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Abstract 

Many condition monitoring (CM) techniques have been investigated for the purpose of early fault 

detection and diagnosis in order to avoid unexpected machine breakdowns. However, non-stationary 

and non-linear characteristics of vibration data can make the signal analysis a challenging task. 

Multiresolution data analysis approaches have received significant attention in recent years and are 

widely applied to analyse non-stationary and non-linear data. Double-Density Discrete Wavelet 

Transform (DD-DWT), which was originally developed for image processing, is proposed and 

investigated in this paper for effectively extracting diagnostic features from the vibration 

measurements. DD-DWT has the merits of nearly shift-invariant and less frequency aliasing which 

and allows the effective extraction of non-stationary periodic peaks, compared with the undecimated 

DWT. Techniques based on thresholding of wavelet coefficients are gaining popularity for denoising 

data. The implementation of global, level-dependent, and subband-dependent thresholding based 

methods are investigated and implemented on the selected wavelet coefficients in order to denoise 

and enhance the periodic and impulsive fault features. The performance of the proposed method has 

been evaluated against DWT using both simulated data and experimental datasets from defective 

tapered roller bearings. Results, using the harmonic to signal ratio (HSR) as a measure, have 

demonstrated that DD-DWT outperforms conventional DWT in feature extraction and noise 

suppression. As a result, the proposed method is robust and effective in fault detection and diagnosis. 

1 Introduction 

The non-linear and non-stationary characteristics of vibration data make the extraction of fault 

features a challenging task in condition monitoring. Features extracted from time or frequency 

domains cannot include all useful information. Thus, time and frequency domain are combined as 

Time-Frequency domain methods such as Short-time Fourier Transform (STFT). However, STFT 

suffers from the limited and constant time-frequency resolution with the fixed window. For more 

details, the performances of the different time-frequency domain methods are reviewed and compared 

in[1]. To address this issue, several multiresolution time-frequency analysis methods have been 

developed, among them, Wavelet Transform methods are popular to process non-stationary data.  

1.1 Wavelet Transform 

Wavelet Transform (WT) is a multiresolution time-frequency analysis based on the idea of 

multiresolution analysis. Several WT methods are available such as Continues Wavelet Transform 

(CWT), Discrete Wavelet Transform (DWT), etc. In condition monitoring, there are different 

applications of wavelet transform such as the analysis of time-frequency domain, feature extraction, 

signal enhancement and denoising, signal compression etc. [2]. In terms of vibration signals, wavelet 

transform gives an excellent representation for nonstationary signals that containing jumps and spikes 

(singularities). It is able to provide optimal sparse representation for such signals because wavelets 

oscillate locally and only wavelets overlapping a singularity can have large coefficients [3]. WT has 

been successfully implemented for feature extraction tasks. The compact support property gives 

wavelets the feature of energy concentration, which results in yielding many coefficients with small 

energy. Consequently, small coefficients can be excluded without losing the important and 

informative components in analysed signals, and few coefficients can be used to represent the 

diagnostic features. Thresholding has been known as a promising solution and widely accepted to 
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shrink the uninformative components from the analysed signal [1]. The key issue is to determine the 

best coefficients that can represent the diagnostic features. 

1.2 Discrete Wavelet Transform (DWT) 

In order to overcome the redundant transform produced form the Continues Wavelet Transform 

(CWT), a discretization method, DWT, is applied to dilate and translate parameters[4]. This can be 

done by changing the dilation parameter to a power formant[5]. The DWT was developed by Mallat 

[6]and it can be expressed as (1). 

1 2
( , ) ( ) ( )

22

a

aa

t b
dwt a b x t dt










           (1) 

When the choice of scales and translations based on powers of two, the DWT analysis cab be more 

efficient and accurate. This transform can decompose the signals into orthogonal and non-redundant 

sets of wavelets[7]. DWT is critically sampled wavelet using perfect reconstruction FIR filter banks 

[8]. Wavelet and dilation functions at multi-scales are shown in equation (2) and (3). 

( ) 2 ( ) (2 )
n

t h n t n      (2) 

( ) 2 ( ) (2 )
n

t g n t n      (3) 

where ( )h n  represents the low pass filter; ( )g n  is the high pass filter; ( )t  is the scaling function;  

and ( )t  is the mother wavelet function [9].  

