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ABSTRACT 

In many high-temperature structural components, creep damage is a non-

negligible factor limiting its lifetime. For most alloys, the main reason for the 

creep damage is due to the cavitation that occurs at grain boundaries, hence it 

is meaningful to analyze and simulate this phenomenon. In this project, 

unlike the traditional approach which treats materials as isotropic, the grain 

and grain boundary is modeled and analyzed separately. Based on this idea, 

an in-house numerical procedure is developed for the Finite element 

simulation of creep evolution at the grain boundary level. 

The development is under the Continuum Damage Mechanics theoretical 

framework, through this procedure the traditional solid element with simple 

power-law adopts to describe the creep deformation evolution of the grain 

part. The grain boundary part has been modeled by the Goodman element 

with Markus’s cavitation model and Newtonian flow model 

The in-house procedure was developed from a Smith’s visco-plastic program 

P61 to solve the creep problem at grain boundary level. The theory and 

coding implementation of Goodman element (2D/3D) and local-global co-

ordinate transformation techniques are summarized in detail. 

This research contributes to the development of the Finite Element procedure 

for simulating creep evolution at the grain boundary level and provides a 

new understanding regarding the intrinsic relationship between stress 

redistribution and creep evolution. 
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Chapter 1 Introduction 

1.1 Introduction 

In the past few decades, the operating temperature of power stations has been 

gradually increased to obtain higher thermodynamic efficiency as a means to 

satisfy the growing demand for electricity. However, as the temperature rises, 

the creep damage/fracture is accelerated and the components' lifetime is 

shortened, which is a key factor limiting the increase in operating 

temperature. Therefore, it is necessary to study the creep damage/fracture 

mechanism and develop numerical models of materials for evaluating and 

predicting the lifetime of components. These assessments are important for 

the safe operation of a power plants components [1]. 

In order to investigate and predict the creep failure, a laboratory creep test is 

usually the most common procedure. However, it has some shortcomings 

such as high cost and time consumption. Therefore, computer-based 

numerical Finite Element techniques are becoming more popular, and some 

research groups and institutes have developed their own in-house procedures 

or use mature commercial software packages for the study and simulation of 

creep mechanical behavior. This includes 'FE-DAMAGE' from Nottingham 

University [2], 'Damage XX' from Manchester University [3], 'DNA' from 

Louisiana State University' [4], and commercial software package 'ABAQU' 

from Dassault Systèmes [6]. 
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Typically, the object of the finite element simulation is component or 

specimen, and it is idealized to be a single and uniform material [6]. The 

description of the creep degradation is achieved by introducing a fictitious 

damage variable, and the parameters of the constitutive equations are 

calibrated by the measured rupture time [6-8]. However, according to most 

experimental observations, the reasons for creep rupture or failure is due to 

the cavitation at grain bounders [9], hence researchers have proposed a 

different modeling idea, which is to develop a constitutive model based on 

the micro-mechanically motivation independently to describe the creep 

evolution of grain boundaries. 

In creep analysis, the constitutive equations are included in a Finite element 

method to describe the evolution of the strain, stress, damage over time. 

However, traditional solid elements do not have the ability to simulate the 

mechanical properties of grain boundaries. For example, the deformation of 

traditional solid elements is measured by strain, while the deformation of 

grain boundaries is measured by relative displacement [10]. Hence, under the 

traditional Finite Element framework, a different element needs to be added 

in to realize grain boundaries’ Finite Element Analysis, which is the 

significance and value of this research.  

At present, the Finite Element Analysis of creep at grain boundary level can 

be calculated using the commercial platform ABAQUS, which is obtained 

through the external subroutine interface of UMAT and UEL. For instance, 
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Markus Vose [10] applied UMAT (User-defined Material) within the 

cavitation constitutive models in ABAQUS’s build-in element COH3D8 (8-

node 3D cohesive element) for the grain boundary part, and CH. Yu [9] 

reported the application of UEL (User-defined Element) can be used to 

develop a non-thickness 2D Goodman element which is made up of two 

linear rods to describe the creep deformation of the grain boundary part. 

However, a different approach was chosen in this project to obtain this 

numerical capability which is the development of an In-house procedure. 

Firstly, compared with commercial platforms, the development of an in-house 

procedure provides developers a higher freedom, such as obtaining 

intermediate output. Secondly, developers do not need to follow numerous 

complex interface standards, and there are mature frameworks and 

subroutine libraries that can be adopted, which make the project more 

efficient and flexible. Therefore, an in-house platform still has advantages and 

meanings [11]. 

1.2 Aims and Objectives 

This project aims to develop an in-house procedure which is used to 

implement the Finite Element Analysis and Predict of creep damage evolution 

of the materials at grain boundary level. 

The specific objectives are summarized below: 

1. To provide a methodology for developing an in-house Finite Element 

procedure for creep simulation at grain boundary level. This procedure is 
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different from the traditional version, with the analysis object being grains 

and grain boundaries. In finite element modeling, traditional solid 

elements are adopted to present the grains' mechanical properties, while 

grain boundaries use non-thickness Goodman elements [12]. 

2. The existing visco-plastic Finite Element program P61 [13] needs to be 

refactored to satisfy the computational requirements of using two different 

element types in one model, and two legacy subroutine libraries ‘main’ 

and ‘geom’ [13] need to integrated into the procedure to realize the 

specific required techniques and functions, which include the element 

spatial discretization, project size evaluation, solid element stiffness matrix 

obtainment, matrix assembly and storage and solution of the equilibrium 

equation. 

3. Goodman element type needs to be added into this framework, which is a 

different element type from the traditional solid element. It is a non-

thickness contact element and the two surfaces are coincident during the 

unloading condition. Unlike solid elements, the deformation measure uses 

relative surface displacement instead of strain, and the mechanical 

relationship follows the cohesive law [9,10,12]. 

4. Vöse's cavitation constitutive model [10] and Newton Viscous flow sliding 

model [14] need to be integrated into the procedure, which use to describe 

the grain boundaries’ creep evolution. 
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1.3 Thesis Structure 

Chapter 1 introduces the importance, significance and aim of this project, and 

reports the structure of the thesis.  

Chapter 2 summarizes the literature background related to this project. 

Firstly, an overview of this research significance and the creep phenomenon is 

presented. Secondly, it presents a review of the current research status of the 

creep fracture mechanism and the creep numerical method. Finally, it briefly 

summarizes the mathematical model and the numerical implementation 

adopted in this project. 

Chapter 3 summarizes the general methodology, relevant techniques, and the 

mathematical method in developing this In-house procedure. Specifically 

including such techniques as: the developing method used in this procedure 

development, the numerical integration method for the creep constitutive 

equations and the element's area, the techniques for the storage of stiffness 

matrix and the solution of the equilibrium equation, and the generation of the 

polycrystalline model. 

Chapter 4 summarizes the development of a 2-dimensional version of the 

multi-scale creep Finite Element solver. Specifically, it includes: the procedure 

structure of the Finite Element simulation for the macro model, the procedure 

structure for the microstructure simulation at GB level, the mathematical 

background of the elements for modeling the grain and GB respectively, the 

development of the program blocks and relevant subroutines for realizing the 
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mathematical background, and the development of accessibility functions 

(failed element removal techniques and jump-restart facility). 

Chapter 5 summarizes the benchmarks of the macro version of the in-house 

procedure. The demonstration order corresponds to the development 

strategy. Firstly, a simple quadrilateral FE model is employed to validate the 

numerical accuracy and stability of the plane stress version, plane strain 

version, and axisymmetric version under simple stress conditions. At this 

stage, the verification of the three-stress state extends from the linear part to 

the non-linear creep part. Secondly, further verification is to verify the 

accuracy and reliability of the nonlinear iteration under non-uniform stress 

conditions. Then, a one quarter notched bar case study is chosen to validate 

the numerical accuracy of non-linear iteration under complex stress 

conditions via axisymmetric version procedure. 

Chapter 6 summarizes the benchmarks of the micro version of the in-house 

procedure. The demo strategy is the same as in Chapter 6. Firstly, a Bi-grains 

FE model is chosen as the initial step to verify the numerical accuracy and 

stability. In this model, the grain part is meshed by the 3-node triangle solid 

element or the 4-node quadrilateral element, the GB part is meshed by the 4-

node Goodman element. The Bi-grain structures of the two combinations 

(Triangle element with Goodman element and Quadrilateral element with 

Goodman element) were verified separately. Secondly, it demonstrates the 

application of the in-house procedure in the simulation of the creep evolution 
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with a 20 grains' polycrystal case study, and the results have been published 

in the special issue (Creep and High Temperature Deformation of Metals and 

Alloys) of Metals. 

Chapter 7 summarizes the development and validation of a 3-dimensional 

version of the creep Finite Element solver at the GB level. In this chapter, it 

first introduces the development of the creep solver, followed by presenting a 

validation of the procedure. 

Chapter 8 presents the conclusions and suggestions for further work. 
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Chapter 2 Literature Review of Creep and Creep's 

Numerical Method. 

2.1 Introduction 

This chapter reports the literature review and the current research state 

related to this project, the information of each section is reviewed below in 

detail, which includes: 

1) The general overview of the research significance, creep phenomenon, and 

the status of the creep fracture mechanisms are presented in section 2.3. In 

this section, it first introduces the mechanism of creep fracture, and then 

discusses the research status of creep mechanism at multi-scales, which is 

discussed from macro and micro scales, respectively.  

2) In section 2.3, it reviews the development of the Continuum Damage 

Method for creep damage analysis, and it further reviews the advantages 

of the OOP method in Finite Element software development. 

3) The current research state of creep numerical implementation at grain 

boundary level is presented in section 2.4. In this section, we first discuss 

the current state of the FE platform, from the two aspects of commercial 

software and in-house procedures, and then introduces and analyzes the 

state of the microscopic creep simulation, including the method of 

polycrystalline structure generation and the implementation of 

microscopic creep FE algorithms, etc. 
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4) In Section 2.5, a literature review of the Cohesive Zone Model theory is 

reported. In Section 2.6, the mathematical background of 2D and 3D 

traditional solid units is briefly reported. 

5) The brief discussion of the 2D and 3D Goodman element’s background is 

presented in section 2.7 and section 2.8 respectively. In both sections, they 

discuss the mathematical background and the coordinate transmission 

system. 

6) In section 2.9, it reports the creep constitutive equations used in this 

project. It includes the equations for the description of macroscopic creep 

mechanism: K-R, KRH, and KRH-X. And the constitutive equations for the 

description of microscopic creep evolution of grain boundary part. 

7) In Section 2.10 and 2.11, it reports the literature review of the restart 

function and auto-time step function. 
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2.2 Creep and Creep Fracture Mechanisms 

2.2.1 Creep 

In much practical application, creep deformation/damage is a key factor that 

limits component life-time, and it is a non-negligible problem for the high-

temperature application. Creep occurs when the component is subjected to a 

continuum constant load, in essence, it is a kind of visco-plastic deformation 

accumulated over time [16,17]. At room temperature, the process is extremely 

slow, and it often takes years to have visible deformation. However, when the 

operating temperature exceeds one-third of the melting point, the 

deformation will be accelerated, which makes the rapidly shortens the process 

[17]. Generally, the process can be divided into three stages: Primary, 

Secondary, and Tertiary, as shown in the typical creep curves (Figure 2.2.1).  

The creep characteristics of these three stages are summarized below: 

Primary Stage: 

At this stage, initially, it starts with a high strain rate and then decreases to a 

constant value [18]. The final deformation is determined by two main reasons 

[19]: time-dependent strain hardening and creep recovery. The relationship 

between these two reasons is competition. The Strain hardening contributes to 

irreversible creep strain and creep recovery reduces this effect. Under 

unloading condition or high initial creep strains, the creep recovery plays a 

main role, and conversely is strain hardening. 
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Figure 2.2.1 Basic Creep Curve with three stages. Produced by [20] 

Secondary Stage:  

At this stage, the creep deformation/strain rate stabilizes [19], and the main 

factors affecting the creep strain rate are temperature and external load. Many 

researchers rely on empirical formulas to quantitatively describe the 

relationship between these three variables [20-23]. The mechanisms that cause 

creep deformation at this stage are generally considered to be climb softening 

in the higher temperature range, gliding softening in the lower temperature 

range, dislocation and diffusion. 

Tertiary Stage:  

During this stage, the strain rate increases rapidly and failure finally occurs 

[24].  

The main cause of failure is due to the rapid accumulation of plastic strain, 

which leads to microspores and cracks to form on the grain boundaries 

[26,26]. Usually, the macro performance at this stage is that the specimen 
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begins to shrink and the cross-section is reduced, which the actual load on 

this surface increases rapidly [27]. It accelerates the creep deformation and the 

rupture happens finally. 

2.2.2 Creep Fracture Mechanisms 

Dislocation and diffusion are the main deformation forms of creep and they 

have different mechanisms [28]. The former is due to the external load that 

makes the material prone to dislocating slip capability, while the latter is due 

to the diffusion of vacancies through their crystal lattice. These two forms 

contribute to deformation together during the whole process. 

Dislocation Creep  

External loading is the main reason, under the condition of high stress and 

being in an environment with a temperature between 0.3 and 0.7 Tm (Melting 

Temperature), the movement occurs between two adjacent crystal lattices. 

And the higher the temperature and external loading, the greater the amount 

of dislocation [16,29]. 

There are two forms of dislocation: edge and screw [30]. 

➢ Edge Dislocation  

It is a material defect, which is caused by the discontinuous of the atomic 

plane in the middle of the grain, as shown in Figure 2.2.2 (a). When stress is 

applied on one side of the plane, atoms adjacent to the defect pass through 

and breaks its normal atoms layer, and, and eventually combine with other 

atomic layers.  
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The Burgers vector is parallel to the crystal lattices. 

 

Figure 2.2.2 (a) the edge dislocation; (b) the screw dislocation. 

Procedure by [31] 

➢ Screw dislocation [30]  

It is formed by a defect line (dislocation line) which is perpendicular to crystal 

lattices. The atomic plane closest to this defect line is the jump one lattice 

point along the direction, which is perpendicular to the Burgers vector, as 

shown in Figure 2.2.2(b). 

Diffusion Creep 

There are two forms, N-H(Nabarro-Herring) and Coble. The main mechanism 

is the diffusion of vacancies into grains through the crystal lattice [32]. 

➢ N-H diffusion 

The main feature is the diffusion along the crystal lattice, and it is easy to 

occur in higher stress and temperature regions [33]. (as shown in Figure 

2.2.3(a)) 
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Figure 2.2.3 (a) the N-H diffusion; (b) the Cobal diffusion. 

Produced by [34] 

➢ Cobal diffusion 

Unlike the former, the diffusion direction is along the grain boundaries, and it 

easily occurs in low stress and temperature regions [33,34]. 

In summary, the relationship between these two mechanisms (dislocation and 

diffusion) are competitive. Under high stress conditions, dislocation plays a 

main role in creep deformation, whereas diffusion plays a major role. 

2.3 Numerical Method for Creep Damage 

The general numerical method of analysis for the creep is based on the 

observation and analysis of experiments to establish creep constitutive 

equations to depict and predict the creep evolution and failure, which was 

first proposed by Kachanov [83]. The theoretical background is Continuum 

Damage Mechanics and a damage variable is introduced to present the level 

of rupture state of the specimen [83,84]. Initially, the material is in a virgin 

state and the damage variable is zero, under the action of external load and 

temperature, the damage variable increases monotonically and reaches to the 

critical value finally.  
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In 1975, Hayhurst [85] also combined the CDM with Finite Element 

technology, to present the relationship between stress and damage variable 

during the entire creep process and found the significance of stress 

redistribution in the tertiary stage.  

2.3.1 Continuum Damage Mechanics 

Continuous damage mechanics (CDM) provides a continuous level of 

description of the material’s macro-fracture. In order to describe the 

degradation mechanism of creep, based on experimental observation, many 

CDM models have been proposed. 

The KR (Kachanov-Rabotnov) equation was originally proposed by Hayhurst 

in 1972 [79], which was the first time to associate the damage variable with the 

multi-axial-stress-state. Based on the observation of the experiment, Hayhurst 

identified the rupture criterion by the Von-Mises equivalent stress and the 

maximum principles of stress together. In 1975, Hayhurst also combined the 

CDM with Finite Element technology to present the relationship between the 

stress and damage variables during the entire creep process and found the 

significance of stress redistribution in the tertiary stage [80]. 

Follow this FE application of CDM to the creep problem, Dyson and Osgerby 

developed a new creep constitutive equation in 1993 [53], which is based on 

the mechanism of particle Hardening of alloys and it has the capability of 

predicting the rupture time, minimum creep strain rate, and the strain 

hardening. Besides, the hyperbolic sine law was introduced to replace the 
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power law, which increases the simulation result fit to an experiment test 

better. 

In 1996, Hayhurst developed KRH form from Dyson's equation to obtain the 

FE computational capability under the multi-axial stress condition to do the 

numerical simulation of 0.5Cr-0.5Mo-0.25V ferritic steel, in which the damage 

critical value was calibrated by rupture time [58]. However, the limitation of 

this equation is that the parameter calibration only considers life consistency 

and ignores the creep strain. Therefore, an inaccurate prediction may occur. 

Due to the defect, Q.Xu added two functions, f1 and f2 to determine the 

damage rate together, f1 applies to couple creep damage with the strain and 

lifetime at failure and f2 applies to describe the relationship between stress 

state and damage [51].  

Although the virtual damage variable is introduced into the constitutive 

equation to describe the creep degradation process, the physical meaning of 

the damage value is always weak. Since the damage value has no physical 

meaning, it is only determined by the measured failure time or creep strain. 

Therefore, some researchers describe the real creep degradation mechanism 

by establishing the creep constitutive equation of the grain boundary part, 

which will be introduced in detail in section 2.4. 

2.3.2 Objective Oriented Programming 

Objective Oriented Programming is a programming paradigm that uses 

classes as objects to design applications and computer programs to improve 
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reusability, flexibility, and extensibility [86]. Compared with the traditional 

method that the main program is composed of a set of functions or a series of 

instructions directly, OOP allows the program to contain various independent 

but callable objects. 

Compared with traditional programming methods, OOP has obvious 

advantages. First, it increases the flexibility and maintainability of the 

program. Second, it improves the development efficiency by separating the 

developing progress into blocks and applies the legacy codes to accelerate 

development, as it has modular characteristics and rich libraries of objects 

[87]. Thus, OOP is adopted for developing this in-house procedure in this 

project. 

2.4 The Review of Finite Element Analysis (FEA)for Creep 

Damage Analysis at Grain Boundary Level. 

Currently, FEA has been widely used to simulate and predict creep damage 

behavior. There are two ways to obtain this computational capability, one is 

based on standard commercial software packages, and the other is through 

the development of in-house procedures. The review of platforms is 

presented in Section 2.4.1, and Sections 2.4.2 and 2.4.3 give the current state in 

FEA of creep at grain boundary level. 
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2.4.1 Review of FE Platform 

➢ Commercial Platform 

The current mainstream commercial platforms are ABAQUS and ANSYS, and 

they are applied in a wide range of research areas, including fluid mechanics, 

electromagnetic field, heat conduction, and geotechnical mechanics, etc. 

However, ABAQUS is usually chosen to solve the creep problem. The main 

reason is that it has a better non-linear solver, which has advantages in 

solving material, geometrical, and state nonlinearity. 

➢ In-house Platform 

Three in-house procedures have been developed for solving creep problem,  

FE-DAMAGE [2], DAMAGE XX /DAMAGE XXX [3], and DNA [4]. The 

development of these procedures is based on Continuum Damage Mechanic. 

For solving creep problems, the specific in-house procedure still has its 

advantages, including: 

1. If material constitutive models or element types are not available in 

ABAQUS library, the only way to write-in these demands is by using 

UMAT or UEL subroutines. However, the connect interface standards and 

rules between ABAQUS and subroutines are complex and numerous, 

which makes the process complicated and inefficient. 

2. It provides a higher freedom for developers and it makes the process 

efficient and controllable [11]. 
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2.4.2 Status of Structure Generation at Grain boundary Level 

There are three common methods of generating micro-structures, which can 

be summarized: Regular Simplified Morphology method, Voronoi Algorithm 

method, and OOF (Object-oriented-finite method). 

➢ Regular Simplified Morphology Method 

This method was commonly adopted in the initial modeling to simplify the 

modeling process, the grain is depicted by regular shapes, such as cubes, 

dodecahedra, truncation, and octahedrons. Although it reduces the 

computational complexity, it also decreases the revivification of the actual 

structure. This way is employed in the initial benchmark of this project, to 

verify the procedure’s accuracy and stability of the procedure with higher 

efficiency [36]. 

➢ Voronoi algorithm method 

It is applied to partition the space by Thiessen polygons [36]. It is currently 

used to generate polycrystalline structures, and mature software packages 

have been developed to implement this algorithm, such as Qhull [37], 

Voro++ [38], and Neper [39]. In this project, Neper is selected as the pre-

processer to build the microstructure for three reasons: 

1. Neper integrates the meshing function, which simplifies the modeling 

process. 

2. Neper has a remeshing function, which can be used to insect a non-

thickness element between two adjacent grains. Therefore, no additional 
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action is required to satisfy the requirements for grain boundaries’ 

independent modeling. 

3. Neper has the ability to adjust the morphological characteristics of 

grains. By using different types of mosaics, such as Poisson-Voronoi 

mosaic, hard core-Voronoi mosaic, centroid-Voronoi mosaic, and 

Laguerre-Voronoi mosaic, all used obtain a variety of microstructure. 

➢ OOF 

It was first proposed by ITL (Information Technology Laboratory) and MML 

(Material Measurement Laboratory) of NIST (National Institute of Standards 

and Technology. US). The object is the actual microscopic picture or the 3D 

scan slice picture. Compared with the previous two methods, it has the 

highest level of revivification. However, the higher computational cost and 

expensive micro-scan equipment are required [40].  

2.4.3 Research Status of FE Modeling at Grain Boundary Level 

Under the analysis framework at grain boundary level, homogeneous 

materials are modeled by grains and grain boundaries separately. 

For Grain Boundary Modeling 

Initially, grain boundaries were represented by inserting a fictitious elastic 

spring layer between two adjacent grains, and a new creep fracture model 

was proposed to describe the cavity evolution [41]. In 1997, Onck and Van der 

Giessen followed this method to study and simulate the intergranular crack 

growth [42]. In 2012, in the creep fracture study of polycrystalline ceramic, 
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Goodman element was introduced to describe the creep evolution of grain 

boundaries [9].In 2014, in the creep study of Copper-Antimony-Alloy, the 

COH3D8 from ABAQUS build-in element library was adopted to describe the 

mechanism of grain boundary part. 

➢ Fictitious Layer 

In this method, grain boundaries are represented by fictitious elastic layers, as 

illustrated in Figure 2.3.1. 

 

Figure 2.3.1 Fictitious layer schematic of grain boundary. 

Produced by [41] 

The determine process of grain boundary is as follows, as shown in Figure 

2.3.1, first, node ‘a’ and ‘c’ are projected onto the adjacent grain surface to 

obtain their phantom node ‘a'’ and ‘c'’, and then connect the original nodes to 

its corresponding phantom nodes to obtain line ‘a-a'’ and ‘c-c'’, finally, use the 

‘p’ and ‘q’ as the nodes of grain boundary, which ‘p’ and ‘q’ are the midpoints 

of line ‘a-a'’ and ‘c-c'’. 

➢ Goodman Element 

Goodman element is a non-thickness element that was first used to solve 

contact problems. In creep analysis, it is used to describe the mechanism of 

grain boundaries. In the 2Dand 3Dversion, it consists of two rods and surfaces 
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which coincide with each other initially. This part will be explained in detail 

later [9,12]. 

➢ COH3D8 

COH3D8 is from ABAQUS’s element library. It is a 3D cohesive element with 

eight nodes and six faces, as shown in Figure 2.3.2. 

 
Figure 2.3.2 The schematic diagram of COH3D8.  

Produced by [6] 

The characteristic of this element is that the upper (face 2) and lower surface 

(face 1) have a thickness and follow the cohesive law [6,43]. 

For Grain Modeling 

It can be divided into two categories:  

1. Using a homogeneous and isotropic solid element with power law creep. 

The grain is modeled by a homogeneous and isotropic material solid element 

with linear elasticity and power-law creep. According to these simulations, it 

can be concluded that this grain modeling method has the capability to 

capture the main creep damage feature that occur at the grain boundary part 

[9,41,42].  

2. Using 12 sliding system solid element with visco-plastic crystal model 

The grain is assumed to be the single FCC (Face Centered Cubic) crystal, and 
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its deformation includes two parts: linear elasticity and visco-plasticity. The 

deformation is alone the sliding plane {1 1 1} with direction 〈0 1 1〉, and 

kinematic hardening is ignored [44]. 

2.5 Cohesive Zone Model 

Currently, CZM (Cohesive Zone Model) is widely used to describe the 

cohesive traction-separation law of cracking processes or analyze the 

localization and failure of materials [48-50]. With the development of 

numerical methods, Needleman [51] first used his self-defined CZM for FE 

analysis of crack propagation in ductile materials, and Petersson [52] and 

Carpinteri [53] used it in brittle fracture simulation. Compared with 

conventional fracture mechanics, CZM keeps the continuity of analysis in the 

separated state, and it avoids the stress’s singularity during separation and 

limits the stress as the cohesive strength of the materials [54,55]. 

Although the grain boundary has a thickness, compared with the grain, it is 

only a few atom layers. Therefore, the general way to model grain boundary 

is to idealize it as a sharp interface between two adjacent grains. Based on this 

geometric characteristic, the CZM is used to describe the deformation of grain 

boundaries. The common traction-separation is described by constitutive 

equations, which relate to the creep phenomenon that occurs on grain 

boundaries (such as cavitation and sliding). Under the continuum mechanics 

framework, the deformation of grain boundaries is measured by using the 

displacement jump of two surfaces (upper and lower) [9,10]. 
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2.6 Conventional Solid Element 

Under different stress states, there are different element types. Generally, 3D 

problems can be idealized into three different stress states: plane stress, plane 

strain and axisymmetric. The difference between these three is the constitutive 

relationship between stress and strain. 

2.6.1 Formulation of 2D Solid Element 

The constitutive relationship between stress components and small strain 

components is shown below [56,88]: 

Where E is Young's modulus, ν is Poisson's ratio. [D] is the constitutive 

matrix. 

1) Plane Stress 

 {

σx
σy
τxy
} = [D]{

εx
εy
γ
xy

} 2.6.1 

 [D] =
E

1 − ν2
[

1 ν 0
ν 1 0

0 0
1 − ν

2

] 2.6.2 

2) Plane Strain  

 {

σx
σy
τxy
} = [D]{

εx
εy
γ
xy

} 2.6.3 

 [D] =
E(1 − ν)

(1 + ν)(1 − 2ν)

[
 
 
 
 
 1

ν

1 − ν
0

ν

1 − ν
1 0

0 0
1 − 2ν

2(1 − ν)]
 
 
 
 
 

 2.6.4 
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3) Axisymmetric 

 {

σx
σy
σz
τrz

} = [D]{

εx
εy
εz
γ
rz

} 2.6.5 

 [D] =
E(1 − ν)

(1 + ν)(1 − 2ν)
∙

[
 
 
 
 
 
 1

ν

1 − ν
ν

1 − ν
1

          0         
ν

1 − ν

          0        
ν

1 − ν
0       0

ν

1 − ν

ν

1 − ν

1 − 2ν

2(1 − ν)
     0

0       1 ]
 
 
 
 
 
 

 2.6.6 

The relationship between displacement components {d} and small strain 

components {ε} is shown below: 

where μ̃ and υ̃are the displacement component in two directions (x and y) 

[56,89]. 

1) Plane stress and Plane strain 

 {

εx
εy
γ
xy

} =

[
 
 
 
 
∂

∂x
0
∂

∂y

0
∂

∂y
∂

∂x]
 
 
 
 

{
μ̃
υ̃
} 2.6.7 

2) Axisymmetric 

 {

εx
εy
εz
γ
rz

} =

[
 
 
 
 
 
 
 
∂

∂r
0

0
∂

∂z
∂

∂z

∂

∂r
1

r
0 ]
 
 
 
 
 
 
 

{
μ̃
υ̃
} 2.6.8 

The connection between node displacement and element displacement can be 

obtained by discretizing over element using shape functions. 

where {μ} and {υ} store the node displacement, [N] is the shape function 
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matrix [56]. 

 
μ̃ = [N]{μ} 

2.6.9 

 
υ̃ = [N]{υ} 

2.6.10 

 {
μ̃
υ̃
} = [

N 0
0 N

] {
μ
υ
} 2.6.11 

Therefore, the relationship between small element strain and node 

displacement can be obtained by [56]: 

1) Plane stress and Plane strain 

Substitute equation 2.6.11 into equation 2.6.8, the strain-nodes displacement 

matrix [B] can be obtained: 

 {

εx
εy
γ
xy

} = [B] {
μ
υ
} 2.6.12 

 [B] =

[
 
 
 
 
∂

∂x
0
∂

∂y

0
∂

∂y
∂

∂x]
 
 
 
 

[
N 0
0 N

] 2.6.13 

2) Axisymmetric 

Substitute equation 2.6.11 into equation 2.6.7, the strain-nodes displacement 

matrix [B] can be obtained: 

 {

εx
εy
εz
γ
rz

} = [B] {
μ
υ
} 2.6.14 

 [B] =

[
 
 
 
 
 
 
 
∂

∂r
0

0
∂

∂z
∂

∂z

∂

∂r
1

r
0 ]
 
 
 
 
 
 
 

[
N 0
0 N

] 2.6.15 
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The element stiffness matrix can be obtained: 

1) Plane stress and Plane strain 

 [Km] = ∬[B]T[D][B]dxdy 2.6.16 

2) Axisymmetric 

 [Km] = ∬[B]T[D][B]rdrdzdθ 2.6.17 

In this FE program, applying Gauss-Legendre as numerical integration over 

element regions.  

Finally,  

The integration form of Equation 2.6.16 is  

 [Km] =∑Wi ∙ det|J|i ∙ [B]
T[D][B]

nip

i=1

 2.6.18 

The integration form of Equation 2.6.17 is 

 [Km] =∑Wi ∙ det|J|i ∙ [B]
T[D][B]r

nip

i=1

 2.6.19 

where Wi is weighting coefficient. det|J|i is the Jacobian matrix. 

2.6.2 Formulation of 3D Solid Element 

The stress and strain constitutive relationship is shown in below [56,88]: 

 

{
 
 

 
 

σx
σy
σz
τxy
τyz
τzx}
 
 

 
 

= [D]

{
 
 

 
 

εx
εy
εz

γ
xy

γ
yz

γ
zx}
 
 

 
 

 2.6.20 
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[D]

= K ∙

[
 
 
 
 
 
 
 
 
 
 
 
 1

ν

1 − ν

ν

1 − ν
ν

1 − ν
1

ν

1 − ν
ν

1 − ν

ν

1 − ν
1

𝟎

𝟎

1 − 2 ∙ ν

2 ∙ (1 − ν)
0 0

0
1 − 2 ∙ ν

2 ∙ (1 − ν)
0

0 0
1 − 2 ∙ ν

2 ∙ (1 − ν)]
 
 
 
 
 
 
 
 
 
 
 
 

 
2.6.21 

With K =
E(1 − ν)

(1 + ν) ∙ (1 − 2 ∙ ν)
 2.6.22 

Where E is Young's modulus, ν is Poisson's ratio. [D] is the constitutive 

matrix. 

The relationship between displacement component {d} and small strain 

components {ε} is shown below [56,89]: 

where μ̃,ν̃, ω̃ and are the displacement component in three directions (x, y, 

and z). 

 {

εx
εy
γ
xy

} =

[
 
 
 
 
 
 
 
 
 
 
 
∂

∂x
0 0

0
∂

∂y
0

0
∂

∂y
0
∂

∂z

0
∂

∂x
∂

∂z
0

∂

∂z
0
∂

∂y
∂

∂x]
 
 
 
 
 
 
 
 
 
 
 

{
μ̃
ν̃
ω̃
} 2.6.23 

The connection between node displacement and element displacement can be 

obtained by discretizing over element using shape functions [N], and the 

connection between node displacement and the element displacement is: 
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 {

[μ̃]

[υ̃]

[ω̃]
} = [

[N] 0 0

0 [N] 0

0 0 [N]
]{

[μ]

[υ]

[ω]
} 2.6.24 

where [μ], [υ], and [ω] stores the nodes displacement vector in three 

directions, [N] is the matrix which stores the shape function. 

Substitute the equation 2.6.24 into 2.6.21, the strain-nodes displacement 

matrix [B] can be obtained: 

 [B] = [A] ∙ [S] 2.6.25 

 [A] =

[
 
 
 
 
 
 
 
 
 
 
 
∂

∂x
0 0

0
∂

∂y
0

0
∂

∂y
0
∂

∂z

0
∂

∂x
∂

∂z
0

∂

∂z
0
∂

∂y
∂

∂x]
 
 
 
 
 
 
 
 
 
 
 

 2.6.26 

 [S] = [
N1 0 0
0 N1 0
0 0 N1

……

N8 0 0
0 N8 0
0 0 N8

] 2.6.27 

Finally, the element stiffness matrix can be obtained by: 

 [Km] =∭[B]T ∙ [D] ∙ [B]dxdydz 2.6.28 

2.7 2D Goodman Element 

This element was first proposed for the FEA of 2Drock engineering numerical 

simulation. Due to its non-thickness geometric features, the continuity is 

guaranteed when analyzing contact problems. In this project, 4 nodes with 8 

degrees of freedom Goodman element (2 degrees of freedom per node) is 

adopted. The topological direction of the node numbers is clockwise as shown 
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in Figure 2.7.1. Under unloading conditions, the upper and low lines coincide. 

