
University of Huddersfield Repository

Tu, Jiada

Three-Dimensional Finite Element Analysis of Creep Evolution and Damage at Grain Boundary
Level

Original Citation

Tu, Jiada (2019) Three-Dimensional Finite Element Analysis of Creep Evolution and Damage at
Grain Boundary Level. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/35273/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Three-Dimensional Finite Element Analysis of

Creep Evolution and Damage at Grain Boundary

Level
 Ph.D. Thesis

JIADA TU

This thesis is submitted to the University of Huddersfield for

the Degree of Doctor of Philosophy

2019

~ ii ~

ABSTRACT

In many high-temperature structural components, creep damage is a non-

negligible factor limiting its lifetime. For most alloys, the main reason for the

creep damage is due to the cavitation that occurs at grain boundaries, hence it

is meaningful to analyze and simulate this phenomenon. In this project,

unlike the traditional approach which treats materials as isotropic, the grain

and grain boundary is modeled and analyzed separately. Based on this idea,

an in-house numerical procedure is developed for the Finite element

simulation of creep evolution at the grain boundary level.

The development is under the Continuum Damage Mechanics theoretical

framework, through this procedure the traditional solid element with simple

power-law adopts to describe the creep deformation evolution of the grain

part. The grain boundary part has been modeled by the Goodman element

with Markus’s cavitation model and Newtonian flow model

The in-house procedure was developed from a Smith’s visco-plastic program

P61 to solve the creep problem at grain boundary level. The theory and

coding implementation of Goodman element (2D/3D) and local-global co-

ordinate transformation techniques are summarized in detail.

This research contributes to the development of the Finite Element procedure

for simulating creep evolution at the grain boundary level and provides a

new understanding regarding the intrinsic relationship between stress

redistribution and creep evolution.

~ iii ~

ACKNOWLEDGEMENTS

I would like to thank Dr. Qiang Xu and Prof. Joan Lu for their ongoing

guidance and encouragement. The financial support provided by the

University of Huddersfield and for being awarded the Vice-chancellor

scholarship.

Finally, I would like to thank my wife, my parents, and my colleagues.

~ iv ~

Statement of Publication

The work presented in the section 6.3 has been published in the special issue

(Creep and High Temperature Deformation of Metals and Alloys) of Metals.

The statement of contribution can be found in the appendix IV.

Publication: Xu, Q., Tu, J. and Lu, Z. (2019). Development of the FE In-House

Procedure for Creep Damage Simulation at Grain Boundary Level. Metals,

9(6), p.656.

~ v ~

Contents

Chapter 1 Introduction .. 1

1.1 Introduction .. 1

1.2 Aims and Objectives .. 3

1.3 Thesis Structure .. 5

Chapter 2 Literature Review of Creep and Creep's Numerical Method. 8

2.1 Introduction .. 8

2.2 Creep and Creep Fracture Mechanisms .. 10

2.2.1 Creep ... 10

2.2.2 Creep Fracture Mechanisms .. 12

2.3 Numerical Method for Creep Damage.. 14

2.3.1 Continuum Damage Mechanics .. 15

2.3.2 Objective Oriented Programming ... 16

2.4 The Review of Finite Element Analysis (FEA)for Creep Damage Analysis at Grain

Boundary Level. ... 17

2.4.1 Review of FE Platform .. 18

2.4.2 Status of Structure Generation at Grain boundary Level 19

2.4.3 Research Status of FE Modeling at Grain Boundary Level 20

2.5 Cohesive Zone Model .. 23

2.6 Conventional Solid Element ... 24

2.6.1 Formulation of 2D Solid Element.. 24

2.6.2 Formulation of 3D Solid Element.. 27

2.7 2D Goodman Element ... 29

2.7.1 Mathematical Background ... 30

2.7.2 Coordinate System Transmission ... 33

2.8 3D Goodman Element ... 34

2.8.1 Mathematical Background ... 35

2.8.2 Coordinate System Transmission ... 38

2.9 Creep Constitutive Equation .. 39

2.9.1 Macro-Creep Constitutive Equations ... 39

2.9.2 Micro-Creep Constitutive Equations .. 41

2.10 Removal Function .. 44

2.11 Restart Facility .. 45

~ vi ~

Chapter 3 Methodology .. 47

3.1 Introduction .. 47

3.2 General Methods for Developing In-house Procedure ... 48

3.3 Integration Method .. 50

3.3.1 Numerical Integration .. 50

3.3.2 Numerical Integration for Element ... 51

3.4 Mature Techniques and Legacy Code ... 52

3.4.1 Storage of Matrix ... 52

3.4.2 Cholesky Decomposition ... 53

3.4.3 Legacy Code ... 54

3.5 Creep Non-linear Iteration .. 55

3.6 Mathematical Background of Coordinate Transmission .. 56

3.6.1 2D Coordinate Transmission ... 56

3.6.2 3D Coordinate Transmission ... 56

Chapter 4 Development of the Creep Solver .. 60

4.1 Introduction .. 60

4.2 Programming the Creep Solver .. 62

4.2.1 Flow Diagram of Solver .. 63

4.2.2 Implementation of Removal Technique ... 66

4.2.3 Implementation of Restart Facility ... 70

4.2.4 Implementation of Auto-select Time Step Module ... 72

4.3 Development of Solver for Grain Boundary Level .. 73

4.3.1 Computational Framework ... 74

4.3.2 Creep Body Loads Generation of the Goodman Element 76

4.3.3 Coding Implementation of Goodman element ... 76

Chapter 5 Benchmark of the macro scale of In-house Procedure .. 80

5.1 Introduction .. 80

5.2 The Preliminary Benchmark of the Procedure ... 82

5.2.1 Validation of the Elastic Part .. 86

5.2.2 Validation of the creep part.. 93

5.3 The Validation of the In-house Procedure via the numerical investigation of the Bar

267 Notched-Bar Case Study at 660 ℃ .. 98

5.3.1 Introduction ... 98

5.3.2 Description of the Bar 267 Bridgman Notched Bar Case Study.......................... 100

~ vii ~

5.3.3 Result and Discussion ... 102

5.3.4 Discussion .. 112

Chapter 6 The Validation and Application of In-house Procedure at Grain Boundary Level

 .. 113

6.1 Introduction .. 113

6.2 The Validation of the In-house Procedure via the numerical investigation of the Bi-

grains Case Study ... 115

6.2.1 Introduction ... 115

6.2.2 Validation of the Elastic Part with quadrilateral element 117

6.2.3 Validation of the Elastic Part with triangle element ... 124

6.2.4 Validation of the Elastic Part of FE model with Angle ... 128

6.2.5 Validation of the Non-linear Creep Part with quadrilateral element................. 132

6.2.6 Validation of the Non-linear Creep Part with triangle element 139

6.2.7 Validation of the Non-linear Creep Part of FE model with Angle 141

6.2.8 Conclusion.. 144

6.3 The Application of the In-house Procedure via the Numerical Investigation of the

Polycrystal Case Study. ... 145

6.3.1 FE Model Generation .. 145

6.3.2 Failed element, Stress Field and Creep Damage Evolution 147

6.3.3 Discussion .. 158

Chapter 7 Development and Validation of the 3-dimensional Procedure at Grain Boundary

Level ... 161

7.1 Introduction .. 161

7.2 Development of 3D Version .. 163

7.2.1 Implementation of Grain Part.. 163

7.2.2 Implementation of Grain Boundary part ... 164

7.3 Elastic Validation of Grain Part .. 167

7.3.1 FE Model .. 167

7.3.2 Validation of Uni-axial Loading .. 170

7.3.3 Validation of Multi-Axial Loading.. 173

7.4 Elastic Validation of Grain Boundary Part .. 175

7.4.1 FE Model .. 175

7.4.2 Validation of Separated Direction ... 181

7.4.3 Validation of Rotation Status ... 186

~ viii ~

7.5 Validation of the Non-linear Creep ... 191

7.5.1 The Validation of the Stress Update ... 191

7.5.2 The Validation of the Integration .. 193

7.5.3 Error Analysis .. 195

7.5.4 Conclusion.. 196

Chapter 8 Conclusions and Future Work ... 197

8.1 Contribution and Conclusion ... 197

8.2 Future Work .. 198

Reference ... 199

Appendix I the description of library 'Math' .. 209

Appendix II Source code of Library 'Math' .. 212

Appendix III Tutorial on INP file. .. 299

Appendix IV Publication Contribution List ... 304

~ 1 ~

Chapter 1 Introduction

1.1 Introduction

In the past few decades, the operating temperature of power stations has been

gradually increased to obtain higher thermodynamic efficiency as a means to

satisfy the growing demand for electricity. However, as the temperature rises,

the creep damage/fracture is accelerated and the components' lifetime is

shortened, which is a key factor limiting the increase in operating

temperature. Therefore, it is necessary to study the creep damage/fracture

mechanism and develop numerical models of materials for evaluating and

predicting the lifetime of components. These assessments are important for

the safe operation of a power plants components [1].

In order to investigate and predict the creep failure, a laboratory creep test is

usually the most common procedure. However, it has some shortcomings

such as high cost and time consumption. Therefore, computer-based

numerical Finite Element techniques are becoming more popular, and some

research groups and institutes have developed their own in-house procedures

or use mature commercial software packages for the study and simulation of

creep mechanical behavior. This includes 'FE-DAMAGE' from Nottingham

University [2], 'Damage XX' from Manchester University [3], 'DNA' from

Louisiana State University' [4], and commercial software package 'ABAQU'

from Dassault Systèmes [6].

~ 2 ~

Typically, the object of the finite element simulation is component or

specimen, and it is idealized to be a single and uniform material [6]. The

description of the creep degradation is achieved by introducing a fictitious

damage variable, and the parameters of the constitutive equations are

calibrated by the measured rupture time [6-8]. However, according to most

experimental observations, the reasons for creep rupture or failure is due to

the cavitation at grain bounders [9], hence researchers have proposed a

different modeling idea, which is to develop a constitutive model based on

the micro-mechanically motivation independently to describe the creep

evolution of grain boundaries.

In creep analysis, the constitutive equations are included in a Finite element

method to describe the evolution of the strain, stress, damage over time.

However, traditional solid elements do not have the ability to simulate the

mechanical properties of grain boundaries. For example, the deformation of

traditional solid elements is measured by strain, while the deformation of

grain boundaries is measured by relative displacement [10]. Hence, under the

traditional Finite Element framework, a different element needs to be added

in to realize grain boundaries’ Finite Element Analysis, which is the

significance and value of this research.

At present, the Finite Element Analysis of creep at grain boundary level can

be calculated using the commercial platform ABAQUS, which is obtained

through the external subroutine interface of UMAT and UEL. For instance,

~ 3 ~

Markus Vose [10] applied UMAT (User-defined Material) within the

cavitation constitutive models in ABAQUS’s build-in element COH3D8 (8-

node 3D cohesive element) for the grain boundary part, and CH. Yu [9]

reported the application of UEL (User-defined Element) can be used to

develop a non-thickness 2D Goodman element which is made up of two

linear rods to describe the creep deformation of the grain boundary part.

However, a different approach was chosen in this project to obtain this

numerical capability which is the development of an In-house procedure.

Firstly, compared with commercial platforms, the development of an in-house

procedure provides developers a higher freedom, such as obtaining

intermediate output. Secondly, developers do not need to follow numerous

complex interface standards, and there are mature frameworks and

subroutine libraries that can be adopted, which make the project more

efficient and flexible. Therefore, an in-house platform still has advantages and

meanings [11].

1.2 Aims and Objectives

This project aims to develop an in-house procedure which is used to

implement the Finite Element Analysis and Predict of creep damage evolution

of the materials at grain boundary level.

The specific objectives are summarized below:

1. To provide a methodology for developing an in-house Finite Element

procedure for creep simulation at grain boundary level. This procedure is

~ 4 ~

different from the traditional version, with the analysis object being grains

and grain boundaries. In finite element modeling, traditional solid

elements are adopted to present the grains' mechanical properties, while

grain boundaries use non-thickness Goodman elements [12].

2. The existing visco-plastic Finite Element program P61 [13] needs to be

refactored to satisfy the computational requirements of using two different

element types in one model, and two legacy subroutine libraries ‘main’

and ‘geom’ [13] need to integrated into the procedure to realize the

specific required techniques and functions, which include the element

spatial discretization, project size evaluation, solid element stiffness matrix

obtainment, matrix assembly and storage and solution of the equilibrium

equation.

3. Goodman element type needs to be added into this framework, which is a

different element type from the traditional solid element. It is a non-

thickness contact element and the two surfaces are coincident during the

unloading condition. Unlike solid elements, the deformation measure uses

relative surface displacement instead of strain, and the mechanical

relationship follows the cohesive law [9,10,12].

4. Vöse's cavitation constitutive model [10] and Newton Viscous flow sliding

model [14] need to be integrated into the procedure, which use to describe

the grain boundaries’ creep evolution.

~ 5 ~

1.3 Thesis Structure

Chapter 1 introduces the importance, significance and aim of this project, and

reports the structure of the thesis.

Chapter 2 summarizes the literature background related to this project.

Firstly, an overview of this research significance and the creep phenomenon is

presented. Secondly, it presents a review of the current research status of the

creep fracture mechanism and the creep numerical method. Finally, it briefly

summarizes the mathematical model and the numerical implementation

adopted in this project.

Chapter 3 summarizes the general methodology, relevant techniques, and the

mathematical method in developing this In-house procedure. Specifically

including such techniques as: the developing method used in this procedure

development, the numerical integration method for the creep constitutive

equations and the element's area, the techniques for the storage of stiffness

matrix and the solution of the equilibrium equation, and the generation of the

polycrystalline model.

Chapter 4 summarizes the development of a 2-dimensional version of the

multi-scale creep Finite Element solver. Specifically, it includes: the procedure

structure of the Finite Element simulation for the macro model, the procedure

structure for the microstructure simulation at GB level, the mathematical

background of the elements for modeling the grain and GB respectively, the

development of the program blocks and relevant subroutines for realizing the

~ 6 ~

mathematical background, and the development of accessibility functions

(failed element removal techniques and jump-restart facility).

Chapter 5 summarizes the benchmarks of the macro version of the in-house

procedure. The demonstration order corresponds to the development

strategy. Firstly, a simple quadrilateral FE model is employed to validate the

numerical accuracy and stability of the plane stress version, plane strain

version, and axisymmetric version under simple stress conditions. At this

stage, the verification of the three-stress state extends from the linear part to

the non-linear creep part. Secondly, further verification is to verify the

accuracy and reliability of the nonlinear iteration under non-uniform stress

conditions. Then, a one quarter notched bar case study is chosen to validate

the numerical accuracy of non-linear iteration under complex stress

conditions via axisymmetric version procedure.

Chapter 6 summarizes the benchmarks of the micro version of the in-house

procedure. The demo strategy is the same as in Chapter 6. Firstly, a Bi-grains

FE model is chosen as the initial step to verify the numerical accuracy and

stability. In this model, the grain part is meshed by the 3-node triangle solid

element or the 4-node quadrilateral element, the GB part is meshed by the 4-

node Goodman element. The Bi-grain structures of the two combinations

(Triangle element with Goodman element and Quadrilateral element with

Goodman element) were verified separately. Secondly, it demonstrates the

application of the in-house procedure in the simulation of the creep evolution

~ 7 ~

with a 20 grains' polycrystal case study, and the results have been published

in the special issue (Creep and High Temperature Deformation of Metals and

Alloys) of Metals.

Chapter 7 summarizes the development and validation of a 3-dimensional

version of the creep Finite Element solver at the GB level. In this chapter, it

first introduces the development of the creep solver, followed by presenting a

validation of the procedure.

Chapter 8 presents the conclusions and suggestions for further work.

~ 8 ~

Chapter 2 Literature Review of Creep and Creep's

Numerical Method.

2.1 Introduction

This chapter reports the literature review and the current research state

related to this project, the information of each section is reviewed below in

detail, which includes:

1) The general overview of the research significance, creep phenomenon, and

the status of the creep fracture mechanisms are presented in section 2.3. In

this section, it first introduces the mechanism of creep fracture, and then

discusses the research status of creep mechanism at multi-scales, which is

discussed from macro and micro scales, respectively.

2) In section 2.3, it reviews the development of the Continuum Damage

Method for creep damage analysis, and it further reviews the advantages

of the OOP method in Finite Element software development.

3) The current research state of creep numerical implementation at grain

boundary level is presented in section 2.4. In this section, we first discuss

the current state of the FE platform, from the two aspects of commercial

software and in-house procedures, and then introduces and analyzes the

state of the microscopic creep simulation, including the method of

polycrystalline structure generation and the implementation of

microscopic creep FE algorithms, etc.

~ 9 ~

4) In Section 2.5, a literature review of the Cohesive Zone Model theory is

reported. In Section 2.6, the mathematical background of 2D and 3D

traditional solid units is briefly reported.

5) The brief discussion of the 2D and 3D Goodman element’s background is

presented in section 2.7 and section 2.8 respectively. In both sections, they

discuss the mathematical background and the coordinate transmission

system.

6) In section 2.9, it reports the creep constitutive equations used in this

project. It includes the equations for the description of macroscopic creep

mechanism: K-R, KRH, and KRH-X. And the constitutive equations for the

description of microscopic creep evolution of grain boundary part.

7) In Section 2.10 and 2.11, it reports the literature review of the restart

function and auto-time step function.

~ 10 ~

2.2 Creep and Creep Fracture Mechanisms

2.2.1 Creep

In much practical application, creep deformation/damage is a key factor that

limits component life-time, and it is a non-negligible problem for the high-

temperature application. Creep occurs when the component is subjected to a

continuum constant load, in essence, it is a kind of visco-plastic deformation

accumulated over time [16,17]. At room temperature, the process is extremely

slow, and it often takes years to have visible deformation. However, when the

operating temperature exceeds one-third of the melting point, the

deformation will be accelerated, which makes the rapidly shortens the process

[17]. Generally, the process can be divided into three stages: Primary,

Secondary, and Tertiary, as shown in the typical creep curves (Figure 2.2.1).

The creep characteristics of these three stages are summarized below:

Primary Stage:

At this stage, initially, it starts with a high strain rate and then decreases to a

constant value [18]. The final deformation is determined by two main reasons

[19]: time-dependent strain hardening and creep recovery. The relationship

between these two reasons is competition. The Strain hardening contributes to

irreversible creep strain and creep recovery reduces this effect. Under

unloading condition or high initial creep strains, the creep recovery plays a

main role, and conversely is strain hardening.

~ 11 ~

Figure 2.2.1 Basic Creep Curve with three stages. Produced by [20]

Secondary Stage:

At this stage, the creep deformation/strain rate stabilizes [19], and the main

factors affecting the creep strain rate are temperature and external load. Many

researchers rely on empirical formulas to quantitatively describe the

relationship between these three variables [20-23]. The mechanisms that cause

creep deformation at this stage are generally considered to be climb softening

in the higher temperature range, gliding softening in the lower temperature

range, dislocation and diffusion.

Tertiary Stage:

During this stage, the strain rate increases rapidly and failure finally occurs

[24].

The main cause of failure is due to the rapid accumulation of plastic strain,

which leads to microspores and cracks to form on the grain boundaries

[26,26]. Usually, the macro performance at this stage is that the specimen

~ 12 ~

begins to shrink and the cross-section is reduced, which the actual load on

this surface increases rapidly [27]. It accelerates the creep deformation and the

rupture happens finally.

2.2.2 Creep Fracture Mechanisms

Dislocation and diffusion are the main deformation forms of creep and they

have different mechanisms [28]. The former is due to the external load that

makes the material prone to dislocating slip capability, while the latter is due

to the diffusion of vacancies through their crystal lattice. These two forms

contribute to deformation together during the whole process.

Dislocation Creep

External loading is the main reason, under the condition of high stress and

being in an environment with a temperature between 0.3 and 0.7 Tm (Melting

Temperature), the movement occurs between two adjacent crystal lattices.

And the higher the temperature and external loading, the greater the amount

of dislocation [16,29].

There are two forms of dislocation: edge and screw [30].

➢ Edge Dislocation

It is a material defect, which is caused by the discontinuous of the atomic

plane in the middle of the grain, as shown in Figure 2.2.2 (a). When stress is

applied on one side of the plane, atoms adjacent to the defect pass through

and breaks its normal atoms layer, and, and eventually combine with other

atomic layers.

~ 13 ~

The Burgers vector is parallel to the crystal lattices.

Figure 2.2.2 (a) the edge dislocation; (b) the screw dislocation.

Procedure by [31]

➢ Screw dislocation [30]

It is formed by a defect line (dislocation line) which is perpendicular to crystal

lattices. The atomic plane closest to this defect line is the jump one lattice

point along the direction, which is perpendicular to the Burgers vector, as

shown in Figure 2.2.2(b).

Diffusion Creep

There are two forms, N-H(Nabarro-Herring) and Coble. The main mechanism

is the diffusion of vacancies into grains through the crystal lattice [32].

➢ N-H diffusion

The main feature is the diffusion along the crystal lattice, and it is easy to

occur in higher stress and temperature regions [33]. (as shown in Figure

2.2.3(a))

~ 14 ~

Figure 2.2.3 (a) the N-H diffusion; (b) the Cobal diffusion.

Produced by [34]

➢ Cobal diffusion

Unlike the former, the diffusion direction is along the grain boundaries, and it

easily occurs in low stress and temperature regions [33,34].

In summary, the relationship between these two mechanisms (dislocation and

diffusion) are competitive. Under high stress conditions, dislocation plays a

main role in creep deformation, whereas diffusion plays a major role.

2.3 Numerical Method for Creep Damage

The general numerical method of analysis for the creep is based on the

observation and analysis of experiments to establish creep constitutive

equations to depict and predict the creep evolution and failure, which was

first proposed by Kachanov [83]. The theoretical background is Continuum

Damage Mechanics and a damage variable is introduced to present the level

of rupture state of the specimen [83,84]. Initially, the material is in a virgin

state and the damage variable is zero, under the action of external load and

temperature, the damage variable increases monotonically and reaches to the

critical value finally.

~ 15 ~

In 1975, Hayhurst [85] also combined the CDM with Finite Element

technology, to present the relationship between stress and damage variable

during the entire creep process and found the significance of stress

redistribution in the tertiary stage.

2.3.1 Continuum Damage Mechanics

Continuous damage mechanics (CDM) provides a continuous level of

description of the material’s macro-fracture. In order to describe the

degradation mechanism of creep, based on experimental observation, many

CDM models have been proposed.

The KR (Kachanov-Rabotnov) equation was originally proposed by Hayhurst

in 1972 [79], which was the first time to associate the damage variable with the

multi-axial-stress-state. Based on the observation of the experiment, Hayhurst

identified the rupture criterion by the Von-Mises equivalent stress and the

maximum principles of stress together. In 1975, Hayhurst also combined the

CDM with Finite Element technology to present the relationship between the

stress and damage variables during the entire creep process and found the

significance of stress redistribution in the tertiary stage [80].

Follow this FE application of CDM to the creep problem, Dyson and Osgerby

developed a new creep constitutive equation in 1993 [53], which is based on

the mechanism of particle Hardening of alloys and it has the capability of

predicting the rupture time, minimum creep strain rate, and the strain

hardening. Besides, the hyperbolic sine law was introduced to replace the

~ 16 ~

power law, which increases the simulation result fit to an experiment test

better.

In 1996, Hayhurst developed KRH form from Dyson's equation to obtain the

FE computational capability under the multi-axial stress condition to do the

numerical simulation of 0.5Cr-0.5Mo-0.25V ferritic steel, in which the damage

critical value was calibrated by rupture time [58]. However, the limitation of

this equation is that the parameter calibration only considers life consistency

and ignores the creep strain. Therefore, an inaccurate prediction may occur.

Due to the defect, Q.Xu added two functions, f1 and f2 to determine the

damage rate together, f1 applies to couple creep damage with the strain and

lifetime at failure and f2 applies to describe the relationship between stress

state and damage [51].

Although the virtual damage variable is introduced into the constitutive

equation to describe the creep degradation process, the physical meaning of

the damage value is always weak. Since the damage value has no physical

meaning, it is only determined by the measured failure time or creep strain.

Therefore, some researchers describe the real creep degradation mechanism

by establishing the creep constitutive equation of the grain boundary part,

which will be introduced in detail in section 2.4.

2.3.2 Objective Oriented Programming

Objective Oriented Programming is a programming paradigm that uses

classes as objects to design applications and computer programs to improve

~ 17 ~

reusability, flexibility, and extensibility [86]. Compared with the traditional

method that the main program is composed of a set of functions or a series of

instructions directly, OOP allows the program to contain various independent

but callable objects.

Compared with traditional programming methods, OOP has obvious

advantages. First, it increases the flexibility and maintainability of the

program. Second, it improves the development efficiency by separating the

developing progress into blocks and applies the legacy codes to accelerate

development, as it has modular characteristics and rich libraries of objects

[87]. Thus, OOP is adopted for developing this in-house procedure in this

project.

2.4 The Review of Finite Element Analysis (FEA)for Creep

Damage Analysis at Grain Boundary Level.

Currently, FEA has been widely used to simulate and predict creep damage

behavior. There are two ways to obtain this computational capability, one is

based on standard commercial software packages, and the other is through

the development of in-house procedures. The review of platforms is

presented in Section 2.4.1, and Sections 2.4.2 and 2.4.3 give the current state in

FEA of creep at grain boundary level.

~ 18 ~

2.4.1 Review of FE Platform

➢ Commercial Platform

The current mainstream commercial platforms are ABAQUS and ANSYS, and

they are applied in a wide range of research areas, including fluid mechanics,

electromagnetic field, heat conduction, and geotechnical mechanics, etc.

However, ABAQUS is usually chosen to solve the creep problem. The main

reason is that it has a better non-linear solver, which has advantages in

solving material, geometrical, and state nonlinearity.

➢ In-house Platform

Three in-house procedures have been developed for solving creep problem,

FE-DAMAGE [2], DAMAGE XX /DAMAGE XXX [3], and DNA [4]. The

development of these procedures is based on Continuum Damage Mechanic.

For solving creep problems, the specific in-house procedure still has its

advantages, including:

1. If material constitutive models or element types are not available in

ABAQUS library, the only way to write-in these demands is by using

UMAT or UEL subroutines. However, the connect interface standards and

rules between ABAQUS and subroutines are complex and numerous,

which makes the process complicated and inefficient.

2. It provides a higher freedom for developers and it makes the process

efficient and controllable [11].

~ 19 ~

2.4.2 Status of Structure Generation at Grain boundary Level

There are three common methods of generating micro-structures, which can

be summarized: Regular Simplified Morphology method, Voronoi Algorithm

method, and OOF (Object-oriented-finite method).

➢ Regular Simplified Morphology Method

This method was commonly adopted in the initial modeling to simplify the

modeling process, the grain is depicted by regular shapes, such as cubes,

dodecahedra, truncation, and octahedrons. Although it reduces the

computational complexity, it also decreases the revivification of the actual

structure. This way is employed in the initial benchmark of this project, to

verify the procedure’s accuracy and stability of the procedure with higher

efficiency [36].

➢ Voronoi algorithm method

It is applied to partition the space by Thiessen polygons [36]. It is currently

used to generate polycrystalline structures, and mature software packages

have been developed to implement this algorithm, such as Qhull [37],

Voro++ [38], and Neper [39]. In this project, Neper is selected as the pre-

processer to build the microstructure for three reasons:

1. Neper integrates the meshing function, which simplifies the modeling

process.

2. Neper has a remeshing function, which can be used to insect a non-

thickness element between two adjacent grains. Therefore, no additional

~ 20 ~

action is required to satisfy the requirements for grain boundaries’

independent modeling.

3. Neper has the ability to adjust the morphological characteristics of

grains. By using different types of mosaics, such as Poisson-Voronoi

mosaic, hard core-Voronoi mosaic, centroid-Voronoi mosaic, and

Laguerre-Voronoi mosaic, all used obtain a variety of microstructure.

➢ OOF

It was first proposed by ITL (Information Technology Laboratory) and MML

(Material Measurement Laboratory) of NIST (National Institute of Standards

and Technology. US). The object is the actual microscopic picture or the 3D

scan slice picture. Compared with the previous two methods, it has the

highest level of revivification. However, the higher computational cost and

expensive micro-scan equipment are required [40].

2.4.3 Research Status of FE Modeling at Grain Boundary Level

Under the analysis framework at grain boundary level, homogeneous

materials are modeled by grains and grain boundaries separately.

For Grain Boundary Modeling

Initially, grain boundaries were represented by inserting a fictitious elastic

spring layer between two adjacent grains, and a new creep fracture model

was proposed to describe the cavity evolution [41]. In 1997, Onck and Van der

Giessen followed this method to study and simulate the intergranular crack

growth [42]. In 2012, in the creep fracture study of polycrystalline ceramic,

~ 21 ~

Goodman element was introduced to describe the creep evolution of grain

boundaries [9].In 2014, in the creep study of Copper-Antimony-Alloy, the

COH3D8 from ABAQUS build-in element library was adopted to describe the

mechanism of grain boundary part.

➢ Fictitious Layer

In this method, grain boundaries are represented by fictitious elastic layers, as

illustrated in Figure 2.3.1.

Figure 2.3.1 Fictitious layer schematic of grain boundary.

Produced by [41]

The determine process of grain boundary is as follows, as shown in Figure

2.3.1, first, node ‘a’ and ‘c’ are projected onto the adjacent grain surface to

obtain their phantom node ‘a'’ and ‘c'’, and then connect the original nodes to

its corresponding phantom nodes to obtain line ‘a-a'’ and ‘c-c'’, finally, use the

‘p’ and ‘q’ as the nodes of grain boundary, which ‘p’ and ‘q’ are the midpoints

of line ‘a-a'’ and ‘c-c'’.

➢ Goodman Element

Goodman element is a non-thickness element that was first used to solve

contact problems. In creep analysis, it is used to describe the mechanism of

grain boundaries. In the 2Dand 3Dversion, it consists of two rods and surfaces

~ 22 ~

which coincide with each other initially. This part will be explained in detail

later [9,12].

➢ COH3D8

COH3D8 is from ABAQUS’s element library. It is a 3D cohesive element with

eight nodes and six faces, as shown in Figure 2.3.2.

Figure 2.3.2 The schematic diagram of COH3D8.

Produced by [6]

The characteristic of this element is that the upper (face 2) and lower surface

(face 1) have a thickness and follow the cohesive law [6,43].

For Grain Modeling

It can be divided into two categories:

1. Using a homogeneous and isotropic solid element with power law creep.

The grain is modeled by a homogeneous and isotropic material solid element

with linear elasticity and power-law creep. According to these simulations, it

can be concluded that this grain modeling method has the capability to

capture the main creep damage feature that occur at the grain boundary part

[9,41,42].

2. Using 12 sliding system solid element with visco-plastic crystal model

The grain is assumed to be the single FCC (Face Centered Cubic) crystal, and

~ 23 ~

its deformation includes two parts: linear elasticity and visco-plasticity. The

deformation is alone the sliding plane {1 1 1} with direction 〈0 1 1〉, and

kinematic hardening is ignored [44].

2.5 Cohesive Zone Model

Currently, CZM (Cohesive Zone Model) is widely used to describe the

cohesive traction-separation law of cracking processes or analyze the

localization and failure of materials [48-50]. With the development of

numerical methods, Needleman [51] first used his self-defined CZM for FE

analysis of crack propagation in ductile materials, and Petersson [52] and

Carpinteri [53] used it in brittle fracture simulation. Compared with

conventional fracture mechanics, CZM keeps the continuity of analysis in the

separated state, and it avoids the stress’s singularity during separation and

limits the stress as the cohesive strength of the materials [54,55].

Although the grain boundary has a thickness, compared with the grain, it is

only a few atom layers. Therefore, the general way to model grain boundary

is to idealize it as a sharp interface between two adjacent grains. Based on this

geometric characteristic, the CZM is used to describe the deformation of grain

boundaries. The common traction-separation is described by constitutive

equations, which relate to the creep phenomenon that occurs on grain

boundaries (such as cavitation and sliding). Under the continuum mechanics

framework, the deformation of grain boundaries is measured by using the

displacement jump of two surfaces (upper and lower) [9,10].

~ 24 ~

2.6 Conventional Solid Element

Under different stress states, there are different element types. Generally, 3D

problems can be idealized into three different stress states: plane stress, plane

strain and axisymmetric. The difference between these three is the constitutive

relationship between stress and strain.

2.6.1 Formulation of 2D Solid Element

The constitutive relationship between stress components and small strain

components is shown below [56,88]:

Where E is Young's modulus, ν is Poisson's ratio. [D] is the constitutive

matrix.

1) Plane Stress

 {

σx
σy
τxy
} = [D]{

εx
εy
γ
xy

} 2.6.1

 [D] =
E

1 − ν2
[

1 ν 0
ν 1 0

0 0
1 − ν

2

] 2.6.2

2) Plane Strain

 {

σx
σy
τxy
} = [D]{

εx
εy
γ
xy

} 2.6.3

 [D] =
E(1 − ν)

(1 + ν)(1 − 2ν)

[

 1

ν

1 − ν
0

ν

1 − ν
1 0

0 0
1 − 2ν

2(1 − ν)]

 2.6.4

~ 25 ~

3) Axisymmetric

 {

σx
σy
σz
τrz

} = [D]{

εx
εy
εz
γ
rz

} 2.6.5

 [D] =
E(1 − ν)

(1 + ν)(1 − 2ν)
∙

[

 1

ν

1 − ν
ν

1 − ν
1

 0
ν

1 − ν

 0
ν

1 − ν
0 0

ν

1 − ν

ν

1 − ν

1 − 2ν

2(1 − ν)
 0

0 1]

 2.6.6

The relationship between displacement components {d} and small strain

components {ε} is shown below:

where μ̃ and υ̃are the displacement component in two directions (x and y)

[56,89].

1) Plane stress and Plane strain

 {

εx
εy
γ
xy

} =

[

∂

∂x
0
∂

∂y

0
∂

∂y
∂

∂x]

{
μ̃
υ̃
} 2.6.7

2) Axisymmetric

 {

εx
εy
εz
γ
rz

} =

[

∂

∂r
0

0
∂

∂z
∂

∂z

∂

∂r
1

r
0]

{
μ̃
υ̃
} 2.6.8

The connection between node displacement and element displacement can be

obtained by discretizing over element using shape functions.

where {μ} and {υ} store the node displacement, [N] is the shape function

~ 26 ~

matrix [56].

μ̃ = [N]{μ}

2.6.9

υ̃ = [N]{υ}

2.6.10

 {
μ̃
υ̃
} = [

N 0
0 N

] {
μ
υ
} 2.6.11

Therefore, the relationship between small element strain and node

displacement can be obtained by [56]:

1) Plane stress and Plane strain

Substitute equation 2.6.11 into equation 2.6.8, the strain-nodes displacement

matrix [B] can be obtained:

 {

εx
εy
γ
xy

} = [B] {
μ
υ
} 2.6.12

 [B] =

[

∂

∂x
0
∂

∂y

0
∂

∂y
∂

∂x]

[
N 0
0 N

] 2.6.13

2) Axisymmetric

Substitute equation 2.6.11 into equation 2.6.7, the strain-nodes displacement

matrix [B] can be obtained:

 {

εx
εy
εz
γ
rz

} = [B] {
μ
υ
} 2.6.14

 [B] =

[

∂

∂r
0

0
∂

∂z
∂

∂z

∂

∂r
1

r
0]

[
N 0
0 N

] 2.6.15

~ 27 ~

The element stiffness matrix can be obtained:

1) Plane stress and Plane strain

 [Km] = ∬[B]T[D][B]dxdy 2.6.16

2) Axisymmetric

 [Km] = ∬[B]T[D][B]rdrdzdθ 2.6.17

In this FE program, applying Gauss-Legendre as numerical integration over

element regions.