The interest in using DWT methods comes from the fact that signal impulses can be identified from 

the high frequencies of the wavelet with a good resolution [10]. Low time resolution and high-

frequency resolution can be obtained at low frequencies, whereas, a high time resolution but a low-

frequency resolution can be obtained at high frequencies [1]. DWT has been extensively used for 

rolling element bearings (REB) fault diagnosis in the past two decades[11]. For instance, Rubini et 

al.[12] used DWT to diagnose bearings with an incipient surface fault.  Yan et al. in [13] presented a 

comprehensive review of the application of DWT for fault diagnosis of rotary machines. Moreover, 

Peng and Chu in [1] reviewed the application of DWT in machine condition monitoring and fault 

diagnosis.  

2 Overview of Double Density DWT (DD-DWT) 

Double Density DWT was introduced by [14]. It is grounded on over-sampled filter banks to reduce 

the shortage of translation sensitivity in the critically sampled DWT. The DD-DWT uses scaling 

function ( )t  and two distinct wavelets 1  and 2 , where one wavelet is set to be offset by half from 

the other wavelet as shown in equation (4) [15]. 

( ) ( 0.5)
2 1

t t      (4) 

The scaling function and two wavelet functions should satisfy equation (5) and (6), respectively[14]: 

0( ) 2 ( ) (2 )
n

t h n t n      (5) 

( ) 2 ( ) (2 ), 1,2i i

n

t h n t n i       (6) 

In the equations, 0( )h n  represents the low pass filter, while ( ), 1,2ih n i   are the high pass filters.  
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For satisfying perfect reconstruction condition, filters should satisfy the conditions expressed in 

equation (7) and (8) [14]:  

0 1 1 2 2( ) (1/ ) ( ) (1/ ) ( ) (1/ ) 2H z H z H z H z H z H z     (7) 

0 1 1 2 2( ) ( 1/ ) ( ) ( 1/ ) ( ) ( 1/ ) 0oH z H z H z H z H z H z        (8) 

where, ( )iH z  is the Z  transform of ( )ih n . 

With the design of having more wavelets, a narrower spacing between adjacent wavelets within each 

scale will be obtained [16]. DD-DWT is constructed with decomposing and reconstructing three filter 

banks oversampled by 3/2. DD-DWT was proposed based on the Motivation of the success of 

improving shift sensitivity by adopting an overcomplete expansion in dual tree discrete wavelet 

transform DT-ℂWT[17]. It has several advantages that make it outperforms critically sampled DWT 

and undecimated DWT. The double density DWT is a less expansive version of the undecimated 

DWT. Also, DD-DWT has very smooth wavelets and it is nearly shift-invariant. This property is 

important for extracting periodical peaks. Another property is the reduced frequency aliasing effect 

which is claimed to be effective for detecting harmonic features. Consequently, the DD-DWT is well 

suited for analysing non-stationary signals. It has more wavelets than necessary, which gives a 

narrower spacing between adjacent wavelets within the same scale and is less redundant than 

undecimated wavelet [15].  

DD-DWT has been implemented in image processing and denoising. Sveinsson. et al [18] applied 

DD-DWT to denoise Synthetic Aperture Radar (SAR) images by reducing the speckle of SAR images 

and claimed that the method was able to remove the speckles and enhance the performance of 

detection for SAR based recognition. In [19] and [20], DD-DWT was applied for image denoising in 

order to derive texture features of the images. The results showed the potential capacity of DD-DWT 

in performing the task. Comparative studies have been carried out in [21] and [22] between different 

discrete wavelet methods for image denoising and conclude that the DD-DWT outperforms the DWT 

with the same level of decomposing. However, to the best of authors’ knowledge, DD-DWT has 

never been explored to the scenarios of detecting and diagnosing faults from machinery components 

such as bearings which is significantly different from the reported implementation cases of DD-DWT 

in the literature. 

3 Data Denoising by Thresholding 

Shrinkage denoising in the transformation domain is the process of removing the noise or unwanted 

components from a number of wavelet coefficients. The use of the shrinkage method has proven its 

ability as an effective way to suppress the noise with low computational complexity [23]. Nason [24] 

reviewed various thresholding methods including the selection and estimation. The thresholding rule 

decides the components of the coefficient that needs to be retained or eliminated. There are two main 

thresholding approaches, hard and soft thresholding, as expressed in equation (9) and (10) 

respectively.  
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It has been reported that, in wavelet transformation domain, the energy of signal tends to be 

concentrated into a relatively few numbers of large coefficients, whilst the noise will be spread at a 

large number of the coefficients with relatively low energy [13, 25-27]. This increases the options to 

eliminate the noise while retaining the important information of the signal as much as possible. As a 

result, a signal can be enhanced by removing components smaller than an estimated threshold [28]. 

