

1.1 Transposable Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Transposition in DNA transposons . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Transposition in Retrotransposons . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Retrotransposons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Non- LTR retrotransposons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

LTR retrotransposons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

LTRs and their role in transposition . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.5 Transposable element acquisition . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.6 Advantages and disadvantages of TE insertions . . . . . . . . . . . . . . . . 9

1.1.7 TE elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Opisthokonta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Yeast: a model organism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Ty elements of Saccharomyces cerevisiae . . . . . . . . . . . . . . . . . . . 14

Ty insertion patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

TE in abundance in the Saccharomycetaceae superfamily . . . . . . . . . . . 17



xiv

1.2.2 Kazachstania species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.3 Choanoflagellates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.4 Filasterea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.5 Transposable elements in protists . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Codon usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Project aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 A genomic survey of novel species of the genus Kazachstania 31

2.1 Kazachstania; a relative to Saccharomyces . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Kazachstania species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.2 Experiment overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Transposable element content and sequence similarity . . . . . . . . . . . . 35

2.2.2 Chromoviral work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Similarity searches and domain prediction . . . . . . . . . . . . . . . . . . . . 36

Protein modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.3 Yeast husbandry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.4 RNA extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

DNase reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.5 DNA extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.6 Whole genome sequencing of four novel Kazachstania species . . . . . . . . 38

DNA extraction and sequencing . . . . . . . . . . . . . . . . . . . . . . . . . 38

Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.7 Codon usage and tRNA genes . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.8 Major tRNA gene screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.9 K. exigua gene annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.10 Species synteny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Characteristics of Kazachstania genomes . . . . . . . . . . . . . . . . . . . . 42



xv

Morphological characteristics of the four novel species of Kazachstania . . . 44

Genome characteristics of four novel species of Kazachstania . . . . . . . . 45

Gene annotation of the host genes of K. exigua . . . . . . . . . . . . . . . . . 45

Synteny across the Kazachstania species . . . . . . . . . . . . . . . . . . . . 49

Transposable element annotation of publicly available Kazachstania genomes 51

2.3.2 TE annotation of four novel species . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.3 Phylogenetic analyses of transposable elements families in Kazachstania

species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chromodomain annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3.4 Identification of major tRNA genes and optimal codons . . . . . . . . . . . . 63

2.3.5 Codon usage of host genes in novel Kazachstania species . . . . . . . . . . 66

2.3.6 The role of selection as a driver for codon usage in the Kazachstania species 67

2.3.7 Codon usage of transposable element families in novel Kazachstania species 72

2.3.8 The influence of selection on codon usage bias in the TE families of the

Kazachstania species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.4 Discussion and concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.4.1 Genome characteristics and TE review in Kazachstania species . . . . . . . 79

TE annotation in Kazachstania species . . . . . . . . . . . . . . . . . . . . . 80

2.4.2 Codon Usage across the genus, Kazachstania . . . . . . . . . . . . . . . . . 83

2.4.3 Selection for Optimal Codons in Kazachstania species . . . . . . . . . . . . . 84

2.4.4 Evidence for Deamination in Kazachstania species . . . . . . . . . . . . . . . 84

2.4.5 Conservation of Codon Usage in TE families of host species . . . . . . . . . 85

2.4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3 Agenomic survey of transposable elements in the choanoflagellateSalpingoeca rosetta 89

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Choanoflagellates and their TEs . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1.1 Experiment overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.1 Identification of TE families in the S. rosetta genome . . . . . . . . . . . . . . 92

3.2.2 Phylogenetic analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2.3 TSD preference patterns and nucleotide diversity . . . . . . . . . . . . . . . . 97



xvi

3.2.4 Determining TE family expression levels . . . . . . . . . . . . . . . . . . . . 98

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3.1 S. rosetta harbours a higher diversity of TE families than M. brevicollis . . . . 99

3.3.2 Transposable element genome content in S. rosetta and M. brevicollis . . . 105

3.3.3 Phylogenetic analyses of S. rosetta TE Families . . . . . . . . . . . . . . . . 106

3.3.4 Target site insertion patterns of S. rosetta transposable elements . . . . . . . 115

3.3.5 Recent TE activity in the S. rosetta genome . . . . . . . . . . . . . . . . . . . 117

3.3.6 TE expression in S. rosetta genome . . . . . . . . . . . . . . . . . . . . . . . 121

3.3.7 TE nucleotide diversity in S. rosetta . . . . . . . . . . . . . . . . . . . . . . . 125

3.3.8 Evidence of recent transposition in the S. rosetta genome . . . . . . . . . . . 128

3.3.9 Novel DNA transposons uncovered in choanoflagellate M. brevicollis . . . . . 130

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.4.1 TE family diversity in the S. rosetta genome . . . . . . . . . . . . . . . . . . . 135

3.4.2 TE activity in the S. rosetta genome . . . . . . . . . . . . . . . . . . . . . . . 136

4 Codon usage in three holozoan species 139

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2.1 Codon usage analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2.2 Codon usage bias categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.2.3 Determining GC content for intronic and flanking DNA . . . . . . . . . . . . . 144

4.2.4 Major tRNA gene screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.2.5 Gene expression in C. owczarzaki and S. rosetta . . . . . . . . . . . . . . . . 145

4.2.6 Codon usage analysis in domain and non-domain codons . . . . . . . . . . . 145

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.3.1 Review of codon usage bias in three holozoan protists . . . . . . . . . . . . . 146

4.3.2 Mutational bias hypothesis driving codon usage . . . . . . . . . . . . . . . . 155

4.3.3 Optimal Codons and Major tRNA Genes in three holozoan species . . . . . . 159

4.3.4 Evidence for translational accuracy in holozoan species . . . . . . . . . . . . 161

4.4 Discussion and concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.4.1 Codon usage conservation across the holozoan protists . . . . . . . . . . . . 164

4.4.2 Conservation of codon usage in unicellular holozoans . . . . . . . . . . . . . 165



xvii

5 Codon usage of transposable element families in three holozoan species 167

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.1.1 Codon usage bias in TEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.1.2 Codon usage bias in holozoan species . . . . . . . . . . . . . . . . . . . . . 168

5.1.3 Experiment overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2.1 Analysis of codon usage bias in transposable element families . . . . . . . . 169

5.2.2 Optimal codons and major tRNA screening . . . . . . . . . . . . . . . . . . . 169

5.2.3 Determining TE family expression levels . . . . . . . . . . . . . . . . . . . . 170

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.3.1 Transposable element families show biased synonymous codon usage in

three holozoan species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.3.2 Evaluating the role of mutation pressure on codon usage bias . . . . . . . . . 178

5.3.3 Evaluating the role of natural selection on translational efficiency . . . . . . . 182

5.3.4 Evaluating the role of natural selection on translational accuracy . . . . . . . 187

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.4.1 Analysis of codon usage bias in transposable element families of three holozoan

species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.4.2 Selection for abundant codons is a driver of codon usage bias . . . . . . . . 194

5.4.3 The role of mutation bias on the TEs of the three holozoan species . . . . . . 194

5.4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6 Discussion 197

6.1 Genomic survey of novel Kazachstania species . . . . . . . . . . . . . . . . . . . . . 197

6.2 TE review in unicellular eukaryotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.3 Codon usage in unicellular eukaryotes . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.3.1 Codon usage of mobile elements in unicellular opisthokonts . . . . . . . . . . 204

6.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A Lab Protocols and Results 207

A.1 DNA/RNA extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.1.1 Trizol RNA extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



xviii

Trizol RNA extraction protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 208

A.1.2 RNASwift recipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

RNASwift protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.1.3 DNA extraction using DNeasy Qiagen kit . . . . . . . . . . . . . . . . . . . . 211

A.2 Yeast Husbandry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

DNeasy Qiagen protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

DNA extraction LiOAC-SDS method . . . . . . . . . . . . . . . . . . . . . . . 212

A.3 QC results for Kazachstania species . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

A.4 Novel Kazachstania genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A.4.1 Genome assembly data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B Chapter 2 Appendix 223

B.1 Comparative genomics and transposable element data for Kazachstania species . . 223

B.1.1 Predicted tRNA genes for the Kazachstania species . . . . . . . . . . . . . . 223

B.1.2 Transposable Element Data for Kazachstania species . . . . . . . . . . . . . 281

B.1.3 Codon usage data for Kazachstania species . . . . . . . . . . . . . . . . . . 282

B.1.4 Syntenic data for Kazachstania species . . . . . . . . . . . . . . . . . . . . . 283

Chromodomain annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

C Chapter 4 Appendix 293

C.1 Codon usage bias of three holozoan species . . . . . . . . . . . . . . . . . . . . . . 293

C.1.1 Predicted tRNA genes for the three holozoan species . . . . . . . . . . . . . 293

C.1.2 Normal distribution graphs for bias categories . . . . . . . . . . . . . . . . . . 306

D Chapter 5 Appendix 311

D.1 Codon usage statistics data for the transpoable elements of three holozoan species 311

D.1.1 Abundant codons for the TE families . . . . . . . . . . . . . . . . . . . . . . . 311

D.1.2 Codon usage statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

E Bioinformatics parameters 321

E.1 SMALT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

E.2 Phylogeny construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

E.3 Basic Local Alignment Search Tool (BLAST) . . . . . . . . . . . . . . . . . . . . . . . 322



xix

E.4 RepeatMasker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

F Phylogenies 323

F.1 Protein and nucleotide phylogenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

F.1.1 Protein phylogenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

F.1.2 Nucleotide phylogenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323





xxi

List of Figures

1.1 Structural composition and classification of transposable elements. . . . . . . . . . . 2

1.2 Diversification of mechanisms of transposition. . . . . . . . . . . . . . . . . . . . . . 4

1.3 Phylogenetic relationship and structure of class I retrotransposon families . . . . . . 5

1.4 Genomic organisation of long terminal repeats (LTRs) in retroelements. . . . . . . . 6

1.5 Hypothesised transposable element acquisition and their host species . . . . . . . . 8

1.6 Consensus cladogram of evolutionary relationships among Opisthokonta . . . . . . 12

1.7 Cladogram representation of species in the Saccharomyceteceae superfamily . . . 13

1.8 Genomic Organisation of Ty elements in Saccharomyces cerevisiae . . . . . . . . . 16

1.9 Target integration site patterns of LTR retrotransposons; Ty1 and Ty3, upstream of

Pol III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.10 Cladogram representation of Kazachstania spp . . . . . . . . . . . . . . . . . . . . . 21

1.11 Simplified choanoflagellate morphylogy . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.12 Simplified phylogenetic representation of Holozoa . . . . . . . . . . . . . . . . . . . 25

1.13 Ecological and morphological characteristics of 19 choanoflagellate species . . . . . 26

2.1 Maximum likelihood phylogeny of species from the genus Kazachstania using partial

or full 26S rRNA sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Method for sequencing and analysis workflow for WGS and genome assembly and

annotation, based on procedure by Macrogen . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Four novel Kazachstania species stained with methylene blue at 100x magnification 44

2.4 Gene groupings and categories the host genes of K. exigua based on eggNOG

annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 SyMap synteny analyses between K. exigua and K. viticola . . . . . . . . . . . . . . 49

2.6 SyMap syntenic block analyses between K. exigua and K. viticola . . . . . . . . . . 50

2.7 Genomic organisation of the seven LTR retrotransposon families characteristed in

the four publicly available Kazachstania species . . . . . . . . . . . . . . . . . . . . 52



xxii

2.8 Genomic organisation of the two LTR retrotransposon families characteristed in the

K. bovina genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.9 Maximum likelihood phylogeny of chromoviral Ty3- like Pol amino acid sequences

from Kazachstania species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.10 Maximum likelihood phylogeny of chromoviral Ty3- like Pol amino acid sequences

from Saccharomycetaceae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.11 Maximum likelihood phylogeny of chromoviral Ty3- like Pol amino acid sequences

from 11 members of Saccharomycetaceae superfamily . . . . . . . . . . . . . . . . . 59

2.12 Maximum likelihood phylogeny of copia-like Pol amino acid sequences fromKazachstania

species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.13 Maximum likelihood phylogeny of copiaPol amino acid sequences from Saccharomycetaceae 62

2.14 Average Nc values for host genes in six Kazachstania species . . . . . . . . . . . . 67

2.15 Nc plot against GC3s for the genes of the Kazachstania species . . . . . . . . . . . 68

2.16 Average Fop value for 5% bias categories for the six yeast species . . . . . . . . . . 69

2.17 Average GC3s value for 5% bias categories for the six yeast species . . . . . . . . . 70

2.18 Nc plot against GC3s for the TEs uncovered in Kazachstania species . . . . . . . . 72

2.19 Relationship between GC3s andNc for the 12 TE families uncovered in theKazachstania

species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.20 Average Nc values for TE families in eight Kazachstania species . . . . . . . . . . . 74

2.21 Relationship between copy number of TE families and effective number of codons

(Nc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.22 Relationship between copy number of TE families and frequency of optimal codons

(Fop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.23 Relationship between frequency of optimal codons (Fop) and strength of codon

usage bias (Nc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1 Schematic diagram to represent the bioinformatic protocol employed for the construction

of nucleotide and protein phylogenies in the genome of S. rosetta . . . . . . . . . . . 96

3.2 Genomic organisation of the 7 gypsy-like families characterised in the S. rosetta

genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 Genomic organisation of the 6 copia-like families characterised in the S. rosetta

genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



xxiii

3.4 Genomic organisation of the 7 DNA transposon families characterised in the S.

rosetta genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5 Phylogenetic reconstruction of chromoviral elements among taxonomic groups based

on integrase domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.6 Maximum Likelihood phylogeny of chromoviral amino acid sequences . . . . . . . . 108

3.7 Maximum Likelihood phylogeny of non-chromoviral gypsy amino acid sequences . . 109

3.8 Maximum Likelihood phylogeny of copia-like amino acid sequences . . . . . . . . . 110

3.9 Maximum Likelihood phylogeny of T1 amino acid sequences across eukaryotic supergroups112

3.10 Maximum Likelihood phylogeny of Mule transposase amino acid sequences across

eukaryotic supergroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.11 Conserved base composition of target site motigs for gypsy-like families in theS.rosetta

genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.12 Conserved base composition of target site motigs for copia-like families in theS.rosetta

genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.13 Conserved base composition of target site motigs for DNA transposon families in

the S.rosetta genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.14 Box and Whisker diagram to show terminal branch length of 20 TE families in the S.

rosetta genome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.15 Maximum Likelihood phylogeny of individual element copies of SrosTig1 . . . . . . . 120

3.16 Maximum Likelihood phylogeny of individual element copies of SrosT1 . . . . . . . . 121

3.17 Maximum Likelihood phylogeny of individual element copies of Sroscv2 . . . . . . . 122

3.18 Relationship between copy number and expression for TE families in S. rosetta . . . 123

3.19 Maximum Likelihood phylogeny of individual element copies of SrosTig2 . . . . . . . 123

3.20 Bar chart to show normalised expression data per FLE copy for 20 TE families in

the S. rosetta genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.21 Maximum Likelihood phylogeny of individual element copies of Sroscv1 . . . . . . . 127

3.22 Maximum Likelihood phylogeny of individual element copies of Srospv3 . . . . . . . 128

3.23 Maximum Likelihood phylogeny of individual element copies of SrosMule . . . . . . 129

3.24 Maximum Likelihood phylogeny of individual element copies of Sroscv3 . . . . . . . 130

3.25 Maximum Likelihood phylogeny of individual element copies of Srospv4 . . . . . . . 131



xxiv

3.26 Genomic organisation of the DNA transposon families characterised in theM. brevicollis

genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.27 A graphic representation of amino acid conservation for unclassified DNA transposon

family, T1, in choanoflagellate species, S. rosetta and M. brevicollis . . . . . . . . . 133

3.28 A graphic representation of the DNA tranposon family, Tigger, in choanoflagellate

species, S. rosetta and M. brevicollis . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.1 Simplified phylogenetic representation of Holozoa . . . . . . . . . . . . . . . . . . . 141

4.2 Codon usage bias ditribution for the three transcriptomes of the holozoan protists. . 147

4.3 Nc plots for the genes of the holozoan protists. . . . . . . . . . . . . . . . . . . . . . 149

4.4 Gene groupings and categories for each bias gene bias category in M. brevicollis

based on KOG annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.5 Gene functionality for each bias gene bias category in M. brevicollis based on KOG

annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.6 Average GC3s value for both 5% and 1% bias categories for the three holozoan

species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.7 Plots to show comparison of mean GC3s and noncoding DNA GC-content in C.

owczarzaki, S. rosetta and M. brevicollis for both 5% and 1% bias categories . . . . 158

4.8 Average Fop values for the three 1% bias categories per species based on domain

encoding and non-domain encoding codons . . . . . . . . . . . . . . . . . . . . . . . 162

5.1 Relationship between GC3s and Nc for the 20 TE families in the S. rosetta genome 174

5.2 Relationship between GC3s andNc for the 23 TE families in theC. owczarzaki genome175

5.3 Relationship between GC3s and Nc for the 3 TE families in the M. brevicollis genome175

5.4 Relationship between copy number of LTR Retrotransposon families and effective

number of codons (Nc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.5 Relationship between copy number of LTR Retrotransposon families and frequency

of optimal codons (Fop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.6 Relationships between GC3s and GC content of non-coding DNA for transposable

element families in S. rosetta genome . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.7 Relationships between GC3s and GC content of non-coding DNA for transposable

element families in C.owczarzaki genome . . . . . . . . . . . . . . . . . . . . . . . . 181



xxv

5.8 Relationships between GC3s and GC content of non-coding DNA for transposable

element families in M. brevicollis genome . . . . . . . . . . . . . . . . . . . . . . . . 182

5.9 Relationship between number of sequencing reads against Fop for the TE families

in the S. rosetta genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.10 Relationship between number of sequencing reads against Fop for the DNA transposon

families in the S. rosetta genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.11 Relationship between number of sequencing reads against Fop for the TE families

in the C. owczarzaki genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.12 Relationship between Fop values in domain and non-domain codons for LTR retrotransposons

families in S. rosetta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.13 Relationship between Fop values in domain and non-domain codons for DNA transposons

families in S. rosetta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.14 Relationship between Fop values in domain and non-domain codons for LTR retrotransposons

families in C. owczarzaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.15 Relationship between Fop values in domain and non-domain codons for DNA transposons

families in C. owczarzaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.16 Relationship between Fop values in domain and non-domain codons for LTR retrotransposons

families in M. brevicollis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.1 gDNA separation results of QC DNA Bioanalyser 12000 chip and DNA QC-Picogen

for K. bovina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

A.2 gDNA separation results of QC DNA Bioanalyser 12000 chip and DNA QC-Picogen

for K. exigua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

A.3 gDNA separation results of QC DNA Bioanalyser 12000 chip and DNA QC-Picogen

for K. lodderae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

A.4 gDNA separation results of QC DNA Bioanalyser 12000 chip and DNA QC-Picogen

for K. viticola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

B.1 Relationship between TE genome content in Saccharomyceteceae species and

additional genome characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

B.2 Nc plot against GC3s for the genes of K. bovina . . . . . . . . . . . . . . . . . . . . 282

B.3 Fop x copy number without TE families from K. exigua . . . . . . . . . . . . . . . . . 282

B.4 SyMap synteny analyses between K. exigua and K. lodderae . . . . . . . . . . . . . 283



xxvi

B.5 SyMap synteny analyses between K. exigua and K. saulgeensis . . . . . . . . . . . 284

B.6 SyMap synteny analyses between K. exigua and K. servazzii . . . . . . . . . . . . . 285

B.7 SyMap synteny analyses between K. africana and K. saulgeensis . . . . . . . . . . 286

B.8 SyMap synteny analyses between K. naganishii and K. africana . . . . . . . . . . . 287

B.9 SyMap synteny analyses between K. naganishii and K. saulgeensis . . . . . . . . . 288

B.10 SyMap synteny analyses between K. naganishii and K. servazzii . . . . . . . . . . . 289

B.11 SyMap synteny analyses between K. servazzii and K. africana . . . . . . . . . . . . 290

B.12 SyMap synteny analyses between K. servazzii and K. saulgeensis . . . . . . . . . . 291

B.13 A graphic representation of the predicted chromodomain observed in chromoviral

gypsy elements from the superfamily Saccharomycetaceae . . . . . . . . . . . . . . 292

B.14 Predicted secondary structure of the predicted chromodomain inS. cerevisiae produced

by PSIPRED (Jones, 1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

C.1 Normal distribution of GC content at the synonymous third position for the three 5%

bias categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

C.2 Normal distribution of non-coding flanking DNA for the three 5% bias categories . . 308

C.3 Normal distribution of non-coding intronic GC for the three 5% bias categories . . . 309

D.1 Relationship between copy number of TE families and Nc in C. owczarzaki . . . . . 314

D.2 Relationship between copy number of TE families and frequency of optimal codons

(Fop) in C. owczarzaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

D.3 Relationship between copy number of DNA transposon families and Nc in S. rosetta

and C. owczarzaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

D.4 Nc plot against GC3s for the genes of S. rosetta, M. brevicollis and C. owczarzaki,

including TE families. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

F.1 Maximum likelihood phylogeny of Helitron amino acid sequences across eukaryotic

supergroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

F.2 Maximum likelihood phylogeny of Transposon-2 amino acid sequences across eukaryotic

supergroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

F.3 Maximum likelihood phylogeny of Transposon-3 amino acid sequences across eukaryotic

supergroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326



xxvii

F.4 Maximum likelihood phylogeny of Tigger-1 amino acid sequences across eukaryotic

supergroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

F.5 Maximum likelihood phylogeny of Tigger-2 amino acid sequences across eukaryotic

supergroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

F.6 Maximum Likelihood phylogeny of individual element copies of Sroscv4 . . . . . . . 329

F.7 Maximum Likelihood phylogeny of individual element copies of Sroscv5 . . . . . . . 330

F.8 Maximum Likelihood phylogeny of individual element copies of Srosgyp1 . . . . . . 331

F.9 Maximum Likelihood phylogeny of individual element copies of Srosgyp2 . . . . . . 332

F.10 Maximum Likelihood phylogeny of individual element copies of Srospv1 . . . . . . . 333

F.11 Maximum Likelihood phylogeny of individual element copies of Srospv2 . . . . . . . 334

F.12 Maximum Likelihood phylogeny of individual element copies of Srospv5 . . . . . . . 335





xxix

List of Abbreviations

A Adenine

AA amino acid

BI Bayesian Inference; phylogenetic method

biPP Bayesian Inference Posterior Probability

BLAST Basic Local Alignment Search Tool

BLASTn nucleotide BLAST

BLASTp Protein BLAST

BP bootstrap

C Cytosine

cDNA complementary DNA

CDS a CoDing Sequence

DNA deoxyribonucleic acid

EF1A Elongation factor 1-alpha

EFL Elongation factor-like

FASTA FAST-All, or Pearson; nucleotide or protein sequence format

FLE full-length element

Fop Frequency of optimal codons

G Guanine

GAG; gag capsid-like domain of transposable elements

GC3s guanine+cytosine content at synonymous third codon positions

gDNA genomic DNA

GIRI Genetic Information Research Institute

HGT horizontal gene transfer

HT horizontal transfer

HTT horizontal transfer (of) transposable elements

IN integrase; enzyme catalysing the integration of DNA into a genome



xxx

ITR Inverted terminal repeat

LINE Long interspersed nuclear elements

LTR Long terminal repeat

MAFFT Multiple Alignment using Fast Fourier Transform

ML Maximum Likelihood; phylogenetic inference method

mRNA messenger RNA

Nc Effective number of codons

NCBI National Centre for Biotechnology Information

Ne Effective population size

NEXUS file format

NGS Next Generation Sequencing

NT nucleotide

ORF open reading frame

PCR polymerase chain reaction

PLE Penelope-like elements

Pol; pol polyprotein domain of transposable elements

Pol II or III RNA Polymerase II or III

poly(A) polyadenylate

PP posterior probability

PR protease

RAxML Randomised Axelerated Maximum Likelihood; phylogenetic inference program

RH ribonuclease H

RIP repeat-induced point mutations

RNA ribonucleic acid

RNAi RNA interference

RT reverse transcriptase; enzyme catalysing the synthesis of cDNA from RNA template

SINE short interspersed nuclear repeat

SRA Sequence Read Archive

T Thymine

tBLASTn translated nucleotide BLAST search of protein database

TBP TATA-binding protein; transcription factor



xxxi

TE transposable element

tRNA transfer RNA

Ty Transposon (in) yeast; family names assigned in Saccharomyces cerevisiae

TSD Target site duplication

U Uracil

UTR untranslated region

WGD whole genome duplication

WGS whole genome sequencing





1

Chapter 1

Introduction

1.1 Transposable Elements

1.1.1 Background

Transposable elements (TEs) are repetitive DNA sequences, that have been described as universal

components of eukaryotic genomes (Kidwell, 2002). They have the ability to move position in the

genome by the method of transposition, which can cause genomic rearrangements (McClintock,

1984). Advances in bioinformatics and genome sequencing has enabled exhaustive research into

TE abundance, highlighting the importance and influence the repetitive DNA can have on host

fitness (Gorinsek et al., 2004).

Discovered and published by geneticist Barbara McClintock in the late 1940’s, the first TEs

were found through the investigation of maize by the observed changes in kernel colour patterns

(McClintock, 1950). It was at this point that mobile elements were theorised to move around the

plant genome due to the proposed effects on gene expression, with TEs initially termed controlling

elements (McClintock, 1950). From the initial research of TEs by McClintock, further work suggested

that TEs were in fact ”junk” DNA, with little to no impact on gene expression (Doolittle and Sapienza,

1980). This categorisation of the mobile elements was the predominant view from the 1970s, for

several years, which contradicted McClitock’s findings (Doolittle and Sapienza, 1980; McClintock,

1950). Extensive genetic analyses have since supported McClintock’s work, and TEs are now

accepted to have a major role in shaping genome evolution - an idea proposed by McClintock,

who later won a Nobel prize in 1984 (Biemont, 2010; McClintock, 1984).

Upon acceptance of the mutational capacity of mobile elements, TEs were described as parasitic,

”selfish” DNA (McClintock, 1950; Doolittle and Sapienza, 1980). Exhaustive research supported

that TE invasion was solely detrimental to host fitness, causing mutagenesis, with the genomic
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impact being predominantly deleterious (Doolittle and Sapienza, 1980; Orgel and Crick, 1980).

This has since been challenged, suggesting that TEs can have a mutual relationship with their

host, or with particular insertions having advantageous implications to host gene evolution, and

potentially a driver for speciation (Fedoroff, 2012; Joly-Lopez et al., 2012). It is with this that a

spectrum of host-element interactions has been considered, detailing evidence of both parasitism

and symbiosis (Orgel and Crick, 1980; Hess et al., 2014). Genomic influence is heavily determined

by the status of the TE family, however both autonomous and non-autonomous elements can

shape genome evolution.

An autonomous element is defined as a full length element (FLE) with functional transcriptional

machinery that enables mobility and therefore proliferation in the host genome (Feschotte and

Pritham, 2007). From this, it is derived that a non-autonomous element is unable to move around

the genome independently, and either depends on an autonomous element to enable transposition,

or is stationary in the genome, and therefore defined as inactive (Feschotte and Pritham, 2007;

Slotkin and Martienssen, 2007). Non-autonomous elements are typically mobilised by neighbouring

autonomous elements, via the acquisition of enzymatic domains that allows the element to be

cleaved and integrated at a new site in the genome by the process of hitchhiking (Feschotte and

Pritham, 2007). The enzymatic domains encoded by a mobile element is the basis of transposable

element classification, allowing elements to be assigned to one of two classes (Figure 1.1).

Figure 1.1: Structural composition and classification of transposable elements. Mobile elements
are divided into two classes; Class I retrotransposons (a+b), and class II DNA transposons (c). (a)
Class I elements are further categorised based on the presence or absence of long terminal repeats
flanking the element; LTR and non-LTR retrotransposons. Autonomous elements transpose independently,
encoding tranpositional machinery (gag, pol, ORF; open reading frame, en; endonuclease and rt; reverse
transcriptase). Non autonomous elements do not have protein coding potential, but posssess cis elements
which allow for transposition. Figure is based on Wessler (2006).
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1.1.2 Transposition in DNA transposons

Element classification was established based on transposition mechanisms and are categorised

into Class I and Class II elements (Figure 1.2) (Finnegan, 1989). Class II elements, DNA transposons,

transpose directly as DNA, and do not require a reverse transcription step for mobility (McClintock,

1950). Transposition is enabled by Transposase, an enzymatic domain encoded by autonomous

DNA transposons, which identifies inverted terminal repeats (ITRs) that are found at the terminal

ends of the element to allow for element excision (Figure 1.2) (Slotkin and Martienssen, 2007).

The Transposase enables the element to be cleaved from its original position, and reintegrated at

another site of the genome (Slotkin and Martienssen, 2007). In contrast, Helitron DNA transposons

do not possess ITRs or Transposase, and transpose via a rolling-circle mechanism that is catalysed

by a DNA helicase protein (Slotkin and Martienssen, 2007). Diversity of both classes of TEs is

host species dependent, with variance observed across the majority of eukaryotes (Carr, Nelson,

Leadbeater and Baldauf, 2008; Carr et al., 2012; Lee and Kim, 2014; Elliott and Gregory, 2015).

1.1.3 Transposition in Retrotransposons

Class I elements, retrotransposons, transpose by an RNA copy, with the requirement of a reverse

transcription step; the method is described as duplicative transposition, as the original copy is

replicated and inserted into a new position in the genome (Slotkin and Martienssen, 2007). The

duplicative nature of this class commonly results in an overall increase of family copy number

(Cordaux and Batzer, 2009).

1.1.4 Retrotransposons

Retrotransposons are further classified into five orders, which are determined by the presence

or absence of identical direct DNA repeats at the 5’ and 3’ end of the element, known as long

terminal repeats (LTRs), as well as additional groupings known as Penelope-like elements and

tyrosine-recombinase retrotransposons (Slotkin and Martienssen, 2007) (Figure 1.3). The orders

themselves are further categorised into superfamilies.

Non- LTR retrotransposons

Non- LTR retrotransposons are comprised of two different elements; short interspersed elements

(SINEs) or long interspersed elements (LINEs), which structurally differ to the LTR retrotransposon
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Figure 1.2: Diversification of mechanisms of transposition. Diverse mechanisms across all classes of
transposable element. a) DNA transposons encode Transposase enzyme which allows for mobilisation, and
are flanked by inverted terminal repeats (ITRs), illustrated by black arrowheads, which allow the element
to be excised from its original position (scissors). Transposase (dark purple circles) binds to element ITRs
allowing for integration into new genomic position (dark grey bar). b) LTR retrotransposons are mobilised
via a ”copy and paste” mechanism with the requirement of an RNA intermediate. LTR retrotransposons are
flanked by long terminal repeats (LTRs), illustrated by black arrowheads, and encode gag and pol genes
for tranposition machinery, including Protease, Reverse Transcriptase and Integrase. The promoter in the
5’ LTR is recognised by RNA polymerase II, synthesising the element mRNA. Gag proteins (grey circles)
assemble in a virus-like arrangement, encompassing the element mRNA, RT and IN. Here the RT transcribes
the mRNA to cDNA, and IT (purple circles) integrates the element into its new genomic position (dark grey
bar). c) Non-LTR retrotransposons are flanked by a 5’ untranslated terminal repeat (UTR) and 3’ polyA tail.
An element encoded endonuclease cleaves a small target region of cDNA for integration, and second strand
synthesis. Based on illustration from Levin and Moran (2011).

grouping (Eickbush and Jamburuthugoda, 2008) (Figure 1.1). Non- LTRs possess a 5’ untranslated

region, and a 3’ polyA tail (Han, 2010). Similarity is drawn with LTR retrotransposons, in that groups

typically possess two open reading frames (ORFs) (Eickbush and Jamburuthugoda, 2008) (Figure

1.2).

LTR retrotransposons

In contrast, the LTR retrotransposon classification system comprises of Metaviridae (Ty3/gypsy),

andPseudoviridae (Ty1/copia), BEL groups, tyrosine recombinase families and retroviruses (Figure

1.3) (Havecker et al., 2004). Structurally, LTR retrotransposons reflect an arrangement homologous

to retroviruses (Xiong and Eickbush, 1990). However, tyrosine recombinase elements are flanked

by ITRs, like DNA transposons (Piednoël et al., 2011). Like retroviruses, retrotransposons harbour
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LTRs, and gag and pol genes, but lack an envelope (env) gene (Xiong and Eickbush, 1990)

Three hypotheses have been suggested to shed light over the origin of the retroelements; (i)

being that retroviruses originated from LTR retrotransposons, acquiring an env-like gene, (ii) that

retrotransposons evolved from retroviruses, losing the env-like gene through selection, and (iii) that

Retroviridae and Metaviridae are in fact sister groups, originating from the same common ancestor

respectively (Hayward, 2017). Hypothesis one is predominantly accepted, but findings are still

inconclusive (Hayward, 2017). Also, eukaryotic LTRs are frequently distinguished by conserved

terminal dinucleotides T-G and C-A at the 5’ and 3’ end of the element (Freund and Meselson,

1984).

The typical structural arrangement of LTR retrotransposons is consisted of gag and pol genes

that code for Gag-Pol proteins homologous to retroviral genes (Xiong and Eickbush, 1990). Gag

plays a structural role, encoding for virus like particles that allow for reverse transcription, whereas

pol encodes for several enzymatic domains to form a polyprotein of transposition machinery.

The enzymatic capabilities that allow for transposition include; Protease (PR); Integrase (IN);

Reverse Transcriptase (RT) and Ribonuclease-H (RNaseH). The classification of retrotransposons

is determined by the structural composition of the polyprotein (Eickbush and Jamburuthugoda,

2008) (Figure 1.3).

Figure 1.3: Phylogenetic relationship and structure of class I retrotransposon families. Left: RT based
phylogeny of the main retrotransposon groups in cladogram format. Right: commonly accepted structure
of mobile elements in each family. ORFs are represented by horizontal boxes, with those similar to gag,
pol and env genes labelled consecutively. PR: protease; RT: reverse transcriptase; RH: RNase H domain;
IN: integrase; EN: endonuclease domain; Uri: endonuclease-like domain found in some class I element
introns; YR: tyrosine recombinase- like; ICR: internal complimentary repeats. Horizontal boxes with shaded
arrowheads represent long terminal repeats (LTRs) and AAA: poly(A)tail. The blue boxes highlight RT and
RH domains in the different families. The diagram is based on Eickbush and Jamburuthugoda (2008).
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LTRs and their role in transposition

The presence of LTRs enable successful transposition to take place for LTR retrotransposons. The

LTRs are comprised of three distinct structures; two unique regions (U3 and U5) flanking either

side of a repeated region (R) (reviewed in Benachenhou et al. (2013)) (Figure 1.4). Transposition

is initiated by the transcription of elements by the RNA intermediate to mRNA, originating at the 5’

R region of the LTR, to the R region of the 3’ LTR (Boeke and Corces, 1989; Zhang et al., 2014).

The RNA intermediate is used as a copy for transposition by the process of reverse transcription

to cDNA by Reverse Transcriptase. RNaseH is utilised in the degradation of the original RNA

template, and the flanking U regions of 5’ and 3’ LTRs are replaced before integration back into

the host genome by integrase (Zhang et al., 2014). The reintegration forms unique target site

duplications due to the staggered breaks of host DNA upon transposition.

Figure 1.4: Genomic organisation of long terminal repeats (LTRs) in retroelements. LTRs are divided
to three distinct regions; a repeated region, which is flanked by two unique regions - U3 and U5. Enhancer
and promoter sequences that enable reverse transcription are found in U3. The polyA signal, and 5’ capping
sequences are encoded by the R region. Diagram is based on (Zhang et al., 2014).
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1.1.5 Transposable element acquisition

The acquisition of TEs in eukaryotic species can occur by either vertical transfer, the inheritance of

genetic material to daughter elements, or by horizontal transfer (Fortune et al., 2008). Horizontal

gene transfer (HGT) is the mechanism in which genetic material is transferred from a donor species

to a recipient, through interspecific mating or asexual processes(Marinoni et al., 1999; Bock, 2010).

Due to the nature of the acquisition, the gene transfer is not confined to species barriers, thus

recipient organisms can acquire genetic material from diverse donor species, of distant ancestral

origin (Bock, 2010). Evidence has been found to support HGT events in eukaryotes, at both

unicellular and multicellular levels (Fitzpatrick, 2012; Gilbert and Cordaux, 2013; Tucker, 2013;

Walsh et al., 2013; El Baidouri et al., 2014). The processes in which HGT occurs in eukaryotes is

unclear, however close relationships between species may facilitate the transfer of genetic material

(Wang and Liu, 2016).

As described by Bock (2010), the facilitation of horizontal transfer of transposable elements

(HTT) was thought to be predominantly autonomous, active elements. However, research has

found that non-autonomous elements can also be acquired via horizontal transmission (Bock,

2010; Marsit et al., 2015; Legras et al., 2018). It is through stochastic loss, and natural selection,

that element individual copies should be eradicated from host genomes until extinction, however

this is challenged by the known proliferation in both prokaryotes and eukaryotes (Bartolome et al.,

2009). With this, it is proposed that HTT can be defined as a catalyst to rearrangements in

the genome, due to the process increasing the abundance of TE invasions between non-mating

organisms (Schaack et al., 2010).

Evidence for HTT between two species is inferred when reviewing nucleotide diversity between

elements proposed to be asexually acquired, when compared to vertically transmitted DNA, providing

that the TEs are under the same evolutionary pressures to the host species (Figure 1.5) (Bartolome

et al., 2009). Horizontally transferred DNA would be expected to have a lower level of diversity

between two species, in contrast to sequences which are vertically inherited (Bartolome et al.,

2009). Activity can also be recognised in a genome by the identification of DNA in daughter

species, which is found to be absent in the parent (Huang et al., 2012). Transferred TEs have been

predominantly identified as retrotransposons in several taxonomic groups, and transfer is proposed

to commonly be facilitated between sequences of high similarity (Silva et al., 2005). In budding

yeast, several HGT events have been detected (Liti et al., 2005; Carr et al., 2012; Fitzpatrick,
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2012). Horizontal transfer of TEs has been supported in S. cerevisiae, with the acquisition of two

Ty elements (Ty2 and Ty3) from other species within the genus; S. mikatae and S. paradoxus

(Liti et al., 2005; Carr et al., 2012). Carr et al. (2012) provided evidence to support that the two

Ty elements uncovered in S. cerevisiae have been acquired via horizontal transmission between

sister species with the genus.

Figure 1.5: Hypothesised transposable element acquisition and their host species. (A) illustrates an
example of vertical transfer (VT). The TE evolutionary pathway (in blue) corresponds to that of the host.
TE eradication is common speciation events, eventually resulting in element extinction in the host species
lineage, as well as random stochastic loss (5). (B) illustrates the mechanism of horizontal transfer (HT).
The red line represents the recipient genome acquiring mobile DNA via horizontal transmission (1), and
therefore facilitating TE persistence. The TE invasion causes proliferation in the recipient genome (2), until
an equilibrium is released between selection pressures and transposition. The diversity between TEs upon
insertion (4), can reverse previously described stochastic loss (5). Presuming that TEs are subjected to
similar selection pressures as host genes, the synonymous divergence of TEs should reflect that of the host
nuclear genes, as equal time has elapsed since inheritance (t0 – t2). In contrast, horizontally transmitted
elements will have been subjected to fewer mutations as less time has elapsed since insertion (t0 – t1),
thus a decreased level of divergence is expected when compared to host nuclear genes. Adapted from
(Bartolome et al., 2009).
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1.1.6 Advantages and disadvantages of TE insertions

Oliver and Greene (2012) successfully provided data that supports TEs having a major evolutionary

impact, contributing significantly to genome evolution. The review detailed evidence of TEs being

”helpful”, in contrast to the detrimental view that was previously adopted (Doolittle and Sapienza,

1980; Oliver and Greene, 2012). Adaptation of the host genome has been facilitated by mobile

elements, where the elements have been drivers of species diversity (Oliver and Greene, 2009;

Warren et al., 2015). An extensive review of the specific characteristics that TEs possess highlighted

the features that enable suitability for several influential events in the genome; agents of lineage

and genome evolution, mutagenic agents to manipulate the rate that these processes occur and

transposition due to interspersed insertions within the genome (Oliver and Greene, 2009).

The impact of TEs has been extensively reviewed over the past three decades (Doolittle and

Sapienza, 1980; Orgel and Crick, 1980; Bartolome et al., 2009; Reilly et al., 2013; deHaro et al.,

2014; Van’t Hof et al., 2016). There are several forms of genomic rearrangements that can occur by

transposition, which can arise with the integration of full length elements (FLE) or partial (truncated)

elements (Goodier and Kazazian, 2008). These include inversions and deletions, transduction and

recombination (Goodier and Kazazian, 2008; Lee et al., 2015). The insertions into new locations

of the genome can have both beneficial and detrimental influence on the host genomes, causing

insertional mutagenesis, deletions, splicing and transcript pausing/termination (Goodier and Kazazian,

2008).

Both autonomous and non-autonomous elements have been documented to insert into specific

regulatory or coding regions within the host, reviewed by Kazazian (2004). Insertion patterns that

accommodate transposition close to coding regions enable TE involvement in transcription, and

thus influencing gene expression within the genome (Belyayev, 2014). Recombination has been

found to be a strong driver of genomic rearrangement, specifically ectopic recombination (Kupiec

and Petes, 1988; Charlesworth et al., 1997). The recombination between two regions of similarity

(two LTR sequences) results in the removal of internal retrotransposon DNA and one LTR, with

a solo LTR remaining (Kupiec and Petes, 1988). Therefore, the presence of solo LTRs in the

host genome is a marker of ectopic recombination (Shirasu et al., 2000). The detrimental effects

of TE insertions have been studied at length, however the genomic influence of the insertion is

dependent on the target site, and the resulting mutagenesis (Beauregard et al., 2008; Levin and

Moran, 2011).
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In contrast, beneficial insertions have also been documented in several eukaryotic species,

which has resulted in an increase in host fitness (Joly-Lopez et al., 2012, 2016; Van’t Hof et al.,

2016). Advantageous insertions of TEs have been acknowledged by the process of molecular

domestication, where the elements have evolved to adapt to new molecular processes which are

beneficial to the fitness of the host (Joly-Lopez et al., 2012; Jangam et al., 2017). Host organisms

adapt transposable elements to their own advantage, for several purposes in the genome (Kaneko

and Banno, 1991). Examples of domesticated elements include; recombination activating genes

(RAG1 and RAG2), and Telomerase Reverse Transcriptase, which is propsed to have evolved

from an L1 relic (Kaneko and Banno, 1991; Miller et al., 1999; Curcio M. and Belfort, 2007).

Furthermore, TEs have been utilised through the application of transgenics (Wilson et al.,

2007). The non-viral autonomy of TEs could provide a safe vector for gene delivery and thus

employed in gene therapy (Wilson et al., 2007). The Sleeping Beauty (SB) transposon system

was the first TE based gene therapy that was introduced, and employs the Tc1-like DNA transposon

from themariner superfamily (Ivics et al., 1997). Further transposon systems have been established,

including Tol2 DNA transposons from the hAT superfamily, and piggybac/PB transposons, which

have been successful catalysts for efficient transposition in varied vertebrate models (Grabundzija

et al., 2010). The application of TE domesication has been utilised in several genetic diseases,

specifically cystic fibrosis, of which piggybac has been selected as a therapeutic agent (Cooney

et al., 2015).

Although the presence of TE control mechanisms is inconsistent, it has been found that specific

hosts, including S. cerevisiae can control TE mobility, as well as target site specificity (Curcio et al.,

2015), and TE function by domestication (Sinzelle et al., 2008). An example of domestication

include RAG proteins previously mentioned, which enable variable, diversity and joining (V(D)J)

recombination (Melek et al., 1998). The process of V(D)J recombination catalyses the production

of several antigen receptors in humans (Bassing et al., 2002). RAG proteins are homologous to

DNA transposons, and are proposed to be derived from the class II elements (Melek et al., 1998).

1.1.7 TE elimination

Significant differences are seen in TEs across eukaryotic species, in relation to copy number,

relative abundance and genomic influence. New TE insertions are commonly eradicated from

the host genome by purifying selection, or genetic drift, resulting in TE relics throughout host
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genomes (Carr et al., 2012). Mechanisms have evolved in eukaryotes in an attempt to control

TE proliferation. The extensively documented mechanism of TE regulation is DNA methylation,

predominantly seen in plants, mammalian and fungal species (Martienssen and Colot, 2001). In

retrotransposons, cytosine methylation silences transposition by blocking the transcription of the

RNA intermediate required for successful transposition (O’Donnell and Burns, 2010). However,

several suppression mechanisms have been documented, such as RNA interference (RNAi) and

host proteins causing TE inactiviation (Muñoz-López and García-Pérez, 2010).

The elimination process of RNAi, which has remained conserved from an ancestral eukaryotic

species throughout the fungal kingdom, is documented as lost in several budding yeast species,

including S. cervisiae (Drinnenberg et al., 2009). The mechanism involves RNA being silenced by

an RNA degradation process, where double stranded RNA molecules destroy mRNA molecules

(target transcripts) and therefore causing the termination of transcription (Agrawal et al., 2003).

However, the yeast species lack homologues to RNAi host genes that enable cleavage of target

transcripts (Drinnenberg et al., 2009). Observations of RNAi are described in the majority of

eukaryotic taxa, including metozoans and protistan species which are part of supergroup, Opisthokonta

(Agrawal et al., 2003).

1.2 Opisthokonta

Opisthokonts are a supergrouping of Fungi, Metazoa, Incerta sedis species, and three major

protistan groups – Choanoflagellata, the nucleariids and Ichthyosporeans (Del Campo et al., 2015).

The exclusive grouping was first proposed based on the basis of the posterior single flagellum

in the 1940s (Visher, 1945), which was further supported by Cavalier-Smith (1987). From this

initial classification, multigene phylogenies were produced to validate the grouping, including small

subunit ribosomal (SSU) RNA and several host genes (Baldauf and Palmer, 1993), and subsequently

it was defined as ”Opisthokonta” (Cavalier-Smith and Chao, 1995). The supergroup further diversifies

into two main lineages; Holozoa and Holomycota (Lang et al., 2002; Liu et al., 2009). Holomycota

includes Fungi, and unicellular relatives nucleariids and Fonticula alba (Lang et al., 2002; Brown

et al., 2009); The group Holozoa contains Metazoa, ichthyosporeans, choanoflagellata and filasterea

(Shalchian-Tabrizi et al., 2008) (Figure 1.6).

Opisthiskonts have been of importance in the field of phylogenetics, with regards to predicting

ancestral pathways, and the origins of multicellularity (Cavalier-Smith, 2017). An increase in
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Figure 1.6: Consensus cladogram of evolutionary relationships among Opisthokonta. Opisthokonta
are a supergrouping of two main lineages; Holozoa, which contain Metazoa, Choanoflagellates, Filasterea
and Ichthyosporea; and Holomycota, containing Fungi and nucleariids. the cladogram was constructed in
Newick format, and based on the relationship seen in Shalchian-Tabrizi et al. (2008).

genome sequencing across several eukaryotic species, has provided ample opportunity for extensive

genomic analyses, and with this large quantities of TE data (Pritham, 2009). TE research in

species of Opisthokonta has predominantly focused on multicellular organisms, such as fungal

and metazoan species, with the majority of unicellular eukaryotes being some what over looked.

Although in minority, TE research in single celled organisms has been based upon those found

in the reference strain of the holomycota budding yeast species, Saccharomyces cerevisiae (Kim

et al., 1998; Carr et al., 2012).

1.2.1 Yeast: a model organism

Yeast are eukaryotic, unicellular organisms, which have evolved from ancestors of multicellularity

(Dickinson, 2005). The fungal microorganisms are not monophyletic, and have evolved from two

separate phyla; Ascomycota and Basidiomycota (James et al., 2006). Within Ascomycota, and

subphylum Saccharomycotina, budding yeasts are placed in the order Saccharomycetales, which

is further categorised into superfamilies, including Saccharomycetaceae - which in itself contains

20 genera (Figure 1.7) (James et al., 2006).
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Figure 1.7: Cladogram representation of species in the Saccharomyceteceae superfamily. The 14
clades of Saccharomyceteceae are annotated at the terminal node respectively. Pichia anomala is used as
the outgroup species. Species relationships are based on Kurtzman (2003).The cladogram was produced
in Newick format.

S.cerevisiae is part of the superfamily Saccharomycetaceae ((Kurtzman, 2003; Wolfe et al.,

2015)); the family was subjected to whole genome duplication event (WGD) approximately 100

million years ago (Wolfe and Shields, 1997; Chapman et al., 2004). This event caused the definition

of a clade ‘post-WGD species’, of which the genomes possess features to support this shared

event, whereas species that diverged from S. cerevisiae lineage prior to the WGD are classed as

non-WGD species (Wolfe et al., 2015). The root of the WGD, the ancestral organism that was

subjected to the genome duplication, originally possessed 5000 genes and post-WGD increased

to 10000 genes; however most new copies seemed to be ‘lost’ (Wolfe et al., 2015). Post-WGD

species usually include 500 pairs of genes in the 5500 genes documented, that were created by

the WGD. The remaining 4500 loci were not conserved in duplicate form and only one copy of the

gene survives (Wolfe et al., 2015).

The 12.2Mb draft genome of S. cerevisiae was the first eukaryotic species to be sequenced

and has given great insight into yeast and TE evolution in unicellular eukaryotes (Goffeau et al.,

1996; Kim et al., 1998; Carr et al., 2012; Bleykasten-Grosshans et al., 2013), being defined as a

model organism (Botstein et al., 1997). The first valuable application of yeast as a model system

was by the mapping of disease mediated genes in humans (Botstein et al., 1997). The disease
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mediated gene of interest was identified in the host at a cellular level, and homology found in

additional organisms, such as S. cerevisiae (Botstein et al., 1997). Building on this simplistic view,

the application of the experimental organism has pioneered work in functional genomics (Botstein

and Fink, 2011).

Ty elements of Saccharomyces cerevisiae

The S. cerevisiae reference genome (S288c) is made up of approximately 3% TEs (Carr et al.,

2012). LTR retrotransposons have predominantly been found in S. cerevisiae with the majority of

insertions being partial length elements (solo LTRs or truncated elements) (Kim et al., 1998). To

date, only threeS. cerevisiae strains have been found to have copies of a DNA transposons (Sarilar

et al., 2015; Legras et al., 2018). A hAT transposon was the first to be discovered in a wild strain

of S. cerevisiae (AWRI1631) (Sarilar et al., 2015). The hAT elements have been uncovered in

several species of Ascomycota, and classified as presumably active, with the presence of multiple

copies per genome (Sarilar et al., 2015). However, the element was only found as a single copy

in S. cerevisiae, with limited synteny to copies found in the sister species to Saccharomyces,

Naumovozyma dairenensis (Sarilar et al., 2015).

The yeast genome has been found to harbour six LTR retrotransposon families, Ty1 – Ty5

(Kim et al., 1998) and Ty3p (Carr et al., 2012). The majority of TE insertions are active families

Ty1 and Ty2, which comprise >75% of the genome TE content in the reference strain, S288c (Kim

et al., 1998). Although similar, the families can be distinguished by diversity in both gag and pol

ORFs (Kim et al., 1998). However, it is the high level of LTR identity between families, as well

as breakpoints in the pol gene, that allows for intra-species recombination events, resulting in the

presence of hybrid Ty1/2 LTRs in the host genome (Jordan and McDonald, 1999; Carr et al., 2012).

Both Ty3 and Ty4 are found as intact FLEs in the genome, however Ty4 is presumably the least

active of the two families, as there are fewer copies uncovered to support recent transposition

events observed for this family (Carr et al., 2012). Ty5 has also been defined as inactive, with only

truncated fragments annotated to date (Kim et al., 1998; Zhu et al., 1999; Carr et al., 2012).

Due to the extensive study of mobile elements in Saccharomyces cerevisiae, the Ty families

are the reference of all yeast TEs as a basis of comparison (Table 1.1) (Curcio et al., 2015;

Neuvéglise et al., 2002). The five families range from 2600 - 5500 base pairs (bp) in length,
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Table 1.1: Genomic Organisation of Ty elements in Saccharomyces cerevisiae. Ty elements consist
of flanking LTRs, which are positioned either side of the TYA and TYB ORF. The size of LTRs and Gag/Pol
ORFs are included. Adapted from (Jordan and McDonald, 1998).

Size (bp)

Family LTR ORF Group

Ty1 334 5250 copia

Ty2 332 5300 copia

Ty3 340 4730 gypsy

Ty4 371 5480 copia

Ty5 251 2640 copia

with LTR size of 250-370 bp. Ty1/2 are the largest of the families, with Ty5 described as the

smallest. Ty1 LTRs possess the dinucleotide inverted repeat 5’-TG and CA-3’ at each terminal

end, and are documented to encompass three domains; R, U3 and U5 that are consistent in all

LTR retrotransposons (see Section 1.4) (Sandmeyer et al., 2015). Furthermore, the domains are

characterised by their position in the major sense strand that is expressed from the DNA of Ty1

– U5 and U3 are specific to the 5’ and 3’ end of Ty1 RNA, whereas the R domain is replicated at

both ends of the Ty1 transcript (Clare et al., 1988). Gag (TYA) and pol (TYB) open reading frames

overlap in Ty1 -the Pol ORF overlaps the end 38 bp of the Gag protein, and encodes PR, IN, RT

and RNaseH (Figure 1.8). (Curcio et al., 2015).

The Ty1 replication cycle results in the parental element, and a copy of the retrotransposon in

the host genome – the process is intracellular, mostly occurring in the cytoplasm of the cell (Curcio

et al., 2015). RNA polymerase II transcribes Ty1 elements, and Ty1 RNA Gag-Pol and Gag are

assembled to form nucleocapsids (virus-like particles). In the nucleocapsid, cleavage of Gag and

Pol proteins are catalysed by a protease, which creates mature enzymatic domains (Curcio et al.,

2015). Post maturation, the Ty1 RNA is reverse transcribed, by RT, to form double stranded, linear

DNA which is then transported into the nucleus of the cell – integrase targets host proteins to

enable Ty1 cDNA insertion in target areas of the host genome (Curcio et al., 2015).

Similarly, full length Ty3 elements are comprised of two LTRs that flank the element which

possess Gag3 and Pol3 ORF that also overlap (Figure 1.8) (Sandmeyer et al., 2015). Transcription

of Ty3 results in genomic RNA, which is then translated; Gag3 and Gag3-Pol3 are produced with

the same polyprotein components of Ty1, however the catalytic domain order of Pol differs in

Ty3 (PR;RT; IN) (Sandmeyer et al., 2015). Genomic RNA, Gag3 and Gag3-Pol3 accumulate to



16 Chapter 1. Introduction

form virus like particles in the cytoplasm where Ty3 RT reverse transcription generates cDNA from

genomic RNA, which is integrated into the transcription start site of RNA polymerase II transcribed

genes (Sandmeyer et al., 2015). The success of TE transposition highlights the influence on host

genome characteristics.

Figure 1.8: Genomic Organisation of Ty elements in Saccharomyces cerevisiae. The consensus
structural organisation of the LTR retrotransposon is comprised of two ORFs, TYA and TYB which overlap,
and flanked by LTRs at the 5’ and 3’ end of the element, illustrated by black arrow heads. Diagram based
on Jordan and McDonald (1998).

Ty insertion patterns

As outlined, TEs have been found to control target site specificity (van Luenen and Plasterk, 1994).