Finally,

The integration form of Equation 2.6.16 is

 [Km] =∑Wi ∙ det|J|i ∙ [B]
T[D][B]

nip

i=1

 2.6.18

The integration form of Equation 2.6.17 is

 [Km] =∑Wi ∙ det|J|i ∙ [B]
T[D][B]r

nip

i=1

 2.6.19

where Wi is weighting coefficient. det|J|i is the Jacobian matrix.

2.6.2 Formulation of 3D Solid Element

The stress and strain constitutive relationship is shown in below [56,88]:

{

σx
σy
σz
τxy
τyz
τzx}

= [D]

{

εx
εy
εz

γ
xy

γ
yz

γ
zx}

 2.6.20

~ 28 ~

[D]

= K ∙

[

 1

ν

1 − ν

ν

1 − ν
ν

1 − ν
1

ν

1 − ν
ν

1 − ν

ν

1 − ν
1

𝟎

𝟎

1 − 2 ∙ ν

2 ∙ (1 − ν)
0 0

0
1 − 2 ∙ ν

2 ∙ (1 − ν)
0

0 0
1 − 2 ∙ ν

2 ∙ (1 − ν)]

2.6.21

With K =
E(1 − ν)

(1 + ν) ∙ (1 − 2 ∙ ν)
 2.6.22

Where E is Young's modulus, ν is Poisson's ratio. [D] is the constitutive

matrix.

The relationship between displacement component {d} and small strain

components {ε} is shown below [56,89]:

where μ̃,ν̃, ω̃ and are the displacement component in three directions (x, y,

and z).

 {

εx
εy
γ
xy

} =

[

∂

∂x
0 0

0
∂

∂y
0

0
∂

∂y
0
∂

∂z

0
∂

∂x
∂

∂z
0

∂

∂z
0
∂

∂y
∂

∂x]

{
μ̃
ν̃
ω̃
} 2.6.23

The connection between node displacement and element displacement can be

obtained by discretizing over element using shape functions [N], and the

connection between node displacement and the element displacement is:

~ 29 ~

 {

[μ̃]

[υ̃]

[ω̃]
} = [

[N] 0 0

0 [N] 0

0 0 [N]
]{

[μ]

[υ]

[ω]
} 2.6.24

where [μ], [υ], and [ω] stores the nodes displacement vector in three

directions, [N] is the matrix which stores the shape function.

Substitute the equation 2.6.24 into 2.6.21, the strain-nodes displacement

matrix [B] can be obtained:

 [B] = [A] ∙ [S] 2.6.25

 [A] =

[

∂

∂x
0 0

0
∂

∂y
0

0
∂

∂y
0
∂

∂z

0
∂

∂x
∂

∂z
0

∂

∂z
0
∂

∂y
∂

∂x]

 2.6.26

 [S] = [
N1 0 0
0 N1 0
0 0 N1

……

N8 0 0
0 N8 0
0 0 N8

] 2.6.27

Finally, the element stiffness matrix can be obtained by:

 [Km] =∭[B]T ∙ [D] ∙ [B]dxdydz 2.6.28

2.7 2D Goodman Element

This element was first proposed for the FEA of 2Drock engineering numerical

simulation. Due to its non-thickness geometric features, the continuity is

guaranteed when analyzing contact problems. In this project, 4 nodes with 8

degrees of freedom Goodman element (2 degrees of freedom per node) is

adopted. The topological direction of the node numbers is clockwise as shown

~ 30 ~

in Figure 2.7.1. Under unloading conditions, the upper and low lines coincide.

When in a loaded state, the two lines are separated to generate a relative

displacement in two directions, which is the normal direction ‘N’

(perpendicular to the surface) and the Separate direction ‘S’ (parallel to the

surface) [12,46].

Figure 2.7.1 The schematic diagram of 2DGoodman element.

Produced from [12].

2.7.1 Mathematical Background

The element displacement vector, ae, is defined by the eight displacement

components of four nodes as [12,46]:

 ae = {

a1
a2
a3
a4

} 2.7.1

with

 a1 = {
u1
v1
} 2.7.2

for node 1, etc.

where u is normal direction and v is separate direction.

The displacement of the lower surface is:

 [u
l

vl
] =

1

2
[
N1 0 N4 0
0 N1 0 N4

] [

u1
v1
u4
v4

] 2.7.3

~ 31 ~

The displacement of the upper surface is:

 [u
u

vu
] =

1

2
[
N2 0 N3 0
0 N2 0 N3

] [

u2
v2
u3
v3

] 2.7.4

with shape functions of each node are defined as:

 N1 = 1−
2x

L

2.7.5

 N2 = 1 −
2x

L

 N3 = 1 +
2x

L

 N4 = 1 +
2x

L

where x is the coordinate at x-axis in the local coordinate system, L is the

length of Goodman element.

By using equations 2.7.3 to 2.7.4, the relative displacement [Φ] is:

 [Φ] = [u
u − ul

vu − vl
] =

1

2
∙ [B]

[

u1
v1
u2
v2
u3
v3
u4
v4]

 2.7.6

in which:

 [B] = [
−A 0 A 0 B 0 −B 0
0 −A 0 A 0 B 0 −B

] 2.7.7

with

 A = 1 −
2x

L
; B = 1 +

2x

L
, 2.7.8

The relationship between stress and deformation can be implemented via

cohesive law, which suits a small thickness or non-thickness at all. Therefore,

~ 32 ~

the [D] matrix which relates the two stress components to the relative

displacement, thus

 [
Fn
Fs
] = [D] ∙ [Φ], 2.7.9

where

 [F] = [
Fn
Fs
] 2.7.10

Here [D]=[
kn 0
0 ks

], kn is the stiffness of normal direction and ks is the

stiffness of separated direction.

The potential-energy P in a linearly elastic Goodman element is shown in:

 P =
1

2
LΦT[K]Φ =

1

2
∫

1

4
[Φ]T[B]T[D][B][Φ]

L

2

−
L

2

dx 2.7.11

where [K] is the Goodman element stiffness per length.

Therefore, the [K] can be obtained:

 [K] = ∫
1

4
[B]T[D][B]

L

2

−
L

2

∙ dx 2.7.12

Substitution of the Equation 2.6.7 and 2.6.10

[B]T[D][B] =

[

A2KS 0

0 A2KN

−A2KS 0

0 −A2KN
−A2KS 0

0 −A2KN

A2KS 0

0 A2KN

−ABKS 0
0 −ABKN

ABKS 0
0 ABKN

ABKS 0
0 ABKN

−ABKS 0
0 −ABKN

−ABKS 0
0 −ABKN

ABKS 0
0 ABKN

ABKS 0
0 ABKN

−ABKS 0
0 −ABKN

B2KS 0

0 B2KN

−B2KS 0

0 −B2KN
−B2KS 0

0 −B2KN

B2KS 0
0 BKN]

2.7.13

wherein the integrals of these A2, B2, and AB for the length L are:

~ 33 ~

 ∫ A2
L

2

−
L

2

=
4

3
L

2.7.14 ∫ B2
L

2

−
L

2

=
4

3
L

 ∫ AB
L

2

−
L

2

=
2

3
L

Thence, the element stiffness matrix [K] is:

[K]=

1

6
∗

[

2Ks 0
0 2Kn

−2Ks 0
0 −2Kn

−2Ks 0
0 −2Kn

2Ks 0
0 2Kn

−Ks 0
0 −Kn

Ks 0
0 Kn

Ks 0
0 Kn

−Ks 0
0 −Kn

−Ks 0
0 −1Kn

Ks 0
0 Kn

Ks 0
0 −2Kn

−Ks 0
0 −Kn

2Ks 0
0 2Kn

−2Ks 0
0 −2Kn

−2Ks 0
0 −2Kn

2Ks 0
0 2Kn]

2.7.15

2.7.2 Coordinate System Transmission

The stiffness matrix in the previous section is under a special condition when

the two coordinates (Global and Local) are coincident. In general, these two

coordinate systems need to be related by a transmission matrix [12,46].

Figure 2.7.2 The schematic figure of Goodman element with angle.

Reproduced from [45]

~ 34 ~

As indicated in Figure 2.7.2, the angle between the local coordinates and the

global coordinates is θ, the local element stiffness at global coordinates is [46]:

 [K]Glo = [T]
T[K]loc[T] 2.7.16

in which

 T = [

N 0
0 N

0 0
0 0

0 0
0 0

N 0
0 N

], N = [
cosθ sin θ
−sin θ cos θ

] 2.7.17

2.8 3D Goodman Element

In this project, 8 nodes with 24 degrees of freedom 3D Goodman element (3

degrees of freedom per node) is adopted. The topological direction of the

node numbers is shown in Figure 2.8.1. Under unloading conditions, the

upper and low surfaces coincide. When in a loaded state, the two surfaces are

separated to generate a relative displacement in three directions, which is the

normal direction ‘𝜔’ (perpendicular to the surface) and two Separate

directions ‘𝜈’ and 𝜇 (parallel to the surface) [47].

6

1

2 3

4

6 7

8

A

B

𝛍

𝛎

𝛚

Figure 2.8.1 The schematic diagram of 3D Goodman

element (Local coordinates system).

~ 35 ~

2.8.1 Mathematical Background

The element displacement vector, ae are defined by 24 displacement

components of 8 nodes as [47]:

 ae = {a1 a2 a3 a4 a6 a6 a7 a8}T 2.8.1

with

 a1 = {μ1 ν1 ω1}T 2.8.2

for node 1, etc.

The displacement vectors of the surface 'A' is:

 [

μA
νA
ωA
] = [F1 F2 F3 F4] [

V1
V2
V3
V4

] 2.8.3

The displacement vectors of the surface 'B' is:

 [

μB
νB
ωB
] = [F6 F6 F7 F8] [

V6
V6
V7
V8

] 2.8.4

Where the matrix F stores the shape function and V stores the displacement

vectors of each node, the shape function comes from quadrilateral element

[13].

 [F1] = [
N1 0 0
0 N2 0
0 0 N3

] 2.8.5

[V1] = [

μ1
ν1
ω1
]

2.8.6

for node i, etc.

with shape functions defined as:

 N1 = N6 =
1

4
(1 − ξ)(1 − η) 2.8.7

~ 36 ~

 N2 = N6 =
1

4
(1 − ξ)(1 + η)

 N3 = N7 =
1

4
(1 + ξ)(1 + η)

 N4 = N8 =
1

4
(1 + ξ)(1 − η)

where ξ and η are the coordinates in a local system.

By applying equations 2.8.3 and 2.8.4, the relative displacement [Φ] can be

solved as:

 [Φ] = [

μA − μB
νA − νB
ωA −ωB

] = [B]

[

V1
V2
V3
V4
V6
V6
V7
V8]

 2.8.8

in which:

 [B] =

[

 F1
 F2
 F3
 F4
−F6
−F6
−F7
−F8]

T

 2.8.9

where matrix F has been mentioned in the Equation 2.8.5.

The mechanical relationship between stress and deformation can be

implemented via cohesive law and the matrix [D] which relates the stress

components to relative displacement, thus

 [

Fμ
Fν
Fω

] = [

Kμ 0 0

0 Kν 0
0 0 Kω

] [

Φμ

Φν

Φω

] 2.8.10

Due to the thickness of this element is zero, the integration of the stiffness

~ 37 ~

matrix is only on the two surfaces A and B. The 3D Goodman element

stiffness matrix can be obtained (in local coordinate):

 [KM] =
1

2
∫ ∫ BT ∙ D ∙ B|J|

+1

−1

+1

−1

dξdη 2.8.11

Here, the implementation of numerical integration over the surface A and B

regions is by the Gauss-Legendre method.

The integration form of Equation 2.8.11 is

 [KM] =
1

2
∑Wi ∙ det|J|i ∙ [B]

T[D][B]

nip

i=1

 2.8.12

where Wi is the weighting coefficient. det|J|i is the determinant of the

Jacobin matrix.

The mathematical background of solving |J|i is shown below: Based on

matrix [B], the derivatives 'der' of the shape functions in surface A and B as

(local coordinates system):

 der =

[

∂FunT

∂μ

∂FunT

∂ν]

= [
−A −B B A −A −B B A
−C −D D C −C −D D C

] 2.8.13

where,

A=(1-μ) C=(1-ν)

2.8.14

B=(1+μ) D=(1+ν)

Therefore, the Jacobin matrix [J] can be obtained:

 [J] = [der] ∙ [coord]μ&𝜈 2.8.15

where:

~ 38 ~

 [coord]μ&ν =

[

μ1
μ2
μ3
μ4
μ6
μ6
μ7
μ8

ν1
ν2
ν3
ν4
ν6
ν6
ν7
ν8]

 2.8.16

[coord]μ&𝜈 stores the coordinates in two directions: μ and ν.

Finally, the Jacobin matrix [J] can be solved:

 [J] = [
J1 J2
J3 J4

] 2.8.17

with

J1 = −A ∙ μ1 − B ∙ μ2 + B ∙ μ3 + A ∙ μ4 − A ∙ μ6 − B ∙ μ6 + B

∙ μ7 + A ∙ μ8

2.8.18

J2 = −A ∙ ν1 − B ∙ ν2 + B ∙ ν3 + A ∙ ν4 − A ∙ ν6 − B ∙ ν6 + B

∙ ν7 + A ∙ ν8

J3 = −C ∙ μ1 − D ∙ μ2 + D ∙ μ3 + C ∙ μ4 − C ∙ μ6 − D ∙ μ6 + D

∙ μ7 + C ∙ μ8

J1 = −C ∙ ν1 − D ∙ ν2 + D ∙ ν3 + C ∙ ν4 − C ∙ ν6 − D ∙ ν6 + D

∙ ν7 + C ∙ ν8

where A, B, C, and D are shown in Equation 2.8.18.

2.8.2 Coordinate System Transmission

The stiffness matrix in the previous section is under a special condition when

the two coordinates (Global and Local) are coincident. In general, these two

coordinate systems need to be related by a transmission matrix.

The relationship between Local coordinate system and Global coordinate

system is [47]:

 {
x′

y′

z′
} = [

cos(x′, x) cos(x′, y) cos(x′, z)

cos(y′, x) cos(y′, y) cos(y′, z)

cos(z′, x) cos(z′, y) cos(z′, z)
] {
x
y
z
} 2.8.19

In Equation 2.8.19, cos(x′, x) is the cosine of the angle between the x′ axis of

the local coordinate system and the X axis of the global coordinate system,

~ 39 ~

and so on and so forth. The element stiffness matrix in the local coordinate

system has been solved in the previous section 2.8.1, and transmit it to the

global coordinate system is:

 [KM]Global = T
T ∙ [KM]Local ∙ T 2.8.20

in which

 T = [

Q 0
0 Q

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ 0
⋯ Q

] 2.8.21

with Q = [

cos(x′, x) cos(x′, y) cos(x′, z)

cos(y′, x) cos(y′, y) cos(y′, z)

cos(z′, x) cos(z′, y) cos(z′, z)
]

2.9 Creep Constitutive Equation

This section reviews four sets of creep constitutive equations, which have

been built into the procedure framework. The first three describe the creep

evolution at the macro-scale, and the last two describe the cavitation and

sliding evolution of the grain boundaries.

2.9.1 Macro-Creep Constitutive Equations

1. Kachanov-Rabatnov (KR)

It is a creep constitutive equation with Power Law Stress Sensitivity, shown in

Equation 2.9.1. The description of the creep degradation behavior depends on

a single damage state variable [6].

~ 40 ~

 ε̇ij =
3

2
∙ A ∙ (

σeq

1 − ω
)
n

∙
Sij

σeq
∙ tm 2.9.1(a)

 ω̇ = B ∙
σr
χ

(1 − ω)ϕ
∙ tm 2.9.1(b)

 σr = α ∙ σ1 + (1 − α) ∙ σeq 2.9.1(c)

where A, B, n, m, ϕ, andα are the material constants. σeqis the equivalent

stress, σ1 is the maximum stress, Sij is the deviator stress tensor, σr is the

rupture stress,ωis the damage variable andε is the creep strain tensor.

2. Kachanov-Rabatnov-Hayhurst (KRH)

This is a creep constitutive equation with Hyperbolic Sine Law Stress

Sensitivity, shown in Equation 2.9.2. Compared with the previous KR form,

the description of the creep degradation behavior depends on three state

variables, which is used to depict the cavitation and the coarsening of the

carbide precipitates [57].

 ε̇ij =
3

2
∙
Sij

σeq
∙ A ∙ sinh [

B ∙ σeq ∙ (1 − H)

(1 −Φ) ∙ (1 −ω)
] 2.9.2(a)

 Ḣ =
h ∙ ε̇e
σeq

∙ (1 −
H

H∗
) 2.9.2(b)

 Φ̇ =
KC
3
∙ (1 −Φ)4 2.9.2(c)

 ω̇ = D ∙ N ∙ ε̇e ∙ 〈
σ1
σeq

〉v 2.9.2(d)

Where N=1 when σ1 > 0 and N=0 when σ1 < 0. A, B, C, h, H∗, and KC are

the material constants. H,Φ, andω are the three state variables, H

(Ht=0 = 0)presents the strain hardening, Φ(Φt=0 = 0)presents the evolution

of the density of the carbide precipitates, ω (0 ≤ ω ≤
1

3
)presents the

~ 41 ~

cavitation damage [58].

3. Kachanov-Rabatnov-Hayhurst-Qing (KRHQ)

The KRHQ is developed from the previous KRH, shown in Equation 2.9.3, the

main difference is the relationship between stress state and cavitation damage

rate. Two additional functions f1 and f2are added to determine the damage

rate, where f1 is used to describe the phenomenological relationship between

damage, tertiary creep deformation, and creep rupture. f2 is used to describe

the coupling between creep damage evolution and the stress state effect [59].

 ε̇ =
3

2
∙
Sij

σeq
∙ A ∙ sinh [

B ∙ σeq ∙ (1 − H)

(1 − Φ) ∙ (1 − ω)
] 2.9.3(a)

 Ḣ =
h ∙ ε̇e
σeq

∙ (1 −
H

H∗
) 2.9.3(b)

 Φ̇ =
KC
3
∙ (1 − Φ)4 2.9.3(c)

 ω̇ = D ∙ N ∙ ε̇e ∙ f1 ∙ f2 2.9.3(d)

 f1 = (
2σe
3S1

)
a

∙ exp {b ∙ [
3σm
Ss

− 1]} 2.9.3(e)

 f2 = (exp {p ∙ [1 −
σ1
σe
] + q ∙ [

1

2
−
3σm
2σe

]})
−1

 2.9.3(f)

where Ss = √σ1
2 + σ2

2 + σ3
2, σm =

1

3
(σ1 + σ2 + σ3), S1 = σ1 − σm and σ1, σ2,

and σ3 are the principal stresses, a, b, p, and q are the material parameters.

2.9.2 Micro-Creep Constitutive Equations

For most high-temperature alloys, the main reasons of creep damage,

particularly creep rupture, is due to the cavitation happening on grain

boundary, most creep modeling at grain boundary level is also based on the

~ 42 ~

evolution of cavitation over time [60-66].In this work, the deformation of

grain boundary under creep conditions is represented by displacement jump,

which assumed cavitation for the normal direction and sliding for the

tangential directions [9,10].

The cavitation contains two aspects, cavity nucleation and cavity growth. For

cavity nucleation, the mechanisms are still not fully understood, generally,

according to the observation of specimens, cavities are usually found on the

grain boundaries, and in the plane perpendicular to the tension's direction,

the density of the cavities is higher than other planes. For the cavity growth, it

suggested three mechanisms, the plastic deformation-dominated, sliding

control, and constraint-dominated [67]. The cavitation models based smeared-

out cavity model has been developed for the analysis of Copper-Antimony

alloys under creep conditions [10,68], which accounts for cavity nucleation,

cavity annihilation, and cavity growth. In this model, the failure of a single

grain boundary is determined by the ratio of cavity area, and its critical value

is 0.5 [10].

At normal direction, the displacement jump is determined by Vose’s

cavitation models, as shown in Equation 2.9.4.

~ 43 ~

dβ̅

dt̅
=
3

2

β

ρ̅
(α̅p − α̅a) + √ρ̅√36h(ψ)πβ2

3 da̅

dt̅
 2.9.4(a)

dρ̅

dt̅
= α̅p(1 − f) − α̅a 2.9.4(b)

 α̅a = x3 ∙ 8πρ̅
2a̅
da̅

dt̅
 2.9.4(c)

 ω = √
9πβ2

16h2(ψ)

3

; 2.9.4(d)

 a̅ =
1

√ρ̅
√
3

4

β

h(ψ)π

3

 2.9.4(e)

 f =
(η − 1)ω

1 − ω
 2.9.4(f)

 η = exp([x4 ∙ 2πD̅gb(a̅tip(a̅ = 1) − a̅tip(a̅))ρ̅ (
dμ̅p

dt̅
)
−1

]) 2.9.4(g)

dμ̅p

dt̅
=

β

√ρ̅3
(α̅p − α̅a) + √36h(ψ)πβ2

3 da̅

dt̅
 2.9.4(h)

q(ω) = −2lnω− (3 −ω)(1 −ω);

a̅tip(a̅) = 2γ̅
s
sinψ a̅⁄ ,

2.9.4(i)

where ρ and a are the density and the average radius of cavities, β is the

damage variable, α̅p is the nucleation rate, α̅a is the annihilation rate, ψ =

70° (the dihedral angle), D̅gb is the diffusion coefficient, ω is the damaged

area fraction. The deformation of the grain boundary part is quantified by the

relative jump displacement and it determined by two variables together, ρ

and β, and the relationship is shown in Equation 2.9.5.

 Dn =
β

√ρ
−

β
0

√ρ
0

 2.9.5

where the Dn is the normal jump displacement, β
0
(10−4) is the initial

damage value, ρ
0
(10−3mm−2)is the initial cavity density.

~ 44 ~

At tangential directions, the displacement jump is assumed to be determined

by Newtonian Viscous Flow [14], shown in Equation 2.9.6.

dusliding

dt
=

σsliding
η
sliding

 2.9.6

where
dusliding

dt
 is the relative sliding velocity, σsliding and η

sliding
are the

separate stress and the sliding viscosity of grain boundary, respectively.

2.10 Removal Function

During the creep evolution, the damage value is the index of element

degradation, which increases from zero in the initial state, to the critical value

at the end. When damage value reaches the value, the element is treated as a

failure and is unable to sustain any load. These failed elements need to be

removed from the structure and the boundary value problem needs to be

resolved. Specifically, the failed element needs to be identified and located,

and then its element stiffness matrix needs to be removed from the global

stiffness matrix [69,70]. Overall, the two keys to implementing the removal

function are examination and removal.

A common approach is to capture the damage value of each element and

compare it to the critical value. When the damage value is greater than or

equal to this value, the failed element is marked and its element number is

recorded. Since the assembly and solution of the global stiffness matrix is

expensive in computer time (CPU-time), the trigger function is considered

necessary [70]. An element self-examination module is performed prior to

~ 45 ~

each iteration step, when a new failed element is generated, a loop for

locating this element will be triggered. In this loop, the stiffness matrixes of

failed elements are removed, and the global stiffness matrix is re-assembled

and re-solved. When the loop is not triggered, skip this block and jump to the

next iteration step. This function avoids unnecessary calculations and

improves efficiency [69,70].

The direct way to remove the failed element is to set its element stiffness

matrix to zero, however, when an island effect is formed (the normal element

is surrounded by failed elements and its connection to the structure is broken)

or the failure occurs at the boundary, it will cause the singularity of the

stiffness matrix solution, it makes the process complex. Another way to is to

reduce the stiffness matrix of the failed element, Hyde adopted this method in

his Notched bar case study and proved its usability [71]. Comparing the two

methods, the latter is simpler, although the failed elements are not removed

from the physical structure completely. In regard to this project and the

project’s progress, it is reasonable to choose the latter one.

2.11 Restart Facility

MT.Wong added this technique for the ‘DAMAGE XXX’ to allow the software

to be stopped and restarted freely, however, it was not clearly documented in

detail on how to implement this function [69]. In practice, since the creep

simulation spends hundreds of hours or more, the ability to output the result

in stages and restart calculations from breakpoints is particularly important. It

~ 46 ~

reduces the possibility of a loss of the result data if the computer was to

accidentally shutdown. The key to developing this function is ‘READ-IN’ and

‘WRITE-OUT’. The ‘READ-IN’ module is the required data needed to be

imported into the main program accurately, such as the element status (good

or failed), state variable (such as creep strain, damage value, etc.), time,

iteration step number, self-equilibrating global node force etc. The ‘WRITE-

OUT’ module needs to output the required data and the intermediate result in

a standard format (the format required by ‘READ-IN’ module) at the specified

iteration step or time point.

~ 47 ~

Chapter 3 Methodology

3.1 Introduction

In this chapter, it reports the general methodology considered in this project.

It includes the general methodology of software development, specific

mathematical methods or tools, mature technologies, and legacy codes.

A brief overview of each section is presented below.

1) In section 3.2, it presents the general methodology of software

development in this project.

2) In section 3.3, the numerical integration methods used in this project are

introduced, including Euler, 4thorder Runge-Kutta, and Gauss-Legendre

3) In section 3.4, the mature techniques used to implement matrix storages

and solution used in this project are introduced, and the legacy codes used

to implement these techniques are also presented.

4) In section 3.5, it reports the displacement non-linear iteration method for

solving the creep boundary value problem.

5) In section 3.6, it reports the mathematical background used to implement

Goodman element coordinate system transmission.

~ 48 ~

3.2 General Methods for Developing In-house Procedure

Generally, the development includes four stages: Planning, Developing,

Benchmark, and Maintenance [11].

1. Planning

This procedure is based on CDM (Continuum Damage Mechanism) to

implement Finite Element Analysis. In order to avoid duplication and

improve efficiency, OOP (Object-Oriented Programming) is adopted as a

programming paradigm and some existing technologies, subroutine libraries,

program structures, and interface standards are used [13]. In addition,

Goodman element with a cohesive zone model is used to model grain

boundaries. The programming environment is Fortran 2003 within the Visual

Studio 2013 platform (Version 11.0.6129.00, Microsoft, Remond, WA USA).

2. Developing

The developing logic is from linearity to non-linearity, from 2D to 3D, and

from macro-scale to micro-scale. During the development process, the linear

version adopts the existing framework and legacy code to implement the

following four techniques [13]:

1) size allocation of dynamic arrays.

2) evolution of the mesh information to allocate the matrix size of the

global stiffness matrix size.

3) the assembly and solution of the global stiffness matrix.

4) retrieve the elastic stress field in the structure.

~ 49 ~

The main program is refactored from P61 [13], and the displacement iteration

method adopts to implement residual stress updating [3]. The specific

amends are summarized as follows:

1) add removal function.

2) add automatic time step function.

3) add the restart function.

4) upgrade from ‘Single-Material& Singe-Element Type’ to ‘Multi-

Material& Multi-Element Type’ version.

3. Benchmark

In order to make the benchmark logical and efficient, the benchmark process

is designed from simple to complex, from the linearity to nonlinearity.

Specifically, the validation of the macro solver contains two stages, the simple

regular structure is chosen as the initial step to demonstrate the accuracy and

stability under the uniform stress distribution and the results can be

benchmarked with the theoretical results. The notched bar structure is chosen

as a further step to verify the procedure under the non-uniform stress

distribution and the result can be benchmarked with Hyde's Notched bar case

study [71]. Similarly, the simple bi-crystal structure is chosen as the first step

to verify the accuracy and stability.

~ 50 ~

4. Maintenance

Complete documentation and clear code comments benefit to improve the

readability of the program, it makes the job easier for subsequent developers

to maintain the procedure and update the version more efficiently [72].

3.3 Integration Method

In this project, the numerical integration adopts the Euler method and

4𝑡ℎorder Runge-Kutta Integration Method, and the region integration uses the

Gauss-Legendre method.

3.3.1 Numerical Integration

The creep constitutive equation is a type of partial differential equation, and

its solution is to integrate it with time. The commonly used numerical

engineering integration methods are Forward Euler and 4th order Runge-

Kutta integration method.

1. Euler Integration Method

At i th step, the increase rate of variable y is Ri(yi), and the result of the

variable y at i+1 step is

yi+1 = yi + Ri(yi) ∙ Δt 3.3.1

Where Δt is time step.

2. 4thorder Runge-Kutta Integration Method

At i step, the increase rate of variable y is determined by K1, K2, K3, and K4

~ 51 ~

 K1 = Ri(yi)

3.3.2

 K2 = Ri (yi + K1 ∙
1

2
Δt)

 K3 = Ri (yi + K2 ∙
1

2
Δt)

 K4 = Ri(yi + K3 ∙ Δt)

The final increase rate Ri is determined by

 Ri =
1

6
(K1 + 2K2 + 2K3 + K4) 3.3.3

The result of variable y at i+1 step is

yi+1 = yi + Ri(yi) ∙ Δt 3.3.4

Where Δt is time step.

Compared with Euler, Runge-Kutta has its advantages for creep damage

analysis. Although it increases the computational effort, it can accept larger

time-step while ensuring accuracy and stability, and this advantage is even

more obvious in large-scale case studies [74,75].

3.3.2 Numerical Integration for Element

In most FE programs, the analytical numerical integration over the element

regions adopts Gauss-Legendre [73]. The quadrature rules are all with the

form [13],

∫ ∫ 𝑓(𝜉, 𝜂)
1

−1

1

−1

𝑑𝜉𝑑𝜂 ≈∑∑𝜔𝑖𝜔𝑗𝑓(𝜉𝑖 , 𝜂𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

≈∑𝑊𝑖𝑓(𝜉, 𝜂)𝑖

𝑛𝑖𝑝

𝑖=1

3.3.5

where nip represents the quantity of Gauss integrating points, 𝑊𝑖weighting

coefficients (𝑊𝑖 = 𝜔𝑖 ∙ 𝜔𝑗),(𝜉, 𝜂) are the local coordinates of the sampling

~ 52 ~

point (Gauss integrating point).

The typical values of the weights and coordinates in Equation 3.3.5 are shown

in Table 3.3.1.

Table 3.3.1 Typical weights and coordinates in Gauss-Legendre integration formula.

Reproduced from [13]

n nip (𝜉𝑖, 𝜂𝑗) 𝜔𝑖 ∙ 𝜔𝑗 𝑊𝑖

1 1 (0,0) (0,0) 4

2 4 (±√
1

3
, ±√

1

3
) (1,1) 1

3 9

(±√
3

5
, ±√

3

5
) (

5

9
,
5

9
)

25

81

(±√
3

5
, 0) (

5

9
,
8

9
)

40

81

(0,±√
3

5
) (

8

9
,
5

9
)

40

81

(0,0) (
8

9
,
8

9
)

64

81

In this project, this method is used to do the numerical integration over

regions for conventional solid element and 3D Goodman element to obtain

the element stiffness matrix.

3.4 Mature Techniques and Legacy Code

This section introduces mature techniques (matrix storage and solution) and

the legacy code used to implement the above techniques.

3.4.1 Storage of Matrix

The stiffness matrix is a kind of symmetric, sparse, and positive-definite

~ 53 ~

matrix. There are two common methods of storing such matrices in scientific

computing: bland matrix storage and skyline matrix storage. Comparing the

two methods, the former stores all entries in the half bandwidth, and the

latter only stores the first nonzero entry to the last non-zero entry in each

column [76,77].

In Finite Element programs, the skyline storage method has been widely used

to stores stiffness matrices. Because the skyline of the stiffness matrix is

relatively small and the Cholesky decomposition (commonly method to solve

the stiffness matrix in Finite Element Analysis) preserves the skyline [76-78].

3.4.2 Cholesky Decomposition

The code of Finite Element boundary problem is to solve the global

equilibrium equation,

[KM]{U} = {F}

3.4.1

whereKM is the global stiffness matrix,{F} is the external node-loads, and {U}

is the global node displacement array which is the solution objective.

The method general adopts in Finite Element Method is to perform

[KM]Cholesky decomposition [78] to

 [KM] = LL
∗ 3.4.2

in which L is a lower triangular matrix and L∗ is the conjugate transpose

matrix of L.

Substitution of the 3.4.2 into 3.4.1

~ 54 ~

 LY = {F} 3.4.3

where Y = L∗{U} 3.4.4

Then, based on forward substitution to solve Y in Eq.3.4.3, and solving for

{U}in Eq.3.4.6 by back substitution.

 L∗{U} = Y 3.4.5

Finally, stress and strain at each Gauss-sampling-points can be retrieved from

the {U}.

3.4.3 Legacy Code

The above mature techniques have been developed and packaged as open-

source subroutines; therefore, they are used in this project to avoid

duplication. Details of these legacy subroutines are summarized below.

1. ‘fsparv’ for Skyline storage

In this module, it is integrated into subroutine ‘fsparv’. The description of this

subroutine is: it performs the symmetric skyline storage method of the global

stiffness matrix, and it returns lower triangle mass of the global stiffness

matrix as a vector, and output an array 'kdiag' which contains the location

information of the diagonal element of the global stiffness matrix [13].

2. Subroutines for Cholesky Decomposition

In this module, two subroutines have been developed to implement this

function [13].

1) ‘sparin’

It performs a Choleski factorization of the Global stiffness matrix [KM] stored

~ 55 ~

as skyline. The mathematical background is Eq.3.4.2 and the stored method is

has mentioned before.

2) ‘spabac’

It returns the displacement array {U} by forward-substitution and back-

substitution on Choleski factorised vector [KM] by subroutines ' sparin'. The

mathematical background is Eq.3.4.4 and Eq.3.4.5.

3.5 Creep Non-linear Iteration

The general solution of the creep boundary value problem relies on

displacement iteration to update the residual stress caused by creep

deformation [79]. This section provides a mathematical background for creep

residual stress updating, which used in the fourth part of section 4.2.1.

Within each iteration step, the global node displacement {U} by Eq.3.4.1

For each element, the total strain contains two parts: elastic and creep

 ε𝑡𝑜𝑙 = εe + εc 3.5.1

where ε𝑡𝑜𝑙, εe, and εc are total, elastic, and creep strain respectively.

The effective stress depends on the elastic stress, which can be obtained by

 σ𝑒 = [D] ∙ εe = [D] ∙ (ε𝑡𝑜𝑙 − εe) 3.5.2

Where σ𝑒 is effective elastic stress, [D] is the stress-strain matrix.

This stress causes creep deformation and generates creep body loads in the

structure.

~ 56 ~

3.6 Mathematical Background of Coordinate Transmission

The background of the coordinate transmission system and transmission

matrix of Goodman element has been mentioned in the previous section 2.7

(2D version) and section 2.8 (3D version). The core to implement this module

is to obtain the angle θ to calculate the analytical solution of this

transmission matrix. In this section, the mathematical background is

described in detail.

3.6.1 2D Coordinate Transmission

The angle θ between the global coordinate system and the local coordinate

system can be obtained by a geometric calculation, as indicated in Figure

2.7.2. Using the upper line as the sample,

 sin θ =
(y3 − y2)

√(x3 − x2)2 + (y3 − y2)2

3.6.1

 cos θ =
(x3 − x2)

√(x3 − x2)2 + (y3 − y2)2

Where coordinate of node No.2 is (x2, y2), and No.3 is (x3, y3).

3.6.2 3D Coordinate Transmission

In order to obtain the angle θ more convenient, another system M (X′, Y′, Z′)

is added. In this system, the origin point coincides with the origin of the

global system, and the Z′ axis is along the normal direction of the surface, the

X′ axis and Y′axis are parallel to the surface, as indicated in Figure 3.6.2.

~ 57 ~

In this module, the mathematical tool of vector cross product is adopted. The

specific process of obtaining this coordinate system is as follows. First, the

vector a⃗ and vector b⃗ can be constructed from the element global node

coordinates, which equal1,4⃗⃗ ⃗⃗ ⃗(Node No.4 to No.1) and 1,2 ⃗⃗ ⃗⃗ ⃗⃗ (Node No.2 to No.1

node), respectively.

 a⃗ = 1,4⃗⃗ ⃗⃗ ⃗ = ((x4 − x1) (y4 − y1) (z4 − z1))
3.6.2

 b⃗ = 1,2⃗⃗ ⃗⃗ ⃗ = ((x2 − x1) (y2 − y1) (z2 − z1))

where the node coordinates of No.1is (x1, y1, z1), No.2 is (x2, y2, z2), and No.4 is

(x4, y4, z4).