When in a loaded state, the two lines are separated to generate a relative 

displacement in two directions, which is the normal direction ‘N’ 

(perpendicular to the surface) and the Separate direction ‘S’ (parallel to the 

surface) [12,46]. 

 

Figure 2.7.1 The schematic diagram of 2DGoodman element. 

Produced from [12]. 

2.7.1 Mathematical Background 

The element displacement vector, ae, is defined by the eight displacement 

components of four nodes as [12,46]: 

 ae = {

a1
a2
a3
a4

} 2.7.1 

with 

 a1 = {
u1
v1
} 2.7.2 

for node 1, etc. 

where u is normal direction and v is separate direction. 

The displacement of the lower surface is: 

 [u
l

vl
] =

1

2
[
N1 0 N4 0
0 N1 0 N4

] [

u1
v1
u4
v4

] 2.7.3 
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The displacement of the upper surface is: 

 [u
u

vu
] =

1

2
[
N2 0 N3 0
0 N2 0 N3

] [

u2
v2
u3
v3

] 2.7.4 

with shape functions of each node are defined as: 

 N1 = 1−
2x

L
 

2.7.5 

 N2 = 1 −
2x

L
 

 N3 = 1 +
2x

L
 

 N4 = 1 +
2x

L
 

where x is the coordinate at x-axis in the local coordinate system, L is the 

length of Goodman element. 

By using equations 2.7.3 to 2.7.4, the relative displacement [Φ] is: 

 [Φ] = [u
u − ul

vu − vl
] =

1

2
∙ [B]

[
 
 
 
 
 
 
u1
v1
u2
v2
u3
v3
u4
v4]
 
 
 
 
 
 

 2.7.6 

in which: 

 [B] = [
−A 0 A 0 B 0 −B 0
0 −A 0 A 0 B 0 −B

] 2.7.7 

with  

 A = 1 −
2x

L
; B = 1 +

2x

L
, 2.7.8 

The relationship between stress and deformation can be implemented via 

cohesive law, which suits a small thickness or non-thickness at all. Therefore, 
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the [D] matrix which relates the two stress components to the relative 

displacement, thus 

 [
Fn
Fs
] = [D] ∙ [Φ], 2.7.9 

where 

 [F] = [
Fn
Fs
] 2.7.10 

Here [D]=[
kn 0
0 ks

], kn is the stiffness of normal direction and ks is the 

stiffness of separated direction. 

The potential-energy P in a linearly elastic Goodman element is shown in: 

 P =
1

2
LΦT[K]Φ =

1

2
∫

1

4
[Φ]T[B]T[D][B][Φ]

L

2

−
L

2

dx 2.7.11 

where [K] is the Goodman element stiffness per length. 

Therefore, the [K] can be obtained: 

 [K] = ∫
1

4
[B]T[D][B]

L

2

−
L

2

∙ dx 2.7.12 

Substitution of the Equation 2.6.7 and 2.6.10 

[B]T[D][B] = 

[
 
 
 
 
 
 
 
 

A2KS 0

0 A2KN

−A2KS 0

0 −A2KN
−A2KS 0

0 −A2KN

A2KS 0

0 A2KN

−ABKS 0
0 −ABKN

ABKS 0
0 ABKN

ABKS 0
0 ABKN

−ABKS 0
0 −ABKN

−ABKS 0
0 −ABKN

ABKS 0
0 ABKN

ABKS 0
0 ABKN

−ABKS 0
0 −ABKN

B2KS 0

0 B2KN

−B2KS 0

0 −B2KN
−B2KS 0

0 −B2KN

B2KS 0
0 BKN ]

 
 
 
 
 
 
 
 

 

2.7.13 

wherein the integrals of these A2, B2, and AB for the length L are: 
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 ∫ A2
L

2

−
L

2

=
4

3
L 

2.7.14  ∫ B2
L

2

−
L

2

=
4

3
L 

 ∫ AB
L

2

−
L

2

=
2

3
L 

Thence, the element stiffness matrix [K] is: 

[K]= 

1

6
∗

[
 
 
 
 
 
 
 
2Ks 0
0 2Kn

−2Ks 0
0 −2Kn

−2Ks 0
0 −2Kn

2Ks 0
0 2Kn

−Ks 0
0 −Kn

Ks 0
0 Kn

Ks 0
0 Kn

−Ks 0
0 −Kn

−Ks 0
0 −1Kn

Ks 0
0 Kn

Ks 0
0 −2Kn

−Ks 0
0 −Kn

2Ks 0
0 2Kn

−2Ks 0
0 −2Kn

−2Ks 0
0 −2Kn

2Ks 0
0 2Kn ]

 
 
 
 
 
 
 

 

2.7.15 

2.7.2 Coordinate System Transmission 

The stiffness matrix in the previous section is under a special condition when 

the two coordinates (Global and Local) are coincident. In general, these two 

coordinate systems need to be related by a transmission matrix [12,46]. 

 

Figure 2.7.2 The schematic figure of Goodman element with angle. 

Reproduced from [45] 
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As indicated in Figure 2.7.2, the angle between the local coordinates and the 

global coordinates is θ, the local element stiffness at global coordinates is [46]: 

 [K]Glo = [T]
T[K]loc[T] 2.7.16 

in which 

 T = [

N 0
0 N

0 0
0 0

0 0
0 0

N 0
0 N

], N = [
cosθ sin θ
−sin θ cos θ

] 2.7.17 

2.8 3D Goodman Element 

In this project, 8 nodes with 24 degrees of freedom 3D Goodman element (3 

degrees of freedom per node) is adopted. The topological direction of the 

node numbers is shown in Figure 2.8.1. Under unloading conditions, the 

upper and low surfaces coincide. When in a loaded state, the two surfaces are 

separated to generate a relative displacement in three directions, which is the 

normal direction ‘𝜔’ (perpendicular to the surface) and two Separate 

directions ‘𝜈’ and 𝜇 (parallel to the surface) [47]. 

 

 

 

 

 

 

 

 

6 

1 

2 3 

4 

6 7 

8 

A 

B 

𝛍 

𝛎 

𝛚 

Figure 2.8.1 The schematic diagram of 3D Goodman 

element (Local coordinates system). 
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2.8.1 Mathematical Background 

The element displacement vector, ae are defined by 24 displacement 

components of 8 nodes as [47]: 

 ae = {a1 a2 a3 a4 a6 a6 a7 a8}T 2.8.1 

with 

 a1 = {μ1 ν1 ω1}T 2.8.2 

for node 1, etc. 

The displacement vectors of the surface 'A' is: 

 [

μA
νA
ωA
] = [F1 F2 F3 F4] [

V1
V2
V3
V4

] 2.8.3 

The displacement vectors of the surface 'B' is: 

 [

μB
νB
ωB
] = [F6 F6 F7 F8] [

V6
V6
V7
V8

] 2.8.4 

Where the matrix F stores the shape function and V stores the displacement 

vectors of each node, the shape function comes from quadrilateral element 

[13]. 

 [F1] = [
N1 0 0
0 N2 0
0 0 N3

] 2.8.5 

 

[V1] = [

μ1
ν1
ω1
] 

2.8.6 

for node i, etc. 

with shape functions defined as: 

 N1 = N6 =
1

4
(1 − ξ)(1 − η) 2.8.7 
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 N2 = N6 =
1

4
(1 − ξ)(1 + η) 

 N3 = N7 =
1

4
(1 + ξ)(1 + η) 

 N4 = N8 =
1

4
(1 + ξ)(1 − η) 

where ξ and η are the coordinates in a local system. 

By applying equations 2.8.3 and 2.8.4, the relative displacement [Φ] can be 

solved as: 

 [Φ] = [

μA − μB
νA − νB
ωA −ωB

] = [B]

[
 
 
 
 
 
 
 
V1
V2
V3
V4
V6
V6
V7
V8]
 
 
 
 
 
 
 

 2.8.8 

in which: 

 [B] =

[
 
 
 
 
 
 
 
    F1
    F2
    F3
    F4
−F6
−F6
−F7
−F8 ]

 
 
 
 
 
 
 
T

 2.8.9 

where matrix F has been mentioned in the Equation 2.8.5. 

The mechanical relationship between stress and deformation can be 

implemented via cohesive law and the matrix [D] which relates the stress 

components to relative displacement, thus 

 [

Fμ
Fν
Fω

] = [

Kμ 0 0

0 Kν 0
0 0 Kω

] [

Φμ

Φν

Φω

] 2.8.10 

Due to the thickness of this element is zero, the integration of the stiffness 
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matrix is only on the two surfaces A and B. The 3D Goodman element 

stiffness matrix can be obtained (in local coordinate): 

 [KM] =
1

2
∫ ∫ BT ∙ D ∙ B|J|

+1

−1

+1

−1

dξdη 2.8.11 

Here, the implementation of numerical integration over the surface A and B 

regions is by the Gauss-Legendre method.  

The integration form of Equation 2.8.11 is 

 [KM] =
1

2
∑Wi ∙ det|J|i ∙ [B]

T[D][B]

nip

i=1

 2.8.12 

where Wi is the weighting coefficient.  det|J|i is the determinant of the 

Jacobin matrix. 

The mathematical background of solving |J|i is shown below: Based on 

matrix [B], the derivatives 'der' of the shape functions in surface A and B as 

(local coordinates system): 

 der =

[
 
 
 
 
∂FunT

∂μ

∂FunT

∂ν ]
 
 
 
 

= [
−A −B B A −A −B B A
−C −D D C −C −D D C

] 2.8.13 

where, 

A=(1-μ) C=(1-ν) 

2.8.14 

B=(1+μ) D=(1+ν) 

Therefore, the Jacobin matrix [J] can be obtained: 

 [J] = [der] ∙ [coord]μ&𝜈  2.8.15 

where: 
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 [coord]μ&ν =

[
 
 
 
 
 
 
μ1
μ2
μ3
μ4
μ6
μ6
μ7
μ8

ν1
ν2
ν3
ν4
ν6
ν6
ν7
ν8]
 
 
 
 
 
 

 2.8.16 

[coord]μ&𝜈 stores the coordinates in two directions: μ and ν. 

Finally, the Jacobin matrix [J] can be solved: 

 [J] = [
J1 J2
J3 J4

] 2.8.17 

with 

 
J1 = −A ∙ μ1 − B ∙ μ2 + B ∙ μ3 + A ∙ μ4 − A ∙ μ6 − B ∙ μ6 + B

∙ μ7  + A ∙ μ8 

2.8.18 

 
J2 = −A ∙ ν1 − B ∙ ν2 + B ∙ ν3 + A ∙ ν4 − A ∙ ν6 − B ∙ ν6 + B

∙ ν7 +  A ∙ ν8 

 
J3 = −C ∙ μ1 − D ∙ μ2 + D ∙ μ3 + C ∙ μ4 − C ∙ μ6 − D ∙ μ6 + D

∙ μ7  + C ∙ μ8 

 
J1 = −C ∙ ν1 − D ∙ ν2 + D ∙ ν3 + C ∙ ν4 − C ∙ ν6 − D ∙ ν6 + D

∙ ν7 +  C ∙ ν8 

where A, B, C, and D are shown in Equation 2.8.18.  

2.8.2 Coordinate System Transmission 

The stiffness matrix in the previous section is under a special condition when 

the two coordinates (Global and Local) are coincident. In general, these two 

coordinate systems need to be related by a transmission matrix. 

The relationship between Local coordinate system and Global coordinate 

system is [47]: 

 {
x′

y′

z′
} = [

cos(x′, x) cos(x′, y) cos(x′, z)

cos(y′, x) cos(y′, y) cos(y′, z)

cos(z′, x) cos(z′, y) cos(z′, z)
] {
x
y
z
} 2.8.19 

In Equation 2.8.19, cos(x′, x) is the cosine of the angle between the x′ axis of 

the local coordinate system and the X axis of the global coordinate system, 
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and so on and so forth. The element stiffness matrix in the local coordinate 

system has been solved in the previous section 2.8.1, and transmit it to the 

global coordinate system is: 

 [KM]Global = T
T ∙ [KM]Local ∙ T 2.8.20 

in which 

 T = [

Q 0
0 Q

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ 0
⋯ Q

] 2.8.21 

with Q = [

cos(x′, x) cos(x′, y) cos(x′, z)

cos(y′, x) cos(y′, y) cos(y′, z)

cos(z′, x) cos(z′, y) cos(z′, z)
]  

2.9 Creep Constitutive Equation 

This section reviews four sets of creep constitutive equations, which have 

been built into the procedure framework. The first three describe the creep 

evolution at the macro-scale, and the last two describe the cavitation and 

sliding evolution of the grain boundaries. 

2.9.1 Macro-Creep Constitutive Equations 

1. Kachanov-Rabatnov (KR) 

It is a creep constitutive equation with Power Law Stress Sensitivity, shown in 

Equation 2.9.1. The description of the creep degradation behavior depends on 

a single damage state variable [6]. 
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 ε̇ij =
3

2
∙ A ∙ (

σeq

1 − ω
)
n

∙
Sij

σeq
∙ tm 2.9.1(a) 

 ω̇ = B ∙
σr
χ

(1 − ω)ϕ
∙ tm 2.9.1(b) 

 σr = α ∙ σ1 + (1 − α) ∙ σeq 2.9.1(c) 

where A, B, n, m, ϕ, andα are the material constants. σeqis the equivalent 

stress, σ1 is the maximum stress, Sij is the deviator stress tensor,  σr is the 

rupture stress,ωis the damage variable andε is the creep strain tensor. 

2. Kachanov-Rabatnov-Hayhurst (KRH) 

This is a creep constitutive equation with Hyperbolic Sine Law Stress 

Sensitivity, shown in Equation 2.9.2. Compared with the previous KR form, 

the description of the creep degradation behavior depends on three state 

variables, which is used to depict the cavitation and the coarsening of the 

carbide precipitates [57]. 

 ε̇ij =
3

2
∙
Sij

σeq
∙ A ∙ sinh [

B ∙ σeq ∙ (1 − H)

(1 −Φ) ∙ (1 −ω)
] 2.9.2(a) 

 Ḣ =
h ∙ ε̇e
σeq

∙ (1 −
H

H∗
) 2.9.2(b) 

 Φ̇ =
KC
3
∙ (1 −Φ)4 2.9.2(c) 

 ω̇ = D ∙ N ∙ ε̇e ∙ 〈
σ1
σeq

〉v 2.9.2(d) 

Where N=1 when σ1 > 0 and N=0 when σ1 < 0. A, B, C, h, H∗, and KC are 

the material constants. H,Φ, andω are the three state variables, H 

(Ht=0 = 0)presents the strain hardening, Φ(Φt=0 = 0)presents the evolution 

of the density of the carbide precipitates, ω (0 ≤ ω ≤
1

3
)presents the 
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cavitation damage [58].  

3. Kachanov-Rabatnov-Hayhurst-Qing (KRHQ) 

The KRHQ is developed from the previous KRH, shown in Equation 2.9.3, the 

main difference is the relationship between stress state and cavitation damage 

rate. Two additional functions f1 and f2are added to determine the damage 

rate, where  f1 is used to describe the phenomenological relationship between 

damage, tertiary creep deformation, and creep rupture. f2  is used to describe 

the coupling between creep damage evolution and the stress state effect [59]. 

 ε̇ =
3

2
∙
Sij

σeq
∙ A ∙ sinh [

B ∙ σeq ∙ (1 − H)

(1 − Φ) ∙ (1 − ω)
] 2.9.3(a) 

 Ḣ =
h ∙ ε̇e
σeq

∙ (1 −
H

H∗
) 2.9.3(b) 

 Φ̇ =
KC
3
∙ (1 − Φ)4 2.9.3(c) 

 ω̇ = D ∙ N ∙ ε̇e ∙ f1 ∙ f2 2.9.3(d) 

 f1 = (
2σe
3S1

)
a

∙ exp {b ∙ [
3σm
Ss

− 1]} 2.9.3(e) 

 f2 = (exp {p ∙ [1 −
σ1
σe
] + q ∙ [

1

2
−
3σm
2σe

]})
−1

 2.9.3(f) 

where Ss = √σ1
2 + σ2

2 + σ3
2, σm =

1

3
(σ1 + σ2 + σ3), S1 = σ1 − σm and σ1, σ2, 

and σ3 are the principal stresses, a, b, p, and q are the material parameters. 

2.9.2 Micro-Creep Constitutive Equations 

For most high-temperature alloys, the main reasons of creep damage, 

particularly creep rupture, is due to the cavitation happening on grain 

boundary, most creep modeling at grain boundary level is also based on the 
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evolution of cavitation over time [60-66].In this work, the deformation of 

grain boundary under creep conditions is represented by displacement jump, 

which assumed cavitation for the normal direction and sliding for the 

tangential directions [9,10]. 

The cavitation contains two aspects, cavity nucleation and cavity growth. For 

cavity nucleation, the mechanisms are still not fully understood, generally, 

according to the observation of specimens, cavities are usually found on the 

grain boundaries, and in the plane perpendicular to the tension's direction, 

the density of the cavities is higher than other planes. For the cavity growth, it 

suggested three mechanisms, the plastic deformation-dominated, sliding 

control, and constraint-dominated [67]. The cavitation models based smeared-

out cavity model has been developed for the analysis of Copper-Antimony 

alloys under creep conditions [10,68], which accounts for cavity nucleation, 

cavity annihilation, and cavity growth. In this model, the failure of a single 

grain boundary is determined by the ratio of cavity area, and its critical value 

is 0.5 [10]. 

At normal direction, the displacement jump is determined by Vose’s 

cavitation models, as shown in Equation 2.9.4. 
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dβ̅

dt̅
=
3

2

β

ρ̅
(α̅p − α̅a) + √ρ̅√36h(ψ)πβ2

3 da̅

dt̅
 2.9.4(a) 

 
dρ̅

dt̅
= α̅p(1 − f) − α̅a 2.9.4(b) 

 α̅a = x3 ∙ 8πρ̅
2a̅
da̅

dt̅
 2.9.4(c) 

 ω = √
9πβ2

16h2(ψ)

3

;  2.9.4(d) 

 a̅ =
1

√ρ̅
√
3

4

β

h(ψ)π

3

 2.9.4(e) 

 f =
(η − 1)ω

1 − ω
 2.9.4(f) 

 η = exp([x4 ∙ 2πD̅gb(a̅tip(a̅ = 1) − a̅tip(a̅))ρ̅ (
dμ̅p

dt̅
)
−1

]) 2.9.4(g) 

 
dμ̅p

dt̅
=

β

√ρ̅3
(α̅p − α̅a) + √36h(ψ)πβ2

3 da̅

dt̅
 2.9.4(h) 

 

q(ω) = −2lnω− (3 −ω)(1 −ω);  

a̅tip(a̅) = 2γ̅
s
sinψ a̅⁄ , 

2.9.4(i) 

where ρ and a are the density and the average radius of cavities, β is the 

damage variable, α̅p is the nucleation rate, α̅a is the annihilation rate, ψ =

70° (the dihedral angle ), D̅gb is the diffusion coefficient, ω is the damaged 

area fraction. The deformation of the grain boundary part is quantified by the 

relative jump displacement and it determined by two variables together, ρ 

and β, and the relationship is shown in Equation 2.9.5. 

 Dn =
β

√ρ
−

β
0

√ρ
0

 2.9.5 

where the Dn is the normal jump displacement, β
0
(10−4) is the initial 

damage value, ρ
0
(10−3mm−2)is the initial cavity density. 
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At tangential directions, the displacement jump is assumed to be determined 

by Newtonian Viscous Flow [14], shown in Equation 2.9.6. 

 
dusliding

dt
=

σsliding
η
sliding

 2.9.6 

where
dusliding

dt
 is the relative sliding velocity, σsliding and η

sliding
are the 

separate stress and the sliding viscosity of grain boundary, respectively. 

2.10 Removal Function 

During the creep evolution, the damage value is the index of element 

degradation, which increases from zero in the initial state, to the critical value 

at the end. When damage value reaches the value, the element is treated as a 

failure and is unable to sustain any load. These failed elements need to be 

removed from the structure and the boundary value problem needs to be 

resolved. Specifically, the failed element needs to be identified and located, 

and then its element stiffness matrix needs to be removed from the global 

stiffness matrix [69,70]. Overall, the two keys to implementing the removal 

function are examination and removal. 

A common approach is to capture the damage value of each element and 

compare it to the critical value. When the damage value is greater than or 

equal to this value, the failed element is marked and its element number is 

recorded. Since the assembly and solution of the global stiffness matrix is 

expensive in computer time (CPU-time), the trigger function is considered 

necessary [70]. An element self-examination module is performed prior to 
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each iteration step, when a new failed element is generated, a loop for 

locating this element will be triggered. In this loop, the stiffness matrixes of 

failed elements are removed, and the global stiffness matrix is re-assembled 

and re-solved. When the loop is not triggered, skip this block and jump to the 

next iteration step. This function avoids unnecessary calculations and 

improves efficiency [69,70]. 

The direct way to remove the failed element is to set its element stiffness 

matrix to zero, however, when an island effect is formed (the normal element 

is surrounded by failed elements and its connection to the structure is broken) 

or the failure occurs at the boundary, it will cause the singularity of the 

stiffness matrix solution, it makes the process complex. Another way to is to 

reduce the stiffness matrix of the failed element, Hyde adopted this method in 

his Notched bar case study and proved its usability [71]. Comparing the two 

methods, the latter is simpler, although the failed elements are not removed 

from the physical structure completely. In regard to this project and the 

project’s progress, it is reasonable to choose the latter one. 

2.11 Restart Facility 

MT.Wong added this technique for the ‘DAMAGE XXX’ to allow the software 

to be stopped and restarted freely, however, it was not clearly documented in 

detail on how to implement this function [69]. In practice, since the creep 

simulation spends hundreds of hours or more, the ability to output the result 

in stages and restart calculations from breakpoints is particularly important. It 
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reduces the possibility of a loss of the result data if the computer was to 

accidentally shutdown. The key to developing this function is ‘READ-IN’ and 

‘WRITE-OUT’. The ‘READ-IN’ module is the required data needed to be 

imported into the main program accurately, such as the element status (good 

or failed), state variable (such as creep strain, damage value, etc.), time, 

iteration step number, self-equilibrating global node force etc. The ‘WRITE-

OUT’ module needs to output the required data and the intermediate result in 

a standard format (the format required by ‘READ-IN’ module) at the specified 

iteration step or time point. 
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Chapter 3 Methodology 

3.1 Introduction 

In this chapter, it reports the general methodology considered in this project. 

It includes the general methodology of software development, specific 

mathematical methods or tools, mature technologies, and legacy codes.  

A brief overview of each section is presented below. 

1) In section 3.2, it presents the general methodology of software 

development in this project. 

2) In section 3.3, the numerical integration methods used in this project are 

introduced, including Euler, 4thorder Runge-Kutta, and Gauss-Legendre 

3) In section 3.4, the mature techniques used to implement matrix storages 

and solution used in this project are introduced, and the legacy codes used 

to implement these techniques are also presented. 

4) In section 3.5, it reports the displacement non-linear iteration method for 

solving the creep boundary value problem.  

5) In section 3.6, it reports the mathematical background used to implement 

Goodman element coordinate system transmission. 
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3.2 General Methods for Developing In-house Procedure 

Generally, the development includes four stages: Planning, Developing, 

Benchmark, and Maintenance [11]. 

1. Planning 

This procedure is based on CDM (Continuum Damage Mechanism) to 

implement Finite Element Analysis. In order to avoid duplication and 

improve efficiency, OOP (Object-Oriented Programming) is adopted as a 

programming paradigm and some existing technologies, subroutine libraries, 

program structures, and interface standards are used [13]. In addition, 

Goodman element with a cohesive zone model is used to model grain 

boundaries. The programming environment is Fortran 2003 within the Visual 

Studio 2013 platform (Version 11.0.6129.00, Microsoft, Remond, WA USA).  

2. Developing 

The developing logic is from linearity to non-linearity, from 2D to 3D, and 

from macro-scale to micro-scale. During the development process, the linear 

version adopts the existing framework and legacy code to implement the 

following four techniques [13]: 

1) size allocation of dynamic arrays. 

2) evolution of the mesh information to allocate the matrix size of the 

global stiffness matrix size. 

3) the assembly and solution of the global stiffness matrix.  

4) retrieve the elastic stress field in the structure.  
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The main program is refactored from P61 [13], and the displacement iteration 

method adopts to implement residual stress updating [3]. The specific 

amends are summarized as follows: 

1) add removal function.  

2) add automatic time step function.  

3) add the restart function.  

4) upgrade from ‘Single-Material& Singe-Element Type’ to ‘Multi-

Material& Multi-Element Type’ version. 

3. Benchmark 

In order to make the benchmark logical and efficient, the benchmark process 

is designed from simple to complex, from the linearity to nonlinearity. 

Specifically, the validation of the macro solver contains two stages, the simple 

regular structure is chosen as the initial step to demonstrate the accuracy and 

stability under the uniform stress distribution and the results can be 

benchmarked with the theoretical results. The notched bar structure is chosen 

as a further step to verify the procedure under the non-uniform stress 

distribution and the result can be benchmarked with Hyde's Notched bar case 

study [71]. Similarly, the simple bi-crystal structure is chosen as the first step 

to verify the accuracy and stability.  
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4. Maintenance 

Complete documentation and clear code comments benefit to improve the 

readability of the program, it makes the job easier for subsequent developers 

to maintain the procedure and update the version more efficiently [72]. 

3.3 Integration Method 

In this project, the numerical integration adopts the Euler method and 

4𝑡ℎorder Runge-Kutta Integration Method, and the region integration uses the 

Gauss-Legendre method. 

3.3.1 Numerical Integration 

The creep constitutive equation is a type of partial differential equation, and 

its solution is to integrate it with time. The commonly used numerical 

engineering integration methods are Forward Euler and 4th order Runge-

Kutta integration method. 

1. Euler Integration Method 

At i th step, the increase rate of variable y is Ri(yi), and the result of the 

variable y at i+1 step is 

 
yi+1 = yi + Ri(yi) ∙ Δt 3.3.1 

 

Where Δt is time step. 

2. 4thorder Runge-Kutta Integration Method 

At i step, the increase rate of variable y is determined by K1, K2, K3, and K4 
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 K1 = Ri(yi) 

3.3.2 

 K2 = Ri (yi + K1 ∙
1

2
Δt) 

 K3 = Ri (yi + K2 ∙
1

2
Δt) 

 K4 = Ri(yi + K3 ∙ Δt) 

The final increase rate Ri is determined by 

 Ri =
1

6
(K1 + 2K2 + 2K3 + K4) 3.3.3 

The result of variable y at i+1 step is 

 
yi+1 = yi + Ri(yi) ∙ Δt 3.3.4 

Where Δt is time step. 

Compared with Euler, Runge-Kutta has its advantages for creep damage 

analysis. Although it increases the computational effort, it can accept larger 

time-step while ensuring accuracy and stability, and this advantage is even 

more obvious in large-scale case studies [74,75]. 

3.3.2 Numerical Integration for Element 

In most FE programs, the analytical numerical integration over the element 

regions adopts Gauss-Legendre [73]. The quadrature rules are all with the 

form [13], 

 

∫ ∫ 𝑓(𝜉, 𝜂)
1

−1

1

−1

𝑑𝜉𝑑𝜂 ≈∑∑𝜔𝑖𝜔𝑗𝑓(𝜉𝑖 , 𝜂𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

≈∑𝑊𝑖𝑓(𝜉, 𝜂)𝑖

𝑛𝑖𝑝

𝑖=1

 

3.3.5 

where nip represents the quantity of Gauss integrating points, 𝑊𝑖weighting 

coefficients (𝑊𝑖 = 𝜔𝑖 ∙ 𝜔𝑗),(𝜉, 𝜂) are the local coordinates of the sampling 
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point (Gauss integrating point).  

The typical values of the weights and coordinates in Equation 3.3.5 are shown 

in Table 3.3.1. 

Table 3.3.1 Typical weights and coordinates in Gauss-Legendre integration formula. 

Reproduced from [13] 

n nip (𝜉𝑖, 𝜂𝑗) 𝜔𝑖 ∙ 𝜔𝑗 𝑊𝑖  

1 1 (0,0) (0,0) 4 

2 4 (±√
1

3
, ±√

1

3
) (1,1) 1 

3 9 

(±√
3

5
, ±√

3

5
) (

5

9
,
5

9
) 

25

81
 

(±√
3

5
, 0) (

5

9
,
8

9
) 

40

81
 

(0,±√
3

5
) (

8

9
,
5

9
) 

40

81
 

(0,0) (
8

9
,
8

9
) 

64

81
 

 

In this project, this method is used to do the numerical integration over 

regions for conventional solid element and 3D Goodman element to obtain 

the element stiffness matrix. 

3.4 Mature Techniques and Legacy Code 

This section introduces mature techniques (matrix storage and solution) and 

the legacy code used to implement the above techniques. 

3.4.1 Storage of Matrix 

The stiffness matrix is a kind of symmetric, sparse, and positive-definite 
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matrix. There are two common methods of storing such matrices in scientific 

computing: bland matrix storage and skyline matrix storage. Comparing the 

two methods, the former stores all entries in the half bandwidth, and the 

latter only stores the first nonzero entry to the last non-zero entry in each 

column [76,77]. 

In Finite Element programs, the skyline storage method has been widely used 

to stores stiffness matrices. Because the skyline of the stiffness matrix is 

relatively small and the Cholesky decomposition (commonly method to solve 

the stiffness matrix in Finite Element Analysis) preserves the skyline [76-78]. 

3.4.2 Cholesky Decomposition 

The code of Finite Element boundary problem is to solve the global 

equilibrium equation,  

 
[KM]{U} = {F} 

3.4.1 

whereKM is the global stiffness matrix,{F} is the external node-loads, and {U} 

is the global node displacement array which is the solution objective. 

The method general adopts in Finite Element Method is to perform 

[KM]Cholesky decomposition [78] to 

 [KM] = LL
∗ 3.4.2 

in which L is a lower triangular matrix and L∗ is the conjugate transpose 

matrix of L. 

Substitution of the 3.4.2 into 3.4.1 
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 LY = {F} 3.4.3 

where Y = L∗{U} 3.4.4 

Then, based on forward substitution to solve Y in Eq.3.4.3, and solving for 

{U}in Eq.3.4.6 by back substitution. 

 L∗{U} = Y 3.4.5 

Finally, stress and strain at each Gauss-sampling-points can be retrieved from 

the {U}. 

3.4.3 Legacy Code 

The above mature techniques have been developed and packaged as open-

source subroutines; therefore, they are used in this project to avoid 

duplication. Details of these legacy subroutines are summarized below. 

1. ‘fsparv’ for Skyline storage 

In this module, it is integrated into subroutine ‘fsparv’. The description of this 

subroutine is: it performs the symmetric skyline storage method of the global 

stiffness matrix, and it returns lower triangle mass of the global stiffness 

matrix as a vector, and output an array 'kdiag' which contains the location 

information of the diagonal element of the global stiffness matrix [13]. 

2. Subroutines for Cholesky Decomposition 

In this module, two subroutines have been developed to implement this 

function [13]. 

1) ‘sparin’ 

It performs a Choleski factorization of the Global stiffness matrix [KM] stored 
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as skyline. The mathematical background is Eq.3.4.2 and the stored method is 

has mentioned before. 

2) ‘spabac’ 

It returns the displacement array {U} by forward-substitution and back-

substitution on Choleski factorised vector [KM] by subroutines ' sparin'. The 

mathematical background is Eq.3.4.4 and Eq.3.4.5. 

3.5 Creep Non-linear Iteration 

The general solution of the creep boundary value problem relies on 

displacement iteration to update the residual stress caused by creep 

deformation [79]. This section provides a mathematical background for creep 

residual stress updating, which used in the fourth part of section 4.2.1. 

Within each iteration step, the global node displacement {U} by Eq.3.4.1  

For each element, the total strain contains two parts: elastic and creep  

 ε𝑡𝑜𝑙 = εe + εc 3.5.1 

where ε𝑡𝑜𝑙, εe, and εc are total, elastic, and creep strain respectively. 

The effective stress depends on the elastic stress, which can be obtained by 

 σ𝑒 = [D] ∙ εe = [D] ∙ (ε𝑡𝑜𝑙 − εe) 3.5.2 

Where σ𝑒  is effective elastic stress, [D] is the stress-strain matrix. 

This stress causes creep deformation and generates creep body loads in the 

structure.  
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3.6 Mathematical Background of Coordinate Transmission 

The background of the coordinate transmission system and transmission 

matrix of Goodman element has been mentioned in the previous section 2.7 

(2D version) and section 2.8 (3D version). The core to implement this module 

is to obtain the angle θ to calculate the analytical solution of this 

transmission matrix. In this section, the mathematical background is 

described in detail. 

3.6.1 2D Coordinate Transmission 

The angle θ between the global coordinate system and the local coordinate 

system can be obtained by a geometric calculation, as indicated in Figure 

2.7.2. Using the upper line as the sample,  

 sin θ =
(y3 − y2)

√(x3 − x2)2 + (y3 − y2)2
 

3.6.1 

 cos θ =
(x3 − x2)

√(x3 − x2)2 + (y3 − y2)2
 

Where coordinate of node No.2 is (x2, y2), and No.3 is (x3, y3). 