The integration site heavily influences the success of the mobile element, which is defined by the

elements ability to transpose and proliferate in the host species genome. With this, insertion into

non-coding DNA should be under decreased selection pressure, allowing families to thrive. In

S.cerevisiae, both Ty1 and Ty2 copia elements have been documented to integrate upstream of

Polymerase- III (Pol III) transcribed genes, usually 80bp upstream of the coding sequence (Kim

et al., 1998). tRNA genes predominantly possess the majority of Pol III transcribed genes, and

have limited coding DNA (Figure 1.9) (Boeke and Devine, 1998). Due to this, the genomic effect

that Ty1 has on gene expression is reduced (Boeke and Devine, 1998). This targeted integration

is suggested to aid in the facilitation of double strand break repair by Ty1 recombination, which

in turn would improve host fitness (Cheng et al., 2012). Similarly, Ty3 has been found to target

upstream of tRNA genes (Figure 1.9) (Boeke and Devine, 1998).
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Figure 1.9: Target integration site patterns of LTR retrotransposons; Ty1 and Ty3, upstream of Pol
III. Ty1 and Ty3 are found to target upstream of pol III, by independent insertion mechanisms.The yeast
chromosome, represented by the lower line, is annotated with boxes to denote protein coding regions. tRNA
gene is shown in an oval shape, downstream to the hypothesised integration sites. Based upon Boeke and
Devine (1998).

TE in abundance in the Saccharomycetaceae superfamily

Additional fungal species have been reviewed for TE content since the annotation of S. cerevisiae;

many of which are from the Saccharomycetaceae superfamily (Neuvéglise et al., 2002; Novikova

and Blinov, 2009; Bleykasten-Grosshans et al., 2011; Muszewska et al., 2011; Carr et al., 2012;

Bleykasten-Grosshans et al., 2013). At present, S. cerevisiae has the highest percentage of TE

genome content (Carr et al., 2012). However, other yeast species reflect similar characteristics,

with several possessing Ty-like elements (Neuvéglise et al., 2002; Muszewska et al., 2011). The

work outlined by Muszewska et al. (2011) detected LTR retrotransposons in 58/59 analysed fungal

genomes, the majority of which were classified as Ty3/gypsy but Ty1/copia were also identified

(Muszewska et al., 2011). Liti et al. (2009) found that lab strains of yeast species have an increased

abundance of TEs when compared to wild populations, with the isolated conditions enabling the

mobile DNA to proliferate and be subjected to limited selection pressures. Wild yeast strains have

been found to present decreased TE copy numbers, supporting effective elimination of TEs by

natural selection via several elimination mechanisms employed by the host (Drinnenberg et al.,

2009) (see Section 1.1.7).

Muszewska et al. (2011) reviewed LTR retrotransposons in fungi by analysing all 59 previously

published fungal genomes that had documented TE content – this included full, functional elements,
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partial elements (detected by known enzymatic domains) and solo elements (Muszewska et al.,

2011). 66,000 TEs were identified, all of which were categorised as either Ty3/gypsy or Ty1/copia

retrotranposon superfamilies (Muszewska et al., 2011). The majority of the elements represented

Chromoviridae (an LTR retrotransposon family) characterised by the presence of a chromodomain

in the pol ORF (Muszewska et al., 2011). The data was analysed by documenting the LTR TE

content in various types of individual yeast species, recording the highest copy element from each

of the genomes (Muszewska et al., 2011). This review gave great insight into the variety of TE

content that spans across a taxonomic group, as element abundance fluctuated from 50 to 8000

copies (Muszewska et al., 2011). These observed TE expansions seen in fungi were found to

correlate with an increase in copy number for the number of types of elements, as well as individual

elements, with Ty3/gypsy representing the highest copy number in all yeast genomes reviewed

(Muszewska et al., 2011). Further phylogenetic analysis of the TEs supported the theory that

the TE expansions appeared independently in more distant yeast genomes, in various taxonomic

groups (Muszewska et al., 2011).

Carr et al. (2012) took the opportunity to further investigate Ty evolution in S. cerevisiae by

systematic re-annotation of Ty elements in the reference genome, S288c. The genome annotation

was initially documented in a paper by Kim et al. (1998), who gave insight into the abundance of

Ty elements within S. cerevisiae, including copy number and distribution of Ty1-5 families. The

re-annotation of S288c in Carr et al. (2012), saw an increase in copy number compared to Kim et al.

(1998), as well as identification of a new family of Ty3- like elements, Ty3p (Kim et al., 1998; Carr

et al., 2012). This is a prime example as to how advances in bioinformatics can spur re-evaluation

of the phylogenetic relationships of TEs, create opportunity for further research to be employed and

excitement of what is yet to be discovered. Carr et al. (2012) also successfully provided evidence

to support that the Ty2 family had arose in S. cerevisiae genome by the process of horizontal gene

transfer (HGT), which is another theory to explain TE evolution (Carr et al., 2012; Tucker, 2013).

Furthermore, Bleykasten-Grosshans et al. (2013) examined complete genome sequences taken

from 41 different strains of S. cerevisiae, including the reference genome S288c used in Carr et al.

(2012). This study successfully shed light over Ty- related polymorphism (Bleykasten-Grosshans

et al., 2013). The 41 strains were both geographically and ecologically diverse, reducing the

limitation of sampling bias, often apparent in phylogenetics (Bleykasten-Grosshans et al., 2013).

The results showed the differences that exist within strains in reference to number of full length
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Ty elements, as well as evidence to support insertion polymorphism (Bleykasten-Grosshans et al.,

2013). These findings have fuelled further investigation into the impact of such polymorphism on

the phenotypic characteristics of these strains and emphasised the variability that can exist within

species, genera and taxa (Bleykasten-Grosshans et al., 2013).

It is evident to see the influence that full genome sequencing of S.cerevisiae has had on

predicting TE evolution in budding yeast, but many other members of Saccharomycetaceae are

yet to be sequenced or investigated. The genus Kazachstania, closely related to Saccharomyces,

is yet to be sequenced in full (Wolfe et al., 2015).

1.2.2 Kazachstania species

The genus Kazachstania is also from the Saccharomycetaceae superfamily (Kurtzman, 2003),

and only has four species sequenced at whole genome level; the available species included

Kazachstania africana CBS 2517, Kazachstania naganishii CBS 8797, Kazachstania saulgeensis

CLIB 1764 and Kazachstania servazzii SRCM102023/CBA6004 (Sayers et al., 2009). Although

documented as morphologically identical, Kazachstania species variability can be seen at DNA

level (Figure 1.10). As a close relative to S. cerevisiae (see Section 1.2.1; Figure 1.10) (Kurtzman,

2003), the limited data availability for this genus leaves a niche left to be explored. TheKazachstania

work will primarily explore TE content of four novel species from Kazachstania, that have been

selected for greatest phylogenetic diversity based on multigene phylogenies (K. bovina, K. exigua,

K. lodderae and K. viticola) (Table 1.2).

Table 1.2: Characteristics of four novel Kazachstania species.

NCYC Number Country of Origin Origin
K. bovina 526 Unknown Caecum of cow
K. exigua 814 Unknown Fermenting cucumber brine
K. lodderae 1417 South Africa Soil
K. viticola 2701 Kazakhstan Fermenting grapes

Previous research into Kazachstania indicated it can be isolated from various habitats, such

as soil, animal associated sampling and food products (Table 1.2). Partial sequencing of several

species in the genera has shown phylogenetic diversity that exists across the species that are

publicly available (Suh and Zhou, 2011). Kurtzman (2003) reclassified the superfamily, which

reassigned several previously defined Saccharomyces species, to the new clade, Kazachstania.
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Nisiotou and Nychas (2008) depicted the relationship between four yeast strains isolated from

Botrytis affected fermenting grape juice, where phylogenetic analysis showed that the four strains

represented a distinct species within the genus (Nisiotou and Nychas, 2008). Although successful

in providing support of the affiliation of the four strains, which were given the name Kazachstania

hellenica, and representing its relationship in reference to other Kazachstania species, the dataset

was limited and therefore has given rise to further investigation into species within this genus

(Nisiotou and Nychas, 2008).

Similarly, Suh and Zhou (2011) isolated three yeast strains from the gut of passalid beetle,

Odontotaenius disjunctus (Suh and Zhou, 2011). These strains were also identified as species

within Kazachstania – given the name Kazachstania intestinalis, and through sequence similarity

searches; molecular phylogeny represented a basal lineage of a clade including other documented

Kazachstania spp., none of which were a close sister to K. intestinalis (Suh and Zhou, 2011). This

paper has effectively portrayed complexity of phylogenetic relationships within this genus, and

supported that further investigation should be employed to determine further conclusions (Suh

and Zhou, 2011).

Regarding TE content, Neuvéglise et al. (2002) constructed a study to investigate genomic

evolution of LTR retrotransposons that reviewed 49,199 random sequence tags (RSTs) from 13

species of hemiascomycetous yeasts; two of the Saccharomyces species reviewed in this paper

have been reclassified to the genus Kazachstania since the research publication (Neuvéglise et al.,

2002; Kurtzman, 2003; Genolevures et al., 2009). LTRs were identified in all hemiascomycetous

yeasts; 17 distinct families of full length elements were identified as well as five families of solo

LTRs (Neuvéglise et al., 2002). In the Kazachstania species studied (Kazachstania exigua and

Kazachstania servazzii), RSTs were matched to Ty proteins from Saccharomyces (Table 1.3).

The newly identified elements were named according to the species name and Ty number element

similarity (Neuvéglise et al., 2002). This finding supported that different elements exist in single

hosts within this genus, and that a close relationship exists with Saccharomyces which would

facilitate vertical inheritance and potentially horizontal transposable element transfer (Neuvéglise

et al., 2002). The evolutionary model constructed for Ty1/copia in this review, can be expanded

upon in future work, as well as the production of a similar evolutionary model to represent Ty3/gypsy

(Neuvéglise et al., 2002). The presence of TE element copies in these two Kazachstania species

supports further work to expand upon evolutionary genomics in this genus, drawing comparison
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Figure 1.10: Cladogram representation of Kazachstania spp. The 31 species of Kazachstania are
annotated at the terminal node respectively. Kluyveryomyces marixanus and Schizosaccharomyces pombe
are used as the outgroup species. Species relationships are based on Vaughan-Martini et al. (2011).
The cladogram was produced in Newick format. A cladogram of the Saccharomycetaceae phylogeny is
annotated to show species relationships within the superfamily.

with S. cerevisiae and other species of the Saccharomyceteceae superfamily.

Table 1.3: Homology between RSTs and Ty families in Saccharomyces. Random sequence tags (RSTs)
were matched with all Ty families found in Saccharomyces, and homologous copies were found in K. exigua
and K. servazzii. Data was proposed by Neuvéglise et al. (2002).

Yeast
species Ty1/2 Ty3 Ty4 Ty5

K.
exigua 19 (Tse1) 15 (Tse3) 0 10 (Tse5.1, Tse5.2)

K
servazzii 1 (Tss1) 3 (Tss3) 0 0
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1.2.3 Choanoflagellates

Choanoflagellates are a second line of unicellular eukaryotes, a lineage of Opisthokonta (Figure

1.6), and the closest living relative to metazoans (Lang et al., 2002). Discovered by James-Clark

(1868), a likeness between the morphology of choanoflagellates and the collared cells of Porifera

(sponges) was described, leading to the confirmed relationship between the choanoflagellates and

Metazoa (Lang et al., 2002). These protists are found in both freshwater and marine environments,

often existing as single-celled species, but occasionally as ephemeral multicellular colonies (King,

2005).

Choanoflagellates are characterised by a distinct feeding collar of microvilli, and apical flagellum

(Figure 1.11) (Hoffmeyer and Burkhardt, 2016). The actin-filled microvilli feeding collar allows for

effective prey capture of bacteria, and aquatic detritus, through the process of phagocytosis (King

et al., 2009).

Figure 1.11: Simplified choanoflagellate morphylogy. Choanoflagellates are comprised of a cell body,
microvilli feeding collar and apical flagellum, as annotated. Image is based on (Hoffmeyer and Burkhardt,
2016).

Although the choanoflagellate cell morphology is conserved (Figure 1.11), the external covering

(periplast) is highly variable across species; this initially lead to species classification into distinct

families; Salpingoecidae, Acanthoecida, and Codonosigida (Norris, 1965). The morphology of

Salpingoecidae presents a rigid theca, whereas Codonosigida instead possess a mucilaginous
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cover, otherwise named a glycocalyx (Carr, Leadbeater, Nelson and Baldauf, 2008). However,

molecular phylogenies show that the two families did not descend from the same common ancestor,

and thus were not monophyletic as first hypothesised (Carr et al., 2017). The remaining species,

within the order Acanthoecida, are characterised by “cage-like” silica baskets (Carr et al., 2017).

Phylogenetic analysis supported that Codonsigidae evolved from within the Salpingoecidae lineage,

and thus formed a major clade, Craspedida, which is subdivided into three groupings.

King et al. (2008) outlined that >125 species of choanoflagellate species are identified, with

several more presumably undiscovered (King et al., 2008). The first choanoflagellate to provide

genome availability, Monosiga brevicollis, was sequenced by the Joint Genome Institute (JGI), and

is a marine choanoflagellate with a globally wide distribution (King et al., 2008). The genome is

41.7Mb in size, with >9000 genes annotated. Although a small genome, when compared to the

majority of metazoan species, M. brevicollis genes are significantly intron-rich, with an average of

6.6 introns per gene (King et al., 2008).

The second choanoflagellate with genome availability was Salpingoeca rosetta, previously

known asProterospongia sp., sequenced by the Broad Institute (BI) (Sayers et al., 2009; Fairclough

et al., 2010). S. rosetta was predicted to have >11000 gene models, with a greater genome size

of 55.4Mb, compared to M. brevicollis (Sayers et al., 2009). In contrast to M. brevicollis, S. rosetta

is a colony forming species, by a process that mirrors the early phases of marine invertebrate

embryogenesis (Fairclough et al., 2010). The possible evolutionary relationship between metazoan

embryogenesis and colony development outlines the importance of further study for the unicellular

species, at both molecular and cellular level. This ancestry allows an insight into animal origin

and early evolution of metazoan species. Theoretically, this will enable pathways to be predicted

regarding gene loss and gain, and TE acquisition. Furthermore, as the unicelluar eukaryotes

are typically prey for several aquatic multicellular organisms, choanoflagellates create opportunity

for HGT to take place including the transfer of mobile elements. As phagotrophs, the species

also harbour the ability of gene acquisition from their host species (Yue et al., 2013). With this,

Choanoflagellatea are an additional class to be revised for TE abundance (Carr, Nelson, Leadbeater

and Baldauf, 2008).
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1.2.4 Filasterea

As a member of the Opisthkonts, Capsaspora owczarzaki is the only representative of the genus,

Capsaspora, assigned to the holozoan clade, Filasterea (Shalchian-Tabrizi et al., 2008) (Figure

1.6). Similarly, to choanoflagellates, C. owczarzaki is a second close relative to Metazoa, and

therefore provides further insight to ancestral predictions of multicellularity in the animal lineage.

1.2.5 Transposable elements in protists

The globally distributed choanoflagellate, Monosiga brevicollis, is the only species of choanoflagellate

which has been annotated for mobile elements, and has been found to possess three families of

LTR retrotransposons only (Carr, Nelson, Leadbeater and Baldauf, 2008). Further insight into the

evolution of TEs in opisthokont protists was provided by the annotation of TEs in the filasteran

protist, Capsaspora owczarzaki (Carr and Suga, 2014). The draft genome presented 23 families

from Class I and Class II TEs. The TEs identified were shown to have orthologous TE families

in Metazoa, which supports the hypothesis that the common ancestor of the metazoans had a

diverse repertoire of mobile elements (Carr and Suga, 2014).

The two marine choanoflagellates, Monosiga brevicollis and Salpingoeca rosetta are both

placed in the major clade of choanoflagellates, Craspedida (Jeuck et al., 2014). S. rosetta is yet

to be studied regarding TE content, allowing for a comparative genomic study to unfold with the

previously reviewed M. brevicollis. With genome availability, and the known close relationship to

metazoans, M. brevicollis and S. rosetta are found to be presenting as promising model organisms

to predict evolutionary origin of multicellularity (Hoffmeyer and Burkhardt, 2016). In addition to C.

owczarzaki, the three holozoan species are key subjects of investigation to aid understanding

of ancestral pathways that present in animals in present day. Exhaustive research has detailed

evolutionary traits in multicellular species, including trends in codon usage bias. With extensive

genomic research focused on metazoan species, the availability of the protistan species allowed

for the reconstruction of several ancestral traits, including codon usage (Southworth et al., 2018).
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1.3 Codon usage

1.3.1 Background

The study of choanoflagellates, as the closest known relatives to Metazoa, has aided depiction

of evolutionary pathways of the Opisthokonts (Carr, Nelson, Leadbeater and Baldauf, 2008; Carr

et al., 2010; Suga et al., 2013; Tucker, 2013; Carr et al., 2017). Recent research has determined the

genome complexity of the last common ancestor of Holozoa, in that the majority of host genes are

homologous to Metazoa, which were previously determined to be kingdom specific (Hehenberger

et al., 2017). With this, traits uncovered in both choanoflagellates and filastereans are ancestral to

Metazoa (Figure 1.12).

Figure 1.12: Simplified phylogenetic representation of Holozoa. The cladogram was produced in Newick
format, and based upon the holozoan phylogeny outlined in Shalchian-Tabrizi et al. (2008).

Ancestral gene pathways have been hypothesised in Holozoa, with the genome availability of

Monosiga brevicollis (King et al., 2008), Salpingoeca rosetta (Suga et al., 2013), and filasterean,

Capsaspora owczarzaki (Suga et al., 2013). Research has predominantly focused on molecular

processes, rather than analysis of population genetics, which has left a niche to be explored. Carr

et al. (2017) study focused on the transcriptomes of 19 choanoflagellate species (Figure 1.13),

and the impact of natural selection on two elongation factor genes; EF1-A and EFL.The research
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Figure 1.13: Ecological and morphological characteristics of 19 choanoflagellate species.
Phylogenetic representation of 19 choanoflagellate species with transcriptome availability. The first column
represents the species habitat, and the second column highlights the species with colonial traits. Cladogram
is produced in Newick format and based on Carr et al. (2017).

focused on population genetics, including codon usage analyses to measure selective constraint

among the species.

Individual codons are utilised for accuracy and efficiency, and variation is seen across all

genomes, with patterns of codon preference documented (Ikemura, 1981; Ehrenberg and Kurland,

1984). The genetic code allows for degeneracy, with 18 amino acids encoded by two or more

different synonymous codons, with only methionine and tryptophan encoded by one codon respectively

(Hinegardner and Engelberg, 1963). This leaves 59 possible codon combinations that code for the

remaining 18 degenerate amino acids (Hinegardner and Engelberg, 1963). Grantham et al. (1980)

showed that codon selection bias is not random, and that genes are biased to codons ending in

GC or AT.

Codon usage bias can operate through the process of three mechanisms; natural selection,

mutation pressure and genetic drift (Bulmer, 1991). The three mechanisms do not always operate

exclusively, and it may be a combination of pressures which contribute to codon selection in a host

species.

In the study of codon usage bias, the level of bias can be measured by the effective number of

codons, which is denoted Nc, which range from 20 to 61 (Wright, 1990). Values of 20 signifies

genes which have amino acids that are coded by a single codon, and 61 is when all codon

degenerates are equally utilised for each amino acid. Evidence to support that codon usage is
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driven by selection, suggests that these species possess codons defined as optimal, for translational

accuracy.

Optimal codons were originally proposed by Ikemura (1981) are those codons that are found

to be complementary to the major tRNA genes within a host species. This concept was redefined

by Lloyd and Sharp (1992), who stated that optimal codons are as those that are utilised more

frequently in the first 5% highly expressed genes, in comparison to the 5% lowest expressed genes.

The abundance of optimal codons within a gene is described as the Frequency of Optimal Codons

(Fop), and can be calculated when the total number of codons in a gene is divided by the number

of optimal codons (Ikemura, 1981). The selectively optimal codons commonly complement the

highly expressed tRNAs (Kanaya et al., 2001). Optimal codons have been shown to vary across

organisms. Leucine, with six-fold degeneracy, is coded by TTG in S. cerevisiae and in contrast,

by CTG in Drosophila melanogaster (Sharp et al., 1988).

Carr et al. (2017) was the first study to comment on codon usage in choanoflagellates, which

found that the highly expressed elongation factor genes, showed to have low levels of Nc, and

thus strong codon usage bias. It was also found that EF1-A were also shown to be evolving

under weaker constraint, and showed less biased codon usage in species where the gene was

co-expressed with EFL (Carr et al., 2017). This finding supported consistency with natural selection,

rather than bias driven by mutation pressure (Carr et al., 2017). The correlation observed prompted

further investigation into codon usage in holozoan species, to determine the main influence on

shaping codon usage. With this in mind, Southworth et al. (2018) aimed to determine the main

driving forces of codon usage in S. rosetta, M. brevicollis and C. owczarzaki.
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1.4 Project aims

Although the majority of eukaryotic species are found to be unicellular, evolutionary genomic

research has predominantly focused on multicellular host species. With this, it is presumed that

the overview of evolutionary pathways in eukaryotes is truncated based on multicellular bias, and

limited information of unicellular species. The limited data for unicellular eukaryotes is the basis

of this project, to develop a more robust picture of evolutionary trends across diverse eukaryotic

species.

The bias in data includes transposable element evolution in multicellular hosts and outlines

the necessity of research centred on unicellular species. The investigation of TEs in unicellular

eukaryotes, will aid the determination of several TE families’ origin. The project presented here

will aim to review TEs in novel species of yeast, and holozoan species, as well as comparative

genomics between species as well as superfamilies.The project have been divided into the following

outcomes:

• Genomic survey of novel Kazachstania species, including codon usage bias of host genes

• TE review in four novel Kazachstania species

• TE review in choanoflagellate, Salpingoeca rosetta, with comparative review to M. brevicollis

• Codon usage review of three holozoan species; S. rosetta, M. brevicollis and C. owczarzaki

• Codon usage review of TEs found in S. rosetta, M. brevicollis and C. owczarzaki

At present, only one choanoflagellate species has been analysed (Carr, Nelson, Leadbeater and

Baldauf, 2008), and as the metazoan sister group, the review of mobile element content of S.

rosetta would provide new insight into the evolutionary origin of animal TEs, as well as an avenue

for comparative genomics with M. brevicollis. As stated, comprehensive work has been employed

on TEs in yeast species to date, creating a strong basis to build upon. The wide genome availability

allows for exhaustive analysis, which is not obtainable in other species. Furthermore, an increase

in whole genome sequences would further enable the study of TE origin, function and influence

across genera of the unicellular eukaryotes. The extensively studied yeast S. cerevisiae has
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caused interest in TE inheritance across closely related species, leaving Kazachstania the ideal

genus for continued research.

Fungi are an ideal candidate for genomics due to their small genome size (Gladieux et al.,

2014). The genetic variability seen across the kingdom allows for comparative study to take place,

and to what variables influence the measured differences seen in species synteny, genomic size

and TE content.

With this, TEs would seem to be a crucial aspect of genome analysis, with the annotation

and characterisation of the repetitive DNA allowing for a greater overview of genomic content.

Despite known abundance, TE annotation is still poorly practiced in whole genome analyses,

with no elements annotated in publicly available WGS for the choanoflagellate or Kazachstania

species (Sayers et al., 2009). Here, a homology based method is employed for TE detection,

RepeatMasker (RepeatMasker, 1996; Huda and Jordan, 2009). The program searches for areas

of high conservation and similarity between DNA sequences, against a database of consensus

TE sequences from an employed library (Tempel, 2012). Two types of TE libraries were ran to

allow for comparison in detection and annotation; Repbase (GIRI, 2016) and two custom libraries.

A Saccharomycetaceae custom library of TEs annotated in species within the superfamily, and a

choanoflagellate library of TEs found in available species to date.

The codon usage review will allow for comparative genomics within the Kazachstania genus,

as well as patterns of bias across the yeast superfamily, Saccharomycetaceae. Furthermore, the

research of codon usage bias for TEs is limited, with very few evidence found to show that elements

codon usage is driven by selection bias, rather than mutation pressure (Lerat et al., 2002; Jia

and Xue, 2009; Jiang et al., 2006). With this, a review of codon usage in mobile elements that

are uncovered will reveal signatures of bias in previously unsequenced species. In addition to

this, the work published by Southworth et al. (2018) detailed that codon usage bias was found to

be conserved across three holozoan species, S. rosetta, M. brevicollis and C. owczarzaki. The

work presented here will replicate the research outlined, as well as reciprocal analyses on smaller

bias categories. The codon usage of TEs in the three holozoan species will also be explored, to

determine if selection bias is the main driver of codon usage in the mobile elements, as seen in

the host genes (Southworth et al., 2018).
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Chapter 2

A genomic survey of novel species of the genus

Kazachstania

2.1 Kazachstania; a relative to Saccharomyces

2.1.1 Introduction

Species within the genus Kazachstania were formerly attributed to Saccharomyces, and only

in 2003 reclassified into their own genus on the basis of homology (Kurtzman, 2003; Kurtzman

and Robnett, 2003). Initially described as a single species, Kazachstania viticola, the original

isolation originated in fermenting grapes in Kazakhstan (Zubkova, 1971). It was later found through

the analysis of multigene phylogenies that several yeast species, originally categorised to other

genera in the superfamily, were reclassified to Kazachstania (Kurtzman, 2003, 2011). The genus

contains 32 accepted species, which are described as the sister group to Saccharomyces and

Naumovozyma within the Saccharomycetaceae superfamily (Vaughan-Martini et al., 2011) (Figure

2.1). Kazachstania has little published literature in relation to its TE content (Neuvéglise et al.,

2002).

Kazachstania species

The genus Kazachstania is also from Saccharomycetaceae (Kurtzman, 2003), and only has four

species sequenced at whole genome level; Kazachstania africana (CBS 2517), Kazachstania

naganishii (CBS 8797), Kazachstania saulgeensis (CLIB 1764) and two strains of Kazachstania

servazzii (NJIJ01 /PTQT01) (Sayers et al., 2009). Although morphologically identical, Kazachstania

species variability can be seen at the DNA level (Figure 2.1). As a close relative to S. cerevisiae

(Kurtzman, 2003), the limited data availability for this genus leaves a niche left to be explored. The
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Figure 2.1: Maximum likelihood phylogeny of species from the genus Kazachstania using partial
or full 26S rRNA sequences Species sent for whole genome sequencing are included in the phylogeny
(Kazachstania bovina (AY545572); Kazachstania exigua (AY048163); Kazachastania lodderae (AY048161);
and Kazachstania viticola (AF398482)). National Center for Biotechnology Information (NCBI) Accession
Numbers are labelled with the corresponding species name (Sayers et al., 2009). Species names listed on
NCBI are annotated in brackets, next to species name within Kazachstania post reclassification (Kurtzman,
2003). Species names annotated are that represented on NCBI; all species are from Kazachstania genera.
The phylogeny was produced using raxmlGUI 1.5 beta via python and constructed by an alignment of 578
nucleotide constructs with the employment of raxmlGUI using the GTRCAT model (Silvestro and Michalak,
2011). ML and biPP values are labelled above and below corresponding branches. Maximum support is
annotated by ‘*’ (100ML/1.0biPP) and low support (<50 ML/ <0.70 biPP) are annotated by ‘-’. The scale bar
signifies the number of nucleotide substitutions per site. The tree is based on maximum parsimony analysis
(Vaughan-Martini et al., 2011).
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yeast review in this project primarily explored the TE content of the four species publicly available

and four novel species from Kazachstania, that have been selected for greatest phylogenetic

diversity based on rRNA sequences (K. bovina, K. exigua, K. lodderae, K. viticola).

Table 2.1: Genome statistics of four publicly available Kazachstania species. For each Kazachstania
species, the species strain, genome size, average G+C content and total number of coding genes are
annotated. Chromosome or CDS data was not available for either strain of K. servazzii.

Species Strain No.
of chromosomes

Genome
size (Mb)

Average
G + C content (%)

Total
no. of CDS

K.
naganishii CBS8797 13 10.85 45.9 5321

K.
africana CBS2517 12 11.13 36.3 5378

K.
saulgeensis

CLIB
1764 16 12.94 32.2 5869

K.
servazzii SRCM102023 - 12.84 34.90 -

K.
servazzii CBA6004 - 12.50 34.40 -

Kazachstania africana Kazachstania africana was classified as Kluyveromyces africanus

initially (Kurtzman, 2003), and its genome sequence is publicly available on NCBI (Kurtzman, 2003;

Sayers et al., 2009). K. africana (CBS 2517) has a genome size of 11.1 Mb and 12 chromosomes

(Wolfe et al., 2015).

Kazachstania naganishii Kazachstania naganishii was formerly classified asSaccharomyces

naganishii (Mikata et al., 2001) and the whole genome sequence (WGS) is publicly available

(Sayers et al., 2009). K. naganishii (CBS 8797) boasts 13 chromosomes with a genome size

of 10.8 Mb (Wolfe et al., 2015).

Kazachstania saulgeensis The species Kazachstania saulgeensis was isolated from sour

dough (Sarilar et al., 2017) and whole genome is publicly available on NCBI (Sayers et al., 2009).

Of the four Kazachstania species sequenced, K. saulgeensis is the largest, with a genome size of

12.94Mb, and approximately 16 chromosomes (Sarilar et al., 2017).

Kazachstania servazzii Kazachstania servazzii was formerly classified as Saccharomyces

servazzii (Kurtzman, 2003), with two strains publicly available on NCBI (Sayers et al., 2009).
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Chromosome number is unknown, but estimated at <12, with genome size ranging from 12.50-12.84

Mb (Sayers et al., 2009). Before genome availability, the species was investigated for TE content

using random sequence tags (RST), and was found to possess both gypsy and copia elements

(Neuvéglise et al., 2002).

Kazachstania exigua Kazachstania exigua has been partially sequenced, and TE content

has been investigated (Neuvéglise et al., 2002). Formerly classified as Saccharomyces exiguus

(Kurtzman, 2003), K. exigua has been documented to possess copia elements previously named

Transposon Saccharomyces exiguus -1 (Tse1), Transposon Saccharomyces exiguus-5 (Tse5),

and Transposon Saccharomyces exiguus-3 (Tse3) gypsy elements, similar to Saccharomyces Ty

sequences (Neuvéglise et al., 2002).

2.1.2 Experiment overview

The investigation of the novel Kazachstania yeast species, allowed for trends across the genus

to be drawn between genomic characteristics, as well as within the superfamily. Very little is

known regarding the genus Kazachstania, and the review was constructed to allow for comparative

analysis for the novel species. Similarly, the review of TEs in species, will aid the determination of

several TE families’ origin. Codon usage analyses were performed on the host genes and ORFs

of all LTR retrotransposons identified in the Kazachstania species, in order to determine if selection

was operating at either the level of translational accuracy, efficiency or if other evolutionary pressures

were affecting bias. The work outlined would also be comparable to patterns of codon usage bias

of other host genes and TEs in unicellular organisms. (Lerat et al., 2002, 2003; Jia and Xue, 2009).
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2.2 Methods

2.2.1 Transposable element content and sequence similarity

The whole genomes of Kazachstania naganishii (CBS 8797), Kazachstania africana (CBS 2517),

Kazachstania saulgeensis (FXLY01000001-17) and Kazachstania servazzii (SRCM102023 and

CBA6004) were downloaded from NCBI (Sayers et al., 2009) in FASTA format and ran through

RepeatMasker version open -4.0.6 (Smit, 1996) to review TE content. Parameters for RepeatMasker

are listed in Appendix E. A custom TE library was created and employed to annotate TEs (both

internal and LTR DNA) from the Saccharomycetaceae superfamily (Cooper Grace, Aug 2016 per

comms) within the Kazachstania genomes. Additional Saccharomycetaceae species were ran

via RepeatMasker to review TE content (genome accession numbers are listed in Appendix E).

Kazachstania TEs identified from initial RepeatMasker analysis were added to the library, for

a more accurate representation of TE content. LTRs that were found in close proximity on a

chromosome were located in the whole genome reads, and putatively internal DNA translated

using ExPASy on the SIB server (Artimo et al., 2012), and ran through the Basic Local Alignment

Search Tool (BLAST) protein database (BLASTp) and NCBI conserved domain tool to search for

conserved enzymatic regions (Altschul et al., 1990). The same protocol was repeated for the four

novel Kazachstania species upon genome availability.

Elements uncovered from the Kazachstania species were annotated and were added to the

Kazachstania custom library dataset for futureKazachstania species annotation. The sameKazachstania

TE specific library was ran against all Kazachstania species to validate annotation and to detail

copy number for each TE family. The newly identified gypsy elements were added to previously

constructed Ty3-like fungal dataset and phylogeny was created with the employment of raxmlGUI

1.5 beta (Silvestro and Michalak, 2011) and Mr Bayes 3.2.6 XSEDE (Ronquist et al., 2012) via

the server based platform, Cipres Science Gateway (Miller et al., 2010). Default parameters for

Maximum Likelihood and Bayesian Inference trees are listed in Appendix E. Alignments were

created using MAFFT on the EMBL-EBI server with default settings (Katoh, 2002). An additional

custom library was created ofKazachstania TEs only and employed through RepeatMasker against

all available Kazachstania genomes, to accurately determine element copy number. This included

the internal DNA and LTR sequences (where applicable) for elements found in the eightKazachstania

species reviewed.
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2.2.2 Chromoviral work

Similarity searches and domain prediction

Sequences from Ty3-like fungal dataset were reviewed for the presence of a chromodomain. The

conserved amino acid sequences downstream from Integrase domain found in Saccharomyces

species were employed as a query sequence and ran using BLASTp and tBLASTn on NCBI Blast

(Sayers et al., 2009) as a reciprocal blast. The query sequence to search for additional species

containing the predicted chromodomain was from S. cerevisiae Pol3 (AAA98435.1) with a length of

60bp. Hits were downloaded in FASTA format and aligned using MAFFT as default (Katoh, 2002).

Text files in FASTA format were uploaded onto CLUSTALX 2.1 to view amino acid conservation

(Thompson et al., 2002).

Protein modelling

A crystallised structure of a known chromodomain from S. cerevisiae was downloaded from the

crystallographic database; Protein Data Bank (Berman et al., 2000). The crystal structure of the

chromodomain-ATPase portion of the yeast Chd1 chromatin remodeler (3MWY) was uploaded to

the database by Hauk et al. (2010). 3MWY protein was uploaded to SWISS-MODEL (Biasini et al.,

2014) as a template model in pdb file format, and the potential CD domain as the target sequence

in FASTA format. Default settings were employed to build the model. The mapped model result file

was downloaded in pdb file format. The mapped model was viewed using Py-MOL version 1.74

(Schrodinger, 2017). The predicted chromodomain was mapped onto 3MWY template protein.

Server based PSIPRED version 3.3 (Jones, 1999; Buchan et al., 2013) was employed to predict

the secondary structure of the predicted chromodomain from S. cerevisiae.

2.2.3 Yeast husbandry

Yeast species were purchased from the National Collection of Yeast Cultures Catalogue (NCYC)

as live cultures (NCYC, 2016). The cultures were stored at 4˚c with no light exposure. All yeast

cultures were grown in YPD liquid medium (Amberg et al., 2005), with glucose carbon source, as

applicable to each species (NCYC, 2016). Yeast Extract-Peptone-Dextrose (YPD) liquid media

using 50g of YPD broth per litre of deionised H2O. The media was then autoclaved for 15 minutes

at 121˚c (Amberg et al., 2005). YPD Broth constituents are listed in Appendix A. 1ml/L of Ampicillin
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was added to the media. Yeast stocks of each Kazachstania species were made and stored at

-80˚c in cryotubes, in a glycerol media (Fisher, 2017).

Yeast cultures were also grown on YPD agar plates. YPD agar was made using 65g agar per

litre of deionised water, and then autoclaved for 15 minutes at 121˚c (Amberg et al., 2005). 1ml/L

of Ampicillin was added to the agar when the media was cooled in a 50˚c water bath. The plates

were then poured aseptically and left to set at room temperature. Yeast cultures were streaked on

YPD agar plates and incubated at 25˚c for 48 hours. Stocks were kept at 4˚c and inoculated every

4 weeks.

The live yeast cultures were suspended to YPD liquid medium aseptically, using a sterile loop.

Kazachstania species were incubated at 25˚c for a minimum of three days (Vaughan-Martini et al.,

2011). The four Kazachstania species were stained using methylene blue to test sample purity, and

to assess morphology within the genus. Samples were aseptically mounted on a glass side, and

dried. The samples were needed flooded with methylene blue for 1 minute. The dye was washed

off the slide using sterile water, and blotted dry, to allow for observation under a microscope.

2.2.4 RNA extraction

Two methods of RNA extraction were employed; Trizol extraction (Qiagen, 2017) and RNAswift

(Nwokeoji et al., 2016). The results were comparatively assessed for quantity, absorbance ratios

and yield. Recipes for constituents of the RNA extraction for both methods are listed in Appendix A.

The protocol for Trizol extraction and RNASwift was performed by the manufacturer’s instructions,

and are listed in Appendix A.

DNase reaction

Post RNA extraction, a DNase reaction was ran on samples to remove any gDNA. For every 500ng

of RNA, 0.5ul of DNase buffer and 0.5ul DNase was added to the sample. The sample was then

incubated at 37˚c using a heat block for 60 minutes. Following incubation, 0.5ul of EDTA was

added, and the sample was incubated for a further 10 minutes at 65˚c.

2.2.5 DNA extraction

Two methods of DNA extraction were employed; DNeasy blood and tissue extraction kit (Qiagen,

2017) and LiOAC-SDS method (Looke et al., 2011). The results were comparatively assessed



38 Chapter 2. A genomic survey of novel species of the genus Kazachstania

for quantity, absorbance ratios and yield. DNeasy blood and tissue extraction kit was used and

protocol employed from the Qiagen DNeasy manual. The protocol was specifically designed for

the purification of DNA from ≤ 5 x 107 yeast cells (Qiagen, 2017) and is listed in Appendix A.

The DNA extraction protocol using lithium acetate (LiOAc), 1% SDS solution (LiOAc-SDS) was

modified from the procedure detailed in Looke et al. (2011). The employed protocol is listed in

Appendix A.

2.2.6 Whole genome sequencing of four novel Kazachstania species

Due to time limitations, the four species which were cultivated in the laboratory were sent to

Macrogen, where DNA was extracted for whole genome sequencing.

DNA extraction and sequencing

DNA was extracted using AMPure purification, performed according to manufacturers instructions.

Following extraction, the samples were ran through quality control (QC) and library preparation

(RSII SMRT Library [20kb]) to allow for PacBio RSII SMRT Cell (700Mb output) whole genome

sequencing to be performed (Figure 2.2).

Figure 2.2: Method for sequencing and analysis workflow for WGS and genome assembly and
annotation, based on procedure by Macrogen.
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Preprocessing

The method of QC used involved a library size check, as well as library quantity check, to ensure

the highest quality of data on the PacBio sequencing platforms. The size of the DNA fragments

incorporated from each species were ran on a Agilent Technologies 2100 Bioanalyzer with a DNA

12000 chip. DNA bioanalyser results can be found in Appendix B. The requested SMRTbell Library

with 20kb SMRTbell templates, for the PacBio sequencing platform, required a concentration

of >15ng/ul, with a size of >10000bp. For the generation of a standard curve of fluorescence

readings, and for library sample concentration calculations, Macrogen employed Roche’s Rapid

library standard quantification solution and calculator (Roche, 2018).

For the preprocessing, a sequence of nucleotides from each species sample was incorporated

with use of a circular SMRT bell template, and DNA polymerase. Following sequencing, Macrogen

performed genome assembly, as well as genome prediction and annotation.

Table 2.2: Macrogen library preparation results for the four novel species of Kazachstania.

# Library Name Library Type Conc. (ng/ul) Size (bp) Result
1 K. bovina 20kb SMRTbell Templates 41.6 20000 Pass
2 K. exigua 20kb SMRTbell Templates 33 20000 Pass
3 K. lodderae 20kb SMRTbell Templates 34.7 20000 Pass
4 K. viticola 20kb SMRTbell Templates 40.3 20000 Pass

Analysis

Macrogen performed a pre-assembly step, which mapped single reads to seed reads, which

showed the longest section of the distribution of read lengths. This led to the generation of a

consensus sequence for all the mapped reads, producing large, highly resolved reads for the

species genome. This process was repeated for each Kazachstania genome. The de novo

assembly was performed using FALCON (Chin et al., 2016), and the read filtering using Quiver

(Chin et al., 2013). Details for each contig per genome are listed in the Appendix A. The reads

were then filtered to ensure duplicate and too low/ high overlapping reads were removed prior

to genome construction. Based on the data which overlapped, contigs were constructed for each

genomes, which varied in quantity per species. Post genome assembly, protein coding sequences

were located and genes identified. Maker v2.31.8 (Cantarel et al., 2007) was used to predict the
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location of the genes, and Protein BLAST+ v2.6.0 was performed to identify the genes. The best

hits of the NCBI BLAST against NCBI database were annotated (Altschul et al., 1990).

2.2.7 Codon usage and tRNA genes

Codon usage bias was investigated in all Kazachstania species except K. saulgeensis and K.

servazzii due to no transcripts available for these two species. Transcript files for K. africana and

K. naganishii were downloaded from NCBI (Sayers et al., 2009). Codon usage statistics of the

complete annotated transcriptome sequences for six of the yeast species were analysed using

CodonW (Peden, 1999). Optimal codons for each species were generated by correspondence

analysis (COA), using relative synonymous codon usage (RSCU), with employment of default

parameters. The optimal codons identified were then assessed comparatively to the anticodons

of the tRNA genes for each yeast species to determine if the optimal codons were found to be

complementary to the tRNA anticodons. For each TE family in the Kazachstania genomes, values

of Nc, Fop and GC3s were calculated for all coding sequences using CodonW 1.4.4 (Peden,

1999). The fop.coa file generated for each species was employed to the TEs on a species specific

basis. For elements where the gag and pol ORFs are separated (Tkn3, Tse1, Tkl3 and Tkv3), the

sequences were concatenated to provide comparable values with the other LTR retrotransposon

families, where Gag and Pol were transcribed in the same ORF.

2.2.8 Major tRNA gene screening

Each annotated genome for the six Kazachstania species were ran for major tRNA genes. The

two publicly available species (K.africana) and K. naganishii) were downloaded from NCBI. The

program tRNAscan-SE 2.0 Lowe and Chan (1997) was employed to identify major tRNA genes

using default settings, by postgraduate student, Holly Dawson.

2.2.9 K. exigua gene annotation

K. exigua cds files were ran using eggNOG version 4.5 via a server to assess gene function through

orthology assignment (Huerta-Cepas et al., 2016, 2017).
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2.2.10 Species synteny

To assess synteny across theKazachstania genomes, syntenic blocks were produced using SyMAP

v4.2 (Soderlund et al., 2011, 2006). For K. africana and K. naganishii, the genome annotation gff

file were downloaded from NCBI for genome annotation. For each species in SyMAP, gff genomic

data was uploaded as the annotation file, and WGS uploaded as sequences reference in FASTA

format. Synteny was then reviewed betweenKazachstania species through gene alignment, where

the collinearity of gene order was analysed at whole chromosome level.
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2.3 Results

2.3.1 Characteristics of Kazachstania genomes

The publicly available Kazachstania species (K. africana CBS 2517, K. naganishii CBS8797, K.

saulgeensis CLIB1764 and K. servazzii SRCM102023/CBA6004) were downloaded from NCBI

(Sayers et al., 2009), and characteristics compared to that of other budding yeast species from the

superfamily, Saccharomycetaceae (Genolevures et al., 2009) (Table 2.3). TE content varied across

the species, ranging from 0.06% inEremothecium gossypii (ATCC10895) and 3.4% inS. cerevisiae

(S288c) draft genome (Table 2.3). The re-annotation of Kazachstania genomes with the custom

library increased the whole genome TE content for both species, from the original results when

employed with species parameters specified, rather than a custom library (GIRI, 2016). K. africana

increased from 0.15% to 0.18%, and K. naganishii increased from 0.21% to 0.63%. K. saulgeensis

has a TE content of 0.29% when RepeatMasker was employed with the default Repbase library

(GIRI, 2016), with an increase to 0.38% with the use of the custom Saccharomycetaceae family.

The two strains of K. servazzii varied slightly regarding TE content, with an increase from 0.35%

in SRCM102023 strain, to 0.50% in CBA6004.

Relationships were reviewed between TE content and other species characteristics, to identify

any trends between genomic data and host mobile elements. No correlation was seen between

genome size, and TE content (R2 = 0.099) (Appendix B). Furthermore, no correlation was present

between TE content and Average GC content of the yeast species (R2 = 0.001) (data not shown)

and between TE content and number of coding genes (R2 = 0.262)(Appendix B). Previously, a

negative correlation has been observed between TE content and G+C content in other eukaryotic

species, including metazoans and plant species (Shen et al., 2013; Dhillon and Goodwin, 2014).
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Morphological characteristics of the four novel species of Kazachstania

The four species of yeast which were cultured and sent for whole genome sequencing were viewed

to observe any morphological differences that may exist between the species and to ensure sample

purity prior to sending for sequencing. At 100x magnification, the four species presented similarly,

as each budding yeast cell had a spherical to ellipsoidal shape. With this, the importance of RNA

extraction for species identification was supported, as morphological differences were limited within

the genus (Figure 2.3).

Figure 2.3: Four novel Kazachstania species stained with methylene blue at 100x magnification. The
four yeast species were cultured from a live state at 25˚C in YPD broth for 72 hours.



2.3. Results 45

Genome characteristics of four novel species of Kazachstania

Four novelKazachstania species, K. bovina, K. exigua, K. lodderae andK. viticola, were sequenced,

and assembled allowing for genome characteristics to be identified, and comparative analysis to

be reviewed across the genus. With the exception of K. exigua, genome size for the three species

ranged from 11.4Mb - 12.4Mb. This was expected, as previously annotated Kazachstania species

genome size varied between 10.85Mb and 12.84Mb. In contrast, K. exigua was found to have a

much larger genome of 24.8Mb (Table 2.4). The genomic size exceeds all other yeast species

within Saccharomycetaceae, and the total number of coding genes were almost double the other

species investigated (Table 2.3).

Gene annotation of the host genes of K. exigua

The whole genome sequencing of four novelKazachstania species, revealed an unexpected finding

that K. exigua was found to have a genome size which was twice as big as other Kazachstania

species, and possessed over 9000 host genes (Table 2.4). To investigate this, the genes of K.

exigua were ran using eggNOG version 4.5 via a server to assess gene function through orthology

assignment (Huerta-Cepas et al., 2016, 2017). Upon gene annotation, 611 genes were found to

be undetermined. The remaining 8901 were assigned to 23 different categories (Table 2.5 and

Figure 2.4).

The greatest proportion of genes (1249 genes; 14%) in K. exigua were assigned to category

’Unknown Function (S)’ (Figure 2.4). The next highest proportion of genes were assigned to the

following categories; Intracellular Trafficking, Secretion and Vesicular Transport (U), Transcription

(K), Translation (J) and Posttranslational Modification, Secretion and Vesicular Transport (O). With

the exception of (S), the majority of genes were assigned to the three main categories of annotation

relatively evenly; Cellular Processes and Signalling (25.65%), Information Storage and Processing

(35.33%); Metabolism (24.99%). It was found that 86% of the genes have been annotated with

known function, and therefore are likely to be functional in the genome, rather than misannotation.
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Figure 2.4: Gene groupings and categories the host genes ofK. exigua based on eggNOG annotation.
Each gene category was ran through eggNOG annotation to investigate gene assignment across the
genome.
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Table 2.5: Gene ontology percentage distribution for the genes annotated in K. exigua.

KOG Category Percentage Distribution
Cellular Processes and Signalling
(M) Cell wall/membrane/envelope biogenesis 0.74
(N) Cell motility 0.00
(O) Posttranslational modification, protein turnover, chaperones 8.02
(T) Signal transduction mechanisms 4.61
(U) Intracellular trafficking, secretion and vesicular transport 9.58
(V) Defence mechanisms 0.47
(W) Extracellular structures 0.17
(Y) Nuclear structure 0.06
(Z) Cytoskeleton 2.00
Information Storage and Processing
(A) RNA processing and modification 5.26
(B) Chromatic structure and dynamics 7.75
(J) Translation, ribosomal structure and biogenesis 8.64
(K) Transcription 9.37
(L) Replication, recombination and repair 4.31
Metabolism
(C) Energy production and conversion 2.49
(D) Cell cycle control, cell division, chromosome partitioning 3.80
(E) Amino acid transport and metabolism 3.79
(F) Nucleotide transport and metabolism 1.51
(G) Carbohydrate transport and metabolism 4.58
(H) Coenzyme transport and metabolism 2.17
(I) Lipid transport and metabolism 2.94
(P) Inorganic ion transport and metabolism 2.46
(Q) Secondary metabolites biosynthesis, transport and catabolism 1.25
Poorly Characterised
(R) General function prediction only 0.00
(S) Function Unknown 14.03
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Synteny across the Kazachstania species

Synteny between K. exigua and the remaining Kazachstania species was assessed to visualise

conservation between species. The method was employed to investigate the striking contrast seen

between species regarding genomic size and number of genes. It was proposed that evidence of

a potential duplication event in this species would be visualised using a syntenic program, such as

SyMAP (Soderlund et al., 2006, 2011). The synteny analysis revealed a total of 227 syntenic blocks

between K. exigua abd K. viticola (Figure 2.5 and 2.6). Syntenic mapping was performed for all

combinations of K. exigua and the remaining Kazachstania species with transcript availability, and

similar levels of syteny were seen for each analysis (Appendix B). Additional Kazachstania species

were compared for synteny to review if patterns of conservation were similar between species of

similar genome size and number of genes (Appendix B).

Figure 2.5: SyMap synteny analyses between K. exigua and K. viticola. Sytenic mapping between the
contigs of K. exigua to the contigs of K. viticola. Syntenic blocks were viewed using a circular view, with
scaling based on genome size.
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Transposable element annotation of publicly available Kazachstania genomes

Only LTR retrotransposon TE families were detected in all Kazachstania genomes, which were

annotated and added to the custom library dataset. K. africana revealed relics of copia-like elements

similar to Ty1, Ty3 and Ty5 from S. cerevisiae. However, only one partial element was found and

annotated as Transposon Kazachstania africana-3 (Tka3) (Table 2.6). Tka3 was found with no

LTRs flanking the element, however all conserved enzymatic domains were intact (Figure 2.7).

K. naganishii held a more diverse selection of families possessing both gypsy-like and copia-like

elements. Three TE families were uncovered in K. naganishii, named Transposon Kazachstania

naganishii-1 (Tkn1), Transposon Kazachstania-3 (Tkn3) and Transposon Kazachstania naganishii-

5 (Tkn5) (Table 2.6). The Tkn5 element, which had a length of 4643 bp, was found to potentially

encode an additional domain, compared to the expected Ty5-like pol protein structure (Figure 2.7).

The FLE also had flanking 100% identical LTRs at 5’ and 3’ end, however the 5’ LTR was in reverse

compliment. The putative domain inserted in Tkn5 was annotated in BLASTp as Herpes virus major

outer envelope glycoprotein (pfam05109). Reciprocal similarity searches showed that the protein

had no homologues in other species, and therefore is presumed to be incorrectly annotated (Sayers

et al., 2009). The inserted domain is therefore of unknown function, and may be typical of Tkn5,

however as only one full length copy is present in the genome, this cannot be determined. The

putative domain was not found during conserved domain searches of additional Ty5-like elements

in other Kazachstania species. Tkn3 was found to encode gag and pol in two separate ORFs

(Figure 2.7).

Similarly to K. naganishii, screening of the recently published K. saulgeensis genome revealed

two FLE from gypsy-like and copia-like families, named Transposon Kazachstania saulgeensis-1

(Tks1) and Transposon Kazachstania saulgeensis-3 (Tks3) (Table 2.6 and Figure 2.7). Both FLEs

were similar to Ty1 and Ty3 from S. cerevisiae (Kim et al., 1998). LTRs identified for each element

presented conserved dinucleotides of T..G and C..A at terminal ends of the repetitive sequences

(Table 2.6).

K. servazzii was found to possess only one mobile element, in multicopy. The copia element,

Transposon Kazachstania servazzii-5 (Tkn5) was intact with LTRs flanking the 5’ and 3’ end of the

element.



52 Chapter 2. A genomic survey of novel species of the genus Kazachstania

Figure 2.7: Genomic organisation of the four LTR retrotransposon families characteristed in the four
publicly available Kazachstania species. Horizontal boxes represent gag and pol open-reading frames
(ORFs). Protein coding domains are indicated as follows: P, protease; RT, reverse transcriptase; RNaseH,
ribonuclease H; IT, integrase. Boxes with black arrowheads represent long terminal repeat sequences.
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2.3.2 TE annotation of four novel species

The project involved the sequencing of four novel Kazachstania species, K. bovina, K. lodderae,

K. exigua and K.viticola. The species had previously not been sequenced, and left a niche to

be explored for both genome characteristics, as well as TE content. Similarly to the four publicly

availableKazachstania species, the TEs annotated in the novel species were also class I elements,

from either copia or gypsy families (Figure 2.8). As with most yeast species within the superfamily,

Saccharomycetaceae, elements were initially identified with likeness to the Ty-elements of S.

cerevisiae (Kim et al., 1998; Carr et al., 2012).

All novel Kazachstania species, except K. lodderae were found to possess both copia and

gypsy elements, similar to Ty1, Ty4, Ty5 and Ty3 (Figure 2.8). In contrast, K. lodderae only

possessed a gypsy-like element. Elements were named based on the species which the element

was identified, as well as similarity to the publicly known Ty elements (Kim et al., 1998).

Although TE data has been publicly available (Neuvéglise et al., 2002; Sayers et al., 2009)

for K. exigua (formerly classified as Saccharomyces exiguus), the whole genome sequence was

not available for this species. Therefore, the sequencing in this project has allowed for a review

of genome characteristics, as well as further evidence to support previously published TE data,

as well as the addition of TE genome content, and family copy number. All three TEs previously

annotated were identified in the whole genome of K. exigua as FLEs with multiple copies (Table

2.6).

Similarly, K. bovina revealed one copia-like element, TransposonKazachstania bovina- 5 (Tkb5),

and one gypsy-like element, Transposon Kazachstania bovina-3 (Tkb3) (Figure 2.8). K . lodderae

andK. viticola also possessed gypsy-like elements similar to Ty3; TransposonKazachstania lodderae

-3 (Tkl3) and Transposon Kazachstania viticola -3 (Tkv3) (Figure 2.8). K. viticola was the only

species that possessed a copia element similar to Ty4, which was named TransposonKazachstania

viticola -4 (Figure 2.8). The element was originally categorised as Ty1-like, however in the copia

phylogeny, Tkv4was found to form a clade with Ty4, separate to Ty1 and Ty5 clades, with maximum

support (100ML/1.0biPP) (See Phylogenetic analyses of transposable element families inKazachstania

species).
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Figure 2.8: Genomic organisation of the one gypsy-like family characteristed in the K. bovina
genome. Format is stated in Figure 2.7.
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In reference to element length, the TEs in the Kazachstania species typically ranged between

3Kb and 5Kb. Tka3was a smaller size of 2.5Kb, however was not classified as a full length element,

as LTRs were not identified. The element was only found as one copy, and therefore there was no

evidence of proliferation in the K. africana genome. In contrast, both gypsy elements revealed in

K. bovina and K. exigua were both above 6Kb in length (Table 2.6).

With the exception of Tka3, the elements uncovered in the Kazachstania species were found

in multicopy. Copy number ranged from 2 copies of Tkn1 and Tks3, and 30 copies of Tkv4. The

presence of multiple copies of elements supported transposition in the majority of Kazachstania

species.

As previously detailed, LTR retrotransposons are flanked by long terminal repeats at the 5’ and

3’ ends of the elements. LTR size ranged from 200 - 600bp in length, which is typically seen for

elements in Saccharomycetaceae yeast species (Neuvéglise et al., 2002). In contrast, Tse3 was

found to have LTRs which were 962bp in length. All LTRs were found to have conserved terminal

dinucleotides T-G and C-A flanking each element, which is frequently used to identify eukaryotic

LTR retrotransposons (Freund and Meselson, 1984).

The initial Kazachstania species analysed for TE content were found to have a low percentage

of the genome possessed by mobile elements, with values <0.70% for K. africana, K. naganishii,

K. saulgeensis and K. servazzii. However, with the addition of the four novel species, TE content

was found to be higher, with percentage values of over 2% for three of the four species (Table 2.4).