The vector Z′can be obtained by the cross product of a⃗ and b⃗ , which is

perpendicular to the element surface containing these two vectors, follow the

right-hand law.

Y′

X

Y

Z

X ′

Z′

b⃗

a⃗

Figure 3.6.2 The schematic figure of new add coordinate system

2

1

3

4

~ 58 ~

 Z′⃗⃗ ⃗ = a⃗ × b⃗ = |
i j k
A B C
D E F

| 3.6.3

where A=x4 − x1, B=y4 − y1, C=z4 − z1

 D=x2 − x1, E=y2 − y1, F=z2 − z1

Thus,

 Z′⃗⃗ ⃗ = ((B ∙ F − C ∙ E) (C ∙ D − A ∙ F) (A ∙ E − B ∙ D)) 3.6.4

The vector Y′⃗⃗ ⃗ axis equals the cross product of X′⃗⃗ ⃗ and Z′⃗⃗ ⃗, which can be found

in Equation 7.3.19 and Equation 7.3.21, respectively.

 Y′⃗⃗ ⃗ = Z′⃗⃗ ⃗ × X′⃗⃗ ⃗ = |
i j k
Z1 Z2 Z3
A B C

| 3.6.5

where Z1=B ∙ F − C ∙ E, Z2=C ∙ D − A ∙ F, Z3=A ∙ E − B ∙ D

Thus,

 Y′⃗⃗ ⃗ = (Y1 Y2 Y3) 3.6.6

where Y1 = C
2 ∙ D − A ∙ C ∙ F − A ∙ B ∙ E + B2 ∙ D

 Y2 = A
2 ∙ E − A ∙ B ∙ D − B ∙ C ∙ F + C2 ∙ E

 Y3 = B
2 ∙ F − B ∙ C ∙ F − A ∙ C ∙ D + A2 ∙ F

The elements in the transmission matrix (In Equation 2.8.19) can be obtained

as following,

~ 59 ~

 cos(x′, x) =
A

√A2 + B2 + C2

3.6.7

 cos(x′, x) =
B

√A2 + B2 + C2

 cos(x′, x) =
C

√A2 + B2 + C2

 cos(y′, x) =
Y1

√Y1
2 + Y2

2 + Y3
2

 cos(y′, y) =
Y2

√Y1
2 + Y2

2 + Y3
2

 cos(y′, z) =
Y3

√Y1
2 + Y2

2 + Y3
2

 cos(z′, x) =
Z1

√Z1
2 + Z2

2 + Z3
2

 cos(z′, y) =
Z2

√Z1
2 + Z2

2 + Z3
2

 cos(z′, z) =
Z3

√Z1
2 + Z2

2 + Z3
2

~ 60 ~

Chapter 4 Development of the Creep Solver

4.1 Introduction

In this chapter, it reports the development details of the in-house FE

procedure at multi-scales. At macro scale version, the conventional triangle or

quadrilateral solid element is adopted to solve different stress conditions,

which include plane stress, plane strain, and axisymmetric. At grain boundary

level, the grain and the grain boundary are modeled independently, and the

simulation considers the mechanism of grain boundaries, which include the

cavity evolution and sliding of grain boundary respectively. In this project,

the grain boundary part is modeled by Goodman element to ensure the

continuity, thus it allows the simulation to be implemented within the

traditional FEM framework.

The developed platform of this procedure is the Fortran 2013 with the Visual

Studio 2013 and the main structure of this procedure modified from the

program P61, which is expanded from homogeneous into non-homogeneous

versions. The brief introduction of each section is described in the below.

1. Section 4.2 introduces how to refectory the nonlinear iteration module of

legacy program P61 to solve the creep problem under multi stress states

(plane stress, plane strain, and axisymmetric states), and also introduces

the implementation of the Removal Technique module, Restart Facility

module, and the auto-select Time Step module.

~ 61 ~

2. In section 4.3, it reports the development detail of the in-house FE solver

at grain boundary level. Specifically, it includes the structure of the

Computational Framework, the creep body loads generation of grain

boundary element, and the coding implementation of this element.

~ 62 ~

4.2 Programming the Creep Solver

In this project, an accurate and stable FE solver for the creep boundary value

problem is the foundation. The development of this module is achieved by

refactoring the P61 program, which is used to solve the nonlinear visco-

plasticity of material originally [13]. In refactoring, these modules or blocks

are retained, including:

1. Evaluate the project and allocate the size for matrices.

2. The blocks and loops for assembling, storing, and solving the global

stiffness matrix.

3. The block and loop for the non-linear iteration of updating residual stress.

Compared with P61, three changes have been made, including:

1. In P61, the nonlinear iteration contained in one module is a fixed time

step. However, the rate variables of the first and third stages of creep are

higher and require smaller time steps, while the rate variables of the

second stage are lower and larger time steps can be used. Therefore, in

order to balance convergence and computational efficiency, this module is

divided into two sub-modules: The first sub-module is used to obtain the

applied elastic stress field to obtain the rate variable of all elements, and

then to solve an acceptable time step based on the maximum rate variable

of all elements. The second is used for numerical integration of

constitutive equations and updating creep residual stress.

~ 63 ~

2. The constitutive equation used to describe material non-linearity was

changed from visco-plasticity to creep.

3. Add modules and loops for removal function and restart facility.

4.2.1 Flow Diagram of Solver

The solver can be divided into four main blocks: import and initialization

module, restart facility module, removal function module, and non-linear

iteration module, as shown in Figure 4.2.1.

1. Import and initialization

It is the first module in the structure, which is used to import the input file

into the main program by a fixed channel (in this program, the channel

number is ‘11’). In this file, it includes the element information (type, number,

node quantity per element, and node topology), node information

(coordinates and DOF per node) boundary condition, material properties,

loading information, and activation status of the restart facility. Based on the

case information, the total number of (non-zero) node DOF is calculated to

allocate the matrix size for the storage of the global stiffness matrix.

2. Restart Facility

This is the second module in the structure, which is used to restart the

calculation at a specified breakpoint. When this module is activated, it will

import the restart file into the main program by an independent channel (in

this program, the channel number is ‘12’), and the stiffness matrix is

~ 64 ~

reassembled and solved before the next module. On the contrary, it jumps to

the next module directly.

3. Removal Function

The third module in the structure, which is used to implement the removal

function of failed elements. Firstly, it will compare the state of elements in the

current iteration step with the previous step. If a new element failed, a sub-

module is triggered for the global stiffness matrix to be re-assembled and re-

inversed (excludes the element stiffness contribution of failed element). If not,

it will skip this module and enter the next module directly.

4. Non-linear iteration

It is the fourth module in the structure, which is refactored from the non-

linear iterative module of P61 (marked with a red dotted line box). In the

original program, the time step is determined (based on the unconditional

numerical stability time step of the von Mises material [80]) before the

iteration module, and it is fixed during the iteration. However, due to the

high creep strain/damage rates in the first and third stages, the smaller time

step is required to satisfy the convergence, while in the second stage (steady-

state), low rates can use a larger time step, reducing the simulating time.

Therefore, this module is refactored to consider both convergence and

efficiency.

The iteration of P61 is implemented in an element loop, and the flow of this

loop is:

~ 65 ~

Figure 4.2.1 Flow Diagram of the Finite Element Solver.

~ 66 ~

First, import the node displacement into this loop to retrieve the elastic stress

on the Gauss Integration point for each element, and then the constitute

equation is integrated by a fixed time step. Finally, the residual stress is

updated.

The refactored non-linear iterative module divided the previous loop into two

sub-loops. The first loop is used to retrieve the stress and calculate the rate-

dependent variables in constitutive equations of all elements, and find out the

maximum damage rate to calculate the acceptable time step size. Then in the

second loop, the rate-dependent variable and time step obtained in the

previous loop are imported into this cycle to integrate the constitutive

equation and update the residual stress.

4.2.2 Implementation of Removal Technique

The introduction of the removal technique has been introduced in section

2.10, however, the implementation details are not explicitly documented. In

this solver, the element's damage value ω becomes greater than the criterion

with time, this element is considered to be a failure one and no longer have

the ability to transmit any load or force [69,70].

This technique includes two parts:

1. Trigger module

Due to the assembly and re-solving of the stiffness matrix being expensive in

CPU time, therefore, these two actions only are triggered again until the next

element fails. In response to this demand, a subroutine 'execute' was

~ 67 ~

developed to implement this trigger function and the mechanism this

subroutine is shown in Figure 4.2.2. In order to explain easy, a simple

example with 5 elements and assume the NO.3 element fails at step i.

Figure 4.2.2 Flow Diagram Showing the process detail of the subroutine 'execute' to

implement the trigger technique

~ 68 ~

The process of the trigger mechanism in the above simple example can be

summarized as follows:

1) After each iteration step, the array [olds] stores the initial status of all

elements in the previous iteration step, and the array [fal] stores the end

status of all elements in the previous iteration step. In step (i), these two

array ‘fal’ ([1 1 1 1 1]T) and ‘old’ ([1 1 1 1 1]T) of step i-1 are

imported into the subroutine ‘execute’ at the beginning of this step.

2) In subroutine ‘execute, these two arrays [fal] and [olds] are evaluated and

subtracted to obtain a new array |[fal − olds]| (this is a non-negative array,

any negative elements are changed to their opposites). Based on the

Fortran built-in function ‘maxval’, the maximum value of this array is

found. If the maximum value is '1', it means that there is a new element

failure, the logical variable 'reform' is set to true, otherwise, it is set to

false when the maximum value is '0'. In this case, on failure occurs at step

i-1, therefore the [fal] and [olds] are the same and the array |[fal −

olds]| = [0 0 0 0 0]T. Therefore, the maximum value of the array

|[fal − olds]| is 0 and the logical variable ‘reform’ is set to false, the trigger

is not activated. After the subroutine ‘execute’, [fal] overwrites array

[olds], then the array [olds] is ([1 1 1 1 1]T). At the end step i, due

the failure happens in element No.3, the array 'fal' is updated to

[fal]=[1 1 0 1 1]T.

~ 69 ~

3) At the beginning of step (i+1), the two arrays [fal] ([1 1 0 1 1]T) and

[olds] ([1 1 1 1 1]T) of step i are imported into the subroutine

'execute', as mentioned in previous step, the output array |[fal − olds]| =

[0 0 1 0 0]T and the maximum value of this array is '1', therefore

the logical variable 'reform' is set to 'true' and the trigger is activated.

2. Application Module of Failure Conditions

The objective of this stage is to locate and remove the failed element in the

structure based on the rupture criterion. The failed element is not able to

participate in the calculation and assume any loads. The elastic stress of this

element disappears immediately, and the deformation of the failed element is

provided only by the permanent creep deformation. During the non-linear

iteration, the stiffness and the creep body loads of this failed element may

then be removed from the structure. The program starts a loop for assembling

and re-solving the global stiffness matrix. The specific process in this loop is

as follows: at the beginning, the new updated array 'fal' is imported into a

loop which cycles all elements and assembles a global stiffness matrix, when

the corresponding number in array 'fal' is '1', the element stiffness remains

unchanged, otherwise, when the number is '0', the corresponding stiffness

matrix of this element is re-evaluated. The new global stiffness matrix [K] is

stored by the lower triangle method, and the new inverse of the global

stiffness matrix [K]−1 is resolved by Gauss Factorization. After these

calculations, the node displacement can be obtained by multiplying [K]−1 by

~ 70 ~

total node loads, which includes the external loads and new creep body loads,

and the creep body loads have removed the contribution of the failed element.

4.2.3 Implementation of Restart Facility

The introduction of the restart facility has been introduced in section 2.10,

however, the implementation details are not explicitly documented. In this

solver, the restart module has been incorporated in this procedure. In the

procedure, two switches are set, one is used to output the 'restart.dat' file

which contains the necessary information needed to restart the procedure at

the selected iteration step, the other one is used to activate the restart function

and open the channel to import the 'restart.dat' file to continue the calculation

from the breakpoint.

Initially, the parameter 'restep' is imported into the main program to control

the output frequency of the 'restare.dat' file, which allows the procedure to

print a data set for this file after every 'restep' iteration steps. The details of

the data set are summarized in Table 4.2.1.

~ 71 ~

Table 4.2.1 The variables and arrays in the data set.

Name Description

evp stores total of creep strains of grain element.

slide

the jump displacement of grain boundary element at

the sliding direction.

esd

the jump displacement of grain boundary element at

the normal direction.

p the cavity density ρ of grain boundary part.

b the damage variable β of grain boundary part.

bdylds the self-equilibrating global node loads.

t the total simulation time.

iters the iteration step number.

fal

the state array of grain boundary element. (fine or

failed)

The switch needs to be turned on when the procedure needs to use the restart

function. The specific way to activate this switch is to assign the variable 'tri'

in the 'inp' input file to a value of '1'. After that, the procedure will read in the

'restart.dat' file through the allocated channel (the default channel in this

solver is 14). Finally, the non-linear iteration is continued by import the

parameters required (as shown in Table 4.2.1).

~ 72 ~

4.2.4 Implementation of Auto-select Time Step Module

During the simulation, creep deformation and creep damage can be obtained

by integrating the rate-dependent variables in the time domain. Under

practical conditions, the structural-nonlinearity causes the stress

concentration with the local high increase rate usually, and the creep feature

occurs at a high increase rate in the primary and tertiary stages making the

integral of the constitutive equations sensitive to the time step. Thus, the

selection of the appropriate time step is meaningful for practical applications.

In order to implement this function, a new pre-processing module is added to

the main structure before the constitutive equation integration structure. The

function of this module is to determine the time-step by the instantaneous

damage increase rate since the final target value of the damage variable is the

critical value (it is '1' in usual). In order to avoid the stress oscillation caused

by big increments, and leads the nonlinear iteration un-converge, so the

increment of each iteration step is controlled within '1 x⁄ ', where 'X' is the total

number of expected iteration steps, and then the time step is '1 (x ∙ ω̇)⁄ ', where

ω̇ is the damage increase rate. By looping all elements to find the minimum

value as the time-step in the current iteration step. After completing this pre-

processing module, the program enters the Euler integration module.

In the current version, as the mathematical background of the time step size

control of the micro-constitutive equation has not been solved, it reduces the

time step to satisfy the convergence of the calculation. Therefore, although

~ 73 ~

this module has been integrated into the procedure, it is only activated in the

notched bar case study. When this module is not activated, a small step size

will be used to avoid non-convergence of nonlinear.

4.3 Development of Solver for Grain Boundary Level

In this section, the main purpose is to show the creep mechanics constitutive

equations and modeling of grain boundaries, which are included within the

previous general FE solver to simulate the creep evolution of grain boundary

with times. The procedure was developed from the previous general version,

and the following techniques and blocks are retained:

1. The non-linear displacement iteration method.

2. The blocks for obtaining the solid element stiffness matrix for grain part.

3. The techniques for assembling, storing, and calculating of global stiffness

matrix.

Compared with the previous solver, the solver for micro-creep is upgraded

from solving single homogeneous material to bi-materials. In this project, the

material is modeled by grain and grain boundary respectively, in which the

grain part is modeled by traditional solid elements with a simple creep power

law, and the grain boundary part is modeled by the Goodman element with a

cohesive law mechanism.

~ 74 ~

4.3.1 Computational Framework

The structure of the micro-version is similar to the structure of the macro

version. The main difference is the Goodman element is adopted to simulate

the creep mechanism of the grain boundary part. Figure 4.3.1 shows the

computational framework and the additional developed part is marked by

red and blue dotted line boxes.

The additional block is developed to implement these functions:

1. Obtain the element stiffness matrix of the Goodman element and add the

Goodman element stiffness matrix into the global stiffness matrix.

2. Obtain the elastic stress field (avoid negative relative displacement/

negative normal stress) and integrate the creep constitutive equation of

the grain boundary.

3. Calculate the un-balance creep body node loads of the Goodman element.

~ 75 ~

Figure 4.3.1 The flow diagram structure of the in-house procedure.

Reproduced from [45].

([Φ]n is the relative displacement at normal direction)

Do iteration

Start
Read INP file

Loop the elements to obtains

the case size

Assign the array

size

Assemble the global

stiffness matrix

Obtain the element stiffness

matrix of grain part

Obtain the element stiffness

matrix of grain boundary part

Import the external loading

information

Inverse the global stiffness

matrix

Import the internal creep

loading

Stress of grain boundary part

Obtain the unbalance node fore

of grain boundary part

creep damage constitutive

equations of grain part

Integral of creep jump

displacement by time

[Φ]n =0 [Φ]n

Obtain the unbalance node fore

of grain part

creep constitutive equations of

grain part

Integral of creep strain time by

time

Stress of grain part

Obtain the global node

displacement

~ 76 ~

4.3.2 Creep Body Loads Generation of the Goodman Element

The mathematical background of the 4-node Goodman element' stiffness

matrix has been mentioned in section 2.7, here, we apply the same method for

the solid element to calculate the creep body loads of Goodman element

[3,11,13]. Compared with the body force generation of the conventional

element type, the main difference is the numerical integration. Generally, the

Gauss-Legendre method is adopted to evaluate the body loads at an element

area. However, the integration of the body loads at the Goodman element

length adopts the analytical integration method directly.

The creep body loads PCGB:

PCGB = ∫[[B] ∙ [T]]

T
∗ [D] ∗ [Φ] dL,

4.3.1

where [B] is the node-relative displacement matrix (E.Q 2.7.7), [D] is the

stress-relative displacement matrix (E.Q 2.7.9), [Φ] is the creep jump

displacement, [T] is the local-global coordinate transfer matrix and L is the

length. Finally,

 PCGB = [[B] ∙ [T]]
T
∗ [D] ∗ [Φ] ∗ L 4.3.2

4.3.3 Coding Implementation of Goodman element

In order to implement the mathematical background for obtaining the

stiffness matrix of Goodman element, which has been mentioned in section

2.7, a block with three new subroutines ('element_inf', 'Loc-Gol', and

'new_km') and one legacy subroutine ('fsparv') have been developed to

calculate the element stiffness matrix of Goodman element.

~ 77 ~

The flowchart of this block is presented in the Figure 4.3.2, this block is used

to implement the blue marked part in the Figure 4.3.1.

The mathematical background of the Goodman element has been mentioned

in section 2.7, and the above block is developed to implement it. The details of

the block and the subroutines can be summarized below.

1. Introduction of this Block

The block is developed to obtain the stiffness matrix of Goodman element, in

the beginning, the node coordinate and stiffness parameters of the element

Figure 4.3.2 The flow diagram structure for obtaining the

Goodman element stiffness matrix. (subroutines are marked by

red)

element_inf Loc_Gol
element node

coordinate

fsparv

new_km

element stiffness

matrix

stiffness

parameters

~ 78 ~

are imported into this block, through two newly developed subroutines

'element_inf', 'Loc_Gol', and 'new_km' to obtain the element information (the

length and the angle), rotation matrix ([T]), and stiffness matrix([D])

respectively. Then according to equation 2.7.12, we import the three variables

directly into this equation to solve the element stiffness matrix. Finally, adopt

the subroutine 'fsparv' to assemble the element matrix into the global stiffness

matrix.

2. Introduction of Subroutines

1) element_inf

This subroutine is developed to return two pieces of information of the

Goodman element: length and the angle matrix, which are adapted to obtain

the element stiffness matrix in global coordinate system.

The import information of this subroutine is the matrix 'coord2', which store

the global coordinate of element nodes. As shown in Figure 2.7.1, the upper

one is selected as a demonstration here due to the upper and lower surface

having the same angle and length.

Length（double-precision number）

The subroutine returns the length of the Goodman element, and it is named

'L' in the procedure.

 L = √(y3 − y2)2 + (x3 − x2)2 4.3.3

~ 79 ~

Angle Matrix (2*2 matrix)

 sin θ =
(y3 − y2)

√(x3 − x2)2 + (y3 − y2)2

4.3.4

 cos θ =
(x3 − x2)

√(x3 − x2)2 + (y3 − y2)2

The subroutine returns the matrix N (E.Q 2.7.16), and it has been named

'Angle' in the procedure.

2) ' Loc_Gol'

This subroutine is developed to return the rotation matrix, which are used to

doing the coordinate system transmission of the Goodman element from local

to global. The subroutine imports the matrix 'Angle' and returns a matrix T

(16*16) (E.Q 2.7.16), and it has been named 'Angle_T' in the procedure.

3) new_km

This subroutine is developed to return the rigidity matrix [D], which is a 8*8

size matrix and named 'km' in the procedure. The subroutine imports the

matrix 'kcoh', which stores the normal and separate rigidity of the Goodman

element.

4) fsparv

This subroutine is used in assembling the element stiffness matrix into the

global stiffness matrix, and the details of this subroutine have been mentioned

in section 3.4 [13].

~ 80 ~

Chapter 5 Benchmark of the macro scale of In-house

Procedure

5.1 Introduction

This chapter reports the benchmark progress of the In-house procedure. In

order to make benchmark efficient and logical, a common way from simple to

complex, linear to nonlinear was chosen [13]. It can be divided into two main

parts: 1) a simple quadrilateral structure is chosen as the preliminary step to

demonstrate the accuracy under uni-axial loading condition. Through this

case study, the numerical stability and accuracy were verified, which paves

the way for the subsequent multi-axis load condition. 2) the notched bar

structure is chosen as the second step to demonstrate the accuracy under

complex stress state. Based on this case study, it verifies the accuracy of the

nonlinear iteration under the non-uniform stress field. The benchmark

process can be summarized as follow:

1) The validation of the in-house procedure under the simple stress

condition and the validation corresponds to the development progress.

Firstly, verify the elastic module. According to the stress state, the

benchmark contains three sub-case studies: plane stress, plane strain, and

axisymmetric. In this stage, the techniques such as import interface, the

element stiffness solution, and assembly, solution of equilibrium equation

have been validated. Secondly, verify the creep module. In this stage, the

~ 81 ~

integral accuracy and the non-linear iterative stress update is verified.

2) The validation of in-house procedure under stress concentration condition

by notched based FE model. The nonlinear iteration accuracy of the in-

house procedure is verified by comparing the simulation results with

Hyde's output from the rupture time and damage pattern.

This chapter primarily consists of three sections: 1) Introduction. 2) The

preliminary benchmark of the procedure. 3) The validation of the in-house

procedure via the numerical investigation of the Bar 267 notched-bar case

study at 660 ℃

~ 82 ~

5.2 The Preliminary Benchmark of the Procedure

The preliminary benchmark of the procedure verifies the numerical accuracy,

numerical stability, and convergence of non-linear creep iterations via a

simple Finite Element model. In this section, it presents the preliminary

verification, which paves the way for the subsequent notched bar case study.

The benchmark process corresponds to the sequence of the development,

from linear elasticity to non-linear creep, from plane stress to plane strain to

axisymmetric version. The strategy has been adopted to verify the 'HITSI' by

D.Liu, which is efficient and logical [11]. Here, the uniform 4-node

quadrilateral element type is used to generate the FE model. In this stage,

three basic technique modules can be validated and be summarized below:

➢ The input interface which is used to import the case information. It

includes element information, node information, topological structure

information, material parameters, loading information and boundary

condition.

➢ The existing techniques for calculating the element stiffness matrix, the

assembling the global stiffness matrix, the storage of the global stiffness

matrix, the assessment of case size to allocate the matrix size, and the

solution of the equilibrium equation.

➢ The techniques for the non-linear iterative techniques for creep problems,

including the calculation of the internal body loads due to creep

deformation, the re-balancing of internal body loads, and integration of

~ 83 ~

creep constitutive equations.

The FE model apples in the benchmark is shown in Figure 5.2.1

➢ The Geometry information, Boundary Condition and Loading Information and

Material Parameters.

The generation of this FE model is implemented by two relevant standard

subroutines, 'geom_rect' and 'mesh_size', to obtain the node coordinates and

the topology of the element. They come from the library 'geom' directly. In

this model, it contains 6 quadrilateral elements with 12 nodes. The

coordinates of these 12 nodes is shown in Table 5.2.1 and the topology

information are shown in Table 5.2.2. The topological orientation of the

element is clockwise.

X

Y

1

2

3

4

6

6

7

8

9

10

11

12

Figure 5.2.1 The 2D FE model for preliminary benchmark.

~ 84 ~

Table 5.2.1 The coordinates of the node. (unit: mm)

Node NO. X direction Y direction Node NO. X direction Y direction

1 0 0 7 2 0

2 0 -1 8 2 -1

3 0 -2 9 2 -2

4 1 0 10 3 0

6 1 -1 11 3 -1

6 1 -2 12 3 -2

Table 5.2.2 The topology information of the element.

Element NO. Topology Information (clockwise)

1 2, 1, 4, 6

2 3, 2, 6, 6

3 6, 4, 7, 8

4 6, 6, 8, 9

6 8, 7, 10, 11

6 9, 8, 11, 12

The boundary condition is imposed on the bottom-line nodes such that the

displacement components to the Y direction and the left line nodes such that

the displacement components to the X direction are always zero respectively.

The implementation of the boundary condition is through add the constraint

of the node, in this case, the node constraint information is listed in Table

5.2.3.

~ 85 ~

Table 5.2.3 The constrained node of boundary condition.

The Constraint Direction Node Number

X direction 1, 2, 3

Y direction 3, 6, 9, 12

In this benchmark, the uniform loads are on the top surface. Based on the

node loading factor calculation method, the equivalent node loading factor

information of plane stress and plane strain case is the same, which is shown

in Table 5.2.4 (a), and the axisymmetric case is shown in Table 5.2.4 (b).

Table 5.2.4 The equivalent node loading factor information.

Node NO. X Y

(a) Plane Stress and Plane Strain

1 0.0 0.5

4 0.0 1.0

7 0.0 1.0

10 0.0 0.5

(b) Axisymmetric

1 0.0 0.1666667

4 0.0 1.0

7 0.0 2.0

10 0.0 1.333333

~ 86 ~

5.2.1 Validation of the Elastic Part

Young's modulus E and Passion's ratio ν are set to 1 × 103MPa and 0.3

respectively. A uniformly linear distributed load 60 MPa is applied on the top

line and the loading factor has been mentioned in Table 5.2.4. The assessment

and discussion of the result under three stress states are shown below.

➢ Plane stress case.

In this plane stress case, the theoretical stress in the Y direction is 60 MPa, in

the X and the shear directions should be zero. According to the constitutive

relationship between stress and strain which has been mentioned in section

2.6.1, the strain of three directions is:

 εx =
b

b2 − a2
∙ σy

 εy = −
a

b2 − a2
∙ σy 5.2.1

 γxy=0

where, a =
E

1−υ2
 , b =

ν∙E

1−ν2
 .

According to the Equation 5.2.1 and the parameters, the theoretical strain in

the X direction is −1.8 × 10−2, in the Y direction is 6.0 × 10−2. The simulated

stress and strain are shown in Table 5.2.5, which have been shown in good

agreement with the theoretical value and the error is negligible.

~ 87 ~

Table 5.2.5 The elastic stress field and strain field for the FE model under 60MPa

uniform loading of plane stress state. (At Gauss Point)

Elastic Stress Field (Unit: MPa)

Element No. X Direction Y Direction Shear Direction

1 1.066 × 10−14 60.000 8.006 × 10−15

2 1.776 × 10−14 60.000 3.155 × 10−14

3 3.197 × 10−14 60.000 1.334 × 10−14

4 1.421 × 10−14 60.000 −2.402 × 10−14

5 2.487 × 10−14 60.000 −5.338 × 10−15

6 0.000 60.000 2.669 × 10−15

Elastic Strain Field

1 −1.799 × 10−2 5.999 × 10−2 2.082 × 10−17

2 −1.799 × 10−2 6.000 × 10−2 8.204 × 10−17

3 −1.799 × 10−2 6.000 × 10−2 3.469 × 10−17

4 −1.800 × 10−2 6.000 × 10−2 −6.245 × 10−17

6 −1.799 × 10−2 6.000 × 10−2 −1.388 × 10−17

6 −1.800 × 10−2 5.999 × 10−2 6.939 × 10−18

Plane strain case.

In this plane stress case, the theoretical stress in the Y direction is 60 MPa, in

the X and the shear directions should be zero. According to the constitutive

relationship between stress and strain which has been mentioned in section

2.6.1, the strain of the three directions is:

~ 88 ~

 εx =
b

b2 − a2
∙ σy

 εy = −
a

b2 − a2
∙ σy 5.2.2

 γxy=0

where, a =
E∙(1−ν)

(1+ν)∙(1−2ν)
 , b =

E∙ν

(1+ν)∙(1−2ν)
 .

According to the Equation 5.2.2 and the parameters, the theoretical strain in

the X direction is −2.34 × 10−2, in the Y direction is 6.46 × 10−2. The

simulated stress and strain are shown in Table 5.2.6, which have been shown

in good agreement with the theoretical value and the error is negligible.

~ 89 ~

Table 5.2.6 The elastic stress field and strain field for the FE model under 60MPa

uniform loading of plane strain case. (At Gauss Point)

Elastic Stress Field (Unit: MPa)

Element No. X Direction Y Direction Shear Direction

1 1.066 × 10−14 60.000 2.669 × 10−16

2 −3.663 × 10−16 60.000 −1.868 × 10−14

3 −3.663 × 10−16 60.000 −1.001 × 10−14

4 2.487 × 10−14 60.000 1.068 × 10−14

6 −1.776 × 10−14 60.000 6.338 × 10−16

6 7.106 × 10−16 60.000 4.003 × 10−16

Elastic Strain Field

1 −2.339 × 10−2 −6.469 × 10−2 6.939 × 10−18

2 −2.339 × 10−2 −6.469 × 10−2 −4.867 × 10−17

3 −2.339 × 10−2 −6.469 × 10−2 −2.602 × 10−17

4 −2.339 × 10−2 −6.469 × 10−2 2.776 × 10−17

6 −2.339 × 10−2 −6.469 × 10−2 1.388 × 10−17

6 −2.339 × 10−2 −6.469 × 10−2 1.041 × 10−17

Axisymmetric case.

In this case study, the theoretical stress in the Y direction is 60 MPa, in the X

and the shear directions should be zero. However, compared with the

previous two cases, only one Gaussian Point cannot satisfy the accuracy

requirement for the element integration, therefore, here, it is realized by four

Gaussian Points.

~ 90 ~

According to the constitutive relationship between stress and strain which has

been mentioned in section 2.6.1, the strain in three directions are:

 εX =
b

2 ∙ b2 − a2 − a ∙ b
∙ σY

 εY = (
a + b

b
) ∙ (

b

2 ∙ b2 − a2 − a ∙ b
) ∙ σY 5.2.3

 εX = εZ

 γXY=0

where, a =
E∙(1−ν)

(1+ν)∙(1−2ν)
 , b =

E∙ν

(1+ν)∙(1−2ν)
 .

According to the Equation 5.2.3 and the parameters, the theoretical strain in

the X and the Z direction are −1.8 × 10−2, in the Y direction is 6.0 × 10−2.

The simulated stress and strain are shown in Table 5.2.7, which have been

shown in good agreement with the theoretical value and the error is

negligible.

~ 91 ~

Table 5.2.7 The elastic stress field and strain field for the FE model under 60MPa

uniform loading of axisymmetric case. (At Gaussian Point)

Elastic Stress Field (Unit: MPa)

Element

No.

Gaussian

Point No.

X Y Shear Z

1

1 −1.924 × 10−7 69.999 1.493 × 10−7 −1.924 × 10−7

2 −6.116 × 10−8 69.999 1.361 × 10−7 −6.116 × 10−8

3 −1.216 × 10−7 69.999 6.179 × 10−8 −1.216 × 10−7

4 9.678 × 10−9 69.999 4.763 × 10−8 9.678 × 10−9

2

1 −1.496 × 10−9 69.999 2.800 × 10−8 −1.496 × 10−9

2 2.877 × 10−8 69.999 2.922 × 10−8 2.877 × 10−8

3 −7.647 × 10−9 69.999 7.828 × 10−9 −7.847 × 10−9

4 2.272 × 10−8 69.999 9.038 × 10−9 2.272 × 10−8

3

1 −1.119 × 10−8 60.000
−4.994

× 10−9
−1.291 × 10−8

2 −1.623 × 10−8 69.999
−3.071

× 10−9
−1.739 × 10−8

3
−8.841

× 10−10
60.000

−1.360

× 10−9
2.396 × 10−8

4 −1.236 × 10−8 69.999 6.623 × 10−10 4.478 × 10−9

4

1
−2.328

× 10−8
69.999

−1.916

× 10−8
7.738 × 10−9

2
−1.018

× 10−8
69.999

−1.460

× 10−8

−1.083

× 10−8

3
−7.233

× 10−9
69.999

6.419

× 10−9
1.409 × 10−8

4 8.218 × 10−9 69.999
7.639

× 10−10
2.266 × 10−8

6 1
−2.014

× 10−8
69.999

1.322

× 10−8

−1.621

× 10−8

~ 92 ~

2 3.681 × 10−10 60.000
1.286

× 10−8
3.476 × 10−9

3
−1.063

× 10−8
60.000

−8.499

× 10−10
3.824 × 10−9

4 8.346 × 10−9 60.000
−1.207

× 10−9
1.973 × 10−8

6

1
−6.463

× 10−9
60.000

6.382

× 10−9
1.366 × 10−8

2 3.763 × 10−9 60.000
7.122

× 10−9
1.946 × 10−8

3
−6.086

× 10−9
60.000

−2.472

× 10−9
1.746 × 10−8

4
−2.707

× 10−9
60.000

−1.732

× 10−9
2.196 × 10−8

Elastic Strain Field

1

1
−1.800

× 10−2

6.999

× 10−2

3.882

× 10−10

−1.800

× 10−2

2
−1.800

× 10−2

6.999

× 10−2

3.614

× 10−10

−1.800

× 10−2

3
−1.799

× 10−2

6.999

× 10−2

1.607

× 10−10

−1.799

× 10−2

4
−1.799

× 10−2

6.999

× 10−2

1.238

× 10−10

−1.799

× 10−2

2

1
−1.799

× 10−2

6.999

× 10−2

7.281

× 10−11

−1.799

× 10−2

2
−1.799

× 10−2

6.999

× 10−2

7.696

× 10−11

−1.799

× 10−2

3
−1.799

× 10−2

6.999

× 10−2

2.036

× 10−11

−1.799

× 10−2

4
−1.799

× 10−2

6.999

× 10−2

2.349

× 10−11

−1.799

× 10−2

3

1
−1.800

× 10−2

6.000

× 10−2

−1.298

× 10−11

−1.800

× 10−2

2
−1.800

× 10−2

6.999

× 10−2

−7.986

× 10−11

−1.800

× 10−2

3
−1.800

× 10−2

6.000

× 10−2

−3.636

× 10−11

−1.799

× 10−2

4
−1.800

× 10−2

6.999

× 10−2

1.462

× 10−12

−1.799

× 10−2

4 1
−1.800

× 10−2

6.999

× 10−2

4.982

× 10−11

−1.799

× 10−2

~ 93 ~

2
−1.800

× 10−2

6.999

× 10−2

3.769

× 10−11

−1.799

× 10−2

3
−1.799

× 10−2

6.999

× 10−2

1.409

× 10−11

−1.799

× 10−2

4
−1.799

× 10−2

6.999

× 10−2

1.960

× 10−12

−1.799

× 10−2

6

1
−1.800

× 10−2

6.000

× 10−2

3.438

× 10−11

−1.800

× 10−2

2
−1.800

× 10−2

6.000

× 10−2

3.346

× 10−11

−1.800

× 10−2

3
−1.800

× 10−2

6.000

× 10−2

−2.210

× 10−12

−1.799

× 10−2

4
−1.800

× 10−2

6.000

× 10−2

−3.139

× 10−12

−1.799

× 10−2

6

1
−1.800

× 10−2

6.000

× 10−2

1.669

× 10−11

−1.799

× 10−2

2
−1.800

× 10−2

6.000

× 10−2

1.862

× 10−11

−1.799

× 10−2

3
−1.800

× 10−2

6.000

× 10−2

−6.426

× 10−12

−1.799

× 10−2

4
−1.800

× 10−2

6.000

× 10−2

−4.602

× 10−12

−1.799

× 10−2

5.2.2 Validation of the creep part

The benchmark of the creep part of three stress states is performed in this

section, the FE model has been mentioned before. The uniformly distributed

linear load is 60MPa and the KRH creep damage constitutive equation is

adopted in this verification. In this case study, it simulates the creep evolution

of 0.6Cr0.6Mo0.26V ferritic steel at 690℃. The material constants for this

material are given below Table 5.2.8 [75]. In the creep iteration, the time step is

set as ∆t = 0.5h.