3.6.2 3D Coordinate Transmission 

In order to obtain the angle θ more convenient, another system M (X′, Y′, Z′) 

is added. In this system, the origin point coincides with the origin of the 

global system, and the Z′ axis is along the normal direction of the surface, the 

X′ axis and Y′axis are parallel to the surface, as indicated in Figure 3.6.2.  
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In this module, the mathematical tool of vector cross product is adopted. The 

specific process of obtaining this coordinate system is as follows. First, the 

vector a⃗ and vector b⃗  can be constructed from the element global node 

coordinates, which equal1,4⃗⃗ ⃗⃗  ⃗(Node No.4 to No.1) and 1,2 ⃗⃗ ⃗⃗ ⃗⃗  (Node No.2 to No.1 

node), respectively. 

 a⃗ = 1,4⃗⃗ ⃗⃗  ⃗ = ((x4 − x1) (y4 − y1) (z4 − z1)) 
3.6.2 

 b⃗ = 1,2⃗⃗ ⃗⃗  ⃗ = ((x2 − x1) (y2 − y1) (z2 − z1)) 

where the node coordinates of No.1is (x1, y1, z1), No.2 is (x2, y2, z2), and No.4 is 

(x4, y4, z4). 

The vector Z′can be obtained by the cross product of a⃗  and b⃗  , which is 

perpendicular to the element surface containing these two vectors, follow the 

right-hand law. 

 

Y′ 

X 

Y 

Z 

X ′ 

Z′ 

b⃗  

a⃗  

Figure 3.6.2 The schematic figure of new add coordinate system 

2 

1 

3 

4 
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 Z′⃗⃗  ⃗ = a⃗ × b⃗ = |
i j k
A B C
D E F

| 3.6.3 

where A=x4 − x1, B=y4 − y1, C=z4 − z1  

 D=x2 − x1, E=y2 − y1, F=z2 − z1  

Thus, 

 Z′⃗⃗  ⃗ = ((B ∙ F − C ∙ E) (C ∙ D − A ∙ F) (A ∙ E − B ∙ D)) 3.6.4 

The vector Y′⃗⃗  ⃗ axis equals the cross product of X′⃗⃗  ⃗ and Z′⃗⃗  ⃗, which can be found 

in Equation 7.3.19 and Equation 7.3.21, respectively. 

 Y′⃗⃗  ⃗ = Z′⃗⃗  ⃗ × X′⃗⃗  ⃗ = |
i j k
Z1 Z2 Z3
A B C

| 3.6.5 

where Z1=B ∙ F − C ∙ E, Z2=C ∙ D − A ∙ F, Z3=A ∙ E − B ∙ D  

Thus, 

 Y′⃗⃗  ⃗ = (Y1 Y2 Y3) 3.6.6 

where Y1 = C
2 ∙ D − A ∙ C ∙ F − A ∙ B ∙ E + B2 ∙ D  

 Y2 = A
2 ∙ E − A ∙ B ∙ D − B ∙ C ∙ F + C2 ∙ E  

 Y3 = B
2 ∙ F − B ∙ C ∙ F − A ∙ C ∙ D + A2 ∙ F  

The elements in the transmission matrix (In Equation 2.8.19) can be obtained 

as following, 
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 cos(x′, x) =
A
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3.6.7 
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Chapter 4 Development of the Creep Solver 

4.1 Introduction 

In this chapter, it reports the development details of the in-house FE 

procedure at multi-scales. At macro scale version, the conventional triangle or 

quadrilateral solid element is adopted to solve different stress conditions, 

which include plane stress, plane strain, and axisymmetric. At grain boundary 

level, the grain and the grain boundary are modeled independently, and the 

simulation considers the mechanism of grain boundaries, which include the 

cavity evolution and sliding of grain boundary respectively. In this project, 

the grain boundary part is modeled by Goodman element to ensure the 

continuity, thus it allows the simulation to be implemented within the 

traditional FEM framework. 

The developed platform of this procedure is the Fortran 2013 with the Visual 

Studio 2013 and the main structure of this procedure modified from the 

program P61, which is expanded from homogeneous into non-homogeneous 

versions. The brief introduction of each section is described in the below. 

1. Section 4.2 introduces how to refectory the nonlinear iteration module of 

legacy program P61 to solve the creep problem under multi stress states 

(plane stress, plane strain, and axisymmetric states), and also introduces 

the implementation of the Removal Technique module, Restart Facility 

module, and the auto-select Time Step module. 
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2. In section 4.3, it reports the development detail of the in-house FE solver 

at grain boundary level. Specifically, it includes the structure of the 

Computational Framework, the creep body loads generation of grain 

boundary element, and the coding implementation of this element. 
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4.2 Programming the Creep Solver 

In this project, an accurate and stable FE solver for the creep boundary value 

problem is the foundation. The development of this module is achieved by 

refactoring the P61 program, which is used to solve the nonlinear visco-

plasticity of material originally [13]. In refactoring, these modules or blocks 

are retained, including: 

1. Evaluate the project and allocate the size for matrices.  

2. The blocks and loops for assembling, storing, and solving the global 

stiffness matrix.  

3. The block and loop for the non-linear iteration of updating residual stress. 

Compared with P61, three changes have been made, including: 

1. In P61, the nonlinear iteration contained in one module is a fixed time 

step. However, the rate variables of the first and third stages of creep are 

higher and require smaller time steps, while the rate variables of the 

second stage are lower and larger time steps can be used. Therefore, in 

order to balance convergence and computational efficiency, this module is 

divided into two sub-modules: The first sub-module is used to obtain the 

applied elastic stress field to obtain the rate variable of all elements, and 

then to solve an acceptable time step based on the maximum rate variable 

of all elements. The second is used for numerical integration of 

constitutive equations and updating creep residual stress.  
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2. The constitutive equation used to describe material non-linearity was 

changed from visco-plasticity to creep. 

3. Add modules and loops for removal function and restart facility. 

4.2.1 Flow Diagram of Solver 

The solver can be divided into four main blocks: import and initialization 

module, restart facility module, removal function module, and non-linear 

iteration module, as shown in Figure 4.2.1. 

1. Import and initialization 

It is the first module in the structure, which is used to import the input file 

into the main program by a fixed channel (in this program, the channel 

number is ‘11’). In this file, it includes the element information (type, number, 

node quantity per element, and node topology), node information 

(coordinates and DOF per node) boundary condition, material properties, 

loading information, and activation status of the restart facility. Based on the 

case information, the total number of (non-zero) node DOF is calculated to 

allocate the matrix size for the storage of the global stiffness matrix. 

2. Restart Facility 

This is the second module in the structure, which is used to restart the 

calculation at a specified breakpoint. When this module is activated, it will 

import the restart file into the main program by an independent channel (in 

this program, the channel number is ‘12’), and the stiffness matrix is 
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reassembled and solved before the next module. On the contrary, it jumps to 

the next module directly. 

3. Removal Function 

The third module in the structure, which is used to implement the removal 

function of failed elements. Firstly, it will compare the state of elements in the 

current iteration step with the previous step. If a new element failed, a sub-

module is triggered for the global stiffness matrix to be re-assembled and re-

inversed (excludes the element stiffness contribution of failed element). If not, 

it will skip this module and enter the next module directly.  

4. Non-linear iteration 

It is the fourth module in the structure, which is refactored from the non-

linear iterative module of P61 (marked with a red dotted line box). In the 

original program, the time step is determined (based on the unconditional 

numerical stability time step of the von Mises material [80]) before the 

iteration module, and it is fixed during the iteration. However, due to the 

high creep strain/damage rates in the first and third stages, the smaller time 

step is required to satisfy the convergence, while in the second stage (steady-

state), low rates can use a larger time step, reducing the simulating time. 

Therefore, this module is refactored to consider both convergence and 

efficiency. 

The iteration of P61 is implemented in an element loop, and the flow of this 

loop is:  
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Figure 4.2.1 Flow Diagram of the Finite Element Solver. 
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First, import the node displacement into this loop to retrieve the elastic stress 

on the Gauss Integration point for each element, and then the constitute 

equation is integrated by a fixed time step. Finally, the residual stress is 

updated.  

The refactored non-linear iterative module divided the previous loop into two 

sub-loops. The first loop is used to retrieve the stress and calculate the rate-

dependent variables in constitutive equations of all elements, and find out the 

maximum damage rate to calculate the acceptable time step size. Then in the 

second loop, the rate-dependent variable and time step obtained in the 

previous loop are imported into this cycle to integrate the constitutive 

equation and update the residual stress. 

4.2.2 Implementation of Removal Technique 

The introduction of the removal technique has been introduced in section 

2.10, however, the implementation details are not explicitly documented. In 

this solver, the element's damage value ω becomes greater than the criterion 

with time, this element is considered to be a failure one and no longer have 

the ability to transmit any load or force [69,70].  

This technique includes two parts: 

1. Trigger module 

Due to the assembly and re-solving of the stiffness matrix being expensive in 

CPU time, therefore, these two actions only are triggered again until the next 

element fails. In response to this demand, a subroutine 'execute' was 
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developed to implement this trigger function and the mechanism this 

subroutine is shown in Figure 4.2.2. In order to explain easy, a simple 

example with 5 elements and assume the NO.3 element fails at step i.  

 

Figure 4.2.2 Flow Diagram Showing the process detail of the subroutine 'execute' to 

implement the trigger technique 
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The process of the trigger mechanism in the above simple example can be 

summarized as follows: 

1) After each iteration step, the array [olds] stores the initial status of all 

elements in the previous iteration step, and the array [fal] stores the end 

status of all elements in the previous iteration step. In step (i), these two 

array ‘fal’ ([1 1 1 1 1]T) and ‘old’ ([1 1 1 1 1]T) of step i-1 are 

imported into the subroutine ‘execute’ at the beginning of this step.  

2) In subroutine ‘execute, these two arrays [fal] and [olds] are evaluated and 

subtracted to obtain a new array |[fal − olds]| (this is a non-negative array, 

any negative elements are changed to their opposites). Based on the 

Fortran built-in function ‘maxval’, the maximum value of this array is 

found. If the maximum value is '1', it means that there is a new element 

failure, the logical variable 'reform' is set to true, otherwise, it is set to 

false when the maximum value is '0'. In this case, on failure occurs at step 

i-1, therefore the [fal] and [olds] are the same and the array |[fal −

olds]| = [0 0 0 0 0]T. Therefore, the maximum value of the array 

|[fal − olds]| is 0 and the logical variable ‘reform’ is set to false, the trigger 

is not activated. After the subroutine ‘execute’, [fal] overwrites array 

[olds], then the array [olds] is ([1 1 1 1 1]T). At the end step i, due 

the failure happens in element No.3, the array 'fal' is updated to 

[fal]=[1 1 0 1 1]T. 
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3) At the beginning of step (i+1), the two arrays [fal] ([1 1 0 1 1]T) and 

[olds] ([1 1 1 1 1]T) of step i are imported into the subroutine 

'execute', as mentioned in previous step, the output array |[fal − olds]| =

[0 0 1 0 0]T and the maximum value of this array is '1', therefore 

the logical variable 'reform' is set to 'true' and the trigger is activated. 

2. Application Module of Failure Conditions 

The objective of this stage is to locate and remove the failed element in the 

structure based on the rupture criterion. The failed element is not able to 

participate in the calculation and assume any loads. The elastic stress of this 

element disappears immediately, and the deformation of the failed element is 

provided only by the permanent creep deformation. During the non-linear 

iteration, the stiffness and the creep body loads of this failed element may 

then be removed from the structure. The program starts a loop for assembling 

and re-solving the global stiffness matrix. The specific process in this loop is 

as follows: at the beginning, the new updated array 'fal' is imported into a 

loop which cycles all elements and assembles a global stiffness matrix, when 

the corresponding number in array 'fal' is '1', the element stiffness remains 

unchanged, otherwise, when the number is '0', the corresponding stiffness 

matrix of this element is re-evaluated. The new global stiffness matrix [K] is 

stored by the lower triangle method, and the new inverse of the global 

stiffness matrix [K]−1 is resolved by Gauss Factorization. After these 

calculations, the node displacement can be obtained by multiplying [K]−1 by 
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total node loads, which includes the external loads and new creep body loads, 

and the creep body loads have removed the contribution of the failed element. 

4.2.3 Implementation of Restart Facility  

The introduction of the restart facility has been introduced in section 2.10, 

however, the implementation details are not explicitly documented. In this 

solver, the restart module has been incorporated in this procedure. In the 

procedure, two switches are set, one is used to output the 'restart.dat' file 

which contains the necessary information needed to restart the procedure at 

the selected iteration step, the other one is used to activate the restart function 

and open the channel to import the 'restart.dat' file to continue the calculation 

from the breakpoint. 

Initially, the parameter 'restep' is imported into the main program to control 

the output frequency of the 'restare.dat' file, which allows the procedure to 

print a data set for this file after every 'restep' iteration steps. The details of 

the data set are summarized in Table 4.2.1.  
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Table 4.2.1 The variables and arrays in the data set. 

Name Description 

evp stores total of creep strains of grain element. 

slide 

the jump displacement of grain boundary element at 

the sliding direction. 

esd 

the jump displacement of grain boundary element at 

the normal direction. 

p the cavity density ρ of grain boundary part. 

b the damage variable β of grain boundary part. 

bdylds the self-equilibrating global node loads. 

t the total simulation time. 

iters the iteration step number. 

fal 

the state array of grain boundary element. (fine or 

failed) 

The switch needs to be turned on when the procedure needs to use the restart 

function. The specific way to activate this switch is to assign the variable 'tri' 

in the 'inp' input file to a value of '1'. After that, the procedure will read in the 

'restart.dat' file through the allocated channel (the default channel in this 

solver is 14). Finally, the non-linear iteration is continued by import the 

parameters required (as shown in Table 4.2.1).  
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4.2.4 Implementation of Auto-select Time Step Module 

During the simulation, creep deformation and creep damage can be obtained 

by integrating the rate-dependent variables in the time domain. Under 

practical conditions, the structural-nonlinearity causes the stress 

concentration with the local high increase rate usually, and the creep feature 

occurs at a high increase rate in the primary and tertiary stages making the 

integral of the constitutive equations sensitive to the time step. Thus, the 

selection of the appropriate time step is meaningful for practical applications.  

In order to implement this function, a new pre-processing module is added to 

the main structure before the constitutive equation integration structure. The 

function of this module is to determine the time-step by the instantaneous 

damage increase rate since the final target value of the damage variable is the 

critical value (it is '1' in usual). In order to avoid the stress oscillation caused 

by big increments, and leads the nonlinear iteration un-converge, so the 

increment of each iteration step is controlled within '1 x⁄ ', where 'X' is the total 

number of expected iteration steps, and then the time step is '1 (x ∙ ω̇)⁄ ', where 

ω̇ is the damage increase rate. By looping all elements to find the minimum 

value as the time-step in the current iteration step. After completing this pre-

processing module, the program enters the Euler integration module. 

In the current version, as the mathematical background of the time step size 

control of the micro-constitutive equation has not been solved, it reduces the 

time step to satisfy the convergence of the calculation. Therefore, although 
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this module has been integrated into the procedure, it is only activated in the 

notched bar case study. When this module is not activated, a small step size 

will be used to avoid non-convergence of nonlinear. 

4.3 Development of Solver for Grain Boundary Level 

In this section, the main purpose is to show the creep mechanics constitutive 

equations and modeling of grain boundaries, which are included within the 

previous general FE solver to simulate the creep evolution of grain boundary 

with times. The procedure was developed from the previous general version, 

and the following techniques and blocks are retained: 

1. The non-linear displacement iteration method.  

2. The blocks for obtaining the solid element stiffness matrix for grain part.  

3. The techniques for assembling, storing, and calculating of global stiffness 

matrix.  

Compared with the previous solver, the solver for micro-creep is upgraded 

from solving single homogeneous material to bi-materials. In this project, the 

material is modeled by grain and grain boundary respectively, in which the 

grain part is modeled by traditional solid elements with a simple creep power 

law, and the grain boundary part is modeled by the Goodman element with a 

cohesive law mechanism. 
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4.3.1 Computational Framework 

The structure of the micro-version is similar to the structure of the macro 

version. The main difference is the Goodman element is adopted to simulate 

the creep mechanism of the grain boundary part. Figure 4.3.1 shows the 

computational framework and the additional developed part is marked by 

red and blue dotted line boxes.  

The additional block is developed to implement these functions:  

1. Obtain the element stiffness matrix of the Goodman element and add the 

Goodman element stiffness matrix into the global stiffness matrix.  

2. Obtain the elastic stress field (avoid negative relative displacement/ 

negative normal stress) and integrate the creep constitutive equation of 

the grain boundary. 

3. Calculate the un-balance creep body node loads of the Goodman element.  
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Figure 4.3.1 The flow diagram structure of the in-house procedure.  

Reproduced from [45].  
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4.3.2 Creep Body Loads Generation of the Goodman Element 

The mathematical background of the 4-node Goodman element' stiffness 

matrix has been mentioned in section 2.7, here, we apply the same method for 

the solid element to calculate the creep body loads of Goodman element 

[3,11,13]. Compared with the body force generation of the conventional 

element type, the main difference is the numerical integration. Generally, the 

Gauss-Legendre method is adopted to evaluate the body loads at an element 

area. However, the integration of the body loads at the Goodman element 

length adopts the analytical integration method directly. 

The creep body loads PCGB: 

 
PCGB = ∫[[B] ∙ [T]]

T
∗ [D] ∗ [Φ]  dL, 

4.3.1 

where [B] is the node-relative displacement matrix (E.Q 2.7.7), [D] is the 

stress-relative displacement matrix (E.Q 2.7.9), [Φ] is the creep jump 

displacement, [T] is the local-global coordinate transfer matrix and L is the 

length. Finally, 

 PCGB = [[B] ∙ [T]]
T
∗ [D] ∗ [Φ] ∗ L 4.3.2 

4.3.3 Coding Implementation of Goodman element 

In order to implement the mathematical background for obtaining the 

stiffness matrix of Goodman element, which has been mentioned in section 

2.7, a block with three new subroutines ('element_inf', 'Loc-Gol', and 

'new_km') and one legacy subroutine ('fsparv') have been developed to 

calculate the element stiffness matrix of Goodman element. 
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The flowchart of this block is presented in the Figure 4.3.2, this block is used 

to implement the blue marked part in the Figure 4.3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mathematical background of the Goodman element has been mentioned 

in section 2.7, and the above block is developed to implement it. The details of 

the block and the subroutines can be summarized below. 

1. Introduction of this Block 

The block is developed to obtain the stiffness matrix of Goodman element, in 

the beginning, the node coordinate and stiffness parameters of the element 

Figure 4.3.2 The flow diagram structure for obtaining the 

Goodman element stiffness matrix. (subroutines are marked by 

red) 

element_inf Loc_Gol 
element node 

coordinate 

fsparv 

new_km 

element stiffness 

matrix 

stiffness 

parameters 
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are imported into this block, through two newly developed subroutines 

'element_inf', 'Loc_Gol', and 'new_km' to obtain the element information (the 

length and the angle), rotation matrix ([T]), and stiffness matrix([D]) 

respectively. Then according to equation 2.7.12, we import the three variables 

directly into this equation to solve the element stiffness matrix. Finally, adopt 

the subroutine 'fsparv' to assemble the element matrix into the global stiffness 

matrix. 

2. Introduction of Subroutines 

1) element_inf 

This subroutine is developed to return two pieces of information of the 

Goodman element: length and the angle matrix, which are adapted to obtain 

the element stiffness matrix in global coordinate system.  

The import information of this subroutine is the matrix 'coord2', which store 

the global coordinate of element nodes. As shown in Figure 2.7.1, the upper 

one is selected as a demonstration here due to the upper and lower surface 

having the same angle and length. 

Length（double-precision number） 

The subroutine returns the length of the Goodman element, and it is named 

'L' in the procedure. 

 L = √(y3 − y2)2 + (x3 − x2)2 4.3.3 
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Angle Matrix (2*2 matrix) 

 sin θ =
(y3 − y2)

√(x3 − x2)2 + (y3 − y2)2
 

4.3.4 

 cos θ =
(x3 − x2)

√(x3 − x2)2 + (y3 − y2)2
 

The subroutine returns the matrix N (E.Q 2.7.16), and it has been named 

'Angle' in the procedure. 

2) ' Loc_Gol' 

This subroutine is developed to return the rotation matrix, which are used to 

doing the coordinate system transmission of the Goodman element from local 

to global. The subroutine imports the matrix 'Angle' and returns a matrix T 

(16*16) (E.Q 2.7.16), and it has been named 'Angle_T' in the procedure. 

3) new_km 

This subroutine is developed to return the rigidity matrix [D], which is a 8*8 

size matrix and named 'km' in the procedure. The subroutine imports the 

matrix 'kcoh', which stores the normal and separate rigidity of the Goodman 

element. 

4) fsparv 

This subroutine is used in assembling the element stiffness matrix into the 

global stiffness matrix, and the details of this subroutine have been mentioned 

in section 3.4 [13]. 
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Chapter 5 Benchmark of the macro scale of In-house 

Procedure 

5.1 Introduction 

This chapter reports the benchmark progress of the In-house procedure. In 

order to make benchmark efficient and logical, a common way from simple to 

complex, linear to nonlinear was chosen [13]. It can be divided into two main 

parts: 1) a simple quadrilateral structure is chosen as the preliminary step to 

demonstrate the accuracy under uni-axial loading condition. Through this 

case study, the numerical stability and accuracy were verified, which paves 

the way for the subsequent multi-axis load condition. 2) the notched bar 

structure is chosen as the second step to demonstrate the accuracy under 

complex stress state. Based on this case study, it verifies the accuracy of the 

nonlinear iteration under the non-uniform stress field. The benchmark 

process can be summarized as follow: 

1) The validation of the in-house procedure under the simple stress 

condition and the validation corresponds to the development progress. 

Firstly, verify the elastic module. According to the stress state, the 

benchmark contains three sub-case studies: plane stress, plane strain, and 

axisymmetric. In this stage, the techniques such as import interface, the 

element stiffness solution, and assembly, solution of equilibrium equation 

have been validated. Secondly, verify the creep module. In this stage, the 
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integral accuracy and the non-linear iterative stress update is verified. 

2) The validation of in-house procedure under stress concentration condition 

by notched based FE model. The nonlinear iteration accuracy of the in-

house procedure is verified by comparing the simulation results with 

Hyde's output from the rupture time and damage pattern. 

This chapter primarily consists of three sections: 1) Introduction. 2) The 

preliminary benchmark of the procedure. 3) The validation of the in-house 

procedure via the numerical investigation of the Bar 267 notched-bar case 

study at 660 ℃ 
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5.2 The Preliminary Benchmark of the Procedure 

The preliminary benchmark of the procedure verifies the numerical accuracy, 

numerical stability, and convergence of non-linear creep iterations via a 

simple Finite Element model. In this section, it presents the preliminary 

verification, which paves the way for the subsequent notched bar case study. 

The benchmark process corresponds to the sequence of the development, 

from linear elasticity to non-linear creep, from plane stress to plane strain to 

axisymmetric version. The strategy has been adopted to verify the 'HITSI' by 

D.Liu, which is efficient and logical [11]. Here, the uniform 4-node 

quadrilateral element type is used to generate the FE model. In this stage, 

three basic technique modules can be validated and be summarized below: 

➢ The input interface which is used to import the case information. It 

includes element information, node information, topological structure 

information, material parameters, loading information and boundary 

condition. 

➢ The existing techniques for calculating the element stiffness matrix, the 

assembling the global stiffness matrix, the storage of the global stiffness 

matrix, the assessment of case size to allocate the matrix size, and the 

solution of the equilibrium equation. 

➢ The techniques for the non-linear iterative techniques for creep problems, 

including the calculation of the internal body loads due to creep 

deformation, the re-balancing of internal body loads, and integration of 
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creep constitutive equations. 

The FE model apples in the benchmark is shown in Figure 5.2.1 

 

 

 

 

 

➢ The Geometry information, Boundary Condition and Loading Information and 

Material Parameters. 

The generation of this FE model is implemented by two relevant standard 

subroutines, 'geom_rect' and 'mesh_size', to obtain the node coordinates and 

the topology of the element. They come from the library 'geom' directly. In 

this model, it contains 6 quadrilateral elements with 12 nodes. The 

coordinates of these 12 nodes is shown in Table 5.2.1 and the topology 

information are shown in Table 5.2.2. The topological orientation of the 

element is clockwise. 

 

 

 

 

 

X 

Y 

1 

2 

3 

4 

6 

6 

7 

8 

9 

10 

11 

12 

Figure 5.2.1 The 2D FE model for preliminary benchmark. 
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Table 5.2.1 The coordinates of the node. (unit: mm) 

Node NO. X direction Y direction Node NO. X direction Y direction 

1 0 0 7 2 0 

2 0 -1 8 2 -1 

3 0 -2 9 2 -2 

4 1 0 10 3 0 

6 1 -1 11 3 -1 

6 1 -2 12 3 -2 

 

Table 5.2.2 The topology information of the element. 

Element NO. Topology Information (clockwise) 

1 2, 1, 4, 6 

2 3, 2, 6, 6 

3 6, 4, 7, 8 

4 6, 6, 8, 9 

6 8, 7, 10, 11 

6 9, 8, 11, 12 

The boundary condition is imposed on the bottom-line nodes such that the 

displacement components to the Y direction and the left line nodes such that 

the displacement components to the X direction are always zero respectively.  

The implementation of the boundary condition is through add the constraint 

of the node, in this case, the node constraint information is listed in Table 

5.2.3.  
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Table 5.2.3 The constrained node of boundary condition. 

The Constraint Direction Node Number 

X direction 1, 2, 3 

Y direction 3, 6, 9, 12 

In this benchmark, the uniform loads are on the top surface. Based on the 

node loading factor calculation method, the equivalent node loading factor 

information of plane stress and plane strain case is the same, which is shown 

in Table 5.2.4 (a), and the axisymmetric case is shown in Table 5.2.4 (b). 

Table 5.2.4 The equivalent node loading factor information. 

Node NO. X Y 

(a) Plane Stress and Plane Strain 

1 0.0 0.5 

4 0.0 1.0 

7 0.0 1.0 

10 0.0 0.5 

(b) Axisymmetric 

1 0.0 0.1666667 

4 0.0 1.0 

7 0.0 2.0 

10 0.0 1.333333 
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5.2.1 Validation of the Elastic Part 

Young's modulus E and Passion's ratio ν are set to 1 × 103MPa and 0.3 

respectively. A uniformly linear distributed load 60 MPa is applied on the top 

line and the loading factor has been mentioned in Table 5.2.4. The assessment 

and discussion of the result under three stress states are shown below.  

➢ Plane stress case. 

In this plane stress case, the theoretical stress in the Y direction is 60 MPa, in 

the X and the shear directions should be zero. According to the constitutive 

relationship between stress and strain which has been mentioned in section 

2.6.1, the strain of three directions is: 

 εx =
b

b2 − a2
∙ σy  

 εy = −
a

b2 − a2
∙ σy 5.2.1 

 γxy=0  

where, a =
E

1−υ2
 , b =

ν∙E

1−ν2
 .  

According to the Equation 5.2.1 and the parameters, the theoretical strain in 

the X direction is −1.8 × 10−2, in the Y direction is 6.0 × 10−2. The simulated 

stress and strain are shown in Table 5.2.5, which have been shown in good 

agreement with the theoretical value and the error is negligible. 
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Table 5.2.5 The elastic stress field and strain field for the FE model under 60MPa 

uniform loading of plane stress state. (At Gauss Point) 

Elastic Stress Field (Unit: MPa) 

Element No. X Direction Y Direction Shear Direction 

1 1.066 × 10−14 60.000 8.006 × 10−15 

2 1.776 × 10−14 60.000 3.155 × 10−14 

3 3.197 × 10−14 60.000 1.334 × 10−14 

4 1.421 × 10−14 60.000 −2.402 × 10−14 

5 2.487 × 10−14 60.000 −5.338 × 10−15 

6 0.000 60.000 2.669 × 10−15 

Elastic Strain Field 

1 −1.799 × 10−2 5.999 × 10−2 2.082 × 10−17 

2 −1.799 × 10−2 6.000 × 10−2 8.204 × 10−17 

3 −1.799 × 10−2 6.000 × 10−2 3.469 × 10−17 

4 −1.800 × 10−2 6.000 × 10−2 −6.245 × 10−17 

6 −1.799 × 10−2 6.000 × 10−2 −1.388 × 10−17 

6 −1.800 × 10−2 5.999 × 10−2 6.939 × 10−18 

Plane strain case. 

In this plane stress case, the theoretical stress in the Y direction is 60 MPa, in 

the X and the shear directions should be zero. According to the constitutive 

relationship between stress and strain which has been mentioned in section 

2.6.1, the strain of the three directions is: 
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 εx =
b

b2 − a2
∙ σy  

 εy = −
a

b2 − a2
∙ σy 5.2.2 

 γxy=0  

where, a =
E∙(1−ν)

(1+ν)∙(1−2ν)
 , b =

E∙ν

(1+ν)∙(1−2ν)
 .  

According to the Equation 5.2.2 and the parameters, the theoretical strain in 

the X direction is −2.34 × 10−2, in the Y direction is 6.46 × 10−2. The 

simulated stress and strain are shown in Table 5.2.6, which have been shown 

in good agreement with the theoretical value and the error is negligible. 
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Table 5.2.6 The elastic stress field and strain field for the FE model under 60MPa 

uniform loading of plane strain case. (At Gauss Point) 

Elastic Stress Field (Unit: MPa) 

Element No. X Direction Y Direction Shear Direction 

1 1.066 × 10−14 60.000 2.669 × 10−16 

2 −3.663 × 10−16 60.000 −1.868 × 10−14 

3 −3.663 × 10−16 60.000 −1.001 × 10−14 

4 2.487 × 10−14 60.000 1.068 × 10−14 

6 −1.776 × 10−14 60.000 6.338 × 10−16 

6 7.106 × 10−16 60.000 4.003 × 10−16 

Elastic Strain Field 

1 −2.339 × 10−2 −6.469 × 10−2 6.939 × 10−18 

2 −2.339 × 10−2 −6.469 × 10−2 −4.867 × 10−17 

3 −2.339 × 10−2 −6.469 × 10−2 −2.602 × 10−17 

4 −2.339 × 10−2 −6.469 × 10−2 2.776 × 10−17 

6 −2.339 × 10−2 −6.469 × 10−2 1.388 × 10−17 

6 −2.339 × 10−2 −6.469 × 10−2 1.041 × 10−17 

Axisymmetric case. 

In this case study, the theoretical stress in the Y direction is 60 MPa, in the X 

and the shear directions should be zero. However, compared with the 

previous two cases, only one Gaussian Point cannot satisfy the accuracy 

requirement for the element integration, therefore, here, it is realized by four 

Gaussian Points. 
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According to the constitutive relationship between stress and strain which has 

been mentioned in section 2.6.1, the strain in three directions are: 

 εX =
b

2 ∙ b2 − a2 − a ∙ b
∙ σY  

 εY = (
a + b

b
) ∙ (

b

2 ∙ b2 − a2 − a ∙ b
) ∙ σY 5.2.3 

 εX = εZ  

 γXY=0  

where, a =
E∙(1−ν)

(1+ν)∙(1−2ν)
 , b =

E∙ν

(1+ν)∙(1−2ν)
 .  

According to the Equation 5.2.3 and the parameters, the theoretical strain in 

the X and the Z direction are −1.8 × 10−2, in the Y direction is 6.0 × 10−2. 

The simulated stress and strain are shown in Table 5.2.7, which have been 

shown in good agreement with the theoretical value and the error is 

negligible. 
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Table 5.2.7 The elastic stress field and strain field for the FE model under 60MPa 

uniform loading of axisymmetric case. (At Gaussian Point) 

Elastic Stress Field (Unit: MPa) 

Element 

No. 

Gaussian 

Point No. 