These values are similar to that documented in S. cerevisiae, which was found to have a genomic

TE content of approximately 3.3% (Kim et al., 1998; Carr et al., 2012).
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Table 2.6: Characteristics of novel LTR retrotransposons in Kazachstania species from copia-like
and gypsy-like superfamilies. Similar elements are annotated with species name, with corresponding
new element name represented in bold. The size of each element are given in bp, and the current status
of the element detected. LTR characteristics are also tabulated, including size (bp) and conserved 5’ and 3’
terminal ends. Table structure was based on (Neuvéglise et al., 2002).

LTR
Species Name Size (bp) Copy Number Status Size (bp) Conserved flanking nucleotides
Ty1 - like
K. exigua Tse1 5791 27 Full 431 TG…CA
K. naganishii Tkn1 3455 2 Full 356 TGT…CAACA
K. saulgeensis Tks1 4960 5 Full 432 TG..CA
Ty3- like
K. africana Tka3 2537 1 No LTR
K. bovina Tkb3 6055 23 Full 462 TGT…TTACA
K. exigua Tse3 6601 28 Full 962 TGT…TTACA
K. lodderae Tkl3 5216 6 Full 354 TGT…TACA
K. naganishii Tkn3 4501 4 Full 358 TGT…CAACA
K. saulgeensis Tks3 3824 2 Full 759 TGT…TTACA
K. viticola Tkv3 5164 14 Full 342 TGT…TTACA
Ty4 - like
K. viticola Tkv4 5745 30 Full 466 TG…CA
Ty5 - like
K. bovina Tkb5 4673 14 No LTR
K. exigua Tse5 5378 5 Full 376 TGT…CAACA
K. naganishii Tkn5 4643 9 Full 245 TGT…CAACA
K. servazzii Tkse5 5474 5 Full 229 TGT…CAACA

2.3.3 Phylogenetic analyses of transposable elements families in Kazachstania

species

Protein phylogenies were created for all the TE families present in the Kazachstania genomes.

Phylogenies for Kazachstania elements were created to compare to species phylogeny, to explore

evidence of horizontal transfer, or if elements were vertically inherited. All LTR retrotransposon

phylogenies were moderately to highly resolved, with support values found to range from 89-100%

for maximum likelihood (ML) and 1.0 bayesian inference posterior probabilities (biPP) (100%ML/

1.0biPP). For the gypsy-like phylogeny of Kazachstania families, the element were split to two

distinct clades. The first clade (TY3A) included elements from K. viticola, K. africana, K. lodderae

and K. bovina. The second clade was comprised of the three remaining gypsy-like families found

in K. saulgeensis, K. exigua and K. naganishii. The two clades were separated with maximum

support, on long branches, which supported that divergence within the gypsy family was an ancient

occurrence (Figure 2.9). This positioning which supported two independent, vertical inheritance

events of Ty3-like elements has been documented within the Saccharomycetaceae superfamily
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(Wolfe et al., 2015). To investigate the position of the additional Kazachstania species within the

superfamily, the gypsy-like sequences were added to a Ty3- like Pol dataset (Figure 2.10).

Figure 2.9: Maximum likelihood phylogeny of chromoviral Ty3- like Pol amino acid sequences
from Kazachstania species. The phylogeny was created with raxmlGUI 1.5 beta via python with the
employment of the PROTCAT model and estimated amino acid frequences with the RTREV matrix (Silvestro
and Michalak, 2011) from 518 amino acid positions. The scale bar signifies the number of amino acid
substitutions per site. All enzymatic domains from Pol were included. Formatting is stated in Figure 2.1.
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Figure 2.10: Maximum likelihood phylogeny of chromoviral Ty3- like Pol amino acid sequences from
Saccharomycetaceae.The phylogeny was created with raxmlGUI 1.5 beta via python with the employment
of the PROTCAT model (Silvestro and Michalak, 2011) with RTREV substituition matrix from 725 amino acid
positions. An outgroup of non-saccharomycetaceae TE sequences are included to root the tree. Formatting
is stated in Figure 2.1.
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The yeast phylogeny of Ty3-like elements showed maximum support for biPP and ML (100/1.00)

for the elements from species of Saccharomycetaceae to be positioned in a separate clade to other

elements of diverse fungal species, in concordance with species phylogeny (Wolfe et al., 2015)

(Figure 2.10). Within the Saccharomycetaceae grouping, the divergence of two types of gypsy

element was highly supported (96%ML/1.00biPP). The positioning of Kazachstania species seen

in Figure 2.9, has been further supported, with one group clustering K. saulgeensis, K. exigua

and K. naganishii elements, with gypsy elements from Naumovozyma species. The remaining

Kazachstania species are nested in a group with Saccharomyces species (Figure 2.10). The two

types of gypsy element were grouped with maximum support (100%/1.0biPP). The distribution

of gypsy-like elements did not reflect expected species phylogeny, which provided support for

ancestral diversity or horizontal transposable element transfer (HTT) within the superfamily (Figure

2.11 and Figure 2.1).

Figure 2.11: Maximum likelihood phylogeny of chromoviral Ty3- like Pol amino acid sequences from
11 members of Saccharomycetaceae superfamily.The phylogeny was created with raxmlGUI 1.5 beta
via python with the employment ofthe PROTCAT model (Silvestro and Michalak, 2011) from 557 amino acid
positions . The scale bar signifies the number of amino acid substitutions per site. All enzymatic domains
from Pol were included. All elements grouped to Ty3A are coded in blue, and sister elements of Ty3B are
coded in green. Annotated species names are based upon the species origin that the gypsy element was
uncovered.
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Similarly to the gypsy-like phylogeny for the elements of Kazachstania species, phylogenetic

analysis was ran to review the copia-like elements identified by RepeatMasker (RepeatMasker,

1996) and reciprocal BLAST (Altschul et al., 1990). The copia phylogeny was moderately resolved

with high support (81-100%ML/1.00biPP) and the elements were positioned as two distinct clades;

Ty1-like and Ty5-like (Figure 2.12). As seen in the gypsy phylogeny, the element from K. bovina

was placed as a sister group to the other Kazachstania elements, Tse5, Tkn5 and Tkse5. Within

the Ty1-like clade, Tkv1 is placed on a long branch, separate to Tkn1, Tse1 and Tks1 (Figure

2.12). With this, a second phylogeny was ran with known copia-like elements from species within

Saccharomycetaceae to further support sequence similarity of elements to Ty families, as outlined

by the original RepeatMasker results (RepeatMasker, 1996).

As shown in Figure 2.13, three main clades were found with high resolution (100%ML/1.0biPP).

Tkv1 was grouped with Ty4 from S. cerevisiae, as a sister group to Ty1-like elements. The

copia element from K. viticola was renamed to Tkv4, due to the high similarity with Ty4. As

seen in the gypsy phylogeny, further evidence of ancestral divergence is supported here, with

the mobile elements distribution not reflecting species phylogeny (Figure 2.13). Strong evidence

to support this is within the Ty5-like clade, where Tkn5 and Tkse5 are positioned together with

high support (98%ML/1.00biPP). This is in contrast to species phylogeny, where K. servazzii and

K. naganishii are distant relative within the Kazachstania genus. As horizontal transfer of TEs has

been hypothesised in S. cerevisiae, with the acquisiton of two Ty elements (Ty2 and Ty3) from other

species within the genus; S. mikatae and S. paradoxus (Carr et al., 2012), it was considered that

a similar transfer event could have occurred between species of Kazachstania. Transferred TEs

from both classes have been documented, and facilitated between sequences of high similarity

(Walsh et al., 2013), which outlines that unicellular organisms are commonly susceptible to gene

transfer (Fitzpatrick, 2012). However, as the phylogeny indicates 40% divergence, it is plausible

for the positioning to be due to ancestral diversity, or HTT.
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Figure 2.12: Maximum likelihood phylogeny of copia- like Pol amino acid sequences from
Kazachstania species. The phylogeny was created with raxmlGUI 1.5 beta via python with the employment
of the PROTCAT model (Silvestro and Michalak, 2011) from 600 amino acid positions. The scale bar signifies
the number of amino acid substitutions per site. All enzymatic domains from Pol were included. Formatting
is stated in Figure 2.1.
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Figure 2.13: Maximum likelihood phylogeny of copia Pol amino acid sequences from
SaccharomycetaceaeThe phylogeny was created with raxmlGUI 1.5 beta via python with the employment
of the PROTCAT model (Silvestro and Michalak, 2011) from 622 amino acid positions . The scale bar
signifies the number of amino acid substitutions per site. All enzymatic domains from Pol were included.
Formatting is stated in Figure 2.1.
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Chromodomain annotation

During phylogenetic analyses, the gypsy-like elements uncovered in budding yeast species of

Saccharomycetaceae were reviewed for the presence of a chromodomain, to determine if gypsy

elements were likely to be chromoviruses. No putative chromodomains were uncovered in the

eight Kazachstania species. Details of the predicted chromodomain uncovered in S. cerevisiae

are outlined in Appendix B.

2.3.4 Identification of major tRNA genes and optimal codons

Optimal codons were determined for the four novel Kazachstania species, and publicly available

Kazahstania species, K. africana and K. naganishii using CodonW (Peden, 1999), and major tRNA

genes using tRNAscan-SE 2.0 (Lowe and Chan, 1997). In line with the AT-bias observed in five of

the six Kazachstania species, 98 out of 151 optimal codons ended in adenine or uracil (Table 2.7).

It is acknowledged that the CodonW correspondence analysis can give false positives regarding

optimal codons, and therefore the defined codons shown here may not be accurate (Table 2.7).

However, due to lack of expression data for the Kazachstania species, optimal codons could not

be calculated based on expression. The codon usage of known highly expressed gene, EF1A was

run using CodonW, to assess bias and optimal codons calculated for the known highly expressed

gene for each Kazachstania species. It was found that the codons identified by CodonW for EF1A

are supported by the COA output, with the majority of optimal codons found for EF1A to mirror

those identified for the Kazachstania host genes, however it cannot be considered as definitive

proof that the optimal codons are genuine (Appendix B).

Major tRNA genes were identified in each species, in order to compare the host species tRNA

genes to the optimal codons identified in CodonW (Peden, 1999). The tRNA genes identified in the

six species showed some similarities, with the exception of K. exigua. The Kazachstania species

were found to harbour 160 - 310 tRNA genes, with K. exigua which was found to possess an

increased number of 384 tRNA genes, which would be expected with the increase genomic size

in comparison to the other species (Appendix B). In two-fold degenerate amino acids, there was

a complete absence of tRNA genes with adenine at the first position of the anticodon (Appendix

B). However, the other amino acids show complementary optimal codons and major tRNA genes,

with many of the higher degeneracy amino acids showing evidence of deamination. Signatures for

deamination is seen in tRNA anticodons which have adenine at the wobble 1st position, that would
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allow complementary pairing to codons with cytosine, guanine and uracil, if adenine is deaminated

to inosine.

In the six Kazachstania species there is evidence of deamination in amino acids with three-fold

or greater degeneracy (Table 2.7 and Appendix B). For amino acids; Ile, Leu, Ser, Thr and Val,

evidence was found to support the deamination of their major tRNA genes in all six Kazachstania

species (Appendix B). The majority of tRNA anticodons identified for the listed amino acids were

found to have adenine at the first wobble position. Evidence for deamination was also found for

Alanine in the yeast species, with the exception of K. bovina. With this, the accompanying optimal

codons identified by CodonW (Peden, 1999), are predominantly C-ending, which would suggest

that the adenine base in the anticodon is deaminated to inosine, which would allow complementary

base pairing to the cytosine nucleotides of optimal codons (Table 2.7). In contrast, data would

suggest that Arg, Gly, Leu and Pro do not deaminate, as they do not possess tRNA genes with

adenosine at the wobble position (Appendix B). However, with the exception of Gly, the remaining

three amino acids had optimal codons which were complementary to the major tRNA genes with

standard Watson-Crick nucleotide pairing (Table 2.7). No optimal codons were found to complement

tRNA genes for amino acids; Cys and Gly in any of the six Kazachstania species.

Conservation was seen across the yeast species in optimal codons for many amino acids.

Firstly, all six species have CAA as an optimal codon for glutamine (Gln), with the complementary

anticodon TTG with the highest frequency for Gln tRNA genes. Conserved optimal codons were

also seen for glutamic acid (Glu) , with GAA as the preferred codon, and have the complementary

TTC anticodon in their most abundant Glu tRNA genes (Table 2.7). Optimal codons were found to

complement major tRNA genes for the majority of Kazachstania species, with the exception of K.

bovina and K. naganishii (Table 2.7).
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2.3.5 Codon usage of host genes in novel Kazachstania species

Southworth et al. (2018) found that host gene codon usage bias in unicellular protists is driven

by natural selection at the level of translational accuracy and efficiency. Codon usage statistics

via CodonW (Peden, 1999) were employed for six Kazachstania species, upon transcriptome

availability. Mean values of Nc varied from 31.60 - 51.03 (Table 2.8 and Figure 2.14). The strongest

level of bias based on Nc was seen in K. bovina (31.60±4.57), and the least bias was seen for host

genes of K. naganishii (51.03±6.90). The direction of bias was also reviewed based on the value of

GC at synonymous third positions (GC3s), which showed that host genes of all six species favoured

AT ending codons (Table 2.8), with all GC3s mean values being <0.32, with the exception of K.

naganishii which was found to have a GC3s value of 0.569 (Table 2.8).

Table 2.8: Mean codon usage statistics in the transcriptomes of six Kazachstania species. Data
included the average value for effective number of codons (Nc), GC3s and frequency of optimal codons
(Fop) for each species. Standard deviation was calculated for each data set (±s.d).

Species GC3s Nc Fop
K. africana 0.315 ±0.054 46.07 ±6.69 0.506 ±0.113
K. bovina 0.113±0.052 31.60±4.57 0.700±0.075
K. exigua 0.216±0.069 37.66±6.36 0.548±0.114
K. lodderae 0.260±0.053 42.30±6.93 0.517±0.119
K. naganishii 0.569±0.116 51.03±6.90 0.463±0.106
K. viticola 0.243±0.057 41.39±6.20 0.509±0.110

Trends were observed for the Nc plot of the six Kazachstania species. Similar patterns were

seen between the Kazachstania species, with the exception of K. bovina and K. naganishii (Figure

2.15). A positive correlation was seen between GC3s and Nc for K. bovina, with the majority of

genes representing a GC3s value of <0.3 (R2= 0.528) (Figure 2.15 and Appendix B). In contrast,

K. naganishii was found to show contrasting patterns of codon usage, with the highly biased genes

to favour GC ending codons (Figure 2.15). The remaining four species host genes were found to

favour AT codons, with a weak positive relationship between Nc and GC3s value (Figure 2.15).
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Figure 2.14: Average Nc values for host genes in six Kazachstania species. Standard deviation error
bars for each species are shown.

2.3.6 The role of selection as a driver for codon usage in the Kazachstania species

One possible explanation of the AT-preference observed in the majority of Kazachstania species,

is that AT-ending codons are being selected for translational efficiency. In order to determine if

selection is driving the AT bias in the budding yeast species, rather than mutation pressure, bias

categories were calculated for each Kazachstania species, based on Nc. Each 5% bias category

for high, mid and low biased genes were reviewed for GC3s and Fop, and comparatively assessed

within the genus (Figure 2.16).

Figure 2.16 shows that each species Fop value decreases from the highly biased to medium

biased and least biased genes, except for K. naganishii, where the low biased genes were found to

be significantly different to the medium biased genes, with a greater value of Fop. The relationship

between Fop and bias categories provided support for selection being a driver of codon usage,

with the employment of optimal codons being higher in genes which are presumably more highly

expressed, and therefore require efficient translation.

In contrast, GC3s showed a less consistent pattern for the six species (Figure 2.17). As the

yeast species were found to have an AT-preference for direction of bias, it would be expected that



68 Chapter 2. A genomic survey of novel species of the genus Kazachstania

Figure 2.15: Nc plot against GC3s for the genes of the Kazachstania species. Nc values were plotted
against GC3s for a) K. africana ; b) K. bovina; c) K. exigua; d) K. lodderae; e) K. naganishii and f) K. viticola.
The modified equation, Nc=2+S+29/[S2+(1-S)2 ], from Wright (1990), with S=GC3s, was used to create the
parabolic curve on each Nc plot.
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Figure 2.16: Average Fop value for 5% bias categories for the six yeast species. Error bars were
included for each bias category to show values of standard deviation per dataset.
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Figure 2.17: Average GC3s value for 5% bias categories for the six yeast species. Error bars were
included for each bias category to show values of standard deviation per dataset.
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the value of GC3s would increase as the level of bias decreased, with AT-ending codons being

more prevalent in highly expressed genes. As shown in Figure 2.17, this pattern was seen in the

majority of Kazachstania species, with five of the six species showing diversity difference between

GC3s when comparing the highly bias categories to the low bias categories, with a far greater value

of GC3s in less biased genes (Figure 2.17). As expected from the atypical results found based

on GC3s data and Nc plot, K. naganishii presented with a contrasting pattern, where GC3s was

found to decrease as the bias category decreased. With this, it is supported that K. naganishiii has

a preference for GC-ending codons, which are employed at a higher frequency in highly biased

genes.
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2.3.7 Codon usage of transposable element families in novelKazachstania species

For the TE codon usage analysis, a contrasting association between GC3s and Nc was observed

for the TE ORFs of all Kazachstania species (Figure 2.18). For the TEs found in Kazachstania

species, a strong positive correlation was seen between GC3s and Nc (R2=0.878) (Figure 2.19).

This supported that codon usage bias is seen to decrease with the greater abundance of guanine

or cytosine at the third position. With this, it was found that the majority of TE families all exhibited

an excess of AT-ending codons (Table 2.9).

Figure 2.18: Nc plot against GC3s for the TEs uncovered in Kazachstania species Nc values were
plotted against GC3s for the TEs uncovered in the eight Kazachstania species. The modified equation,
Nc=2+S+29/[S2+(1-S)2 ], from Wright (1990),with S=GC3s, was used to create the parabolic curve on each
Nc plot (Southworth et al., 2018).

The strongest GC3s bias is observed in the TE families of K. naganishii, with GC3s values

ranging from 0.38-0.54, mirroring the host species GC preference (Table 2.9). In contrast, a very

weak GC3s is observed in the mobile elements for K. bovina, with both elements GC3s value

scoring <0.17 (Table 2.8). GC-bias in synonymous 3rd positions is mirrored in each species TE

codon usage bias, with conservation observed between elements and the host genes. A strong

positive correlation was seen between GC3s and Nc of the TEs in theKazachstania species (Figure

2.19). Specifically, the elements of K. bovina were found to show the strongest codon usage bias

with a mean Nc value of 31.82, which was similar to the host genes bias of 31.60 (Table 2.8).
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Table 2.9: Codon usage statistics for the LTR retrotransposon families from the genus Kazachstania.
Mean values for GC3s, Nc and Fop are listed for each TE family and host species are annotated.

Family GC3s Nc Fop
K. africana
Tka3 0.395 54.84 0.512
K. naganishii
Tkn1 0.377 50.65 0.571
Tkn3 0.479 58.79 0.520
Tkn5 0.54 53.95 0.468
K. bovina
Tkb3 0.102 30.00 0.738
Tkb5 0.163 33.64 0.708
K. exigua
Tse1 0.348 49.7 0.440
Tse3 0.333 51.13 0.496
Tse5 0.275 42.08 0.577
K. lodderae
Tkl3 0.384 52.02 0.519
K.viticola
Tkv3 0.345 48.23 0.652
Tkv4 0.232 43.04 0.696

Mean=0.33±0.12 Mean=47.34±8.63 Mean=0.57±0.10
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However, the mean Nc for all TEs of Kazachstania is much higher than values seen for Tkb3

and Tkb5 (47.34±8.63), showing less codon usage bias for the elements collectively and the highly

biased elements of K. bovina being inconsistent when compared to the other mobile elements

uncovered in the remaining Kazachstania species (Table 2.8, and Figure 2.20).

Figure 2.19: Relationship between GC3s and Nc for the 12 TE families uncovered in the Kazachstania
species. A linear trendline, with R2 value, was added to the graph to assess the strength of the positive
relationship.

Figure 2.20: Average Nc values for TE families in eight Kazachstania species. Standard deviation error
bars for each species are shown.
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Figure 2.21: Relationship between copy number of TE families and effective number of codons (Nc).
Copy number for each TE family was plotted against Nc for each of the Kazachstania species investigated.

Trends between strength of codon usage bias (Nc value), and copy number were reviewed for

the TE families. It was found that high copy number families seemed to show a stronger codon

usage bias, in comparison to families with lower copy number seen in the host species, however

it was a very weak association (R2=0.165) (Figure 2.21). Similarly, no trend was seen between

copy number and Fop (R2= 0.06) (Figure 2.22). However, the two data points which influence

the association are Tse1 and Tse3 of K. exigua. Both TE families are present with a high number

and copies and seem to present with a lower value of Fop, when compared to the remaining TE

families, the majority of which have a value of Fop >0.50 (Table 2.8). As expected, a negative

relationship was seen between Nc and Fop, supporting that the frequency of optimal codons is

higher in more highly biased genes (Figure 2.23).
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Figure 2.22: Relationship between copy number of TE families and frequency of optimal codons
(Fop). Copy number for each TE family was plotted against Fop for each of the Kazachstania species
investigated.

Figure 2.23: Relationship between frequency of optimal codons (Fop) and strength of codon usage
bias (Nc).

2.3.8 The influence of selection on codon usage bias in the TE families of the

Kazachstania species

The most abundant codon for each amino acid was calculated using the Pol domains for the LTR

retrotransposons uncovered in the Kazachstania species (Table 2.10). Abundant codons were

then reviewed in relation to the major tRNA genes identified for each host species, as well as

the optimal codons determined per amino acid for each Kazachstania species. Several of the

abundant codons identified for the TE families were complementary to the tRNA anticodons for the
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host species, providing evidence that preferred codon employment for the mobile elements should

result in efficient translation, similar to the highly biased host genes. The highest complement was

found between the optimal codons of TEs uncovered in K. bovina and the host species major tRNA

genes (Table 2.10).

Tse1 and Tkn5 were found to not have a majority of amino acids where the abundant codons

were complementary to the major tRNA genes of the host. However, with the exception of Tkn5,

the optimal codon CAA for Gln remained conserved in the TE families, as well as GAA which was

found to be the most abundant codon in all TE families for amino acid, Glu, as identified for the

host genes. Evidence supported that TE families are under the same evolutionary pressure as

host genes, with the suggestion that selection is driving codon usage bias in both host genes, and

uncovered TE families, with the exception of K. naganishii which may be evolving under different

pressures to explain the contrasting GC preference for this species.
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2.4 Discussion and concluding remarks

The genus Kazachstania had limited genome sequence availability and therefore very little data

regarding TE content and genome characteristics. Following screening of four publicly available

Kazachstania genomes (K. africana, K. naganishii, K. saulgeensis and K. servazzii), as well as the

addition of the four novel Kazachstania species that were sequenced for this project, similarities

and differences were drawn between the novel species and the S. cerevisiae reference genome,

S288c (Carr et al., 2012), as well as divergence within the Kazachstania genus itself. The more

robust dataset allowed for unprecedented trends to be drawn for the genus, including TE abundance,

or if variation exists across species as seen in other genera within Saccharomycetaceae (Neuvéglise

et al., 2002).

As well as TE content, the genome availability allowed for comparative genomics within the

superfamily and genus, specifically the first investigation of codon usage bias in the Kazachstania

species with transcript availability. With this, codon usage of the host genes allowed for comparison

with TE families, to determine if the mobile elements seemed to be under the same evolutionary

pressures that drive codon usage bias in the host.

2.4.1 Genome characteristics and TE review in Kazachstania species

Across theKazachstania genomes studied, the major difference between species regarding genome

characteristics was observed for the size and gene quantity of K. exigua. Typically Kazachstania

species genomic size ranged from 10Mb - 13Mb, with a total cds between 5300 and 6000 genes.

Striking contrast was seen for K. exigua, which was found to have a genomic size of 24.8Mb, and

a total number of 9964 coding genes. The genes were run through a gene orthology annotation

program to depict the function and categorisation of each gene, to assess whether the original

annotation was valid and the genes could be defined as functional. Results showed that 86% of

the genes (8569) were annotated with known function. However the greatest proportion of gene

allocation was found for category S, of ”Unknown Function”.

If the unidentified genes were misannotated, K. exigua would still be found to have 8500 coding

genes, which is far greater than any other Kazachstania species, or budding yeast within the

Saccharomycetaceae superfamily (Genolevures et al., 2009). This finding suggests that 14% of

the coding genes annotated in the K. exigua genome may be false positives, and annotation may

be inaccurate. However, as the genome availability is limited for the genus Kazachstania, the
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unknown categorisation may be due to low homology, and that the subset of genes may be left

undetected due to species divergence (Casaregola et al., 2000; Gaillardin et al., 2000). Sequence

divergence is a well known limitation of homology-based analysis, with the methodology being

reliant on the assumption that all genes possess homology and therefore can be assigned to a

specific category or function that has been previously identified (Gaillardin et al., 2000). However,

with the extensive study in genome characteristics within Saccharomycetaceae (Casaregola et al.,

2000; Gaillardin et al., 2000; Kurtzman, 2003; Dujon et al., 2004; Dujon and Louis, 2017), the

presence of a novel gene orthologue that is found to possess low similarity to the other host genes

of closely related yeast species is unlikely.

TE annotation in Kazachstania species

An initial similarity between the Kazachstania species and S. cerevisiae is the absence of DNA

transposons. TheS. cerevisiae reference genome has been documented to lack DNA transposons,

and possess LTR retrotransposons only (Kim et al., 1998; Carr et al., 2012). From the investigation

of eight species within the genus Kazachstania, it can be said that these species possess the same

trait, only harbouring families classified as LTR retrotransposons. Hat DNA transposons have

been found in a wild strain of S. cerevisiae; however, they have not spread throughout the global

population (Sarilar et al., 2015). The absence of DNA transposons in the budding yeast species

is not a finding that is universal within the Saccharomycetaceae superfamily. Although typically

absent from Saccharomyces, Kazachstania and sister group Naumovozyma, DNA transposons

have been uncovered in other genera within the superfamily (Sarilar et al., 2015). The absence

highlighted in the species studied is likely to be caused by stochastic loss in an ancestral strain prior

to divergence. Due to the nature of class II elements, it is known that active transposition is required

for proliferation in the genome via a ”cut and paste” method, rather than duplicative transposition.

With this, TE acquisition to the host genome is crucial to TE family success, and the loss in the

last common ancestor (LCA) of the clade, would eliminate DNA transposons from the lineage, as

no copies would be passed to daughter elements by vertical transmission. In contrast, evidence

has shown that LTR retrotransposons have remained in the Saccharomycetaceae lineage with

greater success, with documented abundance in the majority of species within the superfamily

(Kim et al., 1998; Neuvéglise et al., 2002; Bleykasten-Grosshans et al., 2011; Carr et al., 2012;

Bleykasten-Grosshans et al., 2013; Wolfe et al., 2015).
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The immediate difference between Kazachstania and S. cerevisiae is the overall TE content

percentage of the whole genome. S. cerevisiae TE families are known to represent >3% of the

reference strain (Carr et al., 2012), whereas the TE families in the majority of Kazachstania species

only constitute to 0.18 -0.67% of the genomes. In contrast, K. bovina, K. exigua and K. viticola

were found to have a genome TE content of >2% and elements were found in multicopy; a value

with greater likeness to the greater abundance seen in S. cerevisiae. The poor representation

seen in five of the eight species cannot be generalised to the genus due to sampling limitations,

and therefore would require further investigation in additional Kazachstania species. However,

TE content diversity variation is common within Saccharomycetaceae (Neuvéglise et al., 2002).

Comparative genomics of several members of the Saccharomycetaceae family with whole genome

availability were ran with RepeatMasker and found that TE content varied from 3% in S. cerevisiae

to 0.06% in Eremothecum gossypii. No correlation could be drawn between TE content and yeast

species as variation existed within genera and clades, as well as superfamilies (Table 2.3).

From the phylogeny created with Ty3-like gypsy elements, Tka3 of K. africana clustered with

the gypsy elements uncovered in S. cerevisiae and S. paradoxus with high support from ML and

biPP (97%ML/1.00biPP) (Figure 2.10). The elements uncovered in K. lodderae, K. viticola and K.

bovina were also positioned within this clade with moderate support (69%ML/0.81biPP) (Figure

2.10).

The phylogeny is consistent with potential vertical inheritance for the two clades that separate

the Ty3-like elements uncovered in the Kazachstania species (Figure 2.10 and 2.11). The gypsy

sequence found inK. naganishii showed closest similarity with the gypsy element inNauvomozyma

dairenensis, in a clade with K. saulgeensis, K. exigua, N. castellii and Candida glabrata (100%ML/

1.0 biPP). This finding provided strong support that the gypsy elements in K. naganishii are more

similar to Tse3 inK. exigua andK. saulgeensis, rather than the Ty3 elements found inSaccharomyces

species. A theory to rationalise this finding is referenced and annotated in Figure 2.11 which was a

simplified Saccharomycetaceae gypsy phylogeny to outline the divergence of two types of gypsy

element (TY3A and TY3B). The positioning of the two clades within the yeast sequences showed

maximum support values, with the addition of the elements uncovered in the novel Kazachstania

species (100%ML/1.00 biPP). The theory to explain the two types of Ty3; Ty3A and Ty3B, has not

been outlined in previous literature (Figure 2.11), but a plausible explanation to explore.

It is considered that two ancestral copies may have existed in a common ancestor and species
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in both lineages lost one type of Ty3, and therefore only harboured one single type of Ty3/gypsy,

generating the branch positioning we see here (Figure 2.11). However, this theory is not conclusive,

as there is little evidence to support the existence of both types of Ty3 in a common ancestor of the

two lineages, other than the phylogenetic relationships reflected in the TE phylogeny (Figure 2.11).

Another explanation is that several horizontal gene transfer (HGT) events have occurred across

the superfamily, resulting in many forms of the gypsy element; however this is a less probable

theory, as the order of HGT events would have to mirror the divergence of the yeast species.

The reannotation of Kazachstania species presented here, highlights that the employment of

RepeatMasker, with a Repbase library is not as comprehensive as thought, underestimating TE

content for all Kazachstania species reviewed (RepeatMasker, 1996; GIRI, 2016). The limitation

expressed here is that the use of Repbase library is a reliable program if TEs uncovered have

previously been annotated in an alternative genome, and thus added to the default library. Novel

Kazachstania elements were detected by regions of high similarity with conserved TE enzymatic

domains across the eight species reviewed. With the employment of a refined custom library,

including the newly annotated elements found in the initial Kazachstania species which were

publicly available, a more accurate representation of genome content was provided.

Additional findings theorised included that of the potential existence of a chromodomain in S.

cerevisiae, which has previously been documented as ancestrally lost or specialised (Malik and

Eickbush, 1999; Marin and Llore´ns, 2000). Malik and Eickbush (1999) found that the conserved

chromodomain present at the C-terminal of Integrase was apparent in several gypsy-like LTR

retrotransposons, but absent in S. cerevisiae (Malik and Eickbush, 1999). However, at the same

position of the element, a domain of similar length was uncovered (Malik and Eickbush, 1999). It

was speculated that the chromodomain had been replaced or specialised in Ty3 of S. cerevisiae

(Malik and Eickbush, 1999), and the work seen here supports the latter. The investigation into the

module found in S. cerevisiae has drawn several characteristics of the conserved chromodomain

observed in many gypsy-like elements. Both domains are approximately 50 - 60 base pairs in

length, in the same position in Pol, and from further analysis, have similar secondary structure

(Kordis, 2005). From this evidence, it suggests that the domain has become specialised in S.

cerevisiae, and other budding yeast species, rather than an ancestral loss across the entire superfamily.

Chromodomains were found to be absent within the gypsy elements uncovered in Kazachstania

species (data not shown).
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2.4.2 Codon Usage across the genus, Kazachstania

Closely related species, S. cerevisiae has been extensively studied regarding codon usage (Sharp

and Cowe, 1991; Lerat et al., 2002). Sharp and Cowe (1991) detailed selection as the main driver of

codon usage in the model yeast species, with great emphasis on highly expressed genes observed

to have the highest codon usage bias. It was also outlined that closely related species commonly

show similar codon usage patterns, and therefore it was expected a similar trend would be seen

across all Kazachstania species studied.

Five of the sixKazachstania species studied showed a similar direction of bias towards AT-ending

codons, and optimal codons, which predominantly ended in adenine or thymine. For three-fold,

four-fold and six-fold degenerate amino acids, there is a defined preference to adenine or uracil at

the synonymous third position. It was found that optimal codons were shared across the species,

for each amino acid, and only seven amino acids were found to show diverse variation in optimal

codon selection (Appendix B, Table 2.7). The findngs outlined provide evidence for codon usage

conservation across the majority of Kazachstania species. Furthermore, conservation was seen

between four of the Kazachstania species, and the expression-determined optimal codons of

S. cerevisiae (Sharp et al., 1986). Conservation was seen between the optimal codons of S.

cerevisiae and K. africana, K. exigua, K. lodderae and K.viticola for all amino acids, except Leu,

where UUG was optimal for S. cerevisiae, whereas UUA was optimal for the Kazachstania species.

Optimal codons for S. cerevisiae and the remaining two Kazachstania species were also found to

be conserved for the majority of amino acids, with the exception of Tyr, His, Aln, Lys and Asp. The

high conservation between yeast species provided further support that the optimal codon selection

based on COA by CodonW was likely to be accurate, as the same codons were found to be selected

for closely related species, based on expression data (Sharp et al., 1986).

K. naganishii differed from the other Kazachstania species, with the highest GC3s value, and

Nc plot showing a bell curve distribution (Table 2.8 and Figure 2.15). The Kazachstania species

was found to show a preference to GC-ending codons, in contrast to the AT-bias in the other species

of the genus. The finding was further supported by patterns observed across bias categories for

each of the Kazachstania species. For K. naganishii, GC3s value decreased as the bias category

decreased, indicating that evolutionary pressures may be driving the use of GC at synonymous

third positions in highly biased genes, compared to genes of low bias. In contrast, the remaining

Kazachstania species were found to show an increase in GC3s value as the bias category decreased,
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providing evidence that evolutionary pressure is driving the employment of AT-ending codons in

highly biased genes. However, it can not be determined whether the bias seen across species is

predominantly driven by selection, or mutation pressure.

The variance in codon usage between K. naganishii and the remaining Kazachstania species is

unclear, with no clear distinctions observed between species when reviewing genomic characteristics.

Typically, species within Saccharomycetaceae have been found to show an AT-preference, leaving

the K. naganishii finding to be unexpected (Sharp et al., 1986, 1988; Sharp and Cowe, 1991;

Lerat et al., 2002; Harrison and Charlesworth, 2011). Although the GC preference observed in K.

naganishii is in contrast to the other Kazachstania species, it is of note that the average Nc value

for the host genes is much higher than the five remaining species, as well as the lowest value of

Fop. This suggested that the genes of K. naganishii employ optimal codons at a lower frequency

compared to the other Kazachstania species, and genes overall are less biased in this species. It is

plausible that K. naganishii is evolving under a different evolutionary pressure, therefore explaining

the GC preference observed here.

2.4.3 Selection for Optimal Codons in Kazachstania species

For five of the six Kazachstania species, there was a significant increase in GC3s when comparing

the bias categories, high-mid and mid-low, consistent with the employment of translationally optimal

AT-ending codons in the highly biased genes. For K. africana and K. viticola, a lower GC3s value

were observed for mid bias genes compared to high bias genes, however contrasting values were

observed between the high bias genes, and low bias genes, with greater values of GC3s in the

low biased gene categories, and an overall positive correlation observed (Figure 2.17). A pattern

was also observed for all yeast species between Fop and bias categories, with greater values

of Fop observed in highly biased genes, compared to mid and low bias, across all Kazachstania

species reviewed. The lower enrichment of optimal codons for less biased genes is consistent with

predictions for points to selection for translational efficiency, however mutation bias can still not be

ruled out as an additional pressure.

2.4.4 Evidence for Deamination in Kazachstania species

The major tRNA genes of two-fold degenerate amino acids in the majority of Kazachstania species

were found to be complementary to their optimal codons, except for cysteine in all species. A
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contrast was seen for K. bovina which was found to only have three two-fold degenerate amino

acids that showed complement to their optimal codons (Gln, Glu and Phe) (Appendix B).

Many higher degeneracy amino acids (three-fold to six-fold) were found to have tRNA genes

which held adenosine at the first synonymous position of the anticodon (wobble position) in the

Kazachstania species. Amino acids with evidence for deamination include; Ile, Ser, Thr and Val.

Alanine was also found to possess adenosine in the first position in K. exigua, K. lodderae and K.

viticola. In contrast, no evidence for deamination was seen for higher degeneracy amino acids,

Arg, Gly, Leu and Pro in the yeast species reviewed. Although there is evidence that standard

Watson-Crick base pairing between optimal codons and major tRNA genes for the amino acids

with adenosine at the wobble position, the high degeneracy amino acids have multiple optimal

codons per amino acid, which show cytosine at the degenerate position, with the exception of Ser

and Thr in K. bovina. The presence of cytosine at the degenerate position provides evidence that

the optimal codons do not always bind to tRNA genes by the standard base pairing expected, but

also deaminate the adenosine to inosine, which would allow pairing to cytosine at the degenerate

position. Southworth et al. (2018) provided evidence for deamination of adenosine in unicellular

protist species, which found that high degeneracy amino acids relied on the deamination of adenosine

to complement major tRNA genes across all three holozoans.

Evidence of deamination in eukaryotic taxa has been uncovered, with a greater abundance of

tRNA modification in multicellular species, than unicellular organisms (Rafels-Ybern et al., 2017).

However, evidence of deamination in unicellular species, such as protists, and the Kazachstania

species reviewed here, provides support that tRNA modification and deamination evolved ancestrally

prior to multicellularity. Furthermore, the data provided evidence that deamination is present in

Holomycota, as well as premetazoans of Holozoa, as seen in Southworth et al. (2018).

2.4.5 Conservation of Codon Usage in TE families of host species

Previous literature of codon usage for TE families has shown a preference to AT-ending codons,

which has been observed in for several TE ORF in diverse taxa (Lerat et al., 2002; Jia and Xue,

2009). A similar pattern was seen here, with the majority of TEs favouring AT-ending codons,

mirroring the bias reported in the host species. The only exception were TE families ofK. naganishii,

which were found to favour GC-ending codons, which was representative of the GC-preference
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seen for the host species. TEs were typically AT-rich at synonymous third positions, with mean

GC3s values of less than 0.40 for all families except elements uncovered in K. naganishii.

As seen for the host species, K. bovina TEs were found to show the highest level of bias (Mean

Nc=31.82), and K. naganishii and K. africana elements had the lowest codon usage bias (Mean

Nc=54.46;54.84). Furthermore, each TE family was found to favour optimal codons which were

complementary to the major tRNA genes of the host species (Table 2.7 and 2.10). The findings

supported that selection was also driving codon usage bias in the mobile elements, as well as

the host genes. Although no significant relationship was observed between Fop or Nc, and copy

number across all TE families, it is of note that the highest bias was observed for Tkb3 and Tkb5,

which are found to be present in multicopy within the K. bovina genome (14 - 24 copies). High

values of Fop (>0.65) were also found for the TE families of K. viticola, which are also found in

multicopy (14 - 30). The observed poor relationship is likely to be due to the TE families of K.

exigua, which although found in multicopy with the genome, were found to have lower Fop values

(<0.58). Removing the K. exigua TE families from the dataset was found to significantly change

the relationship observed between Fop and copy number, with an significant increase in R2 value

from R2=0.060 to R2=0.631.

Evidence has been found to support selection as a driver of codon usage in the host organisms,

with translationally optimal codons found to abundant in TE families of the Kazachstania species.

With codon usage appearing to conserved between host genes, and TE families, it is theorised that

the employment of optimal codons within the mobile elements, would facilitate efficient transposition

in the genome, compared to families which favour codons which do not complement major tRNA

genes of the host species, therefore being beneficial to TE proliferation in the host genome. However,

although evidence has been uncovered that points towards selection, it is of note that mutation bias

can not be ruled out. Although the complementary major tRNA genes and the abundant codons

in EF1A match the optimal codons defined by CodonW for each of the host species, the evidence

for selection does not eliminate the potential for mutation bias, as no signatures against mutation

bias have been uncovered for the yeast species. The work has introduced an intriguing picture of

codon usage bias within the Kazachstania genus, and an area of study which should be developed

upon, to determine if selection is a driver of codon usage in the yeast species, as evidence would

point towards here.
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2.4.6 Concluding remarks

The review of the novel Kazachstania species has provided an unprecedented insight into genome

characteristics for the genus, as well as TE data and codon usage bias for each of the budding yeast

species. Typically, the findings revealed showed similarity amongst other yeast species within the

Saccharomycetaceae superfamily, and conservation was evident for the majority of Kazachstania

species regarding genome size, TE content and codon usage bias. However, striking results

were uncovered, including the increased genome size of K. exigua, and varied codon usage bias

observed for the host genes of K. naganishii, which hopefully will inspire further investigation with

an increase in genome availability for the genus, to see if the unexpected trends were apparent in

any other species yet to be analysed. The comparative genomics analyses detailed here is the first

review of the Kazachstania genus, including four novel yeast species, and has opened an exciting

avenue for continued study.
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Chapter 3

A genomic survey of transposable elements in the

choanoflagellate Salpingoeca rosetta

Aspects of the work described in this chapter was published in Southworth, J., Grace, C.A., Marron,

A.O, Fatima, N. and Carr. M (2019). ‘A genomic survey of transposable elements in the choanoflagellate 

Salpingoeca rosetta reveals selection on codon usage’, Mobile DNA 10 (44), 1 – 19.

3.1 Introduction

Transposable elements have predominantly been investigated in multicellular organisms from major

kingdoms such as plants, fungal species and metazoans, with very little research into unicellular

eukaryotic organisms. This niche has been targeted to a degree with studies investigating TE

evolution within species across known eukaryotic diversity, including opisthokonts, amoebozoans,

alveolates and excavates (Silva et al., 2005; Carr, Nelson, Leadbeater and Baldauf, 2008; Elliott

and Gregory, 2015).

Choanoflagellates and their TEs

Opithoskonta is the eukaryotic supergroup that includes Metazoa, Fungi, as well as unicellular

groups nucleariod amoebae, Ichythosporea, Filasteria and Choanoflagellatea (Adl et al., 2018).

Within Holozoa, choanoflagellates are the closest living relative to the metazoans, and give great

insight into the origin of animals (Dayel et al., 2011). Found in marine and freshwater habitats, as

well as hydrated soils, choanoflagellates are predominantly unicellular, but many species develop

ephemeral multicellular colonies (Dayel et al., 2011; Dayel and King, 2014).
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M. brevicollis was the first unicellular holozoan to have its genome sequenced (King et al.,

2008), allowing a study of its TEs. Only three families were identified, all of which were LTR

retrotransposons; Mbcv (Monosiga brevicollis chromovirus), Mbpv1 (Monosiga brevicollis pseudovirus

-1) andMbpv2 (Monosiga brevicollis pseudovirus-2) (Carr, Nelson, Leadbeater and Baldauf, 2008).

The same study also screened available expressed sequence tags (EST) sequences from a second

choanoflagellate, Mylnosiga fluctuans (incorrectly deposited in ATCC as Monosiga ovata (Carr

et al., 2017), uncovering LTR and non-LTR retrotransposons in addition DNA transposons, suggesting

thatM. brevicollismay be unusual in having a limited diversity of TE families (Carr, Nelson, Leadbeater

and Baldauf, 2008). From this, the evolution of TEs in opisthokont protists was further investigated

by the annotation of TEs in the filasteran protist, Capsaspora owczarzaki (Carr and Suga, 2014).

Screening of the draft genome uncovered a total of 23 families from both classes of TEs - a far

greater repertoire of elements when compared to M. brevicollis (Carr, Nelson, Leadbeater and

Baldauf, 2008; Carr and Suga, 2014). With this, the C. owczarzaki TE families identified were

shown to have orthologues in other opisthokonts, predominantly in Metazoa and Fungi.

The draft genome of Salpingoeca rosetta was released in 2013, and sequenced by Broad

Institute (Fairclough et al., 2010). Analysis of the S. rosetta genome for TEs, provides an ideal

opportunity to determine if Carr, Nelson, Leadbeater and Baldauf (2008) were correct in suggesting

that M. brevicollis may be atypical of choanoflagellates in having a limited diversity of TE families.

Both M. brevicollis and S. rosetta fall into Clade 2 of Craspedida within the choanoflagellates

(Nitsche et al., 2011); however they are not close relatives, with the M. brevicollis SSU gene

showing 72.6% nucleotide identity to the S. rosetta orthologue (Carr et al., 2017).

The survey of M. brevicollis in Carr, Nelson, Leadbeater and Baldauf (2008) TEs could not

determine their evolutionary origin, either through vertical or horizontal inheritance, due to the

limited volume of whole genome sequences availability. The larger C. owczarzaki study (Carr

and Suga, 2014) showed that all of the families present in this species appeared to have been

vertically inherited during the opisthokont radiation, highlighting the long-term co-existence of TEs

and their hosts within this lineage (Carr and Suga, 2014). A disparity between M. brevicollis and

C. owczarzaki was the finding that all families in the former are active, whereas the latter contains

families that are no longer functional (Carr, Nelson, Leadbeater and Baldauf, 2008; Carr and Suga,

2014).
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3.1.1 Experiment overview

This project involved bioinformatic screening of the S. rosetta genome for TE content. A minimum

of 22 TE families; including both retrotransposons and DNA transposons, were uncovered in

the genome. Overall, seven families are part of the Ty3/gypsy family of LTR retrotransposons,

five being placed in chromovirus clade and 2 were non-chromoviral gypsy elements. A further

six families of LTR retrotransposons were uncovered from the Ty1/copia group. Seven families

were classified as DNA transposons. Similarity searches uncovered two families of non-LTR

retrotransposons, however due to poor sequencing coverage full-length consensus sequences

could not be reconstructed.



92
Chapter 3. A genomic survey of transposable elements in the choanoflagellate Salpingoeca

rosetta

3.2 Methods

3.2.1 Identification of TE families in the S. rosetta genome

The annotation of elements were produced by Dr. Martin Carr. Genomic supercontigs of S. rosetta

were downloaded from the Origins of Multicellularity Project at the Broad Institute (https://www.broad

institute.org/scientific-community/data/origins-multicellularity). Two methodologies were employed

by Dr. Martin Carr for TE annotation. Firstly, the supercontigs were ran using Protein Based

RepeatMasker server, available by the Institute for Systems Biology(http://www.repeatmasker.org

/cgi-bin/RepeatProtein MaskRequest). Similiarity hits were deemed potential candidates, with

an e value of <e-05, with hits found in LTR retrotransposons, Non-LTR retrotransposons and

DNA transposons. Successful nucleotide hits were downloaded, and translated to amino acid

sequences using ExPASy (Artimo et al., 2012). The proteins were then subjected to a reciprocal

blast, using the BLAST protein database (BLASTp) (Altschul et al., 1990), to determine if the

candidates were genuine TEs.

Secondly, TE query sequences and methodology were taken from Carr, Nelson, Leadbeater

and Baldauf (2008), with the employment of translate nucleotide BLAST database (tBLASTn).

The query sequences were constructed using Pol and Transposase amino acid sequences from a

wide range of eukaryotic species, selected based on phylogentic diversity to ensure for broad

sampling. Pol and Transposase were selected as query sequences due to high conservation

across eukaryotic taxa (Table 3.1).

The RepeatMasker and BLAST hits failed to recover full-length TE sequences (Altschul et al.,

1990). Carr, Nelson, Leadbeater and Baldauf (2008) employed a method to increase consensus

sequence coverage using overlapping sequencing reads from the NCBI Trace Archive with organism

specified - “Proterospongia sp. ATCC 50818”. The sequencing reads allowed the generation of

full-length consensus sequences for all families, with the exception of two non-LTR retrotransposons.
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Table 3.1: Query sequences employed for BLAST search of the Salpingoeca rosetta genome. The
methology and query sequences were duplicated from Carr, Nelson, Leadbeater and Baldauf (2008).

Family Query sequence (accession number)
Ty1/copia 1731 (CAA30503)

Athila (AAF19227),
Evelknievel
(AAC02669)
Melmoth
(Y12321)
SIRE-1

(AAC64917)
Tca5 (AAC24836)

Yokozuna
(BAA74713)

DIRS1- like families DIRS1 (AAA33195)
Ty3/gypsy gypsy (AAC82604)

mdg1 (AAD14015),
mdg3 (CAA65152)
Maggy (L35053)

marY1 (AB028236)
opus (Q8I7P9)

Osvaldo (AAC60519)
skippy (S60179)
Tirant (AAX28844)

non-LTR retrotransposon Bari-1 (CAA47913)
Bilbo (AAB92394)
Doc (CAA35587)

F-element (AAA28508)
L1 (P11369)

marY2N (BAB32469)
R1 (CAA36227)
R2 (CAA36225)
R5 (AAP69990)
Rte-1 (AF054983)
TART (CAD92793)
TvsL10 (AJ850265)

Pao-like family roo (AAN87269)
Penelope-like family Penelope (AAX11377)
Retrovirus PERV (AAT77167)
DNA transposon flipper (AAB63315)

Foldback (CAA23501)
Harbinger/PIF (ABB83644)

Hermes (AAC37217)
Hobo (P12258)
Hop (AAP31248)

hupfer (DQ074974)
Impala (AAB33090)
IS1 (AP_004308)
IS600 (AAK18596)
mariner (DQ197023)
maT (CAD31217)

P-element (CAA43305)
piggyBac (ABC88680)

pogo (Q80TC5)
pokey (AAM76341)
punt (AF181822)

restless (AAK16925)
S-element (AAC47095)
tigger (NP_997161)
Tn3 (YP_665994)
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3.2.2 Phylogenetic analyses

Superfamily phylogenies were created for all of the S. rosetta families by using amino acid query

sequences of Transposase for DNA transposons, and Pol for LTR retrotransposons. The query

sequences for each novel family are listed in the Appendix. Sequence similarity searches of

whole genome shotgun-contigs (wgs) were performed using translated nucleotide BLAST datbase

(tBLASTn), and non-redundant protein sequences (nr/nt) database for BLASTp on National Centre

for Biological Information (NCBI) (Altschul et al., 1990), to identify closely related TE families in

diverse taxonomic group of eukaroytic species (Table 3.2).

Table 3.2: Taxonomic groups employed for BLAST searches with the query sequences of the
Salpingoeca rosetta genome.

Kingdom Superphylum
Metazoa Deuterostomia

Gnathostomulida
Platyhelminthes
Protostomia
Cnidaria

Ctenophora
Mesozoa
Placozoa
Porifera

Fungi Blastocladiomycota
Chytridiomycota
Cryptomycota
Ascomycota

Basidiomycota
Entomophthoromycota

Glomeromycota
Microsporida

Neocallimastigomycota
Protistan groups Alveolata

Amoebozoa
Apusozoa
Breviatea

Centroheliozoa
Cryptophyta
Rhodophyta
Stramenopiles

Plant Chlorophyta
Mesostigmata

Excavata Euglenazoa
Parabasalida

Rhizaria Cercozoa
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Nucleotide sequences of high identity and similarity were translated using EMBOSS Transeq

on EMBI EBI (Li et al., 2015). Amino acid sequences were aligned using Multiple Aligment Fast

Fourier Transform (MAFFT) on EMBL-EBI server with default parameters (Katoh et al., 2002).

Amendments were made to the alignments by eye to reduce conserved indel regions. Problematic

and unconserved regions were removed from alignments. Bayesian inference support values

were constructed using a mixed amino acid model via MrBayes 3.2.6 on XSEDE (Ronquist and

Huelsenbeck, 2003; Ronquist et al., 2012). The analyses consisted of 500000 generations, a

sampling frequency of 1000, with a burnin value of 1250. Mr Bayes was accessed via CIPRES

Science Gateway, a server based platform that allows for phylogenetic analyses (Miller et al.,

2010). Maximum likelihood phylogenies were ran using raxmlGUI 1.5 beta (Silvestro and Michalak,

2011). The ML and thorough bootstrap analysis were performed with 1000 replicates and 100 runs

using the PROTCAT model for amino acid sequences. The ML amino acid substitution model used

for each family was determined from the output of the mixed model analysis from MrBayes (Figure

3.1).
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Figure 3.1: Schematic diagram to represent the bioinformatic protocol employed for the construction
of nucleotide and protein phylogenies in the genome of S. rosetta.
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LTR and ITR phylogenies for each TE family were generated usingS. rosetta 5’ query sequences

to construct phylogenies of BLAST hits with high similarity to the consensus sequences. Due to

the short length of 5’ ITRs, the 5’ UTR was also included in phylogeny construction. Terminal

sequences were downloaded from NCBI Trace Archive against ‘Proterospongia’ with a threshold of

e-05 (Figure 3.1). The TSD could be identified for each individual insert to distinguish the LTR/ITR

profile. If identical TSDs from the Trace Archive were present, the two termini of the same element

could be identified. Partially sequenced LTRs/ITRs were excluded from further analyses, as the

element status could not be determined. Copy number estimates are therefore likely to be lower

than the actual copy number for each family. ITR phylogenies could not be created for SrosT2 and

SrosT3 due to low copy number, and SrosH as the element lacked ITRs.

All trees used Maximum Likelihood (ML) with the employment of raxmlGUI and Bayesian Inference

via MrBayes. The ML trees were generated using from 100 starting parsimony trees, using the

GTRCAT model and supported with 1000 bootstrap replicates. MrBayes analysis was employed

using the protocol stated for the amino acid datasets, although the GTR+I+Γ nucleotide substitution

model was used. Support value analyses were based on thresholds outlined in Table 3.3 documented

by Hillis and Bull (1993) and Rannala and Yang (1996).

Table 3.3: Support value thresholds for Maximum Likelihood (ML) and Bayesian Inference Posterior
Probabilities (biPP) phylogenies. The level of support is annotated with both tree methodologies
respectively.Values were proposed in Rannala and Yang (1996); Hillis and Bull (1993).

Maximum Likelihood %(ML) Bayesian Inference Posterior Probabilities (biPP)

High Support ≥70 ≥0.97

Moderate Support 50 - 69 0.70 - 0.96

Low Support <50 <0.70

3.2.3 TSD preference patterns and nucleotide diversity

TSD nucleotide preference patterns were reviewed using WebLogo version 2.8 via University of

Berkeley, California server (Crooks et al., 2004). TSDs for each TE family were uploaded, and

default parameters set. The Y axis height was varied per family depending on the output file

and nucleotide value per TSD position. A graphical representation of nucleotide conservation

was exported for each TE family, and conserved bases analysed to observe trends between

superfamilies and classes.
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Levels of nucleotide diversity for each TE family were calculated, using values of π (Nei and

Kumar, 2000), with DnaSP version 5. 10. 01 (Rozas et al., 2003). Values of π were calculated for

DNA transposon families by the analysis of 5’ ITR alignments. Values of π for LTR retrotransposon

families were determined with individual alignments containing solo elements, individual full length

elements (FLE) and combined FLE, partial and solo elements to produce ALL, FLE and SOLO

phylip input files.

3.2.4 Determining TE family expression levels

Raw Illumina RNASeq transcriptome reads (SRA files SRX042046-SRX042054) were downloaded

from NCBI and mapped to the TE family sequences through SMALT v. 0.2.6 (Ponstingl, 2014). The

total number of reads for each family was calculated from the SMALT output SAM files in Tablet

v.1.17.08.06 (Milne et al., 2013).