~ 94 ~

Table 5.2.8 The material constants for 0.6Cr0.6Mo0.26V ferritic steel at 690℃.

Reproduced from [81]

A 2.1618 × 10−9MPa h−1 H∗ 0.6929

B 0.20624 MPa−1 KC 9.2273 × 10−6MPa−3h−1

C 1.8637 υ 2.8

h 2.4326× 106 MPa

Plane stress case.

In this FE model, it is a kind of uniform stress condition. During the creep

non-linear creep iteration, since each element has the same creep deformation,

the generated body loads are equal in opposite directions, and there is no

stress redistribution. This case is a kind of uni-axial stress state. Here, the

NO.1 element is chosen as a sample to present the results, this non-linear

iterative process lasted for 73936 steps, the failure time is 36967.5 hours, and

the creep strain at failure is 0.179934297613029. The simulated rupture time

and strain at failure have been shown in good agreement with the reference

result [59]. The creep strain cure and damage evolution curve are shown in

Figure 5.2.2 and Figure 5.2.3, respectively.

~ 95 ~

Figure 5.2.2 The creep strain curve of the plane stress case.

Figure 5.2.3 The creep damage evolution curve of plane stress case.

Plane strain case.

In the plane strain case, under the same parameter constants, constitutive

equations, and loading. Here, the NO.1 element is chosen as a sample to

present the results, the iteration lasted for 73936 steps, the failure time is

36967.5 hours, and the creep strain at failure is 0.179934297613012. The

simulated rupture time and strain at failure have been shown in good

0.00

0.04

0.08

0.12

0.16

0.20

0 10000 20000 30000 40000

C
re

ep

 S
tr

ai
n

Time (Unit: Hour)

0.00

0.10

0.20

0.30

0.40

0 10000 20000 30000 40000

C
re

ep

D
am

ag
e

Time (Unit: Hour)

~ 96 ~

agreement with the reference result [51]. The creep strain cure and damage

evolution curve are shown in Figure 5.2.4 and Figure 5.2.5, respectively.

Figure 5.2.4 The creep strain curve of the plane strain case.

Figure 5.2.5 The creep damage evolution curve of plane stress case.

Axisymmetric case.

In axisymmetric case, under the same parameter constants, constitutive

equations, and loading. However, the element numerical integration is

implemented by four Gaussian Points.

0.00

0.04

0.08

0.12

0.16

0.20

0 10000 20000 30000 40000

C
re

ep

S
tr

ai
n

Time (Unit: Hour)

0.00

0.10

0.20

0.30

0.40

0 10000 20000 30000 40000

C
re

ep
 D

am
ag

e

Time (Unit: Hour)

~ 97 ~

Here, the No.1 Gaussian point of the NO.1 element is chosen as a sample to

present the results, the iteration lasted for 73936 steps, the failure time is

36967.5 hours, and the creep strain at failure is 0.179934294619527. The

simulated rupture time and strain at failure have been shown in good

agreement with the reference result [59]. The creep strain cure and damage

evolution curve are shown in Figure 5.2.6 and Figure 5.2.7, respectively.

Figure 5.2.6 The creep strain curve of the axisymmetric case.

Figure 5.2.7 The creep damage evolution curve of axisymmetric case.

0.00

0.04

0.08

0.12

0.16

0.20

0 10000 20000 30000 40000

C
re

ep
 S

tr
ai

n

Time (Unit: Hour)

0.00

0.10

0.20

0.30

0.40

0 10000 20000 30000 40000

C
re

ep
 D

am
ag

e

Time (Unit: Hour)

~ 98 ~

5.3 The Validation of the In-house Procedure via the numerical

investigation of the Bar 267 Notched-Bar Case Study at 660 ℃

5.3.1 Introduction

The 2-dimensional FE in-house procedure for creep damage simulation has

been developed from the P61[10]. The previous verification of the procedure

is under the uniform load condition, which is a simple stress condition.

However, the ultimate practical significance of the procedure is to apply the

numerical techniques at the high-stress gradients and complex state of stress

conditions. Therefore, it is indispensable to benchmark the stability and

accuracy of the procedure under moderate stress concentration. The general

way is to do the benchmark simulation of the notched bar test.

In the creep test, there are typically two types of the notched bar specimen

that are commonly used, which are the circular Bridgman notch and the

British Standard notch. These two structures typify two different stress

conditions, in the body of the circular Bridgman notch is subjected by the

uniform state of complex multi-axial stress condition and in the British

Standard notch, the high gradients and concentration of the stress are

observed close to the notch part. For the notched bar specimen, the indicator

of the performance can be expressed by the mean stress act on the minimums

section of the notched bar. In the creep simulation, since the axisymmetric of

the notched bar, the problem is reduced to a 2D axisymmetric case and a

quarter of the specimen is selected to establish the FE model.

~ 99 ~

In order to make the verification process efficient and logical, the convenient

way is to find an appropriate notched bar analysis that has been validated.

Therefore, a notched bar case has been chosen to verify the solution of the

procedure, which the FE simulation and the experiment have been done by

Hyde [71]. The reason for adopting this case is that: complete parameters,

given the dimensions of the notched bar, and published the accurate rupture

time and damage contour. In this case, the specimen is a Bridgman notched

bar with Bar 267 material, and the test temperature is 660 ℃. These fellow

aspects will be controlled during the verification to keep the same with

Hyde's simulation: boundary condition, loading, mesh, geometry,

parameters, and constitutive equation. The generation and mesh of the FE

model are based on the Abaqus package and the model information read into

the procedure via the interface by modifying the INP file into a procedure-

acceptable format, and finally displaying the results through the FEMGV

platform.

A general benchmark strategy is employed here as mentioned before is from

the linear elasticity to the creep non-linearity. The solution of the creep is a

kind of the initial value problem; therefore, the accuracy of the initial elastic

stress field affects the final simulation result directly. The second stage is to

verify the creep part, which mainly includes the following aspects: 1) the

position of the first failure element. 2) the evolution of the damage growth.3)

the damage pattern. 4) the rupture time.

~ 100 ~

5.3.2 Description of the Bar 267 Bridgman Notched Bar Case Study

The geometry of the Bridgman notched bar at one quadrant at the cylindrical

polar coordination system is defined in Figure 5.3.1, the main size ration of

this sample is R a⁄ = 0.67 and b a⁄ = 1.67, where the R is the ratio of the

notch, a is the ration of the minimums section and b is the ratio of the

maximums section. The material of the specimen is Bar 267, which is a special

type of P91 steel. The characteristic of this steel is that the rupture strength is

much lower than the standard average value of P91 steel.

Figure 5.3.1 The geometry of the Bridgeman circular notch bar.

Produced by [3].

FE model.

The main dimensions of the test specimen are a= 3.76 mm, b=6.26 mm, and R=

2.6 mm. The notched bar has been tested at the temperature of 660 ℃ and has

been loaded on the top surface to produce the nominal stress 93 MPa in the

minimum notch section. For the Finite Element Analysis, this problem can be

idealized to a 2D axisymmetric case. The FE model is shown in Figure 5.3.2.

~ 101 ~

Figure 5.3.2 The FE model of the Bridge circular notched bar.

The generation and meshing of this model are based on the Abaqus package,

and the meshing pattern follows Hyde's early form. The model consists of 240

axisymmetric quadratic elements with 8 nodes and the area integration is

implemented by 4 Gaussian integration points. The boundary conditions are

imposed on these left line nodes such that the displacement components to

the X direction and bottom-line nodes such that the displacement components

to the Y direction are always zero respectively.

Constitutive Equations.

The Kachanov type constitutive equations was adopted here to describe the

creep behavior of the materials. It developed from the power law stress

sensitivity. The damage state is described by a single variable to depict the

creep evolution under the multi-axial stress condition. The details of this

constitutive equations have been mentioned in section 3.2.1, therefore are not

present here. The parameters of B267 at the temperature of 660℃ have been

determined by Hyde, shown in Table 5.3.1.

~ 102 ~

Table 5.3.1 The constants in the constitutive equations of Bar 267 steel. (at 660 ℃)

Reproduced from [71]

Material A′ n m B′ ϕ χ α

Bar 267
1.092

× 10−20
8.462

−4.764

× 10−4

3.637

× 10−17
7.346 6.879 0.216

The Solution of Hyde.

In the notched bar analysis, the predicted rupture time with the axisymmetric

Finite Element Method was 996.2h. The damage contour is shown in Figure

5.3.3.

Figure 5.3.3 The Hyde's FE solution of the damage pattern

at times at the rupture time tf = 996.2h. Produced by [71]

The damaged area happens at the root of the specimen and the failure area

width is approximately 1/2 of the minimum cross-sectional area. The

tendency for the failure growth is towards the notch at a direction of about 46

degrees from the bottom axis.

5.3.3 Result and Discussion

In the FE analyses, the determination of the failure element is based on the

damage value at the Gaussian point, in which at least one of four Gaussian

point's damage reaches the threshold value (ω = 1). At that point, the loading

capability of the failure element disappears. Such elements needed to be

~ 103 ~

removed from the structure, however, in the current version, the alternative

method is to rapidly reduce the stiffness of the element.

The loading and Boundary Condition

In this geometry, the uniform loads 33 MPa on the top surface can produce 93

MPa mean stress in the minimum notch section. The equivalent node loading

factor information is shown in Table 5.3.2.

Table 5.3.2 The equivalent nodal loading factor information in axial direction.

Node Number Loading Factor Node Number Loading Factor

39 0.0 740 1.1667239

667 0.106382612 169 0.626047777

129 0.106382612 716 1.33346721

670 0.316147636 168 0.708419427

128 0.210766036 692 1.600210499

672 0.626912633 167 0.791791444

127 0.316147648 668 1.666966433

674 0.737677611 166 0.876163206

38 0.398231496 644 1.833697233

777 0.833237707 166 0.968634439

161 0.468304606 619 2.000440622

764 0.999980636 43 0.620963042

160 0.641676136

~ 104 ~

The implementation of the boundary condition is through adding the

constraint of the node, in this case, a total of 67 nodes were imposed

constraints. The coordinate origin NO. 6 is fixed. The boundary conditions are

listed in Table 5.3.3.

Table 5.3.3 The constrained node of boundary conditions.

The Constraint Direction Node Number

X direction

6, 6, 9, 12, 16, 18, 21, 24, 27, 39, 130, 131, 132, 133,

134, 136, 136, 137, 138, 139, 140, 301, 319, 336,

363, 370, 387, 404, 421, 469, 478, 487, 496, 606,

614, 623, 632, 641,660,669,668

Y direction

2, 3, 6, 47, 48, 49, 66, 67, 68, 279, 282, 286, 288,

293, 296, 299, 302,

The validation of the Elastic Part.

As mentioned before, the solution of creep is an initial value problem,

therefore, the accuracy of the beginning elastic stress field needs to be

controlled. The effective way is to benchmark with the elastic stress field with

the result of ABAQUS.

The elastic stress contour is shown in Figure 5.3.4.

~ 105 ~

Figure 5.3.4 The elastic stress field obtained from ABAQUS.

Randomly select 6 elements from different stress gradients, compare the stress

with the output of in-house procedure and do the error analysis of the Von

Mises stress at each Gaussian Point (GP). According to the percentage errors

shown in Table 5.3.4, it clearly shows the elastic stress field obtained from the

in-house procedure which is in good agreement with the result from the

Abaqus and the percentage error is negligible.

~ 106 ~

Table 5.3.4 The percentage error of stress field between Abaqus and In-house

Procedure.

Element No. GP No. Abaqus In-house Error

4

1 102.067 102.067 0.00030269%

2 103.189 103.189 0.00047641%

3 124.614 124.614 0.00036609%

4 126.799 126.799 0.00006449%

8

1 43.0187 43.019 0.00002809%

2 43.4998 43.499 0.00010638%

3 42.726 42.726 0.00006827%

4 43.2064 43.206 0.00004174%

36

1 62.7046 62.704 0.00001890%

2 61.1109 61.1112 0.00004836%

3 63.6302 63.630 0.00007079%

4 61.3676 61.368 0.00006047%

64

1 69.3284 69.328 0.00002231%

2 69.166 69.166 0.00006491%

3 69.2306 69.230 0.00000868%

4 68.8782 68.878 0.00004690%

238

1 16.4681 16.468 0.00003876%

2 14.6474 14.647 0.00012486%

3 12.6828 12.683 0.00016033%

~ 107 ~

4 11.3892 11.389 0.00030269%

Damage Evolution and Error Analysis.

The implementation of the post-process in this procedure is based on the

FEMGV package. The evolution of the damage pattern is shown in Figure

5.3.5, 5.3.6, 5.3.7 and 5.3.8. The entire simulation process lasted 26334 steps

and the simulation time was 1007 h. Failure occurs first at the root of the

notched bar and then toward the notch laterally. The specific simulation data

is listed as: the first failure is NO.8 element, which occurs in the 10092th step

and the simulation time is 982h, the second failure is NO.7 element, which

occurs in the 16647th step and the simulation time is 997h, the third failure

element is NO.6 element, which occurs in the 20682th step and the simulation

time is 1003h, the fifth failure element is NO.6 element, which occurs in the

26334th step and the simulation time is 1007h.

~ 108 ~

Figure 5.3.5 The evolution of the damage pattern at 982h.

~ 109 ~

Figure 5.3.6 The evolution of the damage pattern at 997h.

~ 110 ~

Figure 5.3.7 The evolution of the damage pattern at 1003h.

~ 111 ~

Figure 5.3.8 The evolution of the damage pattern at 1007h.

According to the damage contour of the simulations from Hyde, the failure

definition of the notched bar is that the damaged width on the root is about

half of the minimum cross-sectional length. To reach this damage level,

Hyde's simulation spent 996.2h and the in-house procedure spent 1007h, and

the percentage error is shown in Table 5.3.5.

Table 5.3.5 The percentage error of rupture time between Hyde's result and in-house

procedure's output.

The percentage error of Rupture time tf =
1007−996.2

996.2
= 1.08%

~ 112 ~

5.3.4 Discussion

The in-house procedure has been developed and applied for the FE analysis

of the creep damage evolution of the Bar 267 Bridgman notched bar case. The

purpose of the section is to benchmark the accuracy and reliable of the

procedure under complex stress state. More specifically, it first reports the

elastic validation part, the elastic stress field have been shown in good

agreement with the results from the Abaqus package. Through this part, these

parts of the procedure are verified: 1) the assembling, storing and solving of

the global stiffness matrix. 2) the stability and accuracy of the interface used to

import the 'INP' files, boundary conditions and loading information into the

procedure. Secondly, according to the benchmark of the non-linear creep

solution, these parts of the procedure are verified: 1) the accuracy of the

integral method of the KRH creep constitutive equation. 2) the accuracy and

stability of the non-linear iterations, including a) the generation of the creep

body node. b) the combination of internal and external node force. c) the

reliable of the removal function. d) the reliability of the automatic time step

selection function. 3) the reliability of the interface used to import the result

information into the FEMGV to display the damage contour.

~ 113 ~

Chapter 6 The Validation and Application of In-house

Procedure at Grain Boundary Level

6.1 Introduction

This chapter reports the benchmark and application of the In-house

procedure for creep damage mechanics at grain boundary level. In order to

make the benchmark logical and efficient, initially a bi-grain model was

employed to verify the numerical stability and accuracy of procedure at grain

boundary level. Then, applies the procedure to implement a polycrystal case

study.

The benchmark stages in this chapter can be summarized as following:

1. Bi-grain benchmark test. At this stage, the validation relies on two FE

models, the first one is the grain boundary parallels to the x-axis and the

stress in a normal direction, which demonstrates the accuracy and

stability in the normal direction. In the second FE model, the grain

boundary has an angle with the x-axis, which demonstrates the accuracy

and stability in the separated direction. In these two FE models, the

strategy of the validation corresponds to the development stages, the

main process is from linear elasticity to creep non-linearity.

2. Polycrystalline application. At this stage, the procedure applies to

simulate the grain boundary level’s creep evolution of Copper-antimony

alloy at 823K. In this case study, the FE model contains 20 grains and 162

~ 114 ~

Grain boundaries.

~ 115 ~

6.2 The Validation of the In-house Procedure via the numerical

investigation of the Bi-grains Case Study

6.2.1 Introduction

In this section, the validation logic is from uni-axial to multi-axial, from linear

to nonlinear, therefore, the Bi-grains FE model proposed by Yu.C [9] is used

to simulate the uni-axial stress state. It preliminarily verifies the procedure's

numerical stability and accuracy and paves the way for the subsequent

polycrystalline case study.

Two types of bi-grains structures were employed in the benchmark. In the

first case, no shear sliding happens, the main purpose is to validate the

numerical stability and accuracy of the procedure at normal direction. It

consists of two rectangular grains and a single non-thickness grain boundary,

as depicted in Figure 6.2.1.

Initially, at the unloaded state, the upper and lower surface of the grain

boundary is coincident. For simplicity, we only consider the plane strain

condition here. The grain part is modeled by the solid plane strain element

and the grain boundary is modeled by the Goodman element.

~ 116 ~

The validation can be devised of two stages:

1) Linear benchmark.

The three modules of the procedure are verified

a) the interface part, which used to import the geometry information, the

boundary condition, the loading information, etc.

b) the solution the 2D Goodman element stiffness matrix

c) the assembly of the global stiffness matrix, which is achieved by

combining the stiffness matrix of the Goodman element with the

traditional element stiffness matrix.

2) Non-linear benchmark.

The numerical accuracy and stability are verified

a) the accuracy of the integral subroutine for the grain boundary

constitutive equations.

b) the generation of Goodman's body load due to the creep deformation.

c) the generation of the global body load due to the grain's and grain

Figure 6.2.1 The schematics showing the bi-grains structure (The red

area is the no thickness grain boundary). Reproduced from [9]

Grain 2

Grain 1
Grain Boundary

~ 117 ~

boundary's deformation.

d) the accuracy of the elastic stress field for each non-linear iteration

step.

Validation of Elastic Part

6.2.2 Validation of the Elastic Part with quadrilateral element

This FE model consists of two element types (as shown in Figure 6.2.2), the

four nodes quadratic plane strain element with one Gaussian integration

point for the grain part and the four nodes Goodman element for the grain

boundary part.

➢ The Geometry information, Boundary Condition and Loading Information and

Material Parameters.

In this FE model, there are 12 nodes to form 6 elements. The coordinates of

these nodes and the topology information are shown in Table 6.2.1 and Table

6.2.2 respectively.

Figure 6.2.2 The mesh of the Bi-grains structure with quadrilateral element used

in this case study (The red number is the element NO. and the black number is

the Node NO.).

6 6

1 2

1 2 3

4 6 6

7 8 9

10 11 12

4 3

~ 118 ~

Table 6.2.1 The coordination of the nodes. (units: μm)

Node NO. X direction Y direction Node NO. X direction Y direction

1 0.0 0.0 7 0.0 0.6

2 1.0 0.0 8 1.0 0.6

3 2.0 0.0 9 2.0 0.6

4 0.0 0.6 10 0.0 1.0

6 1.0 0.6 11 1.0 1.0

6 2.0 0.6 12 2.0 1.0

Table 6.2.2 The topology information of the element.

 Element NO. Topology Information(clockwise)

Grain 1

6 7, 10, 11, 8

6 8, 11, 12, 9

Grain 2

1 1, 4, 6, 2

2 2, 6, 6, 3

Grain Boundary

3 4, 7, 8, 6

4 6, 8, 9, 6

The boundary condition is imposed on the bottom-line nodes such that the

displacement components to the Y direction and the left line nodes such that

the displacement components to the X direction are always zero respectively.

The implementation of the boundary condition is through adding the

constraint of the node, in this case, the node constraint information is listed in

Table 6.2.3.

~ 119 ~

Table 6.2.3 The constrained node of boundary condition.

The Constraint Direction Node Number

X direction 1, 4, 7, 10

Y direction 1, 2, 3

In this geometry, the uniform loads 30 MPa on the top surface and the

equivalent node loading factor information is shown in Table 6.2.4.

Table 6.2.4 The equivalent node loading factor information.

Node Number

Loading Factor

X direction Y direction

10 0.0 0.6

11 0.0 1.0

12 0.0 0.6

Note: Node Loads Force equal loading factor times uniform loads stress.

In order to simplify the process, the elastic parameters are set and based on

these parameters and the theoretical result can be obtained. In this case, the

elastic parameters have shown in Table 6.2.5.

Table 6.2.5 The elastic parameters for the validation.

Grain

Young's Modulus 100000MPa

Passion Ratio 0.3

Grain Boundary Elastic Modulus

Normal Direction 6000000N/μm3

Separate Direction 3000000 N/μm3

~ 120 ~

➢ Result and Discussion.

In this case, the contribution of the global stiffness matrix comes from two

parts, the solid element stiffness of grain and the Goodman element stiffness

of grain boundary. The assembly method used of the global stiffness matrix is

" Element-By-Element" and the solution method of the global stiffness matrix

adopted here is " Choleshi". Initially, after the global stiffness matrix has been

assembled, the node load information is read into the procedure and the node

displacements for this FE model have been obtained. Therefore, the

deformation for each element can be calculated by the [B] matrix in this stage

of recovering the deformation at interpolation, for grain, the element

deformation represents by the strain at the Gaussian Point, for grain

boundary, the element deformation is represented by the relative

displacement at the original point under the local coordinate. Then, the

element deformation for the FE model has been output and shown in Table

6.2.6. The element stresses at interpolation point can be obtained by the

calculation of the element's deformation and the [D] matrix, for grain, it is the

strain-stress matrix and for the grain boundary, it is the relative displacement-

stress matrix. The stress is shown in Table 6.2.7.

~ 121 ~

Table 6.2.6 The elastic deformation for the FE model under 30MPa uniform loading.

Grain (Strain)

Element No. X Direction Y Direction Shear Direction

1 −1.170 × 10−4 2.730 × 10−4 8.674 × 10−19

2 −1.170 × 10−4 2.730 × 10−4 −9.768 × 19

6 −1.170 × 10−4 2.730 × 10−4 1.301 × 10−18

6 −1.170 × 10−4 2.730 × 10−4 −6.606 × 10−19

Grain Boundary (Relative Displacement) (μm)

Element No. X Direction Y Direction

3 3.263 × 10−19 0.600 × 10−4

4 −1.804 × 10−19 0.600 × 10−4

Table 6.2.7 The element elastic stress for the FE model.

Grain (Unit: MPa)

Element No. X Direction Y Direction Shear Direction

1 −3.730 × 10−14 30.000 3.336 × 10−14

2 −3.020 × 10−14 29.999 −3.763 × 10−14

6 −3.66 × 10−16 30.000 6.004 × 10−14

6 6.161 × 10−14 30.000 −2.602 × 10−14

Grain Boundary (Unit: MPa)

Element No. X Direction Y Direction

3 4.879 × 10−14 30.000

4 −3.663 × 10−16 30.000

~ 122 ~

For the grain, the theoretical stress in the Y direction is 30MPa and in X and

shear direction should be zero. For the grain boundary, the theoretical stress

in the Y direction is 30MPa and in the X direction should be zero. According

to Table 6.2.7, the results show in good agreement with the theoretical stress.

Thus, the technique for the elastic solution of this procedure has been

validated.

Through the benchmark of the procedure for the Bi-grains' model, these

techniques have been validated: 1) obtained the Goodman element for the

grain boundary part. 2) the assembly and solution of the global stiffness

matrix. 3) the recovering of the element stress at the interpolation point.

➢ Validation of Compression Condition

The previous section verified that the relative displacement occurs when the

grain boundary is under tensile stress (positive loading). However, under

actual conditions, some grain boundaries may be compressed. Due to the

impermeability of the grain part, negative relative displacement is not

allowed. Using the same FE model, mesh, boundary conditions, and loading

point coefficients, replace the tensile stress with compressive stress (-30MPa).

The elastic deformation of each element is shown in Table 6.2.8. The element

stresses at the interpolation point (Gaussian Point) is shown in Table 6.2.9.

Since the grain boundary is under a compressed state, in order to stop the two

grains being inserted into each other, the upper and lower surfaces of the

~ 123 ~

grain boundary are locked, and no relative displacement of the grain

boundary occurs.

Table 6.2.8 The elastic deformation for the FE model under -30MPa uniform loading.

Grain (Strain)

Element No. X Direction Y Direction Shear Direction

1 1.169 × 10−4 −2.729 × 10−4 1.084 × 10−19

2 1.170 × 10−4 −2.730 × 10−4 −1.423 × 10−19

6 1.169 × 10−4 −2.730 × 10−4 −8.936 × 10−20

6 1.170 × 10−4 −2.730 × 10−4 5.421 × 10−20

Grain Boundary (Relative Displacement) (μm)

Element No. X Direction Y Direction

3 0.000 0.000

4 0.000 0.000

~ 124 ~

Table 6.2.9 The element elastic stress for the FE model.

Grain (Unit: MPa)

Element No. X Direction Y Direction Shear Direction

1 −1.243 × 10−14 -30.000 4.170 × 10−15

2 −1.065 × 10−14 -30.000 −5.473 × 10−15

6 −7.105 × 10−15 -30.000 −3.436 × 10−15

6 0.000 -30.000 −2.085 × 10−15

Grain Boundary (Unit: MPa)

Element No. X Direction Y Direction

3 0.000 0.000

4 −3.663 × 10−16 30.000

6.2.3 Validation of the Elastic Part with triangle element

The results presented in this section has been published in the special issue

(Creep and High Temperature Deformation of Metals and Alloys) of Metals,

and it can be found in section 3.1 of the publication [45]. Q.Xu designed this

Bi-grain structure with the triangle element type to eliminate the effect of un-

balanced shear stress on the result(as shown in Figure 6.2.3). In this FE

model, eight triangle plane strain elements are used to form two grains and

one Goodman element for the grain boundary. The area integration of the

triangle element is implemented by one Gaussian integration point.

~ 125 ~

➢ The Geometry information, Boundary Condition and Loading Information and

Material Parameters.

In this FE model, there are ten nodes to form eight elements. The coordinate

of eight nodes and the topology information are shown in Table 6.2.10 and

Table 6.2.11 respectively.

Table 6.2.10 The coordinate of the nodes. (units: μm)

Node NO. X direction Y direction Node NO. X direction Y direction

1 0.0 0.0 6 1.0 1.0

2 1.0 0.0 7 0.0 2.0

3 0.0 1.0 8 1.0 2.0

4 1.0 1.0 9 0.6 0.6

6 0.0 1.0 10 0.6 1.6

3
6

1 2

10

4

6

8 7

6

6

7

8

1

2

3

4
9

9

Figure 6.2.3 The FE model of the bi-grains structure with triangle

element (the red area is the no thickness grain boundary). Reproduced

from [45]

~ 126 ~

Table 6.2.11 The topology information of the element.

 Element NO. Topology Information (clockwise)

Grain 1

1 1, 9, 2

2 1, 3, 9

3 3, 4, 9

4 4, 2, 9

Grain 2

6 6, 10, 6

6 6, 7, 10

7 7, 8, 10

8 8, 6, 10

Grain Boundary 9 3, 6, 6, 4

The boundary condition is imposed on the bottom-line nodes such that the

displacement components to the Y direction and the left line nodes such that

the displacement components to the X direction are always zero respectively.

The node constraint information is listed in Table 6.2.12.

Table 6.2.12 The constrained node of boundary condition.

The Constraint Direction Node Number

X direction 1, 2

Y direction 1, 3, 6, 7

In this geometry, the uniform loads 20 MPa on the top surface. The equivalent

node loading factor information is shown in Table 6.2.13.

~ 127 ~

Table 6.2.13 The equivalent node loading factor information.

Node Number

Loading Factor

X direction Y direction

7 0.0 0.6

8 0.0 0.6

Note: Node Loads Force equal loading factor times uniform loads stress.

In order to simplify the procedure, the elastic parameters are set and based on

these parameters, the theoretical result can be obtained. In this case, the elastic

parameters have shown in Table 6.2.14.

Table 6.2.14 The elastic parameters.

Grain

Young's Modulus 100000MPa

Passion Ratio 0.3

Grain Boundary Elastic Modulus

Normal Direction 6000000N/μm3

Separate Direction 3000000 N/μm3

➢ Result and Discussion.

The specific point of stress for the elastic model has been shown in Table

6.2.15. For the grain, the theoretical stress in the Y direction is 20MPa and in

the X and the shear direction should be zero. For the grain boundary, the

theoretical stress in the Y direction is 20MPa and in the X direction should be

zero. According to the Table 6.2.15, for the grain element part, the maximum

stress in the X direction is 1.066 × 10−14occurs in NO.2 element, and in shear

direction, the maximum stress is 4.170 × 10−16MPa occurs in NO.6 element,

which is negligible as expected. For the grain boundary part, the stress at

~ 128 ~

separated directions are negligible (2.033 × 10−16 MPa). In summary, the

results show good agreement with the theoretical stress. Thus, the technique

for the elastic solution with the triangle element of this procedure has been

validated.

Table 6.2.15 The simulation stress for each element.

Grain (Unit: MPa)

Element No. X Direction Y Direction Shear Direction

1 0.000 20.000 −3.128 × 10−16

2 1.066 × 10−14 20.000 −2.086 × 10−16

3 0.000 20.000 −1.043 × 10−16

4 −6.329 × 10−16 20.000 −2.086 × 10−16

6 0.000 20.000 3.126 × 10−16

6 −6.329 × 10−16 20.000 4.170 × 10−16

7 −7.106 × 10−16 20.000 2.086 × 10−16

8 1.776 × 10−16 20.000 0.000

Grain Boundary (Unit: MPa)

Element No. X Direction Y Direction

9 2.033 × 10−16 20.000

6.2.4 Validation of the Elastic Part of FE model with Angle

The main purpose of the previous three case studies (Section 6.2.1, Section

6.2.2, and Section 6.2.3) was to benchmark the in-house procedure under the

mesh with two different solid elements, quadrilateral and triangle type.

~ 129 ~

However, these two previous cases only verified a special condition where the

grain boundary is parallel to the X axial, in which case no separated stress is

generated. Therefore, this section considers a benchmark case study of a bi-

crystal structure with angle.

The FE model of two grains is modeled by two triangle plane strain elements

and a Goodman element for modeling the single grain boundary (shown in

Figure 6.2.4.).

➢ The Geometry information, Boundary Condition and Loading Information and

Material Parameters.

In this FE model, there are a total of six nodes to form three elements. The

rotation angle of the grain boundary direction to the X axial (anti-clockwise) is

135°. In order to be logical and efficient, the parameters and the normal stress

on the grain boundary need to be consistent with these two previous case

studies. Therefore, based on the geometric relationship, a uniform load of 40

MPa is applied on the top surface in the Y direction. The node coordinate and

Figure 6.2.4 The FE model of the bi-grains structure with

angle. Reproduced from [45]

Grain 1

Grain 2

~ 130 ~

the topology information are shown in Table 6.2.16 and Table 6.2.17

respectively.

Table 6.2.16 The coordination of the nodes. (units: μm)

Node NO. X direction Y direction Node NO. X direction Y direction

1 0.0 0.0 4 1.0 1.0

2 1.0 0.0 6 1.0 0.0

3 0.0 1.0 6 0.0 1.0

Table 6.2.17 The topology information of the element.

 Element NO. Topology Information

Grain 1 1 1, 3, 2

Grain 2 2 4, 6, 6

Grain Boundary 3 3, 6, 6, 2

The boundary condition is imposed on the bottom-line nodes to the Y

direction and the left line to the X direction are always zero respectively. The

node constraint information is listed in Table 6.2.18.

Table 6.2.18 The constrained node of boundary condition.

The Constraint Direction Node Number

X direction 1, 3

Y direction 1, 2

The equivalent node loading factor information is shown in Table 6.2.19.

~ 131 ~

Table 6.2.19 The equivalent node loading factor information.

Node Number

Loading Factor

X direction Y direction

4 0.0 0.6

6 0.0 0.6

➢ Result and Discussion.

The simulation results should be compared with the theoretical result. In this

case study, the theoretical result of the grain part is: the stress at Y direction is

40MPa and the stress in the other two directions (X direction and shear

direction) should be zero. The theoretical result of the grain boundary part is:

the stress at normal direction is 20MPa and the stress in the separated

direction should be zero. The simulation results for each element are shown in

Table 6.2.20. According to this table, the accuracy of the Goodman element

with angle has been validated.

Table 6.2.20 The simulation stress for each element. Reproduced from [45]

Grain (Unit: MPa)

Element No. X Direction Y Direction Shear Direction

1 −3.663 × 10−16 40.000 0.000

2 0.000 40.000 2.086 × 10−16

Grain Boundary (Unit: 𝐌𝐏𝐚)

Element No. X Direction Y Direction

3 -20.000 20.000

~ 132 ~

Validation of Non-linear Creep Part

6.2.5 Validation of the Non-linear Creep Part with quadrilateral element

The information of the FE model, boundary condition, loading, and elastic

parameters have been mentioned in section 6.2.2. Therefore, the above

information is not repeated here, only the benchmark of the non-linear

iteration part is presented. The accuracy of the creep solution is related to the

integral of the creep constitutive equation and the elastic stress field of each

iteration step. Thus, the benchmark focuses on two parts: the convergence of

stress updating and the integral accuracy of constitutive equations.

➢ The Validation of the Stress Update

The Bi-grains case study is a kind of uniform condition and the deformation

of each element is the same, hence there is no effect of stress redistribution.

The sign of the non-linear iterating convergence in the elastic stress of each

element is the same. In this case, the non-linear iteration lasts for 14166 steps

with the time step of 0.000001 (normalized). In order to visualize the

convergence of the stress field, the stress condition of two iterative steps

(60000 and 141664) are selected randomly during the process and shown in

Table 6.2.21.

~ 133 ~

Table 6.2.21 The elastic stress field of each element at selected step.

Iteration Step Element No. Direction

Elastic Stress

(Unit: MPa)

60000

Grain2

1

X −2.686 × 10−9

Y 20.000

τ 9.387 × 10−10

2

X −3.348 × 10−9

Y 19.999

τ −1.317 × 10−9

Grain1

3

X −9.670 × 10−10

Y 20.000

τ 8.767 × 10−10

4

X 2.489 × 10−9

Y 20.000

τ −4.068 × 10−10

GB1

6

X −1.006 × 10−9

Y 19.999

6

X 0.000

Y 20.000

141664 Grain 2

1

X 1.718 × 10−10

Y 20.000

τ 1.026 × 10−10

2

X −2.869 × 10−12

Y 20.000

τ 9.994 × 10−12

~ 134 ~

Grain1

3

X −9.664 × 10−11

Y 19.999

τ 1.226 × 10−10

4

X 2.762 × 10−11

Y 20.000

τ −3.423 × 10−11

GB1

6

X 1.332 × 10−10

Y 19.999

6

X 0.000

Y 20.000

According to the observation of the data shown in Table 6.2.21. the result

shows good agreement with the theoretical result that the applied stress of

each element keeps constant during the non-linear iteration period. For the

grain part, the maximum final cumulative error in the x direction is

1.718 × 10−10MPa (NO.1 element), in shear direction is 9.994 ×

10−9MPa (NO.2 element). For the grain boundary part, the maximum final

cumulative error in separate direction is 1.332 × 10−10MPa (NO.6 element)

and in normal direction is 0.866 × 10−8MPa(NO.6 element). In summary, the

in-house procedure has shown a good convergence at the preliminary Bi-

grains case study.