X Y Shear Z 

1 

1 −1.924 × 10−7 69.999 1.493 × 10−7 −1.924 × 10−7 

2 −6.116 × 10−8 69.999 1.361 × 10−7 −6.116 × 10−8 

3 −1.216 × 10−7 69.999 6.179 × 10−8 −1.216 × 10−7 

4 9.678 × 10−9 69.999 4.763 × 10−8 9.678 × 10−9 

2 

1 −1.496 × 10−9 69.999 2.800 × 10−8 −1.496 × 10−9 

2 2.877 × 10−8 69.999 2.922 × 10−8 2.877 × 10−8 

3 −7.647 × 10−9 69.999 7.828 × 10−9 −7.847 × 10−9 

4 2.272 × 10−8 69.999 9.038 × 10−9 2.272 × 10−8 

3 

1 −1.119 × 10−8 60.000 
−4.994

× 10−9 
−1.291 × 10−8 

2 −1.623 × 10−8 69.999 
−3.071

× 10−9 
−1.739 × 10−8 

3 
−8.841

× 10−10 
60.000 

−1.360

× 10−9 
2.396 × 10−8 

4 −1.236 × 10−8 69.999 6.623 × 10−10 4.478 × 10−9 

4 

1 
−2.328

× 10−8 
69.999 

−1.916

× 10−8 
7.738 × 10−9 

2 
−1.018

× 10−8 
69.999 

−1.460

× 10−8 

−1.083

× 10−8 

3 
−7.233

× 10−9 
69.999 

6.419

× 10−9 
1.409 × 10−8 

4 8.218 × 10−9 69.999 
7.639

× 10−10 
2.266 × 10−8 

6 1 
−2.014

× 10−8 
69.999 

1.322

× 10−8 

−1.621

× 10−8 
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2 3.681 × 10−10 60.000 
1.286

× 10−8 
3.476 × 10−9 

3 
−1.063

× 10−8 
60.000 

−8.499

× 10−10 
3.824 × 10−9 

4 8.346 × 10−9 60.000 
−1.207

× 10−9 
1.973 × 10−8 

6 

1 
−6.463

× 10−9 
60.000 

6.382

× 10−9 
1.366 × 10−8 

2 3.763 × 10−9 60.000 
7.122

× 10−9 
1.946 × 10−8 

3 
−6.086

× 10−9 
60.000 

−2.472

× 10−9 
1.746 × 10−8 

4 
−2.707

× 10−9 
60.000 

−1.732

× 10−9 
2.196 × 10−8 

Elastic Strain Field 

1 

1 
−1.800

× 10−2 

6.999

× 10−2 

3.882

× 10−10 

−1.800

× 10−2 

2 
−1.800

× 10−2 

6.999

× 10−2 

3.614

× 10−10 

−1.800

× 10−2 

3 
−1.799

× 10−2 

6.999

× 10−2 

1.607

× 10−10 

−1.799

× 10−2 

4 
−1.799

× 10−2 

6.999

× 10−2 

1.238

× 10−10 

−1.799

× 10−2 

2 

1 
−1.799

× 10−2 

6.999

× 10−2 

7.281

× 10−11 

−1.799

× 10−2 

2 
−1.799

× 10−2 

6.999

× 10−2 

7.696

× 10−11 

−1.799

× 10−2 

3 
−1.799

× 10−2 

6.999

× 10−2 

2.036

× 10−11 

−1.799

× 10−2 

4 
−1.799

× 10−2 

6.999

× 10−2 

2.349

× 10−11 

−1.799

× 10−2 

3 

1 
−1.800

× 10−2 

6.000

× 10−2 

−1.298

× 10−11 

−1.800

× 10−2 

2 
−1.800

× 10−2 

6.999

× 10−2 

−7.986

× 10−11 

−1.800

× 10−2 

3 
−1.800

× 10−2 

6.000

× 10−2 

−3.636

× 10−11 

−1.799

× 10−2 

4 
−1.800

× 10−2 

6.999

× 10−2 

1.462

× 10−12 

−1.799

× 10−2 

4 1 
−1.800

× 10−2 

6.999

× 10−2 

4.982

× 10−11 

−1.799

× 10−2 
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2 
−1.800

× 10−2 

6.999

× 10−2 

3.769

× 10−11 

−1.799

× 10−2 

3 
−1.799

× 10−2 

6.999

× 10−2 

1.409

× 10−11 

−1.799

× 10−2 

4 
−1.799

× 10−2 

6.999

× 10−2 

1.960

× 10−12 

−1.799

× 10−2 

6 

1 
−1.800

× 10−2 

6.000

× 10−2 

3.438

× 10−11 

−1.800

× 10−2 

2 
−1.800

× 10−2 

6.000

× 10−2 

3.346

× 10−11 

−1.800

× 10−2 

3 
−1.800

× 10−2 

6.000

× 10−2 

−2.210

× 10−12 

−1.799

× 10−2 

4 
−1.800

× 10−2 

6.000

× 10−2 

−3.139

× 10−12 

−1.799

× 10−2 

6 

1 
−1.800

× 10−2 

6.000

× 10−2 

1.669

× 10−11 

−1.799

× 10−2 

2 
−1.800

× 10−2 

6.000

× 10−2 

1.862

× 10−11 

−1.799

× 10−2 

3 
−1.800

× 10−2 

6.000

× 10−2 

−6.426

× 10−12 

−1.799

× 10−2 

4 
−1.800

× 10−2 

6.000

× 10−2 

−4.602

× 10−12 

−1.799

× 10−2 

5.2.2 Validation of the creep part 

The benchmark of the creep part of three stress states is performed in this 

section, the FE model has been mentioned before. The uniformly distributed 

linear load is 60MPa and the KRH creep damage constitutive equation is 

adopted in this verification. In this case study, it simulates the creep evolution 

of 0.6Cr0.6Mo0.26V ferritic steel at 690℃. The material constants for this 

material are given below Table 5.2.8 [75]. In the creep iteration, the time step is 

set as ∆t = 0.5h. 
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Table 5.2.8 The material constants for 0.6Cr0.6Mo0.26V ferritic steel at 690℃. 

Reproduced from [81] 

A 2.1618 × 10−9MPa h−1 H∗ 0.6929 

B 0.20624 MPa−1 KC 9.2273 × 10−6MPa−3h−1 

C 1.8637 υ 2.8 

h 2.4326× 106 MPa   

Plane stress case. 

In this FE model, it is a kind of uniform stress condition. During the creep 

non-linear creep iteration, since each element has the same creep deformation, 

the generated body loads are equal in opposite directions, and there is no 

stress redistribution. This case is a kind of uni-axial stress state. Here, the 

NO.1 element is chosen as a sample to present the results, this non-linear 

iterative process lasted for 73936 steps, the failure time is 36967.5 hours, and 

the creep strain at failure is 0.179934297613029. The simulated rupture time 

and strain at failure have been shown in good agreement with the reference 

result [59]. The creep strain cure and damage evolution curve are shown in 

Figure 5.2.2 and Figure 5.2.3, respectively. 
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Figure 5.2.2 The creep strain curve of the plane stress case. 

 

Figure 5.2.3 The creep damage evolution curve of plane stress case. 

Plane strain case. 

In the plane strain case, under the same parameter constants, constitutive 

equations, and loading. Here, the NO.1 element is chosen as a sample to 

present the results, the iteration lasted for 73936 steps, the failure time is 

36967.5 hours, and the creep strain at failure is 0.179934297613012. The 

simulated rupture time and strain at failure have been shown in good 
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agreement with the reference result [51]. The creep strain cure and damage 

evolution curve are shown in Figure 5.2.4 and Figure 5.2.5, respectively. 

 

Figure 5.2.4 The creep strain curve of the plane strain case. 

 

Figure 5.2.5 The creep damage evolution curve of plane stress case. 

Axisymmetric case. 

In axisymmetric case, under the same parameter constants, constitutive 

equations, and loading. However, the element numerical integration is 

implemented by four Gaussian Points.    
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Here, the No.1 Gaussian point of the NO.1 element is chosen as a sample to 

present the results, the iteration lasted for 73936 steps, the failure time is 

36967.5 hours, and the creep strain at failure is 0.179934294619527. The 

simulated rupture time and strain at failure have been shown in good 

agreement with the reference result [59]. The creep strain cure and damage 

evolution curve are shown in Figure 5.2.6 and Figure 5.2.7, respectively. 

 

Figure 5.2.6 The creep strain curve of the axisymmetric case. 

 
Figure 5.2.7 The creep damage evolution curve of axisymmetric case. 
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5.3 The Validation of the In-house Procedure via the numerical 

investigation of the Bar 267 Notched-Bar Case Study at 660 ℃ 

5.3.1 Introduction 

The 2-dimensional FE in-house procedure for creep damage simulation has 

been developed from the P61[10]. The previous verification of the procedure 

is under the uniform load condition, which is a simple stress condition. 

However, the ultimate practical significance of the procedure is to apply the 

numerical techniques at the high-stress gradients and complex state of stress 

conditions. Therefore, it is indispensable to benchmark the stability and 

accuracy of the procedure under moderate stress concentration. The general 

way is to do the benchmark simulation of the notched bar test. 

In the creep test, there are typically two types of the notched bar specimen 

that are commonly used, which are the circular Bridgman notch and the 

British Standard notch. These two structures typify two different stress 

conditions, in the body of the circular Bridgman notch is subjected by the 

uniform state of complex multi-axial stress condition and in the British 

Standard notch, the high gradients and concentration of the stress are 

observed close to the notch part. For the notched bar specimen, the indicator 

of the performance can be expressed by the mean stress act on the minimums 

section of the notched bar. In the creep simulation, since the axisymmetric of 

the notched bar, the problem is reduced to a 2D axisymmetric case and a 

quarter of the specimen is selected to establish the FE model.  
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In order to make the verification process efficient and logical, the convenient 

way is to find an appropriate notched bar analysis that has been validated. 

Therefore, a notched bar case has been chosen to verify the solution of the 

procedure, which the FE simulation and the experiment have been done by 

Hyde [71]. The reason for adopting this case is that: complete parameters, 

given the dimensions of the notched bar, and published the accurate rupture 

time and damage contour. In this case, the specimen is a Bridgman notched 

bar with Bar 267 material, and the test temperature is 660 ℃. These fellow 

aspects will be controlled during the verification to keep the same with 

Hyde's simulation: boundary condition, loading, mesh, geometry, 

parameters, and constitutive equation. The generation and mesh of the FE 

model are based on the Abaqus package and the model information read into 

the procedure via the interface by modifying the INP file into a procedure-

acceptable format, and finally displaying the results through the FEMGV 

platform. 

A general benchmark strategy is employed here as mentioned before is from 

the linear elasticity to the creep non-linearity. The solution of the creep is a 

kind of the initial value problem; therefore, the accuracy of the initial elastic 

stress field affects the final simulation result directly. The second stage is to 

verify the creep part, which mainly includes the following aspects: 1) the 

position of the first failure element. 2) the evolution of the damage growth.3) 

the damage pattern. 4) the rupture time.   
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5.3.2 Description of the Bar 267 Bridgman Notched Bar Case Study 

The geometry of the Bridgman notched bar at one quadrant at the cylindrical 

polar coordination system is defined in Figure 5.3.1, the main size ration of 

this sample is R a⁄ = 0.67 and b a⁄ = 1.67, where the R is the ratio of the 

notch, a is the ration of the minimums section and b is the ratio of the 

maximums section. The material of the specimen is Bar 267, which is a special 

type of P91 steel. The characteristic of this steel is that the rupture strength is 

much lower than the standard average value of P91 steel.  

 

Figure 5.3.1 The geometry of the Bridgeman circular notch bar.  

Produced by [3]. 

FE model. 

The main dimensions of the test specimen are a= 3.76 mm, b=6.26 mm, and R= 

2.6 mm. The notched bar has been tested at the temperature of 660 ℃ and has 

been loaded on the top surface to produce the nominal stress 93 MPa in the 

minimum notch section. For the Finite Element Analysis, this problem can be 

idealized to a 2D axisymmetric case. The FE model is shown in Figure 5.3.2. 
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Figure 5.3.2 The FE model of the Bridge circular notched bar. 

The generation and meshing of this model are based on the Abaqus package, 

and the meshing pattern follows Hyde's early form. The model consists of 240 

axisymmetric quadratic elements with 8 nodes and the area integration is 

implemented by 4 Gaussian integration points. The boundary conditions are 

imposed on these left line nodes such that the displacement components to 

the X direction and bottom-line nodes such that the displacement components 

to the Y direction are always zero respectively.  

Constitutive Equations. 

The Kachanov type constitutive equations was adopted here to describe the 

creep behavior of the materials. It developed from the power law stress 

sensitivity. The damage state is described by a single variable to depict the 

creep evolution under the multi-axial stress condition. The details of this 

constitutive equations have been mentioned in section 3.2.1, therefore are not 

present here. The parameters of B267 at the temperature of 660℃ have been 

determined by Hyde, shown in Table 5.3.1.  
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Table 5.3.1 The constants in the constitutive equations of Bar 267 steel. (at 660 ℃) 

Reproduced from [71] 

Material A′ n m B′ ϕ χ α 

Bar 267 
1.092

× 10−20 
8.462 

−4.764

× 10−4 

3.637

× 10−17 
7.346 6.879 0.216 

The Solution of Hyde. 

In the notched bar analysis, the predicted rupture time with the axisymmetric 

Finite Element Method was 996.2h. The damage contour is shown in Figure 

5.3.3. 

 
Figure 5.3.3 The Hyde's FE solution of the damage pattern  

at times at the rupture time tf = 996.2h. Produced by [71] 

The damaged area happens at the root of the specimen and the failure area 

width is approximately 1/2 of the minimum cross-sectional area. The 

tendency for the failure growth is towards the notch at a direction of about 46 

degrees from the bottom axis. 

5.3.3 Result and Discussion 

In the FE analyses, the determination of the failure element is based on the 

damage value at the Gaussian point, in which at least one of four Gaussian 

point's damage reaches the threshold value (ω = 1). At that point, the loading 

capability of the failure element disappears. Such elements needed to be 
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removed from the structure, however, in the current version, the alternative 

method is to rapidly reduce the stiffness of the element.  

The loading and Boundary Condition 

In this geometry, the uniform loads 33 MPa on the top surface can produce 93 

MPa mean stress in the minimum notch section. The equivalent node loading 

factor information is shown in Table 5.3.2.  

Table 5.3.2 The equivalent nodal loading factor information in axial direction. 

Node Number Loading Factor Node Number Loading Factor 

39 0.0 740 1.1667239 

667 0.106382612 169 0.626047777 

129 0.106382612 716 1.33346721 

670 0.316147636 168 0.708419427 

128 0.210766036 692 1.600210499 

672 0.626912633 167 0.791791444 

127 0.316147648 668 1.666966433 

674 0.737677611 166 0.876163206 

38 0.398231496 644 1.833697233 

777 0.833237707 166 0.968634439 

161 0.468304606 619 2.000440622 

764 0.999980636 43 0.620963042 

160 0.641676136 
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The implementation of the boundary condition is through adding the 

constraint of the node, in this case, a total of 67 nodes were imposed 

constraints. The coordinate origin NO. 6 is fixed. The boundary conditions are 

listed in Table 5.3.3. 

Table 5.3.3 The constrained node of boundary conditions. 

The Constraint Direction Node Number 

X direction 

6, 6, 9, 12, 16, 18, 21, 24, 27, 39, 130, 131, 132, 133, 

134, 136, 136, 137, 138, 139, 140, 301, 319, 336, 

363, 370, 387, 404, 421, 469, 478, 487, 496, 606, 

614, 623, 632, 641,660,669,668 

Y direction 

2, 3, 6, 47, 48, 49, 66, 67, 68, 279, 282, 286, 288, 

293, 296, 299, 302, 

The validation of the Elastic Part. 

As mentioned before, the solution of creep is an initial value problem, 

therefore, the accuracy of the beginning elastic stress field needs to be 

controlled. The effective way is to benchmark with the elastic stress field with 

the result of ABAQUS.  

The elastic stress contour is shown in Figure 5.3.4.       
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Figure 5.3.4 The elastic stress field obtained from ABAQUS.  

Randomly select 6 elements from different stress gradients, compare the stress 

with the output of in-house procedure and do the error analysis of the Von 

Mises stress at each Gaussian Point (GP). According to the percentage errors 

shown in Table 5.3.4, it clearly shows the elastic stress field obtained from the 

in-house procedure which is in good agreement with the result from the 

Abaqus and the percentage error is negligible. 

  



~ 106 ~ 
 

Table 5.3.4 The percentage error of stress field between Abaqus and In-house 

Procedure. 

Element No. GP No. Abaqus In-house Error 

4 

1 102.067 102.067 0.00030269% 

2 103.189 103.189 0.00047641% 

3 124.614 124.614 0.00036609% 

4 126.799 126.799 0.00006449% 

8 

1 43.0187 43.019 0.00002809% 

2 43.4998 43.499 0.00010638% 

3 42.726 42.726 0.00006827% 

4 43.2064 43.206 0.00004174% 

36 

1 62.7046 62.704 0.00001890% 

2 61.1109 61.1112 0.00004836% 

3 63.6302 63.630 0.00007079% 

4 61.3676 61.368 0.00006047% 

64 

1 69.3284 69.328 0.00002231% 

2 69.166 69.166 0.00006491% 

3 69.2306 69.230 0.00000868% 

4 68.8782 68.878 0.00004690% 

238 

1 16.4681 16.468 0.00003876% 

2 14.6474 14.647 0.00012486% 

3 12.6828 12.683 0.00016033% 
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4 11.3892 11.389 0.00030269% 

Damage Evolution and Error Analysis.  

The implementation of the post-process in this procedure is based on the 

FEMGV package. The evolution of the damage pattern is shown in Figure 

5.3.5, 5.3.6, 5.3.7 and 5.3.8. The entire simulation process lasted 26334 steps 

and the simulation time was 1007 h. Failure occurs first at the root of the 

notched bar and then toward the notch laterally. The specific simulation data 

is listed as: the first failure is NO.8 element, which occurs in the 10092th step 

and the simulation time is 982h, the second failure is NO.7 element, which 

occurs in the 16647th step and the simulation time is 997h, the third failure 

element is NO.6 element, which occurs in the 20682th step and the simulation 

time is 1003h, the fifth failure element is NO.6 element, which occurs in the 

26334th step and the simulation time is 1007h.   
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Figure 5.3.5 The evolution of the damage pattern at 982h. 
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Figure 5.3.6 The evolution of the damage pattern at 997h. 
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Figure 5.3.7 The evolution of the damage pattern at 1003h. 
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Figure 5.3.8 The evolution of the damage pattern at 1007h. 

According to the damage contour of the simulations from Hyde, the failure 

definition of the notched bar is that the damaged width on the root is about 

half of the minimum cross-sectional length. To reach this damage level, 

Hyde's simulation spent 996.2h and the in-house procedure spent 1007h, and 

the percentage error is shown in Table 5.3.5. 

Table 5.3.5 The percentage error of rupture time between Hyde's result and in-house 

procedure's output. 

The percentage error of Rupture time tf =
1007−996.2

996.2
= 1.08% 
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5.3.4 Discussion 

The in-house procedure has been developed and applied for the FE analysis 

of the creep damage evolution of the Bar 267 Bridgman notched bar case. The 

purpose of the section is to benchmark the accuracy and reliable of the 

procedure under complex stress state. More specifically, it first reports the 

elastic validation part, the elastic stress field have been shown in good 

agreement with the results from the Abaqus package. Through this part, these 

parts of the procedure are verified: 1) the assembling, storing and solving of 

the global stiffness matrix. 2) the stability and accuracy of the interface used to 

import the 'INP' files, boundary conditions and loading information into the 

procedure. Secondly, according to the benchmark of the non-linear creep 

solution, these parts of the procedure are verified: 1) the accuracy of the 

integral method of the KRH creep constitutive equation. 2) the accuracy and 

stability of the non-linear iterations, including a) the generation of the creep 

body node. b) the combination of internal and external node force. c) the 

reliable of the removal function. d) the reliability of the automatic time step 

selection function. 3) the reliability of the interface used to import the result 

information into the FEMGV to display the damage contour. 
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Chapter 6 The Validation and Application of In-house 

Procedure at Grain Boundary Level 

6.1 Introduction 

This chapter reports the benchmark and application of the In-house 

procedure for creep damage mechanics at grain boundary level. In order to 

make the benchmark logical and efficient, initially a bi-grain model was 

employed to verify the numerical stability and accuracy of procedure at grain 

boundary level. Then, applies the procedure to implement a polycrystal case 

study. 

The benchmark stages in this chapter can be summarized as following: 

1. Bi-grain benchmark test. At this stage, the validation relies on two FE 

models, the first one is the grain boundary parallels to the x-axis and the 

stress in a normal direction, which demonstrates the accuracy and 

stability in the normal direction. In the second FE model, the grain 

boundary has an angle with the x-axis, which demonstrates the accuracy 

and stability in the separated direction. In these two FE models, the 

strategy of the validation corresponds to the development stages, the 

main process is from linear elasticity to creep non-linearity. 

2. Polycrystalline application. At this stage, the procedure applies to 

simulate the grain boundary level’s creep evolution of Copper-antimony 

alloy at 823K. In this case study, the FE model contains 20 grains and 162 
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Grain boundaries. 
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6.2 The Validation of the In-house Procedure via the numerical 

investigation of the Bi-grains Case Study 

6.2.1 Introduction 

In this section, the validation logic is from uni-axial to multi-axial, from linear 

to nonlinear, therefore, the Bi-grains FE model proposed by Yu.C [9] is used 

to simulate the uni-axial stress state. It preliminarily verifies the procedure's 

numerical stability and accuracy and paves the way for the subsequent 

polycrystalline case study. 

Two types of bi-grains structures were employed in the benchmark. In the 

first case, no shear sliding happens, the main purpose is to validate the 

numerical stability and accuracy of the procedure at normal direction. It 

consists of two rectangular grains and a single non-thickness grain boundary, 

as depicted in Figure 6.2.1.  

Initially, at the unloaded state, the upper and lower surface of the grain 

boundary is coincident. For simplicity, we only consider the plane strain 

condition here. The grain part is modeled by the solid plane strain element 

and the grain boundary is modeled by the Goodman element.  
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The validation can be devised of two stages: 

1) Linear benchmark.  

The three modules of the procedure are verified 

a) the interface part, which used to import the geometry information, the 

boundary condition, the loading information, etc.  

b) the solution the 2D Goodman element stiffness matrix  

c) the assembly of the global stiffness matrix, which is achieved by 

combining the stiffness matrix of the Goodman element with the 

traditional element stiffness matrix. 

2) Non-linear benchmark. 

The numerical accuracy and stability are verified 

a) the accuracy of the integral subroutine for the grain boundary 

constitutive equations.   

b) the generation of Goodman's body load due to the creep deformation. 

c) the generation of the global body load due to the grain's and grain 

Figure 6.2.1 The schematics showing the bi-grains structure (The red 

area is the no thickness grain boundary). Reproduced from [9] 

Grain 2 

Grain 1 
Grain Boundary 
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boundary's deformation.  

d) the accuracy of the elastic stress field for each non-linear iteration 

step. 

Validation of Elastic Part 

6.2.2 Validation of the Elastic Part with quadrilateral element 

 

 

 

 

 

 

 

 

This FE model consists of two element types (as shown in Figure 6.2.2), the 

four nodes quadratic plane strain element with one Gaussian integration 

point for the grain part and the four nodes Goodman element for the grain 

boundary part.  

➢ The Geometry information, Boundary Condition and Loading Information and 

Material Parameters. 

In this FE model, there are 12 nodes to form 6 elements. The coordinates of 

these nodes and the topology information are shown in Table 6.2.1 and Table 

6.2.2 respectively. 

Figure 6.2.2 The mesh of the Bi-grains structure with quadrilateral element used 

in this case study (The red number is the element NO. and the black number is 

the Node NO.). 

 

6 6 

1 2 

1 2 3 

4 6 6 

7 8 9 

10 11 12 

4 3 
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Table 6.2.1 The coordination of the nodes. (units: μm) 

Node NO. X direction Y direction Node NO. X direction Y direction 

1 0.0 0.0 7 0.0 0.6 

2 1.0 0.0 8 1.0 0.6 

3 2.0 0.0 9 2.0 0.6 

4 0.0 0.6 10 0.0 1.0 

6 1.0 0.6 11 1.0 1.0 

6 2.0 0.6 12 2.0 1.0 

 

Table 6.2.2 The topology information of the element. 

 Element NO. Topology Information(clockwise) 

Grain 1 

6 7, 10, 11, 8 

6 8, 11, 12, 9 

Grain 2 

1 1, 4, 6, 2 

2 2, 6, 6, 3 

Grain Boundary 

3 4, 7, 8, 6 

4 6, 8, 9, 6 

The boundary condition is imposed on the bottom-line nodes such that the 

displacement components to the Y direction and the left line nodes such that 

the displacement components to the X direction are always zero respectively.  

The implementation of the boundary condition is through adding the 

constraint of the node, in this case, the node constraint information is listed in 

Table 6.2.3.  
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Table 6.2.3 The constrained node of boundary condition. 

The Constraint Direction Node Number 

X direction 1, 4, 7, 10 

Y direction 1, 2, 3 

In this geometry, the uniform loads 30 MPa on the top surface and the 

equivalent node loading factor information is shown in Table 6.2.4.  

Table 6.2.4 The equivalent node loading factor information. 

Node Number 

Loading Factor 

X direction Y direction 

10 0.0 0.6 

11 0.0 1.0 

12 0.0 0.6 

Note: Node Loads Force equal loading factor times uniform loads stress. 

In order to simplify the process, the elastic parameters are set and based on 

these parameters and the theoretical result can be obtained. In this case, the 

elastic parameters have shown in Table 6.2.5. 

Table 6.2.5 The elastic parameters for the validation. 

Grain 

Young's Modulus 100000MPa 

Passion Ratio 0.3 

Grain Boundary Elastic Modulus 

Normal Direction 6000000N/μm3 

Separate Direction 3000000 N/μm3 
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➢ Result and Discussion. 

In this case, the contribution of the global stiffness matrix comes from two 

parts, the solid element stiffness of grain and the Goodman element stiffness 

of grain boundary. The assembly method used of the global stiffness matrix is 

" Element-By-Element" and the solution method of the global stiffness matrix 

adopted here is " Choleshi". Initially, after the global stiffness matrix has been 

assembled, the node load information is read into the procedure and the node 

displacements for this FE model have been obtained. Therefore, the 

deformation for each element can be calculated by the [B] matrix in this stage 

of recovering the deformation at interpolation, for grain, the element 

deformation represents by the strain at the Gaussian Point, for grain 

boundary, the element deformation is represented by the relative 

displacement at the original point under the local coordinate. Then, the 

element deformation for the FE model has been output and shown in Table 

6.2.6. The element stresses at interpolation point can be obtained by the 

calculation of the element's deformation and the [D] matrix, for grain, it is the 

strain-stress matrix and for the grain boundary, it is the relative displacement-

stress matrix. The stress is shown in Table 6.2.7. 
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Table 6.2.6 The elastic deformation for the FE model under 30MPa uniform loading. 

Grain (Strain) 

Element No. X Direction Y Direction Shear Direction 

1 −1.170 × 10−4 2.730 × 10−4 8.674 × 10−19 

2 −1.170 × 10−4 2.730 × 10−4 −9.768 × 19 

6 −1.170 × 10−4 2.730 × 10−4 1.301 × 10−18 

6 −1.170 × 10−4 2.730 × 10−4 −6.606 × 10−19 

Grain Boundary (Relative Displacement) (μm) 

Element No. X Direction Y Direction 

3 3.263 × 10−19 0.600 × 10−4 

4 −1.804 × 10−19 0.600 × 10−4 

 

Table 6.2.7 The element elastic stress for the FE model. 

Grain (Unit: MPa) 

Element No. X Direction Y Direction Shear Direction 

1 −3.730 × 10−14 30.000 3.336 × 10−14 

2 −3.020 × 10−14 29.999 −3.763 × 10−14 

6 −3.66 × 10−16  30.000 6.004 × 10−14 

6 6.161 × 10−14 30.000 −2.602 × 10−14 

Grain Boundary (Unit: MPa) 

Element No. X Direction Y Direction 

3 4.879 × 10−14 30.000 

4 −3.663 × 10−16 30.000 
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For the grain, the theoretical stress in the Y direction is 30MPa and in X and 

shear direction should be zero. For the grain boundary, the theoretical stress 

in the Y direction is 30MPa and in the X direction should be zero. According 

to Table 6.2.7, the results show in good agreement with the theoretical stress. 

Thus, the technique for the elastic solution of this procedure has been 

validated.  

Through the benchmark of the procedure for the Bi-grains' model, these 

techniques have been validated: 1) obtained the Goodman element for the 

grain boundary part. 2) the assembly and solution of the global stiffness 

matrix. 3) the recovering of the element stress at the interpolation point.  

➢ Validation of Compression Condition 

The previous section verified that the relative displacement occurs when the 

grain boundary is under tensile stress (positive loading). However, under 

actual conditions, some grain boundaries may be compressed. Due to the 

impermeability of the grain part, negative relative displacement is not 

allowed. Using the same FE model, mesh, boundary conditions, and loading 

point coefficients, replace the tensile stress with compressive stress (-30MPa).  

The elastic deformation of each element is shown in Table 6.2.8. The element 

stresses at the interpolation point (Gaussian Point) is shown in Table 6.2.9. 

Since the grain boundary is under a compressed state, in order to stop the two 

grains being inserted into each other, the upper and lower surfaces of the 
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grain boundary are locked, and no relative displacement of the grain 

boundary occurs. 

Table 6.2.8 The elastic deformation for the FE model under -30MPa uniform loading. 

Grain (Strain) 

Element No. X Direction Y Direction Shear Direction 

1 1.169 × 10−4 −2.729 × 10−4 1.084 × 10−19 

2 1.170 × 10−4 −2.730 × 10−4 −1.423 × 10−19 

6 1.169 × 10−4 −2.730 × 10−4 −8.936 × 10−20 

6 1.170 × 10−4 −2.730 × 10−4 5.421 × 10−20 

Grain Boundary (Relative Displacement) (μm) 

Element No. X Direction Y Direction 

3 0.000 0.000 

4 0.000 0.000 
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Table 6.2.9 The element elastic stress for the FE model. 

Grain (Unit: MPa) 

Element No. X Direction Y Direction Shear Direction 

1 −1.243 × 10−14 -30.000 4.170 × 10−15 

2 −1.065 × 10−14 -30.000 −5.473 × 10−15 

6 −7.105 × 10−15 -30.000 −3.436 × 10−15 

6 0.000 -30.000 −2.085 × 10−15 

Grain Boundary (Unit: MPa) 

Element No. X Direction Y Direction 

3 0.000 0.000 

4 −3.663 × 10−16 30.000 

6.2.3 Validation of the Elastic Part with triangle element 

The results presented in this section has been published in the special issue 

(Creep and High Temperature Deformation of Metals and Alloys) of Metals, 

and it can be found in section 3.1 of the publication [45]. Q.Xu designed this 

Bi-grain structure with the triangle element type to eliminate the effect of un-

balanced shear stress on the result( as shown in Figure 6.2.3). In this FE 

model, eight triangle plane strain elements are used to form two grains and 

one Goodman element for the grain boundary. The area integration of the 

triangle element is implemented by one Gaussian integration point. 
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➢ The Geometry information, Boundary Condition and Loading Information and 

Material Parameters. 

In this FE model, there are ten nodes to form eight elements. The coordinate 

of eight nodes and the topology information are shown in Table 6.2.10 and 

Table 6.2.11 respectively. 

Table 6.2.10 The coordinate of the nodes. (units: μm) 

Node NO. X direction Y direction Node NO. X direction Y direction 

1 0.0 0.0 6 1.0 1.0 

2 1.0 0.0 7 0.0 2.0 

3 0.0 1.0 8 1.0 2.0 

4 1.0 1.0 9 0.6 0.6 

6 0.0 1.0 10 0.6 1.6 
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Figure 6.2.3 The FE model of the bi-grains structure with triangle 

element (the red area is the no thickness grain boundary). Reproduced 

from [45] 
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Table 6.2.11 The topology information of the element. 

 Element NO. Topology Information (clockwise) 

Grain 1 

1 1, 9, 2 

2 1, 3, 9 

3 3, 4, 9 

4 4, 2, 9 

Grain 2 

6 6, 10, 6 

6 6, 7, 10 

7 7, 8, 10 

8 8, 6, 10 

Grain Boundary 9 3, 6, 6, 4 

The boundary condition is imposed on the bottom-line nodes such that the 

displacement components to the Y direction and the left line nodes such that 

the displacement components to the X direction are always zero respectively.  

The node constraint information is listed in Table 6.2.12.  

Table 6.2.12 The constrained node of boundary condition. 

The Constraint Direction Node Number 

X direction 1, 2 

Y direction 1, 3, 6, 7 

In this geometry, the uniform loads 20 MPa on the top surface. The equivalent 

node loading factor information is shown in Table 6.2.13.  
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Table 6.2.13 The equivalent node loading factor information. 

Node Number 

Loading Factor 

X direction Y direction 

7 0.0 0.6 

8 0.0 0.6 

Note: Node Loads Force equal loading factor times uniform loads stress. 

In order to simplify the procedure, the elastic parameters are set and based on 

these parameters, the theoretical result can be obtained. In this case, the elastic 

parameters have shown in Table 6.2.14. 

Table 6.2.14 The elastic parameters. 

Grain 

Young's Modulus 100000MPa 

Passion Ratio 0.3 

Grain Boundary Elastic Modulus 

Normal Direction 6000000N/μm3 

Separate Direction 3000000 N/μm3 

➢ Result and Discussion. 

The specific point of stress for the elastic model has been shown in Table 

6.2.15. For the grain, the theoretical stress in the Y direction is 20MPa and in 

the X and the shear direction should be zero. For the grain boundary, the 

theoretical stress in the Y direction is 20MPa and in the X direction should be 

zero. According to the Table 6.2.15, for the grain element part, the maximum 

stress in the X direction is 1.066 × 10−14occurs in NO.2 element, and in shear 

direction, the maximum stress is 4.170 × 10−16MPa occurs in NO.6 element, 

which is negligible as expected. For the grain boundary part, the stress at 
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separated directions are negligible (2.033 × 10−16 MPa). In summary, the 

results show good agreement with the theoretical stress. Thus, the technique 

for the elastic solution with the triangle element of this procedure has been 

validated. 

Table 6.2.15 The simulation stress for each element. 

Grain (Unit: MPa) 

Element No. X Direction Y Direction Shear Direction 

1 0.000 20.000 −3.128 × 10−16 

2 1.066 × 10−14 20.000 −2.086 × 10−16 

3 0.000 20.000 −1.043 × 10−16 

4 −6.329 × 10−16 20.000 −2.086 × 10−16 

6 0.000 20.000 3.126 × 10−16 

6 −6.329 × 10−16 20.000 4.170 × 10−16 

7 −7.106 × 10−16 20.000 2.086 × 10−16 

8 1.776 × 10−16 20.000 0.000 

Grain Boundary (Unit: MPa) 

Element No. X Direction Y Direction 

9 2.033 × 10−16 20.000 

6.2.4 Validation of the Elastic Part of FE model with Angle 

The main purpose of the previous three case studies (Section 6.2.1, Section 

6.2.2, and Section 6.2.3) was to benchmark the in-house procedure under the 

mesh with two different solid elements, quadrilateral and triangle type. 
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However, these two previous cases only verified a special condition where the 

grain boundary is parallel to the X axial, in which case no separated stress is 

generated. Therefore, this section considers a benchmark case study of a bi-

crystal structure with angle. 

The FE model of two grains is modeled by two triangle plane strain elements 

and a Goodman element for modeling the single grain boundary (shown in 

Figure 6.2.4.). 

 

 

 

 

 

 

➢ The Geometry information, Boundary Condition and Loading Information and 

Material Parameters. 