3.3. Results 99

3.3 Results

3.3.1 S. rosetta harbours a higher diversity of TE families than M. brevicollis

The genomic survey of M. brevicollis by Carr, Nelson, Leadbeater and Baldauf (2008) identified

three families of LTR retrotransposon, but a lack of non-LTR retroelements and DNA transposons

(Carr, Nelson, Leadbeater and Baldauf, 2008). In contrast, through both RepeatMasker and

BLAST similarity searches, the S. rosetta genome (ATCC 50818) was found to have a minimum of

20 TE families. Both methodologies described identified the same families within the choanoflagellate

genome, supporting the validity of the identification. The S. rosetta TEs were classified in to 10

superfamilies (Table 3.4 and 3.5). The LTR retrotransposons were named Salpingoeca rosetta

chromovirus-1 toSalpingoeca rosetta-5 (chromoviruses), Salpingoeca rosetta gypsy-like element-1

andSalpingoeca rosetta gypsy-like element-2 (non-chromoviral gypsy-like families) andSalpingoeca

rosetta pseudovirus-1 toSalpingoeca rosetta pseudovirus-6 (copia-like families). The DNA transposon

families were Salpingoeca rosetta MULE-like element, Salpingoeca rosetta Helitron, Salpingoeca

rosetta Tigger-1 and Salpingoeca rosetta Tigger-2, as well as three uncategorised transposon

elements. Partial pol sequences from two putative families of non-LTR retrotransposon were also

uncovered, however the complete full-length sequences could not be reconstructed from Trace

Archive sequencing reads due to poor coverage. As the two families were unable to be fully

sequenced, they have not been considered in the remainder of the project.

Table 3.4: Characterisation of the seven identified families of DNA transposons in the genome of
Salpingoeca rosetta.

Family Length
ITR

Size

TSD

Length

Copy

Number

(5’

ITR/3’ ITR)

No.

of RNASeq Reads

ITR

Nucleotide Diversity

(π)

SrosH 3614 - - 6-9 (6/3) 108,920 -

SrosM 8324 28 9 24 (14/16) 873,989 0.017

SrosT1 2071 28 - 8-14 (6/8) 9,715 0.083

SrosT2 3270 32 4 2 (2/2) 77,180 -

SrosT3 3112 27 - 1-2 (1/1) 140,210 -

SrosTig1 2122 22 2 7-11 (7/4) 174,979 0.03

SrosTig2 2165 23 2 4-7 (4/3) 28,176 0.050
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Copy numbers for full-length elements (FLE), solo LTR and truncated elements were calculated

per LTR retrotransposon family, by identifying the number of unique target site duplication (TSD)

sequences flanking element termini sequences (Table 3.4 and 3.5). Although S. rosetta possesses

a far larger number of TE families than M. brevicollis, the copy numbers for each family are similar

to those previously observed (Carr, Nelson, Leadbeater and Baldauf, 2008). Copy number ranged

from single copy elements to >100 copies across all families identified (Table 3.4 and 3.5). The

family with the highest copy number was found to be Srospv3, and the single copy families were

Srospv6 and SrosT3.
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The predicted full-length gypsy-like elements ranged from 4.8-6.1 kb in length (Figure 3.2).

Sroscv-1,2,3 and Srosgyp-1,2 encode the gag and pol open reading frames in the same frame,

whereas Sroscv-4,5 encodes gag and pol in separate frames. Similarly, the copia-like elements

all encoded gag and pol within the same reading frame, with the exception of Srospv6, which

presents two separate reading frames (Figure 3.3). All copia-like families had a similar length

between 4.9-5.9 kb. The length of the LTRs for each retrotransposon family varied considerably

with a range from 168bp - 554bp, with the greatest diversity documented in the pseudovirus

superfamily; Srospv6 and Srospv2 (Table 3.5). In M. brevicollis, LTR size ranged from 265-668bp

(Carr, Nelson, Leadbeater and Baldauf, 2008). Mbcv possessed the greatest LTR size of the

three LTR retrotransposon families uncovered in M. brevicollis, however the same pattern was not

found here, with the pseudoviruses having the largest mean LTR size (Table 3.5). The genomic

organisation of LTR retrotransposons and enzymatic domains are detailed in Figure 3.2 and 3.3.

In contrast, the DNA transposon elements varied considerably in length, with a range from

2.1-8.3 kb in length (Figure 3.4). The DNA transposon families each possessed a single ORF,

which encoded a putative Transposase protein. Five of the seven ORFs harboured introns, with

only SrosT1 and SrosTig1 not possessing introns (Figure 3.4). ITR size was similar for all class II

elements, ranging from 22-32bp in length (Table 3.4). The genomic organisation of DNA transposons

and enzymatic domains are detailed in Figure 3.4.



3.3. Results 103

Figure 3.2: Genomic organisation of the 7 gypsy-like families characterised in the S. rosetta genome.
gypsy- like LTR retrotransposons: boxes with black arrowheads represent long terminal repeat sequences,
horizontal boxes represent gag and pol open-reading frames (ORFs). Protein coding domains are indicated
as follows: CCHC, RNA binding motif; CD, chromodomain; IT, integrase; P, protease; RT, reverse
transcriptase.
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Figure 3.3: Genomic organisation of the 6 copia-like families characterised in the S. rosetta genome.
copia-like LTR retrotransposons: The format follows that of Figure 3.2.
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Figure 3.4: Genomic organisation of the 7 DNA transposon families characterised in the S. rosetta
genome. DNA transposons: blue boxes represent inverted terminal repeat sequences, white boxes
represent tnpase exon sequences, and black boxes represent tnpase intron sequences. Protein coding
domains are indicated as follows: D,D,E, aspartic acid and glutamic acid catalytic domain; HHLD,
helix-turn-helix like domain; MULE, Mutator-like element transposase domain. Non-coding regions are
indicated as follows: ITR, inverted terminal repeat.

3.3.2 Transposable element genome content in S. rosetta and M. brevicollis

Both choanoflagellates S. rosetta and M. brevicollis whole genome contigs were both screened for

TEs using RepeatMasker and BLAST searches to uncover novel families (RepeatMasker, 1996;

Sayers et al., 2009). M. brevicollis showed to possess 0.57% of TE content, whereas S. rosetta

had a TE genome content of 18.50%. M. brevicollis has previously been documented to have a

TE genome content of 1%, which appears to be an over representation of TE content based upon

cruder methodology, if the genome assembly was accurate (Carr, Nelson, Leadbeater and Baldauf,

2008). Although S. rosetta was found to have a far greater TE family diversity than M. brevicollis,

similarity was drawn between copy number for the families uncovered in both choanoflagellate
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species (Table 3.4 and 3.5). The majority of families were found to have less than 30 copies, with

the exception of two copia-like families (Srospv2 and Srospv3). Carr and Suga (2014) found that

the families uncovered in Capsaspora owczarzaki also presented with low copy number, which

supported that a small number of copies for each TE family could be an expected feature of

unicellular protists.

3.3.3 Phylogenetic analyses of S. rosetta TE Families

Protein phylogenies were created for the all TE superfamilies present in the S. rosetta genome

(Figure 3.6, 3.7 3.8, 3.9, 3.10 and Appendix F) with the use of conserved ORFs from each TE family;

Transposase for DNA transposons and Pol for LTR retrotransposons. The backbone for all LTR

retrotransposon phylogenies ranged in resolution, however, some branches were positioned with

high support values of 98-100% maximum likelihood (ML) and 1.00 bayesian inference posterior

probabilities (biPP) (Figure 3.6, 3.8, 3.7 and Appendix F). Both the pseudovirus and non-chromoviral

gypsy phyogenies clustered the S. rosetta families together with high support (96-100 ML/1.00

biPP) (Figure 3.7 and 3.8).

The chromoviral phylogeny positioned the Sroscv sequences in to one clade; Sroscv1-3 cluster

together with strong support (95% ML/ 1.0 biPP), however Sroscv4-5 were placed as sister groups

to the main S. rosetta cluster with weak support (Figure 3.6). Monosiga brevicolls chromovirus

(Mbcv) is placed in the clade with low/moderate support (<50% ML/ 0.78 biPP), which rejected

the monophyly of the S. rosetta families, although not highly supported. However, the clustering

of families within choanoflagelatte species supported that the families have an ancient history within

the choanoflagellate lineage. Furthermore, no strong support is seen between the choanoflagellates

and the main opisthokont group of chromoviruses (Figure 3.6). The chromoviral distribution across

taxonomic groups was expected, based on documented chromoviral phylogenies (Figure 3.5)

(GypsyDatabase 2.0, 2010; Llorens et al., 2010). The documented inferred chromoviral relationships

and abundance is predominantly in plant and fungal species, with few metazoans and one amoebozoan

representative (Llorens et al., 2010). A similar pattern was observed in the chromoviral phylogeny,

with the majority of elements from plant and fungal host species, and the minority found in vertebrates.

As seen in Carr and Suga (2014), the metazoan and fungal Pols cluster together with 97%ML/

0.99biPP, but the nested relationship had no support. The tree is consistent with the metazoan

and fungal Pols being sister groups (Figure 3.6).



3.3. Results 107

As with the chromoviral phylogeny, the non-chromoviral gypsy-like phylogeny was not robustly

resolved, however, the choanoflagellate species were found to be monophyletic (Figure 3.7). A

similar pattern was seen in the Srosgyp phylogeny, with the majority of elements uncovered in

metazoan species. The gypsy sequences in S. rosetta were placed nested within the metazoan

sequences, however with low support (<50%/<0.70biPP). Gypsy-like sequences were uncovered

in several metazoan taxonomic groups, including arthropods, fish, insects and reptiles (Figure 3.8).

Figure 3.5: Phylogenetic reconstruction of chromoviral elements among taxonomic groups. The
inferred relationships are based on integrase domain, from Gypsy Database 2.0 (2010); Llorens et al. (2010).
The cladogram was produced in Newick format.

In contrast, the copia-like phylogeny was unrooted, clustering all copia-like elements from both

choanoflagellate species in one clade with maximum support (100% ML/ 1.00 biPP). The grouping

provided support that the superfamily may have evolutionary history within the choanoflagellate

lineage long term. However, choanoflagellate Pol sequences were found to be positioned separate

to the other elements of Opisthokont species (Figure 3.8). Within the choanoflagellate clade, the

majority of S. rosetta pol sequences cluster together with medium/high support (68%ML/0.98biPP).

However, monophyly was not apparent for the S. rosetta famiies, as Srospv3 was found to cluster

with theM. brevicollis families, although with low support (<50%ML/0.86biPP). The twoM. brevicollis

families were found to form a strongly supported group with maximum support (100%ML/1.00

biPP). The main opisthokont group also included three Pol sequences from the stramenopiles;

Phytophora infestans, Klebsormidium nitens and Nannochloropis gaditana. A higher number of

copia-like elements were uncovered in metazoan species, when compared to the loss seen in
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Figure 3.6: Maximum Likelihood phylogeny of chromoviral amino acid sequences. The phylogeny
was constructed by an alignment of 406 amino acid constructs with the employment of raxmlGUI using
the PROTCAT model and estimated amino acid frequencies with RTREV substitution matrix. ML and
biPP values are labelled above and below corresponding branches. Maximum support is annotated by
‘*’ (100ML/1.0 biPP) and low support (<50 ML/ <0.70 biPP) are annotated ‘-’. The scale bar signifies the
number of amino acid substitution per amino acid site. Metazoan proteins are in dark blue, choanoflagellate
proteins are in light blue, fungal sequences are written in brown, plants are in green, stramenopiles are
in orange and Capsaspora in red. The outgroup is constructed of non-chromoviral gypsy elements from
previous literature (Carr et al., 2008b), and S. rosetta gypsy-like elements uncovered in the RepeatMasker
analysis.
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Figure 3.7: Maximum Likelihood phylogeny of non-chromoviral gypsy amino acid sequences. The
phylogeny was constructed by an alignment of 743 amino acid constructs with the employment of raxmlGUI
using the the PROTCAT model and estimated amino acid frequencies with the RTREV substitution matrix.
ML and biPP values are labelled above and below corresponding branches. Maximum support is annotated
by ‘*’ (100ML/1.0 biPP) and low support (<50 ML/ <0.70 biPP) are annotated ‘-’. The scale bar signifies the
number of amino acid substitution per amino acid site. Format is described in Figure 3.6. The outgroup is
constructed of S. rosetta chromoviral elements uncovered in the RepeatMasker analysis.
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chromoviruses (Figure 3.6 and 3.8).

Figure 3.8: Maximum Likelihood phylogeny of copia-like amino acid sequences. The phylogeny
was constructed by an alignment of 711 amino acid constructs with the employment of raxmlGUI using
the PROTCAT model and estimated amino acid frequencies with RTREV substitution matrix. ML and
biPP values are labelled above and below corresponding branches. Maximum support is annotated by
‘*’ (100ML/1.0 biPP) and low support (<50 ML/ <0.70 biPP) are annotated ‘-’. The scale bar signifies the
number of amino acid substitution per amino acid site. Format is described in Figure 3.6.
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In contrast to the gypsy-like phylogeny, the phylogeny for SrosT1 did not position the S. rosetta

Transposase sequence with the other opisthokonts Transposase elements (Figure 3.9). Similarity

searches with SrosT1 query unveiled an abundance of stramenopile Transposase proteins, as well

as diverse metazoan elements, and a minority found in plant species (Figure 3.9). The SrosT1

element was found nested within the stramenopile proteins with high support (83%ML/0.99biPP).

Furthermore, the BLAST searches with SrosT1 found previously unannotated elements in the

choanoflagellate species, M. brevicollis. The unicellular organism has previously been described

to possess LTR retrotransposons only; Mbcv1, Mbpv1 and Mbpv2 (Carr, Nelson, Leadbeater

and Baldauf, 2008). This review has since been challenged, with the unveiling of two additional

predicted proteins found; M. brevicollis Tigger-1 (MbTig1) and M. brevicollis Transposon-1 (MbT1).

All M. brevicollis predicted transposons are included in superfamily phylogenies and described in

Section 3.4.8 (Figure 3.9 and Appendix F). SrosT1 is grouped with a predicted transposon element

found in the choanoflagellate, M. brevicollis (XP_001743358.1).

The nested grouping described is not consistent with the vertical inheritance of the transposon

families since choanoflagellates and stramenopiles last shared a common ancestor. In contrast,

the phylogeny indicates an ancient horizontal transfer of a stramenopile transposon into a common

ancestor of both M. brevicollis and S. rosetta. As phagotrophs, choanoflagellates ingest unicellular

prey and the acquisition of genes by choanoflagellates from a variety of prey species is already well

documented (Tucker et al., 2015). The positioning seen here is consistent with horizontal transfer,

from a stramenopile donor, to a choanoflagellate host.
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Figure 3.9: Maximum Likelihood phylogeny of T1 amino acid sequences across eukaryotic
supergroups. The phylogeny was constructed by an alignment of 253 amino acid constructs with the
employment of raxmlGUI using the the PROTCAT model and estimated amino acid frequencies with the
WAG substitution matrix. Format is described in Figure 3.6.
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With the exception of SrosT1, the transposon family phylogenies were not robustly resolved

(Figure 3.9, 3.10 and Appendix). The elements uncovered in theMULE similarity search uncovered

full length tranposons in predominantly metazoan species. With this, a non-MULE outgroup was

added to the phylogeny; the outgroup included MuDR, Jittery and Hop transposon families (Carr

and Suga, 2014). SrosMule is placed with Mule tranposon in plant species, Chlorella variabilis

(green algae), with moderate support (60%ML/0.71biPP), as a sister group to metazoan species,

Orechromis niloticus (Nile Tilapia) andMaylandia zebra (Zebra Fish) with moderate support (58%ML/

0.84biPP) (Figure 3.10). The positioning seen for theMule phylogeny is likely to be poorly supported

vertical inheritance, as the choanoflagellate transposases are nested with the metazoan species,

which would not allow for a plausible explanation of HTT. Protein phylogenies for Helitron, T2, T3,

Tigger-1 and Tigger-2 are shown in the Appendix F. The remaining phylogenies for the transposon

families were inconclusive, with no clear explanation to the choanoflagellate positioning within the

phylogenies. The Transposase proteins of SrosH, SrosT2, SrosT3, SrosTig1 and SrosTig2 were

found to cluster with other opisthokont proteins with weak support (<0.50%ML/<0.70biPP). The

Transposase of SrosTig1 was found to cluster with stramenopile sequences as a sister group to the

main opisthokont elements. However, the position was not well supported (<50%ML/<0.70biPP)

and therefore it is unclear whether inheritance is vertical or horizontal.
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Figure 3.10: Maximum Likelihood phylogeny of Mule transposase amino acid sequences across
eukaryotic supergroup. The phylogeny was constructed by an alignment of 92 amino acid constructs
with the employment of raxmlGUI using the PROTCAT model and estimated amino acid frequencies with
the BLOSUM substitution matrix. Format is described in Figure 3.6, except amoebozoa proteins which are
written in purple.The outgroup is constructed of MuDR, Jittery and Hop transposon subfamilies of Mule from
Carr and Suga (2014).
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3.3.4 Target site insertion patterns of S. rosetta transposable elements

A moderate level of length and base conservation is seen in TE target site duplications across

various species and genera (Lee and Harshey, 2003). This finding was also evident in the work

withS. rosetta TEs for the length of the TSDs. Following insertion, the LTR retrotransposon families

had target site duplications (TSDs) of 5 base pairs in length. The highest level of base conservation

was observed for gypsy-like families with the majority of families favouring cytosine or guanine at

the 5’ and 3’ termini of TSDs, however this is inconclusive and could still be described as random

(Figure 3.11). Although high conservation in target site duplications was not seen for the copia-like

families, a preference for guanine or cytosine (GC) at the 5’ and 3’ terminal positon of the TSD

was still observed, except Srospv4 and Srospv5 which showed strong conservation of adenine at

the 5’ terminal end of the TSD, and Srospv4 also showed preference to thymine at the 3’ termini

(Figure 3.12). However, it is of note, that Srospv4 and Srospv5 represent a very small percentage

of overall genomic TE content, with only 3-4 copies identified per family. With this, the documented

TSD are based on a smaller dataset, when compared to more active families that have proliferated

in the genome (Table 3.5).

a) gypsy-like families

Figure 3.11: Conserved base composition of target site motigs for gypsy-like families in the S.rosetta
genome. Conserved target site duplications for each transposable element family in the genome of S.
rosetta were reviewed using WebLogo version 2.8 via University of Berkeley, California server (Crooks
et al., 2004).
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b) copia-like families

Figure 3.12: Conserved base composition of target site motigs for copia-like families in the S.rosetta
genome. The methodology for TSD review is detailed in 3.11

In contrast, DNA transposon families had TSDs of varied length, ranging from 2 – 9 bp and

showed higher conservation (Figure 3.13). All DNA transposon families, exceptSrosMule, preferred

Adenine or Thymine at the 5’ terminal end of the TSD, with the majority preferring Adenine at the

3’ end (Figure3.13). The favoured base motifs of adenine and thymine is well documented target

sites for DNA transposons (Geurts et al., 2006; Carr and Suga, 2014; Eide and Anderson, 1988).

As seen in Carr and Suga (2014) for the Mule families uncovered in Capsaspora owczarzaki,

SrosMule had GC conserved at the 5’/3’ termini, with a longer TSD of 9bp in length. ITR target

site insertions could not be reviewed in SrosHel, SrosT1 and SrosT3, as the length of TSD could

not be determined.
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b) Transposon families

Figure 3.13: Conserved base composition of target site motigs for DNA transposon families in the
S.rosetta genome. The methodology for TSD review is detailed in Figure 3.11.

3.3.5 Recent TE activity in the S. rosetta genome

Evidence for persistence of active TEs has been reviewed in several eukaryotic genomes, including

M. brevicollis, C. owczarzaki and S. cerevisiae (Kim et al., 1998; Carr, Nelson, Leadbeater and

Baldauf, 2008; Carr et al., 2012; Carr and Suga, 2014). Several characteristics were considered

when reviewing TE activity including; terminal branch length, identical paralogous copies, expression

and nucleotide diversity. Copy number is not an accurate representation of TE activity alone, as

the host genome may have a high copy number, relating to several TE copies that are inactive,

partial/truncated elements. The 20 families annotated in the S. rosetta genome ranged from

multiple copies (161 copies of Srospv2) to single copy elements (Srospv6) (Table 3.5). The host

genome contained higher copies of LTR retrotransposons than DNA transposons. The terminal

sequences from NCBI Trace Archive were employed to investigate several methods of population

genomics to determine TE activity. Nucleotide phylogenies for all TE families represented FLE,

presumably young elements, on short branches, with few ancient copies (defined in Carr and Suga

(2014) as having a terminal branch length <0.05 substitutions per site) present in the genome.
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In the S. rosetta genome, the majority of LTR retrotransposon families were dominated by

younger elements, with average terminal branch length of <0.05 per family (Figure 3.14). From

the terminal branch length values, Sroscv2 is defined as the retrotransposon family with the oldest

copies, with the greatest range of length, and range exceeding 0.05 (Figure 3.14 and 3.17). This

supported persistence in the S. rosetta genome for this family, which is further supported by family

characteristics with truncated element copies uncovered in the genome (Figure 3.14 and Table

3.5). The youngest LTR retrotransposon families, based on terminal branch length, are Srosgyp2,

Srospv4 and Srospv5. When reviewing family characteristics, the three families have limited

copies uncovered in the genome, with copy numbers ranging from 3-9 (Table 3.5). Recombination

events are presumed to have occurred in all LTR retrotransposons families, as solo elements were

identified in each LTR phylogeny, except Srospv5 and Srospv6 (Figure 3.21, 3.17, 3.22; Appendix

F).

In contrast, the majority of DNA transposon families seem to possess older insertions, with an

overall average terminal branch lengths of >0.05. SrosTig1was found to have the youngest copies,

with all elements represented on short branches (Figure 3.14). Based on terminal branch lengths,

the copies of SrosT1 seem to be the oldest in the genome, with a range of up to 0.9. Reviewing the

ITR phylogeny for this family indicated that one long branch is present, caused by a truncated ITR;

the majority of copies are presumably young elements (Figure 3.16). The truncated ITR indicates

family persistance, with an accumulation in mutations over time, increasing nucleotide diversity

when compared to the S. rosetta FLEs. Alternatively, the element may be an ancient relic of an

ancestral TE family that is no longer active in the host population, but is uncovered as the element

shows similarity with the T1 transposon family copies.
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Figure 3.14: Box and Whisker diagram to show terminal branch length of 20 TE families in the S.
rosetta genome. LTR retrotransposon and DNA transposon families are represented by red, purple, and
blue boxes, respectively, which gypsy families in red, and copia families in purple. Branch lengths for full
length LTR retrotransposons were taken from the 5′ LTR when this was present in the phylogeny; in its
absence, the 3′ LTR was used. The filled boxes denote the 10 - 90 percentile range and the horizontal
dark line represents the median branch length. The whiskers the percentile range from the median and the
circles represent branch lengths outside this range.
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Figure 3.15: Maximum Likelihood phylogeny of individual element copies of SrosTig1. The phylogeny
was constructed by an alignment of 393 nucleotide constructs with the employment of raxmlGUI using the
GTRCAT model. ML and biPP values are labelled above and below corresponding branches. Maximum
support is annotated by ‘*’ (100ML/1.0 biPP) and low support (<50 ML/ <0.70 biPP) are annotated ‘-’. The
scale bar signifies the number of nucleotide substitutions per amino acid site. 5’ and 3’ ITR sequences are
written in blue, with individual TSDs annotated on terminal branches respectively.
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Figure 3.16: Maximum Likelihood phylogeny of individual element copies of SrosT1. The phylogeny
was constructed by an alignment of 87 nucleotide constructs with the employment of raxmlGUI using the
GTRCAT model. The tree format is stated in Figure 3.15.

3.3.6 TE expression in S. rosetta genome

Transcription is a fundamental stage of transposition for TEs, to produce RNA daughter elements in

retrotransposons, Tnpase in DNA transposons, and to synthesis catalysts for transposition to occur

(Slotkin and Martienssen, 2007). The RNASeq reads generated for the S. rosetta transcriptome

project showed to include TE sequences. The total RNASeq dataset for S. rosetta contained

316,464,000 kb of reads, of which 1,616,278 were TE families (0.5%) (Table 3.5 and 3.4). This

was similar to RNASeq read values seen in the filasterean species, C. owczarzaki, which was

found to be 0.3% TEs (Carr and Suga, 2014). RNA expression varied dramatically across the TE

families, with the lowest RNA expression seen for Srosgyp1, showing only 170 RNASeq reads

during analysis (Table 3.5). The transcripts for SrosMule showed the highest levels of expression,

with 54% of the TE reads being from this DNA transposon family (Table 3.4). SrosMule is found

to have the highest number of copies of the DNA transposon families, as well as expression. The

family is also the greatest in length, and predominantly only young copies are found in the S. rosetta

genome. The family characteristics are consistent with the high level of expression calculated
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Figure 3.17: Maximum Likelihood phylogeny of individual element copies of Sroscv2. The phylogeny
was constructed by an alignment of 214 nucleotide constructs with the employment of raxmlGUI using the
GTRCAT model. The tree format is stated in Figure 3.17

here. Previously, trends have been seen between expression level and family characteristics, so

this was investigated here (Carr and Suga, 2014). A strong positive correlation was seen between

expression and copy number for DNA transposon families (R2=0.837), however no relationship was

seen for LTR retrotransposons (R2=0.011) (Figure 3.18). No relationship was observed between

RNASeq reads and identical paralogous copies as previously seen in protistCapsaspora owczarzaki

(data not shown) (Carr and Suga, 2014).

Although from the same TE superfamily, SrosTig1 andSrosTig2 expression varied considerably

within the S. rosetta genome. RNASeq reads for SrosTig1 differed by over an order of magnitude

when compared to SrosTig2. Both families have provided evidence for recent transposition in the

genome, representing only FLE copies with low diversity in ITR copies seen (Figure 3.15 and 3.19;

Table 3.4). However, SrosTig2 has lower levels of expression (28,176), compared to SrosTig1

value of 174,979 (Table 3.4). Although identical nucleotide diversity is seen here, SrosTig2 shows

greater terminal branch lengths greater than SrosTig1. The variance between the two families

expression could also be explained by differences in copy number. As SrosTig1 has a higher copy

number, the elements are therefore more likely to be expressed.
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Figure 3.18: Relationship between copy number and expression for TE families in S. rosetta. The
relationship between copy number and expression was reviewed in (a) LTR retrotransposon families, and
(b) DNA transposons families. The R2 value is annotated on each trendline.

Figure 3.19: Maximum Likelihood phylogeny of individual element copies of SrosTig2. The phylogeny
was constructed by an alignment of 276 nucleotide constructs with the employment of raxmlGUI using the
GTRCAT model. The tree format is stated in Figure 3.15.

However, with copy number diversity across the 20 TE families uncovered in the S. rosetta

genome, the expression data was normalised in order for relative expression to be reviewed for
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the families (Figure 3.20). Only FLE copy numbers were included for the analysis. Overall, DNA

transposons showed higher levels of relative expression when reviewing the two classes of TE

in the S. rosetta genome (Figure 3.20). The family found to show the highest relative expression

level per copy was SrosT3, with an expression value of 140,210 per copy, as the family was only

found to have one copy in the S. rosetta genome.
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3.3.7 TE nucleotide diversity in S. rosetta

Nucleotide diversity was an additional line of evidence to review recent transposition for both class

of TEs. LTR sequences flanking elements are identical upon insertion, and evolve respectively by

several mutations that accumulate over time. 5’ and 3’ elements were determined by the unique

TSDs flanking the LTR sequences in Class I elements and ITR sequences for Class II, across

all 20 TE families and alignments created for both solo, and FLEs. Intraelement LTR identity

ranged from 87% to 100% (Table 3.5), supporting recent transposition of the LTR retrotransposons.

Values for LTR identity could not be determined forSrosgyp1-2. In LTR retrotransposons, diversity

was reflective of variance in copy number, element status and population substructure. Sroscv2

LTR nucleotide diversity differed from the remaining chromoviral families by over an order of

magnitude (π = 0.1765) (Table 3.5). This is reflected in the topology of the Sroscv2 phylogeny,

reflecting subdivision of two active clades with high support (96 - 100% ML/ 1.0 biPP) (Figure

3.17). The abundance of identical paralogous copies in the LTR retrotransposon families is an

additional method to review recent transposition activity within the S. rosetta genome, as seen

here (Table 3.5). Older copies would harbour several mutations through genome persistence and

represented on long branches. All LTR retrotransposon families contained ancient copies that

have existed in the S. rosetta genome for presumably long periods of time. This is supported by

the presence of long branched solo/truncated elements, which are products of mutation (figure

3.21 and 3.17). Recombination events are detected in all LTR retrotransposon families as solo

elements were identified in each phylogeny excluding Srospv5-6 (Appendix F). Sroscv1 reflected a

star-like phylogeny, supporting a recent common origin of all family copies in the S. rosetta genome.

A similar topology was seen for Sroscv4, Srosgyp1 and Srosgyp2 (Appendix F). ITR nucleotide

diversity was calculated in the multicopy families; SrosM, SrosT1, SrosTig1 and SrosTig2, and

found that diversity was low for the transposon families with no values >0.05 (Table 3.4). SrosHel

has no ITRs annotated and therefore could not be reviewed for diversity.

Fewer ancient element copies were present in the ITR phylogenies for DNA transposon families,

but were present in all families except SrosTig1 and SrosTig2 (Figure 3.15 and 3.19). This was

reflected in the phylogenies with very few truncated ITRs uncovered. SrosMULE elements showed

evidence for recent transposition in all copies except one full length element which was represented

on a long branch (Figure 3.23). The diversity between the majority of Mule elements and the

outgroup sequence could be rationalised to be an ancient copy that has shown persistence in the
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Figure 3.20: Bar chart to show normalised expression data per element copy for 20 TE families in the
S. rosetta genome. The RNAseq raw data for each family was divided by family copy number to normalise
the data for comparative analyses. Relative expression for each family is shown using a logarithmic scale.
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Figure 3.21: Maximum Likelihood phylogeny of individual element copies of Sroscv1. The phylogeny
was constructed by an alignment of 252 nucleotide constructs with the employment of raxmlGUI using the
PROTCAT model. ML and biPP values are labelled above and below corresponding branches. Maximum
support is annotated by ‘*’ (100ML/1.0 biPP) and low support (<50 ML/ <0.70 biPP) are annotated ‘-’. The
scale bar signifies the number of nucleotide substitutions per amino acid site. 5’ and 3’ LTR sequences are
written in blue, solo and truncated elements are in red, with individual TSDs annotated on terminal branches
respectively.

genome, and been subjected to several mutations, causing a high value of nucleotide divergence.

In contrast, the element may be a copy from a previously active DNA transposon family,that has

shown similarity with MULE elements (Figure 3.23). The absence of ancient copies is common

for Class I elements (Gorinsek et al., 2004; Carr, Nelson, Leadbeater and Baldauf, 2008; Carr and

Suga, 2014), which is also apparent in S. rosetta.

Solo copies were detected in LTR retrotransposon families (Table 3.5 and 3.4). Previous

literature has reported greater nucleotide diversity of solo LTRs and LTRs of FLEs (Carr, Nelson,

Leadbeater and Baldauf, 2008). The same pattern was seen here when comparing nucletide

diversity of solo LTRs to FLEs, except Srospv3 (Table 3.5). This is reflected in the family LTR

phylogenies, with levels of population substructure.The same is seen in Srospv3, with several

truncated elements represented on long branches, however the solo copies show little sequence

divergence to FLE, represented on short branches. This could be explained by recent ectopic
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recombination upon insertion in the S. rosetta genome.

Figure 3.22: Maximum Likelihood phylogeny of individual element copies of Srospv3. The phylogeny
was constructed by an alignment of 679 nucleotide constructs with the employment of raxmlGUI using the
PROTCAT model. ML and biPP values are labelled above and below corresponding branches. Maximum
support is annotated by ‘*’ (100ML/1.0 biPP) and low support (<50 ML/ <0.70 biPP) are annotated ‘-’. The
scale bar signifies the number of nucleotide substitutions per amino acid site. 5’ and 3’. Format is stated in
Figure 3.24

3.3.8 Evidence of recent transposition in the S. rosetta genome

Following acquisition, via vertical or horizontal transmission, TE families often multiply in the host

genome. Persistence in the genome leads to individual elements acquiring mutations over time,

resulting in inactive copies that are no longer able to transpose. The 20 TE families reviewed here

varied considerably when comparing phylogenies, nucleotide diversity and RNA expression.

All LTR retrotransposon families contained presumably ancient elements,that were categorised

as solo or truncated, which were represented on long branches (Figure 3.21, 3.17 3.22 and Appendix

F). FLE in the families were predominantly short branched. Sroscv1, Sroscv3,Srosgyp1 and

Srospv4 show similar phylogenies, with the majority of elements being short branched, presumably

young LTRs (Figure 3.21, 3.24, 3.25 and Appendix F). The three gypsy families also show the

highest number of identical paralogous copies within the LTR retrotransposons present in the S.

rosetta genome (Table 3.5). This would suggest that the families are active within the choanoflagellate
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Figure 3.23: MaximumLikelihood phylogeny of individual element copies of SrosMule. The phylogeny
was constructed by an alignment of 265 nucleotide constructs with the employment of raxmlGUI using the
PROTCAT model. ML and biPP values are labelled above and below corresponding branches. Maximum
support is annotated by ‘*’ (100ML/1.0 biPP) and low support (<50 ML/ <0.70 biPP) are annotated ‘-’. The
scale bar signifies the number of nucleotide substitutions per amino acid site. 5’ and 3’ ITR sequences are
written in blue, solo and truncated elements are in red, with individual TSDs annotated on terminal branches
respectively.

species. In contrast, no identical copies are seen in Srospv1 and Srospv6, and the two copia-like

families show LTR identity of 99.74 -100% (Table 3.5). This would suggest a recent transposition

event for the two copia-like families. The majority of LTR retrotransposon families showed higher

levels of nucleotide diversity in solo LTRs when compared to FLE LTRs within the same family,

similar to M. brevicollis (Carr, Nelson, Leadbeater and Baldauf, 2008).

In contrast, DNA transposon families harboured fewer ancient copies, with SrosTig2 consisting

of FLE only (Figure 3.19). The majority of FLE in the DNA transposon families are represented

on short branches, supporting recent transposition events within the host genome. The nucleotide

diversity varies across the TE families by over an order of magnitude. This is respective of families

showing either subdivision of diverse full length and truncated copies, as seen in Sroscv2 (Figure

3.17), in contrast to young elements, which show decreased element subdivision, with limited

diversity amongst family copies, as seen in both Tigger families (Figure 3.15 and 3.19).
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Figure 3.24: Maximum Likelihood phylogeny of individual element copies of Sroscv3. The phylogeny
was constructed by an alignment of 418 nucleotide constructs with the employment of raxmlGUI using the
PROTCAT model. ML and biPP values are labelled above and below corresponding branches. Maximum
support is annotated by ‘*’ (100ML/1.0 biPP) and low support (<50 ML/ <0.70 biPP) are annotated ‘-’. The
scale bar signifies the number of nucleotide substitutions per site. 5’ and 3’ LTR sequences are written
in blue, solo and truncated elements are in red, with individual TSDs annotated on terminal branches
respectively.

3.3.9 Novel DNA transposons uncovered in choanoflagellate M. brevicollis

Novel DNA transposon elements were uncovered in the previously annotated choanoflagellate,

M. brevicollis. Carr, Nelson, Leadbeater and Baldauf (2008) presented the initial TE annotation

upon genome availability, and only LTR retrotransposons were uncovered. From BLAST similarity

searches for protein superfamily phylogenies, two DNA tranposon families were found in the marine

choanoflagellate, with similarity to SrosT1 and SrosTig2. With this, the elements have been named

Monosiga brevicollis Transposon-1 (MbT1) and Monosiga brevicollis Tigger-1 (MbTig1).The DNA

transposon elements varied in length, with MbT1 4.7kb in length, and MbTig1 a shorter 2.5kb

(Figure 3.26). The DNA transposon families each possessed a single ORF, which encoded a

putative transposase gene, and both ORFs harboured introns, (Figure 3.4). ITR size was similar
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Figure 3.25: Maximum Likelihood phylogeny of individual element copies of Srospv4. The phylogeny
was constructed by an alignment of 371 nucleotide constructs with the employment of raxmlGUI using the
PROTCAT model. ML and biPP values are labelled above and below corresponding branches. Maximum
support is annotated by ‘*’ (100ML/1.0 biPP) and low support (<50 ML/ <0.70 biPP) are annotated ‘-’. The
scale bar signifies the number of nucleotide substitutions per amino acid site. 5’ and 3’ LTR sequences are
written in blue, solo and truncated elements are in red, with individual TSDs annotated on terminal branches
respectively.

for both families, ranging from 10-11bp in length. The newly annotated elements were assessed

comparatively with their similar copies in S. rosetta.

SrosT1 and MbT1 differed considerably in length, with SrosT1 being a shorter 2.0kb in length.

Structurally, both elements encode Transposase, however MbT1 possesses an intron, which are

found to be absent in SrosT1. Amino acid sequences for the Transposase domains were compared

using the BLAST2 function on NCBI (Sayers et al., 2009; Altschul et al., 1990). The sequences

were found to have 56% identity. Conserved amino acid motifs were viewed in ClustalX (Thompson

et al., 2002) (Figure 3.27). Amino acid conservation was seen between the elements, with largely

conserved blocks throughout the alignment (Figure 3.27).
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Figure 3.26: Genomic organisation of the DNA transposon families characterised in theM. brevicollis
genome. DNA transposons: blue boxes represent inverted terminal repeat sequences, white boxes
represent tnpase exon sequences, and black boxes represent tnpase intron sequences. Protein coding
domains are indicated as follows: D,D,E, aspartic acid and glutamic acid catalytic domain. Non-coding
regions are indicated as follows: ITR, inverted terminal repeat.

In addition, SrosTig2 and MbTig1 were similar in length, with SrosTig2 being 2.1kb in length,

compared to 2.5kb ofMbTig1. Like all DNA transposons families annotated in the choanoflagellates,

both elements encoded Transposase, and both MbT1 and SrosTig2 possessed introns. Despite

the similarities detailed above, variation was seen when assessing the families at protein level;

when compared BLAST2 function on NCBI Altschul et al. (1990); Sayers et al. (2009), the sequences

were found to have a low percentage identity of 34%. With this, amino acid conservation was low

for the Tigger elements, with few conserved blocks throughout the alignment (Figure 3.28).
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Figure 3.27: A graphic representation of amino acid conservation for unclassified DNA tranpsoson
family, T1, in choanoflagellate species, S. rosetta and M. brevicollis. Sequences were aligned used
MAFFT on the EMBL-EBI server, and viewed using ClustalX v2.1 (Thompson et al., 2002).
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Figure 3.28: A graphic representation of amino acid conservation for the DNA transposon family,
Tigger, in choanoflagellate species, S. rosetta and M. brevicollis. Format is detailed in Figure 3.27.
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3.4 Discussion

3.4.1 TE family diversity in the S. rosetta genome

Salpingoeca rosetta is the second choanoflagellate species to be analysed for TE content. With

this comparison can be drawn with the choanoflagellate species, M. brevicollis, as well as the

filasterean species, C. owczarzaki, as both have been reviewed regarding TE content. S. rosetta

was found to have a wider repertoire of elements when compared to M. brevicollis, harbouring

multiple TE families from Class I and II, with a minimum of 20 TE families uncovered in this review.

The abundance of TE families was a similar trait found in C. owczaraki, which harbours 23 families

from both TE classes (Carr and Suga, 2014). This review has shed further light over TE evolution

within the holozoans.

Comparatively, DNA transposon families were uncovered in S. rosetta, when Class II elements

were documented as absent in the previously annotated choanoflagellate species, M. brevicollis.

S. rosetta harboured 7 DNA transposon families; MULE, Helitron, Transposon1-3 and Tigger1-2.

However, similarity searches with the predicted transposons detected the presence of putative

DNA transposons in M. brevicollis, challenging the initial TE review (Carr, Nelson, Leadbeater

and Baldauf, 2008). Elements from superfamilies unclassified Transposon-1 and Tigger were

found in M. brevicollis. However, only with an increase in genome availability of choanoflagellates,

can any ancestral inheritance be deduced for the families found. Unlike C. owczarzaki, non-LTR

retrotransposons were found to be absent in M. brevicollis. Two non-LTR TE families were found

in S. rosetta, however the full-length element could not be constructed, and therefore was not part

of the TE analysis.

All superfamily phylogenies showed the elements to be placed within groups of other opisthokont

families supporting inheritance by vertical transfer, with the exception of SrosT1. With this, protein

phylogenies have provided evidence for the presence of TEs in the last common ancestor of

the opisthokonts. The copia-like phylogeny showed moderate resolution, which the majority of

branches representing low/ moderate support values. However, the copia-like sequences are

clustered withM. brevicollis pseudoviruses to form one group, which supported that the superfamily

may have had ancient homologues in the choanoflagellate lineage long term.

Chromoviruses were uncovered in three holozoan protists; M. brevicollis, C. owczarzaki and

S. rosetta. This finding has provided further evidence that chromoviruses may have been present
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in the last common ancestor of the holozoans (Carr, Nelson, Leadbeater and Baldauf, 2008). The

chromoviral phylogeny detailed presented with moderate support, however the choanoflagellate

copies are not a well supported grouping. However, the choanoflagellate clade is not positioned

as a sister group to the metazoan copies, which would be expected with vertical inheritance.

The metazoan chromoviruses form a well supported clade nested within fungal species, which

has previously been observed in chromoviral phylogenies. This finding has been documented

previously and is potential evidence for horizontal transmission of chromoviral elements from a

fungal lineage to an ancestral vertebrate, as documented in (Carr and Suga, 2014). The transfer

of mobile DNA could be facilitated between host species who have a shared habitat, or through

predator-prey relationships, as seen in choanoflagellate species (Tucker, 2013). However, the

findings are speculative, and further support would need to be provided to support the genetic

transfer within the opisthokonts. An increased volume of protistan species would aid to resolve the

evolutionary distances between mobile elements uncovered in the opisthokont phylogenies.

With most families appearing to be vertically inherited since the origin of the opisthokonts,

there is evidence to support that SrosT1 appears to be acquired by horizontal inheritance from

a stramenopile donor. Horizontal transfer has been documented in choanoflagellates, with the

transfer of genetic material from the prey species, including bacteria and other unicellular species

(Tucker, 2013; Yue et al., 2013).The shared habitat of the marine species and phagocytosis of the

stramenopiles would facilitate this transfer (Carr, Nelson, Leadbeater and Baldauf, 2008; Tucker,

2013). Due to the close proximity of the food vacuole and nucleus in the unicellular species, the

transfer of genetic material may be facilitated between organelles of the cell. Furthermore, as an

additional predicted Transposase protein was uncovered in M. brevicollis, this would support that

the transfer was ancient in the choanoflagellate lineage. It would appear that the family remains

active in S. rosetta, however no evidence to support recent transposition was uncovered in the M.

brevicollis genome.

3.4.2 TE activity in the S. rosetta genome

Similarly to the three active families found in M. brevicollis (Carr, Nelson, Leadbeater and Baldauf,

2008), all TE families in the S. rosetta genome appear to be active, with the exception of SrosT3

and Srospv6, which both have only one copy per family. It is known that inactive TE families are a

common trait in several genomes of Opisthokonta (Carr et al., 2012; Carr and Suga, 2014). The
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majority of families revealed elements in S. rosetta appear to be active, and also show persistence

in the genome, except the two Tigger families. Both tigger families showed evidence of recent

transposition, with no long branched, presumably ancient elements. The family has low levels of

expression, as well as low nucleotide diversity. Similarly, Srospv6 was found to have only a single

copy in the genome, with 100% identical LTRs uncovered and therefore is suggested to have

recently invaded the host genome, with potential to proliferate. However, this is not conclusive,

as the decreased genome availability of choanoflagellates leaves the absence of potential donor

species, and thus the evolutionary pathway is unknown. The putative donor would be a choanoflagellate,

as in the copia-like phylogeny, the family appears to be monophyletic (Figure 3.8).

The TEs found in both S. rosetta and M. brevicollis (Carr, Nelson, Leadbeater and Baldauf,

2008) have low copy number, with only one family, Srospv3, found to harbour greater than 100

copies. Similar characteristics were also found in C. owczarzaki (Carr and Suga, 2014). This

finding supports the hypothesis that low TE family copy number could be due to the large population

size of protistan species, and therefore would allow for both efficient and effective elimination

mechanisms to combat proliferation in the genome (Carr and Suga, 2014). A similar observation

was found for the Kazachstania species, with TE copy number across the genus ranging from 1

- 30 (Chapter 2). As discussed in Carr, Nelson, Leadbeater and Baldauf (2008), it is proposed

the protistan species are found to have large effective population sizes (Snoke et al., 2006), and

therefore allow elimination mechanisms of individual TE insertions within a species. The same

theory can be proposed for the yeast species, with presumed large effective population size (Tsai

et al., 2008), who present with active elements in low copy.

Further similarity can be drawn with M. brevicollis, in that all FLE of LTR retrotransposons

are presumably young elements (Carr, Nelson, Leadbeater and Baldauf, 2008). This finding

supports the successful elimination of full length LTR retrotransposons, as very no ancient copies

were uncovered and therefore elements are presumed to be eradicated prior to accumulating

mutations. A similar trait is seen in the DNA transposon families, with very few ancient copies

uncovered, and all copies presented on short branches, suggesting recent transposition events

in the genome. The low number of families uncovered in M. brevicollis (Mbpv1, Mbpv2 and

Mbcv) would suggest a major TE loss has occurred in this species, however this may not be a

representative trait of all choanoflagellate species (Carr, Nelson, Leadbeater and Baldauf, 2008).

This finding is supported by the survey completed here, with increased diversity of TE superfamilies
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in the S. rosetta genome, as well as the repertoire of elements uncovered in M. fluctuans by the

screening of EST sequences (Carr, Nelson, Leadbeater and Baldauf, 2008). With this, the TE

survey uncovered 20 novel TE families in the choanoflagellate, S. rosetta, and two potential TE

families in M. brevicollis from a class that was previously defined as absent for the choanoflagellate

species (Carr, Nelson, Leadbeater and Baldauf, 2008). The findings uncovered here will hopefully

inspire further investigation of mobile elements in additional choanoflagellate species.
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Chapter 4

Codon usage in three holozoan species

Aspects of the work described in this chapter was published in Southworth, J., Armitage, P., Fallon,

B., Dawson, H., Bryk, J. and Carr, M. (2018), ‘Patterns of ancestral animal codon usage bias

revealed through holozoan protists’, Molecular Biology and Evolution 35 (10), 2499 – 2511.

4.1 Introduction

The genetic code possesses 61 independent codons, which encode for 20 amino acids. From

these 20,18 amino acids are encoded by more than one synonymous codon, (reviewed by Clark

(1970)). The remaining 2 amino acids are methionine and tryptophan (Grantham et al., 1980).

The degeneracy observed between codon families, has been an area of interest, with suggestion

that codon usage is biased, resulting in specific codons within codon families being present at a

greater frequency (Yannai et al., 2018). The theory of codon usage bias was first proposed by

Clark (1970), and later supported by (Grantham et al., 1980) who showed that the non-random

use of codons was found in both eukaryotes and prokaryotes.

Three hypotheses are found to drive codon usage bias; natural selection, mutational forces and

genetic drift (Sharp et al., 1988; Bulmer, 1991; Smith and Eyre-Walker, 2001). Natural selection

shapes codon usage to enable translational efficiency in the majority of tRNA genes within the host

cell (Ikemura, 1981). As defined by Ikemura (1981), ”optimal codons” were originally categorised

as the codons which were found to be complementary to the host major tRNA genes, by standard

Watson-Crick base pairing. The definition was adapted by Lloyd and Sharp (1992), who proposed

that optimal codons were those found to be show greater abundancy in highly expressed genes in

relation to other gene categories. The selective usage of optimal codons within a gene is defined as

the Frequency of Optimal Codons (Fop), which is calculated by the total number of codons within a
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gene, divided by the number of optimal codons found in the gene. Codons selected for this reason

are defined as ”optimal” as they provide a selective advantage. The level of bias in a host gene is

frequently assessed by the measure of the ’effective number of codons’ (Nc) (Wright, 1990). Nc

can range from 20 to 61, with 20 showing the use of a single codon, and 61, where codons within

families are used equally, with no bias observed (Wright, 1990). In contrast to natural selection,

codon usage bias can also be shaped by mutation pressure, influencing nucleotide composition at

neutral synonymous coding positions. If mutation pressure is found to drive codon usage, it would

have influence on both coding and non-coding region respectively. Evidence for mutational forces

influencing codon usage includes a correlation between GC-content at third positions (GC3s) and

non-coding local base composition. With this, if no relationship is seen, this would indicate that

mutation is not the main driver of codon usage, and therefore the bias would be caused by selection

and/or genetic drift.

Codon usage of highly expressed genes is proposed to enable efficient translational efficiency,

and therefore the use of ’optimal codons’ facilitating more rapid translation (Ikemura, 1981; Ehrenberg

and Kurland, 1984). Efficiency is increased with enriched optimal codons as it is thought that the

decoding of optimal codons is found to be faster by the ribosome in comparison to codons which are

not determined as optimal (reviewed by Tuller et al. (2010)). A gene defined as highly expressed,

with low translational efficiency, would lead to an increase ribosomal usage, and therefore the

quantity of free ribosomes would be in decline, reducing availability for other host genes (Frumkin

et al., 2018). Furthermore, a signature of selection for translational accuracy is that optimal codons

are found in abundance within domain coding regions compared to non-domain coding regions

within host genes (Akashi, 1994; Stoletzki and Eyre-Walker, 2007; Ran and Higgs, 2012).

In diverse taxonomic groups, evidence has shown that selection is predominantly the main

driver of codon usage (Lerat et al., 2003; Yannai et al., 2018). The closest known relatives of

Metazoa, are several lineages of unicellular eukaryotes; this grouping of metazoans and unicellular

relatives is known as Holozoa (Shalchian-Tabrizi et al., 2008). Within Holozoa, the sister group

to choanoflagellates are metazoans, and Filasterea as a more distally related lineage (Figure

4.1) (Parfrey et al., 2011). The study of the unicellular members of Holozoa has shown novel

patterns of codon usage bias for the holozoan protists, as well as predictions of ancestral traits now

seen in multicellular eukaryotes (Carr et al., 2010; Tucker, 2013; Carr et al., 2017). Evolutionary

characteristics conserved in both the filastereans and choanoflagellates have been defined as
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ancestral, and therefore ancestral to Metazoa, even if these traits has since been lost through

multicellularity, or lost in premetazoan lineage prior to multicellularity. In the last decade, whole

genome sequences had been made available of three holozoan species; two choanoflagellate

species, Salpingoeca rosetta (Fairclough et al., 2013) and Monosiga brevicollis (King et al., 2008),

and filasterean, Capsaspora owczarzaki (Suga et al., 2013).

Figure 4.1: Simplified phylogenetic representation of Holozoa The cladogram outlines that
choanoflagellate species (Monosiga and Salpingoeca) are the sister group to the metazoans. Approximate
divergence dates are based on figures outlined in Parfrey et al. (2011).
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Upon genome availability, S. rosetta, M. brevicollis and C. owczarzaki genomic characteristics

have been studied (Carr, Nelson, Leadbeater and Baldauf, 2008; Carr, Leadbeater, Nelson and

Baldauf, 2008; King et al., 2008; Suga et al., 2013; Carr and Suga, 2014). Previously, codon

usage bias had not been reviewed in unicellular holozoan species, leaving a niche to be explored.

Southworth et al. (2018) explored codon usage bias across the three holozoan species, to determine

whether bias is more likely to be driven by natural selection and/ or mutation bias. The analysis in

Southworth et al. (2018) was repeated here to ensure validity, and to assess whether narrowing

the bias category margins from 5% to 1% reflects the same results when comparing bias gene

statistics (Southworth et al., 2018). The larger cohort of researchers involved with the Southworth

et al. (2018) publication allowed for greater sample sizing to be studied, whereas a smaller grouping

was employed for independent research.
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4.2 Methods

4.2.1 Codon usage analysis

Annotated transcript sequences were downloaded for each of the holozoan species; S. rosetta, M.

brevicollis and C. owczarzaki. The C. owczarzaki transciptome was downloaded from the Ensembl

Protists database (Capsaspora owczarzaki atcc 30864.C owczarzaki V2.cds). S. rosetta and M.

brevicollis transcriptomes were downloaded from the Origins of Multicellularity Project at the Broad

Institute (salpingoeca rosetta 1 transcripts and monosiga brevicollis mx1 1 transcripts). CodonW

was used to determine codon usage statistics for each set of cds transcriptome sequences. Optimal

codon files were initially generated by the CodonW correspondence analysis on relative synonymous

codon usage (COA on RSCU) using default parameters. CodonW calculates optimal codons by

COA, which is used to identify trends in datasets, creating a series of continuous axes which show

variation between genes and codons. RSCU was calculated for each gene in CodonW to show

deviation from even usage (Sharp et al., 1986; Peden, 1999). RSCU values indicate the number of

times a codon is uncovered, in relation to the number of time it would be expected to be observed

based on equal synonymous codon usage (Sharp et al., 1986). An RSCU of 1.00 would indicate

that a codon would be employed with equal frequency based on random codon usage; RSCU

>1.00 would indicated that a codon was selected more frequently than expected for random codon

usage, and <1.00 would indicate that a codon is used at a lower frequency based on a non-biased

random model.

Expression data was calculated using SMALT v. 0.2.6. (Ponstingl, 2014) to determine the

RNA reads per host genes for both S. rosetta and C. owczarzaki. Genes with reads >100 were

concatenated from the high and low 5% bias categories, and new datasets based on expression

were ran using CodonW to determine optimal codons based on expression. The fop files for S.

rosetta and C. owczarzaki were manually revised based upon expression data. Optimal codons

based on expression data were compared to those generated by CodonW, and the fop file was

amended to show the optimal codons for amino acids based on expression data. The fop file is a

measure of codon bias for each codon, where all 64 codons must have a score; 1 indicates a rare

codon, 3 for an optimal codon and 2 for other codons (standard usage) (Peden, 1999). Values

of GC3s, Fop and Nc were calculated for each gene per species. Fop values were determined

using the fop.coa file from CodonW for M. brevicollis, and an amended fop.coa file was used for C.
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owczarzaki and S. rosetta. Mean and standard deviation values were determined for each codon

usage statistic in each species.

4.2.2 Codon usage bias categories

For each holozoan species, two sets of three categories were created based upon effective number

of codons, Nc. Initially, the high category represented the 5% most highly biased genes, the median

5% biased genes for the mid category, and the lowest 5% bias genes for the low category, as

seen in Southworth et al. (2018). From this, the categories were decreased to represent 1% for

each category. The categories were formulated to review codon usage characteristics across the

transcriptomes, and amended to study if 1% effectively represented trends observed for 5% seen

in Southworth et al. (2018), and to allow for repeated independent study, as the larger categories

would not be feasible due to time constraints.

4.2.3 Determining GC content for intronic and flanking DNA

For each bias category, genes were reviewed using NCBI gene annotation to determine intronic

DNA, which was ran for both 5% bias categories (Southworth et al., 2018) and 1% categories.

With this, introns were excised for each gene, and GC content was calculated using CodonW

(Peden, 1999). The intronic DNA dataset from Southworth et al. (2018) was used to extract the

values for the 1% bias category sequences. For each gene in the 1% category, flanking DNA of

200bp was extracted upstream and downstream from the GenBank nucleotide sequence reads.

The flanking DNA was truncated if the read did not cover the entirety of the flanking region, or if

a neighbouring gene was found to overlap the flanking DNA at the 5’ or 3’ region of the gene of

interest. The flanking DNA was concatenated, and GC content calculated using CodonW. Mean

and standard deviation values were determined for each category for both intronic and flanking

DNA in all species.

4.2.4 Major tRNA gene screening

Each annotated genome for the three holozoan protists were downloaded from NCBI. S. rosetta

was made up from 154 scaffolds, the M. brevicollis dataset was made up of 219 scaffolds, and C.

owczarzaki was comprised of 84 scaffolds. The program tRNAscan-SE 2.0 Lowe and Chan (1997)
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was employed to identify major tRNA genes using default settings, by postgraduate student, Holly

Dawson.

4.2.5 Gene expression in C. owczarzaki and S. rosetta

ForS. rosetta andC. owczarzaki, gene expression was determined for all genes by the examination

of sing SMALT v. 0.2.6. (Ponstingl, 2014). The bias categories were determined using Nc

values as previously described, to assess trends between gene expression and codon usage bias.

Transcriptome SRA files SRX042046-SRX042024 forS. rosettawere downloaded and SRX155789-

SRX155797/ SRX1690425-SRX1690428 for C. owczarzaki. A total of 122.1 million reads were ran

for S. rosetta and 665.2 million reads for C. owczarzaki. SMALT aligned the SRA reads to each

gene sequence per bias category to review the expression level per gene. The reads per gene

were visualised and calculated using Tablet v. 1.16.09.06 (Milne et al., 2013).