~ 135 ~

➢ The Validation of the integration.

The set of the constitutive equation for describing the creep evolution of grain

boundary has been mentioned before. The creep depredating state is

determined by three key variables: ρ (the cavity density), β (the damage

variable), and a (the average radius of cavities), and the state includes the

failure degree and the creep deformation of grain boundaries. Therefore,

these three parameters are treated as indicators of the benchmark.

This case simulates the micro creep evolution of copper at 600℃, the grain

part is modeled by power-law creep and the grain boundary part is modeled

by Vöse’s equations. The parameters of these constitutive equations are

shown in Table 6.2.22.

In Figure 6.2.5, it shows the three key indicators versus the normalized time.

Based on the observation of the results, the rupture time is 0.142 (normalized),

the value of the peak point in the β curve is 0.162, and the ρ is stopped at

0.011. The evolution of cavity density is shown in Figure 6.2.5 (a) and it is

clear that the density of cavity increases at the initial stage. When the upper

limit 0.017 is reached, it starts to decrease and stops at 0.097 finally. The main

reason causes

~ 136 ~

Table 6.2.22 The material parameters of copper at 600℃ [68,82].

Grain

A 38.8MPa−nS−m−1

Q 197KJ ∙ mol−1

n 4.8

m 0

GB

√D̅gb
3

 3.9696

γ̅s 0.089

α̅p 0.24

R̅ 42

cavity density to decrease if the cavity coalescence rate is over the cavity

nucleation rate when the cavity density reaches the upper limit. In this

constitutive model, it defines that cavity coalescence occurs when the distance

is less than the critical value (here are 0.1 times of the initial cavity radio).

Although the cavity density is reduced in the final stage, the average radius of

the cavities is increasing monotonically, as shown in Figure 6.2.5(c).

Therefore, the total area of the cavities increases continuously. The

macroscopic phenomenon is that the deformation and damage value (as

shown in Figure 6.2.5(b)) of grain boundaries are increasing continuously.

➢ Error Analysis

The creep evolution of these three indicators of the constitutive equations has

been given. However, it is only mathematical integral and does not involve

the FE algorithm. Due to this bi-grains case study belonging to a special

~ 137 ~

Figure 6.2.5 Three indicators of the creep evolution. (a) the change of normalized

cavity density versus the normalized time. (b) the change of normalized damage

versus the normalized time. (c) the change of the average cavity radius versus the

normalized time.

~ 138 ~

Table 6.2.23 The percentage error of curves between simulation and reading value.

Reproduced from [45]

Name

Reading

Value

Simulation

Value

Percentage

Error

Rupture Time(normalized) 0.15 0.142 6%

Maximum value of the

damage variable β

0.166 0.162 1.63%

Final value of cavity density

ρ (normalized)

0.010 0.011 6.96%

The change point value of

the cavity densityρ

(normalized)

0.017 0.017 2.11%

The time point of the cavity

density change

point(normalized)

0.096 0.097 1.8%

uni-axial loading condition, therefore, it is still meaningful to use the

published curve as the benchmark result. The exact value of the curve is not

given in the publication, so the simulation results can only be compared with

the reading value from curves and the percentage error is shown in Table

6.2.23.

~ 139 ~

6.2.6 Validation of the Non-linear Creep Part with triangle element

The validation of bi-grains case with triangle element is presented in this

section, similar to the previous section 6.2.5, the convergence of the non-linear

iteration and the integral of the constitutive equations need to be verified.

➢ The Validation of the Stress Update

The setting of the bi-grain FE model under two different meshing

(quadrilateral element type and triangle element type) is consistent. It

includes the same loading, boundary condition, constitutive equation,

material constants and integral time step size. In this case, the non-linear

iteration lasted 141664 steps. The elastic stress fields in two randomly selected

steps NO.6000 and NO.141664 are shown in Table 6.2.24.

~ 140 ~

Table 6.2.24 The elastic stress field of each element at selected steps with triangle

element.

Iteration

Step

Element

No.
Direction

Elastic Stress

(Unit: MPa)

Theoretical

Value

(Unit: MPa)

60000

Grain2

1

X 1.332 × 10−13 0

Y 20.000 20

τ −2.606 × 10−13 0

2

X −3.180 × 10−13 0

Y 20.000 20

τ 1.249 × 10−13 0

3

X 4.974 × 10−14 0

Y 20.000 20

τ 2.264 × 10−13 0

4

X −2.682 × 10−13 0

Y 20.000 20

τ −8.268 × 10−14 0

Grain1

6

X −7.248 × 10−13 0

Y 20.000 20

τ −1.981 × 10−13 0

6

X 6.009 × 10−13 0

Y 20.000 20

τ −2.716 × 10−13 0

7

X 1.699 × 10−14 0

Y 20.000 20

τ −1.779 × 10−13 0

8

X −6.413 × 10−13 0

Y 20.000 20

τ −4.097 × 10−14 0

GB1 9
X −3.903 × 10−13 0

Y 20.000 20

141664 Grain2

1

X −2.461 × 10−12 0

Y 20.000 20

τ −6.787 × 10−12 0

2

X 1.791 × 10−11 0

Y 20.000 20

τ 7.969 × 10−11 0

3

X −2.467 × 10−11 0

Y 20.000 20

τ −1.198 × 10−11 0

4 X −6.238 × 10−11 0

~ 141 ~

Y 20.000 20

τ −1.062 × 10−10 0

Grain1

6

X −9.640 × 10−12 0

Y 20.000 20

τ −2.869 × 10−12 0

6

X 1.111 × 10−11 0

Y 20.000 20

τ −1.439 × 10−14 0

7

X 1.671 × 10−11 0

Y 20.000 20

τ 7.147 × 10−13 0

8

X 1.648 × 10−11 0

Y 20.000 20

τ −2.069 × 10−12 0

GB1

X −8.327 × 10−11 0

Y 20.000 20

According to the result shown in Table 6.2.24, it is clear that the in-house

procedure with the triangle element has been shown in good convergence in

the non-linear iteration.

➢ The Validation of the integration.

Since this is a uniform loading case, and the applied external load, material

parameters, and time steps are consistent with the previous case, the integral

part does not need to be described here again.

6.2.7 Validation of the Non-linear Creep Part of FE model with Angle

The previous two cases are special conditions, which is deformation without

the sliding part. Thus, the GB with angle is introduced. In order to make the

benchmark logical and efficient, the normal stress is controlled to be

consistent with these previous two cases, is 20 MPa. The information of the FE

model, boundary condition, loading, and elastic parameters have been

~ 142 ~

mentioned in section 6.2.4.

➢ The Validation of the Stress Update

Similar to the present method in section 6.2.5 and 6.2.6, randomly selected

two iteration steps, here are No.100000 and No.141664, to check the

convergence of the stress field, as shown in Table 6.2.25. It is clear that the in-

house procedure under angle conditions has been shown in good

convergence in the non-linear iteration.

➢ The Validation of the sliding part.

The constitutive model of the sliding part has been mentioned before. In this

case study, the normalized magnitude of the sliding viscosity coefficient

η̅sliding = 0.062, (the original value is ηsliding = 3.86 × 10
7Ns

mm3⁄). The

sliding model is linear deformation, in which the sliding rate is positively

related to the stress in the separated direction. The normalized theoretical

sliding amount is 2.721 and the normalized simulating sliding amount is

2.722, compared these two values, it is clear that the result has shown good

agreement (the percentage error is 0.037％).

~ 143 ~

Table 6.2.25 The elastic stress field at the selected iteration steps. Reproduced from

[45]

Iteration

step

Element

No.
Direction

Elastic Stress Field

(Unit: MPa)

Theoretical

Value

(Unit: MPa)

100000

Grain 1 1

X −9.623 × 10−9 0

Y 40.000 40

τ 0.000 0

Grain 2 2

X −6.369 × 10−10 0

Y 40.000 40

τ -20.000 0

GB 1 3

X −20.000 -20

Y 20.000 20

141664

Grain 1 1

X 4.134 × 10−7 0

Y 40.000 40

τ 0.000 0

Grain 2 2

X 1.317 × 10−8 0

Y 40.000 40

τ −1.349 × 10−8 0

GB 1 3

X -20.000 -20

Y 20.000 20

~ 144 ~

6.2.8 Conclusion

Based on the benchmark of these three conditions, it demonstrates the

numerical accuracy and stability of the procedure under the simple stress

condition. For the non-linear iteration part, it shows the good convergence

during the stress updating. In summary, the primary verification has paved

the way for the subsequent polycrystalline case study.

~ 145 ~

6.3 The Application of the In-house Procedure via the Numerical

Investigation of the Polycrystal Case Study.

In this case, it simulates the creep evolution of copper-antimony alloy at GB

level, the temperature is 823K. For the GB part, the cavity model of GB has

been mentioned before, and the material constants have been mentioned in

Table 6.2.22. The initial cavity density ρ0 = 10
−3mm−2. The Newtonian

viscous flow is adopted to describe the sliding deformation and the sliding

viscosity ηsliding = 3.86 × 10
7Ns mm3⁄ [14]. For the grain part, it is modeled

by the power-law constitutive equations, and the parameters have been

mentioned in Table 6.2.22.

6.3.1 FE Model Generation

The FE model has been generated by the Neper package [39], the structure is

built by the Tessellation Module (-T) of Neper and in a rectangular domain

with 1mm length and 1mm width (the instruction is ‘-square (1,1)’). The initial

seed positions identifier variable is set 1 (the instruction is ‘-id 1’). This model

contains 20 grains and 60 grain boundaries (the instruction is ‘-n 20’). The

mesh of the structure and re-mesh to generate the GB is by the Meshing

Module (-M) of Neper. The grains are meshed by 909 triangle plane strain

elements (the instruction is ‘-elttype tri’) and the grain boundaries are meshed

by 162 Goodman elements, as depicted in Figure 6.3.1. (GB is marked by the

red line), and the orientation angle of the total Goodman elements is shown in

Figure 6.3.2. The total instruction to generate this FE model is shown in Table

~ 146 ~

6.3.1. A uniformly distributed loading 10MPa is applied on the top surface in

the Y direction, the boundary condition of this case study is: the left line and

the bottom line of the domain are fixed on the X direction and the Y direction

respectively.

Table 6.3.1 The instruction for generate the FE model.

Module Instruction

Tessellation Module $ neper –T –n 20 –id 1 –reg

Meshing Module (Mesh

and Re-mesh)

$ neper –M –n20–id 1.tess –

interface continuous

Figure 6.3.1 The FE model for the polycrystalline case study.

Reproduced from [45]

~ 147 ~

6.3.2 Failed element, Stress Field and Creep Damage Evolution

The sequence evolution of failed element.

The total simulating time is 78.9h and there are seven Goodman elements that

failed. The failed sequence of seven positions is shown in Figure 6.3.3 and the

times have been listed in Table 6.3.2.

0 5 10 15 20 25 30

0-10

10-20

20-30

30-40

40-50

50-60

60-70

70-80

80-90

90-100

100-110

110-120

120-130

130-140

140-150

150-160

160-170

170-180

Numbers of Element T
h

e
A

n
g

le
 o

f
G

B
 E

le
m

en
t

N
o

rm
al

 D
ir

ec
ti

o
n

 (
U

n
it

: D
eg

re
e)

Figure 6.3.2 Orientation angle of the grain boundary element’s normal direction.

Orientation angle of the grain boundary element’s normal direction.

Reproduced from [45]

~ 148 ~

Table 6.3.2 The element details of sequence at seven boundary elements. Reproduced

from [45]

Position Element NO. Angle Time (Unit: hour) Step

A 48 66.3 23.66 12003387

B 122 76.2 66.66 33246192

C 93 64.0 68.48 34728834

D 94 64.0 68.48 34728866

E 111 66.4 70.69 36848660

F 87 146.3 78.90 39987606

G 88 146.3 78.90 39987617

Figure 6.3.3 The sequence evolution of the failure elements. Reproduced from [45]

The first failure occurs at the position A, the evolution of this position, which

include the cavity density, the damage variable, the damage area fraction, and

the average radius of the cavities all of which are shown in Figure 6.3.4. The

~ 149 ~

creep evolutions of seven positions (A, B, C, D, E, F, G), which include these

aspects: the stress at normal direction, the cavity nucleation ratio, the

evolution of the cavity density, the cavity coalescence rate, and damage area

fraction are shown in Figure 6.3.6. The normal stress and damage evolution of

all GB elements at different sampling time point are shown in Figure 6.3.6 and

Figure 6.3.7, respectively.

1,000

3,000

5,000

7,000

0.00 5.00 10.00 15.00 20.00 25.00

T
h

e
C

av
it

y
 D

en
si

ty
 (

U
n

it
:

m
m

^(
-

2)
)

Time (Unit: Hour)

Figure 6.3.4 (a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00 5.00 10.00 15.00 20.00 25.00

T
h

e
D

am
ag

e
A

re
a

F
ra

ct
io

n

Time (Unit: Hour)

Figure 6.3.4(b)

~ 150 ~

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00 5.00 10.00 15.00 20.00 25.00

T
h

e
D

am
ag

e
A

re
a

F
ra

ct
io

n

Time (Unit: Hour)

Figure 6.3.4(c)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.00 5.00 10.00 15.00 20.00 25.00

T
h

e
A

v
er

ag
e

C
av

it
y

 R
ad

iu
s

(U
n

it
:m

m
)

Time (Unit: Hour)

Figure 6.3.4(d)

Figure 6.3.4 The creep evolution of Position A. (a) the cavity density versus the time; (b)

the damage variable versus the time; (c)the damage area fraction versus the time; (d) the

average radius of cavities versus the time. Reproduced from [45]

~ 151 ~

0

0.004

0.008

0.012

0.016

0 15 30 45 60 75

C
av

it
y

 C
o

al
es

ce
n

ce
 R

at
e

(U
n

it
:

m
m

^(
-2

)s
^(

-1
))

Time (Unit:Hour)

Figure 6.3.5(a)

POS A

POS B

POS C

POS D

POS E

POS F

POS G

0

2000

4000

6000

8000

0 15 30 45 60 75

C
av

it
y

 D
en

si
ty

 (
U

n
it

: m
m

^(
-2

)

Time (Unit:Hour)

Figure 6.3.5 (b)

POS A

POS B

POS C

POS D

POS E

POS F

POS G

~ 152 ~

0

0.005

0.01

0.015

0.02

0 15 30 45 60 75C
av

it
y

 N
u

cl
ea

ti
o

n
 R

at
e

(U
n

it
:

m
m

^(
-2

)s
^(

-1
))

Time (Unit:Hour)

Figure 6.3.5 (c)

POS A

POS B

POS C

POS D

POS E

POS F

POS G

-15

0

15

30

45

60

75

0 15 30 45 60 75T
h

e
N

o
rm

al
 S

tr
es

s
(U

n
it

:
M

p
a)

Time (Unit:Hour)

Figure 6.3.5(d)

POS A

POS B

POS C

POS E

POS F

POS D

POS G

~ 153 ~

0

0.1

0.2

0.3

0.4

0.5

0 15 30 45 60 75

D
am

ag
e

A
re

a
F

ra
ct

io
n

Time (Unit: Hour)

Figure 6.3.5 (e)

POS A

POS B

POS C

POS D

POS E

POS F

POS G

-5

15

35

55

0 30 60 90 120 150

N
o

rm
al

 S
tr

es
s

(U
n

it
: M

P
a)

Element NO.

Figure 6.3.6 (a)

0

6.74

12.67

Figure 6.3.5 The creep evolution of seven failed elements. (a) the cavity coalescence

Rate versus the time; (b) the cavity density versus the time; (c)the cavity nucleation

rate versus the time; (d) the normal stress versus the time; (e) the damage area

fraction versus time.

Reproduced from [45]

~ 154 ~

-5

15

35

55

0 30 60 90 120 150

N
o

rm
al

 S
tr

es
s

(U
n

it
: M

P
a)

Element NO.

Figure 6.3.6 (b)

17.61

23.74

27.5

-5

15

35

55

0 30 60 90 120 150

N
o

rm
al

 S
tr

es
s

(U
n

it
: M

P
a)

Element NO.

Figure 6.3.6 (c)

31.45

35.4

39.36

~ 155 ~

-5

15

35

55

0 30 60 90 120 150

N
o

rm
al

 S
tr

es
s

(U
n

it
: M

P
a)

Element NO.

Figure 6.3.6 (d)

43.32

47.74

51.22

-5

15

35

55

0 30 60 90 120 150

N
o

rm
al

 S
tr

es
s

(U
n

it
: M

P
a)

Element NO.

Figure 6.3.6 (e)

55.18

59.13

63.09

~ 156 ~

-5

15

35

55

0 30 60 90 120 150

N
o

rm
al

 S
tr

es
s

(U
n

it
: M

P
a)

Element NO.

Figure 6.3.6 (f)

67.04

78.9

Figure 6.3.6 The normal stress evolution of all Goodman elements. (a)Time Point:

0h, 6.74h, 12.67h; (b)Time Point: 17.61h, 23.74h, 27.6h; (c)Time Point: 31.46h,

36.4h, 39.36h; (d)Time Point: 43.32h, 47.27h, 51.22h; (e)Time Point: 55.18h,

59.13h,63.09h; (f)Time Pont:67.04h, 78.9h.

~ 157 ~

0.00

0.10

0.20

0.30

0.40

0.50

0 30 60 90 120 150

T
h

e
d

am
ag

e
ar

ea
 f

ra
ct

io
n

 ω

Element NO.

Figure 6.3.7 (a)

0

6.74

12.67

23.74

0.00

0.10

0.20

0.30

0.40

0.50

0 30 60 90 120 150T
h

e
d

am
ag

e
ar

ea
 f

ra
ct

io
n

 ω

Element NO.

Figure 6.3.7 (b)

27.5

31.45

35.4

39.36

0.00

0.10

0.20

0.30

0.40

0.50

0 30 60 90 120 150

T
h

e
d

am
ag

e
ar

ea
 f

ra
ct

io
n

 ω

Element NO.

Figure 6.3.7(c)

43.32

47.72

51.22

55.18

~ 158 ~

6.3.3 Discussion

The discussion comes from the publications and done by Q.Xu [45].

According to Figure 6.3.6 (d), it can be found that the highest point of normal

stress occurs at position A and it remains relatively high until failure.

0.00

0.10

0.20

0.30

0.40

0.50

0 30 60 90 120 150

T
h

e
d

am
ag

e
ar

ea
 f

ra
ct

io
n

 ω

Element NO.

Figure 6.3.7(d)

59.13

63.09

67.04

68.48

0.00

0.10

0.20

0.30

0.40

0.50

0 30 60 90 120 150

T
h

e
d

am
ag

e
ar

ea
 f

ra
ct

io
n

 ω

Element No.

Figure 6.3.7(e)

78.9

Figure 6.3.7 The damage evolution of all Goodman elements at the same time

point; (a)Time Point: 0h, 6.74h, 12.67h, 23.74h; (b)Time Point: 27.6h, 31.46h, 36.4h,

39.36h; (c)Time Point: 43.32h, 47.27h, 61.22h, 66.18h; (d)Time Point: 69.13h, 63.09h,

67.04h, 68.48h; (e)Time Point: 78.9h. Reproduced from [45]

~ 159 ~

Compared with position A, the normal stress of other grain boundaries is

lower than it but still higher than the applied stress (10 MPa). Hence, the

elements could be subject to higher normal stress, which lead to a higher

nucleation rate and growth rate of cavities, this is the main reason for GB

failure.

From Figure 6.3.6 (a-f), it presents the stress redistribution that happens

during the non-linear creep iteration, which reveals the uneven GB sliding

and normal jumping deformation play the main contribution to it; the further

stress redistribution will be caused by due the increasing of creep

deformation, resulting in a local high-stress reduction. Therefore, the damage

evolution occurs in such a way as shown in Figure 6.3.6(e).

From Figure 6.3.6 (a-f) and Figure 6.3.7 (a-e), it clearly reveals that the stress

concentration happens on the grain boundary initially, due to the creep

evolution and stress redistribution, the concentrated stress was relaxed.

However, after failure occurs, the stress of the failed element decreases

sharply to zero and has no loading capability. In addition, the grain

boundaries with some slant degree have high damage value, however,

damage of the elements parallel to the direction of the applied stress is

relatively lower. It may present that the deformation in normal direction is

greater than the sliding direction and the GB sliding affects the stress

redistribution as well. Based on the creep damage evolution of all elements, it

can be clearly concluded that the fracture of a component is determined by a

~ 160 ~

reasonable proportion of failed grain boundaries, and the evolution of creep

damage is determined by the mesh size, the GB orientation, and the grain

shape are determined together [45].

~ 161 ~

Chapter 7 Development and Validation of the 3-

dimensional Procedure at Grain Boundary Level

7.1 Introduction

The three stress states (plane stress, plane strain, and axisymmetric) in the

two-dimension version are idealizing the three-dimensional states at different

conditions, hence the more general three-dimensional version has its practical

importance and significance. Compared with two-dimensional, the standard

8-nodal 3D hexahedron element is used for FE modeling in the grain part, and

the 8-nodal 3D Goodman element is used for modeling in the grain boundary

part. The implementation of the two-dimensional Goodman element is

simple, in which the element has a lower degree of freedom and the

integration can be obtained by algebraic calculation. However, the

implementation of the three-dimensional Goodman element is more

complicated. It involves creating a new local coordinate for integration and

connecting global coordinates, and the element has a higher degree of

freedom. In this chapter, the technical details of the implementation of the

three-dimensional version are explained in detail.

The structure of this chapter is described in the following:

1. In Section 7.2, it reports the development details of the 3D version in-

house procedure. Since the previous creep solver is applied in the version,

the modified part is to replace the triangular element/ quadrilateral

~ 162 ~

element and 2D Goodman elements with hexagonal elements and 3D

Goodman elements respectively. In section 7.2.1, it introduces the coding

implementation of hexahedron for grain part, and in section 7.2.2, it

introduces the coding implementation of 3D Goodman element for grain

boundary part.

2. In section 7.3, it reports the validation of the grain part under elastic

condition. According to this section, the accuracy and reliability of the

program block for implementing the hexahedron element are verified.

3. In section 7.4, it reports the validation of the grain boundary part under

elastic condition. According to this section, the developed program block

and subroutines for obtaining the stiffness matrix of the 3D Goodman

element are verified. The benchmark specifically includes three aspects:

the accuracy of the load at normal and separated directions, the accuracy

and reliability of the coordinate transmission system when the element's

local coordinates and global coordinates are inconsistent, and the

accuracy and reliability of the module for recovering the results at

Gaussian Point.

~ 163 ~

7.2 Development of 3D Version

The core of the 3D version's development is to replace the 2D elements of the

previous solver with 3D elements. In this procedure, the grain part is modeled

by the 3D hexahedron element with 8 nodes, and the grain boundary part is

modeled by the 3D Goodman element with 8 nodes.

7.2.1 Implementation of Grain Part

The Finite Element modeling of the grain is based on the traditional 3D

hexahedron element and the mathematical background has been mentioned

in section 2.6.2. The element stiffness matrix obtaining of this type is in-built

in Smith's element library and program block, which can be calculated by four

existing standard FE subroutines from the 'main' library [13] and the similar

structure of the 2D solid element to assemble these four subroutines. The

details of the relationship between the mathematical background and the

subroutines are summarized in Table 7.2.1.

~ 164 ~

Table 7.2.1 List of the standard FE subroutines for the element stiffness matrix of 3D

8-node hexahedron element [13].

Name Function

deemat

It returns the stress-strain matrix [D] at 3-

Dimension condition. (EQ.2.6.21)

shape_fun

It returns the shape functions at the

integration point in local coordinates. ([N]

matrix, EQ.2.6.24)

shape_der

It returns the derivatives of the shape

functions.

beemat

It returns the strain-displacement matrix

[B].(EQ.2.6.23)

7.2.2 Implementation of Grain Boundary part

The Finite Element modeling of the grain boundary is based on the 3D eight-

nodal Goodman element. The mathematical background of the element'

stiffness matrix is mentioned in section 2.8 and the mathematical background

of coordinate transmission is mentioned in section 3.6.2. Therefore, in this

section it mainly describes the development of the program block to calculate

this element's stiffness matrix.

In this program block, there are six subroutines developed: 'Gdeemat',

'TM_TD', 'T_Coord', 'G_Shape_Fun', 'G_Shaper_Der', and 'Gbeemat'. The

details of these six subroutines can be found in the Appendix 1. The flowchart

of this block is presented in the Figure 7.2.1.

~ 165 ~

Figure 7.2.1 The flow diagram structure for obtaining the 3DGoodman

element stiffness matrix. (subroutines are marked by red)

gkm in global coordinate system

gjac det

Element Node Local

Coordinate

G_Shape_Der

TM_TD
Element Global

Node Coordinate

T

Q

T_Coord

gkm in local

coordinate system

G_Shape_Fun gfun Gbeemat

gbee

Gdeemat gdee

~ 166 ~

After the solution of grains' element stiffness matrix, the procedure enters the

loop module of the solution of grain boundaries' element stiffness matrix, as

shown in Figure 7.2.1. In the beginning, the stiffness constants which are

stored in array 'cprop' is imported to the subroutine 'Gdeemat' to obtain the

stiffness matrix 'D' in Equation 2.8.10, the 'D' is named 'gdee' in the procedure.

The array 'gnum' and 'gcoord' store the element steering vectors and the

element nodal coordinates. Based on the subroutine 'TM_TD' and imports the

element nodal coordinates into it to solve out the matrix 'Q' and 'T' in

Equation 2.8.21, and then applies the subroutine 'T_coord' to obtain the

element nodal coordinates in local coordinates system, the mathematical

background is in Equation 2.8.21. The first two columns of array 'gcoord' are

restored into array 'cgcoord', which is the matrix '[coord]μ&ν' in Equation

2.8.16. After completing the above preparations, the procedure enters the

integration part. As mentioned before, the Gauss-Legendre method is

employed to do the integral over the surface. For this reason, two subroutines

' G_shape_fun' and 'G_shape_der' are developed to produce the shape

function array 'fun' and the derivatives of the shape functions 'gder' in M

coordinates systems, respectively. Based on the derivatives 'gder', the Jacobin

matrix 'gjac' and its determinates 'det' are solved. Finally, according to

Equation 2.8.20, the element stiffness can be obtained.

~ 167 ~

7.3 Elastic Validation of Grain Part

7.3.1 FE Model

In this 3D version procedure, the 8-node hexahedron element is used to mesh

the grain part. The benchmark of the procedure for this element is performed

in this section and the FE model is shown in Figure 7.3.1.

➢ The mesh, loads information, boundary condition and material parameters for

this FE model

In this model, it contains 12 nodes to generate two 8-node hexahedron

elements. The coordinates of these nodes are shown in Table 7.3.1 and the

topology information is shown in Table 7.3.2.

Figure 7.3.1 The schematic figure of 3D FE model.

1

2 3

4

6

6 8

7

9

10 11

12

X

Y

Z

~ 168 ~

Table 7.3.1 The coordinates of the node. (unit: mm)

Node NO. X direction Y direction Z direction

1 0 0 0

2 0 0 1

3 1 0 1

4 1 0 0

6 0 1 0

6 0 1 1

7 1 1 1

8 1 1 0

9 0 0 2

10 0 1 2

11 1 1 2

12 1 0 2

Table 7.3.2 The topology information of these two elements.

Element NO. Topology Information

1 1, 2, 3, 4, 6, 6, 7, 8

2 2, 9, 12, 3, 6, 10, 11, 7

The boundary condition is imposed on the bottom surface such that the

displacement components to the Z direction, the front surface such that the

displacement components to the Y direction, and the left surface such that the

displacement components to the X direction are always zero respectively. The

~ 169 ~

implementation of the boundary condition is through add the constraint of

the node, in this case, the node constraint information is listed in Table 7.3.3.

Table 7.3.3 The constrained node of boundary condition.

The Constraint Direction Node Number

X direction 1, 4, 6, 8

Y direction 1, 2, 3, 4, 9, 12

Z direction 1, 2, 6, 6, 9, 10

In this benchmark, it contains two sub-cases, the first case is on the top surface

to the Z direction and the second one is on the right surface to the X direction.

The equivalent node loading factor information of these two cases is shown in

Table 7.3.4.

~ 170 ~

Table 7.3.4 The equivalent node loading factor information.

Node NO. X Y Z

The No. 1 Case

9 0.0 0.0 0.26

10 0.0 0.0 0.26

11 0.0 0.0 0.26

12 0.0 0.0 0.26

The No. 2 Case

3 0.6 0.0 0.0

4 0.26 0.0 0.0

7 0.6 0.0 0.0

8 0.26 0.0 0.0

11 0.26 0.0 0.0

12 0.26 0.0 0.0

7.3.2 Validation of Uni-axial Loading

In this case, the loading is applied on the top surface with 30MPa tension to

the Z direction, shown in Figure 7.3.2. The theoretical stress at Gaussian Point

is 30 MPa to the Z direction, and in the X, the Y, and three shear directions

should be zero. According to the stress-strain constitutive relationship which

has been mentioned in section 2.6.2, the strain of these six directions are:

~ 171 ~

 εx =
(A + B) ∙ σx − B ∙ σy − B ∙ σz

(A − B) ∙ (A + 2 ∙ B)

7.3.1

 εy =
−B ∙ σx + (A + B) ∙ σy − B ∙ σz

(A − B) ∙ (A + 2 ∙ B)

 εz =
−B ∙ σx − B ∙ σy + (A + B) ∙ σz

(A − B) ∙ (A + 2 ∙ B)

 γxy =
τxy

C

 γyz =
τyz

C

 γzx =
τzx
C

where

 A =
E ∙ (1 − ν)

(1 + ν) ∙ (1 − 2 ∙ ν)

 B =
E ∙ ν

(1 + ν) ∙ (1 − 2 ∙ ν)

 C =
E ∙ ν

2 ∙ (1 + ν)

In which, E is Young's Module and ν is the passion ratio.

In this case, Young's Modulus E and Passion's ratio ν are set to 1 × 106GPa

and 0.3, respectively. Based on the Equation 7.3.1, the theoretical strain in the

X

Y

Z

Figure 7.3.2 The schematic figure of tension model.

~ 172 ~

X direction and the Y direction is −9.0 × 10−6, in the Z direction is

3.0 × 10−4, and in three shear directions (γxy, γyz, γzx)should be zero. The

simulation stress and strain at Gaussian Point are shown in Table 7.3.5, which

is shown in good agreement with the theoretical value and the error is

negligible.

Table 7.3.5 The elastic stress field and strain field for the FE model under 30MPa

uniform loading of 3D 8-node hexahedron. (At Gauss Point)

Element No. Direction Stress (Uni: MPa) Strain

1

X −3.663 × 10−14 −8.999 × 10−6

Y −3.197 × 10−14 −9.000 × 10−6

Z 30.000 3.000 × 10−4

XY 0.000 0.000

YZ 0.000 0.000

ZX −2.669 × 10−13 −6.939 × 10−18

2

X −6.716 × 10−13 −9.000 × 10−6

Y −2.693 × 10−13 −9.000 × 10−6

Z 30.000 3.000 × 10−4

XY −2.106 × 10−13 −6.476 × 10−18

YZ −6.672 × 10−14 1.736 × 10−18

ZX −6.672 × 10−14 −1.736 × 10−18

~ 173 ~

7.3.3 Validation of Multi-Axial Loading

In this case, the loading is applied on the top surface and right surface with

30MPa tension to the Z and the X directions, shown in Figure 7.3.3. The

theoretical stress at Gaussian Point is 30 MP in the X direction and the Z

direction, and the Y and three shear directions should be zero.

According to the Equation 7.3.1, the theoretical strain in the X direction and

the Z direction is 2.1 × 10−4, in the Y direction is −1.8 × 10−4, and in three

shear directions (γxy, γyz, γzx) should be zero. The simulation stress and strain

at Gaussian Point are shown in Table 7.3.6, which is shown in good agreement

with the theoretical value and the error is negligible.

X

Y

Z

Figure 7.3.3 The schematic figure of Bi-loading model.

~ 174 ~

Table 7.3.6 The elastic stress field and strain field for the FE model under Bi-axial

loading of 3D 8-node hexahedron. (At Gauss Point)

Element No. Direction Stress (Uni: MPa) Strain

1

X 30.000 2.100 × 10−4

Y −2.132 × 10−14 −1.800 × 10−4

Z 30.000 2.100 × 10−4

XY −8.340 × 10−15 −2.168 × 10−19

YZ −1.459 × 10−14 −3.795 × 10−19

ZX −1.043 × 10−15 2.711 × 10−20

2

X 30.000 2.100 × 10−4

Y 3.552 × 10−15 −1.800 × 10−5

Z 30.000 2.100 × 10−4

XY −2.085 × 10−15
−5.421

× 10−20

YZ 1.876 × 10−15 4.879 × 10−20

ZX −4.378 × 10−15 −1.138 × 10−19

~ 175 ~

7.4 Elastic Validation of Grain Boundary Part

7.4.1 FE Model

In this 3D version procedure, the 8-node Goodman element is used to mesh

the grain boundary part. The benchmark of the procedure for this element is

performed in this section and the FE model is shown in Figure 7.4.1.

The FE model consists of two parts: two 8-nodal hexahedron elements for

grain part and one 8-nodal 3D Goodman element for the grain boundary part.

The area integration of grain and grain boundary part is implemented by one

Gaussian integration point, respectively.

➢ The Geometry information, Boundary Condition and Loading Information and

Material Parameters.

Figure 7.4.1 The schematic figure of Bi-grain case study.

X

Y

Z

1

2 3

4

6

6
8

7

9

10 11

12

13

14 16

16

Grain 2

Grain 1

Grain Boundary

~ 176 ~

In this FE model, there are a total of 16 nodes to form 3 elements. The

coordinates of these 16 nodes and the topology of the elements are stored in

the 'DAT' file. The coordination of the node is shown in Table 7.4.1 and the

topology information is shown in Table 7.4.2.

Table 7.4.1 The coordinates of the node. (Unit: mm)

Node NO. X direction Y direction Z direction

1 0 0 0

2 0 0 1

3 1 0 1

4 1 0 0

6 0 1 0

6 0 1 1

7 1 1 1

8 1 1 0

9 0 0 2

10 0 1 2

11 1 1 2

12 1 0 2

13 0 0 1

14 0 1 1

16 1 1 1

16 1 0 1

~ 177 ~

Table 7.4.2 The topology information of these two elements.

Element NO. Topology Information

Grain 1 1, 2, 3, 4, 6, 6, 7, 8, 16

Grain 2 13, 9, 12, 16, 14, 10, 11, 16

Grain Boundary 13, 14, 16, 16, 2, 6, 7, 3

The boundary condition is imposed on the bottom surface such that the

displacement components to the Z direction and the implementation of the

boundary condition is through adding the constraint of the node, in this case,

the node constraint information is listed in Table 7.4.3.

Table 7.4.3 The constrained node of boundary condition.

The Constraint Direction Node Number

X direction 1, 2, 6, 6, 9, 10, 13, 14

Y direction 1, 2, 3, 4, 9, 12, 13, 16

Z direction 1, 4, 6, 8

In this benchmark case, a uniform load 30 MPa is applied on the top surface to

the Z direction, as shown in Figure 7.4.2. The equivalent node loading factor

information is shown in Table 7.4.4.

~ 178 ~

Table 7.3.4 The equivalent node loading factor information.