In this FE model, there are a total of six nodes to form three elements. The 

rotation angle of the grain boundary direction to the X axial (anti-clockwise) is 

135°. In order to be logical and efficient, the parameters and the normal stress 

on the grain boundary need to be consistent with these two previous case 

studies. Therefore, based on the geometric relationship, a uniform load of 40 

MPa is applied on the top surface in the Y direction. The node coordinate and 

 
 

Figure 6.2.4 The FE model of the bi-grains structure with 

angle. Reproduced from [45] 
 

Grain 1 

Grain 2 
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the topology information are shown in Table 6.2.16 and Table 6.2.17 

respectively. 

Table 6.2.16 The coordination of the nodes. (units: μm) 

Node NO. X direction Y direction Node NO. X direction Y direction 

1 0.0 0.0 4 1.0 1.0 

2 1.0 0.0 6 1.0 0.0 

3 0.0 1.0 6 0.0 1.0 

 

Table 6.2.17 The topology information of the element. 

 Element NO. Topology Information 

Grain 1 1 1, 3, 2 

Grain 2 2 4, 6, 6 

Grain Boundary 3 3, 6, 6, 2 

The boundary condition is imposed on the bottom-line nodes to the Y 

direction and the left line to the X direction are always zero respectively. The 

node constraint information is listed in Table 6.2.18.  

Table 6.2.18 The constrained node of boundary condition. 

The Constraint Direction Node Number 

X direction 1, 3 

Y direction 1, 2 

The equivalent node loading factor information is shown in Table 6.2.19.  
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Table 6.2.19 The equivalent node loading factor information. 

Node Number 

Loading Factor 

X direction Y direction 

4 0.0 0.6 

6 0.0 0.6 

➢ Result and Discussion. 

The simulation results should be compared with the theoretical result. In this 

case study, the theoretical result of the grain part is: the stress at Y direction is 

40MPa and the stress in the other two directions (X direction and shear 

direction) should be zero. The theoretical result of the grain boundary part is: 

the stress at normal direction is 20MPa and the stress in the separated 

direction should be zero. The simulation results for each element are shown in 

Table 6.2.20. According to this table, the accuracy of the Goodman element 

with angle has been validated. 

Table 6.2.20 The simulation stress for each element. Reproduced from [45] 

Grain (Unit: MPa) 

Element No. X Direction Y Direction Shear Direction 

1 −3.663 × 10−16 40.000 0.000 

2 0.000 40.000 2.086 × 10−16 

Grain Boundary (Unit: 𝐌𝐏𝐚) 

Element No. X Direction Y Direction 

3 -20.000 20.000 
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Validation of Non-linear Creep Part 

6.2.5 Validation of the Non-linear Creep Part with quadrilateral element 

The information of the FE model, boundary condition, loading, and elastic 

parameters have been mentioned in section 6.2.2. Therefore, the above 

information is not repeated here, only the benchmark of the non-linear 

iteration part is presented. The accuracy of the creep solution is related to the 

integral of the creep constitutive equation and the elastic stress field of each 

iteration step. Thus, the benchmark focuses on two parts: the convergence of 

stress updating and the integral accuracy of constitutive equations.  

➢ The Validation of the Stress Update 

The Bi-grains case study is a kind of uniform condition and the deformation 

of each element is the same, hence there is no effect of stress redistribution. 

The sign of the non-linear iterating convergence in the elastic stress of each 

element is the same. In this case, the non-linear iteration lasts for 14166 steps 

with the time step of 0.000001 (normalized). In order to visualize the 

convergence of the stress field, the stress condition of two iterative steps 

(60000 and 141664) are selected randomly during the process and shown in 

Table 6.2.21. 
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Table 6.2.21 The elastic stress field of each element at selected step. 

Iteration Step  Element No. Direction 

Elastic Stress 

(Unit: MPa) 

60000 

Grain2 

1 

X −2.686 × 10−9 

Y 20.000 

τ 9.387 × 10−10 

2 

X −3.348 × 10−9 

Y 19.999 

τ −1.317 × 10−9 

Grain1 

3 

X −9.670 × 10−10 

Y 20.000 

τ 8.767 × 10−10 

4 

X 2.489 × 10−9 

Y 20.000 

τ −4.068 × 10−10 

GB1 

6 

X −1.006 × 10−9 

Y 19.999 

6 

X 0.000 

Y 20.000 

141664 Grain 2 

1 

X 1.718 × 10−10 

Y 20.000 

τ 1.026 × 10−10 

2 

X −2.869 × 10−12 

Y 20.000 

τ 9.994 × 10−12 
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Grain1 

3 

X −9.664 × 10−11 

Y 19.999 

τ 1.226 × 10−10 

4 

X 2.762 × 10−11 

Y 20.000 

τ −3.423 × 10−11 

GB1 

6 

X 1.332 × 10−10 

Y 19.999 

6 

X 0.000 

Y 20.000 

According to the observation of the data shown in Table 6.2.21. the result 

shows good agreement with the theoretical result that the applied stress of 

each element keeps constant during the non-linear iteration period. For the 

grain part, the maximum final cumulative error in the x direction is 

1.718 × 10−10MPa (NO.1 element), in shear direction is 9.994 ×

10−9MPa ( NO.2 element). For the grain boundary part, the maximum final 

cumulative error in separate direction is 1.332 × 10−10MPa (NO.6 element) 

and in normal direction is 0.866 × 10−8MPa( NO.6 element). In summary, the 

in-house procedure has shown a good convergence at the preliminary Bi-

grains case study. 
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➢ The Validation of the integration. 

The set of the constitutive equation for describing the creep evolution of grain 

boundary has been mentioned before. The creep depredating state is 

determined by three key variables: ρ (the cavity density), β (the damage 

variable), and a (the average radius of cavities), and the state includes the 

failure degree and the creep deformation of grain boundaries. Therefore, 

these three parameters are treated as indicators of the benchmark. 

This case simulates the micro creep evolution of copper at 600℃, the grain 

part is modeled by power-law creep and the grain boundary part is modeled 

by Vöse’s equations. The parameters of these constitutive equations are 

shown in Table 6.2.22. 

In Figure 6.2.5, it shows the three key indicators versus the normalized time. 

Based on the observation of the results, the rupture time is 0.142 (normalized), 

the value of the peak point in the β curve is 0.162, and the ρ is stopped at 

0.011. The evolution of cavity density is shown in Figure 6.2.5 (a) and it is 

clear that the density of cavity increases at the initial stage. When the upper 

limit 0.017 is reached, it starts to decrease and stops at 0.097 finally. The main 

reason causes  
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Table 6.2.22 The material parameters of copper at 600℃ [68,82]. 

Grain 

A 38.8MPa−nS−m−1 

Q 197KJ ∙ mol−1 

n 4.8 

m 0 

GB 

√D̅gb
3

 3.9696 

γ̅s 0.089 

α̅p 0.24 

R̅ 42 

cavity density to decrease if the cavity coalescence rate is over the cavity 

nucleation rate when the cavity density reaches the upper limit. In this 

constitutive model, it defines that cavity coalescence occurs when the distance 

is less than the critical value (here are 0.1 times of the initial cavity radio). 

Although the cavity density is reduced in the final stage, the average radius of 

the cavities is increasing monotonically, as shown in Figure 6.2.5(c). 

Therefore, the total area of the cavities increases continuously. The 

macroscopic phenomenon is that the deformation and damage value (as 

shown in Figure 6.2.5(b)) of grain boundaries are increasing continuously. 

➢ Error Analysis 

The creep evolution of these three indicators of the constitutive equations has 

been given. However, it is only mathematical integral and does not involve 

the FE algorithm. Due to this bi-grains case study belonging to a special   
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Figure 6.2.5 Three indicators of the creep evolution. (a) the change of normalized 

cavity density versus the normalized time. (b) the change of normalized damage 

versus the normalized time. (c) the change of the average cavity radius versus the 

normalized time.  
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Table 6.2.23 The percentage error of curves between simulation and reading value. 

Reproduced from [45] 

Name 

Reading 

Value 

Simulation 

Value 

Percentage 

Error 

Rupture Time(normalized) 0.15 0.142 6% 

Maximum value of the 

damage variable β 

0.166 0.162 1.63% 

Final value of cavity density 

ρ (normalized) 

0.010 0.011 6.96% 

The change point value of 

the cavity densityρ 

(normalized) 

0.017 0.017 2.11% 

The time point of the cavity 

density change 

point(normalized) 

0.096 0.097 1.8% 

uni-axial loading condition, therefore, it is still meaningful to use the 

published curve as the benchmark result. The exact value of the curve is not 

given in the publication, so the simulation results can only be compared with 

the reading value from curves and the percentage error is shown in Table 

6.2.23. 
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6.2.6 Validation of the Non-linear Creep Part with triangle element 

The validation of bi-grains case with triangle element is presented in this 

section, similar to the previous section 6.2.5, the convergence of the non-linear 

iteration and the integral of the constitutive equations need to be verified.  

➢ The Validation of the Stress Update 

The setting of the bi-grain FE model under two different meshing 

(quadrilateral element type and triangle element type) is consistent. It 

includes the same loading, boundary condition, constitutive equation, 

material constants and integral time step size. In this case, the non-linear 

iteration lasted 141664 steps. The elastic stress fields in two randomly selected 

steps NO.6000 and NO.141664 are shown in Table 6.2.24. 
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Table 6.2.24 The elastic stress field of each element at selected steps with triangle 

element. 

Iteration 

Step 
 

Element 

No. 
Direction 

Elastic Stress  

(Unit: MPa) 

Theoretical 

Value 

(Unit: MPa) 

60000 

Grain2 

1 

X 1.332 × 10−13 0 

Y 20.000 20 

τ −2.606 × 10−13 0 

2 

X −3.180 × 10−13 0 

Y 20.000 20 

τ 1.249 × 10−13 0 

3 

X 4.974 × 10−14 0 

Y 20.000 20 

τ 2.264 × 10−13 0 

4 

X −2.682 × 10−13 0 

Y 20.000 20 

τ −8.268 × 10−14 0 

Grain1 

6 

X −7.248 × 10−13 0 

Y 20.000 20 

τ −1.981 × 10−13 0 

6 

X 6.009 × 10−13 0 

Y 20.000 20 

τ −2.716 × 10−13 0 

7 

X 1.699 × 10−14 0 

Y 20.000 20 

τ −1.779 × 10−13 0 

8 

X −6.413 × 10−13 0 

Y 20.000 20 

τ −4.097 × 10−14 0 

GB1 9 
X −3.903 × 10−13 0 

Y 20.000 20 

141664 Grain2 

1 

X −2.461 × 10−12 0 

Y 20.000 20 

τ −6.787 × 10−12 0 

2 

X 1.791 × 10−11 0 

Y 20.000 20 

τ 7.969 × 10−11 0 

3 

X −2.467 × 10−11 0 

Y 20.000 20 

τ −1.198 × 10−11 0 

4 X −6.238 × 10−11 0 
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Y 20.000 20 

τ −1.062 × 10−10 0 

Grain1 

6 

X −9.640 × 10−12 0 

Y 20.000 20 

τ −2.869 × 10−12 0 

6 

X 1.111 × 10−11 0 

Y 20.000 20 

τ −1.439 × 10−14 0 

7 

X 1.671 × 10−11 0 

Y 20.000 20 

τ 7.147 × 10−13 0 

8 

X 1.648 × 10−11 0 

Y 20.000 20 

τ −2.069 × 10−12 0 

GB1 
 

 

X −8.327 × 10−11 0 

Y 20.000 20 

According to the result shown in Table 6.2.24, it is clear that the in-house 

procedure with the triangle element has been shown in good convergence in 

the non-linear iteration. 

➢ The Validation of the integration. 

Since this is a uniform loading case, and the applied external load, material 

parameters, and time steps are consistent with the previous case, the integral 

part does not need to be described here again. 

6.2.7 Validation of the Non-linear Creep Part of FE model with Angle 

The previous two cases are special conditions, which is deformation without 

the sliding part. Thus, the GB with angle is introduced. In order to make the 

benchmark logical and efficient, the normal stress is controlled to be 

consistent with these previous two cases, is 20 MPa. The information of the FE 

model, boundary condition, loading, and elastic parameters have been 
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mentioned in section 6.2.4. 

➢ The Validation of the Stress Update 

Similar to the present method in section 6.2.5 and 6.2.6, randomly selected 

two iteration steps, here are No.100000 and No.141664, to check the 

convergence of the stress field, as shown in Table 6.2.25. It is clear that the in-

house procedure under angle conditions has been shown in good 

convergence in the non-linear iteration. 

➢ The Validation of the sliding part. 

The constitutive model of the sliding part has been mentioned before. In this 

case study, the normalized magnitude of the sliding viscosity coefficient 

η̅sliding = 0.062, (the original value is ηsliding = 3.86 × 10
7Ns

mm3⁄ ). The 

sliding model is linear deformation, in which the sliding rate is positively 

related to the stress in the separated direction. The normalized theoretical 

sliding amount is 2.721 and the normalized simulating sliding amount is 

2.722, compared these two values, it is clear that the result has shown good 

agreement (the percentage error is 0.037％). 
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Table 6.2.25 The elastic stress field at the selected iteration steps. Reproduced from 

[45] 

Iteration 

step 
 

Element 

No. 
Direction 

Elastic Stress Field 

(Unit: MPa) 

Theoretical 

Value 

(Unit: MPa) 

100000 

Grain 1 1 

X −9.623 × 10−9 0 

Y 40.000 40 

τ 0.000 0 

Grain 2 2 

X −6.369 × 10−10 0 

Y 40.000 40 

τ -20.000 0 

GB 1 3 

X −20.000 -20 

Y 20.000 20 

141664 

Grain 1 1 

X 4.134 × 10−7 0 

Y 40.000 40 

τ 0.000 0 

Grain 2 2 

X 1.317 × 10−8 0 

Y 40.000 40 

τ −1.349 × 10−8 0 

GB 1 3 

X -20.000 -20 

Y 20.000 20 
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6.2.8 Conclusion 

Based on the benchmark of these three conditions, it demonstrates the 

numerical accuracy and stability of the procedure under the simple stress 

condition. For the non-linear iteration part, it shows the good convergence 

during the stress updating. In summary, the primary verification has paved 

the way for the subsequent polycrystalline case study. 
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6.3 The Application of the In-house Procedure via the Numerical 

Investigation of the Polycrystal Case Study. 

In this case, it simulates the creep evolution of copper-antimony alloy at GB 

level, the temperature is 823K. For the GB part, the cavity model of GB has 

been mentioned before, and the material constants have been mentioned in 

Table 6.2.22. The initial cavity density ρ0 = 10
−3mm−2. The Newtonian 

viscous flow is adopted to describe the sliding deformation and the sliding 

viscosity ηsliding = 3.86 × 10
7Ns mm3⁄ [14]. For the grain part, it is modeled 

by the power-law constitutive equations, and the parameters have been 

mentioned in Table 6.2.22. 

6.3.1 FE Model Generation 

The FE model has been generated by the Neper package [39], the structure is 

built by the Tessellation Module (-T) of Neper and in a rectangular domain 

with 1mm length and 1mm width (the instruction is ‘-square (1,1)’). The initial 

seed positions identifier variable is set 1 (the instruction is ‘-id 1’). This model 

contains 20 grains and 60 grain boundaries (the instruction is ‘-n 20’). The 

mesh of the structure and re-mesh to generate the GB is by the Meshing 

Module (-M) of Neper. The grains are meshed by 909 triangle plane strain 

elements (the instruction is ‘-elttype tri’) and the grain boundaries are meshed 

by 162 Goodman elements, as depicted in Figure 6.3.1. (GB is marked by the 

red line), and the orientation angle of the total Goodman elements is shown in 

Figure 6.3.2. The total instruction to generate this FE model is shown in Table 
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6.3.1. A uniformly distributed loading 10MPa is applied on the top surface in 

the Y direction, the boundary condition of this case study is: the left line and 

the bottom line of the domain are fixed on the X direction and the Y direction 

respectively. 

Table 6.3.1 The instruction for generate the FE model. 

Module Instruction 

Tessellation Module $ neper –T –n 20 –id 1 –reg 

Meshing Module (Mesh 

and Re-mesh) 

$ neper –M –n20–id 1.tess –

interface continuous 

 

 

 

Figure 6.3.1 The FE model for the polycrystalline case study.  

Reproduced from [45] 
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6.3.2 Failed element, Stress Field and Creep Damage Evolution 

The sequence evolution of failed element. 

The total simulating time is 78.9h and there are seven Goodman elements that 

failed. The failed sequence of seven positions is shown in Figure 6.3.3 and the 

times have been listed in Table 6.3.2. 
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Figure 6.3.2 Orientation angle of the grain boundary element’s normal direction. 

Orientation angle of the grain boundary element’s normal direction. 

Reproduced from [45] 
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Table 6.3.2 The element details of sequence at seven boundary elements. Reproduced 

from [45] 

Position Element NO. Angle Time (Unit: hour) Step 

A 48 66.3 23.66 12003387 

B 122 76.2 66.66 33246192 

C 93 64.0 68.48 34728834 

D 94 64.0 68.48 34728866 

E 111 66.4 70.69 36848660 

F 87 146.3 78.90 39987606 

G 88 146.3 78.90 39987617 

 

 

Figure 6.3.3 The sequence evolution of the failure elements. Reproduced from [45] 

The first failure occurs at the position A, the evolution of this position, which 

include the cavity density, the damage variable, the damage area fraction, and 

the average radius of the cavities all of which are shown in Figure 6.3.4. The 
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creep evolutions of seven positions (A, B, C, D, E, F, G), which include these 

aspects: the stress at normal direction, the cavity nucleation ratio, the 

evolution of the cavity density, the cavity coalescence rate, and damage area 

fraction are shown in Figure 6.3.6. The normal stress and damage evolution of 

all GB elements at different sampling time point are shown in Figure 6.3.6 and 

Figure 6.3.7, respectively. 
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Figure 6.3.4(d)

Figure 6.3.4 The creep evolution of Position A. (a) the cavity density versus the time; (b) 

the damage variable versus the time; (c)the damage area fraction versus the time; (d) the 

average radius of cavities versus the time. Reproduced from [45] 
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Figure 6.3.5 The creep evolution of seven failed elements. (a) the cavity coalescence 

Rate versus the time; (b) the cavity density versus the time; (c)the cavity nucleation 

rate versus the time; (d) the normal stress versus the time; (e) the damage area 

fraction versus time. 

Reproduced from [45] 
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Figure 6.3.6 The normal stress evolution of all Goodman elements. (a)Time Point: 

0h, 6.74h, 12.67h; (b)Time Point: 17.61h, 23.74h, 27.6h; (c)Time Point: 31.46h, 

36.4h, 39.36h; (d)Time Point: 43.32h, 47.27h, 51.22h; (e)Time Point: 55.18h, 

59.13h,63.09h; (f)Time Pont:67.04h, 78.9h.  
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6.3.3 Discussion 

The discussion comes from the publications and done by Q.Xu [45]. 

According to Figure 6.3.6 (d), it can be found that the highest point of normal 

stress occurs at position A and it remains relatively high until failure. 
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Figure 6.3.7 The damage evolution of all Goodman elements at the same time 

point; (a)Time Point: 0h, 6.74h, 12.67h, 23.74h; (b)Time Point: 27.6h, 31.46h, 36.4h, 

39.36h; (c)Time Point: 43.32h, 47.27h, 61.22h, 66.18h; (d)Time Point: 69.13h, 63.09h, 

67.04h, 68.48h; (e)Time Point: 78.9h. Reproduced from [45] 
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Compared with position A, the normal stress of other grain boundaries is 

lower than it but still higher than the applied stress (10 MPa). Hence, the 

elements could be subject to higher normal stress, which lead to a higher 

nucleation rate and growth rate of cavities, this is the main reason for GB 

failure.  

From Figure 6.3.6 (a-f), it presents the stress redistribution that happens 

during the non-linear creep iteration, which reveals the uneven GB sliding 

and normal jumping deformation play the main contribution to it; the further 

stress redistribution will be caused by due the increasing of creep 

deformation, resulting in a local high-stress reduction. Therefore, the damage 

evolution occurs in such a way as shown in Figure 6.3.6(e). 

From Figure 6.3.6 (a-f) and Figure 6.3.7 (a-e), it clearly reveals that the stress 

concentration happens on the grain boundary initially, due to the creep 

evolution and stress redistribution, the concentrated stress was relaxed. 

However, after failure occurs, the stress of the failed element decreases 

sharply to zero and has no loading capability. In addition, the grain 

boundaries with some slant degree have high damage value, however, 

damage of the elements parallel to the direction of the applied stress is 

relatively lower. It may present that the deformation in normal direction is 

greater than the sliding direction and the GB sliding affects the stress 

redistribution as well. Based on the creep damage evolution of all elements, it 

can be clearly concluded that the fracture of a component is determined by a 
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reasonable proportion of failed grain boundaries, and the evolution of creep 

damage is determined by the mesh size, the GB orientation, and the grain 

shape are determined together [45]. 
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Chapter 7 Development and Validation of the 3-

dimensional Procedure at Grain Boundary Level 

7.1 Introduction 

The three stress states (plane stress, plane strain, and axisymmetric) in the 

two-dimension version are idealizing the three-dimensional states at different 

conditions, hence the more general three-dimensional version has its practical 

importance and significance. Compared with two-dimensional, the standard 

8-nodal 3D hexahedron element is used for FE modeling in the grain part, and 

the 8-nodal 3D Goodman element is used for modeling in the grain boundary 

part. The implementation of the two-dimensional Goodman element is 

simple, in which the element has a lower degree of freedom and the 

integration can be obtained by algebraic calculation. However, the 

implementation of the three-dimensional Goodman element is more 

complicated. It involves creating a new local coordinate for integration and 

connecting global coordinates, and the element has a higher degree of 

freedom. In this chapter, the technical details of the implementation of the 

three-dimensional version are explained in detail. 

The structure of this chapter is described in the following: 

1. In Section 7.2, it reports the development details of the 3D version in-

house procedure. Since the previous creep solver is applied in the version, 

the modified part is to replace the triangular element/ quadrilateral 



~ 162 ~ 
 

element and 2D Goodman elements with hexagonal elements and 3D 

Goodman elements respectively. In section 7.2.1, it introduces the coding 

implementation of hexahedron for grain part, and in section 7.2.2, it 

introduces the coding implementation of 3D Goodman element for grain 

boundary part. 

2. In section 7.3, it reports the validation of the grain part under elastic 

condition. According to this section, the accuracy and reliability of the 

program block for implementing the hexahedron element are verified. 

3. In section 7.4, it reports the validation of the grain boundary part under 

elastic condition. According to this section, the developed program block 

and subroutines for obtaining the stiffness matrix of the 3D Goodman 

element are verified. The benchmark specifically includes three aspects: 

the accuracy of the load at normal and separated directions, the accuracy 

and reliability of the coordinate transmission system when the element's 

local coordinates and global coordinates are inconsistent, and the 

accuracy and reliability of the module for recovering the results at 

Gaussian Point. 
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7.2 Development of 3D Version 

The core of the 3D version's development is to replace the 2D elements of the 

previous solver with 3D elements. In this procedure, the grain part is modeled 

by the 3D hexahedron element with 8 nodes, and the grain boundary part is 

modeled by the 3D Goodman element with 8 nodes.  

7.2.1 Implementation of Grain Part 

The Finite Element modeling of the grain is based on the traditional 3D 

hexahedron element and the mathematical background has been mentioned 

in section 2.6.2. The element stiffness matrix obtaining of this type is in-built 

in Smith's element library and program block, which can be calculated by four 

existing standard FE subroutines from the 'main' library [13] and the similar 

structure of the 2D solid element to assemble these four subroutines. The 

details of the relationship between the mathematical background and the 

subroutines are summarized in Table 7.2.1.  
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Table 7.2.1 List of the standard FE subroutines for the element stiffness matrix of 3D 

8-node hexahedron element [13]. 

Name Function 

deemat 

It returns the stress-strain matrix [D] at 3-

Dimension condition. (EQ.2.6.21) 

shape_fun 

It returns the shape functions at the 

integration point in local coordinates. ([N] 

matrix, EQ.2.6.24) 

shape_der 

It returns the derivatives of the shape 

functions.  

beemat 

It returns the strain-displacement matrix 

[B].( EQ.2.6.23)  

7.2.2 Implementation of Grain Boundary part 

The Finite Element modeling of the grain boundary is based on the 3D eight-

nodal Goodman element. The mathematical background of the element' 

stiffness matrix is mentioned in section 2.8 and the mathematical background 

of coordinate transmission is mentioned in section 3.6.2. Therefore, in this 

section it mainly describes the development of the program block to calculate 

this element's stiffness matrix. 

In this program block, there are six subroutines developed: 'Gdeemat', 

'TM_TD', 'T_Coord', 'G_Shape_Fun', 'G_Shaper_Der', and 'Gbeemat'. The 

details of these six subroutines can be found in the Appendix 1. The flowchart 

of this block is presented in the Figure 7.2.1. 
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Figure 7.2.1 The flow diagram structure for obtaining the 3DGoodman 

element stiffness matrix. (subroutines are marked by red) 
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After the solution of grains' element stiffness matrix, the procedure enters the 

loop module of the solution of grain boundaries' element stiffness matrix, as 

shown in Figure 7.2.1. In the beginning, the stiffness constants which are 

stored in array 'cprop' is imported to the subroutine 'Gdeemat' to obtain the 

stiffness matrix 'D' in Equation 2.8.10, the 'D' is named 'gdee' in the procedure. 

The array 'gnum' and 'gcoord' store the element steering vectors and the 

element nodal coordinates. Based on the subroutine 'TM_TD' and imports the 

element nodal coordinates into it to solve out the matrix 'Q' and 'T' in 

Equation 2.8.21, and then applies the subroutine 'T_coord' to obtain the 

element nodal coordinates in local coordinates system, the mathematical 

background is in Equation 2.8.21. The first two columns of array 'gcoord' are 

restored into array 'cgcoord', which is the matrix '[coord]μ&ν' in Equation 

2.8.16. After completing the above preparations, the procedure enters the 

integration part. As mentioned before, the Gauss-Legendre method is 

employed to do the integral over the surface. For this reason, two subroutines 

' G_shape_fun' and 'G_shape_der' are developed to produce the shape 

function array 'fun' and the derivatives of the shape functions 'gder' in M 

coordinates systems, respectively. Based on the derivatives 'gder', the Jacobin 

matrix 'gjac' and its determinates 'det' are solved. Finally, according to 

Equation 2.8.20, the element stiffness can be obtained. 
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7.3 Elastic Validation of Grain Part 

7.3.1 FE Model 

In this 3D version procedure, the 8-node hexahedron element is used to mesh 

the grain part. The benchmark of the procedure for this element is performed 

in this section and the FE model is shown in Figure 7.3.1. 

 

 

 

 

 

 

 

 

 

 

➢ The mesh, loads information, boundary condition and material parameters for 

this FE model  

In this model, it contains 12 nodes to generate two 8-node hexahedron 

elements. The coordinates of these nodes are shown in Table 7.3.1 and the 

topology information is shown in Table 7.3.2. 

 

Figure 7.3.1 The schematic figure of 3D FE model. 
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Table 7.3.1 The coordinates of the node. (unit: mm) 

Node NO. X direction Y direction Z direction 

1 0 0 0 

2 0 0 1 

3 1 0 1 

4 1 0 0 

6 0 1 0 

6 0 1 1 

7 1 1 1 

8 1 1 0 

9 0 0 2 

10 0 1 2 

11 1 1 2 

12 1 0 2 

 

Table 7.3.2 The topology information of these two elements. 

Element NO. Topology Information 

1 1, 2, 3, 4, 6, 6, 7, 8 

2 2, 9, 12, 3, 6, 10, 11, 7 

The boundary condition is imposed on the bottom surface such that the 

displacement components to the Z direction, the front surface such that the 

displacement components to the Y direction, and the left surface such that the 

displacement components to the X direction are always zero respectively. The 
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implementation of the boundary condition is through add the constraint of 

the node, in this case, the node constraint information is listed in Table 7.3.3. 

Table 7.3.3 The constrained node of boundary condition. 

The Constraint Direction Node Number 

X direction 1, 4, 6, 8 

Y direction 1, 2, 3, 4, 9, 12 

Z direction 1, 2, 6, 6, 9, 10 

In this benchmark, it contains two sub-cases, the first case is on the top surface 

to the Z direction and the second one is on the right surface to the X direction. 

The equivalent node loading factor information of these two cases is shown in 

Table 7.3.4. 
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Table 7.3.4 The equivalent node loading factor information. 

Node NO. X Y Z 

The No. 1 Case 

9 0.0 0.0 0.26 

10 0.0 0.0 0.26 

11 0.0 0.0 0.26 

12 0.0 0.0 0.26 

The No. 2 Case 

3 0.6 0.0 0.0 

4 0.26 0.0 0.0 

7 0.6 0.0 0.0 

8 0.26 0.0 0.0 

11 0.26 0.0 0.0 

12 0.26 0.0 0.0 

7.3.2 Validation of Uni-axial Loading 

In this case, the loading is applied on the top surface with 30MPa tension to 

the Z direction, shown in Figure 7.3.2. The theoretical stress at Gaussian Point 

is 30 MPa to the Z direction, and in the X, the Y, and three shear directions 

should be zero. According to the stress-strain constitutive relationship which 

has been mentioned in section 2.6.2, the strain of these six directions are: 
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 εx =
(A + B) ∙ σx − B ∙ σy − B ∙ σz

(A − B) ∙ (A + 2 ∙ B)
 

7.3.1 

 εy =
−B ∙ σx + (A + B) ∙ σy − B ∙ σz

(A − B) ∙ (A + 2 ∙ B)
 

 εz =
−B ∙ σx − B ∙ σy + (A + B) ∙ σz

(A − B) ∙ (A + 2 ∙ B)
 

 γxy =
τxy

C
 

 γyz =
τyz

C
 

 γzx =
τzx
C

 

where 

 A =
E ∙ (1 − ν)

(1 + ν) ∙ (1 − 2 ∙ ν)
  

 B =
E ∙ ν

(1 + ν) ∙ (1 − 2 ∙ ν)
  

 C =
E ∙ ν

2 ∙ (1 + ν)
  

In which, E is Young's Module and ν is the passion ratio. 

In this case, Young's Modulus E and Passion's ratio ν are set to 1 × 106GPa 

and 0.3, respectively. Based on the Equation 7.3.1, the theoretical strain in the 

X 

Y 

Z 

Figure 7.3.2 The schematic figure of tension model. 
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X direction and the Y direction is −9.0 × 10−6, in the Z direction is 

3.0 × 10−4, and in three shear directions (γxy, γyz, γzx)should be zero. The 

simulation stress and strain at Gaussian Point are shown in Table 7.3.5, which 

is shown in good agreement with the theoretical value and the error is 

negligible. 

Table 7.3.5 The elastic stress field and strain field for the FE model under 30MPa 

uniform loading of 3D 8-node hexahedron. (At Gauss Point) 

Element No. Direction Stress (Uni: MPa) Strain 

1 

X −3.663 × 10−14 −8.999 × 10−6 

Y −3.197 × 10−14 −9.000 × 10−6 

Z 30.000 3.000 × 10−4 

XY 0.000 0.000 

YZ 0.000 0.000 

ZX −2.669 × 10−13 −6.939 × 10−18 

2 

X −6.716 × 10−13 −9.000 × 10−6 

Y −2.693 × 10−13 −9.000 × 10−6 

Z 30.000 3.000 × 10−4 

XY −2.106 × 10−13 −6.476 × 10−18 

YZ −6.672 × 10−14 1.736 × 10−18 

ZX −6.672 × 10−14 −1.736 × 10−18 
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7.3.3 Validation of Multi-Axial Loading 

In this case, the loading is applied on the top surface and right surface with 

30MPa tension to the Z and the X directions, shown in Figure 7.3.3. The 

theoretical stress at Gaussian Point is 30 MP in the X direction and the Z 

direction, and the Y and three shear directions should be zero.  

 

 

 

 

 

 

 

 

According to the Equation 7.3.1, the theoretical strain in the X direction and 

the Z direction is 2.1 × 10−4, in the Y direction is −1.8 × 10−4, and in three 

shear directions (γxy, γyz, γzx) should be zero. The simulation stress and strain 

at Gaussian Point are shown in Table 7.3.6, which is shown in good agreement 

with the theoretical value and the error is negligible. 
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Figure 7.3.3 The schematic figure of Bi-loading model. 
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Table 7.3.6 The elastic stress field and strain field for the FE model under Bi-axial 

loading of 3D 8-node hexahedron. (At Gauss Point) 

Element No. Direction Stress (Uni: MPa) Strain 

1 

X 30.000 2.100 × 10−4 

Y −2.132 × 10−14 −1.800 × 10−4 

Z 30.000 2.100 × 10−4 

XY −8.340 × 10−15 −2.168 × 10−19  

YZ −1.459 × 10−14 −3.795 × 10−19  

ZX −1.043 × 10−15 2.711 × 10−20 

2 

X 30.000 2.100 × 10−4 

Y 3.552 × 10−15 −1.800 × 10−5 

Z 30.000 2.100 × 10−4 

XY −2.085 × 10−15 
−5.421

× 10−20 

YZ 1.876 × 10−15 4.879 × 10−20 

ZX −4.378 × 10−15 −1.138 × 10−19  

 

  



~ 175 ~ 
 

7.4 Elastic Validation of Grain Boundary Part 

7.4.1 FE Model 

In this 3D version procedure, the 8-node Goodman element is used to mesh 

the grain boundary part. The benchmark of the procedure for this element is 

performed in this section and the FE model is shown in Figure 7.4.1. 

 

 

 

 

 

 

 

 

 

 

 

The FE model consists of two parts: two 8-nodal hexahedron elements for 

grain part and one 8-nodal 3D Goodman element for the grain boundary part. 