4.2.6 Codon usage analysis in domain and non-domain codons

As seen in Southworth et al. (2018), for the three bias categories per species, each gene was

assessed and separated into functional domain and non-domain codons. Any genes that did not

have a specified domain region were removed from the analysis. The domain and non-domain

codons for each bias category were ran using CodonW to determine Fop values (Peden, 1999).

The domain and non-domain codons were separated for each 1% bias category and compared to

the results seen in Southworth et al. (2018) for the 5% bias category. Domain and non-domain

codons forS. rosettawere excised by Paul Armitage, undergraduate project student, and sequences

extracted based on the accession list for the 1% categories, and reran for Fop values using

CodonW (Peden, 1999).
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4.3 Results

4.3.1 Review of codon usage bias in three holozoan protists

Genome characteristics for each holozoan species are listed in Table 4.1, including genome size,

GC-content and number of CDS sequences. As seen in Table 4.1, C. owczarzaki has the smallest

genome, with a size of 28.0Mb. In contrast, S. rosetta has a much larger genome of 55.0Mb, and

the M.brevicollis genome is 41.6Mb in size (Table 4.1). Besides C. owczarzaki having the smallest

genome, it was found to possess over 10,000 coding genes, which is similar to the numbers seen

in both choanoflagellate species (Table 4.1). GC-content was found to be conserved across the

three holozoan species, with values ranging from 54% - 57% (Table 4.1).

Table 4.1: Whole genome characteristics of three holozoan protists. Data included genome size (Mb),
number of CDS sequences, and overall GC-content.

Species Genome Size (Mb) CDS total GC-content

M.brevicollis 41.6 9171 55%

S. rosetta 55.0 11736 57%

C. owczarzaki 28.0 10123 54%

The direction of codon usage was initially determined for the transcriptomes of C. owczarzaki,

M. brevicollis and S. rosetta with use of the effective number of codons value (Nc) calculated

by CodonW. Values of Nc varied, ranging from 20, highly biased, to 61; mean scores for each

transcriptome are shown in Table 4.2. The strongest level of bias based on Nc was seen in S.

rosetta (average Nc = 44.79±5.37). C. owczarzaki showed the next strongest level of bias, with M.

brevicollis being the least bias (average Nc = 47.60±6.45;48.05±5.62) (Table 4.2). The distribution

of bias for the genes was observed in the three species. It was found that for S. rosetta the highest

percentage of the transcriptome was found to show bias Nc values between 40-54.99, whereas

for M. brevicollis and C. owczarzaki, the majority of genes were in the higher range of 50-54.99,

showing weaker bias (Figure 4.2).
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Following the methods from Wright (1990), the direction of bias can also be determined by the

value of GC at synonymous third positions (GC3s), which reflects whether the host genes of the

transcriptomes favour AT or GC ending codons. Figure 4.3 shows that all three species showed

a bias towards GC-ending codons, with highly biased genes having the highest GC3s values. In

line with S. rosetta showing the highest level of bias based on Nc, the mean GC3s value is highest

for this species, followed by C. owczarzaki, and last M. brevicollis (Table 4.2). It was seen that

very few genes in the three species are composed of AT-ending codons, with the minority of genes

showing <0.5 GC3s value (0.60% for S. rosetta 1.32% for M. brevicollis; 1.63% for C.owczarzaki)

(Figure 4.3).

Figure 4.2: Codon usage bias ditribution for the three transcriptomes of the holozoan protists. Nc
values ranging from 20-61, were categorised to blocks of five to review bias distribution percentages for
each species transcriptome.
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Table 4.2: Mean codon usage statistics in the transcriptomes of the three holozoan species. Data
included the average value for effective number of codons (Nc), GC3s and frequency of optimal codons
(Fop) for each species. Standard deviation was calculated for each data set.

Species Nc GC3s Fop

M. brevicollis 48.05±5.62 0.638±0.060 0.572±0.080

S. rosetta 44.79±5.37 0.707±0.073 0.576±0.079

C. owczarzaki 47.60±6.45 0.653±0.075 0.494±0.096

S. rosetta and C. owczarzaki showed a negative correlation between GC3s and Nc. With this,

the lower Nc value (the more highly biased), the greater the GC3s value. The same general trend

was seen in M. brevicollis, with the exception of a small number of genes highlighted, which did

not fit the recognised distribution (Figure 4.3). 127 genes were identified to not fit the trend as

seen in Figure 4.3, with genes found to be highly biased, with a lower GC3s value between 0.35

and 0.65. The small subset of genes was decreased in comparison to the 200 genes analysed in

Southworth et al. (2018). Based on reciprocal BLAST data in Southworth et al. (2018), of the 127

genes investigated, 102 genes were not identified using reciprocal blast (80.3%), and only 4 genes

were identified as putatively functional. The analysis supports that the 127 genes which do not fit

the expected trend for M. brevicollis are in fact not genuine genes, and therefore false positives.
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Figure 4.3: Nc plots for the genes of the holozoan protists. Nc values were plotted against GC3s for a)
M. brevicollis; b) S. rosetta and c) C. owczarzaki. The modified equation, Nc=2+S+29/[S2+(1-S)2 ], from
Wright (1990), with S=GC3s, was used to create the parabolic curve on each Nc plot (Wright, 1990).
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For the M. brevicollis transcriptome, over 70% of genes have been annotated with KOG status,

allowing for placement in gene categories and groups based on functionality (Table 4.3 and Figure

4.4). The KOG annotation work was ran to assess the function of genes in the M. brevicollis

genome, to investigate potential trends between functionality and codon usage. As expression

data was not publicly available for the choanoflagellate species, and therefore gene expression

could not be determined for each bias category, the KOG analysis provided an additional avenue to

explore to hypothesise the employment of optimal codons based on gene functionality. A significant

difference was seen for all categories when comparing High-Mid values and High-Low values,

except for genes involved in cellular process and signalling’, where the data was not seen as

significantly different (P=>0.05) (Table 4.3). The most significant difference in datasets was seen

for the genes in the poorly characterised category; involving general function prediction only and

unknown function (P=<0.0001) (Figure 4.4 and Table 4.3). Genes were enriched in the poorly

characterised KOG category, for both mid and low bias genes, whereas very few high bias genes

were assigned to this category (Figure 4.4). The majority of high biased genes were found to

be assigned to information storage and processing, and metabolism categories. From the 25

categories, ’(J) Translation, ribosomal structure and biogenesis’ made up the greatest proportion

of highly bias genes, with a significant difference observed when compared to mid and low bias

genes (P=<0.0001).
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Figure 4.4: Gene groupings and categories for each bias gene bias category in M. brevicollis based
on KOG annotation. Each gene category was ran through KOG annotation to investigate trends between
codon usage bias, and gene category in the M. brevicollis genome. Category assignment is shown for
A) High biased genes; (B) Mid biased genes; C) Low biased genes, which were annotated to be one of
four KOG categories (Cellular Processes and Signalling; Information Storage and Processing; Metabolism;
Poorly Characterised).
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Figure 4.5: Gene functionality for each bias gene bias category in M. brevicollis based on KOG
annotation. Each gene category was ran through KOG annotation to investigate trends between codon
usage bias, and gene function in the M. brevicollis genome. Gene function assignment is shown for A) High
biased genes; (B) Mid biased genes; C) Low biased genes, which were assigned to be one of six function
categories (Binding; Receptor Activity; Structural Molecule Activity; Signal Transductor Activity; Catalytic
Actvity and Transporter Activity.
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The trends observed in gene enrichment for the KOG categories support the codon usage

statistics which favoured translational efficiency in high bias genes for M. brevicollis (Table 4.2).

With this, additional analysis on specific molecular function for the bias categories of M. brevicollis

was reviewed. From the 361 high bias genes which were available on the KOG database, 262

were identified with molecular function (Figure 4.5). In contrast, a small proportion were annotated

for molecular function in the mid and low bias categories (186/350;81/266). Genes were assigned

to one of eight categories of molecular function, with catalytic activity highly enriched with genes

from all three bias categories (Figure 4.5). Similarity was seen in functional distribution across the

three bias categories, however, genes assigned to antioxidant activity were found to be absent in

mid and low bias categories, as well as translation regulator activity in low bias genes (Figure 4.5).

In Southworth et al. (2018) for each holozoan species, the 5% highest, lowest and mid-biased

genes were categorised, based on Nc values and used as an avenue for trends in codon usage

for each of the three transcriptomes. From this, 1% categories were reviewed in this project to

determine whether the patterns observed were still evident in a smaller subset of genes. For each

gene category per species, codon usage statistics were ran for several variations of the bias-genes

and compared to the 5% categories seen in Southworth et al. (2018). Both flanking DNA and introns

were extracted per gene to determine whether evidence of mutation pressure was still evident, in

the smaller subset of genes. To determine if codon usage in the holozoan species was driven by

selection alone, signatures for mutation pressure were investigated here. Signature for mutation

pressures include a relationship between GC3s and non-coding GC content, which would provide

evidence for a mutational bias which is driving a GC-preference across the entirety of gene, rather

than for any translational benefit.
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4.3.2 Mutational bias hypothesis driving codon usage

The trends seen between GC3s and Nc were consistent with mutation pressure, however could be

a signature for selection, mutation pressure or both, as drivers of codon usage bias (Southworth

et al., 2018). Southworth et al. (2018) extracted the flanking DNA and introns for each gene in

each bias category were measured for GC-content and GC3s value, to address the hypothesis,

highly biased genes show bias towards GC across all nucleotide positions, compared to low bias

genes, driven by mutational pressures. To investigate if the same findings were supported with

smaller gene categories, mean values of GC3s for all genes, and GC content of flanking DNA and

introns were calculated for 1% bias category for all three species.

For each holozoan species, GC3s decreased for each bias category, from high to low biased

genes, for both the 5% and 1% biased categories as shown in Figure 4.6 and 4.7. This provided

evidence that the original bias categories of 5% in Southworth et al. (2018) was accurate, as similar

values were found when analyses were repeated with 1% bias categories. GC content of both

flanking DNA, and intronic DNA were found to vary across the three species (Figure 4.7). M.

brevicollis and S. rosetta were found to have the highest value of GC content for flanking and

intronic DNA, but no significant difference was seen between bias categories (Table 4.4 and Figure

4.7). GC content for C. owczarzaki was lower than the values seen for the other two species, and

the trend observed for each bias category was the opposite to the decrease seen for GC3s; as

the level of bias increased, GC content was found to increase from 0.44±0.044 (High bias) to

0.47±0.043 (Low bias) (Table 4.4).

The three species stop codons were also found to show no evidence for GC-bias, with a

preference shown towards codon of UAA found for all highly biased genes. The absence of GC

bias in non-coding DNA supports that mutational pressure, towards guanine and cytosine, is not

a driver to explain the variation seen in GC3s values Table 4.4). With this, signatures for selection

were explored to determine if the prediction of selection bias could explain the data shown.
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Table 4.4: Flanking DNA and intronic GC content and GC3s value for 5% and 1% three bias categories
for three holozoan species.

Species GC3s Flanking GC Content (±sd) Intron GC Content (±sd)

5% Categories

M. brevicollis

High Bias 0.72±0.109 0.53±0.043 0.54±0.049

Mid Bias 0.64±0.031 0.53±0.040 0.54±0.031

Low Bias 0.58±0.043 0.52±0.049 0.53±0.040

S. rosetta

High Bias 0.82±0.054 0.54±0.030 0.54±0.036

Mid Bias 0.70±0.044 0.52±0.031 0.53±0.023

Low Bias 0.61±0.054 0.52±0.034 0.53±0.026

C. owczarzaki

High Bias 0.80±0.051 0.44±0.042 0.47±0.055

Mid Bias 0.64±0.038 0.45±0.048 0.48±0.041

Low Bias 0.55±0.051 0.46±0.047 0.49±0.042

1% Categories

M. brevicollis

High Bias 0.72±0.162 0.52±0.048 0.53±0.058

Mid Bias 0.63±0.033 0.53±0.033 0.55±0.032

Low Bias 0.58±0.048 0.52±0.052 0.53±0.042

S. rosetta

High Bias 0.86±0.058 0.53±0.0256 0.54±0.031

Mid Bias 0.70±0.043 0.52±0.033 0.53±0.024

Low Bias 0.59±0.056 0.53±0.033 0.53±0.026

C. owczarzaki

High Bias 0.84±0.030 0.44±0.044 0.48±0.062

Mid Bias 0.64±0.043 0.45±0.049 0.47±0.037

Low Bias 0.55±0.056 0.47±0.043 0.49±0.056
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Figure 4.6: Average GC3s value for both 5% and 1% bias categories for the three holozoan species.
Error bars were included for each bias category to show values of standard deviation per dataset.



158 Chapter 4. Codon usage in three holozoan species

Figure 4.7: Plots to show comparison of mean GC3s and non-coding DNA GC-content in C.
owczarzaki, S. rosetta andM. brevicollis for both 5% and 1% bias categories]. GC3s values are plotted
on the left axis (high bias is shown with a purple dot; mid bias, blue; low bias, light blue). Non coding GC
content is plotted on the right y axis (Flanking DNA and Intron DNA are annotated on the x axis). Flanking
DNA is annotated as follows (high bias, dark green; mid bias, light green; low bias, mustard yellow). Intron
DNA is represented with the colours (high bias, red; mid bias, orange; low bias, yellow). Intronic data is
taken from Southworth et al. (2018).
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4.3.3 Optimal Codons and Major tRNA Genes in three holozoan species

The evidence against mutational bias led to the investigation of selection as the main driver of

codon usage in the holozoan species (Southworth et al., 2018). Optimal codons were determined

for each species using CodonW, and by the comparison of high and weakly expressed genes,

for S. rosetta and C. owczarzaki due to transcriptome availability. The two methods employed to

review optimal codons produced the same results, except for one codon in C. owczarzaki, and two

in S. rosetta (Table 4.5). The complimentary results for both methods in the two species suggested

that the optimal codons found for M. brevicollis were likely to be accurate.

The CodonW analysis found that the majority of optimal codons were found to be GC-ending,

with CodonW estimates showing 60 of the 68 optimal codons having GC at the third position

from across the three species (Southworth et al., 2018). It was also found that each species

was found to have at least one optimal codon with uracil at the third position, with no species

showing adenine-ending codons. Codon usage conservation was shown across all three species,

with the majority of amino acids having only one optimal codon which was found to be identical

across species (12/18 degenerate amino acids had conserved single optimal codons).Anticodons

of major tRNA genes were identified for each holozoan species to show comparison with optimal

codons (Table 4.5). Multicopy tRNA genes for a specific amino acid were defined as major tRNA

genes, or if they were the most abundant amino acid representative. It was found that the total

abundance of tRNA genes across all three species were similar, with a range from 114 - 139 genes.

The choanoflagellate species showed the higher number of tRNA genes (Southworth et al., 2018).

Identified tRNA genes are listed for all three species in Appendix C.

Optimal codons and major tRNA genes were found to correlate identically in all two-fold amino

acids, except for lysine in M. brevicollis (Southworth et al., 2018). GGC was found to be the

optimal codon for glycine in all three holozoan species, with the complementary anticodon found

in the most abundant glycine tRNA genes. However, for the remaining degenerate amino acids,

ranging from three to sixfold, very few optimal codons matched the major tRNA genes for standard

Watson-Crick base pairing, with only six being complementary across the species (Southworth

et al., 2018). The six complementary codons ended in uracil, however the encoded amino acids

were found to show a strong preference for GC-ending optimal codons in the 5% (Southworth et al.,

2018) and 1% categories of highly biased genes. The majority of the major tRNA genes coding for

the 3-fold and above degenerate amino acids, were found to have adenine at the first position of the
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anticodon. If tRNA molecules were deaminated, the adenosine would be modified to inosine, which

was complementary to optimal codons with cytosine at the 3rd position. Evidence of deamination in

eukaryotic taxa has been uncovered, with a greater abundance of tRNA modification in multicellular

species, than unicellular organisms (Rafels-Ybern et al., 2017). tRNA modification of adenosine

at the 1st position of the anticodon has been shown to deaminate the nucleotide base to inosine,

which is complementary to adenine, cytosine and uracil. With this, it is supported that the codons

may depend on the wobble effect hypothesis for binding to their complementary tRNA gene to

take place. At the wobble position of the codon, the deamination of adenosine to inosine will

enable base pairing to the optimal codons cytosine nucleotides (Southworth et al., 2018). The

complement observed between optimal codons and host major tRNA genes is expected under the

selection model, and therefore results uncovered were consistent with selection bias.

4.3.4 Evidence for translational accuracy in holozoan species

To explore whether selection is also being driven for translational accuracy, as well as efficiency, as

previously described, the level of codon usage bias was compared per gene for domain codons,

and non-domain codons, for each 5% bias category in (Southworth et al., 2018). The domains

were identified using gene annotation available on NCBI, and the level of codon usage bias was

determined using Fop via CodonW. The analysis was repeated here for the 1% bias categories to

determine if similar trends were seen in more concise regions of bias (Figure 4.8).
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Figure 4.8: Average Fop values for the three 1% bias categories per species based on domain
encoding and non-domain encoding codons. The 1% high bias Fop values are represented by the
purple dots for domain codons, and red dots show the mean value for non domain codons. Mid-biased
genes are annotated as blue dots for domain values, and orange for non-domain. Green dots represent
mean value for domain codons, and yellow dot shows the mean value for non-domain codons for the low
biased gene categories.

The mean Fop values for domain codons were found to be significantly higher than those

calculated for non-domain codons for all three holozoan species (Figure 4.8 and Table 4.6). P

values were calculated for each gene category using t test (P<0.0001).
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Table 4.6: Mean Fop values for each 5% and 1% bias categories for domain codons and non-domain
codons in each of the three holozoan species. Average Fop values and standard deviation is shown for
each 5% and 1% bias category for domain and non-domain codons for C. owczarzaki, S. rosetta and M.
brevicollis 5% were taken fronm Southworth et al. (2018).

Species Domain Codons Fop (±sd) Non-Domain Codons Fop (±sd)

5% Categories

C. owczarzaki

High Bias 0.740±0.102 0.648±0.163

Mid Bias 0.506±0.062 0.457±0.062

Low Bias 0.420±0.069 0.380±0.073

S. rosetta

High Bias 0.751±0.068 0.716±0.125

Mid Bias 0.602±0.055 0.542±0.067

Low Bias 0.516±0.069 0.475±0.093

M. brevicollis

High Bias 0.787±0.068 0.714±0.146

Mid Bias 0.576±0.047 0.537±0.059

Low Bias 0.519±0.062 0.471±0.066

1% Categories

C. owczarzaki

High Bias 0.786±0.147 0.715±0.212

Mid Bias 0.498±0.077 0.458±0.063

Low Bias 0.443±0.095 0.364±0.128

S. rosetta

High Bias 0.805±0.057 0.779±0.133

Mid Bias 0.600±0.057 0.533±0.076

Low Bias 0.489±0.098 0.446±0.147

M. brevicollis

High Bias 0.835±0.097 0.760±0.207

Mid Bias 0.568±0.056 0.534±0.075

Low Bias 0.514±0.075 0.474±0.098
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4.4 Discussion and concluding remarks

4.4.1 Codon usage conservation across the holozoan protists

Codon usage has been reviewed in diverse taxa of the opisthokonts, with great emphasis on

multicellular organisms (Jia and Xue, 2009; Lerat et al., 2003; Galtier et al., 2018). With this,

Southworth et al. (2018) found a niche left to explore, with the genome availability of unicellular

protists; S. rosetta, C. owczarzaki and M. brevicollis. Analysis of the holozoans provided an insight

into whether selection and/or mutation bias drives codon usage in the unicellular organisms, with

ancestral bias predicted as the closest living relatives to the metazoans. Southworth et al. (2018)

found that the three protists presented with highly conserved codon usage bias, despite the distant

ancestry between the holozoans (Parfrey et al., 2011). The analysis reviewed in (Southworth

et al., 2018) was repeated here to show that patterns can be determined with a smaller dataset,

and to assess whether decreasing the high, mid and low bias categories from 5% to 1% is still

representative of the results seen previously.

As seen in Southworth et al. (2018), the holozoan species were found to have a strong bias

towards codons and optimal codons, ending in GC, as well as shared optimal codon preferences,

which supported conservation of codon usage bias. The bias categories were reconstructed to

review if trends seen in Southworth et al. (2018) were repeated when comparing the original 5%

categories to a smaller dataset of 1%. As seen for the 5% categories, there was a reduction in

GC3s when comparing the gene categories, high to mid bias, and mid to low bias. Furthermore, the

trend was not seen in non coding GC content across the bias categories, as reflected in Southworth

et al. (2018). It can be determined that mutational pressure is not enough to drive codon usage

bias, and this is also shown when analysing a smaller dataset of bias genes, which was employed

for independent research during this study.

Southworth et al. (2018) noted that gene expression data for S. rosetta and C. owczarzaki

provided evidence for translational efficiency in both species, with patterns being consistent with

selection. As expression data is not available for the choanoflagellate M. brevicollis, the genes

were reviewed by KOG category, and it was found that the majority of highly biased genes, which

were categorised by Nc, were found to be putatively expressed protein translation genes in the host

genome (Table 4.3). Also, it was found that in the three holozoan species, that optimal codons,

identified by CodonW, and expression levels in S. rosetta and C. owczarzaki were found to be
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complementary to major tRNA genes of the host species. This is another marker of translational

efficiency (Ikemura, 1985), providing evidence that co-evolution of tRNA genes and highly biased

genes has occurred for efficient protein translation in all three species.

As outlined in Southworth et al. (2018) in S. rosetta and C. owczarzaki it was found that genes

that presented with levels of low expression possessed a lower frequency of optimal codons, which

provided evidence for selection of translational efficiency. However, despite the lower abundance

of optimal codons in genes of low expression, it was found that the genes were still showing

evidence for translational accuracy, with functional domain regions of the genes having a greater

enrichment of optimal codons, in comparison to non functional domains (Table 4.6). With this, if is

supported that both translational efficiency and accuracy are major drivers of codon usage bias in

filastereans and chaonoflagellate species.

Conservation of codon usage bias across the choanoflagellates species and filasterean, was

an unexpected finding based upon the varied ancestry and life histories of the three holozoan

species. Despite this, the greatest difference in the three protists was found between the two

choanoflagellate species, rather than the choanoflagellates and the filastereans. As noted in

Southworth et al. (2018),for the two choanoflagellates, it was found that codon usage bias was

stronger in S. rosetta compared to M. brevicollis. If the difference in codon usage bias is accurate

between the two choanoflagellates, the stronger bias in S. rosetta could be of a larger, effective

population size. However, due to lack of population data for both choanoflagellate species, it can

not be determined if strength of codon usage bias on the idealised population reviewed here was

to represent the real population.

Furthermore, as reviewed by Carr et al. (2017), M. brevicollis is solely unicellular, whereas S.

rosetta can form multicellular colonies, with an outcome of five varied cell types (three of which

are multicellular), as well as the unicellular morphology (Dayel et al., 2011). With this, it would be

plausible that the formation of ephemeral colonies in S. rosetta could influence codon usage bias,

however limited data on rates of cell division in choanoflagellates leaves the hypothesis unresolved.

4.4.2 Conservation of codon usage in unicellular holozoans

Genomic analyses presented here were consistent with natural selection driving codon usage

bias in the three holozoan protists. With this, the observed conservation was a contributor to the

expansive knowledge of unicellular evolution prior to multicellularity. The findings supported that
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selection was influencing both translational efficiency, and accuracy which drove the preference to

GC-ending codons seen here. Furthermore, evidence for tRNA modification through deamination

of adenosine to inosine was found to be present in the unicellular protists for higher degeneracy

amino acids, and therefore presumably diverged in from the last common ancestor of Holozoa.
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Chapter 5

Codon usage of transposable element families in three

holozoan species

During the revision of this thesis, work described in this chapter was published in Southworth, J.,

Grace, C.A., Marron, A.O, Fatima, N. and Carr. M (2019). ‘A genomic survey of transposable

elements in the choanoflagellate Salpingoeca rosetta reveals selection on codon usage’, Mobile

DNA 10 (44), 1 – 19.

5.1 Introduction

5.1.1 Codon usage bias in TEs

As the genomic influence TEs have on a host species is well established, the relevance of studying

codon usage in the mobile elements has been addressed (Shields and Sharp, 1989; Lerat et al.,

2002; Jiang et al., 2006; Jia and Xue, 2009). Past studies on TE codon usage bias mainly have

failed to detect the impact of natural selection; TE families have shown to predominantly show weak

codon usage bias in a range of organisms, with a slight bias towards AT-ending codons (Lerat et al.,

2002; Jia and Xue, 2009). An exception was found in the class I elements of the stramenopile

genus, Phytophora (Jiang et al., 2006). The work outlined by Jiang et al. (2006) found that TE

families of two Phytophora species, were found to shown a preference for GC-ending codons,

which was reflective of the species host genes. It was also detailed that stronger codon usage bias

was found in element families which were revealed with higher copy number when compared to

families with low copy number (Jiang et al., 2006). As TE investigations have primarily focused on

multicellular eukaryotes, the selection bias observed in the TE families of Phytophora, can not be

determined as characteristic or unexpected for unicellular eukaryotes. The limitation outlined has
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prompted the study here of TE codon usage in the three holozoan species; S. rosetta, M. brevicollis

and C. owczarzaki. With the codon usage review detailed in Chapter 4 based on Southworth et al.

(2018), the work here will illustrate whether TE codon usage reflects the patterns seen for host

genes in the three species studied.

5.1.2 Codon usage bias in holozoan species

Patterns of relative synonymous codon usage for genes inS. rosetta, M. brevicollis andC. owczarzaki

genomes were detailed in Chapter 4. Southworth et al. (2018) found that in all three holozoan

species, the host genes were found to show bias toward GC-ending codons, as well as strong

association between GC3s and Nc value; it was found that genes that were found to show stronger

bias, determined by a lowNc value, were also likely to present with a higher GC3s value. Furthermore,

codon usage seemed to be mainly driven by selection, with no evidence of mutation pressure on

the host genes.

As the optimal codons in the three holozoan species were predominantly GC-ending, it is

hypothesised that any selection employed for codon usage in the TE families uncovered in each

species, should contrast with the observed weak bias towards AT-ending codons which have

previously been found in the majority of mobile elements in eukaryotic species. The holozoans

therefore provide an opportunity to determine if selection for codon usage is present in the TE

families of a broader range of eukaryotes.

5.1.3 Experiment overview

Codon usage analyses were performed on the ORFs of all LTR retrotransposon and DNA transposon

families identified in S. rosetta, M. brevicollis and C. owczarzaki detailed in Chapter 3, in order to

determine whether selection and/or mutation were driving TE codon usage. The work outlined

would allow comparison to be drawn between host genes and mobile elements, whether data

supports the influence of natural selection driving TE codon usage, as seen in the species host

genes.
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5.2 Methods

5.2.1 Analysis of codon usage bias in transposable element families

TE sequences for M. brevicollis and C. owczarzaki were taken from Carr, Nelson, Leadbeater and

Baldauf (2008) and Carr and Suga (2014). The method for S. rosetta TE annotation is outlined

in Chapter 3. For each TE family in the holozoan genomes, values of Nc, Fop and GC3s were

calculated for all coding sequences using CodonW 1.4.4 (Peden, 1999). The fop.coa file for all

species was taken from Southworth et al. (2018); S. rosetta and C. owczarzaki fop.coa files were

based on expression data, and M. brevicollis was based on CodonW analysis (Peden, 1999). In

S. rosetta, for Srospv6, Sroscv4 and Sroscv5 the gag and pol ORFs are separated and therefore

were concatenated to provide comparable values with the other LTR retrotransposon families. The

same was done for Cocv1, Cocv2, Cocv3 and all CoL elements in C. owczarzaki. Values from S.

rosetta, C. owczarzaki and M. brevicollis host genes were taken from Southworth et al. (2018).

The GC content of non-coding DNA from each TE family was also determined in CodonW

(Peden, 1999). Codons from overlapping ORFs were excluded from Mbcv,Cocv1-3 and CoL1

prior to determining codon usage statistics. In order to assess the contribution of selection on

translational accuracy, the codons which encode amino acids in functional domains were separated

from those that encode non-domain amino acids, to assess whether the frequency of optimal

codons was greater in highly expressed genes (Southworth et al., 2018). Domain regions were

identified by analysing each Pol and Transposase protein sequences in BLASTp through NCBI

(Sayers et al., 2009). Fop values were then determined for the domain and non-domain codons in

each family. Non coding data was also collated by running non-coding DNA for each TE family with

CodonW, to determine GC content. For LTR retrotransposons, 5’ LTRs and untranslated regions

(UTRs) were concaternated, per family, to assess non-coding GC content. The same method was

employed for DNA transposon families, except 5’ ITRs were included, as well as UTRs and introns

where applicable.

5.2.2 Optimal codons and major tRNA screening

Abundant codons for each TE family were generated by correspondence analysis (COA), using

relative synonymous codon usage (RSCU), with employment of default parameters. The abundant

codons identified were then assessed comparatively to the anticodons of the tRNA genes for each
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holozoan species to determine if the TE families were found to be consistent with selection. Host

gene optimal codons, and genome tRNA genes were identified in Chapter 4.

5.2.3 Determining TE family expression levels

The protocol to determineS. rosetta TE family expression is outlined in Chapter 3, with the employment

of SMALT v. 0.2.6 (Ponstingl, 2014). Expression levels for the C. owczarzaki TE families were

taken from (Carr and Suga, 2014).
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5.3 Results

5.3.1 Transposable element families show biased synonymous codon usage in

three holozoan species

For the TE codon usage analysis, a remarkably similar association between GC3s and Nc was

observed for the TE ORFs of S. rosetta and C. owczarzaki (Appendix D). As only three LTR

retrotransposon families were found in M. brevicollis, it could not be determined if the TEs followed

the same trend (Appendix D).

In contrast to earlier studies on TE codon usage, which have reported an AT preference in a

broad range of eukaryotes (Lerat et al., 2002; Jia and Xue, 2009), the TE families all exhibit an

excess of GC-ending codons (Table 5.1 and 5.2). A stronger GC3s bias is observed in the LTR

retrotransposons than for DNA transposons for S.rosetta and C. owczarzaki (Figure 5.1 and 5.2

and Table 5.1 and 5.2). GC-bias in synonymous 3rd positions in LTR retrotransposons is reflected

in their stronger codon usage bias. A strong negative correlation was seen between GC3s and Nc

of the TEs in S. rosetta, when reviewed separately to host genes, with GC3s value increased in

families with stronger codon usage bias (a smaller value of Nc) (R2= 0.831) (Figure 5.1). A much

weaker negative relationship was observed in C. owczarzaki (R2= 0.486), with no relationship seen

in M. brevicollis (Figure 5.2 and 5.3).

For the S. rosetta TEs, the mean Nc for LTR retrotransposon families (45.40±5.59) is similar

to the genome-wide mean Nc (44.79±5.37); however, the mean Nc for DNA transposon families

(52.19±4.37) was found to be higher, and therefore evidence of less bias for the class II elements

(Table 5.1). Similarly, in C. owczarzaki the mean Nc value for LTR and non-LTR retrotransposon

families (46.34±3.87;44.49±1.76) was close to the genome-wide mean Nc value (47.60±6.45)

(Table 5.2). The DNA transposons showed a higher mean Nc value, as seen in S. rosetta, of

52.84±2.69, and therefore showed less bias. For M.brevicollis, the mean Nc value for the genome,

reflected that seen for the TE families, with a genome value of 48.05±5.62, and a similar TE value

of 48.83±1.74 (Table 5.2).
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Table 5.1: Codon usage statistics for the LTR retrotransposon and DNA transposon families in the
S. rosetta genome. Mean values for GC3s, Nc and Fop are listed for each class of TE.

Family GC3s Nc Fop
LTR retrotransposon
Families
Sroscv1 0.634 49.14 0.541
Sroscv2 0.627 45.28 0.56
Sroscv3 0.592 55.5 0.509
Sroscv4 0.763 41.99 0.648
Sroscv5 0.702 46.23 0.592
Srosgyp1 0.791 40.27 0.667
Srosgyp2 0.768 40.14 0.63
Srospv1 0.682 46.83 0.574
Srospv2 0.784 38.09 0.661
Srospv3 0.804 37.1 0.686
Srospv4 0.57 48.09 0.407
Srospv5 0.639 49.19 0.509
Srospv6 0.613 52.27 0.477

Mean=0.690±0.083 Mean=45.40±5.59 Mean=0.574±0.08
Transposon Families
SrosH 0.743 44.84 0.595
SrosM 0.609 53.73 0.428
SrosT1 0.71 49.44 0.589
SrosT2 0.647 50.8 0.525
SrosT3 0.53 58.55 0.426
SrosTig1 0.578 54.9 0.493
SrosTig2 0.583 53.05 0.465

Mean=0.629±0.080 Mean=52.19±4.37 Mean=0.503±0.070
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Table 5.2: Codon usage statistics for the all transposable element families in the M. brevicollis and
C. owczarzaki genome. Mean values for GC3s, Nc and Fop are listed for each class of TE.

Family GC3s Nc Fop
M. brevicollis
Mbcv 0.659 48.45 0.588
Mbpv1 0.618 50.73 0.570
Mbpv2 0.606 47.31 0.583

Mean=0.627±0.028 Mean=48.83±1.74 Mean=0.580±0.009
C. owczarzaki
LTR retrotransposon Families
Cocv1 0.698 45.33 0.442
Cocv2 0.600 51.78 0.436
Cocv3 0.698 48.59 0.446
Cocv4 0.747 43.97 0.562
Cocv5 0.620 42.03 0.572

Mean=0.672±0.061 Mean=46.34±3.87 Mean=0.491±0.070
Non-LTR retrotransposon Families
CoL1 0.711 46.08 0.505
CoL2 0.714 42.34 0.57
CoL3 0.694 44.03 0.534
CoL4 0.695 45.9 0.551

Mean=0.704±0.010 Mean=44.59±1.76 Mean=0.540±0.028
DNA transposon Families
Com1 0.635 54.59 0.428
Com2 0.602 53.79 0.46
Cop1 0.636 53.96 0.471
Cop2 0.656 51.73 0.492
Cop3 0.627 54.28 0.434
Cop4 0.582 56.33 0.401
Cop5 0.634 54.72 0.44
CoTc1 0.662 51.53 0.521
CoTc2 0.714 46.99 0.575
Cobalt1 0.597 52.86 0.456
Cobalt2 0.616 52.23 0.488
Cobalt3 0.659 47.82 0.526
CoCACTA1 0.512 53.33 0.318
CoCACTA2 0.626 55.64 0.471

Mean=0.626±0.046 Mean=52.84±2.69 Mean=0.463±0.06
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Figure 5.1: Relationship between GC3s and Nc for the 20 TE families in the S. rosetta genome. A
linear trend line, with R2 value was added to the graph to assess the strength of the negative relationship.
LTR retrotransposons are shown in red, and DNA transposon families in blue.

The LTR retrotransposons in the choanoflagellate species showed an association between

copy number and the strength of codon usage bias (Figure 5.4 and 5.5), with high copy number

families tending to show stronger codon usage biases than low copy number families. M. brevicollis

families were found to have the greatest association between Nc and copy number (R2=0.994),

whereasS. rosetta showed a weaker negative relationship (R2=0.314) (Figure 5.4). No relationship

was observed between strength of bias and copy number for both LTR and non-LTR retrotransposon

families in the filasterean species (R2=0.018) (Figure 5.4).

A similar trend was seen between Fop and copy number, with a positive correlation observed

between family copy number and Fop in both S. rosetta and M. brevicollis (R2=0.306;0.604),

whereas no correlation was seen for C. owczarzaki (R2=0.0035) (Figure 5.5). However, within

C. owczarzaki, if you categorise the Class I elements further to LTR retrotransposons and non-LTR

retrotransposons, the four non-LTR retrotransposon families also show a strong positive relationship

between Fop and copy number (R2 = 0.962, Appendix D). In all three holozoan species, the DNA

transposons showed to have weaker/no such association between copy number and codon usage

bias (Fop/Nc) (Appendix D).
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Figure 5.2: Relationship between GC3s and Nc for the 23 TE families in the C. owczarzaki genome.
A linear trend line, with R2 value was added to the graph to assess the strength of the negative relationship.
LTR retrotransposons are shown in red, and DNA transposon families in blue.

Figure 5.3: Relationship between GC3s and Nc for the 3 TE families in the M. brevicollis genome. A
linear trend line, with R2 value was added to the graph to assess the strength of the relationship.
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Figure 5.4: Relationship between copy number of LTR retrotransposon families and effective number
of codons (Nc). Copy number of LTR retrotransposon families was plotted against Nc for all three holozoan
species investigated.
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Figure 5.5: Relationship between copy number of LTR retrotransposon families and frequency of
optimal codons (Fop). Copy number of LTR retrotransposon families was plotted against Fop for all three
holozoan species investigated.
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5.3.2 Evaluating the role of mutation pressure on codon usage bias

The codon usage of TE families in S. rosetta, M. brevicollis and C. owczarzaki is likely to be driven

by one of three mechanisms; as discussed in Chapter 3. For all three species, genetic drift cannot

be discarded, however it would appear that drift as the main driver of codon usage is unlikely, as

the mechanism is a random process, and all TE families show an excess of GC-ending codons,

which does not appear random (Table 5.1). The exception to this was Srospv4 in S. rosetta, where

the family was found to have a GC3s value of <0.58, and Fop value of 0.407, which was found to

be lower than the other TE families in all species investigated (Table 5.1). Southworth et al. (2018)

uncovered the tRNA genes for the three holozoan species, allowing the identification of amino

acids which are bias towards using the codons that complement the major tRNA gene transcripts.

Abundant codons were determined for each TE family and compared to the major tRNA genes of

the host species identified in Chapter 4. In all three species TE families, the majority of amino acids

employed preferred codons that complement the major tRNA genes (Appendix D) (Southworth

et al., 2018), suggesting that codon usage in all families has been shaped by the host translational

machinery in order to facilitate efficient translation.

If mutation pressure was driving codon usage bias from AT to GC would be expected to influence

non-coding TE DNA, in addition to synonymous 3rd codon positions. It was found that for S. rosetta

there was no observed relationship between the non-coding GC-content and GC3s across all of

the TE families (R2=0.033) (Figure 5.6; A). The families were categorised to observe relationships

within classes and groups, as well as for all mobile elements, as the different families may be under

different constraints within the host genome. The copia-like families do not show a relationship

between GC3s and non-coding GC-content (R2=4E-07), indicating that mutation pressure is not

a major driver of codon usage bias within the six families (Figure 5.6; B). However, a positive

correlation was observed between non-coding GC-content and GC3s for the chromoviral families

(R2=0.519), therefore it appears that within these families mutation pressure towards guanine and

cytosine contributes towards codon usage bias as both coding and non-coding DNA exhibit similar

GC-bias (Figure 5.6; C). In contrast, the transposon families were found to show no relationship

between non-coding GC-content and GC3s (Figure 5.6; R2=0.043), indicating that mutational

pressure does not drive codon usage bias for these families. Firm conclusions are difficult to draw

from the non-chromoviral gypsy-like families, Srosgyp1 and Srosgyp2, as there were only two

families. The families show an inverse relationship between non-coding GC-content and GC3s,
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which does not appear to be consistent with mutational pressure driving codon usage (Table 5.1)

(data not shown).

For C. owczarzaki, similar patterns were seen between non coding GC-content and GC3s. As

with S. rosetta, no correlation is seen for all TE families between GC3s and non-coding GC content

(R2=0.081) (Figure 5.7). In contrast, the chromoviral families were found to show the strongest

positive trend (R2=0.650), with non-LTR retrotransposons showing weak associations between

GC3s and non-coding GC, and DNA transposons showing no association (R2=0.350;0.014). With

this, as seen in S. rosetta it is suggested that the chromoviral families mutation pressure towards

guanine and cytosine which contributes to codon usage bias, and that the other TE families are

not subjected to the same proposed mutational bias.

Only three TE families are present in M. brevicollis, and therefore the trends observed are

speculative. However, a positive correlation was seen between GC3s and non coding GC content,

which supports that all families in the choanoflagellate are driven by mutation pressure of cytosine

and guanine, as seen in the chromoviral families inS. rosetta andC. owczarzaki (R2=0.857) (Figure

5.8).
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Figure 5.8: Relationships between GC3s and GC- content of non-coding DNA for transposable
element families inM. brevicollis genomeGC3s values for all 3 transposable element families was plotted
against GC content value of non-coding DNA for each family. Non-coding DNA included LTRs and UTRs
which were family specific.

5.3.3 Evaluating the role of natural selection on translational efficiency

Of the TE families within the S. rosetta,C. owczarzaki and M. brevicollis genomes, it was found

that only the chromoviruses showed evidence for codon usage bias being influenced by mutation

pressure, and LTR retrotransposons inM. brevicollis. However, values of Fop indicate that selection

may be operating upon TE codon usage in S. rosetta, as both LTR retrotransposon and DNA

transposon families are enriched for optimal codons (mean Fop = 0.574± 0.08;0.503± 0.070, Table

5.1). The same trend is seen in both C. owczarzaki and M. brevicollis. All class of TE in C.

owczarzaki were found to be enriched for optimal codons when reviewing Fop values for LTR

retrotransposon, non-LTR retrotransposon and rransposon families (mean Fop = 0.491±0.070;

0.540±0.028; 0.463±0.06) (Table 5.2). M. brevicollis showed the highest value of Fop, with a mean

score of 0.580±0.009 (Table 5.2).
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Figure 5.9: Relationship between number of sequencing reads against Fop for the TE families in the
S. rosetta genome The trend line and x axis were calculated using a logarithmic scale. A) All TE families;
B) copia-like families; C) copia-like families, without Srospv6; D) DNA transposon families.

Translational accuracy or efficiency can be driven by selection, with the accuracy observed

in even weakly biased genes in the three holozoan species. Southworth et al. (2018) provided

evidence for selection influencing translational efficiency on host genes, by the positive association

observed between gene expression level and the strength of codon usage bias (dos Reis and

Wernisch, 2009; Southworth et al., 2018). This relationship was investigated here, reviewing the

TE families per species against RNAseq reads. For S. rosetta, plotting the number of reads against

Fop for the chromoviral families revealed a positive relationship (R2=0.599), indicating that both

mutation pressure and selection for translational efficiency interplay to determine codon usage

for the families (Figure 5.9). Within the copia-like families, only a weak positive relationship was

observed between expression level and Fop (R2=0.115) (Figure 5.9). Srospv6 was an outlier

amongst the copia-like families, with a high level of expression despite only being present as

a single copy within the genome. If this family was excluded from the analysis the association

between Fop (Figure 5.9) and the number of sequencing reads became considerably stronger

(R2=0.600), suggesting that selection for translational efficiency plays a role in their codon usage

bias. The transposon families did not show a positive relationship between Fop and expression;
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the negative relationship that was recovered however was very weak (R2=0.331) (Figure 5.9).

However, when the DNA transposon families were further categorised, the unclassified transposons

(SrosT1-T3) were found to show a stronger negative correlation between Fop and expression

levels (R2=0.825).

Figure 5.10: Relationship between number of sequencing reads against Fop for the unclassified
transposon and Tigger families in the S. rosetta genome. The trend line and x axis were calculated
using a logarithmic scale. A) Unclassified transposon families; B) Tigger families.

In contrast, forC. owczarzaki, no relationship was observed between Fop values and expression

for all TE families (Figure 5.11). The strongest correlation was observed between Fop and RNA

reads forC. owczarzaki, with a negative trend with an R2 value of 0.324 for the LTR retrotransposon

families, however this is still a weak association (Figure 5.11).

Southworth et al. (2018) showed that the majority of anticodons from the major tRNA genes

were complementary to host gene optimal codons in S. rosetta, M. brevicollis and C. owczarzaki.

This is consistent with selection for translational efficiency, as the most abundant tRNA molecules

will be available to bind to optimal codons thereby facilitating rapid protein synthesis. The most

abundant, or preferred, codons for each amino acid in each family are shown in Appendix D. No

TE families were found to show a perfect match between optimal codons and the S. rosetta major

tRNA genes. However, some of the families appear to be highly adapted to the host translation

machinery with 17 out of the 18 degenerate amino acids showing a match between the preferred

codon and either the major tRNA gene or a host optimal codon. These included Sroscv4, Srospv2

and Srospv3. The remaining families showed a similar adaptation, with the weakest correlation for

the families of Srosp4, Srospv6, SrosT3 and SrosTig1,however the amino acids were still found to

match the host species major tRNA genes 12 out of the 18 amino acids (Appendix D).
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A similar trend was observed for C. owczarzaki TE families, with all families found to show

complement between the majority of optimal codons for the elements, and major tRNA genes of

the host. The identified families found to be highly adapted to the host translation machinery are

Cocv4, Cocv5, CoL2, CoL4 and Cop2, with 17 out of 18 degenerate amino acids optimal codons

found to match the tRNA gene anticodons identified in the C. owczarzaki genome.

Similarly, the three families of M. brevicollis were found to show high complement between

optimal codons and tRNA genes of the host. Mbpv2 was found to have the highest complement,

with 17 out of 18 codons matching the host tRNA genes.
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5.3.4 Evaluating the role of natural selection on translational accuracy

Selection for translational efficiency is likely to affect codons across entire transposable element

ORFs, however if selection is operating at the level of translational accuracy one expectation

is that codons encoding functional domains will show stronger selection than other regions of

genes. Southworth et al. (2018) observed evidence for selection on translational accuracy all three

holozoan species. Translational accuracy was even inferred for the most weakly biased genes in

the S. rosetta genome.

In contrast to the host genes, the gypsy families in the S. rosetta genome show very similar

values of Fop in concatenated domain and non-domain codons ( Figure 5.12, Appendix D), indicating

that there is no clear evidence that the genes are evolving under translational accuracy. The

copia-like families appear again to differ from the gypsy families, as the pseudovirus elements

show elevated Fop in domain regions when compared to non-domain codons for all families, except

Srospv6 (Figure 5.12).The results are therefore consistent with selection for translational accuracy

playing an important role in codon usage bias within the copia-like families.

No functional domain could be identified with SrosT2, however across five of the transposon

families domain regions of ORFs showed elevated Fop compared to the non-domain codons

(Figure 5.13). The only exception was seen for SrosT3, where elevated Fop was seen in non

domain regions of the mobile element. The data shows that, with the probable exception of gypsy

families, selection for translational accuracy plays a role in determining codon usage in the majority

of S. rosetta TE families (14/19 families included in the analysis).

For C. owczarzaki, the LTR retrotransposons, less of a pattern emerged, within consistent

Fop values per family. The chromoviral families were unresolved, with Cocv4 and Cocv3 having

elevated Fop values for domain codons, but the remaining three families having elevated Fop

for non-domain codons. The majority of non-LTR retrotransposons presented elevated Fop for

domain regions, except CoL1 (Figure 5.14). However, the same pattern observed in S. rosetta

DNA transposon families was seen for the class II elements of C. owczarzaki, except Cobalt1,

that the functional domains Fop value was greater than the non-domain codons (Figure 5.15).

CoCACTA2 was not included in analyses, as no functional domain could be identified.
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The associations were also reviewed in the three LTR retrotransposon families in M. brevicollis

(Figure 5.16). For all families, the value of Fop was elevated in domain codons, compared to

non-domain. This supports that the TE families in M. brevicollis are under selection pressure for

translational accuracy, in line with both the majority of S. rosetta and C. owczarzaki families.

Figure 5.16: Relationship between Fop values in domain and non-domain codons for LTR
retrotransposons families in M. brevicollis
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5.4 Discussion

5.4.1 Analysis of codon usage bias in transposable element families of three holozoan

species

As outlined in Southworth et al. (2018), the whole genome availability of the three holozoan species

gave insight into the codon usage of the unicellular protists, and which evolutionary forces drive

bias in the species host genes. Even though the last common ancestor of the three species is

predicted to be over 1 billion years ago (Parfrey et al., 2011), it was found that patterns of codon

usage was highly conserved in the choanoflagellates and C. owczarzaki (Southworth et al., 2018).

Following the analysis outlined for this project, it was found that each species’ TE families were

also found to show similar patterns of codon usage, with conservation observed across the three

holozoan protists.

The TEs of the holozoan species were found to show an overall GC preference, which was in

contrast to the majority of previous literature that uncovered an AT bias in TE families of varied

eukaryotic taxa (Lerat et al., 2002; Jia and Xue, 2009). Similar patterns were drawn between

the holozoan species families, and the bias patterns seen in Phytophora elements, as described

by Jiang et al. (2006). All families were found to be GC-rich at synonymous third positions, with

average GC3s values over 0.62 (Table 5.1 and 5.2). As the bias for GC at the 3rd position is also

seen in the mobile elements of the three holozoan species, this would also support that codon bias

is driven by natural selection, but could also be a signature for mutation bias. However, the mean

non coding GC content of mobile elements for each species ranged between 0.49-0.52, which

does not support that mutation pressure has a major influence codon usage bias, as a preference

to GC in non coding DNA of th elements is not seen.

Furthermore, for the TE families of S. rosetta and C. owczarzaki, a strikingly similar trend was

observed between GC3s and Nc, when compared to the host genes in Southworth et al. (2018).

This could not be determined for M. brevicollis, as only three LTR retrotransposon families have

been uncovered in this choanoflagellate species, so any trends observed are speculative. The

conservation between host codon usage bias, and the bias indicated by the TE families suggested

that the elements are influenced by the same selection pressure observed in the holozoan species

(Southworth et al., 2018). However, the patterns seen could be driven by a variety of forces, and

therefore, the signatures for both selection and mutation bias were reviewed here.



194 Chapter 5. Codon usage of transposable element families in three holozoan species

5.4.2 Selection for abundant codons is a driver of codon usage bias

The first line of evidence supported that codon usage is driven by natural selection for translational

accuracy, in the TE, as well as the host genes, as seen in (Southworth et al., 2018). In order

to assess the contribution of selection on translational accuracy, the codons which encode amino

acids in functional domains were separated from those that encode non-domain amino acids for all

TE families. Domain regions were identified by analysing each Pol and Tnpase protein sequence in

BLASTp through NCBI. Fop values were then determined for the domain and non-domain codons

in each family. For the three holzoan species, it was found that functional domains were found

to be enriched by optimal codons in the majority of TE families, however the pattern was not as

consistent as seen in Southworth et al. (2018) for the host genes. For TEs which showed a higher

level of Fop in domain codons, the findings supported that selection for translation accuracy seems

to be driving codon usage bias in the mobile elements of the unicellular protists, as well as the

host genes. However, in chromoviral families, values of Fop were found to be similar for domain

and non-domain codons. This finding supports that the chromoviruses could be evolving under

different selection pressures compared to the host genes, and other TE families. Mutation bias

would influence the frequency of optimal codons in elements, however little difference would be

seen between domain and non-domain regions within the TE. The results uncovered therefore

support that mutation bias could be driving bias in the chromoviruses rather than selection for

accuracy.

5.4.3 The role of mutation bias on the TEs of the three holozoan species

Little evidence was found to support mutational pressure in the three holozoan species (Southworth

et al., 2018), and a similar trend was uncovered for the majority of TE families investigated here.

However, evidence to suggest mutation may be driver of codon usage bias was observed for the

chromoviral families of S. rosetta and C. owczarzaki, as well as three families in M. brevicollis.

Positive correlations between GC3s and non-coding GC content was found chromoviruses and

families of M. brevicollis, which the weakest association seen for S. rosetta (R2=0.519) (Figure

5.6), followed by C. owczarzaki (R2=650), and the strongest relationship between the M. brevicollis

TE families (R2=0.857).

Jia and Xue (2009) outlined evidence for multiple evolutionary pressures influencing TE families

in two plant species (Oryza sativa and Arabidopsis thaliana), with the combination of selection and
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mutation bias driving codon usage in the mobile elements. It is proposed that the same could be

said for the chromoviruses reviewed here. Overall, the chromoviral families show greater codon

usage bias, in comparison to the other families in the holozoan species. Although the relationship

was not strongly supported by an R2 value, it is still evident that a positive correlation is found

between GC-content of non coding DNA and overall GC3s for the mobile elements, which supports

that the GC preference has shaped the codon usage of the entirety of the full length elements.

5.4.4 Concluding remarks

Of the three species studied, S. rosetta TEs show the strongest level of codon usage bias, followed

byC. owczarzaki elements, with the second choanoflagellateM. brevicollis retrotransposons having

the weakest level of bias based on Nc and Fop values. However, although M. brevicollis showed

the weakest codon usage, it was the only species to show a relationship between GC3s and

non-coding GC (R2= 0.857) (Figure 5.8), which supported that mutation pressure may also be

driving bias in mobile elements of the choanoflagellate species . Several TE families were found

to show signatures for selection as seen in the host genes of the holozoan species (Southworth

et al., 2018). However, contrasting patterns were seen for the chromoviral families, which have

signatures of mutation pressure, but limited evidence for selection.

Overall, it was found that LTR retrotransposon families typically have higher values of Fop

and GC3s (Table 5.1 and 5.2). Evidence for recent transposition previously noted in Chapter 3

for S. rosetta, and Carr and Suga (2014) for the elements of C. owczarzaki, would suggest that

retrotransposons may be more active than DNA transposons in the two holozoan protists. As

the transposons uncovered in M. brevicollis may be pseudogenes, only values for the known LTR

retrotransposons were reviewed here and therefore superfamily comparisons can not be drawn for

the choanoflagellate species. The duplicative nature of retrotransposons may be an explanation

as to why codon usage is found to be greater in the class I elements. It is thought that mobile

elements individual copies are expected to evolve under a neutral model within the host genome,

and the family as a whole may be evolving under selection. With this, it could be plausible that the

utilisation of optimal codons observed in the class I elements may be as a result of a greater rate

of transposition within the host species.

The TE analysis outlined in this project highlighted the influence of natural selection as the

driver of codon usage in mobile elements, as well as host genes (Southworth et al., 2018), in the
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three holozoan species. Despite the distant ancestry, codon usage has remained conserved in the

choanoflagellates and the filasterean, indicating that GC-bias have been selected for translation

accuracy in premetazoan species, and that TE are also under the same selective forces. Further

research on a variety of unicellular eukaryotes would be required to determine if selection is the

main driver of codon usage in other holozoan species. Previous research has provided evidence

against selection for TEs within the Opisthokonts, such as the Ty elements of S. cerevisiae (Lerat

et al., 2002). Therefore, hopefully the work here will inspire further non-domain analyses of codon

usage of mobile elements to determine if selection bias is more prevalent in unicellular eukaryotes

than first thought.
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Chapter 6

Discussion

The field of evolutionary genomics is expansive, and adaptive, with advances in bioinformatic

technology employed to refine methods to produce the most accurate and objective outcomes.

As sequencing methods have become more accessible to researchers, it is found that very few

taxonomic groups do not have multiple species representatives with genome availability. Prior

to the findings reported here, the genus Kazachstania and choanoflagellate species S. rosetta,

had limited information regarding genomic characteristics, including codon usage bias, and TE

annotation. The work presented throughout this thesis has allowed for comparative genomics of

novel yeast species, as well as three holozoan protists.

6.1 Genomic survey of novel Kazachstania species

The genus Kazachstania is a branch of the Saccharomycetaceae superfamily which was found

to have limited genome availability. To address this limitation, the genomes of four Kazachstania

species were de novo sequenced via PacBio sequencing: K. bovina, K. exigua, K. lodderae and

K. viticola, selected for their diverse placement in the species phylogeny established by Kurtzman

(2003). The genomes of four additional species (K. africana, K. naganishii, K. saulgeensis and

K. servazzii) were publicly available at the time of this research; however little examination of the

genus had previously been performed. Chapter 2 therefore details the genomic exploration of all

eight species.

As outlined in Chapter 2, K. exigua revealed unexpected genome characteristics, with a much

greater genome size of 24.8Mb, and a total number of 9964 coding genes annotated which far

exceeded all other currently sequenced Kazachstania species. It was found that the increased

genome size of K. exigua could not be attributed to whole genome duplication as seen in other

species (Wolfe et al., 2015), or differing ploidy. The orthologous review of K. exigua found that
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86% of genes were annotated and therefore assumed to be functional, with no duplicated areas

of the genome uncovered. However, syntenic blocks were assessed between K. exigua and the

other Kazachstania species, and no evidence of a duplication event was found.