Node NO. X Y Z

9 0.0 0.0 0.26

10 0.0 0.0 0.26

11 0.0 0.0 0.26

12 0.0 0.0 0.26

The theoretical stress at the Gaussian point of two grains is 30MPa to the Z

direction, and in the X, the Y, and three shear directions should be zero. In the

grain boundary part, the stress at Gaussian point is 30MPa to the normal

direction, and in two separated directions should be zero. According to the

stress-jump displacement constitutive relationship, the relative-displacement

of three directions can be calculated with the following:

Figure 7.4.2 The schematic figure of tension model of Bi-grains case.

X

Y

Z

~ 179 ~

 Φμ =
Fμ
Kμ

7.4.1 Φν =
Fν
Kν

 Φω =
Fω
Kω

In which, Kμ, Kν, and Kω are the stiffness of three directions.

In this case, Kμ, Kν, and Kω are set to 1 × 106, 6 × 106, and 6 × 106 with

unit MPa, respectively. According to the Equation 7.4.1, the jump

displacement in normal direction is 3 × 10−4 mm, and in other two

directions should be zero. The simulation stress and jump displacement at

Gaussian Point is shown in Table 7.4.5, which is shown in good agreement

with the theoretical value and the error is negligible.

~ 180 ~

Table 7.4.5 The elastic stress field and jump displacement/strain field for the bi-

crystal FE model. (At Gauss Point)

Element No. Direction Stress (Uni: MPa)

Jump Displacement

(Unit: mm)

Grain Boundary

Normal 30.000 −3.000 × 10−4

Separated 2.386 × 10−11 4.770 × 10−17

Separated −2.429 × 10−12 −2.429 × 10−17

Element No. Direction Stress (Uni: MPa) Strain

Grain 1

X 2.338 × 10−12 −9.000 × 10−6

Y 3.137 × 10−12 −9.000 × 10−6

Z 30.000 3.000 × 10−4

XY 4.637 × 10−12 1.179 × 10−16

YZ −2.402 × 10−12 −6.246 × 10−17

ZX −3.202 × 10−12 −8.327 × 10−17

Grain 2

X −2.136 × 10−12 −9.000 × 10−6

Y −8.641 × 10−12 −9.000 × 10−6

Z 30.000 3.000 × 10−4

XY −3.203 × 10−12 −8.327 × 10−17

YZ −2.136 × 10−12 6.661 × 10−17

ZX −6.338 × 10−12 −1.388 × 10−16

~ 181 ~

7.4.2 Validation of Separated Direction

In order to add the separated node force to the four nodes on the upper

surface of grain boundary uniformly and directly, the upper grain is removed,

and the FE model for validating separated direction is shown in Figure 7.4.3,

which consists of two parts: one 8-node hexahedron elements for grain part

and one 3D Goodman element for the grain boundary part.

➢ The Geometry information, Boundary Condition and Loading Information and

Material Parameters.

In this FE model, there are a total of 12 nodes to form 2 elements. The

coordination of the node is shown in Table 7.4.6 and the topology information

is shown in Table 7.4.7.

10

Figure 7.4.3 The schematic figure for validation of Grain boundary at

separated direction.

X

Y

Z

Grain

7

11

12
Grain Boundary

6 9

1

2 3

4

6
8

~ 182 ~

Table 7.4.6 The coordinates of the node. (Unit: mm)

Node NO. X direction Y direction Z direction

1 0 0 0

2 0 0 1

3 1 0 1

4 1 0 0

6 0 1 0

6 0 1 1

7 1 1 1

8 1 1 0

9 0 0 1

10 0 1 1

11 1 1 1

12 1 0 1

Table 7.4.7 The topology information of these two elements.

Element NO. Topology Information

Grain 1, 2, 3, 4, 6, 6, 7, 8, 16

Grain Boundary 9, 10, 11, 12, 2, 6, 7, 3

The boundary condition is imposed on the bottom surface such that the

displacement components to the Z direction, the node constraint information

is list in Table 7.4.8.

~ 183 ~

Table 7.4.8 The constrained node of boundary condition.

The Constraint Direction Node Number

X direction 1

Y direction 1

Z direction 1, 4, 6, 8

In this benchmark case, a uniform loads 30MPa is applied on the top surface

to the X direction, as shown in Figure 7.4.4.

The equivalent node loading factor information is shown in Table 7.4.9.

Table 7.4.9 The equivalent node loading factor information.

Node NO. X Y Z

9 0.26 0.0 0.0

10 0.26 0.0 0.0

11 026 0.0 0.0

12 0.26 0.0 0.0

In this case, only one Gaussian point does not satisfy the accuracy

requirements for the grain boundary part. Here, the integral of the grain

boundary area is implemented by nine Gaussian Integration Points. The

theoretical stress at these nine Gaussian points are 30MPa to the separated

Figure 7.4.4 The schematic figure of tension model for validating

separated direction.

X

Y

Z

~ 184 ~

direction, whereas in normal directions and other separated directions it

should be zero. According to Equation 7.4.1, the jump-displacement in one

separated direction is 6.0 × 10−4 mm, and in other two directions should be

zero. The simulation stress and jump displacement at nine Gaussian Points

are shown in Table 7.4.10, which is shown in good agreement.

~ 185 ~

Table 7.4.10 The elastic stress field and jump-displacement for the grain boundary

part. (At Gauss Point)

GP NO. Stress (Unit: MPa)

Direction Normal Separated Separated

1 −1.689 × 10−14 29.999 3.706 × 10−16

2 −8.082 × 10−16 30.000 −1.069 × 10−16

3 3.388 × 10−16 29.999 2.966 × 10−16

4 −4.066 × 10−16 30.000 8.682 × 10−16

6 1.366 × 10−16 29.999 6.082 × 10−16

6 8.132 × 10−16 30.000 1.694 × 10−16

7 3.388 × 10−16 29.999 1.779 × 10−14

8 2.711 × 10−16 30.000 2.033 × 10−20

9 6.421 × 10−16 29.999 0.000

 Jump Displacement (Unit: mm)

1 −1.169 × 10−19 6.999 × 10−6 7.412 × 10−21

2 −6.082 × 10−20 6.000 × 10−6 −2.118 × 10−21

3 3.388 × 10−20 6.999 × 10−6 6.929 × 10−21

4 −4.066 × 10−20 6.000 × 10−6 1.736 × 10−20

6 −1.366 × 10−20 6.999 × 10−6 1.016 × 10−20

6 8.132 × 10−20 6.000 × 10−6 3.388 × 10−21

7 3.388 × 10−20 6.999 × 10−6 3.668 × 10−20

8 2.711 × 10−20 6.000 × 10−6 2.033 × 10−20

~ 186 ~

9 6.421 × 10−20 6.999 × 10−6 0.000

7.4.3 Validation of Rotation Status

In this section, the main task is to verify the accuracy and reliability of the

rotating system. The design of the case study is from Q.Xu's idea, the FE

model is obtained by rotating the previous model (Figure 7.4.4) by 45°

counterclockwise around the Y-axis, as shown in Figure 7.4.5. The model with

the red broken line is the original model before the rotation.

6 10

6

1

2 4
9

3

7
11

12

Counterclockwise46°

8

X

Y

Z

Figure 7.4.5 The schematic figure for validation the rotation system.

~ 187 ~

➢ The Geometry information, Boundary Condition and Loading Information and

Material Parameters.

In this FE model, there are a total of 12 nodes to form 2 elements. The

coordinates of the node in the global system is shown in Table 7.4.11 and the

topology information is shown in Table 7.4.7.

Table 7.4.11 The coordinates of the node. (Unit: mm)

Node NO. X direction Y direction Z direction

1 0 0 0

2 −
√2

2
 0 √2

2

3 0 0 √2

4 √2

2
 0 √2

2

6 0 1 0

6 −
√2

2
 1 √2

2

7 0 1 1

8 √2

2
 1 √2

2

9 −√2 0 √2

10 −√2 1 √2

11 −
√2

2
 1

2 + √2

2

12 −
√2

2
 0

2 + √2

2

The boundary condition is imposed on the bottom surface such that the

displacement components to the X and the Z directions, in this case, the node

constraint information is listed in Table 7.4.12.

~ 188 ~

Table 7.4.12 The constrained node of boundary condition.

The Constraint Direction Node Number

X direction 1,4, 6, 8

Y direction 1

Z direction 1, 4, 6, 8

In this benchmark case, a uniform loads 30MPa is applied on the top surface

to the normal direction, as shown in Figure 7.4.6.

The equivalent node loading factor information is shown in Table 7.4.13.

Table 7.4.13 The equivalent node loading factor information.

Node NO. X Y Z

9 −
√2

8
 0.0 √2

8

10 −
√2

8
 0.0 √2

8

11 −
√2

8
 0.0 √2

8

12 −
√2

8
 0.0 √2

8

X

Y

Z

S

S
N

Figure 7.4.6 The schematic figure of tension model for validating

rotating system.

~ 189 ~

In this case, as the same with the previous case, nine Gaussian Points are used

to implement the integration of grain boundary region. The theoretical stress

at these nine Gaussian points is 30MPa to the normal direction, and in two

separated directions should be zero. According to Equation 7.4.1, the jump-

displacement in normal direction is 3.0 × 10−4 mm, and in the other two

directions should be zero. The simulation stress and jump displacement at

nine Gaussian Points are shown in Table 7.4.14, which is shown in good

agreement.

~ 190 ~

Table 7.4.14 The elastic stress field and jump-displacement for the grain boundary

part. (At Gauss Point)

GP NO. Stress (Unit: MPa)

Direction Normal Separated Separated

1 29.999 3.642 × 10−14 −7.417 × 10−16

2 29.999 1.779 × 10−14 −2.118 × 10−21

3 29.999 −6.929 × 10−16 6.929 × 10−16

4 29.999 8.893 × 10−16 −2.076 × 10−16

6 29.999 −6.776 × 10−16 −7.623 × 10−16

6 29.999 −6.776 × 10−16 3.388 × 10−16

7 29.999 −1.948 × 10−14 6.776 × 10−16

8 29.999 −1.694 × 10−20 −2.641 × 10−16

9 29.999 −4.066 × 10−20 −6.421 × 10−20

 Jump Displacement (Unit: mm)

1 2.999 × 10−4 7.284 × 10−20 −7.417 × 10−20

2 2.999 × 10−4 3.668 × 10−20 −2.118 × 10−21

3 2.999 × 10−4 −1.186 × 10−20 6.929 × 10−20

4 2.999 × 10−4 1.779 × 10−20 −2.076 × 10−20

6 2.999 × 10−4 −1.366 × 10−20 −7.623 × 10−21

6 2.999 × 10−4 −1.366 × 10−20 3.388 × 10−21

7 2.999 × 10−4 −3.896 × 10−20 6.776 × 10−21

8 2.999 × 10−4 −3.388 × 10−20 −2.641 × 10−20

~ 191 ~

9 2.999 × 10−4 −4.066 × 10−20 −6.421 × 10−20

7.5 Validation of the Non-linear Creep

The benchmark strategy for the 3D version is similar to the previous 2D

version, the verification of the accuracy and stability relies on the Bi-grains

case study. In this section, the main task is to report the verification of the

procedure in the normal direction.

The information of the FE model, boundary condition, loading, and elastic

parameters have been mentioned in section 7.4.1. The benchmark concentrates

on the integral accuracy of the creep constitutive equation and the stress

convergence of the non-linear iteration.

7.5.1 The Validation of the Stress Update

The sign of the non-linear iterating convergence is the elastic stress of each

element that are the same. In this case, the non-linear iteration lasts for 141387

steps with the time step of 0.000001 (normalized). In order to visualize the

convergence of the stress field, the stress condition of two iterative steps

(60000 and 141386) are selected randomly during the process and shown in

Table 7.5.1.

~ 192 ~

Table 7.5.1 The elastic stress field of each element at selected step.

Iteration Step Element No. Direction

Elastic Stress

(Unit: MPa)

60000

Grain

1

X 2.694 × 10−11

Y 1.886 × 10−11

Z 19.999

XY 4.897 × 10−12

YZ −1.896 × 10−12

ZX 5.773 × 10−12

2

X 8.673 × 10−12

Y 1.501 × 10−11

Z 19.999

XY 4.465 × 10−12

YZ 3.911 × 10−12

ZX 1.400 × 10−11

GB 3

X 1.387 × 10−11

Y 0.000

Z 19.999

141386 Grain 1

X −4.987 × 10−11

Y 1.189 × 10−10

Z 20.000

XY 1.036 × 10−11

~ 193 ~

YZ −7.344 × 10−11

ZX −5.121 × 10−12

2

X 1.228 × 10−10

Y 9.535 × 10−10

Z 20.000

XY −3.955 × 10−10

YZ −1.532 × 10−10

ZX 2.952 × 10−12

GB 3

X −6.661 × 10−10

Y 2.359 × 10−10

Z 20.000

According to the stress field shown in Table 7.5.1 the result shows good

agreement with the theoretical results that the applied stress of each element

keeps constant during the non-linear iteration period. For the grain part, the

maximum final cumulative error in the Y direction is 9.535 × 10−10MPa

(NO.2element). For the grain boundary part, the maximum final cumulative

error in separate direction is −6.661 × 10−10MPa (NO.3 element). In

summary, the in-house procedure has shown a good convergence under the

uni-axial loading.

7.5.2 The Validation of the Integration

In this procedure, the built-in constitutive equations for describing the creep

evolution of grain boundary part has been mentioned in section 2.9.2. In this

~ 194 ~

mathematical model, the creep evolution is determined by three key

variables: ρ (the cavity density), β (the damage variable), and a (the average

radius of cavities), Therefore, these three parameters are treated as indicators

of the benchmark.

The case setting is similar in section 6.2, which simulates the creep evolution

of Copper at 600℃ and the loading is on the top surface with 20 MPa. The

trend of three key indicators versus the normalized time is shown in Figure

7.5.1 to Figure 7.5.3. According to the analysis in section 6.2, it is clear that the

trend of the three indicators is as expected.

Figure 7.5.1 The trend of the normalized cavity density �̅� versus normalized time.

~ 195 ~

Figure 7.5.2 The trend of the damage variable β versus normalized time.

Figure 7.5.3 The trend of the normalized cavity radius �̅� versus normalized time.

7.5.3 Error Analysis

As mentioned in section 6.2, the simulation of the constitutive equations

under uniaxial loading conditions is the benchmark result [68]. The

~ 196 ~

percentage error between the reference result and the simulation is shown in

Table 7.5.2.

Table 7.5.2 The percentage error of curves between simulation and reading value.

Name

Reading

Value

Simulation

Value

Percentage

Error

Rupture Time(normalized) 0.15 0.1413 5.8%

Maximum value of the

damage variable β

0.166 0.1620 2.41%

Final value of cavity density

ρ (normalized)

0.010 0.0107 7.00%

The change point value of

the cavity densityρ

(normalized)

0.017 0.0174 2.35%

The time point of the cavity

density change

point(normalized)

0.096 0.0968 0.83%

7.5.4 Conclusion

Based on the above benchmark process, it demonstrates the numerical

accuracy and stability of the 3D version procedure. For the non-linear

iteration part, it shows the good convergence during the stress updating. In

summary, the preliminary verification is shown to be in good agreement with

theoretical results.

~ 197 ~

Chapter 8 Conclusions and Future Work

The contribution of this project is to develop an in-house procedure for Finite

Element simulation of creep evolution at grain boundary level. In this chapter,

detailed achievements and future work have been summarized below.

8.1 Contribution and Conclusion

An In-house procedure is developed to do the Finite Element Analysis of the

creep evolution at grain boundary level. My main contribution is to develop a

subroutine library and modify the P61 program to obtain this computational

capability. Specifically,

1. The following five sets of constitutive equations have been built into the

modified program, including: Kachanov-Rabatnov, Kachanov-Rabatnov-

Hayhurst, Kachanov-Rabatnov-Hayhurst-Xu, Vöse's cavitation equations,

and Newtonian Viscous Flow equation.

2. The benchmark of the in-house procedure, including:

a) the elastic benchmark of the plane stress element, plane strain

element, axisymmetric element, 3-dimensional element, 2-

dimensional 4-node Goodman element, and 3-dimensional 8-node

Goodman element.

b) the creep benchmark of a simple quadrilateral FE model, notched bar

FE model, and 2D Bi-grains FE model, and 3D Bi-grains FE model.

3. The application of the in-house procedure in a polycrystalline case study.

~ 198 ~

The in-house procedure was used to simulate the creep evolution of the

copper polycrystalline structure at the grain boundary level, and the

results were published [45].

8.2 Future Work

In this section, a detailed description of the possible future work based on the

current work is summarized below.

1. A 3D polycrystalline case study should be subjected. The 3D version

procedure has been developed to achieve the mechanical behavior of the

3-dimensional Goodman element and have passed the preliminary tests.

2. Develop parallel computing capability for the procedure. Compared with

the 2-dimensional case, the project size of the 3-dimensional case increases

sharply, therefore, it is necessary to make the procedure have the parallel

computing capability to improve the computational efficiency to reduce

the computational consumption and time.

3. Apply the procedure to conduct a parametric study. Based on this

research, to obtain the relative importance of various parameters in micro

creep modeling.

~ 199 ~

Reference

[1] Ling, X., Tu, S. and Gong, J. (1999). Damage Mechanics Considerations for

Life Extension of High-Temperature Components. Journal of Pressure Vessel

Technology, 122(2), pp.174-179.

[2] Becker, A., Hyde, T. and Xia, L. (1994). Numerical analysis of creep in

components. The Journal of Strain Analysis for Engineering Design, 29(3),

pp.185-192.

[3] Hayhurst, D., Dimmer, P. and Morrison, C. (1984). Development of

Continuum Damage in the Creep Rupture of Notched Bars. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 311(1516), pp.103-129.

[4] Kattan P.I., Voyiadjis G.Z. (2002) DNA Commands. In: Damage Mechanics

with Finite Elements. Springer, Berlin, Heidelberg.

[5] Ivt-abaqusdoc.ivt.ntnu.no. (2019). Abaqus 6.14 Documentation. [online]

Available at: http://ivt-

abaqusdoc.ivt.ntnu.no:2080/texis/search/?query=wetting&submit.x=0&submit

.y=0&group=bk&CDB=v6.14 [Accessed 15 Sep. 2019].

[6] Kachanov, L. (1958). On rupture time under condition of creep.

IzvestiaAkademiNauk USSR, Otd. Techn. Nauk, Moskwa, 8, 26-31

[7] Murakami,S. (2012.02.03),ContinuumDamageMechanics: A

ContinuumMechanicsApproach to theAnalysis of Damage and Fracture,

Springer, ISBN 9400726651.

[8] Rabotnov, Y. N. (1969). Creep problems in structural members.

~ 200 ~

[9] Yu, C., Huang, C., Chen, C., Gao, Y. and Hsueh, C. (2012). Effects of grain

boundary heterogeneities on creep fracture studied by rate-dependent

cohesive model. Engineering Fracture Mechanics, 93, pp.48-64.

[10] Vöse, M., Otto, F., Fedelich, B. and Eggeler, G. (2014). Micromechanical

investigations and modelling of a Copper–Antimony-Alloy under creep

conditions. Mechanics of Materials, 69(1), pp.41-62.

[11] Liu, D. (2015). The development of finite element software for creep damage

mechanics. Doctor of Philosophy. The university of Huddersfield.

[12] Richard E. Goodman,Robert L. Taylor,Tor L. Brekke(1964). A Model for

the Mechanics of Jointed Rock. Journal of the Soil Mechanics and

Foundations Division, 1968, Vol. 94, Issue 3, Pg. 637-660

[13] Smith, I., Griffiths, D. and Margetts, l. (2014). PROGRAMMING THE

FINITE ELEMENT METHOD. 5th ed. Chichester, West Sussex: John Wiley

& Sons Ltd.

[14] Ashby, M. (1972). Boundary defects, and atomistic aspects of boundary

sliding and diffusional creep. Surface Science, 31, pp.498-542.

[15] Betten,J.(2005).Creep mechanics (2en edition). Berlin; New York, Springer.

[16] Hult, J. A. (1966). Creep in engineering structures: Blaisdell Pub. Co.

[17] Finnie, I., and Heller, W. R. (1959). Creep of Engineering Materials

[18] Es-Souni, M. (2000). Primary, secondary and anelastic creep of a high

temperature near α-Ti alloy Ti6242Si. Materials Characterization, 45(2),

pp.153-164.

~ 201 ~

[19] Frost, H. J., and Ashby, M. F. (1982). Deformation mechanism maps: the

plasticity and creep of metals and ceramics

[20] J.J. Skrzypek, in: R.B. Hetnarski (1993), Plasticity and Creep: Theory,

Examples, andProblems, CRC Press.

[21] Nabarro, F. (1967). Steady-state diffusional creep. Philosophical Magazine,

16(140), pp.231-237.

[22] Shibli, A. and Holdsworth, S. (2008). Creep and fracture in high-temperature

components—Design and life assessment issues. International Journal of

Pressure Vessels and Piping, 85(1-2), p.1.

[23] Abe, F., Kern, T.-U., and Viswanathan, R. (2008). Creep-resistant

steels:Elsevier.

[24] Parker, J. (1995). Creep behavior of low alloy steel weldment.

Internationaljournal of pressure vessels and piping, 63(1), 55-62.

GoldhoffandWoodford, 1972)

[25] Gorash, Y. (2008.). Development of a creep-damage model for non-

isothermal long-term strength analysis of high-temperature components

operating in a wide stress range.

[26] Riedel. and Baumann. (1987). Fracture at High Temperatures. [Place of

publication not identified]: Springer Berlin Heidelberg.

[27] R. Goldhoff and D. Woodford (1972), The Evaluation of Creep Damage in a

Cr-Mo-V Steel, in Testing for Prediction of Material Performance in Structures

and Components, ed. R. Shane (West Conshohocken, PA: ASTM

International), 89-106.

[28] Ashby, M. and Brown, L. (1983). Perspectives in Creep Fracture. Kent:

Elsevier Science

[29] Penny, R. K., Marriott, D. L., &Boresi, A. P. (1995). Design for creep.

~ 202 ~

[30] C.L. Bauer, "Polygonization of Rock Salt", Trans. Metall. Soc. of AIME 223 [4]

(1965) 846-847

[31] Rollason, E. C. (1973). Metallurgy for engineers: Edward Arnold London

[32] Passchier, C. (2014). Microtectonics. [Place of publication notidentified]:

Springer.

[33] H., Courtney, Thomas (1990). Mechanical Behavior of Materials :Solutions

Manual to Accompany. New York: McGraw-Hill,Inc. ISBN 0070132666. OCLC

258076725.

[34] Goretta, K., Cruse, T., Koritala, R., Routbort, J., Mélendez-Martı́nez, J. and de

Arellano-López, A. (2001). Compressive creep of polycrystalline ZrSiO4.

Journal of the European Ceramic Society, 21(8), pp.1055-1060.

[35] Aurenhammer, F. (1991). Voronoi diagrams---a survey of a fundamental

geometric data structure. ACM Computing Surveys, 23(3), pp.345-405.

[36] Barber, C., Dobkin, D. and Huhdanpaa, H. (1996). The quickhull algorithm

for convex hulls. ACM Transactions on Mathematical Software, 22(4), pp.469-

483.

[37] Barber, C., Dobkin, D. and Huhdanpaa, H. (1996). The quickhull algorithm

for convex hulls. ACM Transactions on Mathematical Software, 22(4), pp.469-

483.

[38] Rycroft, C. (2009). VORO++: A three-dimensional Voronoi cell library in C++.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(4), p.041111.

[39] Quey, R., Dawson, P. and Barbe, F. (2011). Large-scale 3D random

polycrystals for the finite element method: Generation, meshing and

remeshing. Computer Methods in Applied Mechanics and Engineering,

200(17-20), pp.1729-1745.

~ 203 ~

[40] NIST. (2019). Object Oriented Finite Elements (OOF). [online] Available

at:https://www.nist.gov/programs-projects/object-oriented-finite-elements-oof

[Accessed 15 Sep. 2019].

[41] van der Giessen, E. and Tvergaard, V. (1991). A creep rupture model

accounting for cavitation at sliding grain boundaries. International Journal of

Fracture, 48(3), pp.153-178.

[42] Onck, P. and van der Giessen, E. (1997). Microstructurally-based modelling

of intergranular creep fracture using grain elements. Mechanics of Materials,

26(2), pp.109-126.

[43] Barenblatt, G. (1959). Equilibrium cracks formed during brittle fracture

rectilinear cracks in plane plates. Journal of Applied Mathematics and

Mechanics, 23(4), pp.1009-1029.

[44] Me´ric, L., Poubanne, P. and Cailletaud, G. (1991). Single Crystal Modeling

for Structural Calculations: Part 1—Model Presentation. Journal of

Engineering Materials and Technology, 113(1), pp.162-170.

[45] Xu, Q., Tu, J. and Lu, Z. (2019). Development of the FE In-House Procedure

for Creep Damage Simulation at Grain Boundary Level. Metals, 9(6), p.656.

[46] Шамровский, А. and Богданова, Е. (2014). Solution of contact problems of

elasticity theory using a discrete finite-size element. Eastern-European Journal

of Enterprise Technologies, 3(7(69), p.41.

[47] Luo, P., Liu, G., Wang, W. and Xu, C. (2016). The Viscoelastic boundary

simulation based on Non-thickness Goodman element. Journal of Fuzhou

University (Natural Science Edition), [online] 44(104-109), pp.105-

107.Availableat:

http://xueshu.baidu.com/usercenter/paper/show?paperid=32abe97b88ff3edf2c

a1a8a0d5491884&site=xueshu_se [Accessed 9 Sep. 2019].

[48] Kozák, Vladislav. (2008). Cohesive Zone Modelling. 1048. 10.1063/1.2990924.

~ 204 ~

[49] G.I. Barenblatt (1962). The mathematical theory of equilibrium cracks in

brittle fracture. Advances in Applied Mechanics. 7. pp. 55–129.

[50] Donald S. Dugdale (1960). "Yielding of steel sheets containing slits". Journal

of the Mechanics and Physics of Solids. 8 (2): 100–104.

[51] Needleman, A. (1987). A Continuum Model for Void Nucleation by Inclusion

Debonding. Journal of Applied Mechanics, 54(3), pp.525-531.

[52] Petersson, P. E. (1981). Crack growth and development of fracture zones in

plain concrete and similar materials. Technical report, Division of Building

Materials, Lund Institute of Technology.

[53] Carpinteri, A. (1986). Mechanical damage and crack growth in slits.

MartinusNijhoff Kluwer.

[54] Harder, N. (1997). Size effect caused by brittleness in

fracturemechanics. Engineering Fracture Mechanics, 56(1), pp.3-8.

[55] Park, K. and Paulino, G. (2011). Cohesive Zone Models: A Critical Review of

Traction-Separation Relationships Across Fracture Surfaces. Applied

Mechanics Reviews, 64(6).

[56] Zienkiewicz, O., Taylor, R. and Fox, D. (2014). The finite element method

for solid and structural mechanics. Oxford:Butterworth-Heinemann.

[57] Osgerby, S. and Dyson, B. (1993). A methodology for modelling tertiary creep

behaviour of engineering alloys under oxidising conditions. International

Journal of Pressure Vessels and Piping, 55(2), pp.333-341.

[58] Perrin, I. and Hayhurst, D. (1996). Creep constitutive equations for a 0.5Cr–

0.5Mo–0.25V ferritic steel in the temperature range 600–675°C. The Journal of

Strain Analysis for Engineering Design, 31(4), pp.299-314.

~ 205 ~

[59] Xu, Q. (2001). Creep damage constitutive equations for multi-axial states of

stress for 0.5Cr0.5Mo0.25V ferritic steel at 590°C. Theoretical and Applied

Fracture Mechanics, 36(2), pp.99-107.

[60] Dyson, B. (1983). Continuous cavity nucleation and creep fracture.

ScriptaMetallurgica, 17(1), pp.31-37.

[61] Dyson, B. (1976). Constraints on diffusional cavity growth rates. Metal

Science, 10(10), pp.349-353.

[62] Watanabe, T. (1993). Grain boundary design and control for high temperature

materials. Materials Science and Engineering: A, 166(1-2), pp.11-28.

[63] Tvergaard, V. (1984). On the creep constrained diffusive cavitation of grain

boundary facets. Journal of the Mechanics and Physics of Solids, 32(5),

pp.373-393.

[64] Rice, J. (1981). Constraints on the diffusive cavitation of isolated grain

boundary facets in creeping polycrystals. Acta Metallurgica, 29(4), pp.675-681

[65] Cocks, A. and Ashby, M. (1982). Creep fracture by coupled power-law creep

and diffusion under multiaxial stress. Metal Science, 16(10), pp.465-474.

[66] Yousefiani, A., Mohamed, F. and Earthman, J. (2000). Creep rupture

mechanisms in annealed and overheated 7075 Al under multiaxial stress

states. Metallurgical and Materials Transactions A, 31(11), pp.2807-2821.

[67] Kassnera, M.E.; Hayesb, T.A.(2003). Creep cavitation in metals. Int. J. Plast.

19, 1715–1748

[68] Vose, M.; Fedelich, B. (2012); Owen, J. A simplified model for creep induced

grain boundary cavitation validated by multiple cavity growth simulations.

Comput. Mater. Sci. 58, 201–213.

[69] Wang, M. (1999). Three-Dimensional Finite Element Analysis of Creep

Continuum Damage Growth and Failure in Weldments. Ph.D. UMIT.

~ 206 ~

[70] Hall, F. (1990). DEVELOPMENT OF CONTINUUM DAMAGE

MECHANICS MODELS TO PREDICT THE CREEP DEFORMATION AND

FAILURE OF HIGH TEMPERATURE STRUCTURES. Ph.D. The University of

Sheffield.

[71] Hyde, T., Becker, A., Sun, W. and Williams, J. (2006). Finite-element creep

damage analyses of P91 pipes. International Journal of Pressure Vessels

and Piping, 83(11-12), pp.853-863.

[72] Ralph, P., & Wand, Y. (2009). A proposal for a formal definition of the design

concept Design requirements engineering: A ten-year perspective (pp. 103-

136): Springer

[73] IRONS, B. (1966). Engineering applications of numerical integration in

stiffness methods. AIAA Journal, 4(11), pp.2035-2037.

[74] Ling, X., Tu, S.-T., & Gong, J.-M. (2000). Application of Runge–Kutta–Merson

algorithm for creep damage analysis. International journal of pressure vessels

and piping, 77(5), 243-248.

[75] Hayhurst, D., & Henderson, J. (1977). Creep stress redistribution in notched

bars. International journal of mechanical sciences, 19(3), 133-146.

[76] Watkins, D., 2010. Fundamentals Of Matrix Computations. Hoboken, N.J.:

Wiley, p.60.

[77] Barrett, R., (1994). Templates For The Solution Of Linear Systems.

Philadelphia, Pa.: Society for Industrial and Applied Mathematics (SIAM,

3600 Market Street, Floor 6, Philadelphia, PA 19104), p.Skyline Storage (SKS).

[78] George, A. and Liu, J., (1981). Computer Solution Of Large Sparse Positive

Definite Systems. Englewood Cliffs, N.J.: Prentice-Hall.

~ 207 ~

[79] Hayhurst, D. ,(1973). Stress Redistribution and Rupture Due to Creep in a

Uniformly Stretched Thin Plate Containing a Circular Hole. Journal of

Applied Mechanics, 40(1), pp.244-250.

[80] Cormeau IC., (1975). Numerical stability in quasi-static elasto-viscoplasticity.

Int J Numer Methods Eng 9(1),109–127.

[81] D.R.Hayhurst, D.A.Miller,(1997). The use of creep constitutive damage

mechanics to predict damage evolution and failure in weld vessels, in:

IMech Seminar: Remanent Life Prediction, London.

[82] Li, G., Thomas, B. and Stubbins, J. (2000). Modeling creep and fatigue of

copper alloys. Metallurgical and Materials Transactions A, 31(10), pp.2491-

2502.

[83] Kachanov, L. (1968). On rupture time under condition of creep.

IzvestiaAkademi Nauk USSR, Otd. Techn. Nauk, Moskwa, 8, 26-31.

[84] Hayhurst, D. (1972). Creep rupture under multi-axial states of

stress. Journal of the Mechanics and Physics of Solids, 20(6), pp.381-382.

[85] Hayhurst, D., Dimmer, P. and Chernuka, M. (1976). Estimates of the creep

rupture lifetime of structures using the finite element method. Journal of

the Mechanics and Physics of Solids, 23(4-6), pp.336-360.

[86] Machiels, L., & Deville, M. (1997). Fortran 90: an entry to object-oriented

programming for the solution of partial differential equations. ACM Transactions

on Mathematical Software (TOMS), 23(1), 32-49.

[87] Akin, J. (1999). Object oriented programming via Fortran 90. Engineering

Computations,16(1), 26-48.

[88] Timoshenko, S. (1962). Theory of elasticity (2nd ed.). Auckland: McGraw-Hill.

~ 208 ~

[89] Taylor, C. and Hughes, T., (1981). Finite Element Programming Of The Navier-

Stokes Equations. Swansea: Pineridge Press.

~ 209 ~

Appendix I the description of library 'Math'

The subroutine library 'Math' is developed by JIADA TU, which contains 21

subroutines. The description of these subroutines is shown in Table AP-1.

Table AP-1 The description of the subroutine library ‘Math’.

Name Description

mpstress

This subroutine is used to generate the principle

stress, (1st, 2nd, 3th).

KRHQ

This subroutine is used to implement the Q.Xu's

creep constitutive equation for 0.6Cr0.6Mo0.26V

ferritic steel at 690 ℃.The integral method applies

the Euler

KR

This subroutine is used to implement the creep

constitutive equation of Katchanov-Robotnov. The

material of this constitutive equation is:

Bar267 at 660 ℃

psigma

This subroutine is used to output the deviator

stress tensor

execute

This subroutine is used to determine if the array

has changed, if yes, the logical variable 'reform' set

true, if not, set false.

KRH This subroutine is used to implement the

~ 210 ~

Hayhurst's creep constitutive equation for

0.6Cr0.6Mo0.26V ferritic steel at 690 ℃. The integral

method apply the Euler

RKKRH

This subroutine is used to implement the

Hayhurst's creep constitutive equation for

0.6Cr0.6Mo0.26V ferritic steel at 690 ℃. The integral

method applies the 4th Runge-Kutta Method.

new_km

This subroutine returns the stiffness matrix of a

2D Goodman element. It uses to simulate the grain

boundary. The element is made up of two linear

elements and four nodal points.

beeg

This subroutine returns the [B] matrix for a 2D

Goodman element.

deeg

This subroutine returns the [D] matrix for

Goodman element

element_inf

This subroutine returns the element

information：length and the angle from a 2D

Goodman element.

Loc_Gol

This subroutine returns the angle transform

matrix from a 2D Goodman element.

P_L

This subroutine is used to implement the creep

constitutive equation of power law creep model. The

~ 211 ~

material of this constitutive equation is: pure copper

at 600 ℃

gbvm

This subroutine is used to implement the creep

constitutive equation of Markus Vose creep model for

grain boundary.

G_shape_fun

This subroutine returns the values at the gauss

point of a shape functions of single surface of a 3D

Goodman element.

Gsample

This subroutine returns the local coordinates and

weighting coefficients of the integrating points.

Gbeemat

This subroutine returns the [B] matrix of a 3D

Goodman element.

Gdeemat

This subroutine returns the [D] matrix of a 3D

Goodman element.

G_shape_der

This subroutine returns derivatives of shape

functions of a 3D Goodman element.

TM_TD

This subroutine returns the transmission matrix

of a 3D Goodman element.