The area integration of grain and grain boundary part is implemented by one 

Gaussian integration point, respectively.  

➢ The Geometry information, Boundary Condition and Loading Information and 

Material Parameters. 

Figure 7.4.1 The schematic figure of Bi-grain case study. 
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In this FE model, there are a total of 16 nodes to form 3 elements. The 

coordinates of these 16 nodes and the topology of the elements are stored in 

the 'DAT' file. The coordination of the node is shown in Table 7.4.1 and the 

topology information is shown in Table 7.4.2. 

Table 7.4.1 The coordinates of the node. (Unit: mm) 

Node NO. X direction Y direction Z direction 

1 0 0 0 

2 0 0 1 

3 1 0 1 

4 1 0 0 

6 0 1 0 

6 0 1 1 

7 1 1 1 

8 1 1 0 

9 0 0 2 

10 0 1 2 

11 1 1 2 

12 1 0 2 

13 0 0 1 

14 0 1 1 

16 1 1 1 

16 1 0 1 
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Table 7.4.2 The topology information of these two elements. 

Element NO. Topology Information 

Grain 1 1, 2, 3, 4, 6, 6, 7, 8, 16 

Grain 2 13, 9, 12, 16, 14, 10, 11, 16 

Grain Boundary 13, 14, 16, 16, 2, 6, 7, 3 

The boundary condition is imposed on the bottom surface such that the 

displacement components to the Z direction and the implementation of the 

boundary condition is through adding the constraint of the node, in this case, 

the node constraint information is listed in Table 7.4.3. 

Table 7.4.3 The constrained node of boundary condition. 

The Constraint Direction Node Number 

X direction 1, 2, 6, 6, 9, 10, 13, 14 

Y direction 1, 2, 3, 4, 9, 12, 13, 16 

Z direction 1, 4, 6, 8 

In this benchmark case, a uniform load 30 MPa is applied on the top surface to 

the Z direction, as shown in Figure 7.4.2. The equivalent node loading factor 

information is shown in Table 7.4.4. 
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Table 7.3.4 The equivalent node loading factor information. 

Node NO. X Y Z 

9 0.0 0.0 0.26 

10 0.0 0.0 0.26 

11 0.0 0.0 0.26 

12 0.0 0.0 0.26 

The theoretical stress at the Gaussian point of two grains is 30MPa to the Z 

direction, and in the X, the Y, and three shear directions should be zero. In the 

grain boundary part, the stress at Gaussian point is 30MPa to the normal 

direction, and in two separated directions should be zero. According to the 

stress-jump displacement constitutive relationship, the relative-displacement 

of three directions can be calculated with the following: 

 

Figure 7.4.2 The schematic figure of tension model of Bi-grains case. 
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 Φμ =
Fμ
Kμ

 

7.4.1  Φν =
Fν
Kν

 

 Φω =
Fω
Kω

 

In which, Kμ, Kν, and Kω are the stiffness of three directions. 

In this case, Kμ, Kν, and Kω are set to 1 × 106, 6 × 106, and 6 × 106 with 

unit MPa, respectively. According to the Equation 7.4.1, the jump 

displacement in normal direction is 3 × 10−4 mm, and in other two 

directions should be zero. The simulation stress and jump displacement at 

Gaussian Point is shown in Table 7.4.5, which is shown in good agreement 

with the theoretical value and the error is negligible. 
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Table 7.4.5 The elastic stress field and jump displacement/strain field for the bi-

crystal FE model. (At Gauss Point) 

Element No. Direction Stress (Uni: MPa) 

Jump Displacement 

(Unit: mm) 

Grain Boundary 

Normal 30.000 −3.000 × 10−4 

Separated 2.386 × 10−11 4.770 × 10−17 

Separated −2.429 × 10−12 −2.429 × 10−17 

Element No. Direction Stress (Uni: MPa) Strain 

Grain 1 

X 2.338 × 10−12 −9.000 × 10−6 

Y 3.137 × 10−12 −9.000 × 10−6 

Z 30.000 3.000 × 10−4 

XY 4.637 × 10−12 1.179 × 10−16 

YZ −2.402 × 10−12 −6.246 × 10−17 

ZX −3.202 × 10−12 −8.327 × 10−17 

Grain 2 

X −2.136 × 10−12 −9.000 × 10−6 

Y −8.641 × 10−12 −9.000 × 10−6 

Z 30.000 3.000 × 10−4 

XY −3.203 × 10−12 −8.327 × 10−17 

YZ −2.136 × 10−12 6.661 × 10−17 

ZX −6.338 × 10−12 −1.388 × 10−16 
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7.4.2 Validation of Separated Direction 

In order to add the separated node force to the four nodes on the upper 

surface of grain boundary uniformly and directly, the upper grain is removed, 

and the FE model for validating separated direction is shown in Figure 7.4.3, 

which consists of two parts: one 8-node hexahedron elements for grain part 

and one 3D Goodman element for the grain boundary part.  

 

 

 

 

 

 

 

 

➢ The Geometry information, Boundary Condition and Loading Information and 

Material Parameters. 

In this FE model, there are a total of 12 nodes to form 2 elements. The 

coordination of the node is shown in Table 7.4.6 and the topology information 

is shown in Table 7.4.7. 
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Figure 7.4.3 The schematic figure for validation of Grain boundary at 

separated direction. 
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Table 7.4.6 The coordinates of the node. (Unit: mm) 

Node NO. X direction Y direction Z direction 

1 0 0 0 

2 0 0 1 

3 1 0 1 

4 1 0 0 

6 0 1 0 

6 0 1 1 

7 1 1 1 

8 1 1 0 

9 0 0 1 

10 0 1 1 

11 1 1 1 

12 1 0 1 

 

Table 7.4.7 The topology information of these two elements. 

Element NO. Topology Information 

Grain 1, 2, 3, 4, 6, 6, 7, 8, 16 

Grain Boundary 9, 10, 11, 12, 2, 6, 7, 3 

The boundary condition is imposed on the bottom surface such that the 

displacement components to the Z direction, the node constraint information 

is list in Table 7.4.8. 
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Table 7.4.8 The constrained node of boundary condition. 

The Constraint Direction Node Number 

X direction 1 

Y direction 1 

Z direction 1, 4, 6, 8 

In this benchmark case, a uniform loads 30MPa is applied on the top surface 

to the X direction, as shown in Figure 7.4.4.  

 

 

 

 

 

The equivalent node loading factor information is shown in Table 7.4.9. 

Table 7.4.9 The equivalent node loading factor information. 

Node NO. X Y Z 

9 0.26 0.0 0.0 

10 0.26 0.0 0.0 

11 026 0.0 0.0 

12 0.26 0.0 0.0 

In this case, only one Gaussian point does not satisfy the accuracy 

requirements for the grain boundary part. Here, the integral of the grain 

boundary area is implemented by nine Gaussian Integration Points. The 

theoretical stress at these nine Gaussian points are 30MPa to the separated 

Figure 7.4.4 The schematic figure of tension model for validating 

separated direction. 
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direction, whereas in normal directions and other separated directions it 

should be zero. According to Equation 7.4.1, the jump-displacement in one 

separated direction is 6.0 × 10−4 mm, and in other two directions should be 

zero. The simulation stress and jump displacement at nine Gaussian Points 

are shown in Table 7.4.10, which is shown in good agreement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



~ 185 ~ 
 

Table 7.4.10 The elastic stress field and jump-displacement for the grain boundary 

part. (At Gauss Point) 

GP NO. Stress (Unit: MPa) 

Direction Normal Separated Separated 

1 −1.689 × 10−14 29.999 3.706 × 10−16 

2 −8.082 × 10−16 30.000 −1.069 × 10−16 

3 3.388 × 10−16 29.999 2.966 × 10−16 

4 −4.066 × 10−16 30.000 8.682 × 10−16 

6 1.366 × 10−16 29.999 6.082 × 10−16 

6 8.132 × 10−16 30.000 1.694 × 10−16 

7 3.388 × 10−16 29.999 1.779 × 10−14 

8 2.711 × 10−16 30.000 2.033 × 10−20 

9 6.421 × 10−16 29.999 0.000 

 Jump Displacement (Unit: mm) 

1 −1.169 × 10−19 6.999 × 10−6 7.412 × 10−21 

2 −6.082 × 10−20 6.000 × 10−6 −2.118 × 10−21 

3 3.388 × 10−20 6.999 × 10−6 6.929 × 10−21 

4 −4.066 × 10−20 6.000 × 10−6 1.736 × 10−20 

6 −1.366 × 10−20 6.999 × 10−6 1.016 × 10−20 

6 8.132 × 10−20 6.000 × 10−6 3.388 × 10−21 

7 3.388 × 10−20 6.999 × 10−6 3.668 × 10−20 

8 2.711 × 10−20 6.000 × 10−6 2.033 × 10−20 
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9 6.421 × 10−20 6.999 × 10−6 0.000 

7.4.3 Validation of Rotation Status 

In this section, the main task is to verify the accuracy and reliability of the 

rotating system. The design of the case study is from Q.Xu's idea, the FE 

model is obtained by rotating the previous model (Figure 7.4.4) by 45° 

counterclockwise around the Y-axis, as shown in Figure 7.4.5. The model with 

the red broken line is the original model before the rotation. 
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Figure 7.4.5 The schematic figure for validation the rotation system. 
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➢ The Geometry information, Boundary Condition and Loading Information and 

Material Parameters. 

In this FE model, there are a total of 12 nodes to form 2 elements. The 

coordinates of the node in the global system is shown in Table 7.4.11 and the 

topology information is shown in Table 7.4.7. 

Table 7.4.11 The coordinates of the node. (Unit: mm) 

Node NO. X direction Y direction Z direction 

1 0 0 0 

2 −
√2

2
 0 √2

2
 

3 0 0 √2 

4 √2

2
 0 √2

2
 

6 0 1 0 

6 −
√2

2
 1 √2

2
 

7 0 1 1 

8 √2

2
 1 √2

2
 

9 −√2 0 √2 

10 −√2 1 √2 

11 −
√2

2
 1 

2 + √2

2
 

12 −
√2

2
 0 

2 + √2

2
 

The boundary condition is imposed on the bottom surface such that the 

displacement components to the X and the Z directions, in this case, the node 

constraint information is listed in Table 7.4.12. 
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Table 7.4.12 The constrained node of boundary condition. 

The Constraint Direction Node Number 

X direction 1,4, 6, 8 

Y direction 1 

Z direction 1, 4, 6, 8 

In this benchmark case, a uniform loads 30MPa is applied on the top surface 

to the normal direction, as shown in Figure 7.4.6. 

 

 

 

 

 

 

 

 

 

The equivalent node loading factor information is shown in Table 7.4.13. 

Table 7.4.13 The equivalent node loading factor information. 

Node NO. X Y Z 

9 −
√2

8
 0.0 √2

8
 

10 −
√2

8
 0.0 √2

8
 

11 −
√2

8
 0.0 √2

8
 

12 −
√2

8
 0.0 √2

8
 

X 

Y 

Z 

S 

S 
N 

Figure 7.4.6 The schematic figure of tension model for validating 

rotating system. 
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In this case, as the same with the previous case, nine Gaussian Points are used 

to implement the integration of grain boundary region. The theoretical stress 

at these nine Gaussian points is 30MPa to the normal direction, and in two 

separated directions should be zero. According to Equation 7.4.1, the jump-

displacement in normal direction is 3.0 × 10−4 mm, and in the other two 

directions should be zero. The simulation stress and jump displacement at 

nine Gaussian Points are shown in Table 7.4.14, which is shown in good 

agreement. 
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Table 7.4.14 The elastic stress field and jump-displacement for the grain boundary 

part. (At Gauss Point) 

GP NO. Stress (Unit: MPa) 

Direction Normal Separated Separated 

1 29.999 3.642 × 10−14 −7.417 × 10−16 

2 29.999 1.779 × 10−14 −2.118 × 10−21 

3 29.999 −6.929 × 10−16 6.929 × 10−16 

4 29.999 8.893 × 10−16 −2.076 × 10−16 

6 29.999 −6.776 × 10−16 −7.623 × 10−16 

6 29.999 −6.776 × 10−16 3.388 × 10−16 

7 29.999 −1.948 × 10−14 6.776 × 10−16 

8 29.999 −1.694 × 10−20 −2.641 × 10−16 

9 29.999 −4.066 × 10−20 −6.421 × 10−20 

 Jump Displacement (Unit: mm) 

1 2.999 × 10−4 7.284 × 10−20 −7.417 × 10−20 

2 2.999 × 10−4 3.668 × 10−20 −2.118 × 10−21 

3 2.999 × 10−4 −1.186 × 10−20 6.929 × 10−20 

4 2.999 × 10−4 1.779 × 10−20 −2.076 × 10−20 

6 2.999 × 10−4 −1.366 × 10−20 −7.623 × 10−21 

6 2.999 × 10−4 −1.366 × 10−20 3.388 × 10−21 

7 2.999 × 10−4 −3.896 × 10−20 6.776 × 10−21 

8 2.999 × 10−4 −3.388 × 10−20 −2.641 × 10−20 
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9 2.999 × 10−4 −4.066 × 10−20 −6.421 × 10−20 

7.5 Validation of the Non-linear Creep 

The benchmark strategy for the 3D version is similar to the previous 2D 

version, the verification of the accuracy and stability relies on the Bi-grains 

case study. In this section, the main task is to report the verification of the 

procedure in the normal direction. 

The information of the FE model, boundary condition, loading, and elastic 

parameters have been mentioned in section 7.4.1. The benchmark concentrates 

on the integral accuracy of the creep constitutive equation and the stress 

convergence of the non-linear iteration. 

7.5.1 The Validation of the Stress Update 

The sign of the non-linear iterating convergence is the elastic stress of each 

element that are the same. In this case, the non-linear iteration lasts for 141387 

steps with the time step of 0.000001 (normalized). In order to visualize the 

convergence of the stress field, the stress condition of two iterative steps 

(60000 and 141386) are selected randomly during the process and shown in 

Table 7.5.1. 
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Table 7.5.1 The elastic stress field of each element at selected step. 

Iteration Step  Element No. Direction 

Elastic Stress 

(Unit: MPa) 

60000 

Grain 

1 

X 2.694 × 10−11 

Y 1.886 × 10−11 

Z 19.999 

XY 4.897 × 10−12 

YZ −1.896 × 10−12 

ZX 5.773 × 10−12 

2 

X 8.673 × 10−12 

Y 1.501 × 10−11 

Z 19.999 

XY 4.465 × 10−12 

YZ 3.911 × 10−12 

ZX 1.400 × 10−11 

GB 3 

X 1.387 × 10−11 

Y 0.000 

Z 19.999 

141386 Grain 1 

X −4.987 × 10−11 

Y 1.189 × 10−10 

Z 20.000 

XY 1.036 × 10−11 
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YZ −7.344 × 10−11 

ZX −5.121 × 10−12 

2 

X 1.228 × 10−10 

Y 9.535 × 10−10 

Z 20.000 

XY −3.955 × 10−10 

YZ −1.532 × 10−10 

ZX 2.952 × 10−12 

GB 3 

X −6.661 × 10−10 

Y 2.359 × 10−10 

Z 20.000 

According to the stress field shown in Table 7.5.1 the result shows good 

agreement with the theoretical results that the applied stress of each element 

keeps constant during the non-linear iteration period. For the grain part, the 

maximum final cumulative error in the Y direction is 9.535 × 10−10MPa 

(NO.2element). For the grain boundary part, the maximum final cumulative 

error in separate direction is −6.661 × 10−10MPa (NO.3 element). In 

summary, the in-house procedure has shown a good convergence under the 

uni-axial loading. 

7.5.2 The Validation of the Integration 

In this procedure, the built-in constitutive equations for describing the creep 

evolution of grain boundary part has been mentioned in section 2.9.2. In this 
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mathematical model, the creep evolution is determined by three key 

variables: ρ (the cavity density), β (the damage variable), and a (the average 

radius of cavities), Therefore, these three parameters are treated as indicators 

of the benchmark. 

The case setting is similar in section 6.2, which simulates the creep evolution 

of Copper at 600℃ and the loading is on the top surface with 20 MPa. The 

trend of three key indicators versus the normalized time is shown in Figure 

7.5.1 to Figure 7.5.3. According to the analysis in section 6.2, it is clear that the 

trend of the three indicators is as expected. 

 

Figure 7.5.1 The trend of the normalized cavity density �̅� versus normalized time. 
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Figure 7.5.2 The trend of the damage variable β versus normalized time. 

 

Figure 7.5.3 The trend of the normalized cavity radius �̅� versus normalized time. 

7.5.3 Error Analysis 

As mentioned in section 6.2, the simulation of the constitutive equations 

under uniaxial loading conditions is the benchmark result [68]. The 
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percentage error between the reference result and the simulation is shown in 

Table 7.5.2. 

Table 7.5.2 The percentage error of curves between simulation and reading value.  

Name 

Reading 

Value 

Simulation 

Value 

Percentage 

Error 

Rupture Time(normalized) 0.15 0.1413 5.8% 

Maximum value of the 

damage variable β 

0.166 0.1620 2.41% 

Final value of cavity density 

ρ (normalized) 

0.010 0.0107 7.00% 

The change point value of 

the cavity densityρ 

(normalized) 

0.017 0.0174 2.35% 

The time point of the cavity 

density change 

point(normalized) 

0.096 0.0968 0.83% 

7.5.4 Conclusion 

Based on the above benchmark process, it demonstrates the numerical 

accuracy and stability of the 3D version procedure. For the non-linear 

iteration part, it shows the good convergence during the stress updating. In 

summary, the preliminary verification is shown to be in good agreement with 

theoretical results.  
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Chapter 8 Conclusions and Future Work 

The contribution of this project is to develop an in-house procedure for Finite 

Element simulation of creep evolution at grain boundary level. In this chapter, 

detailed achievements and future work have been summarized below. 

8.1 Contribution and Conclusion 

An In-house procedure is developed to do the Finite Element Analysis of the 

creep evolution at grain boundary level. My main contribution is to develop a 

subroutine library and modify the P61 program to obtain this computational 

capability. Specifically,  

1. The following five sets of constitutive equations have been built into the 

modified program, including: Kachanov-Rabatnov, Kachanov-Rabatnov-

Hayhurst, Kachanov-Rabatnov-Hayhurst-Xu, Vöse's cavitation equations, 

and Newtonian Viscous Flow equation. 

2. The benchmark of the in-house procedure, including:  

a) the elastic benchmark of the plane stress element, plane strain 

element, axisymmetric element, 3-dimensional element, 2-

dimensional 4-node Goodman element, and 3-dimensional 8-node 

Goodman element. 

b) the creep benchmark of a simple quadrilateral FE model, notched bar 

FE model, and 2D Bi-grains FE model, and 3D Bi-grains FE model.  

3. The application of the in-house procedure in a polycrystalline case study. 
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The in-house procedure was used to simulate the creep evolution of the 

copper polycrystalline structure at the grain boundary level, and the 

results were published [45]. 

8.2 Future Work 

In this section, a detailed description of the possible future work based on the 

current work is summarized below. 

1. A 3D polycrystalline case study should be subjected. The 3D version 

procedure has been developed to achieve the mechanical behavior of the 

3-dimensional Goodman element and have passed the preliminary tests. 

2. Develop parallel computing capability for the procedure. Compared with 

the 2-dimensional case, the project size of the 3-dimensional case increases 

sharply, therefore, it is necessary to make the procedure have the parallel 

computing capability to improve the computational efficiency to reduce 

the computational consumption and time. 

3. Apply the procedure to conduct a parametric study. Based on this 

research, to obtain the relative importance of various parameters in micro 

creep modeling. 
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Appendix I the description of library 'Math' 

The subroutine library 'Math' is developed by JIADA TU, which contains 21 

subroutines. The description of these subroutines is shown in Table AP-1. 

Table AP-1 The description of the subroutine library ‘Math’. 

Name Description 

mpstress 

This subroutine is used to generate the principle 

stress, (1st, 2nd, 3th).  

KRHQ 

This subroutine is used to implement the Q.Xu's 

creep constitutive equation for 0.6Cr0.6Mo0.26V 

ferritic steel at 690 ℃.The integral method applies 

the Euler 

KR 

This subroutine is used to implement the creep 

constitutive equation of Katchanov-Robotnov. The 

material of this constitutive equation is: 

Bar267 at 660 ℃ 

psigma 

This subroutine is used to output the deviator 

stress tensor 

execute 

This subroutine is used to determine if the array 

has changed, if yes, the logical variable 'reform' set 

true, if not, set false. 

KRH This subroutine is used to implement the 
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Hayhurst's creep constitutive equation for 

0.6Cr0.6Mo0.26V ferritic steel at 690 ℃. The integral 

method apply the Euler 

RKKRH 

This subroutine is used to implement the 

Hayhurst's creep constitutive equation for 

0.6Cr0.6Mo0.26V ferritic steel at 690 ℃. The integral 

method applies the 4th Runge-Kutta Method. 

new_km 

This subroutine returns the stiffness matrix of a 

2D Goodman element. It uses to simulate the grain 

boundary. The element is made up of two linear 

elements and four nodal points. 

beeg 

This subroutine returns the [B] matrix for a 2D 

Goodman element. 

deeg 

This subroutine returns the [D] matrix for 

Goodman element 

element_inf 

This subroutine returns the element 

information：length and the angle from a 2D 

Goodman element. 

Loc_Gol 

This subroutine returns the angle transform 

matrix from a 2D Goodman element. 

P_L 

This subroutine is used to implement the creep 

constitutive equation of power law creep model. The 
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material of this constitutive equation is: pure copper 

at 600 ℃ 

gbvm 

This subroutine is used to implement the creep 

constitutive equation of Markus Vose creep model for 

grain boundary. 

G_shape_fun 

This subroutine returns the values at the gauss 

point of a shape functions of single surface of a 3D 

Goodman element. 

Gsample 

This subroutine returns the local coordinates and 

weighting coefficients of the integrating points. 

Gbeemat 

This subroutine returns the [B] matrix of a 3D 

Goodman element. 

Gdeemat 

This subroutine returns the [D] matrix of a 3D 

Goodman element. 

G_shape_der 

This subroutine returns derivatives of shape 

functions of a 3D Goodman element. 

TM_TD 

This subroutine returns the transmission matrix 

of a 3D Goodman element. 

T_coord 

This subroutine returns the local node 

coordinates of a 3D Goodman element 
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Appendix II Source code of Library 'Math' 

Module math 

     

    contains 

     

    SUBROUTINE 

mpstress(theta,stress1,theta11,sstress,lode_theta,dsbar,sigm) 

!--------------------------------------------------------------------- 

!This subroutine is used to generate the max principle stress, (1st,  

! 2nd, 3th principle. This subroutine is written by researcher j.tu 

! at University of Huddersfield      

!                                                          29/04/2017 

!--------------------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Input: (lode_theta:lode_angle;  

!              dsbar:von_mises_stress; 

!               sigm:mean_stress) 

! Output: (theta(:):principal_stress_array; 

!          stress1 :First_principal_stress; 

!          theta11 :maximun_principal_stress) 

!---------------------------------------------------------------------- 
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 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 INTEGER::i 

doubleprecision,INTENT(IN)::lode_theta,dsbar,sigm 

doubleprecision,INTENT(OUT),OPTIONAL::theta(:),stress1,sstress,theta11 

doubleprecision::flow1,flow2,flow3,two=2.0_iwp,theta1,theta2,   & 

            theta3,pi=3.1415926,D3=3.0_iwp,loca(1),m,v 

  

!---------------------To determine the max principle stress-------------- 

         flow1=sin(lode_theta-((two*pi)/(d3))) 

   flow2=sin(lode_theta) 

   flow3=sin(lode_theta+((two*pi)/(d3))) 

         theta1=sigm+(((two)/(d3))*flow1*dsbar) 

   theta2=sigm+(((two)/(d3))*flow2*dsbar) 

   theta3=sigm+(((two)/(d3))*flow3*dsbar) 

         theta(1)=theta1 

   theta(2)=theta2 

   theta(3)=theta3   

!   loca=maxloc(abs(theta)) 

!         i=loca(1) 

!         m=theta(i) 

!         v=maxval(abs(theta)) 
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!         theta11=sign(v,m) 

          theta11=maxval(theta) 

!         theta11=theta(1) 

   sstress=(theta1**2+theta2**2+theta3**2)**(0.5) 

   stress1=theta11-sigm 

         

RETURN 

 

    END subroutine mpstress 

  

      

    SUBROUTINE KRHQ(orv,iav,cprop,theta,theta11,dsbar) 

!--------------------------------------------------------------------- 

!This subroutine is used to implement the creep constitutive equation 

!of Hayhurt's for 0.5Cr0.5Mo0.25V ferritic steel at 590 ℃。The  

!integral method apply the EULAR. 

!                                                          17/05/2018 

!--------------------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Input: (iav(:)  :Creep_status_parameters_array 

!         cprop(:):creep_constitutive_equation_paramaters_array 

!         theta(:):principal_stress_array 
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!         theta11 :maximun_principal_stress 

!          dsbar  :von_mises_stress) 

! Output: (orv(:) :output_creep_rates_array) 

!---------------------------------------------------------------------- 

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 Doubleprecision,intent(in)::iav(:),cprop(:),theta(:),theta11,dsbar 

 Doubleprecision,INTENT(OUT),OPTIONAL::orv(:) 

 Doubleprecision::A,B,C,h,hplus,kc,v,flow1,flow2,flow3,flow4,         & 

flow5,flow6,flow7,d3=3.0_iwp,zero=0.0_iwp,esp,harder,voul,damage,     & 

espt,ehard,erave,edate,a1,b1,p,q,stress1,stress2,stress3,mdsbar,      & 

flow8,flow9,flow10,flow11,flow12,flow13,sdsbar,dsbar1,flow14 

  

        esp=iav(1) 

        harder=iav(2) 

        voul=iav(3) 

        damage=iav(4) 

         

         

        A=cprop(1) 

        B=cprop(2) 

        C=cprop(3) 
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        h=cprop(4) 

        hplus=cprop(5) 

        kc=cprop(6) 

  a1=cprop(7) 

  b1=cprop(8) 

  p=cprop(9) 

  q=cprop(10) 

   

  stress1=theta(1) 

  stress2=theta(2) 

  stress3=theta(3) 

  mdsbar=(stress1+stress2+stress3)/d3 

  sdsbar=sqrt(stress1**2+stress2**2+stress3**2) 

        dsbar1=theta11-mdsbar 

         

   

  orv=zero 

  

!-----------------The strain rate Part---------------------------------- 

         flow1=B*dsbar*(1-harder) 

         flow2=((1-voul)*(1-damage)) 

   flow3=((flow1)/(flow2)) 
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   espt=A*(sinh(flow3)) 

!-----------------The Harder rate Part-----------------------------------   

   flow4=(1-(harder)/(hplus)) 

   flow5=(h)/(dsbar) 

   ehard=flow4*flow5*espt 

!------------------The Evoulation rate Part------------------------------ 

         flow6=kc/d3 

   erave=flow6*((1-voul)**(4)) 

!------------------The Damage rate Part---------------------------------- 

         if(theta11>zero)then  

         flow7=(1-(theta11)/(dsbar))*p 

   flow8=(0.5-(3*mdsbar)/(2*dsbar))*q 

   flow9=(exp(flow7+flow8))**(-1)       

   flow10=C*espt*flow9 

    

   flow11=(((3*mdsbar)/(sdsbar))-1)*b1 

   flow12=exp(flow11) 

   flow13=((2*dsbar)/(3*dsbar1))**a1 

         flow14=flow12*flow13 

   edate=flow10*flow14 

 

         else if(theta11<=zero)then 
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             edate=zero 

         end if 

          

          

         orv(1)=espt 

         orv(2)=ehard 

         orv(3)=erave 

         orv(4)=edate 

          

          

RETURN 

    END subroutine KRHQ 

                      

     

    SUBROUTINE KR(espt,edate,damage,theta11,dsbar,t) 

!--------------------------------------------------------------------- 

!This subroutine is used to implement the creep constitutive equation 

!of Katchanov-Robotnov. The material of this constitutive equation is: 

! Bar257 at 650 Celsius 

!                                                          10/01/2018 

!--------------------------------------------------------------------- 

!--------------------------------------------------------------------- 
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! Input: (theta11 :maximun_principal_stress; 

!         damage  :creep_damage_value; 

!         dsbar   :von_mises_stress; 

!         t       :temperature_variable) 

!         dsbar  :von_mises_stress) 

! Output:(espt :creep_strain_rate; 

!         edate:creep_damage_rate) 

!----------------------------------------------------------------------  

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 Doubleprecision,INTENT(IN)::damage,theta11,dsbar,t 

 Doubleprecision,INTENT(OUT),OPTIONAL::espt,edate 

 Doubleprecision::a,q,x,dx,m,flow1,flow2,flow3,flow4,flow5,flow6,    & 

 flow7,flow8,n,xm 

  

!---------------the parameters of the constitutive equation------------ 

 

        a=6.599e-16 

  q=4.5 

  x=0.3 

        dx=5.767 

        m=5.998e-14 
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        n=6.108 

        xm=0 

 

!------------------------------------------------------------------------ 

 

        flow1=((1-damage)**(n)) 

        flow2=(flow1)**(-1) 

        flow3=a*(dsbar**(n)) 

        flow4=((t)**(xm)) 

        espt=flow2*flow3*flow4 

 

         

        flow5=((1-damage)**(q))*(1+q) 

  flow6=((x*theta11)+((1-x)*dsbar)) 

  flow7=(flow6**(dx)) 

         

        edate=m*((flow7)/(flow5)) 

RETURN 

    END subroutine KR                 

      

     

    SUBROUTINE psigma(stress,pstress) 
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!---------------------------------------------------------- 

! This subroutine is used to output the Partial stress  

!  component form                 

!                                         04/05/2017 

!-------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Input : ( stress(:) :stress_tenor) 

! Output: (pstress(:) :Stress_partial_tensor) 

!----------------------------------------------------------------------  

 

IMPLICIT NONE 

INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

doubleprecision,INTENT(IN)::stress(:) 

doubleprecision,INTENT(OUT)::pstress(:) 

doubleprecision::sx,sy,sz,txy,sigm,s1,s2,s3,s4,s5,s6,        & 

             three=3.0_iwp 

 INTEGER::nst  

 nst=UBOUND(stress,1) 

 SELECT CASE(nst) 

 CASE(3) 

   sx=stress(1) 

   sy=stress(2) 
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   txy=stress(3) 

   sigm=(sx+sy)/three 

   pstress(1)=sx-sigm 

   pstress(2)=sy-sigm 

   pstress(3)=txy 

     

 CASE(4) 

   sx=stress(1) 

   sy=stress(2) 

   txy=stress(3) 

   sz=stress(4) 

   sigm=(sx+sy+sz)/three 

   pstress(1)=sx-sigm 

   pstress(2)=sy-sigm 

   pstress(3)=txy 

   pstress(4)=sz-sigm 

 

 

!----------------------------------------- 

!    sigm=(sx+sy)/three 

!    pstress(1)=sx-sigm 

!    pstress(2)=sy-sigm 
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!    pstress(3)=txy 

!    pstress(4)=-sigm 

!----------------------------------------- 

    

  

 CASE(6) 

   s1=stress(1)   

   s2=stress(2) 

   s3=stress(3)  

   s4=stress(4) 

   s5=stress(5) 

   s6=stress(6) 

   sigm=(s1+s2+s3)/three 

   pstress(1)=s1-sigm  

   pstress(2)=s2-sigm   

   pstress(3)=s3-sigm 

   pstress(4)=s4 

   pstress(5)=s5 

   pstress(6)=s6 

 

 CASE DEFAULT 

   WRITE(*,*)"wrong size for nst in invar" 
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 END SELECT 

RETURN 

    END SUBROUTINE psigma    

     

     

    SUBROUTINE execute(olds,fal,reform) 

!------------------------------------------------------------------------ 

! This subroutine sets reform to .FALSE. if relative change in when the  

! fal array changed. 

!------------------------------------------------------------------------ 

!--------------------------------------------------------------------- 

! Input : ( old(:) the_array_stores_the_initial_status_of_all_elements; 

!           fal(:) the_array_stores_the_end_status_of_all_elements) 

! Output：(reform: trigger_variable_for_removal_failed_element)  

!----------------------------------------------------------------------  

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 INTEGER,INTENT(IN)::olds(:),fal(:) 

 LOGICAL,INTENT(OUT)::reform 

 reform=.true. 

 reform=((MAXVAL(ABS(fal-olds)))>0) 

RETURN 
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    END SUBROUTINE execute 

     

     

    SUBROUTINE KRH(orv,iav,cprop,theta11,dsbar) 

!--------------------------------------------------------------------- 

!This subroutine is used to implement the creep constitutive equation 

!of Hayhurt's for 0.5Cr0.5Mo0.25V ferritic steel at 590 ℃。The  

!integral method apply the EULAR. 