Typically, synteny is documented to be strongly conserved within the Saccharomycetaceae

family (Wolfe et al., 2015; Dujon and Louis, 2017). The work here found that all Kazachstania

species, with the exception of K. exigua, were found to fit within the typical characteristics of

Saccharomycetaceae species. As detailed in Chapter 2, genomic size ranged between 10.8Mb

and 13Mb, with total number of coding genes also highly conserved, from 5300-6000 genes.

However, it was found that the revealed data did not fit the general trend of Saccharomycetaceae

species, with yeast members of the family with a genome size ranging from 10 - 13Mb, and total

number of coding genes from 4500 - 6500 genes (Dujon and Louis, 2017). Further comparative

study would need to be reviewed to construct a plausible explanation as to why the Kazachstania

species genomic characteristics are so vastly different. As discussed in Wolfe et al. (2015), the

understanding of Saccharomycetaceae genome evolution will remain unresolved as many clades

do not have multiple strains per species. With this, it is known that intraspecies polymorphism of

gene content is extensive (Song et al., 2015; Wolfe et al., 2015). However, the worked presented

in Chapter 2 provided a detailed insight into genus specific characteristics that had previously not

been explored. The additional genome sequences constructed have doubled the WGS availability

for the genus, with eight species now sequenced for comparative study.

6.2 TE review in unicellular eukaryotes

Consistent with previous investigations into the TE content of Saccharomycetaceae (Kim et al.,

1998; Carr et al., 2012; Bleykasten-Grosshans et al., 2013), Kazachstania species were found to

have LTR retrotransposons, with a complete absence of DNA transposons documented for all eight

species. With regards to TE content, the newly sequenced Kazachstania species were found to

have a greater overall genomic TE content, equating to >2% in three of the four species, similar

to the S. cerevisiae reference strain (S288c) (Carr et al., 2012). In contrast, the publicly available

Kazachstania species, were found to have a smaller TE genome content percentage, ranging from

0.15-0.70%. Although the overall percentage of TEs is relatively low in Kazachstania species, copy

number, as well as content, was seen to be greater in the three of the four Kazachstania species

sequenced here. Although diversification is expected across a genus in relation to TE content and
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proliferation, as seen in many host yeast species across the superfamily (Neuvéglise et al., 2002),

another explanation that was considered to explain the variation is the sequencing method for the

genomes.

The work detailed here, included PacBio sequencing of four novel yeast species, K. bovina, K.

exigua, K. lodderae and K. viticola. In contrast, K. africana, K. naganishii, K. saulgeensis, which

were downloaded from NCBI (Sayers et al., 2009), were all sequenced via Illumina sequencing.

Sequencing methods have vastly developed since the first eukaryotic genome sequencing of S.

cerevisiae, and with this, contention has been expressed to depict which platform provides the most

accurate genome sequencing (Liu et al., 2012). Furthermore, TE annotation is typically homology

based, and therefore the quality of sequencing and assembly of the query genome is paramount

to the validity of the results. The two platforms detailed in Chapter 2, were analysed regarding TE

annotation due to interspecies availability for the Kazachstania species, K. servazzii. The public

availability of the K. servazzii allowed for interspecies comparison, as two strains were available

for this species with different sequencing methods; K. servazzii (CBA6004) was sequenced using

Illumina, and K. servazzii (SRCM102023) was sequenced with PacBio sequencing. Prior to the TE

annotation in Chapter 2, it was initially considered that due to the increased read length of PacBio

sequencing, that TE annotation would be more accurate with the employment of this sequencing

platform. However, interspecies comparison of two K. servazzii strains, found a small difference in

TE genome content of 0.15% between sequencing methods. With this, the findings did not support

that the PacBio is necessarily more accurate for assembly, and thus TE annotation.

Chapter 3 detailed the repertoire of TEs uncovered in the choanoflagellate species, S. rosetta.

The genome TE annotation revealed a minimum of 20 TE families, with both retrotransposons and

DNA transposons families uncovered. S. rosetta was found to have a more diverse TE range in

comparison to the first publicly available choanoflagellate species, M. brevicollis (Carr, Nelson,

Leadbeater and Baldauf, 2008), as well as My. fluctuans, which was assessed using ESTs by

Carr, Nelson, Leadbeater and Baldauf (2008), . However, as only two choanoflagellates species

currently have whole genome availability, patterns of TE abundance can not be drawn for the

class at present. However, Chapter 3 explored plausible hypotheses to explain the increase in TE

abundance and genome percentage content.

As the sister group to the metazoans (King, 2005), it would be presumed that TE families in

choanoflagellates would be diverse, if elements were found to be inherited vertically, in line with
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the known abundance in the majority of metazoan species (Kidwell and Lisch, 1997; Arkhipova

and Morrison, 2001). Alternatively, the proliferation of TEs seen in metazoans could be due

to expansive transfer events to allow for proliferation within this kingdom, however this seemed

less plausible. If ancestral choanoflagellates to Metazoa were found to have mobile elements

in abundance, the decreased number of families documented in M. brevicollis (Carr, Nelson,

Leadbeater and Baldauf, 2008), is due to loss within this species. Comparatively, it is also found

that S. rosetta can present multicolonal, whereas M. brevicollis only has a single unicellular form

(King et al., 2008). The multicellular colonies of S. rosetta could result facilitation of HTT within

the species, reducing the chance of stochastic loss that is hypothesised to have occurred in M.

brevicollis.

The wider repertoire of elements detailed in Chapter 3 for S. rosetta shows closer similarity to C.

owczarzaki, with 23 families revealed in the filasterean species (Carr and Suga, 2014). However,

Carr and Suga (2014) found that the elements uncovered in C. owczarzaki had closely related

orthologous families in other species of Opisthokonta, which supported the presence of diverse

TEs in the last common ancestor of the opisthokonts. In contrast, the work here found that S.

rosetta elements showed a more complex inheritance pathway. In Chapter 3, the majority of

elements were predicted to be acquired by vertical transfer, with the exception of SrosT1, which

revealed evidence to support acquisition by horizontal transfer. The work supported the transfer to

be facilitated betweenS. rosetta and a stramenopile donor species. Horizontal transfer events have

been previously documented in choanoflagellate species (Yue et al., 2013; Tucker et al., 2015),

with varied unicellular donor species, which have been acquired via a predator-prey relationship

(King, 2005). Phagocytosis of unicellular prey species would enable the transfer of genetic material

between organelles, allowing for transfer across species barriers. The potential transposon family

of M. brevicollis (MbT1) uncovered in Chapter 3, would support that the horizontal transfer was

ancient within the choanoflagellate lineage.

The work uncovered in Chapter 2 and 3 found that all Kazachstania species and S. rosetta

revealed both gypsy and copia elements, with a higher abundance of gypsy elements found in

yeast species, and copia elements with higher copy number revealed in the choanoflagellate. The

abundance of gypsy elements in yeast species provided further support to the exhaustive research

which has revealed the proliferation of this TE family in several other fungal species (Kim et al.,

1998; Muszewska et al., 2011; Wolfe et al., 2015). In addition, the S. rosetta TE annotation here
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has added to a limited dataset of choanoflagellate species which would continue to be expanded

upon genome availability. With the presence of both classes of TE families in both choanoflagellate

species, the work has provided further support that the last common ancestor of the two species

possessed class I and class II elements.

Typically, TEs have been found to maintain high copy number in multicellular organisms, including

metazoan and plant species (Lu et al., 2017). It is noted that, the TEs found in the holozoan

species (the choanoflagellates and filasterean species C. owczarzaki) (Carr, Nelson, Leadbeater

and Baldauf, 2008; Carr et al., 2012), are present in low copy number, with only one family found to

show proliferation of over 100 copies within the S. rosetta genome. A similar observation was found

for the Kazachstania species, with TE copy number across the genus ranging from 1 - 30. It is

proposed that the protistan species are found to have large effective population sizes (Snoke et al.,

2006), and therefore are more likely to allow elimination mechanisms of individual TE insertions

within a species. The same theory could be plausible for the yeast species, with presumed large

effective population size (Tsai et al., 2008), who present with active elements with low copy number.

However, as no population data is available for Kazachstania, the theory can not be extrapolated

to multiple species in different genera.

6.3 Codon usage in unicellular eukaryotes

Presented here is the first work on the comparative analysis of codon usage patterns for the

genus Kazachstania. The findings have provided an insight to the evolution of bias in these

species and high conservation was seen with S. cerevisiae (Sharp et al., 1986). In all degenerate

amino acids, except leucine, identical optimal codons were employed for S. cerevisiae (Sharp

et al., 1986) and K. africana, K. exigua, K. lodderae and K. viticola. Variation was observed in

species K. bovina and K. naganishii, which showed contrasting patterns of codon usage. Chapter

2 outlined that K. bovina showed the greatest overall bias, however, optimal codons had lower

complement to the major tRNA genes of the species compared to the other Kazachstania species.

Furthermore, K. naganishii was found to show a preference for GC-ending codons, compared to

an overall AT-preference uncovered for the other Kazachstania species. Predominantly, as seen

in S. cerevisiae (Sharp et al., 1986), the results of Chapter 2 revealed signatures of selection were

seen for the Kazachstania species. Firstly, the major tRNA complementing the CodonW optimal

codons for the Kazachstania species points to selection being a driver of codon usage bias, as well
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as the support provided by the reciprocated optimal codons defined by correspondence analysis

and abundant codons of EF1a. However, although markers for selection have been uncovered,

mutation bias cannot be dismissed as a driver of codon usage bias. With no evidence reviewed

to eliminate mutation for the Kazachstania species, it can not be concluded that selection is the

main driver of codon usage. However, from the trends documented, it is plausible that selection is

a contributor of bias in the yeast species.

In Chapter 2 and 4, the review of codon usage bias in the unicellular eukaryotes revealed high

conservation across the Kazachstania species, as well as the holozoan species (Southworth et al.,

2018). In contrast, as outlined by Southworth et al. (2018), selection is seen to be the main driver

of codon usage bias in holozoan species, with conservation observed in the three protists host

genes, as well as evidence to discount a mutational model driving bias. Signatures for selection

included a significant difference observed in between GC3s and non-coding GC, as well as a higher

frequency of optimal codons found in domain regions of host genes (Southworth et al., 2018). The

work of Southworth et al. (2018) was repeated here, as well as analysis of bias categories for 1%

of the host genes, rather than 5% which was analysed previously. Chapter 4 showed that the

decrease in bias category was found to have little effect on the trends and results published by

Southworth et al. (2018). The finding supported that the smaller bias categories were found to be

representative of the data..

Novoa et al. (2012) stated that studies have claimed that the most accurate measure of codon

usage bias across diverse organisms is by the measure of GC content across species. The work

of Chapter 4 explored this, and a conserved GC-preference for the holozoan species, which was in

contrast to the Kazachstania species, who predominantly showed an AT-bias for host genes based

upon correspondence analysis. In Chapter 2, a positive correlation was observed between Nc and

GC3s which supported that genes of greater bias were found to harbour AT-ending codons. The

AT-preference seen in Kazachstania species was an expected finding, with similar trends observed

in closely related yeast species (Sharp et al., 1986; LaBella et al., 2019).

Although a striking contrast is seen between nucleotide preference, a similarity is drawn between

the unicellular species for deamination. Evidence for deamination of adenosine was uncovered

in all species reviewed for codon usage through the review of tRNA major genes anticodons,

and the optimal codons calculated by CodonW based on correspondence analysis. Southworth

et al. (2018) found that the most abundant major tRNA genes of two-fold degenerate amino acids
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were found to be complementary to the optimal codons of S. rosetta, C. owczarzaki and all amino

acids except lysine M. brevicollis. For all amino acids over two-fold degeneracy, the tRNA genes

were found to have adenosine at the wobble position, with the majority of optimal codons found

to reveal cytosine at the degenerate position (Southworth et al., 2018). Findings showed that

complementation could be found through the deamination of the major tRNA genes. As described

in Chapter 4, through tRNA modification, adenosine at the wobble position would be converted to

inosine, which would allow for pairing with cytosine by standard base pairing (Southworth et al.,

2018). Similarly, evidence for tRNA modification was also uncovered in all Kazachstania species,

in high degeneracy amino acids. Ile, Leu, Seri, Thr and Val, were revealed to have adenosine at

the wobble position allowing for complementary base pairing to optimal codons with cytosine at

the 3rd position, as seen in the holozoan species (Southworth et al., 2018). In other eukaryotic

organisms including species for metazoan, fungal and plant kingdoms, evidence to support tRNA

modification is extensive, with highly expressed genes found to be enriched with codons that are

complementary to tRNA molecules which have been deaminated (Rafels-Ybern et al., 2017; Novoa

et al., 2012).

As detailed in Southworth et al. (2018) it is suggested that deamination of tRNA molecules

evolved prior to multicellularity within Holozoa. However, deamination is proposed to have evolved

early within the opisthokonts, as the event has also been uncovered in fungal species, which

are outside of the holozoan grouping. The findings outlined in Chapter 2 revealed that evidence

of deamination is present in the Kazachstania species, as seen in S. cerevisiae (Gerber et al.,

1998). The findings of Chapter 2 that uncovered tRNA modifications in the Kazachstania species

have provided further insight into the evolutionary pathway of deamination, and that the usage of

modified tRNA molecules evolved early in the LCA of Holomycota. Furthermore, the evidence of

large-scale usage of deaminated tRNA molecules could be found to be an ancestral trait present in

the last common ancestor of the opisthokonts, with signatures for deamination uncovered in both

holozoan and Holomycota species.The work presented here, has provided further insight into the

necessity of tRNA modification in codon usage, and established an avenue for additional research

to depict the origin of the differentiating feature of translational efficiency.

LaBella et al. (2019) recently described codon usage bias across the budding yeast subphylum,

Saccharomycotina. In contrast to the work outlined here, which focused on a particular species, the

research addressed biodiversity across an entire subphylum for arching patterns of bias (LaBella
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et al., 2019). It is acknowledged that the research employed alternative methods for calculating

codon usage bias, and no specific trends were outlined for focused areas within the subphylum

(LaBella et al., 2019). In contrast, the work presented in Chapter 2 was more detailed, looking at

specific patterns between closely related species and the model organism, S. cerevisiae. LaBella

et al. (2019) found that the majority of genomes deviated from neutral expectation when examining

patterns between GC3s and Nc, as seen in the work described here. Furthermore, evidence of

selection for translational efficiency was found to be prevalent across the budding yeast genomes

of Saccharomycotina (LaBella et al., 2019), which supported the markers of selection uncovered

in the Kazachstania species.

6.3.1 Codon usage of mobile elements in unicellular opisthokonts

As with codon usage of the Kazachstania species, the work presented here is the first study of

codon usage patterns for the mobile elements uncovered in species of the genus Kazachstania, as

well as elements revealed in holozoan species S. rosetta, M. brevicollis (Carr, Nelson, Leadbeater

and Baldauf, 2008) and C. owczarzaki (Carr and Suga, 2014). In Chapter 2 and 5, codon usage

bias of mobile elements were predominantly found to mirror bias observed in the host genes for the

unicellular species reviewed. The work was found to uncover an AT-preference in the TE families

uncovered in Kazachstania species, and conservation was also seen between TEs and host genes

for the three holozoan species.

Although drivers of codon usage bias in the Kazachstania species are not clear, patterns of bias

were duplicated in the mobile elements of the yeast species. A bias towards AT-ending codons

in TE ORFs has previously been observed in other eukaryotic species, including yeast, plants

and metazoans (Lerat et al., 2002; Jia and Xue, 2009). With regards to evolutionary pressure, as

with the host genes, the findings of Chapter 2 remained inconclusive as to whether selection or

mutation is the main driver of bias in the mobile elements of the budding yeast species. However,

evidence would suggest that the likeliness of genetic drift influencing bias is slim. The patterns of

bias, including AT-preference and complement between abundant codons and host genes major

tRNA molecules would support that the signatures for bias do not present as random. If genetic

drift was the major driver of codon usage in the mobile elements, little to no correlations would be

drawn between results, and the codon selection would not show patterns due to random allocation.
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The work of Chapter 2 was found that bias for the TEs were similar to those of the host species

genes, therefore signatures point towards either selection or mutation.

In contrast, TE AT-bias was not found for the elements uncovered in the three holozoan species,

S. rosetta, C. owczarzaki and M. brevicollis, with the mobile elements mirroring a GC-preference

observed for the species host genes, which is likely to be driven by selection. Average GC3s

values for all TE families were greater than 0.62, with the mean non-coding GC content found to

range from 0.49 - 0.52, which provides support against mutational pressure driving codon usage,

as values would be closer to average GC3s if this were the case. Furthermore, high complement

was seen between abundant codons of the TE families and major tRNA genes of the host species,

for all three protists.

However, potential signatures for mutational bias were uncovered for the chromoviral families

in S. rosetta, C. owczarzaki and M. brevicollis. A positive relationship was observed between

GC3s and non-coding GC content for the chromoviruses and all families of M. brevicollis, with the

elements found to have a stronger bias compared to the other families present in S. rosetta, C.

owczarzaki and M. brevicollis respectively (R2= 0.519; 0.650; 0.857). The work presented here

proposed that the chromoviral families are potentially evolving under a more complex evolutionary

model, and provoked interest as to why the family would be subject to different pressures than

other elements in the same host genome.

To date, TE evolution in model organisms, S. cerevisiae and D. melanogaster, were found to

show no signatures for selection driving codon usage (Lerat et al., 2002). The novel review of

TEs codon usage, in Kazachstania species, and holozoan species presented here highlights the

importance of further explorative research in addition to model organisms which frequently become

the foundation of accepted knowledge.

6.4 Concluding remarks

The research aimed to compare genomic characteristics of unicellular opisthokonts, as well as a TE

review of novel species. The work successfully addressed the outcomes proposed for the project,

with trends drawn of varied origin. The atypical findings highlight the importance of comparative

genomics, and should inspire further investigation of TE evolution and codon usage patterns in

unicellular eukaryotes, to depict the revealed complexity of TE acquisition and codon bias.





207

Appendix A

Lab Protocols and Results

A.1 DNA/RNA extraction

A.1.1 Trizol RNA extraction

The following components were made for RNA extraction; DEPC Water, NaOH 10M, EDTA, NaOH

EDTA and TBE Buffer. Autoclaving parameters were set at default (15 minutes at 121˚C).

DEPC H2O (1L)

• 1 ml of DEPC, which was stored at 4°C in the fridge

• Milli-Q H2O was added up to 500 ml

• The solution was shaken until the oily droplets are dispersed

• The solution was made up to 1 L and sterilised by autoclaving

NaOH 10 M (200 ml)

• 80 g NaOH (powder) was added to 200 ml with Milli-Q H2O

• The solution was sterilised by autoclaving

EDTA 0.5 M, pH 8.0 (1000 ml)

• 146.1 g of anhydrous EDTA was measured

• 800 ml of DEPC H2O was added to the EDTA

• NaOH was added slowly with stirring until the EDTA dissolved and reached a pH of 8.0

• The solution was made up to 1000 ml with DEPC H2O and sterilised by autoclaving

NaOH 0.5 M, 50 mM EDTA
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• 10 ml 500 mM EDTA

• 4.493 ml of 10 M NaOH (as 50.7 mM NaOH in EDTA already tf 500 mM - 50.7 mM = 449.3

mM)

• 85.5 ml DEPC H2O

• 100 ml total volume and sterilised by autoclaving

10x TBE electrophoresis buffer (1000 ml)

• 50ml TBE

• 450 ml DEPC H2O

• The solution was then sterilised by autoclaving

Ethanol – 75% (50ml)

• 37.5ml Ethanol 100

• 12.5ml DEPC H2O

1.0% Agarose Gel (40ml)

• 40ml DEPC treated TBE buffer

• 0.40g Agarose (1.0%)

• 4μl Gel Stain

Trizol RNA extraction protocol

Protocol For the isolation of total RNA, the Kazachstania cells were cultured overnight at 25˚c

in 10mL of YPD liquid medium (Vaughan-Martini et al., 2011). 1ml of the culture was added

to 2ml microcentrifuge tube and cells were collected by centrifugation at 3000g for 4 minutes.

Liquid medium was discarded and the pellet cells were washed with 5mL PBS DEPC H2O and

resuspended using the vortex for 5 seconds per sample (Xiao, 2006).

1ml of TRI reagent was used per 1ml of yeast sample, which lysed the cells and formed a

homogenous lysate. 0.2ml of chloroform was added in the fume cupboard (0.2ml of chloroform/
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1ml of TRI reagent). The sample was vigorously shaken by hand for 15 seconds and allowed to

stand at room temperature for 15 minutes.

The sample was centrifuged at 12,000g at room temperature for 15 minutes which separated

the mixture into three phases; a red organic phase (which contained protein), an interphase (DNA)

and a colourless aqueous phase at the upper section of the same which contains RNA. The

aqueous phase was transferred to a fresh Eppendorf tube containing 0.50ml of propan-2-ol (0.50ml

Isopropanol/ 1ml of TRI Reagent) and mixed, before leaving to stand for a further 10 minutes at

room temperature. The sample was then put through further centrifugation at 12000g at room

temperature for 10 minutes, where an RNA pellet formed at the bottom of the tube.

The supernatant of the sample was removed, and the RNA pellet washed using 1ml of 75%

ethanol and vortexed, and centrifuged at 7500g at room temperature for 5 minutes. Ethanol was

removed from the sample and the RNA pellet was dried for 5 minutes at room temperature by air

drying in a contained area to avoid contamination. 40µl of RNase free DEPC treated H2O was

added to the mixture and mixed by pipetting using a micropipette, before placing in a heat block at

55˚c for 15 minutes, mixing at 2 minute intervals by pipetting the sample.

5µl of re-suspended DNA was put to an aliquot for nanodrop analysis and gel electrophoresis.

The nanodrop sample was placed on ice to freeze at -80˚c. The nanodrop programme was blanked

using the resuspension liquid (RNase free DEPC treated H2O), and RNA quality of the yeast

samples were measured adding 1 µl of sample. Quality RNA should have a A260/A280 ratio

of ≥1.7. RNA samples below 1.7 were discarded.

For gel electrophoresis, the 10x TBE Stock buffer was diluted to 1x TBE using DEPC H2O. For

a 1% Agarose gel, 0.40g of LE Agarose was added to 40ml DEPC TBE buffer, and the solution

was boiled in the microwave until dissolved (1minute on 700W, stirring intermittently). 4 µl of

SYBR-SAFE (Thermofisher, 2017) gel stain was added. The gel casting tray for the mini RNA

specific gel tank was set appropriately and hot gel added to the tray, before leaving to set for 30

minutes. Once set, the gel tank was loaded with DEPC TBE buffer, and gel was placed in gel tank.

DEPC TBE buffer was added to the gel tank to maximum level and combs were removed from the

gel, ensuring the wells had set sufficiently. 1 ul loading dye was added to 3 µl RNA sample before

loading the samples to the wells. For a quality RNA sample, 18S and 28S rRNA bands should be

visible on the gel image, with 28S intensity twice that of 18S.

Results varied with the Trizol extraction protocol. Although concentration and yield was high,
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absorbance ratios were less than required submission rations for WGS. The low 260/230nm was

hypothesised to be due to phenol or ethanol contamination. Results led to an alternative methodology

to be employed for RNA extraction.

A.1.2 RNASwift recipes

The RNASwift protocol was employed with the optimisation of RNA yield from yeast. The following

solution were utilised in the protocol (Nwokeoji et al., 2016).

LB1 Lysis Reagent

• 4% SDS (ph 7.5)

• 0.5M Sodium Chloride (100µl)

Purification Reagent

• 40ul 5M Sodium Chloride

• 250ul 1M Guanadine HCl

• 250ul Isopropanol

Wash Buffer

• 15mM Tris HCl

• 85% ethanol (ph 7.4)

RNASwift protocol

2ml of culture was pipetted in a 2ml microcentrifuge tube. The samples were centrifuged for 4500xg

for 10 minutes to form a pellet. Liquid media was discarded. 100µl of LB1 Lysis Reagent was

warmed and added to the pellet. The resuspension was heated for 4 minutes at 90 ˚c using a heat

block, and mixed by pipetting. The samples were then centrifuged for 4 minutes at 12470xg. Post

centrifugation, the supernatant was transferred to a new column. 540ul of Purification Reagent

was added to each sample, and centrifuged for a further minute at 12470xg. The flow through

was discarded, and 700µl of Wash Buffer was added to each column. The samples underwent

centrifugation for a further 1 minute at 12470xg. The flow through was again discarded, and dry

column was recentrifuged at 12470xg for 1 minute to ensure all Wash Buffer was removed from
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the column. The samples were then eluted, with the addition of 100µl RNase free water. The

columns were added to 2ml microcentifuge tubes for sample collection followed by centrifugation

for 1 minute at 12470xg, and eluted RNA was stored at -80˚c.

A.1.3 DNA extraction using DNeasy Qiagen kit

Buffer ATL (Qiagen, 2017)

• Sodium Dodecyl Sulphate

Buffer AL (Qiagen, 2017)

• Guanidine Hydrochloride

• Maleic Acid

A.2 Yeast Husbandry

YPD Broth Constituents (Aldrich, 2017)

• Bacteriological peptone (g/L), 20

• Yeast extract (g/L), 10

• Glucose (g/L), 20

DNeasy Qiagen protocol

Cells were centrifuged at 5000xg for 10 minutes at room temperature to harvest the yeast cells and

the supernatant was discarded. The yeast pellet was resuspended in 600 µl of sorbitol buffer, and

add 200 µl of lyticase to the mixture to lyse the yeast cell walls. The mixture was then incubated

at 30˚c for 30 minutes. The mixture was then pelleted by centrifugation at 300g for 10 minutes at

4˚c and resuspended in 18 µl of Buffer ATL (constiuents in Appendix A). 20 µl of proteinase K was

then added to the spheroplasts, and vortexed to ensure thorough mixing. The solution was then

incubated at 56˚C for 15 minutes. The mixture was mixed by pipetting at intervals of two minutes to

ensure sample dispersion. When lysis was completed, the sample was vortexed for 15 seconds.

200 µl of Buffer AL (constituents in Appendix A) was added to the sample and mixed thoroughly

by further vortexing. 200 µl of ethanol (100%) was then added and mixed to form a homogenous
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solution. The mixture was then pipetted into the DNeasy Mini spin column, which was paced in a

2ml collection tube. Centrifugation was performed at 6000g for 1 minute. The DNeasy Mini spin

column was placed in a new 2ml collection tube, and 500 µl of Buffer AW1, and centrifuged for a

further 1 minute at 6000g. The mini spin column was placed in another 2ml collection tube, and

500 µl of Buffer AW2 and centrifuged for 3 minutes at 20000g. The DNeasy Mini spin column was

placed in a 2ml microcentrifuge tube, and 200 µl of Buffer AE was added directly on the DNeasy

membrance, which was incubated for 1 minute at room temperature, and then centrifuged at 6000g

at 1 minute.

DNA extraction LiOAC-SDS method

One yeast colony from fridge stocks was added to 5ml YPD broth and incubated overnight at 25˚c.

500 µl of sample was added to a clean 2ml microcentrifuuge tube, and pelleted by centrifugation

at 5000g for 5 minutes. The supernatant was removed and the cells were suspended in 100 µl of

200mM LiOAc), 1% SDS solution, and incubated at 70˚c for 5 minutes. 300 µl of ethanol (100%)

was added and the sample was vortexed. The DNA and cell debris was spun by centrifugation at

15,000g for 3 minutes and supernatant removed. The pellet was then washed in ethanol (70%),

and air dried for 2 minutes. The pellet was then dissolved in 100ul RNase free water, and left to

incubate at room temperature for 30 minutes. A final centrifugation step was added for 30 seconds

at 15,000g. The gDNA (supernatant) was removed and stored at -20˚c.

A.3 QC results for Kazachstania species
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A.4 Novel Kazachstania genomes

A.4.1 Genome assembly data

Table A.1: Summary of assembly data for Kazachstania species. The following assembly data are
arranged in the table as follows, provided by Macrogen (2018): Contigs : The number of contigs assembled;
Total Length : The total length of contigs; .N50 : 50% of all bases come from contigs longer than this value;
Max Length : The length of maximum contig; Min Length : The length of minimum contig; Avg Length : The
average length of contigs assembled.

Kazachstania species Contigs Total Length N50 Max Length Min Length Avg Length
K. bovina 24 11,441,739 1,199,098 2,187,917 14,594 476,739
K. exigua 32 24,805,022 1,158,375 2,690,170 6,863 775,156
K. lodderae 17 12,438,264 1,171,635 1,514,085 5,353 731,662
K. viticola 30 11,546,415 552,107 1,132,070 12,728 384,880
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Table A.2: Results of assembly data for K. bovina. The following assembly data are arranged in the
table as follows, provided by Macrogen (2018): Length(bp): The number of bases in each contig; GC%: the
percentage of GC content for each contig; Depth: The number of reads which overlap each contig.

Contig Name Length (bp) GC % Depth
contig1 2,187,917 28.40 67
contig2 1,792,149 28.30 71
contig3 1,441,763 28.40 70
contig4 1,199,098 28.10 72
contig5 1,132,946 28.20 67
contig6 1,052,801 28.10 67
contig7 564,760 28.90 62
contig8 526,411 27.90 68
contig9 339,562 28.60 68

contig10 319,215 28.70 60
contig11 247,320 28.30 60
contig12 167,536 27.10 54
contig13 63,798 28.60 35
contig14 61,597 28.0 24
contig15 53,164 27.90 25
contig16 41,325 22.60 464
contig17 38,884 31.20 12
contig18 37,917 27.10 23
contig19 35,972 27.50 36
contig20 35,804 26.90 30
contig21 34,377 29.40 15
contig22 27,174 30.80 14
contig23 25,655 28.90 21
contig24 14,594 28.90 14

Total 11,441,739 28.27 67



A.4. Novel Kazachstania genomes 219

Table A.3: Results of assembly data for K. exigua. Format is stated in A.2.

Contig Name Length (bp) GC % Depth
contig1 2,690,170 32.40 34
contig2 2,100,254 31.60 38
contig3 1,569,051 33.20 32
contig4 1,467,721 31.70 39
contig5 1,423,959 33.0 34
contig6 1,304,938 32.90 32
contig7 1,213,532 31.60 46
contig8 1,158,375 31.60 35
contig9 1,049,099 33.20 32

contig10 1,039,954 33.40 34
contig11 982,772 31.70 33
contig12 878,286 31.80 32
contig13 856,810 33.10 30
contig14 827,808 31.60 33
contig15 827,116 33.70 35
contig16 690,675 31.50 34
contig17 668,569 33.30 34
contig18 621,239 32.30 36
contig19 588,913 32.30 32
contig20 576,670 32.60 65
contig21 531,489 33.10 30
contig22 482,016 31.50 28
contig23 382,152 35.60 30
contig24 358,041 33.0 33
contig25 204,536 34.20 45
contig26 137,340 34.40 138
contig27 69,103 35.0 50
contig28 63,842 34.20 64
contig29 14,393 44.90 1,562
contig30 11,153 37.50 2
contig31 8,183 44.40 3
contig32 6,863 29.80 0

Total 24,805,022 32.50 36
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Table A.4: Results of assembly data for K. lodderae. Format is stated in A.2.

Contig Name Length (bp) GC % Depth
contig1 1,514,085 33.9 86
contig2 1,308,446 34.2 99
contig3 1,291,226 33.9 82
contig4 1,242,119 33.5 86
contig5 1,171,635 33.7 83
contig6 899,158 33.8 84
contig7 810,586 34.1 82
contig8 807,199 33.8 84
contig9 787,865 33.7 89

contig10 672,296 34.1 88
contig11 642,064 33.9 82
contig12 511,507 33.9 87
contig13 392,444 33.8 82
contig14 328,278 33.9 86
contig15 31,631 21.0 396
contig16 22,372 34.0 22
contig17 5,353 43.4 7

Total 12,438,264 33.84 86
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Table A.5: Results of assembly data for K. viticola. Format is stated in A.2.

Contig Name Length (bp) GC % Depth
contig1 1,132,070 32.80 92
contig2 1,083,222 32.90 86
contig3 954,296 33.20 90
contig4 869,152 32.70 83
contig5 705,520 32.80 89
contig6 696,975 32.80 89
contig7 552,107 33.10 90
contig8 521,844 32.60 89
contig9 517,668 33.20 180

contig10 493,643 32.50 87
contig11 479,321 32.50 83
contig12 464,270 32.60 87
contig13 434,284 33.10 84
contig14 338,307 33.0 94
contig15 330,165 32.80 83
contig16 328,661 32.70 85
contig17 313,821 32.40 85
contig18 299,257 33.20 83
contig19 286,982 32.60 91
contig20 201,438 32.80 83
contig21 182,978 31.70 65
contig22 66,924 16.50 272
contig23 63,584 32.30 100
contig24 56,965 31.20 74
contig25 42,244 32.90 36
contig26 34,247 32.10 87
contig27 32,330 32.60 87
contig28 25,805 32.80 31
contig29 25,607 32.30 38
contig30 12,728 31.90 22

Total 11,546,415 32.71 91
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Appendix B

Chapter 2 Appendix

B.1 Comparative genomics and transposable element data forKazachstania

species

B.1.1 Predicted tRNA genes for the Kazachstania species

Table B.1: Output of tRNAscan-SE from whole genome contigs for predicted K. africana tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE650821.1 Ala AGC GCU Yes 173388-173460

HE650821.1 Ala AGC GCU Yes 457499-457571

HE650822.1 Ala AGC GCU Yes 1354117-1354189

HE650823.1 Ala AGC GCU Yes 411368-411440

HE650823.1 Ala AGC GCU Yes 140332-140404

HE650826.1 Ala AGC GCU Yes 508387-508459

HE650827.1 Ala AGC GCU Yes 657382-657454

HE650827.1 Ala AGC GCU Yes 447095-447167

HE650828.1 Ala AGC GCU Yes 565511-565583

HE650828.1 Ala AGC GCU Yes 567011-567083

HE650828.1 Ala AGC GCU Yes 408975-409047

HE650830.1 Ala AGC GCU Yes 122114-122186

HE650822.1 Ala TGC GCA No 247102-247174

HE650824.1 Ala TGC GCA No 608880-608952

HE650826.1 Ala TGC GCA No 516470-516542

HE650826.1 Ala TGC GCA No 368058-368130
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Table B.1: Output of tRNAscan-SE from whole genome contigs for predicted K. africana tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE650832.1 Ala TGC GCA No 202338-202410

HE650821.1 Arg ACG CGU No 520771-520843

HE650822.1 Arg ACG CGU No 1357529-1357601

HE650822.1 Arg ACG CGU No 482397-482469

HE650828.1 Arg ACG CGU No 433389-433461

HE650821.1 Arg CCG CGG No 1286140-1286211

HE650824.1 Arg CCT AGG No 883158-883229

HE650822.1 Arg TCT AGA Yes 1374360-1374431

HE650823.1 Arg TCT AGA Yes 48410-48481

HE650824.1 Arg TCT AGA Yes 298968-299039

HE650825.1 Arg TCT AGA Yes 326261-326332

HE650825.1 Arg TCT AGA Yes 402988-403059

HE650825.1 Arg TCT AGA Yes 376659-376730

HE650826.1 Arg TCT AGA Yes 612486-612557

HE650826.1 Arg TCT AGA Yes 249780-249851

HE650827.1 Arg TCT AGA Yes 479175-479246

HE650828.1 Arg TCT AGA Yes 230334-230405

HE650831.1 Arg TCT AGA Yes 225305-225376

HE650821.1 Asn GTT AAC Yes 1137738-1137811

HE650822.1 Asn GTT AAC Yes 315405-315478

HE650822.1 Asn GTT AAC Yes 1362887-1362960

HE650823.1 Asn GTT AAC Yes 685783-685856

HE650823.1 Asn GTT AAC Yes 453056-453129

HE650824.1 Asn GTT AAC Yes 333687-333760

HE650828.1 Asn GTT AAC Yes 581985-582058

HE650829.1 Asn GTT AAC Yes 110458-110531

HE650829.1 Asn GTT AAC Yes 495991-496064

HE650830.1 Asn GTT AAC Yes 354437-354510
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Table B.1: Output of tRNAscan-SE from whole genome contigs for predicted K. africana tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE650822.1 Asp GTC GAC No 1374271-1374342

HE650822.1 Asp GTC GAC No 909693-909764

HE650823.1 Asp GTC GAC No 48319-48390

HE650824.1 Asp GTC GAC No 298877-298948

HE650825.1 Asp GTC GAC No 326352-326423

HE650825.1 Asp GTC GAC No 402897-402968

HE650825.1 Asp GTC GAC No 376568-376639

HE650826.1 Asp GTC GAC No 612577-612648

HE650827.1 Asp GTC GAC No 604876-604947

HE650827.1 Asp GTC GAC No 479084-479155

HE650828.1 Asp GTC GAC No 230243-230314

HE650830.1 Asp GTC GAC No 165036-165107

HE650832.1 Asp GTC GAC No 61831-61902

HE650821.1 Cys GCA UGC No 232340-232411

HE650821.1 Cys GCA UGC No 339314-339385

HE650821.1 Cys GCA UGC No 1058113-1058184

HE650823.1 Cys GCA UGC No 475123-475194

HE650825.1 Cys GCA UGC No 618500-618571

HE650822.1 Gln CTG CAG No 795757-795828

HE650821.1 Gln TTG CAA Yes 193772-193843

HE650821.1 Gln TTG CAA Yes 488121-488192

HE650821.1 Gln TTG CAA Yes 184775-184846

HE650823.1 Gln TTG CAA Yes 104607-104678

HE650827.1 Gln TTG CAA Yes 295219-295290

HE650828.1 Gln TTG CAA Yes 387160-387231

HE650828.1 Gln TTG CAA Yes 560479-560550

HE650829.1 Gln TTG CAA Yes 399483-399554

HE650832.1 Gln TTG CAA Yes 142971-143042
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Table B.1: Output of tRNAscan-SE from whole genome contigs for predicted K. africana tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE650823.1 Glu CTC GAG No 1212915-1212986

HE650828.1 Glu CTC GAG No 87896-87967

HE650821.1 Glu TTC GAA Yes 432450-432521

HE650821.1 Glu TTC GAA Yes 1305480-1305551

HE650821.1 Glu TTC GAA Yes 972747-972818

HE650821.1 Glu TTC GAA Yes 945376-945447

HE650821.1 Glu TTC GAA Yes 869484-869555

HE650822.1 Glu TTC GAA Yes 331102-331173

HE650822.1 Glu TTC GAA Yes 478303-478374

HE650822.1 Glu TTC GAA Yes 269330-269401

HE650823.1 Glu TTC GAA Yes 238884-238955

HE650824.1 Glu TTC GAA Yes 518796-518867

HE650825.1 Glu TTC GAA Yes 263356-263427

HE650826.1 Glu TTC GAA Yes 743619-743690

HE650826.1 Glu TTC GAA Yes 354525-354596

HE650827.1 Glu TTC GAA Yes 571184-571255

HE650827.1 Glu TTC GAA Yes 755072-755143

HE650825.1 Gly CCC GGG No 726601-726672

HE650821.1 Gly GCC GGC No 564256-564326

HE650821.1 Gly GCC GGC No 1383638-1383708

HE650821.1 Gly GCC GGC No 390631-390701

HE650822.1 Gly GCC GGC No 961437-961507

HE650822.1 Gly GCC GGC No 864762-864832

HE650822.1 Gly GCC GGC No 580061-580131

HE650822.1 Gly GCC GGC No 366952-367022

HE650823.1 Gly GCC GGC No 888412-888482

HE650823.1 Gly GCC GGC No 1181502-1181572

HE650823.1 Gly GCC GGC No 909796-909866
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Table B.1: Output of tRNAscan-SE from whole genome contigs for predicted K. africana tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE650824.1 Gly GCC GGC No 341914-341984

HE650825.1 Gly GCC GGC No 411118-411188

HE650828.1 Gly GCC GGC No 608892-608962

HE650828.1 Gly GCC GGC No 543590-543660

HE650829.1 Gly GCC GGC No 566773-566843

HE650831.1 Gly GCC GGC No 207465-207535

HE650831.1 Gly GCC GGC No 305379-305449

HE650821.1 Gly TCC GGA No 1654735-1654806

HE650823.1 Gly TCC GGA No 317560-317631

HE650823.1 Gly TCC GGA No 414809-414880

HE650825.1 Gly TCC GGA No 234360-234435

HE650821.1 His GTG CAC Yes 755707-755778

HE650822.1 His GTG CAC Yes 1081343-1081414

HE650822.1 His GTG CAC Yes 433807-433878

HE650823.1 His GTG CAC Yes 568045-568116

HE650826.1 His GTG CAC Yes 801407-801478

HE650826.1 His GTG CAC Yes 545762-545833

HE650822.1 Ile AAT AUU Yes 94373-94446

HE650822.1 Ile AAT AUU Yes 226511-226584

HE650822.1 Ile AAT AUU Yes 437206-437279

HE650822.1 Ile AAT AUU Yes 1382182-1382255

HE650822.1 Ile AAT AUU Yes 1401362-1401435

HE650823.1 Ile AAT AUU Yes 380766-380839

HE650823.1 Ile AAT AUU Yes 563630-563703

HE650826.1 Ile AAT AUU Yes 608774-608847

HE650828.1 Ile AAT AUU Yes 279963-280036

HE650828.1 Ile AAT AUU Yes 637378-637451

HE650829.1 Ile AAT AUU Yes 445642-445715
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Table B.1: Output of tRNAscan-SE from whole genome contigs for predicted K. africana tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE650830.1 Ile AAT AUU Yes 235842-235915

HE650832.1 Ile AAT AUU Yes 215287-215360

HE650822.1 Ile TAT AUA No 1304284-1304422

HE650828.1 Ile TAT AUA No 337427-337564

HE650825.1 iMe CAT AUG Yes 126585-126656

HE650826.1 iMe CAT AUG Yes 251822-251893

HE650827.1 iMe CAT AUG Yes 441118-441189

HE650828.1 iMe CAT AUG Yes 521998-522069

HE650821.1 Leu AAG CUU No 1076694-1076775

HE650831.1 Leu AAG CUU No 352556-352637

HE650824.1 Leu CAA UUG No 806727-806844

HE650826.1 Leu CAA UUG No 694414-694531

HE650821.1 Leu TAA UUA Yes 191220-191302

HE650821.1 Leu TAA UUA Yes 1174552-1174634

HE650821.1 Leu TAA UUA Yes 631543-631625

HE650823.1 Leu TAA UUA Yes 102083-102165

HE650823.1 Leu TAA UUA Yes 762058-762140

HE650823.1 Leu TAA UUA Yes 207257-207339

HE650824.1 Leu TAA UUA Yes 148565-148647

HE650824.1 Leu TAA UUA Yes 180679-180761

HE650826.1 Leu TAA UUA Yes 655848-655930

HE650826.1 Leu TAA UUA Yes 591730-591812

HE650827.1 Leu TAA UUA Yes 706737-706819

HE650828.1 Leu TAA UUA Yes 118109-118191

HE650830.1 Leu TAA UUA Yes 489209-489291

HE650831.1 Leu TAA UUA Yes 42887-42969

HE650827.1 Leu TAG CUA No 210068-210169

HE650829.1 Leu TAG CUA No 262543-262646
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Table B.1: Output of tRNAscan-SE from whole genome contigs for predicted K. africana tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE650821.1 Lys CTT AAG Yes 105766-105838

HE650821.1 Lys CTT AAG Yes 686768-686840

HE650821.1 Lys CTT AAG Yes 938356-938428

HE650822.1 Lys CTT AAG Yes 592190-592262

HE650823.1 Lys CTT AAG Yes 686659-686731

HE650823.1 Lys CTT AAG Yes 1110799-1110871

HE650824.1 Lys CTT AAG Yes 986907-986979

HE650824.1 Lys CTT AAG Yes 245185-245257

HE650827.1 Lys CTT AAG Yes 619809-619881

HE650831.1 Lys CTT AAG Yes 263834-263906

HE650831.1 Lys CTT AAG Yes 188193-188265

HE650831.1 Lys CTT AAG Yes 168072-168144

HE650821.1 Lys TTT AAA No 189828-189926

HE650823.1 Lys TTT AAA No 117038-117136

HE650826.1 Lys TTT AAA No 302087-302185

HE650826.1 Lys TTT AAA No 762660-762758

HE650827.1 Lys TTT AAA No 66111-66209

HE650828.1 Lys TTT AAA No 70299-70397

HE650829.1 Lys TTT AAA No 119508-119606

HE650831.1 Lys TTT AAA No 266503-266601

HE650822.1 Met CAT AUG Yes 1025165-1025237

HE650823.1 Met CAT AUG Yes 1029386-1029458

HE650824.1 Met CAT AUG Yes 969147-969219

HE650825.1 Met CAT AUG Yes 816177-816249

HE650830.1 Met CAT AUG Yes 201450-201522

HE650821.1 Phe GAA UUC Yes 757696-757791

HE650822.1 Phe GAA UUC Yes 1089357-1089452

HE650822.1 Phe GAA UUC Yes 365798-365893
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Table B.1: Output of tRNAscan-SE from whole genome contigs for predicted K. africana tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE650826.1 Phe GAA UUC Yes 708904-708998

HE650829.1 Phe GAA UUC Yes 189566-189661

HE650830.1 Phe GAA UUC Yes 55345-55440

HE650830.1 Phe GAA UUC Yes 426772-426867

HE650831.1 Phe GAA UUC Yes 466109-466204

HE650831.1 Phe GAA UUC Yes 427646-427741

HE650829.1 Pro AGG CCU No 477348-477419

HE650821.1 Pro TGG CCA Yes 559105-559214

HE650822.1 Pro TGG CCA Yes 627311-627420

HE650823.1 Pro TGG CCA Yes 805797-805906

HE650824.1 Pro TGG CCA Yes 911279-911388

HE650824.1 Pro TGG CCA Yes 961120-961230

HE650825.1 Pro TGG CCA Yes 508532-508641

HE650826.1 Pro TGG CCA Yes 293417-293526

HE650828.1 Pro TGG CCA Yes 146496-146605

HE650829.1 Pro TGG CCA Yes 462701-462810

HE650829.1 Pro TGG CCA Yes 553103-553212

HE650821.1 Ser AGA UCU Yes 1042296-1042377

HE650821.1 Ser AGA UCU Yes 168128-168209

HE650823.1 Ser AGA UCU Yes 1079778-1079859

HE650823.1 Ser AGA UCU Yes 1150373-1150454

HE650823.1 Ser AGA UCU Yes 152961-153042

HE650825.1 Ser AGA UCU Yes 116255-116336

HE650826.1 Ser AGA UCU Yes 477198-477279

HE650826.1 Ser AGA UCU Yes 730038-730119

HE650826.1 Ser AGA UCU Yes 626927-627008

HE650830.1 Ser AGA UCU Yes 106823-106904

HE650830.1 Ser AGA UCU Yes 132432-132513
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Table B.1: Output of tRNAscan-SE from whole genome contigs for predicted K. africana tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE650826.1 Ser CGA UCG No 568399-568509

HE650821.1 Ser GCT AGC No 1334983-1335084

HE650821.1 Ser GCT AGC No 1104357-1104458

HE650824.1 Ser GCT AGC No 957832-957933

HE650826.1 Ser GCT AGC No 640409-640510

HE650822.1 Ser TGA UCA No 262247-262328

HE650824.1 Ser TGA UCA No 531454-531535

HE650828.1 Ser TGA UCA No 164962-165043

HE650832.1 Ser TGA UCA No 175682-175763

HE650821.1 Thr AGT ACU Yes 355276-355348

HE650821.1 Thr AGT ACU Yes 345133-345205

HE650821.1 Thr AGT ACU Yes 242549-242621

HE650823.1 Thr AGT ACU Yes 307523-307595

HE650823.1 Thr AGT ACU Yes 132796-132868

HE650824.1 Thr AGT ACU Yes 276267-276339

HE650827.1 Thr AGT ACU Yes 546909-546981

HE650827.1 Thr AGT ACU Yes 71034-71106

HE650828.1 Thr AGT ACU Yes 646867-646939

HE650830.1 Thr AGT ACU Yes 261194-261266

HE650831.1 Thr AGT ACU Yes 184357-184429

HE650831.1 Thr CGT ACG No 527254-527325

HE650821.1 Thr TGT ACA No 1103343-1103414

HE650822.1 Thr TGT ACA No 932314-932385

HE650831.1 Thr TGT ACA No 314620-314691

HE650821.1 Trp CCA UGG Yes 906332-906432

HE650823.1 Trp CCA UGG Yes 820888-820988

HE650825.1 Trp CCA UGG Yes 858257-858357

HE650827.1 Trp CCA UGG Yes 453206-453306
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Table B.1: Output of tRNAscan-SE from whole genome contigs for predicted K. africana tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE650831.1 Trp CCA UGG Yes 265761-265861

HE650832.1 Trp CCA UGG Yes 88005-88105

HE650821.1 Tyr GTA UAC Yes 596654-596745

HE650823.1 Tyr GTA UAC Yes 865346-865437

HE650823.1 Tyr GTA UAC Yes 900262-900353

HE650823.1 Tyr GTA UAC Yes 462464-462555

HE650824.1 Tyr GTA UAC Yes 885297-885388

HE650825.1 Tyr GTA UAC Yes 81661-81752

HE650825.1 Tyr GTA UAC Yes 567444-567535

HE650829.1 Tyr GTA UAC Yes 405198-405289

HE650832.1 Tyr GTA UAC Yes 368616-368708

HE650821.1 Val AAC GUU Yes 992668-992741

HE650821.1 Val AAC GUU Yes 400287-400360

HE650822.1 Val AAC GUU Yes 528944-529017

HE650822.1 Val AAC GUU Yes 444896-444969

HE650822.1 Val AAC GUU Yes 402354-402427

HE650823.1 Val AAC GUU Yes 532857-532930

HE650823.1 Val AAC GUU Yes 1048749-1048822

HE650823.1 Val AAC GUU Yes 495876-495949

HE650829.1 Val AAC GUU Yes 256355-256428

HE650831.1 Val AAC GUU Yes 472062-472135

HE650831.1 Val AAC GUU Yes 511218-511291

HE650831.1 Val AAC GUU Yes 355562-355635

HE650831.1 Val AAC GUU Yes 299026-299099

HE650825.1 Val CAC GUG No 255581-255653

HE650822.1 Val TAC GUA No 304091-304163

HE650822.1 Val TAC GUA No 939313-939385
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Table B.2: Output of tRNAscan-SE from whole genome contigs for predicted K. bovina tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig2 Ala TGC GCA No 44830-44925

contig2 Ala TGC GCA No 307127-307198

contig5 Ala TGC GCA No 417035-417106

contig5 Ala TGC GCA No 1110564-1110637

contig6 Ala TGC GCA No 1701474-1701545

contig6 Ala TGC GCA No 2018422-2018493

contig6 Ala TGC GCA No 2053607-2053702

contig6 Ala TGC GCA No 2187753-2187826

contig7 Ala TGC GCA No 1812541-1812613

contig10 Ala TGC GCA No 1764295-1764366

contig12 Ala TGC GCA No 1609804-1609876

contig16 Ala TGC GCA No 1385611-1385684

contig2 Arg ACG CGT No 914718-914810

contig2 Arg ACG CGT No 806880-807001

contig4 Arg ACG CGT No 794079-794152

contig4 Arg CCG CGG No 548171-548243

contig6 Arg CCT AGG No 283820-283892

contig6 Arg TCT AGA Yes 3275-3346

contig6 Arg TCT AGA Yes 136087-136178

contig8 Arg TCT AGA Yes 446955-447027

contig8 Arg TCT AGA Yes 448184-448255

contig8 Arg TCT AGA Yes 508330-508401

contig9 Arg TCT AGA Yes 520846-520919

contig16 Arg TCT AGA Yes 760666-760749

contig16 Arg TCT AGA Yes 794169-794242

contig19 Arg TCT AGA Yes 884282-884354

contig1 Asn GTT AAC No 885199-885270

contig2 Asn GTT AAC No 1168169-1168242
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Table B.2: Output of tRNAscan-SE from whole genome contigs for predicted K. bovina tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig2 Asn GTT AAC No 1440227-1440309

contig3 Asn GTT AAC No 1764439-1764511

contig3 Asn GTT AAC No 1783830-1783901

contig6 Asn GTT AAC No 1785484-1785555

contig8 Asn GTT AAC No 1737266-1737357

contig10 Asn GTT AAC No 1638336-1638419

contig16 Asn GTT AAC No 1592484-1592556

contig21 Asn GTT AAC No 1573593-1573688

contig23 Asn GTT AAC No 1573496-1573569

contig1 Asp GTC GAC No 1475008-1475091

contig2 Asp GTC GAC No 1378584-1378657

contig2 Asp GTC GAC No 1378501-1378573

contig3 Asp GTC GAC No 1236272-1236345

contig3 Asp GTC GAC No 1082356-1082427

contig4 Asp GTC GAC No 1017170-1017241

contig4 Asp GTC GAC No 822485-822556

contig5 Asp GTC GAC No 752260-752331

contig6 Asp GTC GAC No 728199-728280

contig11 Asp GTC GAC No 536670-536741

contig11 Asp GTC GAC No 395145-395216

contig16 Asp GTC GAC No 297806-297879

contig2 Cys GCA TGC No 100049-100120

contig5 Cys GCA TGC No 7156-77229

contig5 Cys GCA TGC No 7420-77501

contig1 Gln CTG CAG No 49173-149246

contig2 Gln TTG CAA Yes 8568-78638

contig3 Gln TTG CAA Yes 25116-125189

contig3 Gln TTG CAA Yes 69062-269133
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Table B.2: Output of tRNAscan-SE from whole genome contigs for predicted K. bovina tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig6 Gln TTG CAA Yes 24978-325049

contig8 Gln TTG CAA Yes 338943-1339013

contig1 Glu CTC GAG No 1093739-1093810

contig2 Glu TTC GAA Yes 439601-1439682

contig2 Glu TTC GAA Yes 1424906-1424987

contig2 Glu TTC GAA Yes 1323639-1323710

contig4 Glu TTC GAA Yes 1188128-1188209

contig4 Glu TTC GAA Yes 897848-897919

contig4 Glu TTC GAA Yes 723578-723649

contig4 Glu TTC GAA Yes 186743-186866

contig6 Glu TTC GAA Yes 121387-121460

contig8 Glu TTC GAA Yes 104680-104753

contig10 Glu TTC GAA Yes 42761-42831

contig1 Gly GCC GGC No 39186-39269

contig3 Gly GCC GGC No 37821-37892

contig3 Gly GCC GGC No 594824-594895

contig3 Gly GCC GGC No 806099-806170

contig3 Gly GCC GGC No 806183-806280

contig3 Gly GCC GGC No 856276-856348

contig4 Gly GCC GGC No 873885-873956

contig4 Gly GCC GGC No 915344-915416

contig6 Gly GCC GGC No 915430-915500

contig8 Gly GCC GGC No 915509-915580

contig8 Gly GCC GGC No 969584-969655

contig11 Gly TCC GGA No 42676-42747

contig11 Gly TCC GGA No 37905-37975

contig16 Gly TCC GGA No 969667-969763

contig2 His GTG CAC No 1009235-1009307
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Table B.2: Output of tRNAscan-SE from whole genome contigs for predicted K. bovina tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig6 His GTG CAC No 1040472-1040555

contig8 His GTG CAC No 1040569-1040640

contig9 His GTG CAC No 1161791-1161874

contig1 Ile AAT ATT Yes 1067299-1067370

contig1 Ile AAT ATT Yes 858527-858597

contig2 Ile AAT ATT Yes 858447-858518

contig2 Ile AAT ATT Yes 857299-857370

contig3 Ile AAT ATT Yes 194229-194300

contig3 Ile AAT ATT Yes 293866-293937

contig5 Ile AAT ATT Yes 374339-374420

contig5 Ile AAT ATT Yes 551414-551485

contig6 Ile AAT ATT Yes 595959-596030

contig6 Ile AAT ATT Yes 733448-733539

contig10 Ile AAT ATT Yes 803681-803753

contig12 Ile TAT ATA No 1002613-1002685

contig16 Ile TAT ATA No 593977-594068

contig2 iMet CAT ATG Yes 1011937-1012018

contig3 iMet CAT ATG Yes 1004973-1005054

contig1 iMet CAT ATG Yes 784121-784202

contig2 Leu AAG CTT No 144444-144525

contig2 Leu AAG CTT No 987950-988031

contig2 Leu CAA TTG No 416950-417021

contig2 Leu CAG CTG No 372009-372082

contig2 Leu CAG CTG No 690676-690748

contig3 Leu TAA TTA Yes 449344-449416

contig3 Leu TAA TTA Yes 371926-371998

contig4 Leu TAA TTA Yes 184138-184209

contig4 Leu TAA TTA Yes 372531-372602
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Table B.2: Output of tRNAscan-SE from whole genome contigs for predicted K. bovina tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig5 Leu TAA TTA Yes 547967-548039

contig8 Leu TAA TTA Yes 911197-911278

contig8 Leu TAA TTA Yes 913231-913322

contig8 Leu TAA TTA Yes 991119-991192

contig11 Leu TAA TTA Yes 991203-991275

contig16 Leu TAA TTA Yes 1007994-1008075

contig19 Leu TAA TTA Yes 932454-932525

contig19 Leu TAG CTA No 325987-326059

contig1 Lys CTT AAG No 911671-911742

contig2 Lys CTT AAG No 909380-909452

contig2 Lys CTT AAG No 409971-410042

contig4 Lys CTT AAG No 398788-398861

contig4 Lys CTT AAG No 381236-381308

contig4 Lys CTT AAG No 249258-249331

contig5 Lys CTT AAG No 26874-26946

contig6 Lys TTT AAA No 932187-932268

contig8 Lys TTT AAA No 911835-911907

contig8 Lys TTT AAA No 911751-911821

contig8 Lys TTT AAA No 768923-768996

contig10 Lys TTT AAA No 686780-686853

contig11 Lys TTT AAA No 686697-686769

contig14 Lys TTT AAA No 458935-459006

contig16 Lys TTT AAA No 11738-11810

contig18 Lys TTT AAA No 35369-35441

contig20 Lys TTT AAA No 520361-520432

contig2 Met CAT ATG Yes 63751-63822

contig2 Met CAT ATG Yes 310772-310845

contig6 Met CAT ATG Yes 310854-310925
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Table B.2: Output of tRNAscan-SE from whole genome contigs for predicted K. bovina tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig14 Met CAT ATG Yes 312468-312538

contig16 Met CAT ATG Yes 366392-366483

contig16 Met CAT ATG Yes 406795-406867

contig16 Met CAT ATG Yes 425705-425776

contig24 Met CAT ATG Yes 495338-495433

contig2 Phe GAA TTC Yes 495226-495297

contig4 Phe GAA TTC Yes 478084-478157

contig4 Phe GAA TTC Yes 406345-406428

contig4 Phe GAA TTC Yes 368529-368612

contig6 Phe GAA TTC Yes 365315-365385

contig9 Phe GAA TTC Yes 324274-324370

contig9 Phe GAA TTC Yes 314299-314370

contig16 Phe GAA TTC Yes 314190-314286

contig2 Pro TGG CCA Yes 311352-311423

contig2 Pro TGG CCA Yes 223472-223553

contig3 Pro TGG CCA Yes 193027-193108

contig5 Pro TGG CCA Yes 62839-62911

contig7 Pro TGG CCA Yes 21031-21102

contig8 Pro TGG CCA Yes 119675-119746

contig8 Pro TGG CCA Yes 220679-220750

contig10 Pro TGG CCA Yes 263182-263254

contig3 Ser AGA TCT Yes 57588-57684

contig3 Ser AGA TCT Yes 243073-243146

contig3 Ser AGA TCT Yes 102582-102653

contig5 Ser AGA TCT Yes 49133-49204

contig5 Ser AGA TCT Yes 24980-25051

contig5 Ser AGA TCT Yes 30054-30124

contig5 Ser AGA TCT Yes 30136-30207



B.1. Comparative genomics and transposable element data for Kazachstania species 239