T_coord

This subroutine returns the local node

coordinates of a 3D Goodman element

~ 212 ~

Appendix II Source code of Library 'Math'

Module math

 contains

 SUBROUTINE

mpstress(theta,stress1,theta11,sstress,lode_theta,dsbar,sigm)

!---

!This subroutine is used to generate the max principle stress, (1st,

! 2nd, 3th principle. This subroutine is written by researcher j.tu

! at University of Huddersfield

! 29/04/2017

!---

!---

! Input: (lode_theta:lode_angle;

! dsbar:von_mises_stress;

! sigm:mean_stress)

! Output: (theta(:):principal_stress_array;

! stress1 :First_principal_stress;

! theta11 :maximun_principal_stress)

!--

~ 213 ~

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 INTEGER::i

doubleprecision,INTENT(IN)::lode_theta,dsbar,sigm

doubleprecision,INTENT(OUT),OPTIONAL::theta(:),stress1,sstress,theta11

doubleprecision::flow1,flow2,flow3,two=2.0_iwp,theta1,theta2, &

 theta3,pi=3.1415926,D3=3.0_iwp,loca(1),m,v

!---------------------To determine the max principle stress--------------

 flow1=sin(lode_theta-((two*pi)/(d3)))

 flow2=sin(lode_theta)

 flow3=sin(lode_theta+((two*pi)/(d3)))

 theta1=sigm+(((two)/(d3))*flow1*dsbar)

 theta2=sigm+(((two)/(d3))*flow2*dsbar)

 theta3=sigm+(((two)/(d3))*flow3*dsbar)

 theta(1)=theta1

 theta(2)=theta2

 theta(3)=theta3

! loca=maxloc(abs(theta))

! i=loca(1)

! m=theta(i)

! v=maxval(abs(theta))

~ 214 ~

! theta11=sign(v,m)

 theta11=maxval(theta)

! theta11=theta(1)

 sstress=(theta1**2+theta2**2+theta3**2)**(0.5)

 stress1=theta11-sigm

RETURN

 END subroutine mpstress

 SUBROUTINE KRHQ(orv,iav,cprop,theta,theta11,dsbar)

!---

!This subroutine is used to implement the creep constitutive equation

!of Hayhurt's for 0.5Cr0.5Mo0.25V ferritic steel at 590 ℃。The

!integral method apply the EULAR.

! 17/05/2018

!---

!---

! Input: (iav(:) :Creep_status_parameters_array

! cprop(:):creep_constitutive_equation_paramaters_array

! theta(:):principal_stress_array

~ 215 ~

! theta11 :maximun_principal_stress

! dsbar :von_mises_stress)

! Output: (orv(:) :output_creep_rates_array)

!--

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 Doubleprecision,intent(in)::iav(:),cprop(:),theta(:),theta11,dsbar

 Doubleprecision,INTENT(OUT),OPTIONAL::orv(:)

 Doubleprecision::A,B,C,h,hplus,kc,v,flow1,flow2,flow3,flow4, &

flow5,flow6,flow7,d3=3.0_iwp,zero=0.0_iwp,esp,harder,voul,damage, &

espt,ehard,erave,edate,a1,b1,p,q,stress1,stress2,stress3,mdsbar, &

flow8,flow9,flow10,flow11,flow12,flow13,sdsbar,dsbar1,flow14

 esp=iav(1)

 harder=iav(2)

 voul=iav(3)

 damage=iav(4)

 A=cprop(1)

 B=cprop(2)

 C=cprop(3)

~ 216 ~

 h=cprop(4)

 hplus=cprop(5)

 kc=cprop(6)

 a1=cprop(7)

 b1=cprop(8)

 p=cprop(9)

 q=cprop(10)

 stress1=theta(1)

 stress2=theta(2)

 stress3=theta(3)

 mdsbar=(stress1+stress2+stress3)/d3

 sdsbar=sqrt(stress1**2+stress2**2+stress3**2)

 dsbar1=theta11-mdsbar

 orv=zero

!-----------------The strain rate Part----------------------------------

 flow1=B*dsbar*(1-harder)

 flow2=((1-voul)*(1-damage))

 flow3=((flow1)/(flow2))

~ 217 ~

 espt=A*(sinh(flow3))

!-----------------The Harder rate Part-----------------------------------

 flow4=(1-(harder)/(hplus))

 flow5=(h)/(dsbar)

 ehard=flow4*flow5*espt

!------------------The Evoulation rate Part------------------------------

 flow6=kc/d3

 erave=flow6*((1-voul)**(4))

!------------------The Damage rate Part----------------------------------

 if(theta11>zero)then

 flow7=(1-(theta11)/(dsbar))*p

 flow8=(0.5-(3*mdsbar)/(2*dsbar))*q

 flow9=(exp(flow7+flow8))**(-1)

 flow10=C*espt*flow9

 flow11=(((3*mdsbar)/(sdsbar))-1)*b1

 flow12=exp(flow11)

 flow13=((2*dsbar)/(3*dsbar1))**a1

 flow14=flow12*flow13

 edate=flow10*flow14

 else if(theta11<=zero)then

~ 218 ~

 edate=zero

 end if

 orv(1)=espt

 orv(2)=ehard

 orv(3)=erave

 orv(4)=edate

RETURN

 END subroutine KRHQ

 SUBROUTINE KR(espt,edate,damage,theta11,dsbar,t)

!---

!This subroutine is used to implement the creep constitutive equation

!of Katchanov-Robotnov. The material of this constitutive equation is:

! Bar257 at 650 Celsius

! 10/01/2018

!---

!---

~ 219 ~

! Input: (theta11 :maximun_principal_stress;

! damage :creep_damage_value;

! dsbar :von_mises_stress;

! t :temperature_variable)

! dsbar :von_mises_stress)

! Output:(espt :creep_strain_rate;

! edate:creep_damage_rate)

!--

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 Doubleprecision,INTENT(IN)::damage,theta11,dsbar,t

 Doubleprecision,INTENT(OUT),OPTIONAL::espt,edate

 Doubleprecision::a,q,x,dx,m,flow1,flow2,flow3,flow4,flow5,flow6, &

 flow7,flow8,n,xm

!---------------the parameters of the constitutive equation------------

 a=6.599e-16

 q=4.5

 x=0.3

 dx=5.767

 m=5.998e-14

~ 220 ~

 n=6.108

 xm=0

!--

 flow1=((1-damage)**(n))

 flow2=(flow1)**(-1)

 flow3=a*(dsbar**(n))

 flow4=((t)**(xm))

 espt=flow2*flow3*flow4

 flow5=((1-damage)**(q))*(1+q)

 flow6=((x*theta11)+((1-x)*dsbar))

 flow7=(flow6**(dx))

 edate=m*((flow7)/(flow5))

RETURN

 END subroutine KR

 SUBROUTINE psigma(stress,pstress)

~ 221 ~

!--

! This subroutine is used to output the Partial stress

! component form

! 04/05/2017

!--

!---

! Input : (stress(:) :stress_tenor)

! Output: (pstress(:) :Stress_partial_tensor)

!--

IMPLICIT NONE

INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

doubleprecision,INTENT(IN)::stress(:)

doubleprecision,INTENT(OUT)::pstress(:)

doubleprecision::sx,sy,sz,txy,sigm,s1,s2,s3,s4,s5,s6, &

 three=3.0_iwp

 INTEGER::nst

 nst=UBOUND(stress,1)

 SELECT CASE(nst)

 CASE(3)

 sx=stress(1)

 sy=stress(2)

~ 222 ~

 txy=stress(3)

 sigm=(sx+sy)/three

 pstress(1)=sx-sigm

 pstress(2)=sy-sigm

 pstress(3)=txy

 CASE(4)

 sx=stress(1)

 sy=stress(2)

 txy=stress(3)

 sz=stress(4)

 sigm=(sx+sy+sz)/three

 pstress(1)=sx-sigm

 pstress(2)=sy-sigm

 pstress(3)=txy

 pstress(4)=sz-sigm

!---

! sigm=(sx+sy)/three

! pstress(1)=sx-sigm

! pstress(2)=sy-sigm

~ 223 ~

! pstress(3)=txy

! pstress(4)=-sigm

!---

 CASE(6)

 s1=stress(1)

 s2=stress(2)

 s3=stress(3)

 s4=stress(4)

 s5=stress(5)

 s6=stress(6)

 sigm=(s1+s2+s3)/three

 pstress(1)=s1-sigm

 pstress(2)=s2-sigm

 pstress(3)=s3-sigm

 pstress(4)=s4

 pstress(5)=s5

 pstress(6)=s6

 CASE DEFAULT

 WRITE(*,*)"wrong size for nst in invar"

~ 224 ~

 END SELECT

RETURN

 END SUBROUTINE psigma

 SUBROUTINE execute(olds,fal,reform)

!--

! This subroutine sets reform to .FALSE. if relative change in when the

! fal array changed.

!--

!---

! Input : (old(:) the_array_stores_the_initial_status_of_all_elements;

! fal(:) the_array_stores_the_end_status_of_all_elements)

! Output：(reform: trigger_variable_for_removal_failed_element)

!--

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 INTEGER,INTENT(IN)::olds(:),fal(:)

 LOGICAL,INTENT(OUT)::reform

 reform=.true.

 reform=((MAXVAL(ABS(fal-olds)))>0)

RETURN

~ 225 ~

 END SUBROUTINE execute

 SUBROUTINE KRH(orv,iav,cprop,theta11,dsbar)

!---

!This subroutine is used to implement the creep constitutive equation

!of Hayhurt's for 0.5Cr0.5Mo0.25V ferritic steel at 590 ℃。The

!integral method apply the EULAR.

! 17/05/2018

!---

!---

! Input : (iav(:) : Creep_status_parameters_array;

! cprop(:): Creep_status_parameters_array;

! theta11 : maximun_principal_stress;

! dsbar : von_mises_stress)

! Output：(orv : output_creep_rates_array)

!--

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 Doubleprecision,intent(in)::iav(:),cprop(:),theta11,dsbar

 Doubleprecision,INTENT(OUT),OPTIONAL::orv(:)

 Doubleprecision::A,B,C,h,hplus,kc,v,flow1,flow2,flow3,flow4, &

~ 226 ~

flow5,flow6,flow7,d3=3.0_iwp,zero=0.0_iwp,esp,harder,voul,damage, &

espt,ehard,erave,edate

 esp=iav(1)

 harder=iav(2)

 voul=iav(3)

 damage=iav(4)

 A=cprop(1)

 B=cprop(2)

 C=cprop(3)

 h=cprop(4)

 hplus=cprop(5)

 kc=cprop(6)

 v=cprop(7)

 orv=zero

!-----------------The strain rate Part----------------------------------

 flow1=B*dsbar*(1-harder)

 flow2=((1-voul)*(1-damage))

~ 227 ~

 flow3=((flow1)/(flow2))

 espt=A*(sinh(flow3))

!-----------------The Harder rate Part-----------------------------------

 flow4=(1-(harder)/(hplus))

 flow5=(h)/(dsbar)

 ehard=flow4*flow5*espt

!------------------The Evoulation rate Part------------------------------

 flow6=kc/d3

 erave=flow6*((1-voul)**(4))

!------------------The Damage rate Part----------------------------------

 if(theta11>zero)then

 flow7=((theta11)/(dsbar))**(v)

 edate=C*espt*flow7

 else if(theta11<=zero)then

 edate=zero

 end if

 orv(1)=espt

 orv(2)=ehard

 orv(3)=erave

 orv(4)=edate

~ 228 ~

RETURN

 END subroutine KRH

 SUBROUTINE RKKRH(orv,iav,cprop,theta11,dsbar,dt)

!---

!This subroutine is used to implement the integration method for the

!constitutive equations by 4the Rounge Kutta Method.

! 17/05/2018

!--

!---

! Input : (iav(:) : Creep_status_parameters_array;

! cprop(:): Creep_status_parameters_array;

! theta11 : maximun_principal_stress;

! dsbar : von_mises_stress

! dt : the_time_step_for_integration)

! Output：(orv : output_creep_rates_array)

!--

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

~ 229 ~

 Doubleprecision,intent(in)::iav(:),cprop(:),theta11,dsbar,dt

 Doubleprecision,INTENT(OUT),OPTIONAL::orv(:)

 Doubleprecision::zero=0.0_iwp,D3=3.0_iwp,A,B,C,damage,ehard,ehard1,

&

 ehard2,ehard3,ehard4,ehard5,erave1,erave2,erave3,erave4,erave5,erave, &

 esp,espt,flow1,flow2,flow3,flow4,flow5,flow6,H,harder,hplus,kc,v, &

 voul,flow7,edate

 esp=iav(1)

 harder=iav(2)

 voul=iav(3)

 damage=iav(4)

!----------input the paramaters of the constitutive equation---------

 A=cprop(1)

 B=cprop(2)

 C=cprop(3)

 h=cprop(4)

 hplus=cprop(5)

 kc=cprop(6)

 v=cprop(7)

!--

~ 230 ~

 orv=zero

!--------obtin the strain rate--------------------------------------

 flow1=B*dsbar*(1-harder)

 flow2=((1-voul)*(1-damage))

 flow3=((flow1)/(flow2))

 espt=A*(sinh(flow3))

!--------obtain the harder rate------------------------------------

!------------------for ehard1--------------------------------------

 flow4=(1-(harder)/(hplus))

 flow5=(h)/(dsbar)

 ehard1=flow4*flow5*espt

!-------------------for ehard 2------------------------------------

 harder=iav(2)

 harder=harder+ehard1*dt/3

 flow4=(1-(harder)/(hplus))

 flow5=(h)/(dsbar)

 ehard2=flow4*flow5*espt

!-------------------for ehard 3-------------------------------------

 harder=iav(2)

 harder=harder+(ehard1*dt)/(6)+(ehard2*dt)/(6)

 flow4=(1-(harder)/(hplus))

~ 231 ~

 flow5=(h)/(dsbar)

 ehard3=flow4*flow5*espt

!-------------------for ehard 4-------------------------------------

 harder=iav(2)

 harder=harder+(ehard1*dt)/(8)+(ehard3*dt*3)/(8)

 flow4=(1-(harder)/(hplus))

 flow5=(h)/(dsbar)

 ehard4=flow4*flow5*espt

!-------------------for ehard 5-------------------------------------

 harder=iav(2)

 harder=harder+(ehard1*dt)/(2)-(ehard3*dt*3)/(2)+2*ehard4*dt

 flow4=(1-(harder)/(hplus))

 flow5=(h)/(dsbar)

 ehard5=flow4*flow5*espt

!-------------------for final ehard--

 ehard=(ehard1/6)+((2*ehard4)/3)+(ehard5/6)

!---

!---

!---

!--------------obtain the Evoulation rate-----------------------------------

!-----------------for erave1--

~ 232 ~

 flow6=kc/d3

 erave1=flow6*((1-voul)**(4))

!----------------- for erave2--

 voul=iav(3)

 voul=voul+(erave1*dt/3)

 flow6=kc/d3

 erave2=flow6*((1-voul)**(4))

!----------------- for erave3--

 voul=iav(3)

 voul=voul+(erave1*dt/6)+(erave2*dt/6)

 flow6=kc/d3

 erave3=flow6*((1-voul)**(4))

!----------------- for erave4--

 voul=iav(3)

 voul=voul+(erave1*dt/8)+(erave3*3*dt/8)

 flow6=kc/d3

 erave4=flow6*((1-voul)**(4))

!----------------- for erave5--

 voul=iav(3)

 voul=voul+(erave1*dt/2)-(erave3*3*dt/2)+(2*erave4*dt)

 flow6=kc/d3

 erave5=flow6*((1-voul)**(4))

~ 233 ~

!------------------ the final erave--

 erave=(erave1/6)+((2*erave4)/3)+(erave5/6)

!--------obtin the damage rate---

 if(theta11>zero)then

 flow7=((theta11)/(dsbar))**(v)

 edate=C*espt*flow7

 else if(theta11<=zero)then

 edate=zero

 end if

 orv(1)=espt

 orv(2)=ehard

 orv(3)=erave

 orv(4)=edate

 END SUBROUTINE RKKRH

~ 234 ~

 SUBROUTINE new_km(km,kcoh)

!---

! This subroutine forms the stiffness matrix of a joint element.

! It use to simulate the grain bounday.

! The element is made up of two linear elements and four nodal point.

! The mathmatical background is based on these two articles.

![1]Goodman RE, Taylor RL, Brekke Tl, A model for the mechanics of

!jointed rock, J. Soil Mech, Found. Div, ASCE, 1968, 94 (SM3):637~659.

![2] Шамровский, А. and Богданова, Е. (2014). Solution of contact

!problems of elasticity theory using a discrete finite-size element.

! Eastern-European Journal of Enterprise Technologies, 3(7(69), p.41.i

! The code is writied by J.Tu. Research of Huddersfield University.

! 29/08/2018

!--

!---

! Input : (kcoh(:): Goodman_element_elastic_parameters_array)

! Output：(km(:) : output_Goodman_element_stiffness_matrix)

!--

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 REAL(iwp),INTENT(IN):: kcoh(:)

 REAL(iwp),INTENT(OUT)::km(:,:)

~ 235 ~

 REAL(iwp)::one=1.0_iwp,six=6.0_iwp,ZERO=0.0_iwp,two=2.0_iwp,KS,KN,A

 KN=KCOH(1)

 KS=KCOH(2)

 A=ONE/SIX

 KM=ZERO

 KM(1,1)=TWO*KS

 KM(1,2)=ZERO

 KM(1,3)=(TWO*KS)*(-1)

 KM(1,4)=ZERO

 KM(1,5)=KS*(-1)

 KM(1,6)=ZERO

 KM(1,7)=KS

 KM(1,8)=ZERO

 KM(2,1)=ZERO

 KM(2,2)=TWO*KN

 KM(2,3)=ZERO

 KM(2,4)=(TWO*KN)*(-1)

 KM(2,5)=ZERO

~ 236 ~

 KM(2,6)=KN*(-1)

 KM(2,7)=ZERO

 KM(2,8)=KN

 KM(3,1)=(TWO*KS)*(-1)

 KM(3,2)=ZERO

 KM(3,3)=TWO*KS

 KM(3,4)=ZERO

 KM(3,5)=KS

 KM(3,6)=ZERO

 KM(3,7)=KS*(-1)

 KM(3,8)=ZERO

 KM(4,1)=ZERO

 KM(4,2)=(TWO*KN)*(-1)

 KM(4,3)=ZERO

 KM(4,4)=TWO*KN

 KM(4,5)=ZERO

 KM(4,6)=KN

 KM(4,7)=ZERO

 KM(4,8)=KN*(-1)

 KM(5,1)=KS*(-1)

 KM(5,2)=ZERO

 KM(5,3)=KS

~ 237 ~

 KM(5,4)=ZERO

 KM(5,5)=TWO*KS

 KM(5,6)=ZERO

 KM(5,7)=(TWO*KS)*(-1)

 KM(5,8)=ZERO

 KM(6,1)=ZERO

 KM(6,2)=KN*(-1)

 KM(6,3)=ZERO

 KM(6,4)=KN

 KM(6,5)=ZERO

 KM(6,6)=TWO*KN

 KM(6,7)=ZERO

 KM(6,8)=(TWO*KN)*(-1)

 KM(7,1)=KS

 KM(7,2)=ZERO

 KM(7,3)=KS*(-1)

 KM(7,4)=ZERO

 KM(7,5)=(TWO*KS)*(-1)

 KM(7,6)=ZERO

 KM(7,7)=TWO*KS

 KM(7,8)=ZERO

 KM(8,1)=ZERO

~ 238 ~

 KM(8,2)=KN

 KM(8,3)=ZERO

 KM(8,4)=KN*(-1)

 KM(8,5)=ZERO

 KM(8,6)=(TWO*KN)*(-1)

 KM(8,7)=ZERO

 KM(8,8)=TWO*KN

 KM=A*KM

RETURN

 END SUBROUTINE new_km

 SUBROUTINE beeg(bee)

!--

! This subroutine forms the bee matrix for goodman element

!---

!---

! Output：(bee(:) : output_Goodman_element_B_matrix)

!--

~ 239 ~

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 REAL(iwp),INTENT(OUT)::bee(:,:)

 REAL::zero=0.0_iwp,one=1.0_iwp

 bee=zero

 bee(1,1)=-one

 bee(2,2)=-one

 bee(1,3)=one

 bee(2,4)=one

 bee(1,5)=one

 bee(2,6)=one

 bee(1,7)=-one

 bee(2,8)=-one

 bee=0.5*bee

RETURN

 END SUBROUTINE beeg

~ 240 ~

 SUBROUTINE deeg(dee,kcoh)

!---

! This subroutine returns the elastic dee matrix for goodman element

!---

!---

! Input : (kcoh(:) : Goodman_element_elastic_parameters_array)

! Output：(dee(:) : output_Goodman_element_dee_matrix)

!---

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 REAL(iwp),INTENT(IN)::kcoh(:)

 REAL(iwp),INTENT(OUT)::dee(:,:)

 REAL(iwp)::KN,KS,zero=0.0_iwp

 dee=zero

 KN=KCOH(1)

 KS=KCOH(2)

 dee(1,1)=KS

 dee(2,2)=KN

RETURN

~ 241 ~

 END SUBROUTINE deeg

 SUBROUTINE element_inf(length,angle,coord)

!--

! This subroutine forms the length and the angle for

! the goodman element

! Research:J.Tu

! The University of Huddersfield

! 06/09/2018

!---

!---

! Input : (coord(:) : Goodman_element_node_coordinate_array)

! Output：(length : 2d_Goodman_element_length;

! angle(:) : array_stores_the_sine&cosine_of_local_to_global_

! _coordinate_system_angle)

!---

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 REAL(iwp),INTENT(IN)::coord(:,:)

 REAL(iwp),INTENT(OUT)::length,angle(:)

 REAL::zero=0.0_iwp,one=1.0_iwp,two=2.0_iwp,x1,x2,x3,x4,y1,&

~ 242 ~

 y2,y3,y4,angle1,angle2,length1,length2,a1,b1,a2,b2

 !---------------inport the coordinate for each node-------

 x1=coord(1,1)

 y1=coord(1,2)

 x2=coord(2,1)

 y2=coord(2,2)

 x3=coord(3,1)

 y3=coord(3,2)

 x4=coord(4,1)

 y4=coord(4,2)

!--------------for upper surface--------------------

length1=sqrt((x2-x3)**(two)+(y2-y3)**(two))

a1=(y3-y2)/length1

b1=(x3-x2)/length1

!--------------for bottom surface-------------------

length1=sqrt((x1-x4)**(two)+(y1-y4)**(two))

a2=(y4-y1)/length2

b2=(x4-x1)/length2

length=length1

~ 243 ~

angle(1)=a1

angle(2)=b1

RETURN

 END SUBROUTINE element_inf

 SUBROUTINE Loc_Gol(angle_t,angle)

!--

! This subroutine is used to obtain the angle transform

! matrix for goodman element.

! Research:J.Tu

! The University of Huddersfield

! 08/09/2018

!---

!---

! Input : (angle(:) : array_stores_the_sine&cosine_of_local_to_global_

! _coordinate_system_angle)

! Output：(angle(:) : local_global_coordinate_transformation_matrix)

!---

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

~ 244 ~

 REAL(iwp),INTENT(IN)::angle(:)

 REAL(iwp),INTENT(OUT)::angle_t(:,:)

 INTEGER::i

 REAL::zero=0.0_iwp,one=1.0_iwp,two=2.0_iwp,sina,cosa

 !----inport the trigonometric value for each element-----

 sina=angle(1)

 cosa=angle(2)

 !--

 angle_t=zero

 Do i=1,8

 angle_t(i,i)=cosa

 End do

 angle_t(1,2)=sina

 angle_t(2,1)=-sina

 angle_t(3,4)=sina

 angle_t(4,3)=-sina

 angle_t(5,6)=sina

 angle_t(6,5)=-sina

 angle_t(7,8)=sina

 angle_t(8,7)=-sina

~ 245 ~

RETURN

 END SUBROUTINE Loc_Gol

 SUBROUTINE P_L(espt,cprop,dsbar,t)

!---

!This subroutine is used to implement the creep constitutive equation

!of power law creep model. The material of this constitutive equation

!is: pure copper at 500 Celsius

! 15/10/2018

!---

!---

! Input: (cprop(:):creep_constitutive_equation_paramaters_array

! theta11 :maximun_principal_stress

! dsbar :von_mises_stress

! t :temperature_variable)

! Output: (espt(:) :output_creep_strain_rate)

!--

 IMPLICIT NONE

~ 246 ~

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 Doubleprecision,INTENT(IN)::cprop(:),dsbar,t

 Doubleprecision,INTENT(OUT),OPTIONAL::espt

 Doubleprecision::A,Q,N,M,Tem,R,K,flow1,flow2,flow3,flow4,flow5

!---------------the parameters of the constitutive equation------------

 A=cprop(1)

 Q=CPROP(2)

 N=CPROP(3)

 M=CPROP(4)

 Tem=CPROP(5)

 R=8.314

 K=Tem+273.15

!---------------the power law constitutive equation---------------------

!The constitutive equation is form the publication:

!G. LI, B.G. THOMAS, and J.F. STUBBINS (10/2000)

!'Modeling Creep and Fatigue of Copper Alloys',

!METALLURGICAL AND MATERIALS TRANSACTIONS A, 31(10), pp. 2491

- 2502

!--

~ 247 ~

 flow1=((-Q)/(R*K))

 flow2=exp(flow1)

 flow3=A*flow2

 flow4=(dsbar**(n))

 flow5=((t**(m)))

 espt=flow3*flow4*flow5

RETURN

 END subroutine P_L

 SUBROUTINE gbvm(dp,db,w,gcprop,p,b)

!---

!This subroutine is used to implement the creep constitutive equation

!of Markus Vose creep model for grain boundary. The reference for this

!model is :

! Vöse, M., Fedelich, B. and Owen, J. (2012). A simplified model for

! creep induced grain boundary cavitation validated by multiple cavity

! growth simulations. Computational Materials Science, 58, pp.201-213.

! 18/10/2018

~ 248 ~

!---

!---

! Input: (gcprop(:):grain_boundary_creep_constitutive_equation

! _paramaters_array;

! p :input_grain_boundary_creep_cavity_density;

! b :input_grain_boundary_creep_damage_variable)

!Output: (dp :output_grain_boundary_creep_cavity_density_rate;

! db :output_grain_boundary_creep_damage_variable_rate;

! w :output_grain_boundary_creep_damage)

!--

IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 Doubleprecision,INTENT(IN)::gcprop(:),p,b

 Doubleprecision,INTENT(OUT),OPTIONAL::dp,db,w

 Doubleprecision::a1,dgb1,rs,xp,r,theta,x1,x2,x3,x4,theta1,flow1, &

 flow2,flow3,flow4,flow5,flow6,flow7,y,xa,up,stip0,qw0,pi=3.1415926, &

 one=1.0_iwp,two=2.0_iwp,d3=3.0_iwp,flow8,flow9,htheta,flow10,flow11, &

 flow12,flow13,flow14,f,dup,dgb,da,a

!------input the creep parameters for the constitutive equation--------

 a1=gcprop(1)

 dgb1=gcprop(2)

 rs=gcprop(3)

~ 249 ~

 xp=gcprop(4)

 r=gcprop(5)

 theta=gcprop(6)

 x1=gcprop(7)

 x2=gcprop(8)

 x3=gcprop(9)

 x4=gcprop(10)

!------------------- prepare for simulation-----------------------------

 theta1=(theta*pi)/180

 flow1=((1+cos(theta1))**(-1))-(cos(theta1))/2

 htheta=flow1/sin(theta1)

 up=(4*htheta*(a1**3))/(3*(r**2))

 dgb=dgb1**3

!----------------initinalization for the simulation---------------------

~ 250 ~

!------------------the constitutive equation part----------------

!--------------------------equation 60---

 flow1=(3*b)/(4*htheta*pi)

 a=(1/(sqrt(p)))*(flow1**(one/d3))

 w=((9*pi*(b**2))/(16*(htheta**2)))**(one/d3)

!--------------------------equation 59---

 stip0=(2*rs*sin(theta1))/a

 qw0=(-2)*dlog(w*x2)-((3-w*x2)*(1-w*x2))

 flow2=1-stip0*(1-x2*w)

 flow3=(a**2)*qw0

 da=(x1*2*dgb*flow2)/(htheta*flow3)

!--------------------------equation 58---

 xa=x3*8*pi*(p**2)*a*da

~ 251 ~

!--------------------------equation 62---

 flow4=(b*(xp-xa))/(sqrt(p**3))

 flow10=36*htheta*pi

 flow11=b**2

 flow12=flow10*flow11

 flow13=one/d3

 flow5=((flow12)**(flow13))*da

 dup=flow4+flow5

!------------debug to here--

!--------------------------equation 61---

 flow14=-one

 flow6=x4*2*pi*dgb*p*((dup)**(flow14))

 flow7=(2*rs*sin(theta1))-stip0

 y=exp(flow6*flow7)

 f=((y-1)*w)/(1-w)

~ 252 ~

!--------------------------equation 57---

 dp=xp*(1-f)-xa

 flow8=(3*b*(xp-xa))/(2*p)

 flow9=(sqrt(p))*((36*htheta*(b**2)*pi)**(flow13))*da

 db=flow8+flow9

RETURN

 END subroutine gbvm

 SUBROUTINE G_shape_fun(fun,points,i)

!--

! This subroutine computes the values of the shape functions

! of single surface of 3D Goodman element.

! to local coordinates

! Developed by Researcher:J.TU

! The University of Huddersfield

! 21/09/2019

!---

!---

! Input: (i : Gaussian_point_number;

~ 253 ~

! point(:,:) : array_stores_sampling_function)

! Output: (fun(:) :array_stores_shape_function)

!--

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 INTEGER,INTENT(in)::i

 REAL(iwp),INTENT(IN)::points(:,:)

 REAL(iwp),INTENT(OUT)::fun(:)

 REAL(iwp)::eta,xi,etam,etap,xim,xip,zetam,zetap,c1,c2,c3

 REAL(iwp)::t1,t2,t3,t4,t5,t6,t7,t8,t9

 INTEGER::l,ndim,nod

REAL,PARAMETER::pt125=0.125_iwp,pt25=0.25_iwp,pt5=0.5_iwp,pt75=0.75_i

wp, &

one=1.0_iwp,two=2.0_iwp,d3=3.0_iwp,d4=4.0_iwp,d8=8.0_iwp,d9=9.0_iwp,

&

 d16=16.0_iwp,d27=27.0_iwp,d32=32.0_iwp,d64=64.0_iwp,d128=128.0_iwp

 nod=UBOUND(fun,1)

~ 254 ~

 c1=points(i,1)

 c2=points(i,2)

 c3=one-c1-c2

 xi=points(i,1)

 eta=points(i,2)

 etam=pt25*(one-eta)

 etap=pt25*(one+eta)

 xim=pt25*(one-xi)

 xip=pt25*(one+xi)

 SELECT CASE(nod)

 CASE(3)

 fun = (/c1,c3,c2/)

 CASE(6)

 fun(1)=(two*c1-one)*c1

 fun(2)=d4*c3*c1

 fun(3)=(two*c3-one)*c3

 fun(4)=d4*c2*c3

 fun(5)=(two*c2-one)*c2

 fun(6)=d4*c1*c2

~ 255 ~

 CASE(10)

 fun(1)= ((d3*c1-one)*(d3*c1-two)*c1)/two

 fun(2)= -(d9*(d3*c1-one)*(c1+c2-one)*c1)/two

 fun(3)= (d9*(d3*c1+d3*c2-two)*(c1+c2-one)*c1)/two

 fun(4)=-((d3*c1+d3*c2-one)*(d3*c1+d3*c2-two)*(c1+c2-one))/two

 fun(5)= (d9*(d3*c1+d3*c2-two)*(c1+c2-one)*c2)/two

 fun(6)= -(d9*(c1+c2-one)*(d3*c2-one)*c2)/two

 fun(7)= ((d3*c2-one)*(d3*c2-two)*c2)/two

 fun(8)= (d9*(d3*c2-one)*c1*c2)/two

 fun(9)= (d9*(d3*c1-one)*c1*c2)/two

 fun(10)=-d27*((c2-one)+c1)*c1*c2

 CASE(15)

 t1=c1-pt25

 t2=c1-pt5

 t3=c1-pt75

 t4=c2-pt25

 t5=c2-pt5

 t6=c2-pt75

 t7=c3-pt25

 t8=c3-pt5

 t9=c3-pt75

 fun(1)=d32/d3*c1*t1*t2*t3

~ 256 ~

 fun(2)=d128/d3*c3*c1*t1*t2

 fun(3)=d64*c3*c1*t1*t7

 fun(4)=d128/d3*c3*c1*t7*t8

 fun(5)=d32/d3*c3*t7*t8*t9

 fun(6)=d128/d3*c2*c3*t7*t8

 fun(7)=d64*c2*c3*t4*t7

 fun(8)=d128/d3*c2*c3*t4*t5

 fun(9)=d32/d3*c2*t4*t5*t6

 fun(10)=d128/d3*c1*c2*t4*t5

 fun(11)=d64*c1*c2*t1*t4

 fun(12)=d128/d3*c1*c2*t1*t2

 fun(13)=d128*c1*c2*t1*c3

 fun(15)=d128*c1*c2*c3*t4

 fun(14)=d128*c1*c2*c3*t7

 CASE(4)

 fun=(/d4*xim*etam,d4*xim*etap,d4*xip*etap,d4*xip*etam/)

 CASE(5)

 fun=(/d4*xim*etam-pt25*(one-xi**2)*(one-eta**2), &

 d4*xim*etap-pt25*(one-xi**2)*(one-eta**2), &

 d4*xip*etap-pt25*(one-xi**2)*(one-eta**2), &

 d4*xip*etam-pt25*(one-xi**2)*(one-eta**2), &

 (one-xi**2)*(one-eta**2)/)

~ 257 ~

 CASE(8)

 fun=(/d4*etam*xim*(-xi-eta-one),d32*etam*xim*etap,

&

 d4*etap*xim*(-xi+eta-one),d32*xim*xip*etap,

&

 d4*etap*xip*(xi+eta-one), d32*etap*xip*etam,

&

 d4*xip*etam*(xi-eta-one), d32*xim*xip*etam/)

 CASE(9)

 etam=eta-one

 etap=eta+one

 xim=xi-one

 xip=xi+one

 fun=(/pt25*xi*xim*eta*etam,-pt5*xi*xim*etap*etam,

&

 pt25*xi*xim*eta*etap,-pt5*xip*xim*eta*etap,

&

 pt25*xi*xip*eta*etap,-pt5*xi*xip*etap*etam,

&

 pt25*xi*xip*eta*etam,-pt5*xip*xim*eta*etam,

&

 xip*xim*etap*etam/)

~ 258 ~

 CASE DEFAULT

 WRITE(*,*)"wrong number of nodes in shape_fun"

 END SELECT

RETURN

 END SUBROUTINE G_shape_fun

 SUBROUTINE Gsample(element,s,wt)

!---

! This subroutine returns the local coordinates and weighting coefficients

! of the integrating points.