!                                                          17/05/2018 

!--------------------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Input : ( iav(:)  : Creep_status_parameters_array; 

!           cprop(:): Creep_status_parameters_array; 

!           theta11 : maximun_principal_stress; 

!            dsbar  : von_mises_stress) 

! Output：(   orv   : output_creep_rates_array)  

!----------------------------------------------------------------------  

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 Doubleprecision,intent(in)::iav(:),cprop(:),theta11,dsbar 

 Doubleprecision,INTENT(OUT),OPTIONAL::orv(:) 

 Doubleprecision::A,B,C,h,hplus,kc,v,flow1,flow2,flow3,flow4,         & 
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flow5,flow6,flow7,d3=3.0_iwp,zero=0.0_iwp,esp,harder,voul,damage,     & 

espt,ehard,erave,edate 

  

        esp=iav(1) 

        harder=iav(2) 

        voul=iav(3) 

        damage=iav(4) 

         

         

        A=cprop(1) 

        B=cprop(2) 

        C=cprop(3) 

        h=cprop(4) 

        hplus=cprop(5) 

        kc=cprop(6) 

        v=cprop(7) 

         

        orv=zero 

  

!-----------------The strain rate Part---------------------------------- 

         flow1=B*dsbar*(1-harder) 

         flow2=((1-voul)*(1-damage)) 
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   flow3=((flow1)/(flow2)) 

   espt=A*(sinh(flow3)) 

!-----------------The Harder rate Part-----------------------------------   

   flow4=(1-(harder)/(hplus)) 

   flow5=(h)/(dsbar) 

   ehard=flow4*flow5*espt 

!------------------The Evoulation rate Part------------------------------ 

         flow6=kc/d3 

   erave=flow6*((1-voul)**(4)) 

!------------------The Damage rate Part---------------------------------- 

         if(theta11>zero)then 

         flow7=((theta11)/(dsbar))**(v) 

         edate=C*espt*flow7  

         else if(theta11<=zero)then 

             edate=zero 

         end if 

          

          

         orv(1)=espt 

         orv(2)=ehard 

         orv(3)=erave 

         orv(4)=edate 
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RETURN 

    END subroutine KRH 

     

     

    SUBROUTINE RKKRH(orv,iav,cprop,theta11,dsbar,dt) 

!--------------------------------------------------------------------- 

!This subroutine is used to implement the integration method for the  

!constitutive equations by 4the Rounge Kutta Method. 

!                                                          17/05/2018 

!--------------------------------------------------------------------     

!--------------------------------------------------------------------- 

! Input : ( iav(:)  : Creep_status_parameters_array; 

!           cprop(:): Creep_status_parameters_array; 

!           theta11 : maximun_principal_stress; 

!            dsbar  : von_mises_stress 

!             dt    : the_time_step_for_integration) 

! Output：(   orv   : output_creep_rates_array)  

!----------------------------------------------------------------------  

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 
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 Doubleprecision,intent(in)::iav(:),cprop(:),theta11,dsbar,dt 

 Doubleprecision,INTENT(OUT),OPTIONAL::orv(:) 

 Doubleprecision::zero=0.0_iwp,D3=3.0_iwp,A,B,C,damage,ehard,ehard1,     

& 

 ehard2,ehard3,ehard4,ehard5,erave1,erave2,erave3,erave4,erave5,erave,   & 

 esp,espt,flow1,flow2,flow3,flow4,flow5,flow6,H,harder,hplus,kc,v,       & 

 voul,flow7,edate 

  

        esp=iav(1) 

        harder=iav(2) 

        voul=iav(3) 

        damage=iav(4) 

         

!----------input the paramaters of the constitutive equation---------         

        A=cprop(1) 

        B=cprop(2) 

        C=cprop(3) 

        h=cprop(4) 

        hplus=cprop(5) 

        kc=cprop(6) 

        v=cprop(7) 

!-------------------------------------------------------------------- 
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        orv=zero 

 

!--------obtin the strain rate-------------------------------------- 

         flow1=B*dsbar*(1-harder) 

         flow2=((1-voul)*(1-damage)) 

   flow3=((flow1)/(flow2)) 

   espt=A*(sinh(flow3)) 

!--------obtain the harder rate------------------------------------ 

!------------------for ehard1-------------------------------------- 

         flow4=(1-(harder)/(hplus)) 

   flow5=(h)/(dsbar) 

   ehard1=flow4*flow5*espt  

!-------------------for ehard 2------------------------------------ 

         harder=iav(2)          

         harder=harder+ehard1*dt/3 

         flow4=(1-(harder)/(hplus)) 

   flow5=(h)/(dsbar) 

   ehard2=flow4*flow5*espt  

!-------------------for ehard 3------------------------------------- 

         harder=iav(2) 

         harder=harder+(ehard1*dt)/(6)+(ehard2*dt)/(6) 

         flow4=(1-(harder)/(hplus)) 
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   flow5=(h)/(dsbar) 

   ehard3=flow4*flow5*espt        

!-------------------for ehard 4------------------------------------- 

         harder=iav(2) 

         harder=harder+(ehard1*dt)/(8)+(ehard3*dt*3)/(8)     

         flow4=(1-(harder)/(hplus)) 

   flow5=(h)/(dsbar) 

   ehard4=flow4*flow5*espt   

!-------------------for ehard 5-------------------------------------    

         harder=iav(2) 

         harder=harder+(ehard1*dt)/(2)-(ehard3*dt*3)/(2)+2*ehard4*dt 

         flow4=(1-(harder)/(hplus)) 

   flow5=(h)/(dsbar) 

   ehard5=flow4*flow5*espt  

!-------------------for final ehard----------------------------------------          

         ehard=(ehard1/6)+((2*ehard4)/3)+(ehard5/6) 

!---------------------------------------------------------------------------     

!---------------------------------------------------------------------------     

!---------------------------------------------------------------------------     

!--------------obtain the Evoulation rate-----------------------------------     

     

!-----------------for erave1------------------------------------------------     
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         flow6=kc/d3 

   erave1=flow6*((1-voul)**(4)) 

!----------------- for erave2---------------------------------------------- 

         voul=iav(3) 

         voul=voul+(erave1*dt/3) 

         flow6=kc/d3 

   erave2=flow6*((1-voul)**(4)) 

!----------------- for erave3---------------------------------------------- 

         voul=iav(3) 

         voul=voul+(erave1*dt/6)+(erave2*dt/6) 

         flow6=kc/d3 

   erave3=flow6*((1-voul)**(4)) 

!----------------- for erave4---------------------------------------------- 

         voul=iav(3) 

         voul=voul+(erave1*dt/8)+(erave3*3*dt/8) 

         flow6=kc/d3 

   erave4=flow6*((1-voul)**(4))          

!----------------- for erave5---------------------------------------------- 

         voul=iav(3) 

         voul=voul+(erave1*dt/2)-(erave3*3*dt/2)+(2*erave4*dt) 

         flow6=kc/d3 

   erave5=flow6*((1-voul)**(4))   
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!------------------ the final erave---------------------------------------- 

         erave=(erave1/6)+((2*erave4)/3)+(erave5/6)   

!--------obtin the damage rate---------------------------------------------     

         if(theta11>zero)then 

         flow7=((theta11)/(dsbar))**(v) 

         edate=C*espt*flow7  

         else if(theta11<=zero)then 

             edate=zero 

         end if     

     

          

         orv(1)=espt 

         orv(2)=ehard 

         orv(3)=erave 

         orv(4)=edate 

          

          

          

          

    END SUBROUTINE RKKRH 
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    SUBROUTINE new_km(km,kcoh) 

!------------------------------------------------------------------- 

! This subroutine forms the stiffness matrix of a joint element.  

! It use to simulate the grain bounday.  

! The element is made up of two linear elements and four nodal point. 

! The mathmatical background is based on these two articles. 

![1]Goodman RE, Taylor RL, Brekke Tl, A model for the mechanics of  

!jointed rock, J. Soil Mech, Found. Div, ASCE, 1968, 94 (SM3):637~659. 

![2] Шамровский, А. and Богданова, Е. (2014). Solution of contact  

!problems of elasticity theory using a discrete finite-size element.  

! Eastern-European Journal of Enterprise Technologies, 3(7(69), p.41.i 

! The code is writied by J.Tu. Research of Huddersfield University. 

!                                                      29/08/2018 

!---------------------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Input : (kcoh(:): Goodman_element_elastic_parameters_array) 

! Output：(km(:)  : output_Goodman_element_stiffness_matrix)  

!----------------------------------------------------------------------   

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 REAL(iwp),INTENT(IN):: kcoh(:) 

 REAL(iwp),INTENT(OUT)::km(:,:) 
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 REAL(iwp)::one=1.0_iwp,six=6.0_iwp,ZERO=0.0_iwp,two=2.0_iwp,KS,KN,A 

  

  

 KN=KCOH(1) 

 KS=KCOH(2) 

 A=ONE/SIX 

  

 KM=ZERO 

  

 KM(1,1)=TWO*KS 

 KM(1,2)=ZERO 

 KM(1,3)=(TWO*KS)*(-1) 

 KM(1,4)=ZERO 

 KM(1,5)=KS*(-1) 

 KM(1,6)=ZERO 

 KM(1,7)=KS 

 KM(1,8)=ZERO 

 KM(2,1)=ZERO 

 KM(2,2)=TWO*KN 

 KM(2,3)=ZERO 

 KM(2,4)=(TWO*KN)*(-1) 

 KM(2,5)=ZERO 
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 KM(2,6)=KN*(-1) 

 KM(2,7)=ZERO 

 KM(2,8)=KN 

 KM(3,1)=(TWO*KS)*(-1) 

 KM(3,2)=ZERO 

 KM(3,3)=TWO*KS 

 KM(3,4)=ZERO 

 KM(3,5)=KS 

 KM(3,6)=ZERO 

 KM(3,7)=KS*(-1) 

 KM(3,8)=ZERO 

 KM(4,1)=ZERO 

 KM(4,2)=(TWO*KN)*(-1) 

 KM(4,3)=ZERO  

 KM(4,4)=TWO*KN 

 KM(4,5)=ZERO  

 KM(4,6)=KN 

 KM(4,7)=ZERO 

 KM(4,8)=KN*(-1) 

 KM(5,1)=KS*(-1) 

 KM(5,2)=ZERO 

 KM(5,3)=KS 
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 KM(5,4)=ZERO 

 KM(5,5)=TWO*KS 

 KM(5,6)=ZERO 

 KM(5,7)=(TWO*KS)*(-1) 

 KM(5,8)=ZERO 

 KM(6,1)=ZERO 

 KM(6,2)=KN*(-1) 

 KM(6,3)=ZERO 

 KM(6,4)=KN 

 KM(6,5)=ZERO 

 KM(6,6)=TWO*KN 

 KM(6,7)=ZERO 

 KM(6,8)=(TWO*KN)*(-1) 

 KM(7,1)=KS 

 KM(7,2)=ZERO 

 KM(7,3)=KS*(-1) 

 KM(7,4)=ZERO 

 KM(7,5)=(TWO*KS)*(-1) 

 KM(7,6)=ZERO 

 KM(7,7)=TWO*KS 

 KM(7,8)=ZERO 

 KM(8,1)=ZERO 



~ 238 ~ 
 

 KM(8,2)=KN 

 KM(8,3)=ZERO 

 KM(8,4)=KN*(-1) 

 KM(8,5)=ZERO 

 KM(8,6)=(TWO*KN)*(-1) 

 KM(8,7)=ZERO 

 KM(8,8)=TWO*KN 

  

 KM=A*KM 

RETURN 

    END SUBROUTINE new_km 

  

     

    SUBROUTINE beeg(bee) 

!-------------------------------------------------------- 

! This subroutine forms the bee matrix for goodman element 

!--------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Output：(bee(:)  : output_Goodman_element_B_matrix)  

!----------------------------------------------------------------------   
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 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 REAL(iwp),INTENT(OUT)::bee(:,:) 

 REAL::zero=0.0_iwp,one=1.0_iwp 

  

     bee=zero 

  

  

     bee(1,1)=-one 

     bee(2,2)=-one 

     bee(1,3)=one 

     bee(2,4)=one 

     bee(1,5)=one 

     bee(2,6)=one 

     bee(1,7)=-one 

     bee(2,8)=-one 

      

     bee=0.5*bee 

   

RETURN 

    END SUBROUTINE beeg 
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    SUBROUTINE deeg(dee,kcoh) 

!------------------------------------------------------------------- 

! This subroutine returns the elastic dee matrix for goodman element 

!------------------------------------------------------------------- 

!------------------------------------------------------------------- 

! Input : (kcoh(:) : Goodman_element_elastic_parameters_array) 

! Output：(dee(:)  : output_Goodman_element_dee_matrix)  

!-------------------------------------------------------------------  

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 REAL(iwp),INTENT(IN)::kcoh(:) 

 REAL(iwp),INTENT(OUT)::dee(:,:) 

 REAL(iwp)::KN,KS,zero=0.0_iwp 

 dee=zero   

 KN=KCOH(1) 

 KS=KCOH(2) 

 dee(1,1)=KS 

 dee(2,2)=KN 

  

  

RETURN 
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    END SUBROUTINE deeg   

     

     

    SUBROUTINE element_inf(length,angle,coord) 

!-------------------------------------------------------- 

! This subroutine forms the length and the angle  for  

! the goodman element 

!                                        Research:J.Tu 

!                       The University of Huddersfield 

!                                       06/09/2018 

!--------------------------------------------------------- 

!------------------------------------------------------------------- 

! Input : (coord(:) : Goodman_element_node_coordinate_array) 

! Output：(length   : 2d_Goodman_element_length; 

!          angle(:) : array_stores_the_sine&cosine_of_local_to_global_ 

!                      _coordinate_system_angle)  

!-------------------------------------------------------------------   

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 REAL(iwp),INTENT(IN)::coord(:,:) 

 REAL(iwp),INTENT(OUT)::length,angle(:) 

 REAL::zero=0.0_iwp,one=1.0_iwp,two=2.0_iwp,x1,x2,x3,x4,y1,& 



~ 242 ~ 
 

 y2,y3,y4,angle1,angle2,length1,length2,a1,b1,a2,b2 

 !---------------inport the coordinate for each node------- 

 x1=coord(1,1) 

 y1=coord(1,2) 

 x2=coord(2,1) 

 y2=coord(2,2) 

 x3=coord(3,1) 

 y3=coord(3,2) 

 x4=coord(4,1) 

 y4=coord(4,2) 

  

!--------------for upper surface-------------------- 

length1=sqrt((x2-x3)**(two)+(y2-y3)**(two)) 

a1=(y3-y2)/length1 

b1=(x3-x2)/length1 

 

!--------------for bottom surface------------------- 

length1=sqrt((x1-x4)**(two)+(y1-y4)**(two)) 

a2=(y4-y1)/length2 

b2=(x4-x1)/length2 

  

length=length1 
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angle(1)=a1 

angle(2)=b1 

   

RETURN 

    END SUBROUTINE element_inf 

     

     

    SUBROUTINE Loc_Gol(angle_t,angle) 

!-------------------------------------------------------- 

! This subroutine is used to obtain the angle transform 

! matrix for goodman element. 

!                                        Research:J.Tu 

!                       The University of Huddersfield 

!                                       08/09/2018 

!--------------------------------------------------------- 

!------------------------------------------------------------------- 

! Input : (angle(:) : array_stores_the_sine&cosine_of_local_to_global_ 

!                      _coordinate_system_angle) 

! Output：(angle(:) : local_global_coordinate_transformation_matrix)  

!-------------------------------------------------------------------   

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 
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 REAL(iwp),INTENT(IN)::angle(:) 

 REAL(iwp),INTENT(OUT)::angle_t(:,:) 

 INTEGER::i 

 REAL::zero=0.0_iwp,one=1.0_iwp,two=2.0_iwp,sina,cosa 

 !----inport the trigonometric value for each element----- 

 sina=angle(1) 

 cosa=angle(2) 

 !-------------------------------------------------------- 

 angle_t=zero 

  

  Do i=1,8 

      angle_t(i,i)=cosa 

  End do 

   

  angle_t(1,2)=sina 

  angle_t(2,1)=-sina 

  angle_t(3,4)=sina 

  angle_t(4,3)=-sina 

  angle_t(5,6)=sina 

  angle_t(6,5)=-sina 

  angle_t(7,8)=sina 

  angle_t(8,7)=-sina 
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RETURN 

    END SUBROUTINE Loc_Gol 

     

     

    SUBROUTINE P_L(espt,cprop,dsbar,t) 

!--------------------------------------------------------------------- 

!This subroutine is used to implement the creep constitutive equation 

!of power law creep model. The material of this constitutive equation  

!is: pure copper at 500 Celsius 

!                                                          15/10/2018 

!--------------------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Input: (cprop(:):creep_constitutive_equation_paramaters_array 

!         theta11 :maximun_principal_stress 

!          dsbar  :von_mises_stress 

!            t    :temperature_variable) 

! Output: (espt(:) :output_creep_strain_rate) 

!----------------------------------------------------------------------  

  

 IMPLICIT NONE 
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 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 Doubleprecision,INTENT(IN)::cprop(:),dsbar,t 

 Doubleprecision,INTENT(OUT),OPTIONAL::espt 

 Doubleprecision::A,Q,N,M,Tem,R,K,flow1,flow2,flow3,flow4,flow5 

  

!---------------the parameters of the constitutive equation------------ 

 

   A=cprop(1) 

   Q=CPROP(2) 

   N=CPROP(3) 

   M=CPROP(4) 

   Tem=CPROP(5) 

   R=8.314 

   K=Tem+273.15 

 

!---------------the power law constitutive equation--------------------- 

!The constitutive equation is form the publication: 

!G. LI, B.G. THOMAS, and J.F. STUBBINS (10/2000)  

!'Modeling Creep and Fatigue of Copper Alloys',  

!METALLURGICAL AND MATERIALS TRANSACTIONS A, 31(10), pp. 2491 

- 2502 

!------------------------------------------------------------------------ 
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        flow1=((-Q)/(R*K)) 

        flow2=exp(flow1) 

        flow3=A*flow2 

        flow4=(dsbar**(n)) 

  flow5=((t**(m))) 

        espt=flow3*flow4*flow5 

 

 

RETURN 

    END subroutine P_L 

 

    

    SUBROUTINE gbvm(dp,db,w,gcprop,p,b) 

!--------------------------------------------------------------------- 

!This subroutine is used to implement the creep constitutive equation 

!of Markus Vose creep model for grain boundary. The reference for this  

!model is : 

! Vöse, M., Fedelich, B. and Owen, J. (2012). A simplified model for  

! creep induced grain boundary cavitation validated by multiple cavity  

! growth simulations. Computational Materials Science, 58, pp.201-213. 

!                                                          18/10/2018 
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!--------------------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Input: (gcprop(:):grain_boundary_creep_constitutive_equation 

!                   _paramaters_array; 

!             p    :input_grain_boundary_creep_cavity_density; 

!             b    :input_grain_boundary_creep_damage_variable) 

!Output: (   dp    :output_grain_boundary_creep_cavity_density_rate; 

!            db    :output_grain_boundary_creep_damage_variable_rate; 

!             w    :output_grain_boundary_creep_damage) 

!----------------------------------------------------------------------  

IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 Doubleprecision,INTENT(IN)::gcprop(:),p,b 

 Doubleprecision,INTENT(OUT),OPTIONAL::dp,db,w 

 Doubleprecision::a1,dgb1,rs,xp,r,theta,x1,x2,x3,x4,theta1,flow1,      & 

 flow2,flow3,flow4,flow5,flow6,flow7,y,xa,up,stip0,qw0,pi=3.1415926,   & 

 one=1.0_iwp,two=2.0_iwp,d3=3.0_iwp,flow8,flow9,htheta,flow10,flow11,  & 

 flow12,flow13,flow14,f,dup,dgb,da,a 

!------input the creep parameters for the constitutive equation-------- 

 a1=gcprop(1) 

 dgb1=gcprop(2) 

 rs=gcprop(3) 
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 xp=gcprop(4) 

 r=gcprop(5) 

 theta=gcprop(6) 

 x1=gcprop(7) 

 x2=gcprop(8) 

 x3=gcprop(9) 

 x4=gcprop(10) 

  

  

  

 

!------------------- prepare for simulation----------------------------- 

 theta1=(theta*pi)/180 

 flow1=((1+cos(theta1))**(-1))-(cos(theta1))/2 

 htheta=flow1/sin(theta1) 

 up=(4*htheta*(a1**3))/(3*(r**2)) 

 dgb=dgb1**3 

  

  

  

  

!----------------initinalization for the simulation--------------------- 



~ 250 ~ 
 

  

 

!------------------the constitutive equation part----------------  

!--------------------------equation 60---------------------------------------------        

    flow1=(3*b)/(4*htheta*pi) 

    a=(1/(sqrt(p)))*(flow1**(one/d3)) 

    w=((9*pi*(b**2))/(16*(htheta**2)))**(one/d3)   

  

 

 

!--------------------------equation 59---------------------------------------------  

    stip0=(2*rs*sin(theta1))/a 

    qw0=(-2)*dlog(w*x2)-((3-w*x2)*(1-w*x2)) 

    flow2=1-stip0*(1-x2*w) 

    flow3=(a**2)*qw0 

    da=(x1*2*dgb*flow2)/(htheta*flow3) 

     

     

     

     

!--------------------------equation 58---------------------------------------------   

    xa=x3*8*pi*(p**2)*a*da 



~ 251 ~ 
 

     

     

    

!--------------------------equation 62---------------------------------------------     

    flow4=(b*(xp-xa))/(sqrt(p**3)) 

    flow10=36*htheta*pi 

    flow11=b**2 

    flow12=flow10*flow11 

    flow13=one/d3 

    flow5=((flow12)**(flow13))*da 

    dup=flow4+flow5 

     

     

  

!------------debug to here-------------------------------------------------------- 

!--------------------------equation 61--------------------------------------------- 

    flow14=-one 

    flow6=x4*2*pi*dgb*p*((dup)**(flow14)) 

    flow7=(2*rs*sin(theta1))-stip0 

    y=exp(flow6*flow7) 

    f=((y-1)*w)/(1-w) 
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!--------------------------equation 57--------------------------------------------- 

    dp=xp*(1-f)-xa 

    flow8=(3*b*(xp-xa))/(2*p) 

    flow9=(sqrt(p))*((36*htheta*(b**2)*pi)**(flow13))*da 

    db=flow8+flow9   

     

RETURN 

    END subroutine gbvm 

     

     

    SUBROUTINE G_shape_fun(fun,points,i) 

!---------------------------------------------------------------- 

!   This subroutine computes the values of the shape functions 

!   of single surface of 3D Goodman element. 

!   to local coordinates 

!                                     Developed by Researcher:J.TU 

!                                   The University of Huddersfield 

!                                                       21/09/2019 

!----------------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Input:  (    i       : Gaussian_point_number; 



~ 253 ~ 
 

!           point(:,:) : array_stores_sampling_function) 

! Output: ( fun(:) :array_stores_shape_function) 

!----------------------------------------------------------------------  

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 INTEGER,INTENT(in)::i 

 REAL(iwp),INTENT(IN)::points(:,:) 

 REAL(iwp),INTENT(OUT)::fun(:) 

 REAL(iwp)::eta,xi,etam,etap,xim,xip,zetam,zetap,c1,c2,c3      

 REAL(iwp)::t1,t2,t3,t4,t5,t6,t7,t8,t9 

 INTEGER::l,ndim,nod 

 

REAL,PARAMETER::pt125=0.125_iwp,pt25=0.25_iwp,pt5=0.5_iwp,pt75=0.75_i

wp, & 

   

one=1.0_iwp,two=2.0_iwp,d3=3.0_iwp,d4=4.0_iwp,d8=8.0_iwp,d9=9.0_iwp,   

& 

   d16=16.0_iwp,d27=27.0_iwp,d32=32.0_iwp,d64=64.0_iwp,d128=128.0_iwp 

 

            

 

   nod=UBOUND(fun,1) 
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   c1=points(i,1) 

   c2=points(i,2) 

   c3=one-c1-c2  

   xi=points(i,1) 

   eta=points(i,2)  

   etam=pt25*(one-eta) 

   etap=pt25*(one+eta) 

   xim=pt25*(one-xi) 

   xip=pt25*(one+xi) 

    

     

  

   SELECT CASE(nod) 

   CASE(3) 

     fun = (/c1,c3,c2/)   

   CASE(6) 

     fun(1)=(two*c1-one)*c1  

     fun(2)=d4*c3*c1 

     fun(3)=(two*c3-one)*c3  

     fun(4)=d4*c2*c3       

     fun(5)=(two*c2-one)*c2 

     fun(6)=d4*c1*c2  
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   CASE(10) 

     fun(1)= ((d3*c1-one)*(d3*c1-two)*c1)/two 

     fun(2)= -(d9*(d3*c1-one)*(c1+c2-one)*c1)/two 

     fun(3)=  (d9*(d3*c1+d3*c2-two)*(c1+c2-one)*c1)/two 

     fun(4)=-((d3*c1+d3*c2-one)*(d3*c1+d3*c2-two)*(c1+c2-one))/two     

     fun(5)=  (d9*(d3*c1+d3*c2-two)*(c1+c2-one)*c2)/two 

     fun(6)= -(d9*(c1+c2-one)*(d3*c2-one)*c2)/two 

     fun(7)= ((d3*c2-one)*(d3*c2-two)*c2)/two 

     fun(8)=  (d9*(d3*c2-one)*c1*c2)/two 

     fun(9)=  (d9*(d3*c1-one)*c1*c2)/two 

     fun(10)=-d27*((c2-one)+c1)*c1*c2 

   CASE(15) 

     t1=c1-pt25   

     t2=c1-pt5  

     t3=c1-pt75    

     t4=c2-pt25 

     t5=c2-pt5    

     t6=c2-pt75  

     t7=c3-pt25   

     t8=c3-pt5  

     t9=c3-pt75 

     fun(1)=d32/d3*c1*t1*t2*t3    
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     fun(2)=d128/d3*c3*c1*t1*t2 

     fun(3)=d64*c3*c1*t1*t7       

     fun(4)=d128/d3*c3*c1*t7*t8 

     fun(5)=d32/d3*c3*t7*t8*t9    

     fun(6)=d128/d3*c2*c3*t7*t8 

     fun(7)=d64*c2*c3*t4*t7       

     fun(8)=d128/d3*c2*c3*t4*t5 

     fun(9)=d32/d3*c2*t4*t5*t6    

     fun(10)=d128/d3*c1*c2*t4*t5 

     fun(11)=d64*c1*c2*t1*t4      

     fun(12)=d128/d3*c1*c2*t1*t2 

     fun(13)=d128*c1*c2*t1*c3     

     fun(15)=d128*c1*c2*c3*t4 

     fun(14)=d128*c1*c2*c3*t7       

   CASE(4) 

     fun=(/d4*xim*etam,d4*xim*etap,d4*xip*etap,d4*xip*etam/)    

   CASE(5) 

     fun=(/d4*xim*etam-pt25*(one-xi**2)*(one-eta**2),     & 

           d4*xim*etap-pt25*(one-xi**2)*(one-eta**2),     & 

           d4*xip*etap-pt25*(one-xi**2)*(one-eta**2),     & 

           d4*xip*etam-pt25*(one-xi**2)*(one-eta**2),     & 

           (one-xi**2)*(one-eta**2)/) 
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   CASE(8) 

     fun=(/d4*etam*xim*(-xi-eta-one),d32*etam*xim*etap,                   

& 

           d4*etap*xim*(-xi+eta-one),d32*xim*xip*etap,                    

& 

           d4*etap*xip*(xi+eta-one), d32*etap*xip*etam,                   

& 

           d4*xip*etam*(xi-eta-one), d32*xim*xip*etam/) 

   CASE(9) 

     etam=eta-one 

     etap=eta+one 

     xim=xi-one 

     xip=xi+one 

     fun=(/pt25*xi*xim*eta*etam,-pt5*xi*xim*etap*etam,                    

& 

           pt25*xi*xim*eta*etap,-pt5*xip*xim*eta*etap,                    

& 

           pt25*xi*xip*eta*etap,-pt5*xi*xip*etap*etam,                    

& 

           pt25*xi*xip*eta*etam,-pt5*xip*xim*eta*etam,                    

& 

           xip*xim*etap*etam/) 



~ 258 ~ 
 

    CASE DEFAULT 

     WRITE(*,*)"wrong number of nodes in shape_fun" 

    END SELECT 

 

RETURN 

    END SUBROUTINE G_shape_fun 

  

     

 SUBROUTINE Gsample(element,s,wt) 

!------------------------------------------------------------------------- 

! This subroutine returns the local coordinates and weighting coefficients 

! of the integrating points. 

!------------------------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Input:( element: the_shape_of_3D_Goodman_single_surface; 

!        s(:,:)  : the_coordinates_of_Gaussian_point_at_local_coordinate  

!                  _system) 

!Output:(  wt(:) : the_wights_of_Gaussion_points_in_Gauss_Legendre 

!                  _quadrilateral_integration) 

!----------------------------------------------------------------------  

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 
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 REAL(iwp),INTENT(OUT)::s(:,:) 

 REAL(iwp),INTENT(OUT),OPTIONAL::wt(:) 

 CHARACTER(*),INTENT(IN)::element 

 INTEGER::nip 

 REAL(iwp)::root3,r15,w(3),v(9),b,c 

 root3=1.0_iwp/SQRT(3.0_iwp) 

 r15=0.2_iwp*SQRT(15.0_iwp) 

 nip=UBOUND(s,1) 

 w=(/5.0_iwp/9.0_iwp,8.0_iwp/9.0_iwp,5.0_iwp/9.0_iwp/) 

 v=(/5.0_iwp/9.0_iwp*w,8.0_iwp/9.0_iwp*w,5.0_iwp/9.0_iwp*w/) 

 SELECT CASE(element) 

 CASE('T') 

 SELECT CASE(nip) 

   CASE(1) 

     s(1,1)= 0.333333333333333_iwp 

     s(1,2)= 0.333333333333333_iwp 

     wt(1) = 0.500000000000000_iwp 

   CASE(3) 

     s(1,1)= 0.500000000000000_iwp 

     s(1,2)= 0.500000000000000_iwp 

     s(2,1)= 0.500000000000000_iwp 

     s(2,2)= 0.000000000000000_iwp 
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     s(3,1)= 0.000000000000000_iwp 

     s(3,2)= 0.500000000000000_iwp 

     wt(1:3)=0.333333333333333_iwp 

     wt=0.5_iwp*wt 

   CASE(4) 

     s(1,1)= 0.6_iwp 

     s(1,2)= 0.2_iwp 

     s(2,1)= 0.2_iwp 

     s(2,2)= 0.6_iwp 

     s(3,1)= 0.2_iwp 

     s(3,2)= 0.2_iwp 

     s(4,1)= 0.333333333333333_iwp 

     s(4,2)= 0.333333333333333_iwp 

     wt(1:3)= 0.520833333333333_iwp 

     wt(4)=  -0.5625_iwp 

     wt=0.5_iwp*wt 

   CASE(6) 

     s(1,1)= 0.816847572980459_iwp 

     s(1,2)= 0.091576213509771_iwp 

     s(2,1)= 0.091576213509771_iwp 

     s(2,2)= 0.816847572980459_iwp 

     s(3,1)= 0.091576213509771_iwp 



~ 261 ~ 
 

     s(3,2)= 0.091576213509771_iwp 

     s(4,1)= 0.108103018168070_iwp 

     s(4,2)= 0.445948490915965_iwp 

     s(5,1)= 0.445948490915965_iwp 

     s(5,2)= 0.108103018168070_iwp 

     s(6,1)= 0.445948490915965_iwp 

     s(6,2)= 0.445948490915965_iwp 

     wt(1:3)=0.109951743655322_iwp 

     wt(4:6)=0.223381589678011_iwp 

     wt=0.5_iwp*wt 

   CASE(7) 

     s(1,1)= 0.333333333333333_iwp 

     s(1,2)= 0.333333333333333_iwp 

     s(2,1)= 0.797426985353087_iwp 

     s(2,2)= 0.101286507323456_iwp 

     s(3,1)= 0.101286507323456_iwp 

     s(3,2)= 0.797426985353087_iwp 

     s(4,1)= 0.101286507323456_iwp 

     s(4,2)= 0.101286507323456_iwp 

     s(5,1)= 0.470142064105115_iwp 

     s(5,2)= 0.059715871789770_iwp 

     s(6,1)= 0.059715871789770_iwp 
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     s(6,2)= 0.470142064105115_iwp 

     s(7,1)= 0.470142064105115_iwp 

     s(7,2)= 0.470142064105115_iwp 

     wt(1) = 0.225000000000000_iwp 

     wt(2:4)=0.125939180544827_iwp 

     wt(5:7)=0.132394152788506_iwp 

     wt=0.5_iwp*wt 

   CASE(12) 

     s(1,1)= 0.873821971016996_iwp 

     s(1,2)= 0.063089014491502_iwp 

     s(2,1)= 0.063089014491502_iwp 

     s(2,2)= 0.873821971016996_iwp 

     s(3,1)= 0.063089014491502_iwp 

     s(3,2)= 0.063089014491502_iwp 

     s(4,1)= 0.501426509658179_iwp 

     s(4,2)= 0.249286745170910_iwp 

     s(5,1)= 0.249286745170910_iwp 

     s(5,2)= 0.501426509658179_iwp 

     s(6,1)= 0.249286745170910_iwp 

     s(6,2)= 0.249286745170910_iwp 

     s(7,1) =0.053145049844817_iwp 

     s(7,2) =0.310352451033784_iwp 
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     s(8,1) =0.310352451033784_iwp 

     s(8,2) =0.053145049844817_iwp 

     s(9,1) =0.053145049844817_iwp 

     s(9,2) =0.636502499121398_iwp 

     s(10,1)=0.310352451033784_iwp 

     s(10,2)=0.636502499121398_iwp 

     s(11,1)=0.636502499121398_iwp 

     s(11,2)=0.053145049844817_iwp 

     s(12,1)=0.636502499121398_iwp 

     s(12,2)=0.310352451033784_iwp 

     wt(1:3)=0.050844906370207_iwp 

     wt(4:6)=0.116786275726379_iwp 

     wt(7:12)=0.082851075618374_iwp 

     wt=0.5_iwp*wt 

   CASE(16) 

     s(1,1)=0.333333333333333_iwp 

     s(1,2)=0.333333333333333_iwp 

     s(2,1)=0.658861384496478_iwp 

     s(2,2)=0.170569307751761_iwp 

     s(3,1)=0.170569307751761_iwp 

     s(3,2)=0.658861384496478_iwp 

     s(4,1)=0.170569307751761_iwp 
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     s(4,2)=0.170569307751761_iwp 

     s(5,1)=0.898905543365938_iwp 

     s(5,2)=0.050547228317031_iwp 

     s(6,1)=0.050547228317031_iwp 

     s(6,2)=0.898905543365938_iwp 

     s(7,1)=0.050547228317031_iwp 

     s(7,2)=0.050547228317031_iwp 

     s(8,1)=0.081414823414554_iwp 

     s(8,2)=0.459292588292723_iwp 

     s(9,1)=0.459292588292723_iwp 

     s(9,2)=0.081414823414554_iwp 

     s(10,1)=0.459292588292723_iwp 

     s(10,2)=0.459292588292723_iwp 

     s(11,1)=0.008394777409958_iwp 

     s(11,2)=0.263112829634638_iwp 

     s(12,1)=0.008394777409958_iwp 

     s(12,2)=0.728492392955404_iwp 

     s(13,1)=0.263112829634638_iwp 

     s(13,2)=0.008394777409958_iwp 

     s(14,1)=0.263112829634638_iwp 

     s(14,2)=0.728492392955404_iwp 

     s(15,1)=0.728492392955404_iwp 
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     s(15,2)=0.008394777409958_iwp 

     s(16,1)=0.728492392955404_iwp 

     s(16,2)=0.263112829634638_iwp 

     wt(1)=0.144315607677787_iwp 

     wt(2:4)=0.103217370534718_iwp 

     wt(5:7)=0.032458497623198_iwp 

     wt(8:10)=0.095091634267284_iwp 

     wt(11:16)=0.027230314174435_iwp 

     wt=0.5_iwp*wt 

   CASE DEFAULT 

     WRITE(*,*)"wrong number of integrating points for a triangle" 