Table B.2: Output of tRNAscan-SE from whole genome contigs for predicted K. bovina tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig6 Ser CGA TCG No 102695-102790

contig6 Ser GCT AGC No 295998-296071

contig6 Ser GCT AGC No 28739-28822

contig6 Ser TGA TCA Yes 289962-290035

contig8 Ser TGA TCA Yes 21961-22032

contig10 Ser TGA TCA Yes 242990-243062

contig12 Ser TGA TCA Yes 145641-145722

contig12 Ser TGA TCA Yes 24896-24966

contig16 Ser TGA TCA Yes 156104-156200

contig16 Sup TCA TGA Yes 245101-245172

contig1 Thr AGT ACT Yes 129645-129726

contig1 Thr AGT ACT Yes 150190-150271

contig2 Thr AGT ACT Yes 146402-146475

contig2 Thr AGT ACT Yes 146319-146391

contig2 Thr AGT ACT Yes 34228-34301

contig4 Thr AGT ACT Yes 9985-10057

contig4 Thr AGT ACT Yes 10061-10133

contig6 Thr CGT ACG No 8744-8816

contig6 Thr TGT ACA No 23327-23398

contig6 Thr TGT ACA No 28170-28261

contig11 Thr TGT ACA No 10160-10231

contig16 Thr TGT ACA No 15599-15672

contig3 Trp CCA TGG Yes 16102-16180

contig8 Trp CCA TGG Yes 20092-20164

contig10 Trp CCA TGG Yes 20168-20252

contig13 Trp CCA TGG Yes 22642-22713

contig1 Tyr GTA TAC No 22732-22805

contig1 Tyr GTA TAC No 22900-22970
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Table B.2: Output of tRNAscan-SE from whole genome contigs for predicted K. bovina tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig2 Tyr GTA TAC No 24848-24931

contig8 Tyr GTA TAC No 25035-25107

contig10 Tyr GTA TAC No 25291-25364

contig1 Val AAC GTT Yes 27752-27824

contig2 Val AAC GTT Yes 29560-29630

contig2 Val AAC GTT Yes 19321-19412

contig2 Val AAC GTT Yes 19700-19783

contig3 Val AAC GTT Yes 27934-28017

contig3 Val AAC GTT Yes 29456-29552

contig4 Val AAC GTT Yes 11132-11206

contig6 Val AAC GTT Yes 9209-9282

contig8 Val CAC GTG No 19260-19332

contig9 Val TAC GTA No 27833-27903

contig16 Val TAC GTA No 12868-12941

Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig1 Ala AGC GCT Yes 462191-462264

contig2 Ala AGC GCT Yes 484478-484549

contig3 Ala AGC GCT Yes 601251-601333

contig3 Ala AGC GCT Yes 608615-608697

contig4 Ala AGC GCT Yes 706942-707013

contig5 Ala AGC GCT Yes 717715-717786

contig5 Ala AGC GCT Yes 744823-744894

contig5 Ala AGC GCT Yes 940231-940304

contig6 Ala AGC GCT Yes 986645-986716

contig6 Ala AGC GCT Yes 1415062-1415162

contig7 Ala AGC GCT Yes 1917396-1917468
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig8 Ala AGC GCT Yes 1955303-1955384

contig12 Ala AGC GCT Yes 2124459-2124531

contig14 Ala AGC GCT Yes 2152237-2152309

contig15 Ala AGC GCT Yes 2246455-2246536

contig15 Ala AGC GCT Yes 2425974-2426047

contig16 Ala TGC GCA No 138329-138400

contig16 Ala TGC GCA No 519553-519634

contig17 Ala TGC GCA No 734055-734126

contig18 Ala TGC GCA No 986555-986626

contig21 Ala TGC GCA No 1474669-1474760

contig22 Ala TGC GCA No 1741259-1741332

contig22 Ala TGC GCA No 1908032-1908102

contig1 Arg ACG CGT Yes 2282518-2282590

contig1 Arg ACG CGT Yes 2114335-2114408

contig3 Arg ACG CGT Yes 2071057-2071128

contig3 Arg ACG CGT Yes 1380875-1380947

contig4 Arg ACG CGT Yes 727436-727523

contig4 Arg ACG CGT Yes 357663-357756

contig5 Arg ACG CGT Yes 342474-342547

contig5 Arg ACG CGT Yes 378196-378276

contig5 Arg CCG CGG No 352544-352615

contig7 Arg CCG CGG No 198475-198561

contig10 Arg CCT AGG No 2058430-2058500

contig11 Arg CCT AGG No 483410-483492

contig11 Arg TCT AGA Yes 2471755-2471873

contig11 Arg TCT AGA Yes 2395946-2396017

contig12 Arg TCT AGA Yes 2290586-2290659

contig14 Arg TCT AGA Yes 2255142-2255228
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig14 Arg TCT AGA Yes 2201920-2201991

contig15 Arg TCT AGA Yes 1340518-1340590

contig17 Arg TCT AGA Yes 885549-885636

contig17 Arg TCT AGA Yes 754546-754633

contig18 Arg TCT AGA Yes 612078-612160

contig19 Arg TCT AGA Yes 64219-64327

contig20 Arg TCT AGA Yes 146711-146783

contig20 Arg TCT AGA Yes 211995-212076

contig22 Arg TCT AGA Yes 278682-278753

contig23 Arg TCT AGA Yes 441709-441800

contig24 Arg TCT AGA Yes 675549-675630

contig1 Asn GTT AAC Yes 897867-897953

contig1 Asn GTT AAC Yes 961183-961317

contig1 Asn GTT AAC Yes 1089760-1089831

contig2 Asn GTT AAC Yes 1222464-1222534

contig2 Asn GTT AAC Yes 1250112-1250184

contig2 Asn GTT AAC Yes 1608288-1608359

contig3 Asn GTT AAC Yes 1695808-1695879

contig4 Asn GTT AAC Yes 1931338-1931481

contig4 Asn GTT AAC Yes 1515872-1515953

contig8 Asn GTT AAC Yes 1505393-1505474

contig15 Asn GTT AAC Yes 1237217-1237287

contig16 Asn GTT AAC Yes 1206192-1206265

contig19 Asn GTT AAC Yes 386341-386413

contig21 Asn GTT AAC Yes 324523-324612

contig25 Asn GTT AAC Yes 144634-144707

contig1 Asp GTC GAC Yes 132643-132716

contig3 Asp GTC GAC Yes 201055-201128
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig4 Asp GTC GAC Yes 443412-443499

contig7 Asp GTC GAC Yes 590460-590532

contig11 Asp GTC GAC Yes 681213-681285

contig13 Asp GTC GAC Yes 729405-729476

contig15 Asp GTC GAC Yes 841670-841743

contig15 Asp GTC GAC Yes 849776-849848

contig15 Asp GTC GAC Yes 879692-879778

contig18 Asp GTC GAC Yes 937389-937460

contig19 Asp GTC GAC Yes 1032007-1032080

contig19 Asp GTC GAC Yes 1078730-1078801

contig19 Asp GTC GAC Yes 1094066-1094136

contig20 Asp GTC GAC Yes 1524954-1525025

contig20 Asp GTC GAC Yes 1402223-1402296

contig20 Asp GTC GAC Yes 1232118-1232190

contig21 Asp GTC GAC Yes 1189073-1189154

contig2 Cys GCA TGC No 1020870-1020942

contig5 Cys GCA TGC No 991232-991304

contig7 Cys GCA TGC No 885698-885779

contig10 Cys GCA TGC No 692633-692704

contig14 Cys GCA TGC No 605274-605347

contig21 Cys GCA TGC No 403983-404054

contig1 Gln CTG CAG No 231710-231783

contig3 Gln TTG CAA Yes 335512-335585

contig4 Gln TTG CAA Yes 255026-255097

contig6 Gln TTG CAA Yes 208127-208200

contig7 Gln TTG CAA Yes 170811-170884

contig7 Gln TTG CAA Yes 132075-132146

contig10 Gln TTG CAA Yes 131985-132056
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig11 Gln TTG CAA Yes 113595-113667

contig12 Gln TTG CAA Yes 99458-99530

contig1 Glu CTC GAG No 9783-9856

contig1 Glu CTC GAG No 1277037-1277108

contig3 Glu CTC GAG No 1050747-1050819

contig3 Glu CTC GAG No 521230-521316

contig3 Glu TTC GAA Yes 285028-285110

contig5 Glu TTC GAA Yes 288965-289047

contig7 Glu TTC GAA Yes 380211-380282

contig8 Glu TTC GAA Yes 387169-387240

contig11 Glu TTC GAA Yes 570123-570196

contig11 Glu TTC GAA Yes 622855-622926

contig13 Glu TTC GAA Yes 622945-623016

contig13 Glu TTC GAA Yes 950306-950378

contig15 Glu TTC GAA Yes 1039560-1039632

contig15 Glu TTC GAA Yes 1073951-1074020

contig16 Glu TTC GAA Yes 1356293-1356364

contig18 Glu TTC GAA Yes 1096643-1096714

contig19 Glu TTC GAA Yes 965922-965995

contig19 Glu TTC GAA Yes 395309-395395

contig21 Glu TTC GAA Yes 362059-362132

contig22 Glu TTC GAA Yes 225364-225445

contig23 Glu TTC GAA Yes 193063-193160

contig23 Glu TTC GAA Yes 99947-100037

contig24 Glu TTC GAA Yes 285613-285702

contig24 Glu TTC GAA Yes 327343-327414

contig1 Gly CCC GGG No 605318-605388

contig1 Gly CCC GGG No 247029-247114
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig1 Gly GCC GGC No 468203-468275

contig2 Gly GCC GGC No 789293-789365

contig2 Gly GCC GGC No 808391-808463

contig3 Gly GCC GGC No 873277-873385

contig3 Gly GCC GGC No 1080647-1080717

contig4 Gly GCC GGC No 1259278-1259386

contig5 Gly GCC GGC No 1330322-1330393

contig5 Gly GCC GGC No 1382274-1382346

contig5 Gly GCC GGC No 1293276-1293348

contig6 Gly GCC GGC No 1267389-1267460

contig6 Gly GCC GGC No 961184-961276

contig8 Gly GCC GGC No 290820-290891

contig10 Gly GCC GGC No 183891-183988

contig12 Gly GCC GGC No 125251-125322

contig12 Gly GCC GGC No 10616-10688

contig12 Gly GCC GGC No 365298-365395

contig14 Gly GCC GGC No 677867-677939

contig15 Gly GCC GGC No 763139-763211

contig15 Gly GCC GGC No 1029354-1029427

contig19 Gly TCC GGA No 684105-684177

contig20 Gly TCC GGA No 963802-963872

contig22 Gly TCC GGA No 1197598-1197670

contig22 Gly TCC GGA No 208071-208142

contig1 His GTG CAC Yes 1230343-1230413

contig1 His GTG CAC Yes 1266954-1267025

contig1 His GTG CAC Yes 1267595-1267739

contig2 His GTG CAC Yes 1239740-1239810

contig4 His GTG CAC Yes 1062554-1062626
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig5 His GTG CAC Yes 993903-993985

contig9 His GTG CAC Yes 856082-856155

contig13 His GTG CAC Yes 552641-552714

contig16 His GTG CAC Yes 278863-278944

contig18 His GTG CAC Yes 165848-165919

contig22 His GTG CAC Yes 331037-331108

contig1 Ile AAT ATT Yes 382594-382666

contig1 Ile AAT ATT Yes 458995-459066

contig3 Ile AAT ATT Yes 633871-633944

contig3 Ile AAT ATT Yes 702638-702709

contig3 Ile AAT ATT Yes 806044-806130

contig3 Ile AAT ATT Yes 808294-808366

contig3 Ile AAT ATT Yes 842253-842324

contig4 Ile AAT ATT Yes 1163590-1163662

contig4 Ile AAT ATT Yes 1148371-1148444

contig6 Ile AAT ATT Yes 1080134-1080225

contig7 Ile AAT ATT Yes 987992-988092

contig7 Ile AAT ATT Yes 889702-889775

contig8 Ile AAT ATT Yes 708722-708794

contig11 Ile AAT ATT Yes 654732-654803

contig11 Ile AAT ATT Yes 103032-103113

contig13 Ile AAT ATT Yes 433729-433862

contig17 Ile AAT ATT Yes 721251-721332

contig19 Ile TAT ATA No 785194-785267

contig19 Ile TAT ATA No 228282-228355

contig21 Ile TAT ATA No 513361-513447

contig21 Ile TAT ATA No 945698-945771

contig2 iMet CAT ATG Yes 1074527-1074599
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig3 iMet CAT ATG Yes 985466-985536

contig4 iMet CAT ATG Yes 897884-897956

contig5 iMet CAT ATG Yes 714097-714170

contig7 iMet CAT ATG Yes 700346-700427

contig10 iMet CAT ATG Yes 690036-690117

contig14 iMet CAT ATG Yes 612098-612189

contig1 Leu CAA TTG No 247760-247878

contig1 Leu CAA TTG No 518872-518953

contig1 Leu CAA TTG No 554242-554323

contig1 Leu GAG CTC No 395880-395951

contig1 Leu GAG CTC No 586747-586818

contig1 Leu TAA TTA Yes 323847-323918

contig4 Leu TAA TTA Yes 263588-263681

contig4 Leu TAA TTA Yes 183134-183234

contig6 Leu TAA TTA Yes 300150-300237

contig7 Leu TAA TTA Yes 808556-808628

contig8 Leu TAA TTA Yes 890108-890197

contig8 Leu TAA TTA Yes 1018972-1019058

contig8 Leu TAA TTA Yes 233468-233610

contig8 Leu TAA TTA Yes 103811-103882

contig12 Leu TAA TTA Yes 230205-230277

contig12 Leu TAA TTA Yes 306572-306644

contig12 Leu TAA TTA Yes 676743-676814

contig12 Leu TAA TTA Yes 502781-502852

contig12 Leu TAG CTA Yes 333592-333664

contig13 Leu TAG CTA Yes 1003836-1003917

contig13 Leu TAG CTA Yes 936641-936712

contig18 Leu TAG CTA Yes 816479-816560
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig19 Leu TAG CTA Yes 756121-756212

contig21 Leu TAG CTA Yes 77993-78064

contig21 Leu TAG CTA Yes 143694-143775

contig1 Lys CTT AAG Yes 110962-111034

contig1 Lys CTT AAG Yes 93401-93498

contig2 Lys CTT AAG Yes 76271-76357

contig2 Lys CTT AAG Yes 226354-226426

contig3 Lys CTT AAG Yes 295718-295790

contig3 Lys CTT AAG Yes 384921-384992

contig4 Lys CTT AAG Yes 699121-699194

contig4 Lys CTT AAG Yes 786694-786767

contig5 Lys CTT AAG Yes 860023-860094

contig5 Lys CTT AAG Yes 860113-860184

contig6 Lys CTT AAG Yes 891888-891960

contig6 Lys CTT AAG Yes 598697-598783

contig6 Lys CTT AAG Yes 102932-103004

contig7 Lys CTT AAG Yes 88448-88545

contig10 Lys CTT AAG Yes 61286-61372

contig10 Lys CTT AAG Yes 96976-97046

contig11 Lys CTT AAG Yes 273157-273229

contig11 Lys TTT AAA No 76368-76439

contig12 Lys TTT AAA No 636206-636277

contig14 Lys TTT AAA No 762453-762524

contig14 Lys TTT AAA No 808844-808917

contig18 Lys TTT AAA No 829092-829165

contig20 Lys TTT AAA No 878573-878645

contig23 Lys TTT AAA No 815751-815824

contig24 Lys TTT AAA No 134944-135025
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig1 Met CAT ATG Yes 345597-345679

contig1 Met CAT ATG Yes 349979-350061

contig3 Met CAT ATG Yes 495172-495243

contig5 Met CAT ATG Yes 524270-524351

contig10 Met CAT ATG Yes 602677-602748

contig11 Met CAT ATG Yes 742563-742663

contig12 Met CAT ATG Yes 808924-809016

contig14 Met CAT ATG Yes 705413-705485

contig20 Met CAT ATG Yes 663912-663984

contig1 Phe GAA TTC Yes 592246-592328

contig1 Phe GAA TTC Yes 584731-584813

contig2 Phe GAA TTC Yes 488784-488856

contig5 Phe GAA TTC Yes 306121-306194

contig7 Phe GAA TTC Yes 106385-106456

contig8 Phe GAA TTC Yes 71652-71723

contig8 Phe GAA TTC Yes 462063-462195

contig9 Phe GAA TTC Yes 538176-538262

contig12 Phe GAA TTC Yes 777038-777109

contig13 Phe GAA TTC Yes 837766-837852

contig16 Phe GAA TTC Yes 822691-822777

contig17 Phe GAA TTC Yes 817624-817705

contig17 Phe GAA TTC Yes 692671-692742

contig22 Phe GAA TTC Yes 559570-559641

contig23 Phe GAA TTC Yes 552546-552617

contig24 Phe GAA TTC Yes 352312-352384

contig1 Pro GGG CCC No 338710-338781

contig1 Pro GGG CCC No 282197-282289

contig1 Pro GGG CCC No 703322-703393
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig1 Pro TGG CCA Yes 264465-264583

contig1 Pro TGG CCA Yes 195077-195177

contig2 Pro TGG CCA Yes 219457-219527

contig2 Pro TGG CCA Yes 530917-531006

contig3 Pro TGG CCA Yes 578225-578311

contig3 Pro TGG CCA Yes 621384-621455

contig4 Pro TGG CCA Yes 645270-645367

contig4 Pro TGG CCA Yes 728452-728541

contig5 Pro TGG CCA Yes 536581-536652

contig7 Pro TGG CCA Yes 497996-498067

contig9 Pro TGG CCA Yes 360039-360111

contig9 Pro TGG CCA Yes 264255-264344

contig10 Pro TGG CCA Yes 152071-152143

contig11 Pro TGG CCA Yes 45973-46045

contig11 Pro TGG CCA Yes 29628-29700

contig13 Pro TGG CCA Yes 54444-54516

contig14 Pro TGG CCA Yes 144944-145014

contig18 Pro TGG CCA Yes 236428-236500

contig21 Pro TGG CCA Yes 337439-337510

contig1 Ser AGA TCT Yes 482329-482401

contig1 Ser AGA TCT Yes 491614-491685

contig1 Ser AGA TCT Yes 500867-500938

contig2 Ser AGA TCT Yes 535256-535337

contig2 Ser AGA TCT Yes 438398-438468

contig2 Ser AGA TCT Yes 109755-109826

contig2 Ser AGA TCT Yes 416605-416678

contig2 Ser AGA TCT Yes 440544-440617

contig3 Ser AGA TCT Yes 323112-323205
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig3 Ser AGA TCT Yes 318790-318861

contig4 Ser AGA TCT Yes 62059-62131

contig6 Ser AGA TCT Yes 85017-85090

contig7 Ser AGA TCT Yes 127731-127822

contig8 Ser AGA TCT Yes 461743-461814

contig9 Ser AGA TCT Yes 572438-572519

contig9 Ser AGA TCT Yes 523248-523320

contig9 Ser AGA TCT Yes 446854-446963

contig10 Ser AGA TCT Yes 69609-69690

contig10 Ser CGA TCG No 116049-116121

contig11 Ser GCT AGC No 380968-381038

contig12 Ser GCT AGC No 601447-601519

contig13 Ser GCT AGC No 523661-523733

contig15 Ser GCT AGC No 220660-220760

contig17 Ser GCT AGC No 324856-324948

contig17 Ser GCT AGC No 513219-513291

contig18 Ser TGA TCA No 456705-456776

contig19 Ser TGA TCA No 524182-524253

contig20 Ser TGA TCA No 189361-189434

contig26 Ser TGA TCA No 309372-309445

contig1 Thr AGT ACT Yes 193120-193228

contig2 Thr AGT ACT Yes 521404-521490

contig2 Thr AGT ACT Yes 564437-564509

contig3 Thr AGT ACT Yes 502900-502981

contig3 Thr AGT ACT Yes 374376-374447

contig3 Thr AGT ACT Yes 235948-236019

contig4 Thr AGT ACT Yes 178976-179047

contig5 Thr AGT ACT Yes 125937-126009
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig6 Thr AGT ACT Yes 242231-242312

contig7 Thr AGT ACT Yes 458281-458354

contig9 Thr AGT ACT Yes 537259-537332

contig9 Thr AGT ACT Yes 547623-547705

contig10 Thr AGT ACT Yes 523685-523818

contig11 Thr AGT ACT Yes 311471-311542

contig11 Thr AGT ACT Yes 282092-282163

contig12 Thr AGT ACT Yes 253829-253900

contig13 Thr AGT ACT Yes 242895-242965

contig14 Thr AGT ACT Yes 312787-312858

contig17 Thr CGT ACG No 229812-229883

contig18 Thr CGT ACG No 404147-404217

contig18 Thr TGT ACA No 461688-461759

contig21 Thr TGT ACA No 330485-330556

contig23 Thr TGT ACA No 446969-447040

contig24 Thr TGT ACA No 274548-274619

contig2 Trp CCA TGG Yes 319813-319885

contig5 Trp CCA TGG Yes 404101-404172

contig5 Trp CCA TGG Yes 434847-434928

contig17 Trp CCA TGG Yes 346663-346734

contig18 Trp CCA TGG Yes 346573-346644

contig22 Trp CCA TGG Yes 274267-274339

contig22 Trp CCA TGG Yes 20628-20699

contig23 Trp CCA TGG Yes 41728-41801

contig24 Trp CCA TGG Yes 116319-116390

contig25 Trp CCA TGG Yes 217201-217273

contig1 Tyr GTA TAC Yes 253908-253979

contig2 Tyr GTA TAC Yes 400619-400692
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig2 Tyr GTA TAC Yes 483469-483551

contig4 Tyr GTA TAC Yes 474481-474554

contig5 Tyr GTA TAC Yes 464213-464345

contig5 Tyr GTA TAC Yes 393004-393085

contig8 Tyr GTA TAC Yes 302949-303022

contig9 Tyr GTA TAC Yes 205664-205750

contig9 Tyr GTA TAC Yes 200001-200074

contig13 Tyr GTA TAC Yes 122412-122484

contig13 Tyr GTA TAC Yes 62580-62651

contig14 Tyr GTA TAC Yes 5310-5416

contig14 Tyr GTA TAC Yes 93287-93357

contig14 Tyr GTA TAC Yes 198387-198457

contig1 Val AAC GTT Yes 353813-353921

contig1 Val AAC GTT Yes 419924-419995

contig3 Val AAC GTT Yes 471749-471821

contig3 Val AAC GTT Yes 384543-384615

contig3 Val AAC GTT Yes 360351-360422

contig6 Val AAC GTT Yes 91033-91125

contig6 Val AAC GTT Yes 85237-85307

contig7 Val AAC GTT Yes 186278-186350

contig7 Val AAC GTT Yes 241195-241266

contig7 Val AAC GTT Yes 206105-206212

contig8 Val AAC GTT Yes 95553-95645

contig8 Val AAC GTT Yes 97743-97814

contig8 Val AAC GTT Yes 174473-174545

contig11 Val AAC GTT Yes 167861-167933

contig11 Val AAC GTT Yes 107984-108077

contig11 Val AAC GTT Yes 71466-71574
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Table B.3: Output of tRNAscan-SE from whole genome contigs for predicted K. exigua tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig12 Val AAC GTT Yes 5114-5187

contig13 Val AAC GTT Yes 49925-50037

contig15 Val CAC GTG No 184182-184254

contig16 Val CAC GTG No 253591-253662

contig16 Val TAC GTA No 313060-313132

contig21 Val TAC GTA No 253455-253526

contig21 Val TAC GTA No 230389-230460

contig21 Val TAC GTA No 197959-198066

Table B.4: Output of tRNAscan-SE from whole genome contigs for predicted K. lodderae tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig1 Ala AGC GCT Yes 302700-302771

contig2 Ala AGC GCT Yes 331840-331912

contig3 Ala AGC GCT Yes 353224-353296

contig3 Ala AGC GCT Yes 433470-433552

contig3 Ala AGC GCT Yes 438716-438797

contig3 Ala AGC GCT Yes 481283-481353

contig4 Ala AGC GCT Yes 657693-657763

contig4 Ala AGC GCT Yes 713351-713423

contig5 Ala AGC GCT Yes 729838-729909

contig5 Ala AGC GCT Yes 1136900-1136973

contig6 Ala AGC GCT Yes 1201071-1201144

contig7 Ala AGC GCT Yes 1287514-1287586

contig7 Ala AGC GCT Yes 910574-910647

contig8 Ala TGC GCA No 155014-155085

contig9 Ala TGC GCA No 797562-797633

contig9 Ala TGC GCA No 797653-797724

contig14 Ala TGC GCA No 864390-864462
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Table B.4: Output of tRNAscan-SE from whole genome contigs for predicted K. lodderae tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig14 Ala TGC GCA No 1176212-1176285

contig15 Ala TGC GCA No 866824-866932

contig1 Arg ACG CGT Yes 827889-827960

contig1 Arg ACG CGT Yes 151276-151347

contig1 Arg ACG CGT Yes 275078-275159

contig2 Arg ACG CGT Yes 691048-691121

contig2 Arg ACG CGT Yes 962801-962872

contig2 Arg CCG CGG No 851712-851784

contig3 Arg CCT AGG No 861775-861846

contig3 Arg TCT AGA Yes 491851-491922

contig4 Arg TCT AGA Yes 447193-447265

contig5 Arg TCT AGA Yes 391644-391764

contig6 Arg TCT AGA Yes 216059-216132

contig7 Arg TCT AGA Yes 103371-103471

contig8 Arg TCT AGA Yes 389773-389844

contig10 Arg TCT AGA Yes 571754-571824

contig11 Arg TCT AGA Yes 615542-615637

contig11 Arg TCT AGA Yes 631918-631989

contig13 Arg TCT AGA Yes 723822-723893

contig13 Arg TCT AGA Yes 914162-914247

contig15 Arg TCT AGA Yes 1038944-1039017

contig2 Asn GTT AAC Yes 1048398-1048533

contig2 Asn GTT AAC Yes 1193323-1193394

contig4 Asn GTT AAC Yes 1217871-1217944

contig4 Asn GTT AAC Yes 1111685-1111758

contig4 Asn GTT AAC Yes 987382-987453

contig6 Asn GTT AAC Yes 809513-809586

contig7 Asn GTT AAC Yes 742726-742799
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Table B.4: Output of tRNAscan-SE from whole genome contigs for predicted K. lodderae tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig9 Asn GTT AAC Yes 699922-699995

contig9 Asn GTT AAC Yes 681590-681661

contig11 Asn GTT AAC Yes 654263-654334

contig14 Asn GTT AAC Yes 553125-553195

contig15 Asn GTT AAC Yes 357219-357314

contig1 Asp GTC GAC Yes 354363-354434

contig2 Asp GTC GAC Yes 343296-343369

contig3 Asp GTC GAC Yes 319469-319540

contig3 Asp GTC GAC Yes 273183-273278

contig6 Asp GTC GAC Yes 43679-43752

contig7 Asp GTC GAC Yes 58342-58414

contig7 Asp GTC GAC Yes 113583-113654

contig8 Asp GTC GAC Yes 287004-287099

contig9 Asp GTC GAC Yes 324468-324563

contig10 Asp GTC GAC Yes 504805-504902

contig10 Asp GTC GAC Yes 505359-505440

contig11 Asp GTC GAC Yes 561077-561150

contig11 Asp GTC GAC Yes 639161-639232

contig13 Asp GTC GAC Yes 660873-660970

contig13 Asp GTC GAC Yes 662983-663055

contig3 Cys GCA TGC No 672541-672613

contig3 Cys GCA TGC No 743011-743084

contig3 Cys GCA TGC No 782083-782155

contig5 Cys GCA TGC No 852758-852847

contig7 Cys GCA TGC No 858354-858427

contig15 Cys GCA TGC No 912933-913005

contig1 Gln TTG CAA Yes 973605-973675

contig1 Gln TTG CAA Yes 997604-997675
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Table B.4: Output of tRNAscan-SE from whole genome contigs for predicted K. lodderae tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig1 Gln TTG CAA Yes 1067047-1067118

contig2 Gln TTG CAA Yes 1248044-1248115

contig3 Gln TTG CAA Yes 1215038-1215124

contig5 Gln TTG CAA Yes 1164019-1164090

contig5 Gln CTG CAG Yes 945487-945558

contig8 Gln TTG CAA Yes 938667-938739

contig8 Gln TTG CAA Yes 921323-921404

contig9 Gln TTG CAA Yes 918963-919034

contig1 Glu CTC GAG No 806695-806766

contig2 Glu CTC GAG No 203186-203258

contig2 Glu TTC GAA Yes 845311-845383

contig2 Glu TTC GAA Yes 743867-743975

contig2 Glu TTC GAA Yes 721105-721176

contig2 Glu TTC GAA Yes 659631-659702

contig3 Glu TTC GAA Yes 618843-618924

contig3 Glu TTC GAA Yes 608068-608159

contig4 Glu TTC GAA Yes 545987-546058

contig6 Glu TTC GAA Yes 497902-497973

contig8 Glu TTC GAA Yes 492687-492773

contig8 Glu TTC GAA Yes 479480-479553

contig10 Glu TTC GAA Yes 428679-428750

contig11 Glu TTC GAA Yes 416264-416335

contig11 Glu TTC GAA Yes 161402-161474

contig12 Glu TTC GAA Yes 95243-95316

contig12 Glu TTC GAA Yes 104065-104147

contig15 Glu TTC GAA Yes 156042-156139

contig1 Gly CCC GGG No 630150-630222

contig1 Gly GCC GGC No 401020-401101
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Table B.4: Output of tRNAscan-SE from whole genome contigs for predicted K. lodderae tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig2 Gly GCC GGC No 406874-406955

contig2 Gly GCC GGC No 590250-590339

contig3 Gly GCC GGC No 601481-601581

contig3 Gly GCC GGC No 651261-651333

contig3 Gly GCC GGC No 805412-805484

contig4 Gly GCC GGC No 896133-896214

contig4 Gly GCC GGC No 928311-928383

contig5 Gly GCC GGC No 972560-972632

contig6 Gly GCC GGC No 993788-993896

contig6 Gly GCC GGC No 1037514-1037584

contig6 Gly GCC GGC No 1188168-1188250

contig7 Gly GCC GGC No 1117614-1117687

contig7 Gly GCC GGC No 1107441-1107513

contig8 Gly GCC GGC No 1029834-1029905

contig8 Gly GCC GGC No 983738-983809

contig9 Gly GCC GGC No 937358-937430

contig10 Gly GCC GGC No 796434-796505

contig11 Gly GCC GGC No 580145-580217

contig11 Gly TCC GGA No 801291-801364

contig13 Gly TCC GGA No 819643-819725

contig2 His GTG CAC Yes 559131-559203

contig2 His GTG CAC Yes 428593-428688

contig3 His GTG CAC Yes 313082-313154

contig3 His GTG CAC Yes 57483-57555

contig6 His GTG CAC Yes 129472-129544

contig6 His GTG CAC Yes 144846-144918

contig9 His GTG CAC Yes 164509-164579

contig15 His GTG CAC Yes 464048-464134
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Table B.4: Output of tRNAscan-SE from whole genome contigs for predicted K. lodderae tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig1 Ile AAT ATT Yes 639402-639483

contig1 Ile AAT ATT Yes 679329-679401

contig1 Ile AAT ATT Yes 741075-741157

contig2 Ile AAT ATT Yes 748499-748570

contig2 Ile AAT ATT Yes 943990-944061

contig2 Ile AAT ATT Yes 969870-969951

contig2 Ile AAT ATT Yes 1000195-1000266

contig3 Ile AAT ATT Yes 1067555-1067646

contig5 Ile AAT ATT Yes 1129034-1129130

contig6 Ile AAT ATT Yes 990236-990322

contig7 Ile AAT ATT Yes 884162-884243

contig9 Ile AAT ATT Yes 860238-860310

contig9 Ile AAT ATT Yes 712691-712764

contig9 Ile AAT ATT Yes 425845-425916

contig11 Ile GAT ATC Yes 351050-351121

contig14 Ile TAT ATA No 867556-867647

contig15 Ile TAT ATA No 1056898-1056994

contig3 iMet CAT ATG Yes 189403-189474

contig5 iMet CAT ATG Yes 69289-69362

contig7 iMet CAT ATG Yes 32521-32592

contig11 iMet CAT ATG Yes 80759-80829

contig11 iMet CAT ATG Yes 119519-119592

contig1 Leu AAG CTT No 334182-334252

contig1 Leu AAG CTT No 620952-621024

contig1 Leu CAA TTG No 240841-240938

contig3 Leu CAA TTG No 677660-677751

contig4 Leu CAA TTG No 590823-590944

contig4 Leu CAA TTG No 538511-538611
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Table B.4: Output of tRNAscan-SE from whole genome contigs for predicted K. lodderae tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig4 Leu TAA TTA Yes 198657-198728

contig5 Leu TAA TTA Yes 367203-367275

contig5 Leu TAA TTA Yes 471651-471722

contig6 Leu TAA TTA Yes 503387-503458

contig6 Leu TAA TTA Yes 601895-601990

contig6 Leu TAA TTA Yes 632454-632525

contig8 Leu TAA TTA Yes 808737-808819

contig9 Leu TAA TTA Yes 802501-802592

contig11 Leu TAA TTA Yes 680226-680307

contig11 Leu TAA TTA Yes 654250-654331

contig11 Leu TAA TTA Yes 522422-522503

contig12 Leu TAA TTA Yes 510788-510861

contig12 Leu TAA TTA Yes 500823-500923

contig12 Leu TAA TTA Yes 496360-496433

contig13 Leu TAG CTA No 324018-324114

contig14 Leu TAG CTA No 746816-746907

contig15 Leu TAG CTA No 872145-872271

contig1 Lys CTT AAG Yes 344069-344139

contig1 Lys CTT AAG Yes 312915-312988

contig3 Lys CTT AAG Yes 146961-147032

contig3 Lys CTT AAG Yes 179704-179776

contig3 Lys CTT AAG Yes 712703-712773

contig4 Lys CTT AAG Yes 715603-715675

contig4 Lys CTT AAG Yes 537054-537189

contig4 Lys CTT AAG Yes 405582-405653

contig5 Lys CTT AAG Yes 89618-89700

contig5 Lys CTT AAG Yes 92656-92727

contig5 Lys CTT AAG Yes 169998-170070
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Table B.4: Output of tRNAscan-SE from whole genome contigs for predicted K. lodderae tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig6 Lys CTT AAG Yes 319459-319529

contig6 Lys TTT AAA No 109083-109156

contig8 Lys TTT AAA No 146870-146941

contig8 Lys TTT AAA No 158648-158719

contig8 Lys TTT AAA No 743823-743904

contig10 Lys TTT AAA No 772981-773051

contig10 Lys TTT AAA No 633826-633917

contig11 Lys TTT AAA No 324222-324293

contig11 Lys TTT AAA No 62176-62262

contig12 Lys TTT AAA No 240395-240490

contig15 Lys TTT AAA No 329228-329314

contig3 Met CAT ATG Yes 361409-361495

contig4 Met CAT ATG Yes 500980-501052

contig4 Met CAT ATG Yes 633205-633277

contig10 Met CAT ATG Yes 681691-681762

contig12 Met CAT ATG Yes 638529-638625

contig15 Met CAT ATG Yes 479813-479884

contig2 Phe GAA TTC Yes 452342-452414

contig2 Phe GAA TTC Yes 370215-370286

contig2 Phe GAA TTC Yes 341462-341532

contig3 Phe GAA TTC Yes 305657-305764

contig3 Phe GAA TTC Yes 251631-251702

contig4 Phe GAA TTC Yes 150875-150956

contig6 Phe GAA TTC Yes 119737-119809

contig6 Phe GAA TTC Yes 104569-104665

contig8 Phe GAA TTC Yes 108292-108363

contig9 Phe GAA TTC Yes 115778-115849

contig9 Phe GAA TTC Yes 188210-188280
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Table B.4: Output of tRNAscan-SE from whole genome contigs for predicted K. lodderae tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig13 Phe GAA TTC Yes 217040-217111

contig15 Phe GAA TTC Yes 420020-420093

contig2 Pro GGG CCC No 232056-232143

contig3 Pro TGG CCA Yes 540293-540374

contig3 Pro TGG CCA Yes 672814-672887

contig4 Pro TGG CCA Yes 680293-680393

contig5 Pro TGG CCA Yes 692973-693046

contig5 Pro TGG CCA Yes 589947-590042

contig6 Pro TGG CCA Yes 534151-534224

contig6 Pro TGG CCA Yes 493773-493868

contig6 Pro TGG CCA Yes 365812-365885

contig7 Pro TGG CCA Yes 287209-287281

contig9 Pro TGG CCA Yes 282484-282555

contig9 Pro TGG CCA Yes 229112-229184

contig9 Pro TGG CCA Yes 209593-209693

contig11 Pro TGG CCA Yes 200498-200585

contig1 Ser AGA TCT Yes 132677-132768

contig2 Ser AGA TCT Yes 120777-120868

contig3 Ser AGA TCT Yes 101486-101559

contig3 Ser AGA TCT Yes 98005-98076

contig4 Ser AGA TCT Yes 147923-148030

contig4 Ser AGA TCT Yes 280789-280860

contig4 Ser AGA TCT Yes 313885-313957

contig4 Ser AGA TCT Yes 628435-628508

contig5 Ser AGA TCT Yes 238401-238471

contig5 Ser AGA TCT Yes 172854-172926

contig6 Ser AGA TCT Yes 121548-121619

contig6 Ser AGA TCT Yes 76596-76667
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Table B.4: Output of tRNAscan-SE from whole genome contigs for predicted K. lodderae tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig6 Ser AGA TCT Yes 84584-84674

contig6 Ser CGA TCG No 393091-393163

contig6 Ser GCT AGC No 153347-153418

contig7 Ser GCT AGC No 175907-176014

contig8 Ser GCT AGC No 53676-53762

contig9 Ser GCT AGC No 92081-92152

contig9 Ser TGA TCA No 69317-69389

contig11 Ser TGA TCA No 332418-332490

contig11 Ser TGA TCA No 166592-166664

contig15 Ser TGA TCA No 123860-123931

contig15 Sup TCA TGA Yes 128002-128075

contig1 Thr AGT ACT Yes 189192-189299

contig3 Thr AGT ACT Yes 249561-249634

contig3 Thr AGT ACT Yes 470813-470884

contig3 Thr AGT ACT Yes 591768-591864

contig4 Thr AGT ACT Yes 568166-568237

contig4 Thr AGT ACT Yes 531232-531302

contig4 Thr AGT ACT Yes 473591-473691

contig4 Thr AGT ACT Yes 461597-461668

contig5 Thr AGT ACT Yes 431134-431205

contig5 Thr AGT ACT Yes 411284-411355

contig5 Thr AGT ACT Yes 135522-135604

contig8 Thr AGT ACT Yes 128490-128563

contig8 Thr AGT ACT Yes 22912-22983

contig10 Thr CGT ACG No 267188-267270

contig10 Thr CGT ACG No 57514-57585

contig10 Thr CGT ACG No 74146-74219

contig11 Thr TGT ACA No 400676-400757
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Table B.4: Output of tRNAscan-SE from whole genome contigs for predicted K. lodderae tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig13 Thr TGT ACA No 438103-438185

contig15 Thr TGT ACA No 65729-65799

contig16 Thr TGT ACA No 47719-47839

contig1 Trp CCA TGG Yes 104927-104998

contig3 Trp CCA TGG Yes 135014-135086

contig4 Trp CCA TGG Yes 196546-196664

contig8 Trp CCA TGG Yes 376817-376888

contig10 Trp CCA TGG Yes 403042-403124

contig10 Trp CCA TGG Yes 259761-259833

contig11 Trp CCA TGG Yes 251267-251340

contig3 Tyr GTA TAC Yes 279395-279466

contig3 Tyr GTA TAC Yes 279486-279557

contig5 Tyr GTA TAC Yes 295100-295172

contig5 Tyr GTA TAC Yes 310979-311051

contig7 Tyr GTA TAC Yes 379710-379792

contig8 Tyr GTA TAC Yes 372798-372869

contig8 Tyr GTA TAC Yes 246992-247062

contig9 Tyr GTA TAC Yes 120894-120991

contig9 Tyr GTA TAC Yes 19436-19509

contig11 Tyr GTA TAC Yes 107486-107558

contig1 Val AAC GTT Yes 203671-203744

contig1 Val AAC GTT Yes 304970-305052

contig1 Val AAC GTT Yes 273073-273145

contig2 Val AAC GTT Yes 30051-30131

contig2 Val AAC GTT Yes 29519-29590

contig2 Val AAC GTT Yes 29442-29514

contig3 Val AAC GTT Yes 29078-29148

contig3 Val AAC GTT Yes 28993-29064
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Table B.4: Output of tRNAscan-SE from whole genome contigs for predicted K. lodderae tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig3 Val AAC GTT Yes 11572-11643

contig3 Val AAC GTT Yes 11409-11481

contig5 Val AAC GTT Yes 11196-11281

contig6 Val AAC GTT Yes 8176-8246

contig6 Val AAC GTT Yes 3148-3220

contig9 Val AAC GTT Yes 815-886

contig10 Val AAC GTT Yes 634-706

contig10 Val AAC GTT Yes 528-600

contig12 Val CAC GTG No 162863-162936

contig13 Val TAC GTA No 11493-11564

contig14 Val TAC GTA No 4570-4642

contig15 Val TAC GTA No 17055-17126
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Table B.5: Output of tRNAscan-SE from whole genome contigs for predicted K. naganishii tRNA
genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE978314.1 Ala AGC GCU Yes 512464-512536

HE978315.1 Ala AGC GCU Yes 999907-999979

HE978315.1 Ala AGC GCU Yes 978421-978493

HE978316.1 Ala AGC GCU Yes 1109697-1109769

HE978318.1 Ala AGC GCU Yes 614315-614387

HE978318.1 Ala AGC GCU Yes 554541-554613

HE978318.1 Ala AGC GCU Yes 501434-501506

HE978314.1 Ala CGC GCG No 973343-973415

HE978314.1 Ala TGC GCA No 899090-899162

HE978316.1 Arg ACG CGU Yes 299840-299912

HE978320.1 Arg ACG CGU Yes 536993-537065

HE978326.1 Arg ACG CGU Yes 212644-212716

HE978315.1 Arg CCG CGG No 1116479-1116550

HE978315.1 Arg CCT AGG No 44586-44657

HE978319.1 Arg TCT AGA Yes 523948-524019

HE978319.1 Arg TCT AGA Yes 619394-619465

HE978321.1 Arg TCT AGA Yes 167625-167696

HE978323.1 Arg TCT AGA Yes 437945-438016

HE978324.1 Arg TCT AGA Yes 424218-424291

HE978326.1 Arg TCT AGA Yes 229329-229400

HE978314.1 Asn GTT AAC No 1250231-1250304

HE978314.1 Asn GTT AAC No 1076795-1076868

HE978315.1 Asn GTT AAC No 1286065-1286138

HE978317.1 Asn GTT AAC No 482575-482648

HE978318.1 Asn GTT AAC No 761849-761922

HE978322.1 Asn GTT AAC No 210661-210734

HE978318.1 Asp GTC GAC No 182582-182653

HE978318.1 Asp GTC GAC No 173107-173178
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Table B.5: Output of tRNAscan-SE from whole genome contigs for predicted K. naganishii tRNA
genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE978319.1 Asp GTC GAC No 524038-524109

HE978319.1 Asp GTC GAC No 619304-619375

HE978321.1 Asp GTC GAC No 167534-167605

HE978323.1 Asp GTC GAC No 438035-438106

HE978324.1 Asp GTC GAC No 424128-424199

HE978326.1 Asp GTC GAC No 229420-229491

HE978314.1 Cys GCA UGC No 505812-505883

HE978314.1 Cys GCA UGC No 173539-173610

HE978315.1 Cys GCA UGC No 175314-175385

HE978315.1 Cys GCA UGC No 1023915-1023986

HE978323.1 Gln CTG CUA No 52049-52120

HE978324.1 Gln CTG CUA No 428294-428365

HE978321.1 Gln TTG CAA Yes 569115-569186

HE978321.1 Gln TTG CAA Yes 216364-216435

HE978322.1 Gln TTG CAA Yes 310513-310584

HE978323.1 Gln TTG CAA Yes 156290-156361

HE978316.1 Glu CTC GAG No 1221535-1221606

HE978318.1 Glu CTC GAG No 719435-719506

HE978325.1 Glu CTC GAG No 316008-316079

HE978315.1 Glu TTC GAA Yes 1097812-1097883

HE978317.1 Glu TTC GAA Yes 463009-463080

HE978318.1 Glu TTC GAA Yes 809038-809109

HE978319.1 Glu TTC GAA Yes 606635-606703

HE978325.1 Glu TTC GAA Yes 177352-177423

HE978326.1 Glu TTC GAA Yes 77569-77640

HE978315.1 Gly CCC GGG No 767791-767861

HE978316.1 Gly CCC GGG No 1190952-1191022

HE978315.1 Gly GCC GGC No 120655-120725
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Table B.5: Output of tRNAscan-SE from whole genome contigs for predicted K. naganishii tRNA
genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE978315.1 Gly GCC GGC No 50833-50903

HE978318.1 Gly GCC GGC No 151544-151614

HE978318.1 Gly GCC GGC No 684883-684953

HE978318.1 Gly GCC GGC No 694190-694260

HE978320.1 Gly GCC GGC No 146218-146288

HE978321.1 Gly GCC GGC No 262884-262954

HE978323.1 Gly GCC GGC No 176859-176929

HE978326.1 Gly GCC GGC No 175878-175948

HE978315.1 Gly TCC GGA No 125825-125896

HE978317.1 His GTG CAC No 346470-346541

HE978318.1 His GTG CAC No 315575-315646

HE978320.1 His GTG CAC No 320005-320076

HE978326.1 His GTG CAC No 435950-436021

HE978314.1 Ile AAT AUU Yes 207496-207569

HE978314.1 Ile AAT AUU Yes 804218-804291

HE978315.1 Ile AAT AUU Yes 574853-574926

HE978316.1 Ile AAT AUU Yes 808491-808564

HE978321.1 Ile AAT AUU Yes 365894-365967

HE978322.1 Ile AAT AUU Yes 329681-329754

HE978322.1 Ile AAT AUU Yes 252029-252102

HE978314.1 Ile TAT AUA No 635837-635969

HE978314.1 Ile TAT AUA No 266406-266539

HE978320.1 iMe CAT AUG Yes 114288-114359

HE978323.1 iMe CAT AUG Yes 249848-249919

HE978322.1 Leu AAG CUU Yes 572351-572456

HE978315.1 Leu CAA UUG Yes 1009708-1009829

HE978317.1 Leu CAA UUG Yes 691306-691427

HE978317.1 Leu CAA UUG Yes 662538-662659
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Table B.5: Output of tRNAscan-SE from whole genome contigs for predicted K. naganishii tRNA
genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE978326.1 Leu CAA UUG Yes 492794-492916

HE978326.1 Leu CAA UUG Yes 351897-352019

HE978322.1 Leu TAA UUA Yes 510840-510922

HE978323.1 Leu TAA UUA Yes 152191-152273

HE978323.1 Leu TAA UUA Yes 453870-453952

HE978317.1 Leu TAG CUA Yes 221266-221363

HE978319.1 Leu TAG CUA Yes 502656-502753

HE978323.1 Leu TAG CUA Yes 511856-511953

HE978315.1 Lys CTT AAG No 679664-679736

HE978315.1 Lys CTT AAG No 810810-810882

HE978317.1 Lys CTT AAG No 855120-855192

HE978317.1 Lys CTT AAG No 402517-402589

HE978318.1 Lys CTT AAG No 677458-677530

HE978319.1 Lys CTT AAG No 484454-484526

HE978325.1 Lys CTT AAG No 219623-219695

HE978316.1 Lys TTT AAA Yes 420603-420697

HE978316.1 Lys TTT AAA Yes 1240811-1240906

HE978317.1 Lys TTT AAA Yes 779134-779229

HE978323.1 Lys TTT AAA Yes 166748-166843

HE978319.1 Met CAT AUG Yes 485924-485996

HE978322.1 Met CAT AUG Yes 353305-353377

HE978315.1 Phe GAA UUC No 375700-375802

HE978315.1 Phe GAA UUC No 905834-905936

HE978316.1 Phe GAA UUC No 593837-593939

HE978317.1 Phe GAA UUC No 426247-426349

HE978324.1 Phe GAA UUC No 200831-200930

HE978326.1 Phe GAA UUC No 432649-432748

HE978322.1 Pro AGG CCU No 213791-213862
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Table B.5: Output of tRNAscan-SE from whole genome contigs for predicted K. naganishii tRNA
genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE978314.1 Pro TGG CCA Yes 1151869-1151979

HE978315.1 Pro TGG CCA Yes 964924-965032

HE978315.1 Pro TGG CCA Yes 760940-761048

HE978320.1 Pro TGG CCA Yes 100097-100205

HE978321.1 Pro TGG CCA Yes 516352-516460

HE978325.1 Pro TGG CCA Yes 103080-103188

HE978315.1 Ser AGA UCU Yes 989848-989929

HE978315.1 Ser AGA UCU Yes 1126510-1126591

HE978315.1 Ser AGA UCU Yes 962168-962249

HE978315.1 Ser AGA UCU Yes 712967-713048

HE978318.1 Ser AGA UCU Yes 538648-538729

HE978324.1 Ser AGA UCU Yes 285924-286005

HE978324.1 Ser AGA UCU Yes 317200-317281

HE978322.1 Ser CGA UCG No 567245-567340

HE978315.1 Ser GCT AGC No 1061284-1061384

HE978317.1 Ser GCT AGC No 598698-598798

HE978322.1 Ser GCT AGC No 322679-322779

HE978325.1 Ser TGA UCA Yes 274294-274375

HE978321.1 Thr AGT ACU Yes 442687-442759

HE978321.1 Thr AGT ACU Yes 376810-376882

HE978323.1 Thr AGT ACU Yes 224807-224879

HE978323.1 Thr AGT ACU Yes 183282-183354

HE978324.1 Thr AGT ACU Yes 108403-108475

HE978325.1 Thr AGT ACU Yes 191261-191333

HE978326.1 Thr AGT ACU Yes 227987-228059

HE978315.1 Thr CGT ACG No 25320-25391

HE978314.1 Thr TGT ACA No 1191654-1191725

HE978326.1 Thr TGT ACA No 299848-299919
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Table B.5: Output of tRNAscan-SE from whole genome contigs for predicted K. naganishii tRNA
genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