!---

!---

! Input:(element: the_shape_of_3D_Goodman_single_surface;

! s(:,:) : the_coordinates_of_Gaussian_point_at_local_coordinate

! _system)

!Output:(wt(:) : the_wights_of_Gaussion_points_in_Gauss_Legendre

! _quadrilateral_integration)

!--

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

~ 259 ~

 REAL(iwp),INTENT(OUT)::s(:,:)

 REAL(iwp),INTENT(OUT),OPTIONAL::wt(:)

 CHARACTER(*),INTENT(IN)::element

 INTEGER::nip

 REAL(iwp)::root3,r15,w(3),v(9),b,c

 root3=1.0_iwp/SQRT(3.0_iwp)

 r15=0.2_iwp*SQRT(15.0_iwp)

 nip=UBOUND(s,1)

 w=(/5.0_iwp/9.0_iwp,8.0_iwp/9.0_iwp,5.0_iwp/9.0_iwp/)

 v=(/5.0_iwp/9.0_iwp*w,8.0_iwp/9.0_iwp*w,5.0_iwp/9.0_iwp*w/)

 SELECT CASE(element)

 CASE('T')

 SELECT CASE(nip)

 CASE(1)

 s(1,1)= 0.333333333333333_iwp

 s(1,2)= 0.333333333333333_iwp

 wt(1) = 0.500000000000000_iwp

 CASE(3)

 s(1,1)= 0.500000000000000_iwp

 s(1,2)= 0.500000000000000_iwp

 s(2,1)= 0.500000000000000_iwp

 s(2,2)= 0.000000000000000_iwp

~ 260 ~

 s(3,1)= 0.000000000000000_iwp

 s(3,2)= 0.500000000000000_iwp

 wt(1:3)=0.333333333333333_iwp

 wt=0.5_iwp*wt

 CASE(4)

 s(1,1)= 0.6_iwp

 s(1,2)= 0.2_iwp

 s(2,1)= 0.2_iwp

 s(2,2)= 0.6_iwp

 s(3,1)= 0.2_iwp

 s(3,2)= 0.2_iwp

 s(4,1)= 0.333333333333333_iwp

 s(4,2)= 0.333333333333333_iwp

 wt(1:3)= 0.520833333333333_iwp

 wt(4)= -0.5625_iwp

 wt=0.5_iwp*wt

 CASE(6)

 s(1,1)= 0.816847572980459_iwp

 s(1,2)= 0.091576213509771_iwp

 s(2,1)= 0.091576213509771_iwp

 s(2,2)= 0.816847572980459_iwp

 s(3,1)= 0.091576213509771_iwp

~ 261 ~

 s(3,2)= 0.091576213509771_iwp

 s(4,1)= 0.108103018168070_iwp

 s(4,2)= 0.445948490915965_iwp

 s(5,1)= 0.445948490915965_iwp

 s(5,2)= 0.108103018168070_iwp

 s(6,1)= 0.445948490915965_iwp

 s(6,2)= 0.445948490915965_iwp

 wt(1:3)=0.109951743655322_iwp

 wt(4:6)=0.223381589678011_iwp

 wt=0.5_iwp*wt

 CASE(7)

 s(1,1)= 0.333333333333333_iwp

 s(1,2)= 0.333333333333333_iwp

 s(2,1)= 0.797426985353087_iwp

 s(2,2)= 0.101286507323456_iwp

 s(3,1)= 0.101286507323456_iwp

 s(3,2)= 0.797426985353087_iwp

 s(4,1)= 0.101286507323456_iwp

 s(4,2)= 0.101286507323456_iwp

 s(5,1)= 0.470142064105115_iwp

 s(5,2)= 0.059715871789770_iwp

 s(6,1)= 0.059715871789770_iwp

~ 262 ~

 s(6,2)= 0.470142064105115_iwp

 s(7,1)= 0.470142064105115_iwp

 s(7,2)= 0.470142064105115_iwp

 wt(1) = 0.225000000000000_iwp

 wt(2:4)=0.125939180544827_iwp

 wt(5:7)=0.132394152788506_iwp

 wt=0.5_iwp*wt

 CASE(12)

 s(1,1)= 0.873821971016996_iwp

 s(1,2)= 0.063089014491502_iwp

 s(2,1)= 0.063089014491502_iwp

 s(2,2)= 0.873821971016996_iwp

 s(3,1)= 0.063089014491502_iwp

 s(3,2)= 0.063089014491502_iwp

 s(4,1)= 0.501426509658179_iwp

 s(4,2)= 0.249286745170910_iwp

 s(5,1)= 0.249286745170910_iwp

 s(5,2)= 0.501426509658179_iwp

 s(6,1)= 0.249286745170910_iwp

 s(6,2)= 0.249286745170910_iwp

 s(7,1) =0.053145049844817_iwp

 s(7,2) =0.310352451033784_iwp

~ 263 ~

 s(8,1) =0.310352451033784_iwp

 s(8,2) =0.053145049844817_iwp

 s(9,1) =0.053145049844817_iwp

 s(9,2) =0.636502499121398_iwp

 s(10,1)=0.310352451033784_iwp

 s(10,2)=0.636502499121398_iwp

 s(11,1)=0.636502499121398_iwp

 s(11,2)=0.053145049844817_iwp

 s(12,1)=0.636502499121398_iwp

 s(12,2)=0.310352451033784_iwp

 wt(1:3)=0.050844906370207_iwp

 wt(4:6)=0.116786275726379_iwp

 wt(7:12)=0.082851075618374_iwp

 wt=0.5_iwp*wt

 CASE(16)

 s(1,1)=0.333333333333333_iwp

 s(1,2)=0.333333333333333_iwp

 s(2,1)=0.658861384496478_iwp

 s(2,2)=0.170569307751761_iwp

 s(3,1)=0.170569307751761_iwp

 s(3,2)=0.658861384496478_iwp

 s(4,1)=0.170569307751761_iwp

~ 264 ~

 s(4,2)=0.170569307751761_iwp

 s(5,1)=0.898905543365938_iwp

 s(5,2)=0.050547228317031_iwp

 s(6,1)=0.050547228317031_iwp

 s(6,2)=0.898905543365938_iwp

 s(7,1)=0.050547228317031_iwp

 s(7,2)=0.050547228317031_iwp

 s(8,1)=0.081414823414554_iwp

 s(8,2)=0.459292588292723_iwp

 s(9,1)=0.459292588292723_iwp

 s(9,2)=0.081414823414554_iwp

 s(10,1)=0.459292588292723_iwp

 s(10,2)=0.459292588292723_iwp

 s(11,1)=0.008394777409958_iwp

 s(11,2)=0.263112829634638_iwp

 s(12,1)=0.008394777409958_iwp

 s(12,2)=0.728492392955404_iwp

 s(13,1)=0.263112829634638_iwp

 s(13,2)=0.008394777409958_iwp

 s(14,1)=0.263112829634638_iwp

 s(14,2)=0.728492392955404_iwp

 s(15,1)=0.728492392955404_iwp

~ 265 ~

 s(15,2)=0.008394777409958_iwp

 s(16,1)=0.728492392955404_iwp

 s(16,2)=0.263112829634638_iwp

 wt(1)=0.144315607677787_iwp

 wt(2:4)=0.103217370534718_iwp

 wt(5:7)=0.032458497623198_iwp

 wt(8:10)=0.095091634267284_iwp

 wt(11:16)=0.027230314174435_iwp

 wt=0.5_iwp*wt

 CASE DEFAULT

 WRITE(*,*)"wrong number of integrating points for a triangle"

 END SELECT

 CASE('Q')

 SELECT CASE(nip)

 CASE(1)

 s(1,1)=0.0_iwp

 s(1,2)=0.0_iwp

 wt(1)=4.0_iwp

 CASE(4)

 s(1,1)=-root3

 s(1,2)= root3

 s(2,1)= root3

~ 266 ~

 s(2,2)= root3

 s(3,1)=-root3

 s(3,2)=-root3

 s(4,1)= root3

 s(4,2)=-root3

 wt=1.0_iwp

 CASE(9)

 s(1:7:3,1)=-r15

 s(2:8:3,1)=0.0_iwp

 s(3:9:3,1)=r15

 s(1:3,2) =r15

 s(4:6,2) =0.0_iwp

 s(7:9,2) =-r15

 wt= v

 CASE(16)

 s(1:13:4,1)=-0.861136311594053_iwp

 s(2:14:4,1)=-0.339981043584856_iwp

 s(3:15:4,1)= 0.339981043584856_iwp

 s(4:16:4,1)= 0.861136311594053_iwp

 s(1:4,2) = 0.861136311594053_iwp

 s(5:8,2) = 0.339981043584856_iwp

 s(9:12,2) =-0.339981043584856_iwp

~ 267 ~

 s(13:16,2) =-0.861136311594053_iwp

 wt(1) = 0.121002993285602_iwp

 wt(4) = wt(1)

 wt(13) = wt(1)

 wt(16) = wt(1)

 wt(2) = 0.226851851851852_iwp

 wt(3) = wt(2)

 wt(5) = wt(2)

 wt(8) = wt(2)

 wt(9) = wt(2)

 wt(12) = wt(2)

 wt(14) = wt(2)

 wt(15) = wt(2)

 wt(6) = 0.425293303010694_iwp

 wt(7) = wt(6)

 wt(10) = wt(6)

 wt(11) = wt(6)

 CASE(25)

 s(1:21:5,1)= 0.906179845938664_iwp

 s(2:22:5,1)= 0.538469310105683_iwp

 s(3:23:5,1)= 0.0_iwp

 s(4:24:5,1)=-0.538469310105683_iwp

~ 268 ~

 s(5:25:5,1)=-0.906179845938664_iwp

 s(1: 5,2) = 0.906179845938664_iwp

 s(6:10,2) = 0.538469310105683_iwp

 s(11:15,2) = 0.0_iwp

 s(16:20,2) =-0.538469310105683_iwp

 s(21:25,2) =-0.906179845938664_iwp

 wt(1) =0.056134348862429_iwp

 wt(2) =0.113400000000000_iwp

 wt(3) =0.134785072387521_iwp

 wt(4) =0.113400000000000_iwp

 wt(5) =0.056134348862429_iwp

 wt(6) =0.113400000000000_iwp

 wt(7) =0.229085404223991_iwp

 wt(8) =0.272286532550750_iwp

 wt(9) =0.229085404223991_iwp

 wt(10)=0.113400000000000_iwp

 wt(11)=0.134785072387521_iwp

 wt(12)=0.272286532550750_iwp

 wt(13)=0.323634567901235_iwp

 wt(14)=0.272286532550750_iwp

 wt(15)=0.134785072387521_iwp

 wt(16)=0.113400000000000_iwp

~ 269 ~

 wt(17)=0.229085404223991_iwp

 wt(18)=0.272286532550750_iwp

 wt(19)=0.229085404223991_iwp

 wt(20)=0.113400000000000_iwp

 wt(21)=0.056134348862429_iwp

 wt(22)=0.113400000000000_iwp

 wt(23)=0.134785072387521_iwp

 wt(24)=0.113400000000000_iwp

 wt(25)=0.056134348862429_iwp

 CASE DEFAULT

 WRITE(*,*)"wrong number of integrating points for a quadrilateral"

 END SELECT

 CASE DEFAULT

 WRITE(*,*)"not a valid element type"

 END SELECT

RETURN

 END SUBROUTINE Gsample

 SUBROUTINE Gbeemat(bee,fun)

!---

~ 270 ~

! This subroutine forms the bee matrix for 3D Goodman element.

! Developer:

J.TU

! The University of

Huddersfield

!

21/09/2019

!---

!---

! Input:(fun(:): the_shape_function_of_3D_Goodman_single_surface)

!Output:(bee(:): the_bee_matrix_of_3D_Goodman)

!--

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 REAL(iwp),INTENT(IN)::fun(:)

 REAL(iwp),INTENT(OUT)::bee(:,:)

 INTEGER::i,h

 REAL::N1,N2,N3,N4,N5,N6,N7,N8

 N1=fun(1)

 N2=fun(2)

 N3=fun(3)

~ 271 ~

 N4=fun(4)

 N5=-N1

 N6=-N2

 N7=-N3

 N8=-N4

 bee=0.0_iwp

do i=1,3

 h=i

 bee(i,h)=N1

end do

do i=1,3

 h=i+3

 bee(i,h)=N2

end do

do i=1,3

~ 272 ~

 h=i+6

 bee(i,h)=N3

end do

do i=1,3

 h=i+9

 bee(i,h)=N4

end do

do i=1,3

 h=i+12

 bee(i,h)=N5

end do

do i=1,3

 h=i+15

 bee(i,h)=N6

end do

do i=1,3

 h=i+18

 bee(i,h)=N7

~ 273 ~

end do

do i=1,3

 h=i+21

 bee(i,h)=N8

end do

RETURN

 END SUBROUTINE Gbeemat

 SUBROUTINE Gdeemat(dee,kcoh)

!---

! This subroutine returns the elastic dee matrix for 3D Goodman Element,

! it is a kind of cohesive element.

! developer:

J.Tu

! The University of

Huddersfield

!

22/09/2019

!---

~ 274 ~

!---

! Input:(kcoh: 3D_Goodman_element_elastic_parameters_array)

!Output:(dee(:,:): the_dee_matrix_of_3D_Goodman)

!--

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 REAL(iwp),INTENT(IN)::kcoh(:)

 REAL(iwp),INTENT(OUT)::dee(:,:)

 REAL(iwp)::KN,KS1,KS2,zero=0.0_iwp

 dee=zero

 KN=KCOH(1)

 KS1=KCOH(2)

 KS2=KCOH(3)

 dee(1,1)=KS1

 dee(2,2)=KS2

 dee(3,3)=KN

RETURN

 END SUBROUTINE Gdeemat

 SUBROUTINE G_shape_der(der,points,i)

~ 275 ~

!---

! This subroutine produces derivatives of shape functions of 3D Goodman

! element.

! Developed by

Researcher:J.TU

! The University of

Huddersfield

!

21/09/2019

!---

!---

! Input:(i : Gaussian_point_number;

! points(:,:): array_stores_sampling_function)

!Output:(der(:,:): the_array_stores_the shape_function derivatives_of

! _3D_Goodman)

!---

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 INTEGER,INTENT(IN)::i

 REAL(iwp),INTENT(IN)::points(:,:)

 REAL(iwp),INTENT(OUT)::der(:,:)

 REAL(iwp)::eta,xi,zeta,etam,etap,xim,xip,c1,c2,c3

~ 276 ~

 REAL(iwp)::t1,t2,t3,t4,t5,t6,t7,t8,t9,x2p1,x2m1,e2p1,e2m1,zetam,zetap

REAL,PARAMETER::zero=0.0_iwp,pt125=0.125_iwp,pt25=0.25_iwp,pt5=0.5_i

wp, &

pt75=0.75_iwp,one=1.0_iwp,two=2.0_iwp,d3=3.0_iwp,d4=4.0_iwp,d5=5.0_iwp,

&

 d6=6.0_iwp,d8=8.0_iwp,d9=9.0_iwp,d10=10.0_iwp,d11=11.0_iwp,

&

 d12=12.0_iwp,d16=16.0_iwp,d18=18.0_iwp,d27=27.0_iwp,d32=32.0_iwp,

&

 d36=36.0_iwp,d54=54.0_iwp,d64=64.0_iwp,d128=128.0_iwp

 INTEGER::xii(20),etai(20),zetai(20),l,ndim,nod

 nod= UBOUND(der,2)

 xi=points(i,1)

 eta=points(i,2)

 c1=xi

 c2=eta

 c3=one-c1-c2

 etam=pt25*(one-eta)

~ 277 ~

 etap=pt25*(one+eta)

 xim= pt25*(one-xi)

 xip= pt25*(one+xi)

 x2p1=two*xi+one

 x2m1=two*xi-one

 e2p1=two*eta+one

 e2m1=two*eta-one

 SELECT CASE(nod)

 CASE(3)

 der(1,1)=one

 der(1,3)=zero

 der(1,2)=-one

 der(2,1)=zero

 der(2,3)=one

 der(2,2)=-one

 CASE(6)

 der(1,1)=d4*c1-one

 der(1,6)=d4*c2

 der(1,5)=zero

 der(1,4)=-d4*c2

 der(1,3)=-(d4*c3-one)

 der(1,2)=d4*(c3-c1)

~ 278 ~

 der(2,1)=zero

 der(2,6)=d4*c1

 der(2,5)=d4*c2-one

 der(2,4)=d4*(c3-c2)

 der(2,3)=-(d4*c3-one)

 der(2,2)=-d4*c1

 CASE(10)

 der(1,1)=(d27*c1**2-d18*c1+two)/two

 der(1,9)=(d9*(d6*c1-one)*c2)/two

 der(1,8)=(d9*(d3*c2-one)*c2)/two

 der(1,7)=zero

 der(1,6)=-(d9*(d3*c2-one)*c2)/two

 der(1,5)= (d9*(d6*c1+d6*c2-d5)*c2)/two

 der(1,4)=-(d27*c1**2+d54*c1*c2-d36*c1+d27*c2**2-d36*c2+d11)/two

 der(1,3)= (d9*(d9*c1**2+d12*c1*c2-d10*c1+d3*c2**2-d5*c2+two))/two

 der(1,2)=-(d9*(d9*c1**2+d6*c1*c2-d8*c1-c2+one))/two

 der(1,10)=-d27*(((c2-one)+c1)+c1)*c2

 der(2,1)=zero

 der(2,9)= (d9*(d3*c1-one)*c1)/two

 der(2,8)= (d9*(d6*c2-one)*c1)/two

 der(2,7)=(d27*c2**2-d18*c2+two)/two

 der(2,6)=-(d9*((c1+c2-one)*(d6*c2-one)+(d3*c2-one)*c2))/two

~ 279 ~

 der(2,5)= (d9*(d3*c1**2+d12*c1*c2-d5*c1+d9*c2**2-d10*c2+two))/two

 der(2,4)=-(d27*c1**2+d54*c1*c2-d36*c1+d27*c2**2-d36*c2+d11)/two

 der(2,3)= (d9*(d6*c1+d6*c2-d5)*c1)/two

 der(2,2)=-(d9*(d3*c1-one)*c1)/two

 der(2,10)=-d27*(((c2-one)+c1)+c2)*c1

 CASE(15)

 t1=c1-pt25

 t2=c1-pt5

 t3=c1-pt75

 t4=c2-pt25

 t5=c2-pt5

 t6=c2-pt75

 t7=c3-pt25

 t8=c3-pt5

 t9=c3-pt75

 der(1,1)=d32/d3*(t2*t3*(t1+c1)+c1*t1*(t3+t2))

 der(1,12)=d128/d3*c2*(t2*(t1+c1)+c1*t1)

 der(1,11)=d64*c2*t4*(t1+c1)

 der(1,10)=d128/d3*c2*t4*t5

 der(1,9)=zero

 der(1,8)=-d128/d3*c2*t4*t5

 der(1,7)=-d64*c2*t4*(t7+c3)

~ 280 ~

 der(1,6)=-d128/d3*c2*(t8*(t7+c3)+c3*t7)

 der(1,5)=-d32/d3*(t8*t9*(t7+c3)+c3*t7*(t8+t9))

 der(1,4)=d128/d3*(c3*t7*t8-c1*(t8*(t7+c3)+c3*t7))

 der(1,3)=d64*(c3*t7*(t1+c1)-c1*t1*(t7+c3))

 der(1,2)=d128/d3*(c3*(t2*(t1+c1)+c1*t1)-c1*t1*t2)

 der(1,13)=d128*c2*(c3*(t1+c1)-c1*t1)

 der(1,15)=d128*c2*t4*(c3-c1)

 der(1,14)=d128*c2*(c3*t7-c1*(t7+c3))

 der(2,1)=zero

 der(2,12)=d128/d3*c1*t1*t2

 der(2,11)=d64*c1*t1*(t4+c2)

 der(2,10)=d128/d3*c1*(t5*(t4+c2)+c2*t4)

 der(2,9)=d32/d3*(t5*t6*(t4+c2)+c2*t4*(t6+t5))

 der(2,8)=d128/d3*((c3*(t5*(t4+c2)+c2*t4))-c2*t4*t5)

 der(2,7)=d64*(c3*t7*(t4+c2)-c2*t4*(t7+c3))

 der(2,6)=d128/d3*(c3*t7*t8-c2*(t8*(t7+c3)+c3*t7))

 der(2,5)=-d32/d3*(t8*t9*(t7+c3)+c3*t7*(t8+t9))

 der(2,4)=-d128/d3*c1*(t8*(t7+c3)+c3*t7)

 der(2,3)=-d64*c1*t1*(t7+c3)

 der(2,2)=-d128/d3*c1*t1*t2

 der(2,13)=d128*c1*t1*(c3-c2)

 der(2,15)=d128*c1*(c3*(t4+c2)-c2*t4)

~ 281 ~

 der(2,14)=d128*c1*(c3*t7-c2*(c3+t7))

 CASE (4)

 der(1,1)=-etam

 der(1,2)=-etap

 der(1,3)=etap

 der(1,4)=etam

 der(2,1)=-xim

 der(2,2)=xim

 der(2,3)=xip

 der(2,4)=-xip

 CASE(5)

 der(1,1)=-etam+pt5*xi*(one-eta**2)

 der(1,2)=-etap+pt5*xi*(one-eta**2)

 der(1,3)=etap+pt5*xi*(one-eta**2)

 der(1,4)=etam+pt5*xi*(one-eta**2)

 der(1,5)=-two*xi*(one-eta**2)

 der(2,1)=-xim+pt5*eta*(one-xi**2)

 der(2,2)=xim+pt5*eta*(one-xi**2)

 der(2,3)=xip+pt5*eta*(one-xi**2)

 der(2,4)=-xip+pt5*eta*(one-xi**2)

 der(2,5)=-two*eta*(one-xi**2)

 CASE(8)

~ 282 ~

 der(1,1)=etam*(two*xi+eta)

 der(1,2)=-d8*etam*etap

 der(1,3)=etap*(two*xi-eta)

 der(1,4)=-d4*etap*xi

 der(1,5)=etap*(two*xi+eta)

 der(1,6)=d8*etap*etam

 der(1,7)=etam*(two*xi-eta)

 der(1,8)=-d4*etam*xi

 der(2,1)=xim*(xi+two*eta)

 der(2,2)=-d4*xim*eta

 der(2,3)=xim*(two*eta-xi)

 der(2,4)=d8*xim*xip

 der(2,5)=xip*(xi+two*eta)

 der(2,6)=-d4*xip*eta

 der(2,7)=xip*(two*eta-xi)

 der(2,8)=-d8*xim*xip

 CASE(9)

 etam=eta-one

 etap=eta+one

 xim=xi-one

 xip=xi+one

 der(1,1)=pt25*x2m1*eta*etam

~ 283 ~

 der(1,2)=-pt5*x2m1*etap*etam

 der(1,3)=pt25*x2m1*eta*etap

 der(1,4)=-xi*eta*etap

 der(1,5)=pt25*x2p1*eta*etap

 der(1,6)=-pt5*x2p1*etap*etam

 der(1,7)=pt25*x2p1*eta*etam

 der(1,8)=-xi*eta*etam

 der(1,9)=two*xi*etap*etam

 der(2,1)=pt25*xi*xim*e2m1

 der(2,2)=-xi*xim*eta

 der(2,3)=pt25*xi*xim*e2p1

 der(2,4)=-pt5*xip*xim*e2p1

 der(2,5)=pt25*xi*xip*e2p1

 der(2,6)=-xi*xip*eta

 der(2,7)=pt25*xi*xip*e2m1

 der(2,8)=-pt5*xip*xim*e2m1

 der(2,9)=two*xip*xim*eta

 CASE DEFAULT

 WRITE(*,*)"wrong number of nodes in shape_der"

 END SELECT

~ 284 ~

RETURN

 END SUBROUTINE G_shape_der

 SUBROUTINE TM_TD(T,Q,coord)

!--

! This subroutine forms the transmition matrix of 3D

! goodman element

! Research:J.Tu

! The University of Huddersfield

! 09/10/2018

!---

!---

! Input:(coord(;,:): Goodman_element_node_coordinate_array_in_global_

! _Coordinates_system)

!Output:(T(:,:): the_T_matrix_in_Equation_2.8.21;

! Q(:,:): the_Q_matrix_in_Equation_2.8.21)

!---

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 REAL(iwp),INTENT(IN)::coord(:,:)

 REAL(iwp),INTENT(OUT)::T(:,:),Q(:,:)

~ 285 ~

 INTEGER::i

 REAL::x1,y1,z1,x2,y2,z2,x4,y4,z4,A,B,C,D,E,F,LXX,LXY,LXZ, &

 LYX,LYY,LYZ,LZX,LZY,LZZ,LX,LY,LZ,COSXX,COSXY,COSXZ,COSYX, &

 COSYY,COSYZ,COSZX,COSZY,COSZZ,zero=0.0_iwp

!---------------inport the coordinate -------------------

 x1=coord(1,1)

 y1=coord(1,2)

 z1=coord(1,3)

 x2=coord(2,1)

 y2=coord(2,2)

 z2=coord(2,3)

 x4=coord(4,1)

 y4=coord(4,2)

 z4=coord(4,3)

!---

 A=x4-x1

 B=y4-y1

 C=z4-z1

 D=x2-x1

 E=y2-y1

~ 286 ~

 F=z2-z1

!----------------- For Local X direction-------------------

 LXX=A

 LXY=B

 LXZ=C

 LX=SQRT(LXX**2+LXY**2+LXZ**2)

 COSXX=LXX/LX

 COSXY=LXY/LX

 COSXZ=LXZ/LX

!----------------- For Local Y direction-------------------

 LYX=(C**2)*D-A*C*F-A*B*E+(B**2)*D

 LYY=(A**2)*E-A*B*D-B*C*F+(C**2)*E

 LYZ=(B**2)*F-B*C*E-A*C*D+(A**2)*F

 LY=SQRT(LYX**2+LYY**2+LYZ**2)

 COSYX=LYX/LY

~ 287 ~

 COSYY=LYY/LY

 COSYZ=LYZ/LY

!----------------- For Local Z direction-------------------

 LZX=B*F-C*E

 LZY=C*D-A*F

 LZZ=A*E-B*D

 LZ=SQRT(LZX**2+LZY**2+LZZ**2)

 COSZX=LZX/LZ

 COSZY=LZY/LZ

 COSZZ=LZZ/LZ

!--

 Q=ZERO

 Q(1,1)=COSXX

 Q(1,2)=COSXY

 Q(1,3)=COSXZ

~ 288 ~

 Q(2,1)=COSYX

 Q(2,2)=COSYY

 Q(2,3)=COSYZ

 Q(3,1)=COSZX

 Q(3,2)=COSZY

 Q(3,3)=COSZZ

T=ZERO

!--

do i = 1, 8

 T((i-1)*3+1:i*3,(i-1)*3+1:i*3)=Q

end do

~ 289 ~

RETURN

 END SUBROUTINE TM_TD

 SUBROUTINE T_coord(Q,coord)

!--

! This subroutine forms the transmition matrix of 3D

! goodman element

! Research:J.Tu

! The University of Huddersfield

! 09/10/2018

!---

!---

! Input:(coord(;,:): Goodman_element_node_coordinate_array_in_global_

! _Coordinates_system)

!Output:(Q(:,:):)

!---

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 REAL(iwp),INTENT(IN OUT)::coord(:,:)

 REAL(iwp),INTENT(IN)::Q(:,:)

 INTEGER::i

~ 290 ~

 REAL::gcoord(3)

!---------------inport the coordinate -------------------

DO i=1,8

 gcoord(:)=coord(i,:)

 gcoord=MATMUL(Q,gcoord)

 coord(i,:)=gcoord(:)

END DO

RETURN

 END SUBROUTINE T_coord

 SUBROUTINE gbvm3(dp,db,w,uslide,rt,gcprop,p,b,sigma1)

!---

! This subroutine is used to implement the creep constitutive equation

! of Markus Vose creep model for grain boundary. The reference for this

! model is :

! Vöse, M., Otto, F., Fedelich, B. and Eggeler, G. (2014).

! Micromechanical investigations and modelling of a

! Copper–Antimony-Alloy under creep conditions.

~ 291 ~

! Mechanics of Materials, 69(1), pp.41-62..

! 20/11/2018

! The output result is normailzed.

!---

! Input: (gcprop(:):grain_boundary_creep_constitutive_equation

! _paramaters_array;

! p :input_grain_boundary_creep_cavity_density;

! b :input_grain_boundary_creep_damage_variable)

!Output: (dp :output_grain_boundary_creep_cavity_density_rate;

! db :output_grain_boundary_creep_damage_variable_rate;

! w :output_grain_boundary_creep_damage;

! uslide:output_grain_boundary_creep_sliding_rate

! rt :real_time_step)

!--

 IMPLICIT NONE

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15)

 Doubleprecision,INTENT(IN)::gcprop(:),p,b,sigma1(:)

 Doubleprecision,INTENT(OUT),OPTIONAL::dp,db,w,uslide,rt

 Doubleprecision::a1,rs,xp,r,theta,x1,x2,x3,x4,theta1,flow1, &

 flow2,flow3,flow4,flow5,flow6,flow7,y,xa,up,stip0,qw0,pi=3.1415926, &

~ 292 ~

 one=1.0_iwp,two=2.0_iwp,d3=3.0_iwp,d4=4.0_iwp,flow8,flow9,htheta,

&

 flow10,flow11,flow12,flow13,flow14,f,dup,dgb,da,a,zero=0.0_iwp, &

 a2,xa1,a3,x5,rdsbar,rap,pdsbar,flow15,flow16,flow17,flow18,flow19, &

 d1,bp,ap,d2,dsbar1,p1,dsbar,tdsbar,yslide,rtdsbar

!------input the creep parameters for the constitutive equation--------

 a1=gcprop(1)

 dgb=gcprop(2)

 rs=gcprop(3)

 ap=gcprop(4)

 bp=gcprop(5)

 theta=gcprop(6)

 x1=gcprop(7)

 x2=gcprop(8)

 x3=gcprop(9)

 x4=gcprop(10)

 x5=gcprop(11)

 pdsbar=gcprop(12)

~ 293 ~

!------------------import the stress state-----------------------------

 dsbar=sigma1(2)

 tdsbar=sigma1(1)

!------------------the normalization parameters-------------------------

 rdsbar=rs/a1

 rt=(a1**(d4))/(dgb*rs)

 dsbar1=dsbar/rdsbar

 rap=ap*rt*(a1**2)*((rdsbar/pdsbar)**(bp))

 rtdsbar=tdsbar/rdsbar

 p1=p*(a1**2)

!------------------- prepare for simulation-----------------------------

 theta1=(theta*pi)/180

 flow1=((1+cos(theta1))**(-1))-(cos(theta1))/2

 htheta=flow1/sin(theta1)

!------------------the constitutive equation part-----------------------

!--------------------------equation 14----------------------------------

 w=((9*pi*(b**2))/(16*(htheta**2)))**(one/d3)

~ 294 ~

 a=sqrt(w/(pi*p1))

!--------------------------equation 12----------------------------------

 stip0=(2*sin(theta1))/a

 qw0=(-2)*dlog(w*x2)-((3-w*x2)*(1-w*x2))

 flow2=dsbar1-stip0*(1-x2*w)

 flow3=(a**2)*qw0

 da=(x1*2*flow2)/(htheta*flow3)

!--------------------------equation 15----------------------------------

 if(da.GE.0)then

 xa=x3*4*pi*(p1**2)*a*da

 else if(da.LT.0) then

 a3=1.1

 a2=a

 if(a.LE.a3)then

 a2=a3

 end if

 xa1=x5*p1*da*(-1)

~ 295 ~

 xa=xa1/(2*(a2-1))

 end if

!-------------------------equation 17-----------------------------------

 if(da.GT.zero)then

 flow15=stip0*(1-x2*w)

 flow16=rap*((dsbar1)**(bp))

 flow17=rap*(flow15**(bp))

 flow18=(flow16-flow17)**(two)

 flow19=rap*(dsbar1**(bp))

 xp=flow18/flow19

 else if(da.LE.zero)then

 xp=zero

 end if

!--------------------------equation 18(3)-------------------------------

~ 296 ~

 flow4=(b*(xp-xa))/(sqrt(p1**d3))

 flow10=d3*b

 flow11=a*(sqrt(p1))

 flow12=flow10/flow11

 flow5=flow12*da

 dup=flow4+flow5

!--------------------------equation 18(1&2)-----------------------------

 flow14=-one

 flow6=x4*2*pi*p1*((dup)**(flow14))

 flow7=(2*sin(theta1))-stip0

 y=exp(flow6*flow7)

 f=((y-1)*w)/(1-w)

 if(f.GE.one)then

 f=one

 end if

~ 297 ~

!--------------------------equation 11(1&2)--------------------------------

 dp=xp*(1-f)-xa

 flow8=(3*b*(xp-xa))/(2*p1)

 flow9=(flow10/a)*da

 db=flow8+flow9

!------------------------output the grain boundary sliding-----------------

!-----------------------equation 19--

 yslide=gcprop(13)

 flow10=a1/(rt*rdsbar)

 uslide=rtdsbar/(yslide*flow10)

 uslide=uslide*a1

! write(11,*)"xp",xp

! write(11,*)"xa",xa

RETURN

 END subroutine gbvm3

~ 298 ~

 End Module math

~ 299 ~

Appendix III Tutorial on INP file.

The INP file is used to store and import the FE model's information into the

main program, including node coordinates, element topology, boundary

conditions, material information, loading information, and so on. This

information is read line by line through the interface; hence these instructions

need to have a specific format.

𝚰. INP file for Notched Bar Case Study

In the main body of the procedure, the data is read by the channel 10 to import

the data line by line. The INP file has 6 main part.

The initialization section.

In this section, the main purpose is to evaluate the case size to allocate the size

for these dynamic arrays. The main data and its sequence in this section are

shown in below.

In this section, the data is read in through these interfaces.

List AP3.1

The sequence of these data is:

'element': the element type (Triangle or Quadrilateral).

'reboots': the switcher of the restart facility. (1 is open, 0 is closed)

'step': the results are exported in this iterating step.

~ 300 ~

'bs': the stiffness matrix reducing factor of a failed element.

'nidm': the dimension of the case. (2 or 3)

nst: the number of stress/strain terms.

nip: the number of Gaussian Points per element.

nprop: the number of elastic material parameters.

nod: the number of node per element.

ndof: the number of freedom degrees per element.

nodof:the number of freedom degrees per node.

np_type: the number of material in this FE model.

nn: the total number of nodes in this FE model.

nels: the total number of elements in this FE model.

The boundary condition section.

In this section, the main purpose is to import the boundary conditions into the

main program.

In this section, the data is read in through these interfaces, using List AP4.1 as

an example.

List AP3.2

The sequence of these data is:

nr: the total number of restrained nodes. in this case, it is '67'

K: is the node number of the restrained nodes.

nf(:,K): is the restrained direction of these nodes. ('0' is fixed, '1' is open). In this

~ 301 ~

case, (2 1 0) is means: fixed the Y direction of NO.2 node.

The node coordinates

In this section, the code coordinates of all node is read in through these

interfaces, using List AP4.7 as an example.

List AP3.3

The sequence of these data is:

K： the node number.

g_coord(:,i): the coordinate of each node.

In this case, (1, 2.24907994, 0.496734006) is means: the coordinate of NO.1

node is (2.24907994, 0.496734006).

The element node numbering section.

In this section, the code coordinates of all node is read in through these

interfaces, using List AP4.7 as an example.

List AP 3.4

g_num(:,i): the array stores the node numbers of all element.

In this case, (11 28162 280472792278) is means: the topology of NO.1 element.

The loading section.

In this section, the node information is read in through these interfaces, using

List AP4.7 as an example.

~ 302 ~

List AP3.5

loaded_nodes: the number of loaded nodes.

In this case, the external load is loaded in 26 nodes. For example, NO.43, the

loading factor in the x direction is 0, and in the Y direction is 0.620963042.

The Gaussian Point coordinate section.

In this section, the coordinate of Gaussian points is to import into the main

program.

~ 303 ~

'quadrilateral’ 1 26334 10000

2 4 4 3

8 16 2 1

793 240

1 160e3 0.3

67

 2 1 0

.....................................

668 0 1

1, 2.24907994, 0.496734006

...

793, 6.26, 2.63162886

1 1 281 62 280

 47279 2 278

..

240 162 790 166 793

46792 46 77826

26

39 0.0 0.0

................

43 0.0 0.620963042

200000

1

33.48

1

 1 2.64796490221226 0.361688666968341

 2 2.64680617061469 9.691416942806762E-002

 3 2.32916698281864 0.383126321238609

 4 2.32868728446441 0.102668388374992

 2

..

Section 6

List. AP3.6

Section 6

Section 4

Section 3

Section 2

Section 1

~ 304 ~

Appendix IV Publication Contribution List

~ 305 ~