   END SELECT 

 CASE('Q') 

   SELECT CASE(nip) 

   CASE(1) 

     s(1,1)=0.0_iwp 

     s(1,2)=0.0_iwp 

     wt(1)=4.0_iwp 

   CASE(4) 

     s(1,1)=-root3 

     s(1,2)= root3 

     s(2,1)= root3 



~ 266 ~ 
 

     s(2,2)= root3 

     s(3,1)=-root3 

     s(3,2)=-root3 

     s(4,1)= root3 

     s(4,2)=-root3 

     wt=1.0_iwp 

   CASE(9) 

     s(1:7:3,1)=-r15 

     s(2:8:3,1)=0.0_iwp 

     s(3:9:3,1)=r15 

     s(1:3,2)  =r15 

     s(4:6,2)  =0.0_iwp 

     s(7:9,2)  =-r15 

     wt= v 

   CASE(16) 

     s(1:13:4,1)=-0.861136311594053_iwp 

     s(2:14:4,1)=-0.339981043584856_iwp 

     s(3:15:4,1)= 0.339981043584856_iwp 

     s(4:16:4,1)= 0.861136311594053_iwp 

     s(1:4,2)   = 0.861136311594053_iwp 

     s(5:8,2)   = 0.339981043584856_iwp 

     s(9:12,2)  =-0.339981043584856_iwp 
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     s(13:16,2) =-0.861136311594053_iwp 

     wt(1)      = 0.121002993285602_iwp 

     wt(4)      = wt(1) 

     wt(13)     = wt(1) 

     wt(16)     = wt(1) 

     wt(2)      = 0.226851851851852_iwp 

     wt(3)      = wt(2) 

     wt(5)      = wt(2) 

     wt(8)      = wt(2) 

     wt(9)      = wt(2) 

     wt(12)     = wt(2) 

     wt(14)     = wt(2) 

     wt(15)     = wt(2) 

     wt(6)      = 0.425293303010694_iwp 

     wt(7)      = wt(6) 

     wt(10)     = wt(6) 

     wt(11)     = wt(6) 

   CASE(25) 

     s(1:21:5,1)= 0.906179845938664_iwp 

     s(2:22:5,1)= 0.538469310105683_iwp 

     s(3:23:5,1)= 0.0_iwp 

     s(4:24:5,1)=-0.538469310105683_iwp 
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     s(5:25:5,1)=-0.906179845938664_iwp 

     s( 1: 5,2) = 0.906179845938664_iwp 

     s( 6:10,2) = 0.538469310105683_iwp 

     s(11:15,2) = 0.0_iwp 

     s(16:20,2) =-0.538469310105683_iwp 

     s(21:25,2) =-0.906179845938664_iwp 

     wt(1) =0.056134348862429_iwp 

     wt(2) =0.113400000000000_iwp 

     wt(3) =0.134785072387521_iwp 

     wt(4) =0.113400000000000_iwp 

     wt(5) =0.056134348862429_iwp 

     wt(6) =0.113400000000000_iwp 

     wt(7) =0.229085404223991_iwp 

     wt(8) =0.272286532550750_iwp 

     wt(9) =0.229085404223991_iwp 

     wt(10)=0.113400000000000_iwp 

     wt(11)=0.134785072387521_iwp 

     wt(12)=0.272286532550750_iwp 

     wt(13)=0.323634567901235_iwp 

     wt(14)=0.272286532550750_iwp 

     wt(15)=0.134785072387521_iwp 

     wt(16)=0.113400000000000_iwp 
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     wt(17)=0.229085404223991_iwp 

     wt(18)=0.272286532550750_iwp 

     wt(19)=0.229085404223991_iwp 

     wt(20)=0.113400000000000_iwp 

     wt(21)=0.056134348862429_iwp 

     wt(22)=0.113400000000000_iwp 

     wt(23)=0.134785072387521_iwp 

     wt(24)=0.113400000000000_iwp 

     wt(25)=0.056134348862429_iwp 

   CASE DEFAULT 

     WRITE(*,*)"wrong number of integrating points for a quadrilateral" 

   END SELECT 

 

 CASE DEFAULT 

   WRITE(*,*)"not a valid element type" 

 END SELECT 

RETURN 

    END SUBROUTINE Gsample 

  

     

    SUBROUTINE Gbeemat(bee,fun) 

!------------------------------------------------------------------------- 
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! This subroutine forms the bee matrix for 3D Goodman element. 

!                                                         Developer: 

J.TU 

!                                          The University of 

Huddersfield 

!                                                              

21/09/2019 

!------------------------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Input:( fun(:): the_shape_function_of_3D_Goodman_single_surface) 

!Output:( bee(:): the_bee_matrix_of_3D_Goodman) 

!----------------------------------------------------------------------  

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 REAL(iwp),INTENT(IN)::fun(:) 

 REAL(iwp),INTENT(OUT)::bee(:,:) 

 INTEGER::i,h 

 REAL::N1,N2,N3,N4,N5,N6,N7,N8 

  

 N1=fun(1) 

 N2=fun(2) 

 N3=fun(3) 
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 N4=fun(4) 

 N5=-N1 

 N6=-N2 

 N7=-N3 

 N8=-N4 

  

  

 bee=0.0_iwp 

 

 

 

do i=1,3 

   h=i 

 bee(i,h)=N1 

end do  

 

do i=1,3 

  h=i+3 

 bee(i,h)=N2 

end do 

 

do i=1,3 
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  h=i+6 

 bee(i,h)=N3 

end do 

 

do i=1,3 

 h=i+9 

 bee(i,h)=N4 

end do 

 

do i=1,3 

 h=i+12 

 bee(i,h)=N5 

end do  

 

do i=1,3 

 h=i+15 

 bee(i,h)=N6 

end do 

 

do i=1,3 

 h=i+18 

 bee(i,h)=N7 
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end do 

 

do i=1,3 

 h=i+21 

 bee(i,h)=N8 

end do 

   

RETURN 

    END SUBROUTINE Gbeemat 

 

     

    SUBROUTINE Gdeemat(dee,kcoh) 

!------------------------------------------------------------------------- 

! This subroutine returns the elastic dee matrix for 3D Goodman Element, 

! it is a kind of cohesive element. 

!                                                          developer: 

J.Tu 

!                                           The University of 

Huddersfield 

!                                                               

22/09/2019 

!------------------------------------------------------------------------- 
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!--------------------------------------------------------------------- 

! Input:(    kcoh: 3D_Goodman_element_elastic_parameters_array) 

!Output:(dee(:,:): the_dee_matrix_of_3D_Goodman) 

!----------------------------------------------------------------------   

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 REAL(iwp),INTENT(IN)::kcoh(:) 

 REAL(iwp),INTENT(OUT)::dee(:,:) 

 REAL(iwp)::KN,KS1,KS2,zero=0.0_iwp 

 dee=zero   

 KN=KCOH(1) 

 KS1=KCOH(2) 

 KS2=KCOH(3) 

 dee(1,1)=KS1 

 dee(2,2)=KS2 

 dee(3,3)=KN 

  

RETURN 

    END SUBROUTINE Gdeemat 

  

     

    SUBROUTINE G_shape_der(der,points,i) 
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!------------------------------------------------------------------------- 

!   This subroutine produces derivatives of shape functions of 3D Goodman 

!   element.    

!                                             Developed by 

Researcher:J.TU 

!                                           The University of 

Huddersfield 

!                                                               

21/09/2019  

!-------------------------------------------------------------------------                                                       

!--------------------------------------------------------------------- 

! Input:(    i   : Gaussian_point_number; 

!     points(:,:): array_stores_sampling_function) 

!Output:(der(:,:): the_array_stores_the shape_function derivatives_of 

!        _3D_Goodman) 

!--------------------------------------------------------------------- 

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 INTEGER,INTENT(IN)::i 

 REAL(iwp),INTENT(IN)::points(:,:) 

 REAL(iwp),INTENT(OUT)::der(:,:) 

 REAL(iwp)::eta,xi,zeta,etam,etap,xim,xip,c1,c2,c3  
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 REAL(iwp)::t1,t2,t3,t4,t5,t6,t7,t8,t9,x2p1,x2m1,e2p1,e2m1,zetam,zetap 

 

REAL,PARAMETER::zero=0.0_iwp,pt125=0.125_iwp,pt25=0.25_iwp,pt5=0.5_i

wp,  & 

   

pt75=0.75_iwp,one=1.0_iwp,two=2.0_iwp,d3=3.0_iwp,d4=4.0_iwp,d5=5.0_iwp,

& 

   d6=6.0_iwp,d8=8.0_iwp,d9=9.0_iwp,d10=10.0_iwp,d11=11.0_iwp,            

& 

   d12=12.0_iwp,d16=16.0_iwp,d18=18.0_iwp,d27=27.0_iwp,d32=32.0_iwp,      

& 

   d36=36.0_iwp,d54=54.0_iwp,d64=64.0_iwp,d128=128.0_iwp 

 INTEGER::xii(20),etai(20),zetai(20),l,ndim,nod 

   

   nod= UBOUND(der,2) 

 

   xi=points(i,1) 

   eta=points(i,2)  

   c1=xi  

   c2=eta  

   c3=one-c1-c2 

   etam=pt25*(one-eta) 
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   etap=pt25*(one+eta) 

   xim= pt25*(one-xi) 

   xip= pt25*(one+xi) 

   x2p1=two*xi+one  

   x2m1=two*xi-one  

   e2p1=two*eta+one  

   e2m1=two*eta-one 

   SELECT CASE(nod) 

   CASE(3) 

     der(1,1)=one 

     der(1,3)=zero 

     der(1,2)=-one 

     der(2,1)=zero 

     der(2,3)=one 

     der(2,2)=-one 

   CASE(6)  

     der(1,1)=d4*c1-one  

     der(1,6)=d4*c2 

     der(1,5)=zero   

     der(1,4)=-d4*c2 

     der(1,3)=-(d4*c3-one) 

     der(1,2)=d4*(c3-c1) 
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     der(2,1)=zero 

     der(2,6)=d4*c1  

     der(2,5)=d4*c2-one 

     der(2,4)=d4*(c3-c2) 

     der(2,3)=-(d4*c3-one)   

     der(2,2)=-d4*c1 

   CASE(10)                           

     der(1,1)=(d27*c1**2-d18*c1+two)/two 

     der(1,9)=(d9*(d6*c1-one)*c2)/two 

     der(1,8)=(d9*(d3*c2-one)*c2)/two 

     der(1,7)=zero 

     der(1,6)=-(d9*(d3*c2-one)*c2)/two 

     der(1,5)= (d9*(d6*c1+d6*c2-d5)*c2)/two 

     der(1,4)=-(d27*c1**2+d54*c1*c2-d36*c1+d27*c2**2-d36*c2+d11)/two 

     der(1,3)= (d9*(d9*c1**2+d12*c1*c2-d10*c1+d3*c2**2-d5*c2+two))/two 

     der(1,2)=-(d9*(d9*c1**2+d6*c1*c2-d8*c1-c2+one))/two 

     der(1,10)=-d27*(((c2-one)+c1)+c1)*c2 

     der(2,1)=zero 

     der(2,9)= (d9*(d3*c1-one)*c1)/two 

     der(2,8)= (d9*(d6*c2-one)*c1)/two 

     der(2,7)=(d27*c2**2-d18*c2+two)/two 

     der(2,6)=-(d9*((c1+c2-one)*(d6*c2-one)+(d3*c2-one)*c2))/two 
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     der(2,5)= (d9*(d3*c1**2+d12*c1*c2-d5*c1+d9*c2**2-d10*c2+two))/two 

     der(2,4)=-(d27*c1**2+d54*c1*c2-d36*c1+d27*c2**2-d36*c2+d11)/two 

     der(2,3)= (d9*(d6*c1+d6*c2-d5)*c1)/two 

     der(2,2)=-(d9*(d3*c1-one)*c1)/two 

     der(2,10)=-d27*(((c2-one)+c1)+c2)*c1 

   CASE(15)                           

     t1=c1-pt25   

     t2=c1-pt5  

     t3=c1-pt75    

     t4=c2-pt25 

     t5=c2-pt5    

     t6=c2-pt75  

     t7=c3-pt25   

     t8=c3-pt5  

     t9=c3-pt75 

     der(1,1)=d32/d3*(t2*t3*(t1+c1)+c1*t1*(t3+t2)) 

     der(1,12)=d128/d3*c2*(t2*(t1+c1)+c1*t1)  

     der(1,11)=d64*c2*t4*(t1+c1) 

     der(1,10)=d128/d3*c2*t4*t5   

     der(1,9)=zero  

     der(1,8)=-d128/d3*c2*t4*t5 

     der(1,7)=-d64*c2*t4*(t7+c3)  
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     der(1,6)=-d128/d3*c2*(t8*(t7+c3)+c3*t7) 

     der(1,5)=-d32/d3*(t8*t9*(t7+c3)+c3*t7*(t8+t9)) 

     der(1,4)=d128/d3*(c3*t7*t8-c1*(t8*(t7+c3)+c3*t7)) 

     der(1,3)=d64*(c3*t7*(t1+c1)-c1*t1*(t7+c3)) 

     der(1,2)=d128/d3*(c3*(t2*(t1+c1)+c1*t1)-c1*t1*t2) 

     der(1,13)=d128*c2*(c3*(t1+c1)-c1*t1)  

     der(1,15)=d128*c2*t4*(c3-c1) 

     der(1,14)=d128*c2*(c3*t7-c1*(t7+c3)) 

     der(2,1)=zero  

     der(2,12)=d128/d3*c1*t1*t2 

     der(2,11)=d64*c1*t1*(t4+c2) 

     der(2,10)=d128/d3*c1*(t5*(t4+c2)+c2*t4) 

     der(2,9)=d32/d3*(t5*t6*(t4+c2)+c2*t4*(t6+t5)) 

     der(2,8)=d128/d3*((c3*(t5*(t4+c2)+c2*t4))-c2*t4*t5) 

     der(2,7)=d64*(c3*t7*(t4+c2)-c2*t4*(t7+c3)) 

     der(2,6)=d128/d3*(c3*t7*t8-c2*(t8*(t7+c3)+c3*t7)) 

     der(2,5)=-d32/d3*(t8*t9*(t7+c3)+c3*t7*(t8+t9)) 

     der(2,4)=-d128/d3*c1*(t8*(t7+c3)+c3*t7) 

     der(2,3)=-d64*c1*t1*(t7+c3)   

     der(2,2)=-d128/d3*c1*t1*t2 

     der(2,13)=d128*c1*t1*(c3-c2) 

     der(2,15)=d128*c1*(c3*(t4+c2)-c2*t4) 
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     der(2,14)=d128*c1*(c3*t7-c2*(c3+t7))         

   CASE (4)                                                               

     der(1,1)=-etam 

     der(1,2)=-etap 

     der(1,3)=etap 

     der(1,4)=etam 

     der(2,1)=-xim 

     der(2,2)=xim 

     der(2,3)=xip 

     der(2,4)=-xip 

   CASE(5) 

     der(1,1)=-etam+pt5*xi*(one-eta**2) 

     der(1,2)=-etap+pt5*xi*(one-eta**2) 

     der(1,3)=etap+pt5*xi*(one-eta**2) 

     der(1,4)=etam+pt5*xi*(one-eta**2) 

     der(1,5)=-two*xi*(one-eta**2) 

     der(2,1)=-xim+pt5*eta*(one-xi**2) 

     der(2,2)=xim+pt5*eta*(one-xi**2) 

     der(2,3)=xip+pt5*eta*(one-xi**2) 

     der(2,4)=-xip+pt5*eta*(one-xi**2) 

     der(2,5)=-two*eta*(one-xi**2) 

   CASE(8) 
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     der(1,1)=etam*(two*xi+eta) 

     der(1,2)=-d8*etam*etap 

     der(1,3)=etap*(two*xi-eta) 

     der(1,4)=-d4*etap*xi 

     der(1,5)=etap*(two*xi+eta) 

     der(1,6)=d8*etap*etam 

     der(1,7)=etam*(two*xi-eta) 

     der(1,8)=-d4*etam*xi 

     der(2,1)=xim*(xi+two*eta) 

     der(2,2)=-d4*xim*eta 

     der(2,3)=xim*(two*eta-xi) 

     der(2,4)=d8*xim*xip 

     der(2,5)=xip*(xi+two*eta) 

     der(2,6)=-d4*xip*eta 

     der(2,7)=xip*(two*eta-xi) 

     der(2,8)=-d8*xim*xip    

   CASE(9) 

     etam=eta-one 

     etap=eta+one 

     xim=xi-one 

     xip=xi+one 

     der(1,1)=pt25*x2m1*eta*etam   
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     der(1,2)=-pt5*x2m1*etap*etam 

     der(1,3)=pt25*x2m1*eta*etap   

     der(1,4)=-xi*eta*etap 

     der(1,5)=pt25*x2p1*eta*etap   

     der(1,6)=-pt5*x2p1*etap*etam 

     der(1,7)=pt25*x2p1*eta*etam   

     der(1,8)=-xi*eta*etam 

     der(1,9)=two*xi*etap*etam     

     der(2,1)=pt25*xi*xim*e2m1 

     der(2,2)=-xi*xim*eta         

     der(2,3)=pt25*xi*xim*e2p1 

     der(2,4)=-pt5*xip*xim*e2p1    

     der(2,5)=pt25*xi*xip*e2p1 

     der(2,6)=-xi*xip*eta         

     der(2,7)=pt25*xi*xip*e2m1 

     der(2,8)=-pt5*xip*xim*e2m1    

     der(2,9)=two*xip*xim*eta 

   CASE DEFAULT 

     WRITE(*,*)"wrong number of nodes in shape_der"         

   END SELECT 
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RETURN 

    END SUBROUTINE G_shape_der 

     

     

    SUBROUTINE TM_TD(T,Q,coord) 

!-------------------------------------------------------- 

! This subroutine forms the transmition matrix of 3D   

! goodman element 

!                                        Research:J.Tu 

!                       The University of Huddersfield 

!                                       09/10/2018 

!--------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Input:(coord(;,:): Goodman_element_node_coordinate_array_in_global_ 

!        _Coordinates_system) 

!Output:(T(:,:): the_T_matrix_in_Equation_2.8.21; 

!        Q(:,:): the_Q_matrix_in_Equation_2.8.21) 

!---------------------------------------------------------------------  

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 REAL(iwp),INTENT(IN)::coord(:,:) 

 REAL(iwp),INTENT(OUT)::T(:,:),Q(:,:) 
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 INTEGER::i 

 REAL::x1,y1,z1,x2,y2,z2,x4,y4,z4,A,B,C,D,E,F,LXX,LXY,LXZ, & 

 LYX,LYY,LYZ,LZX,LZY,LZZ,LX,LY,LZ,COSXX,COSXY,COSXZ,COSYX, & 

 COSYY,COSYZ,COSZX,COSZY,COSZZ,zero=0.0_iwp 

!---------------inport the coordinate ------------------- 

 x1=coord(1,1) 

 y1=coord(1,2) 

 z1=coord(1,3) 

 x2=coord(2,1) 

 y2=coord(2,2) 

 z2=coord(2,3) 

 x4=coord(4,1) 

 y4=coord(4,2) 

 z4=coord(4,3) 

 

  

!--------------------------------------------------------- 

 A=x4-x1 

 B=y4-y1 

 C=z4-z1 

 D=x2-x1 

 E=y2-y1 
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 F=z2-z1 

!----------------- For Local X direction------------------- 

 LXX=A 

 LXY=B 

 LXZ=C 

 

  

 LX=SQRT(LXX**2+LXY**2+LXZ**2) 

  

 COSXX=LXX/LX 

 COSXY=LXY/LX 

 COSXZ=LXZ/LX 

  

 

!----------------- For Local Y direction------------------- 

 LYX=(C**2)*D-A*C*F-A*B*E+(B**2)*D 

 LYY=(A**2)*E-A*B*D-B*C*F+(C**2)*E 

 LYZ=(B**2)*F-B*C*E-A*C*D+(A**2)*F 

  

 LY=SQRT(LYX**2+LYY**2+LYZ**2) 

  

 COSYX=LYX/LY 
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 COSYY=LYY/LY 

 COSYZ=LYZ/LY 

  

 

!----------------- For Local Z direction------------------- 

 LZX=B*F-C*E 

 LZY=C*D-A*F 

 LZZ=A*E-B*D 

  

 LZ=SQRT(LZX**2+LZY**2+LZZ**2) 

  

 COSZX=LZX/LZ 

 COSZY=LZY/LZ 

 COSZZ=LZZ/LZ 

  

 

!-------------------------------------------------------- 

 Q=ZERO 

  

 Q(1,1)=COSXX 

 Q(1,2)=COSXY 

 Q(1,3)=COSXZ 
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 Q(2,1)=COSYX 

 Q(2,2)=COSYY 

 Q(2,3)=COSYZ 

 Q(3,1)=COSZX 

 Q(3,2)=COSZY 

 Q(3,3)=COSZZ 

  

  

 

  

T=ZERO  

  

!---------------------------------------------------------- 

do i = 1, 8 

  T((i-1)*3+1:i*3,(i-1)*3+1:i*3)=Q 

end do  
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RETURN 

    END SUBROUTINE TM_TD 

     

     

    SUBROUTINE T_coord(Q,coord) 

!-------------------------------------------------------- 

! This subroutine forms the transmition matrix of 3D   

! goodman element 

!                                        Research:J.Tu 

!                       The University of Huddersfield 

!                                       09/10/2018 

!--------------------------------------------------------- 

!--------------------------------------------------------------------- 

! Input:(coord(;,:): Goodman_element_node_coordinate_array_in_global_ 

!        _Coordinates_system) 

!Output:(Q(:,:):) 

!---------------------------------------------------------------------  

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 REAL(iwp),INTENT(IN OUT)::coord(:,:) 

 REAL(iwp),INTENT(IN)::Q(:,:) 

 INTEGER::i 
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 REAL::gcoord(3) 

!---------------inport the coordinate ------------------- 

 

DO i=1,8 

     gcoord(:)=coord(i,:) 

     gcoord=MATMUL(Q,gcoord) 

  coord(i,:)=gcoord(:) 

END DO  

 

 

RETURN 

    END SUBROUTINE T_coord 

     

  

 SUBROUTINE gbvm3(dp,db,w,uslide,rt,gcprop,p,b,sigma1) 

!--------------------------------------------------------------------- 

! This subroutine is used to implement the creep constitutive equation 

! of Markus Vose creep model for grain boundary. The reference for this  

! model is : 

!   Vöse, M., Otto, F., Fedelich, B. and Eggeler, G. (2014).  

!   Micromechanical investigations and modelling of a  

!   Copper–Antimony-Alloy under creep conditions.  
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!   Mechanics of Materials, 69(1), pp.41-62.. 

!                                                          20/11/2018 

!  The output result is normailzed. 

!--------------------------------------------------------------------- 

! Input: (gcprop(:):grain_boundary_creep_constitutive_equation 

!                   _paramaters_array; 

!             p    :input_grain_boundary_creep_cavity_density; 

!             b    :input_grain_boundary_creep_damage_variable) 

!Output: (   dp    :output_grain_boundary_creep_cavity_density_rate; 

!            db    :output_grain_boundary_creep_damage_variable_rate; 

!             w    :output_grain_boundary_creep_damage; 

!            uslide:output_grain_boundary_creep_sliding_rate 

!             rt   :real_time_step) 

!----------------------------------------------------------------------  

  

 IMPLICIT NONE 

 INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15) 

 Doubleprecision,INTENT(IN)::gcprop(:),p,b,sigma1(:) 

 Doubleprecision,INTENT(OUT),OPTIONAL::dp,db,w,uslide,rt 

 Doubleprecision::a1,rs,xp,r,theta,x1,x2,x3,x4,theta1,flow1,           & 

 flow2,flow3,flow4,flow5,flow6,flow7,y,xa,up,stip0,qw0,pi=3.1415926,   & 
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 one=1.0_iwp,two=2.0_iwp,d3=3.0_iwp,d4=4.0_iwp,flow8,flow9,htheta,     

& 

 flow10,flow11,flow12,flow13,flow14,f,dup,dgb,da,a,zero=0.0_iwp,       & 

 a2,xa1,a3,x5,rdsbar,rap,pdsbar,flow15,flow16,flow17,flow18,flow19, & 

 d1,bp,ap,d2,dsbar1,p1,dsbar,tdsbar,yslide,rtdsbar 

!------input the creep parameters for the constitutive equation-------- 

  

  

  

 a1=gcprop(1) 

 dgb=gcprop(2) 

 rs=gcprop(3) 

 ap=gcprop(4) 

 bp=gcprop(5) 

 theta=gcprop(6) 

 x1=gcprop(7) 

 x2=gcprop(8) 

 x3=gcprop(9) 

 x4=gcprop(10) 

 x5=gcprop(11) 

 pdsbar=gcprop(12) 
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!------------------import the stress state----------------------------- 

 dsbar=sigma1(2) 

 tdsbar=sigma1(1) 

!------------------the normalization parameters------------------------- 

 rdsbar=rs/a1 

 rt=(a1**(d4))/(dgb*rs)  

 dsbar1=dsbar/rdsbar 

 rap=ap*rt*(a1**2)*((rdsbar/pdsbar)**(bp)) 

 rtdsbar=tdsbar/rdsbar 

 p1=p*(a1**2) 

!------------------- prepare for simulation----------------------------- 

 theta1=(theta*pi)/180 

 flow1=((1+cos(theta1))**(-1))-(cos(theta1))/2 

 htheta=flow1/sin(theta1) 

   

  

 

  

!------------------the constitutive equation part-----------------------  

!--------------------------equation 14----------------------------------        

    w=((9*pi*(b**2))/(16*(htheta**2)))**(one/d3)  
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    a=sqrt(w/(pi*p1))  

 

 

 

!--------------------------equation 12----------------------------------  

    stip0=(2*sin(theta1))/a 

    qw0=(-2)*dlog(w*x2)-((3-w*x2)*(1-w*x2)) 

    flow2=dsbar1-stip0*(1-x2*w) 

    flow3=(a**2)*qw0 

    da=(x1*2*flow2)/(htheta*flow3)   

      

 

!--------------------------equation 15----------------------------------  

    if(da.GE.0)then 

    xa=x3*4*pi*(p1**2)*a*da  

 else if(da.LT.0) then 

 a3=1.1 

 a2=a 

 if(a.LE.a3)then 

 a2=a3 

 end if 

 xa1=x5*p1*da*(-1) 
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 xa=xa1/(2*(a2-1)) 

    end if 

 

  

!-------------------------equation 17-----------------------------------  

 if(da.GT.zero)then 

  

 flow15=stip0*(1-x2*w) 

 flow16=rap*((dsbar1)**(bp)) 

 flow17=rap*(flow15**(bp)) 

 flow18=(flow16-flow17)**(two) 

 flow19=rap*(dsbar1**(bp))   

 xp=flow18/flow19 

  

 else if(da.LE.zero)then  

  

 xp=zero 

  

    end if 

   

 

!--------------------------equation 18(3)-------------------------------     
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    flow4=(b*(xp-xa))/(sqrt(p1**d3)) 

    flow10=d3*b 

    flow11=a*(sqrt(p1)) 

    flow12=flow10/flow11 

    flow5=flow12*da 

    dup=flow4+flow5 

    

     

 

!--------------------------equation 18(1&2)----------------------------- 

    flow14=-one 

    flow6=x4*2*pi*p1*((dup)**(flow14)) 

    flow7=(2*sin(theta1))-stip0 

    y=exp(flow6*flow7) 

    f=((y-1)*w)/(1-w) 

    

  

     

    if(f.GE.one)then 

   f=one 

    end if 
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!--------------------------equation 11(1&2)-------------------------------- 

    dp=xp*(1-f)-xa 

    flow8=(3*b*(xp-xa))/(2*p1) 

    flow9=(flow10/a)*da 

    db=flow8+flow9   

     

 

!------------------------output the grain boundary sliding----------------- 

!-----------------------equation 19---------------------------------------- 

     yslide=gcprop(13) 

     flow10=a1/(rt*rdsbar)   

     uslide=rtdsbar/(yslide*flow10) 

     uslide=uslide*a1 

      

      

!     write(11,*)"xp",xp 

!     write(11,*)"xa",xa 

     

RETURN 

    END subroutine gbvm3 
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    End Module math  
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Appendix III Tutorial on INP file. 

The INP file is used to store and import the FE model's information into the 

main program, including node coordinates, element topology, boundary 

conditions, material information, loading information, and so on. This 

information is read line by line through the interface; hence these instructions 

need to have a specific format. 

𝚰. INP file for Notched Bar Case Study 

In the main body of the procedure, the data is read by the channel 10 to import 

the data line by line. The INP file has 6 main part. 

The initialization section. 

In this section, the main purpose is to evaluate the case size to allocate the size 

for these dynamic arrays. The main data and its sequence in this section are 

shown in below. 

In this section, the data is read in through these interfaces. 

 

List AP3.1 

The sequence of these data is: 

'element': the element type (Triangle or Quadrilateral). 

'reboots': the switcher of the restart facility. (1 is open, 0 is closed) 

'step': the results are exported in this iterating step. 
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'bs': the stiffness matrix reducing factor of a failed element. 

'nidm': the dimension of the case. (2 or 3) 

nst: the number of stress/strain terms. 

nip: the number of Gaussian Points per element. 

nprop: the number of elastic material parameters. 

nod: the number of node per element. 

ndof: the number of freedom degrees per element. 

nodof:the number of freedom degrees per node. 

np_type: the number of material in this FE model. 

nn: the total number of nodes in this FE model. 

nels: the total number of elements in this FE model. 

The boundary condition section. 

In this section, the main purpose is to import the boundary conditions into the 

main program.  

In this section, the data is read in through these interfaces, using List AP4.1 as 

an example. 

 

List AP3.2 

The sequence of these data is: 

nr: the total number of restrained nodes. in this case, it is '67' 

K: is the node number of the restrained nodes. 

nf(:,K): is the restrained direction of these nodes. ('0' is fixed, '1' is open). In this 
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case, (2  1  0) is means: fixed the Y direction of NO.2 node.    

The node coordinates 

In this section, the code coordinates of all node is read in through these 

interfaces, using List AP4.7 as an example. 

 

List AP3.3 

The sequence of these data is: 

K： the node number. 

g_coord(:,i): the coordinate of each node. 

In this case, (1,   2.24907994,  0.496734006) is means: the coordinate of NO.1 

node is (2.24907994,  0.496734006). 

The element node numbering section. 

In this section, the code coordinates of all node is read in through these 

interfaces, using List AP4.7 as an example. 

 

List AP 3.4 

g_num(:,i): the array stores the node numbers of all element. 

In this case, (11  28162 280472792278) is means: the topology of NO.1 element. 

The loading section. 

In this section, the node information is read in through these interfaces, using 

List AP4.7 as an example. 
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List AP3.5 

loaded_nodes: the number of loaded nodes. 

In this case, the external load is loaded in 26 nodes. For example, NO.43, the 

loading factor in the x direction is 0, and in the Y direction is 0.620963042. 

The Gaussian Point coordinate section. 

In this section, the coordinate of Gaussian points is to import into the main 

program. 
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'quadrilateral’ 1  26334  10000 

2   4  4  3 

8  16  2  1 

793  240 

1  160e3  0.3  

 

67 

  2  1 0  

..................................... 

668  0 1 

 

1,   2.24907994,  0.496734006 

............................................... 

793,         6.26,   2.63162886 

 

1           1         281          62         280   

   47279           2         278 

.......................................................................... 

240         162         790         166         793           

46792          46         77826 

 

26 

39   0.0   0.0 

................ 

43   0.0   0.620963042 

200000 

1 

33.48 

 

1 

           1   2.64796490221226       0.361688666968341      

           2   2.64680617061469       9.691416942806762E-002 

           3   2.32916698281864       0.383126321238609      

           4   2.32868728446441       0.102668388374992      

           2 

............................................ 

 

 

  

Section 6 

 

 

 

 

 

 

List. AP3.6 

Section 6 

Section 4 

Section 3 

Section 2 

Section 1 
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Appendix IV Publication Contribution List 
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