HE978315.1 Trp CCA UGG Yes 1348961-1349064

HE978319.1 Trp CCA UGG Yes 458100-458202

HE978320.1 Trp CCA UGG Yes 216319-216420

HE978321.1 Trp CCA UGG Yes 68425-68528

HE978314.1 Tyr GTA UAC No 563484-563580

HE978315.1 Tyr GTA UAC No 39684-39780

HE978315.1 Tyr GTA UAC No 171648-171744

HE978320.1 Tyr GTA UAC No 52498-52595

HE978322.1 Tyr GTA UAC No 295849-295945

HE978314.1 Val AAC GUU Yes 1107360-1107433

HE978316.1 Val AAC GUU Yes 1116009-1116082

HE978318.1 Val AAC GUU Yes 709175-709248

HE978320.1 Val AAC GUU Yes 250394-250467

HE978320.1 Val AAC GUU Yes 346326-346399

HE978322.1 Val AAC GUU Yes 154758-154831

HE978325.1 Val AAC GUU Yes 171333-171406

HE978315.1 Val CAC GUG No 910143-910215

HE978326.1 Val CAC GUG No 273056-273128

HE978321.1 Val TAC GUA Yes 243100-243172

Table B.6: Output of tRNAscan-SE from whole genome contigs for predicted K. viticola tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig1. Ala AGC GCT Yes 90021-90094

contig1. Ala AGC GCT Yes 135416-135487

contig2. Ala AGC GCT Yes 146308-146379

contig2. Ala AGC GCT Yes 146399-146470

contig2. Ala AGC GCT Yes 459191-459272

contig3. Ala AGC GCT Yes 653382-653464
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Table B.6: Output of tRNAscan-SE from whole genome contigs for predicted K. viticola tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig3. Ala AGC GCT Yes 670612-670712

contig4. Ala AGC GCT Yes 789409-789490

contig6. Ala AGC GCT Yes 824954-825035

contig8. Ala AGC GCT Yes 901213-901285

contig8. Ala AGC GCT Yes 1028482-1028554

contig10 Ala AGC GCT Yes 1047476-1047547

contig10 Ala AGC GCT Yes 1077440-1077512

contig12 Ala TGC GCA No 135507-135578

contig13 Ala TGC GCA No 402761-402832

contig21 Ala TGC GCA No 561626-561699

contig21 Ala TGC GCA No 832213-832285

contig22 Ala TGC GCA No 1088033-1088106

contig1. Arg ACG CGT Yes 602218-602289

contig1. Arg ACG CGT Yes 377181-377252

contig1. Arg ACG CGT Yes 303798-303869

contig1. Arg ACG CGT Yes 67671-67742

contig2. Arg CCG CGG No 24902-24973

contig2. Arg CCT AGG No 197920-197992

contig3. Arg TCT AGA Yes 919774-919845

contig3. Arg TCT AGA Yes 919683-919754

contig3. Arg TCT AGA Yes 808194-808266

contig7. Arg TCT AGA Yes 792371-792463

contig8. Arg TCT AGA Yes 633250-633322

contig9. Arg TCT AGA Yes 602127-602198

contig11 Arg TCT AGA Yes 574979-575071

contig18 Arg TCT AGA Yes 67762-67833

contig20 Arg TCT AGA Yes 178082-178180

contig22 Arg TCT AGA Yes 209742-209814
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Table B.6: Output of tRNAscan-SE from whole genome contigs for predicted K. viticola tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig1. Asn GTT AAC Yes 215541-215612

contig3. Asn GTT AAC Yes 681952-682041

contig6. Asn GTT AAC Yes 773291-773363

contig10 Asn GTT AAC Yes 686765-686836

contig12 Asn GTT AAC Yes 582222-582295

contig13 Asn GTT AAC Yes 561405-561477

contig16 Asn GTT AAC Yes 488830-488902

contig17 Asn GTT AAC Yes 477295-477367

contig22 Asn GTT AAC Yes 165098-165223

contig1. Asp GTC GAC Yes 99804-99904

contig1. Asp GTC GAC Yes 74733-74806

contig1. Asp GTC GAC Yes 48915-48988

contig1. Asp GTC GAC Yes 70204-70305

contig2. Asp GTC GAC Yes 169670-169768

contig2. Asp GTC GAC Yes 268128-268199

contig3. Asp GTC GAC Yes 387960-388060

contig4. Asp GTC GAC Yes 435878-435976

contig5. Asp GTC GAC Yes 476908-477006

contig9. Asp GTC GAC Yes 555693-555775

contig10 Asp GTC GAC Yes 625975-626047

contig18 Asp GTC GAC Yes 639202-639283

contig29 Asp GTC GAC Yes 756753-756824

contig1. Cys GCA TGC No 756844-756915

contig3. Cys GCA TGC No 865596-865667

contig8. Cys GCA TGC No 871350-871423

contig19 Cys GCA TGC No 890549-890647

contig2. Gln TTG CAA Yes 901092-901164

contig4. Gln TTG CAA Yes 914062-914144
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Table B.6: Output of tRNAscan-SE from whole genome contigs for predicted K. viticola tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig5. Gln TTG CAA Yes 857685-857756

contig10 Gln TTG CAA Yes 842952-843025

contig11 Gln CTG CAG No 716551-716623

contig11 Gln TTG CAA Yes 611756-611829

contig12 Gln TTG CAA Yes 359458-359530

contig15 Gln TTG CAA Yes 169-241

contig1. Glu CTC GAG No 45329-45426

contig1. Glu CTC GAG No 409678-409749

contig4. Glu TTC GAA Yes 108241-108313

contig6. Glu TTC GAA Yes 113466-113537

contig7. Glu TTC GAA Yes 171194-171275

contig7. Glu TTC GAA Yes 194901-194973

contig10 Glu TTC GAA Yes 216875-216974

contig10 Glu TTC GAA Yes 389056-389128

contig11 Glu TTC GAA Yes 436604-436674

contig13 Glu TTC GAA Yes 485638-485719

contig14 Glu TTC GAA Yes 559041-559112

contig17 Glu TTC GAA Yes 791742-791843

contig17 Glu TTC GAA Yes 854282-854364

contig22 Glu TTC GAA Yes 542533-542606

contig3. Gly CCC GGG No 460478-460550

contig4. Gly GCC GGC No 307091-307164

contig4. Gly GCC GGC No 229196-229267

contig5. Gly GCC GGC No 199886-199956

contig8. Gly GCC GGC No 21090-21182

contig9. Gly GCC GGC No 339647-339728

contig11 Gly GCC GGC No 480072-480144

contig11 Gly GCC GGC No 578517-578589
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Table B.6: Output of tRNAscan-SE from whole genome contigs for predicted K. viticola tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig11 Gly GCC GGC No 620299-620370

contig12 Gly GCC GGC No 553948-554041

contig12 Gly GCC GGC No 493322-493403

contig14 Gly GCC GGC No 338345-338415

contig17 Gly GCC GGC No 284306-284377

contig18 Gly GCC GGC No 242421-242493

contig20 Gly GCC GGC No 429748-429820

contig21 Gly GCC GGC No 607557-607655

contig21 Gly TCC GGA No 2066-2137

contig22 Gly TCC GGA No 405327-405400

contig28 Gly TCC GGA No 564637-564708

contig2. His GTG CAC Yes 635297-635386

contig10 His GTG CAC Yes 618193-618297

contig12 His GTG CAC Yes 513127-513200

contig16 His GTG CAC Yes 12879-12961

contig17 His GTG CAC Yes 232317-232388

contig1. Ile AAT ATT Yes 238507-238579

contig2. Ile AAT ATT Yes 297891-297962

contig3. Ile AAT ATT Yes 533094-533167

contig3. Ile AAT ATT Yes 512466-512539

contig5. Ile AAT ATT Yes 507357-507429

contig10 Ile AAT ATT Yes 226059-226140

contig12 Ile AAT ATT Yes 330521-330602

contig12 Ile AAT ATT Yes 398150-398222

contig14 Ile AAT ATT Yes 462391-462463

contig15 Ile AAT ATT Yes 486369-486440

contig17 Ile TAT ATA No 479108-479179

contig19 Ile TAT ATA No 520816-520886
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Table B.6: Output of tRNAscan-SE from whole genome contigs for predicted K. viticola tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig1. iMet CAT ATG Yes 484406-484478

contig4. iMet CAT ATG Yes 241199-241280

contig8. iMet CAT ATG Yes 234445-234516

contig10 iMet CAT ATG Yes 222321-222402

contig24 iMet CAT ATG Yes 259867-259939

contig1. Leu AAG CTT No 193206-193277

contig2. Leu AAG CTT No : 382645-382716

contig3. Leu CAA TTG No 479783-479854

contig3. Leu CAA TTG No 455499-455570

contig3. Leu TAA TTA Yes 428461-428533

contig4. Leu TAA TTA Yes 289878-289951

contig4. Leu TAA TTA Yes 258317-258389

contig7. Leu TAA TTA Yes 81726-81798

contig8. Leu TAA TTA Yes 111551-111622

contig9. Leu TAA TTA Yes 241983-242055

contig11 Leu TAA TTA Yes 304413-304485

contig11 Leu TAA TTA Yes 336035-336131

contig16 Leu TAA TTA Yes 446172-446270

contig16 Leu TAA TTA Yes 450365-450470

contig16 Leu TAG CTA No 316932-317014

contig20 Leu TAG CTA No 62828-62899

contig1. Lys CTT AAG Yes : 352962-353034

contig2. Lys CTT AAG Yes : 307491-307564

contig4. Lys CTT AAG Yes : 279838-279909

contig4. Lys CTT AAG Yes : 234734-234805

contig4. Lys CTT AAG Yes 72505-72576

contig4. Lys CTT AAG Yes 242881-242985

contig4. Lys CTT AAG Yes 249696-249778
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Table B.6: Output of tRNAscan-SE from whole genome contigs for predicted K. viticola tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig5. Lys CTT AAG Yes 257876-257948

contig7. Lys CTT AAG Yes 335558-335630

contig10 Lys CTT AAG Yes 383183-383254

contig10 Lys CTT AAG Yes : 280671-280741

contig12 Lys CTT AAG Yes : 255649-255720

contig15 Lys TTT AAA No : 243566-243639

contig17 Lys TTT AAA No : 89932-90003

contig17 Lys TTT AAA No 331188-331259

contig22 Lys TTT AAA No 368656-368726

contig24 Lys TTT AAA No 380974-381045

contig29 Lys TTT AAA No : 374273-374355

contig1. Met CAT ATG Yes : 240387-240491

contig2. Met CAT ATG Yes : 208322-208394

contig3. Met CAT ATG Yes 105065-105138

contig22 Met CAT ATG Yes 129184-129254

contig22 Met CAT ATG Yes 212907-212980

contig2. Phe GAA TTC Yes 267148-267221

contig3. Phe GAA TTC Yes 370332-370404

contig3. Phe GAA TTC Yes 400403-400492

contig3. Phe GAA TTC Yes 381973-382044

contig3. Phe GAA TTC Yes 353348-353448

contig6. Phe GAA TTC Yes 339791-339880

contig10 Phe GAA TTC Yes : 299806-299879

contig17 Phe GAA TTC Yes : 245866-245939

contig22 Phe GAA TTC Yes : 211553-211624

contig1. Pro AGG CCT No 44341-44422

contig1. Pro TGG CCA Yes : 118959-119029

contig4. Pro TGG CCA Yes : 85090-85162
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Table B.6: Output of tRNAscan-SE from whole genome contigs for predicted K. viticola tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig5. Pro TGG CCA Yes 237878-237949

contig6. Pro TGG CCA Yes 281688-281761

contig16 Pro TGG CCA Yes 366919-367008

contig16 Pro TGG CCA Yes 104657-104729

contig19 Pro TGG CCA Yes 171305-171378

contig20 Pro TGG CCA Yes 276836-276906

contig21 Pro TGG CCA Yes 186845-186926

contig21 Pro TGG CCA Yes 129541-129612

contig24 Pro TGG CCA Yes 70256-70329

contig1. Ser AGA TCT Yes 8928-9001

contig1. Ser AGA TCT Yes 185349-185438

contig1. Ser AGA TCT Yes 244164-244261

contig1. Ser AGA TCT Yes 258393-258464

contig2. Ser AGA TCT Yes 249489-249562

contig3. Ser AGA TCT Yes 229615-229686

contig3. Ser AGA TCT Yes 212595-212695

contig4. Ser AGA TCT Yes 120715-120793

contig4. Ser AGA TCT Yes 152150-152221

contig5. Ser AGA TCT Yes 304109-304180

contig5. Ser CGA TCG No 277330-277403

contig8. Ser GCT AGC No 118631-118766

contig8. Ser GCT AGC No 56387-56458

contig9. Ser GCT AGC No 153979-154061

contig12 Ser GCT AGC No 134145-134218

contig13 Ser TGA TCA No 225050-225142

contig14 Ser TGA TCA No 306403-306485

contig16 Ser TGA TCA No 9302-9428

contig18 Ser TGA TCA No 233876-233949
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Table B.6: Output of tRNAscan-SE from whole genome contigs for predicted K. viticola tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig22 Ser TGA TCA No 259894-259965

contig22 Sup TCA TGA Yes 231887-231957

contig1. Thr AGT ACT Yes 210876-210948

contig4. Thr AGT ACT Yes : 181093-181191

contig4. Thr AGT ACT Yes 211682-211763

contig5. Thr AGT ACT Yes 272482-272586

contig6. Thr AGT ACT Yes 297048-297119

contig8. Thr AGT ACT Yes 297139-297210

contig9. Thr AGT ACT Yes 234393-234463

contig9. Thr AGT ACT Yes 127777-127848

contig10 Thr AGT ACT Yes 50694-50786

contig11 Thr AGT ACT Yes 49051-49122

contig11 Thr AGT ACT Yes 102863-102944

contig11 Thr CGT ACG No 165335-165427

contig20 Thr TGT ACA No 6255-6352

contig20 Thr TGT ACA No 232993-233128

contig22 Thr TGT ACA No 83525-83614

contig30 Thr TGT ACA No 127106-127177

contig6. Trp CCA TGG Yes 66911-66981

contig10 Trp CCA TGG Yes 53260-53349

contig11 Trp CCA TGG Yes 13213-13284

contig11 Trp CCA TGG Yes 86802-86894

contig18 Trp CCA TGG Yes 113158-113230

contig23 Trp CCA TGG Yes 123997-124067

contig30 Trp CCA TGG Yes 57982-58074

contig2. Tyr GTA TAC Yes 31933-32005

contig12 Tyr GTA TAC Yes 21920-21990

contig12 Tyr GTA TAC Yes 15652-15723
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Table B.6: Output of tRNAscan-SE from whole genome contigs for predicted K. viticola tRNA genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal codon Co-ordinates

contig13 Tyr GTA TAC Yes 23023-23094

contig15 Tyr GTA TAC Yes 23465-23537

contig20 Tyr GTA TAC Yes 23806-23876

contig20 Tyr GTA TAC Yes 25203-25274

contig1. Val AAC GTT Yes 25936-26008

contig1. Val AAC GTT Yes 35953-36024

contig2. Val AAC GTT Yes 38892-38978

contig2. Val AAC GTT Yes 40430-40502

contig4. Val AAC GTT Yes 41133-41203

contig4. Val AAC GTT Yes 41312-41385

contig7. Val AAC GTT Yes 11738-11809

contig7. Val AAC GTT Yes 26985-27056

contig9. Val AAC GTT Yes 28881-28953

contig10 Val AAC GTT Yes 23944-24017

contig12 Val AAC GTT Yes 21954-22024

contig12 Val AAC GTT Yes 6626-6697

contig14 Val AAC GTT Yes 6018-6122

contig14 Val CAC GTG No 35523-35593

contig17 Val TAC GTA No 48135-48239

contig17 Val TAC GTA No 8448-8540

contig22 Val TAC GTA No 1467-1539

contig28 Val TAC GTA No 8515-8587
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B.1.2 Transposable Element Data for Kazachstania species

Figure B.1: Relationship between TE genome content in Saccharomyceteceae species and additional
genome characteristics. A) Genome size is plotted on the x-axis against TE genome content (%) on the
y-axis. B) Number of coding genes is plotted on the x-axis against TE genome content (%) on the y-axis.
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B.1.3 Codon usage data for Kazachstania species

Figure B.2: Nc plot against GC3s for the genes of K. bovina.

Figure B.3: Fop x copy number without TE families from K. exigua
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B.1.4 Syntenic data for Kazachstania species

Figure B.4: SyMap synteny analyses between K. exigua and K. lodderae. Sytenic mapping between
the contigs of K. exigua to the contigs of K. lodderae. Syntenic blocks were viewed using a circular view,
with scaling based on genome size.

Chromodomain annotation

During phylogenetic analyses, the gypsy-like elements uncovered in additional yeast species were

reviewed for the presence of a chromodomain, to determine if gypsy elements were likely to be

chromoviruses. A predicted chromodomain was observed in S. cerevisiae Pol3 (AAA98435.1)

downstream of the enzymatic domain Integrase within the Pol polyprotein. No putative chromodomains
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Figure B.5: SyMap synteny analyses between K. exigua and K. saulgeensis. Format is stated in B.4.

were uncovered in Kazachstania species. Details of the S. cerevisiae chromodomain are detailed

in Appendix B. When ran against a template chromodomain crystallised structure on SWISS-MODEL

(Biasini et al., 2014), the predicted sequence shared high similarity and reflected a similar secondary

structure when viewed using PyMOL (Schrodinger, 2017). Similar sequences were found in several

yeast species in the superfamily, and high conservation was seen throughout (Figure B.13).

The predicted chromodomain from Pol3 (AAA98435.1) was uploaded to PSI-PRED (Buchan

et al., 2013; Jones, 1999) to predict the sequence secondary structure. Results showed a prediction

of three beta pleated sheets, followed by an alpha helix (Figure B.14). This secondary structure

has previously been documented for chromodomains (Kordis, 2005).
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Figure B.6: SyMap synteny analyses between K. exigua and K. servazzii. Format is stated in B.4.
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Figure B.7: SyMap synteny analyses between K. africana and K. saulgeensis. Format is stated in B.4.
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Figure B.8: SyMap synteny analyses between K. naganishii and K. africana. Format is stated in B.4.
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Figure B.9: SyMap synteny analyses between K. naganishii and K. saulgeensis. Format is stated in
B.4.
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Figure B.10: SyMap synteny analyses between K. naganishii and K. servazzii. Format is stated in B.4.
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Figure B.11: SyMap synteny analyses between K. servazzii and K. africana. Format is stated in B.4.
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Figure B.12: SyMap synteny analyses between K. servazzii and K. saulgeensis. Format is stated in
B.4.
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Figure B.13: Agraphic representation of the predicted chromodomain observed in chromoviral gypsy
elements from the superfamily Saccharomycetaceae.The alignment was produced using ClustalX v2.1
(Thompson et al., 2002). Sequences with high similarity to the query (AAA98435.1) were obtained using
BLASTp on the NCBI server (Altschul et al., 1990; Sayers et al., 2009).

Figure B.14: Predicted secondary structure of the predicted chromodomain inS. cerevisiae produced
by PSIPRED (Jones, 1999). Beta pleated sheets are represented yellow arrows; Alpha helices are
represented by pink cylinders. The amino acid input sequence is displayed below the secondary structure.
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Appendix C

Chapter 4 Appendix

C.1 Codon usage bias of three holozoan species

C.1.1 Predicted tRNA genes for the three holozoan species

Table C.1: Output of tRNAscan-SE from whole genome contigs for predicted S. rosetta tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Coordinates

NW_004754930.1 Ala AGC GCU No 452568-452640

NW_004754912.1 Ala AGC GCU No 107024-107096

NW_004754912.1 Ala AGC GCU No 101134-101206

NW_004754894.1 Ala AGC GCU No 134818-134890

NW_004754894.1 Ala AGC GCU No 44385-44457

NW_004754923.1 Ala CGC GCG No 1515588-1515659

NW_004754923.1 Ala CGC GCG No 1311089-1311160

NW_004754923.1 Ala TGC GCA No 1393765-1393836

NW_004754923.1 Ala TGC GCA No 1511445-1511516

NW_004754918.1 Arg ACG CGU No 412305-412378

NW_004754918.1 Arg ACG CGU No 871624-871697

NW_004754918.1 Arg ACG CGU No 883994-884067

NW_004754908.1 Arg ACG CGU No 836639-836712

NW_004754908.1 Arg ACG CGU No 435615-435688

NW_004754914.1 Arg CCG CGG No 185725-185798

NW_004754896.1 Arg CCT AGG No 119489-119571

NW_004754931.1 Arg TCG CGA No 422660-422732



294 Appendix C. Chapter 4 Appendix

Table C.1: Output of tRNAscan-SE from whole genome contigs for predicted S. rosetta tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Coordinates

NW_004754927.1 Asn GTT AAC Yes 1357268-1357341

NW_004754905.1 Asn GTT AAC Yes 663864-663937

NW_004754899.1 Asn GTT AAC Yes 651655-651728

NW_004754899.1 Asn GTT AAC Yes 610981-611054

NW_004754922.1 Asp GTC GAC Yes 63247-63318

NW_004754922.1 Asp GTC GAC Yes 66135-66206

NW_004754922.1 Asp GTC GAC Yes 130805-130876

NW_004754922.1 Asp GTC GAC Yes 127942-128013

NW_004754909.1 Asp GTC GAC Yes 966669-966740

NW_004754909.1 Asp GTC GAC Yes 969565-969636

NW_004754924.1 Cys GCA UGC Yes 60048-60119

NW_004754924.1 Cys GCA UGC Yes 1607879-1607951

NW_004754930.1 Gln CTG CAG Yes 1016433-1016504

NW_004754901.1 Gln CTG CAG Yes 447297-447368

NW_004754901.1 Gln CTG CAG Yes 446886-446957

NW_004457740.1 Gln TTG CAA No 2056615-2056686

NW_004754929.1 Glu CTC GAG Yes 485494-485565

NW_004754929.1 Glu CTC GAG Yes 479268-479339

NW_004754927.1 Glu CTC GAG Yes 299883-299954

NW_004754927.1 Glu CTC GAG Yes 258209-258280

NW_004754911.1 Glu TTC GAA No 273210-273283

NW_004754911.1 Glu TTC GAA No 189506-189579

NW_004754906.1 Gly CCC GGG No 448375-448446

NW_004754905.1 Gly GCC GGC Yes 644976-645082

NW_004754905.1 Gly GCC GGC Yes 664207-664313

NW_004754905.1 Gly GCC GGC Yes 664007-664114

NW_004754899.1 Gly GCC GGC Yes 610606-610712

NW_004754899.1 Gly GCC GGC Yes 610806-610913
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Table C.1: Output of tRNAscan-SE from whole genome contigs for predicted S. rosetta tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Coordinates

NW_004754899.1 Gly GCC GGC Yes 639114-639220

NW_004754899.1 Gly GCC GGC Yes 633177-633283

NW_004754924.1 Gly TCC GGA No 775759-775850

NW_004754932.1 His GTG CAC Yes 1836498-1836568

NW_004754919.1 His GTG CAC Yes 650808-650878

NW_004754919.1 His GTG CAC Yes 644193-644263

NW_004457740.1 Ile AAT AUU No 2024814-2024887

NW_004457740.1 Ile AAT AUU No 2037296-2037369

NW_004457740.1 Ile AAT AUU No 2038726-2038799

NW_004754922.1 Ile AAT AUU No 1096532-1096605

NW_004457740.1 Ile TAT AUA No 874669-874774

NW_004754920.1 Leu AAG CUU No 463901-463983

NW_004754920.1 Leu AAG CUU No 469645-469727

NW_004754907.1 Leu AAG CUU No 136181-136263

NW_004754907.1 Leu AAG CUU No 119294-119376

NW_004754920.1 Leu CAA UUG No 1416730-1416813

NW_004457740.1 Leu CAG CUG Yes 2170541-2170623

NW_004457740.1 Leu CAG CUG Yes 2170727-2170809

NW_004754930.1 Leu CAG CUG Yes 1014228-1014311

NW_004754924.1 Leu TAA UUA No 132321-132392

NW_004754894.1 Leu TAG CUA No 73422-73504

NW_004754928.1 Lys CTT AAG Yes 1755315-1755389

NW_004754928.1 Lys CTT AAG Yes 1962031-1962105

NW_004754928.1 Lys CTT AAG Yes 1962775-1962849

NW_004754928.1 Lys CTT AAG Yes 1959956-1960030

NW_004754928.1 Lys CTT AAG Yes 1748013-1748087

NW_004754928.1 Lys CTT AAG Yes 1747255-1747329

NW_004754929.1 Lys TTT AAA No 894357-894460
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Table C.1: Output of tRNAscan-SE from whole genome contigs for predicted S. rosetta tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Coordinates

NW_004754926.1 Met CAT AUG Yes 117006-117077

NW_004754926.1 Met CAT AUG n/a 116790-116861

NW_004754918.1 Met CAT AUG n/a 1192537-1192644

NW_004754917.1 Met CAT AUG n/a 528284-528357

NW_004754900.1 Met CAT AUG n/a 502952-503023

NW_004754900.1 Met CAT AUG n/a 503309-503380

NW_004754900.1 Met CAT AUG n/a 505892-505963

NW_004754900.1 Met CAT AUG n/a 576610-576681

NW_004754900.1 Met CAT AUG n/a 579259-579330

NW_004754882.1 Met CAT AUG n/a 6245-6352

NW_004754882.1 Met CAT AUG n/a 961-1068

NW_004754926.1 Phe GAA UUC Yes 556718-556792

NW_004754926.1 Phe GAA UUC Yes 540816-540890

NW_004754923.1 Phe GAA UUC Yes 592507-592599

NW_004754925.1 Pro AGG CCU No 1136201-1136272

NW_004754918.1 Pro AGG CCU No 549797-549868

NW_004754918.1 Pro AGG CCU No 550871-550942

NW_004754921.1 Pro CGG CCG Yes 1428456-1428527

NW_004754907.1 Pro TGG CCA No 427073-427144

NW_004754907.1 Pro TGG CCA No 419713-419784

NW_004754898.1 SeC TCA UGA No 611578-611664

NW_004754931.1 Ser AGA UCU Yes 1419292-1419373

NW_004754931.1 Ser AGA UCU Yes 1776086-1776167

NW_004754931.1 Ser AGA UCU Yes 1425940-1426021

NW_004754907.1 Ser CGA UCG Yes 145985-146069

NW_004754923.1 Ser GCT AGC Yes 1445637-1445710

NW_004754898.1 Ser GCT AGC Yes 503122-503198

NW_004754930.1 Ser TGA UCA No 1984169-1984272
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Table C.1: Output of tRNAscan-SE from whole genome contigs for predicted S. rosetta tRNA genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Coordinates

NW_004754932.1 Thr TGT ACA No 2394324-2394396

NW_004754930.1 Thr TGT ACA No 618517-618612

NW_004754930.1 Thr TGT ACA No 619530-619625

NW_004754925.1 Thr CGT ACG Yes 1263450-1263522

NW_004754925.1 Thr CGT ACG Yes 1274595-1274667

NW_004754910.1 Trp CCA UGG n/a 196530-196602

NW_004754910.1 Trp CCA UGG n/a 201603-201675

NW_004754930.1 Tyr GTA UAC Yes 2201971-2202061

NW_004754930.1 Tyr GTA UAC Yes 2196947-2197034

NW_004754929.1 Tyr GTA UAC Yes 305886-305975

NW_004754918.1 Tyr GTA UAC Yes 34361-34448

NW_004754898.1 Tyr GTA UAC Yes 160364-160451

NW_004754917.1 Val AAC GUU No 1029907-1029980

NW_004754917.1 Val AAC GUU No 1318199-1318272

NW_004754917.1 Val AAC GUU No 1318390-1318463

NW_004754917.1 Val AAC GUU No 891759-891832

NW_004754917.1 Val CAC GUG No 1204577-1204650

NW_004754917.1 Val CAC GUG No 1333815-1333888

NW_004754917.1 Val CAC GUG No 1212563-1212636

NW_004754927.1 Val TAC GUA No 263192-263264

Table C.2: Output of tRNAscan-SE from whole genome contigs for predicted M. brevicollis tRNA
genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

NW_001865068.1 Ala AGC GCU Yes 52832-52922

NW_001865068.1 Ala AGC GCU Yes 53028-53117

NW_001865058.1 Ala AGC GCU Yes 634940-635029

NW_001865053.1 Ala AGC GCU Yes 886446-886535

NW_001865053.1 Ala AGC GCU Yes 886655-886744
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Table C.2: Output of tRNAscan-SE from whole genome contigs for predicted M. brevicollis tRNA
genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

NW_001865053.1 Ala AGC GCU Yes 894519-894609

NW_001865045.1 Ala CGC GCG No 411478-411549

NW_001865045.1 Ala CGC GCG No 411667-411738

NW_001865045.1 Ala TGC GCA No 411877-411948

NW_001865045.1 Ala TGC GCA No 412059-412130

NW_001865066.1 Arg ACG CGU Yes 371166-371239

NW_001865040.1 Arg ACG CGU Yes 1150818-1150891

NW_001865040.1 Arg ACG CGU Yes 1150634-1150707

NW_001865040.1 Arg ACG CGU Yes 1150434-1150507

NW_001865040.1 Arg ACG CGU Yes 1150111-1150184

NW_001865040.1 Arg ACG CGU Yes 1149876-1149949

NW_001865084.1 Arg CCT AGG No 105773-105844

NW_001865050.1 Arg TCG CGA No 947505-947577

NW_001865041.1 Arg TCG CGA No 315927-315999

NC_004309.1. Arg TCG CGA No 68221-68291

NW_001865049.1 Arg TCT AGA No 353629-353701

NC_004309.1. Arg TCT AGA No 19351-19422

NW_001865086.1 Asn GTT AAC Yes 125396-125469

NW_001865086.1 Asn GTT AAC Yes 126199-126272

NW_001865086.1 Asn GTT AAC Yes 131693-131766

NC_004309.1. Asn GTT AAC Yes 73074-73146

NW_001865075.1 Asp GTC GAC Yes 259272-259343

NW_001865075.1 Asp GTC GAC Yes 259442-259513

NW_001865075.1 Asp GTC GAC Yes 259633-259704

NW_001865075.1 Asp GTC GAC Yes 259813-259884

NW_001865069.1 Asp GTC GAC Yes 369064-369135

NW_001865069.1 Asp GTC GAC Yes 352845-352916

NC_004309.1. Asp GTC GAC Yes 27266-27339
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Table C.2: Output of tRNAscan-SE from whole genome contigs for predicted M. brevicollis tRNA
genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

NW_001865078.1 Cys GCA UGC Yes 44495-44567

NW_001865043.1 Cys GCA UGC Yes 935967-936035

NW_001865043.1 Cys GCA UGC Yes 935718-935797

NW_001865070.1 Gln CTG CAG Yes 354273-354344

NW_001865070.1 Gln CTG CAG Yes 144029-144100

NW_001865070.1 Gln CTG CAG Yes 143463-143534

NW_001865054.1 Gln TTG CAA No 251303-251374

NW_001865054.1 Gln TTG CAA No 251503-251574

NC_004309.1. Gln TTG CAA No 26938-27008

NW_001865066.1 Glu CTC GAG Yes 310848-310919

NW_001865054.1 Glu CTC GAG Yes 714063-714134

NW_001865050.1 Glu CTC GAG Yes 414502-414573

NW_001865050.1 Glu CTC GAG Yes 414673-414744

NW_001865050.1 Glu CTC GAG Yes 414847-414918

NW_001865050.1 Glu CTC GAG Yes 415537-415608

NW_001865052.1 Glu TTC GAA No 945940-946011

NW_001865052.1 Glu TTC GAA No 946133-946204

NC_004309.1. Glu TTC GAA No 29141-29213

NW_001865079.1 Gly CCC GGG No 240281-240351

NW_001865089.1 Gly GCC GGC Yes 30959-31029

NW_001865089.1 Gly GCC GGC Yes 30629-30699

NW_001865079.1 Gly GCC GGC Yes 241017-241087

NW_001865079.1 Gly GCC GGC Yes 240796-240866

NW_001865079.1 Gly GCC GGC Yes 240476-240546

NW_001865079.1 Gly GCC GGC Yes 240103-240173

NW_001865044.1 Gly GCC GGC Yes 431060-431130

NW_001865062.1 Gly TCC GGA No 334076-334184

NC_004309.1. Gly TCC GGA No 76497-76568
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Table C.2: Output of tRNAscan-SE from whole genome contigs for predicted M. brevicollis tRNA
genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

NW_001865041.1 His GTG CAC Yes 1805888-1805958

NW_001865041.1 His GTG CAC Yes 1806150-1806220

NW_001865041.1 His GTG CAC Yes 1806545-1806615

NC_004309.1. His GTG CAC Yes 15743-15815

NW_001865051.1 Ile AAT AUU Yes 1036763-1036836

NW_001865040.1 Ile AAT AUU Yes 2156956-2157029

NW_001865040.1 Ile AAT AUU Yes 2156594-2156667

NC_004309.1. Ile GAT AUC Yes 25193-25267

NW_001865058.1 Ile TAT AUA No 348320-348454

NW_001865053.1 iMe CAT AUG n\a 423588-423659

NW_001865053.1 iMe CAT AUG n\a 423951-424022

NW_001865055.1 Leu AAG CUU Yes 627184-627265

NW_001865055.1 Leu AAG CUU Yes 626847-626928

NW_001865055.1 Leu AAG CUU Yes 626440-626521

NW_001865055.1 Leu AAG CUU Yes 625638-625719

NW_001865043.1 Leu CAA UUG No 964597-964677

NW_001865043.1 Leu CAA UUG No 964395-964475

NW_001865043.1 Leu CAG CUG Yes 986392-986472

NW_001865043.1 Leu CAG CUG Yes 986572-986652

NW_001865043.1 Leu CAG CUG Yes 986878-986958

NW_001865040.1 Leu TAA UUA No 792410-792492

NC_004309.1. Leu TAA UUA No 29637-29719

NW_001865044.1 Leu TAG CUA No 726957-727037

NC_004309.1. Leu TAG CUA No 7006-7089

NW_001865073.1 Lys CTT AAG Yes 54631-54796

NW_001865063.1 Lys CTT AAG Yes 250951-251041

NW_001865063.1 Lys CTT AAG Yes 251372-251462

NW_001865063.1 Lys CTT AAG Yes 252098-252190
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Table C.2: Output of tRNAscan-SE from whole genome contigs for predicted M. brevicollis tRNA
genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

NW_001865063.1 Lys CTT AAG Yes 252651-252741

NW_001865042.1 Lys CTT AAG Yes 857442-857521

NW_001865063.1 Lys TTT AAA No 253157-253229

NC_004309.1. Lys TTT AAA No 34553-34624

NW_001865067.1 Met CAT AUG n/a 542238-542310

NW_001865049.1 Met CAT AUG n/a 537483-537555

NW_001865049.1 Met CAT AUG n/a 537154-537226

NC_004309.1. Met CAT AUG n/a 29286-29358

NC_004309.1. Met CAT AUG n/a 33428-33501

NW_001865060.1 Phe GAA UUC Yes 536169-536241

NW_001865060.1 Phe GAA UUC Yes 552611-552683

NW_001865060.1 Phe GAA UUC Yes 553023-553095

NW_001865060.1 Phe GAA UUC Yes 553464-553536

NC_004309.1. Phe GAA UUC Yes 30013-30085

NW_001865042.1 Pro AGG CCU No 695526-695597

NW_001865042.1 Pro AGG CCU No 695352-695423

NW_001865042.1 Pro AGG CCU No 695159-695230

NW_001865092.1 Pro CGG CCG No 46063-46181

NW_001865080.1 Pro TGG CCA No 229064-229135

NC_004309.1. Pro TGG CCA No 30298-30368

NW_001865040.1 SeC TCA UGA No 481253-481339

NW_001865061.1 Ser AGA UCU No 340568-340649

NW_001865051.1 Ser AGA UCU No 220132-220213

NW_001865051.1 Ser AGA UCU No 219118-219199

NW_001865051.1 Ser CGA UCG Yes 234840-234921

NW_001865051.1 Ser CGA UCG Yes 217486-217567

NW_001865047.1 Ser GCT AGC Yes 212569-212642

NW_001865047.1 Ser GCT AGC Yes 212996-213069
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Table C.2: Output of tRNAscan-SE from whole genome contigs for predicted M. brevicollis tRNA
genes

Contig tRNA gene tRNA anticodon Codon CodonW Optimal Codon Coordinates

NW_001865051.1 Ser TGA UCA No 231490-231571

NC_004309.1. Ser TGA UCA No 71794-71874

NC_004309.1. Sup TCA UGA No 25593-25664

NW_001865041.1 Thr CGT ACG No 111542-111613

NW_001865039.1 Thr CGT ACG No 2422150-2422221

NW_001865049.1 Thr TGT ACA No 536597-536668

NC_004309.1. Thr TGT ACA No 15143-15214

NW_001865092.1 Trp CCA UGG n/a 49232-49304

NW_001865092.1 Trp CCA UGG n/a 49484-49556

NW_001865058.1 Tyr GTA UAC Yes 683103-683188

NW_001865058.1 Tyr GTA UAC Yes 683494-683579

NW_001865049.1 Tyr GTA UAC Yes 220465-220550

NC_004309.1. Tyr GTA UAC Yes 54783-54865

NW_001865062.1 Val AAC GUU Yes 589695-589767

NW_001865062.1 Val AAC GUU Yes 600688-600760

NW_001865062.1 Val AAC GUU Yes 658228-658300

NW_001865039.1 Val AAC GUU Yes 2094501-2094573

NW_001865039.1 Val CAC GUG No 2095019-2095091

NW_001865039.1 Val CAC GUG No 2094696-2094768

NW_001865059.1 Val TAC GUA No 406615-406687

NC_004309.1. Val TAC GUA No 31108-31179

Table C.3: Output of tRNAscan-SE from whole genome contigs for predicted C. owczarzaki tRNA
genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal Codon Co-ordinates

NW_011887292.1 Ala AGC GCU No 315865-315937

NW_011887292.1 Ala AGC GCU No 320860-320932

NW_011887292.1 Ala AGC GCU No 3306684-3306756
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Table C.3: Output of tRNAscan-SE from whole genome contigs for predicted C. owczarzaki tRNA
genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal Codon Co-ordinates

NW_011887300.1 Ala AGC GCU No 1184309-1184381

NW_011887304.1 Ala AGC GCU No 453635-453707

NW_011887305.1 Ala AGC GCU No 539692-539764

NW_011887306.1 Ala CGC GCG No 60262-60334

NW_011887307.1 Ala CGC GCG No 375836-375908

NW_011887293.1 Ala TGC GCA No 2370531-2370600

NW_011887293.1 Ala TGC GCA No 2370691-2370762

NW_011887294.1 Arg ACG CGU Yes 1183664-1183736

NW_011887298.1 Arg ACG CGU Yes 947727-947799

NW_011887298.1 Arg ACG CGU Yes 949658-949730

NW_011887306.1 Arg ACG CGU Yes 272494-272566

NW_011887292.1 Arg CCT AGG No 1313812-1313883

NW_011887301.1 Arg TCG CGA No 935143-935213

NW_011887301.1 Arg TCT AGA No 262133-262220

NW_011887295.1 Asn GTT AAC Yes 691943-692015

NW_011887296.1 Asn GTT AAC Yes 230228-230300

NW_011887296.1 Asn GTT AAC Yes 230405-230477

NW_011887297.1 Asp GTC GAC Yes 4350-4421

NW_011887298.1 Asp GTC GAC Yes 563490-563561

NW_011887304.1 Asp GTC GAC Yes 190311-190382

NW_011887308.1 Asp GTC GAC Yes 392162-392233

NW_011887308.1 Asp GTC GAC Yes 391870-391941

NW_011887308.1 Asp GTC GAC Yes 376650-376721

NW_011887319.1 Asp GTC GAC Yes 94-164

NW_011887295.1 Cys GCA UGC Yes 1814481-1814552

NW_011887299.1 Cys GCA UGC Yes 659561-659632

NW_011887292.1 Gln CTG CAG Yes 316153-316231

NW_011887292.1 Gln CTG CAG Yes 316447-316525
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Table C.3: Output of tRNAscan-SE from whole genome contigs for predicted C. owczarzaki tRNA
genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal Codon Co-ordinates

NW_011887307.1 Gln CTG CAG Yes 240141-240214

NW_011887293.1 Gln TTG CAG Yes 641170-641241

NW_011887292.1 Glu CTC GAG Yes 366443-366515

NW_011887292.1 Glu CTC GAG Yes 379458-379530

NW_011887292.1 Glu CTC GAG Yes 366151-366223

NW_011887292.1 Glu CTC GAG Yes 365879-365951

NW_011887301.1 Glu CTC GAG Yes 612921-612993

NW_011887292.1 Glu TTC GAA No 366698-366770

NW_011887292.1 Glu TTC GAA No 366858-366930

NW_011887294.1 Gly GCC GGC Yes 452651-452721

NW_011887298.1 Gly GCC GGC Yes 1057510-1057580

NW_011887299.1 Gly GCC GGC Yes 469461-469531

NW_011887301.1 Gly GCC GGC Yes 571383-571453

NW_011887306.1 Gly GCC GGC Yes 728620-728690

NW_011887306.1 Gly GCC GGC Yes 728308-728378

NW_011887296.1 Gly TCC GGA No 1178305-1178375

NW_011887306.1 Gly TCC GGA No 369813-369883

NW_011887319.1 Gly TCC GGA No 22-92

NW_011887294.1 His GTG CAC Yes 838921-838991

NW_011887294.1 His GTG CAC Yes 839087-839157

NW_011887294.1 His GTG CAC Yes 970333-970403

NW_011887319.1 His GTG CAC Yes 167-237

NW_011887292.1 Ile AAT AUU Yes 2636595-2636668

NW_011887295.1 Ile AAT AUU Yes 433704-433777

NW_011887300.1 Ile AAT AUU Yes 40300-40373

NW_011887300.1 Ile AAT AUU Yes 40127-40200

NW_011887297.1 iMe CAT AUG n/a 926241-926313

NW_011887292.1 Leu AAG CUU No 2788540-2788622
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Table C.3: Output of tRNAscan-SE from whole genome contigs for predicted C. owczarzaki tRNA
genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal Codon Co-ordinates

NW_011887308.1 Leu AAG CUU No 47432-47514

NW_011887310.1 Leu AAG CUU No 26429-26511

NW_011887329.1 Leu AAG CUU No 5125-5207

NW_011887294.1 Leu CAA UUG No 550590-550671

NW_011887297.1 Leu CAG CUG Yes 52912-52992

NW_011887304.1 Leu CAG CUG Yes 636207-636287

NW_011887297.1 Leu TAA UUA No 1442132-1442214

NW_011887293.1 Leu TAG CUA No 24800-24880

NW_011887296.1 Lys CTT AAG Yes 46082-46154

NW_011887296.1 Lys CTT AAG Yes 46310-46382

NW_011887296.1 Lys CTT AAG Yes 48675-48747

NW_011887303.1 Lys CTT AAG Yes 1028091-1028163

NW_011887303.1 Lys CTT AAG Yes 745699-745771

NW_011887296.1 Lys TTT AAA No 65275-65347

NW_011887292.1 Met CAT AUG n/a 870551-870623

NW_011887292.1 Met CAT AUG n/a 865912-865984

NW_011887302.1 Met CAT AUG n/a 466577-466648

NW_011887302.1 Met CAT AUG n/a 466388-466459

NW_011887300.1 Phe GAA UUC Yes 816570-816642

NW_011887300.1 Phe GAA UUC Yes 817003-817075

NW_011887300.1 Phe GAA UUC Yes 816833-816905

NW_011887293.1 Pro AGG CCU No 1160615-1160686

NW_011887293.1 Pro AGG CCU No 1278319-1278390

NW_011887293.1 Pro AGG CCU No 1278147-1278218

NW_011887296.1 Pro CGG CCG No 950983-951054

NW_011887296.1 Pro CGG CCG No 951129-951200

NW_011887295.1 Pro TGG CCA No 249340-249415

NW_011887302.1 SeC TCA UGA No 616113-616200
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Table C.3: Output of tRNAscan-SE from whole genome contigs for predicted C. owczarzaki tRNA
genes

Contig tRNA gene tRNA anti codon Codon CodonW Optimal Codon Co-ordinates

NW_011887294.1 Ser AGA UCU No 1028980-1029087

NW_011887294.1 Ser AGA UCU No 1029301-1029408

NW_011887296.1 Ser AGA UCU No 1478121-1478228

NW_011887294.1 Ser CGA UCG Yes 1031241-1031332

NW_011887294.1 Ser CGA UCG Yes 1029608-1029699

NW_011887294.1 Ser GCT AGC Yes 1468662-1468746

NW_011887294.1 Ser GCT AGC Yes 667552-667637

NW_011887295.1 Ser TGA UCA No 71393-71475

NW_011887293.1 Thr AGT ACU No 1543853-1543925

NW_011887295.1 Thr AGT ACU No 482476-482548

NW_011887296.1 Thr AGT ACU No 311848-311920

NW_011887307.1 Thr AGT ACU No 640395-640467

NW_011887296.1 Thr CGT ACG No 312020-312092

NW_011887296.1 Thr CGT ACG No 241446-241518

NW_011887306.1 Thr TGT ACA No 245427-245530

NW_011887293.1 Trp CCA UGG n/a 1702351-1702423

NW_011887295.1 Trp CCA UGG n/a 489010-489082

NW_011887301.1 Tyr GTA UAC Yes 201635-201719

NW_011887306.1 Tyr GTA UAC Yes 54050-54134

NW_011887306.1 Und NNN NNN n/a 369741-369811

NW_011887293.1 Val AAC GUU No 559192-559264

NW_011887297.1 Val AAC GUU No 277318-277390

NW_011887297.1 Val AAC GUU No 277407-277479

NW_011887301.1 Val AAC GUU No 979312-979384

NW_011887296.1 Val CAC GUG No 120083-120154

NW_011887292.1 Val TAC GUA No 1103043-1103115

C.1.2 Normal distribution graphs for bias categories
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Appendix D

Chapter 5 Appendix

D.1 Codon usage statistics data for the transpoable elements of three

holozoan species

D.1.1 Abundant codons for the TE families
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Table D.3: Preferred codons for each amino acid in the M. brevicollis TE families. Bold font denotes
a favoured codon which complements the product of the major tRNA gene for the amino acid outlined in
Chapter 4

Amino acid Mbcv1 Mbpv1 Mbpv2
Phe UUU UUU UUU
Leu CUC CUG CUC
Ile AUC AUC AUC
Val GUG GUG GUC
Ser UCG, AGC UCG, AGC UCU
Pro CCU, CCA CCG CCC
Thr ACC ACC ACC
Ala GCC GCC GCC
Tyr UAC UAC UAC
His CAC CAU CAC
Gln CAG CAG CAG
Asn AAC AAC AAC
Lys AAG AAG AAG
Asp GAC GAC, GAU GAC
Glu GAG GAG GAG
Cys UGC UGC UGC
Arg CGC CGC CGC
Gly GGC GGC GGC

D.1.2 Codon usage statistics

Figure D.1: Relationship between copy number of TE families and Nc in C. owczarzaki Copy number
of each TE family was plotted against Nc for the elements of C. owczarzaki
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Figure D.3: Relationship between copy number of DNA transposon families and Nc in S. rosetta and
C. owczarzaki Copy number of each TE family was plotted against Nc for the elements of S. rosetta (A)
and elements of C. owczarzaki (B).
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Figure D.4: Nc plot against GC3s for the genes of S. rosetta, M. brevicollis and C. owczarzaki,
including TE families. Nc values were plotted against GC3s for the three holozoan species and TE families,
which are highlighted in red and blue. The modified equation, Nc=2+S+29/[S2+(1-S)2 ], from Wright (1990),
with S=GC3s, was used to create the parabolic curve on each Nc plot (Southworth et al., 2018).
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Table D.4: Non-coding GC values for TE families identified in the S. rosetta genome.

Family Non-coding GC
S. rosetta
LTR retrotransposons
Sroscv1 0.504
Sroscv2 0.46
Sroscv3 0.499
Sroscv4 0.56
Sroscv5 0.493
Srosgyp1 0.497
Srosgyp2 0.539
Srospv1 0.491
Srospv2 0.493
Srospv3 0.498
Srospv4 0.487
Srospv5 0.481
Srospv6 0.519

Mean=0.502±0.026
DNA transposons
SrosT1 0.485
SrosT2 0.524
SrosT3 0.515
SrosTig1 0.482
SrosTig2 0.527
SrosM 0.54
SrosH 0.551

Mean=0.518±0.026

Table D.5: Non-coding GC values for TE families identified in the M. brevicollis genome.

Family Non-coding GC
M. brevicollis
LTR retrotransposons
Mbcv 0.556
Mbpv1 0.517
Mbpv2 0.465

Mean=0.513±0.046
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Table D.6: Non-coding GC values for TE families identified in the C. owczarzaki genome.

Family Non-coding GC
C. owczarzaki
LTR retrotransposons
Cocv1 0.454
Cocv2 0.442
Cocv3 0.53
Cocv4 0.579
Cocv5 0.466

Mean=0.494±0.058
Non-LTR retrotransposons
CoL1 0.622
CoL2 0.473
CoL3 0.441
CoL4 0.458

Mean=0.499±0.083
DNA transposons
Com1 0.528
Com2 0.537
Cop1 0.499
Cop2 0.484
Cop3 0.524
Cop4 0.533
Cop5 0.55
CoTc1 0.466
CoTc2 0.504
Cobalt1 0.435
Cobalt2 0.44
Cobalt3 0.465
CoCACTA1 0.462
CoCACTA2 0.489

Mean=0.494±0.037
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Appendix E

Bioinformatics parameters

E.1 SMALT

SMALT version 0.7.6 was employed for S.rosetta and C. owczarzaki transcriptome reads to review

host gene and TE expression (Ponstingl, 2014). Default parameters were used unless specified. A

text file of S. rosetta and C. owczarzaki TE families in FASTA format was employed as the SMALT

index with the transcriptome reads ran to map onto the specified index. Parameters were accessed

from the SMALT User Manual (Ponstingl, 2014). For the index, the word length of hashed words

was set to 20 (-k 20), and sampling step size was set to 1, so all words were hashed, with the

path for the FASTA file inserted, as seen in literature (Ponstingl, 2014) . The smalt map was set

with SAM file format (-f sam). Individual output files were concatenated post SMALT analysis.

Command: Smalt index -k 20 -s 1 Srosgenesk20s1 Desktop/Srosetta_families.fasta Smalt map -f

sam -Srosgenesk20s1 Desktop/Srosetta_transcriptome.cat

E.2 Phylogeny construction

RAxML HPC2 8.2.6. on XSEDE (Stamatakis, 2014) was employed for protein phylogenies via

server based, Cipres Science Gateway (Miller et al., 2010). All parameters unspecified remained

on the default setting automatically employed by the tool. The ML phylogenies were employed

with a PROCAT model, and 100 bootstrap interactions. The ML amino acid substitution model

used for each family was determined from the output of the mixed model analysis from MrBayes.

Bayesian inference protein phylogenies were produced using Mr Bayes 3.2.6 on XSEDE (Ronquist

and Huelsenbeck, 2003) via Cipres Science Gateway. A mixed amino acid model was used, and

employed 5000000 generations with a burnin value of 10000. 0.25 burnin fraction was employed

for the samples. Nucleotide phylogenies were ran with the same parameters, except the nucleic
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acid database was employed. For LTR phylogenies, maximum likelihood analyses were performed

using raxmlGUI 1.5 beta (Silvestro and Michalak, 2011). The phylogenies were ran using “ML

+thorough bootstrap’ with 100 runs and bootstrapped using 1000 replicates. The GTRCAT model

was employed.

E.3 Basic Local Alignment Search Tool (BLAST)

For protein phylogenies, similarity searches were ran with the input of TE family query sequences

against the BLAST protein and translated nucleotide databases (blastp and tBLASTn) (Altschul

et al., 1990). For tBLASTn analysis the following taxa were employed for whole genome sequence

analysis. Metazoa (Deuterostomia, Platyhelminthes, Protosomia, Cnidaria, Ctenophora, Placozoa,

Porifera); Fungi (Blastocladiomycota, Chytridiomycota, Cryptomycota, Ascomycota, Basidimycota

Entomophthoromycota, Glomeromycota, Microsporida, Neocallimastigomycota); Protist (Alveolata;

Amoebozoa, Apusozoa, Rhodophyta, Stramenopiles); Plant (Chlorophyta, Mesostigmata) (Sayers

et al., 2009).

E.4 RepeatMasker

RepeatMasker version open-4.0.6 (RepeatMasker, 1996) parameters remained at default unless

specified, run with rmblastn version 2.2.27. Library employment was defined as Repbase library,

downloaded from the Genetic Information Research Institute (GIRI, 2016), or a custom library,

created specifically for Saccharomyceteceae and chonanoflagellate analysis. Parameters were

selected from literature (Tempel, 2012). With the employment of Repbase, the following parameters

were set for transposable element detection. Species (-fungi); No bacterial element insertion

(-no_is); No masking of simple repeats (-nolow); alignment file between query and hit created in

output (-a), in query orientation (-inv). When a custom library was employed for analysis, species

specification was removed from the command, and path for custom library location specified (-lib).

Additional Saccharomyceteceae species were ran via RepeatMasker to review TE content (S.

cerevisiae S288c; Candida glabarata CDS138; Z. rouxii CBS732; K. thermotolerans CBS6340;

L. kluyveri CBS3082; K. lactis CBS2359; E. gossypii ATCC10895; D. hansenii CBS767 and Y.

lipolytica CBS7504) (Genolevures et al., 2009).
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Phylogenies

F.1 Protein and nucleotide phylogenies

F.1.1 Protein phylogenies

F.1.2 Nucleotide phylogenies
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Figure F.1: Maximum likelihood phylogeny of Helitron amino acid sequences across eukaryotic
supergroups. The phylogeny was constructed by an alignment of 466 amino acid constructs with the
employment of raxmlGUI using the PROTCAT model and estimated amino acid frequencies with WAG
substitution matrix. ML and biPP values are labelled above and below corresponding branches. Maximum
support is annotated by ‘*’ (100ML/1.0 biPP) and low support (<50 ML/ <0.70 biPP) are annotated ‘-’. The
scale bar signifies the number of amino acid substitution per amino acid site. Metazoan proteins are in dark
blue, choanoflagellate proteins are in light blue, fungal sequences are written in brown and plants are in
green.
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Figure F.2: Maximum likelihood phylogeny of Transposon-2 amino acid sequences across eukaryotic
supergroups. The phylogeny was constructed by an alignment of 127 amino acid constructs with the
employment of raxmlGUI using the PROTCAT model and estimated amino acid frequencies with BLOSUM
substitution matrix. Format is stated in F.1
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Figure F.3: Maximum likelihood phylogeny of Transposon-3 amino acid sequences across eukaryotic
supergroups. The phylogeny was constructed by an alignment of 143 amino acid constructs with the
employment of raxmlGUI using the PROTCAT model and estimated amino acid frequencies with WAG
substitution matrix. Format is stated in F.1
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Figure F.4: Maximum likelihood phylogeny of Tigger-1 amino acid sequences across eukaryotic
supergroups. The phylogeny was constructed by an alignment of 288 amino acid constructs with the
employment of raxmlGUI using the PROTCAT model and estimated amino acid frequencies with WAG
substitution matrix. Format is stated in F.1
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Figure F.5: Maximum likelihood phylogeny of Tigger-2 amino acid sequences across eukaryotic
supergroups. The phylogeny was constructed by an alignment of 217 amino acid constructs with the
employment of raxmlGUI using the PROTCAT model and estimated amino acid frequencies with WAG
substitution matrix. Format is stated in F.1
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Figure F.6: Maximum Likelihood phylogeny of individual element copies of Sroscv4. The phylogeny
was constructed by an alignment of 639 nucleotide constructs with the employment of raxmlGUI using the
GTRCAT model. ML and biPP values are labelled above and below corresponding branches. Maximum
support is annotated by ‘*’ (100ML/1.0 biPP) and low support (<50 ML/ <0.70 biPP) are annotated ‘-’. The
scale bar signifies the number of nucleotide substitutions per amino acid site. 5’ and 3’ LTR sequences are
written in blue, with individual TSDs annotated on terminal branches respectively.
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Figure F.7: Maximum Likelihood phylogeny of individual element copies of Sroscv5. The phylogeny
was constructed by an alignment of 440 nucleotide constructs with the employment of raxmlGUI using the
GTRCAT model. Formatting is stated in F.6
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Figure F.8: Maximum Likelihood phylogeny of individual element copies of Srosgyp1. The phylogeny
was constructed by an alignment of 382 nucleotide constructs with the employment of raxmlGUI using the
GTRCAT model. Formatting is stated in F.6
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Figure F.9: Maximum Likelihood phylogeny of individual element copies of Srosgyp2. The phylogeny
was constructed by an alignment of 391 nucleotide constructs with the employment of raxmlGUI using the
GTRCAT model. Formatting is stated in F.6
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Figure F.10: Maximum Likelihood phylogeny of individual element copies of Srospv1. The phylogeny
was constructed by an alignment of 391 nucleotide constructs with the employment of raxmlGUI using the
GTRCAT model. Formatting is stated in F.6
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Figure F.11: Maximum Likelihood phylogeny of individual element copies of Srospv2. The phylogeny
was constructed by an alignment of 610 nucleotide constructs with the employment of raxmlGUI using the
GTRCAT model. Formatting is stated in F.6
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Figure F.12: Maximum Likelihood phylogeny of individual element copies of Srospv5. The phylogeny
was constructed by an alignment of 364 nucleotide constructs with the employment of raxmlGUI using the
GTRCAT model. Formatting is stated in F.6
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