Based on this principle, wavelet coefficients thresholding for data denoising has been an extensive 

research domain since the first pioneering work by Donoho and Johnstone [29]. Several thresholding 

techniques and estimators have been developed, and this research focuses on evaluating four widely 

adopted techniques, including VisuShrink, SureShrink, HeurSure and Minimax. 

SureShrink, also called Rigrsure, is generated under a risk rule by minimizing Stein’s Unbiased 

Risk Estimate (SURE), which is represented by l i mw  . For each detail level, a sub-band 

threshold is calculated based on SURE rule [30]. This technique is a subband-adaptive, level-

dependant. With ( )( mw ) is the mth  coefficient wavelet square at the lowest risk which selected 

from wavelet coefficient squares vector, sorted in ascending way [m1,m2,m3,…mn], and (
i ) is the 

level-dependant standard deviation of a noisy signal [31].  

VisuShrink, also considered as Sqtwolog threshold, which can be derived as 2log( )N  , 

where   is the noise variance obtained by median absolute deviation (MAD) of the coefficients and 

( )N  is the length of the observed signal. 

HeurSure technique was developed as an automatic procedure and hybrid approach, which is 

combined the VisuShrink with SureShrink. It can be applied using one of two scenarios automatically, 

in the first scenario, it uses the SureShrink technique 1 i mw  . However, if a test of signal 

coefficients at a level l  proved that the signal is deemed too small, the second scenario is then 

executed automatically by a fixed threshold will be applied instead based on  2 2log( )N   [32, 

33].  

Minimax technique is based on the statistical minimax principle for estimator designing. A constant 

threshold value is chosen to produce minimax performance for mean squared error (MSE) against an 

ideal procedure. [34]. More analytically, to recover the unknown function ( )s   from 

( ) ( ) ( )x t s t n t  , Minimaxi technique measures the performance of the estimation of ˆ ˆ( ( ))s s t  

from ( ( ))s s t  , with regard to a quadratic loss at the sample points by minimizing the risk as small 

as possible as 

21
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,  where 

*
n  is the minimax risk bound 

and will be the value of  . Generally, successful thresholding method in signal denoising highly 

relying on the accurate estimation of the noise level, thus noise level must be estimated correctly to 

obtain good performance denoising. 

4 Implementation Algorithm 

The implementation of the proposed methods starts by calculating the harmonic to signal ratio (HSR) 

of first three harmonics for the original signal and then the same procedure is used to calculate the 

HSR of denoised coefficients using DD-DWT based the adopted thresholding methods. 

i. Calculate HSR 1ri of the original signal. 1 / ( )ri rb ra rb rs    

ii. Decompose the input signal into L levels (x)wli wt , where L< log2(N)  
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iii. Calculate the energy of the coefficients using STD and the impulsiveness using Kurtosis  

iv. Coefficients with similar high STD and Kurtosis values are considered to be selected and put 

the rest of the coefficients to zeros 

v. Apply the selected threshold  

vi. Reconstruct the decomposed signal 
1( )iwt w a  . 

vii. calculating the ratio r of the first three harmonics of the demodulated signal as 

/ ( )r rb ra rb rs
i i i i
       

where ra is the average of the band range bd  from 1Hz to 600Hz of the signal and obtained as  
max

min

bd

i bd

ra ahi


  ,  

and rb is the average of the first three harmonics of the signal and obtained as 

3

1i

rb bhi


 , and 

max /

1

s

s

bd f

i f

rs shi
 

    where fs is the shaft frequency. 

viii. Calculate the improvement of denoised signal with regard to the original signal as

1( / ) 1*100ihsr r ri  , where 1ri , ri  are HSR of original and denoised signals 

respectively.  

5 Experimental Setup and Data Collection 

5.1 Test Rig Development 

A test rig was developed for experimental studies. As shown in Figure 1 (a), it consists of a motor, a 

shaft, a coupling and bearings. This simple structure was adopted to avoid possible noise influences 

of additional components such as radial load devices. A TIMKEN 31308 tapered roller bearing is 

mounted in the SKF housing. In addition, a piezoelectric accelerometer (CA-YD-104T) is installed 

vertically on the top of the housing to acquire the vibration signal. A slip metric gauge box set, type 

Matrix Pitter 8075 C, was used to precisely measure the clearance. 

(a) (b)

Supporting bearing Test bearing AC Motor

Slip metric 
gauge box

Cone Bush

Screw nut

Groove

 
Figure 1. (a) Test rig, and (b) clearance measurement 

5.2 Clearance Variance Mechanism 

During the experiment, a mechanism for the preload adjustment was built by controlling the clearance 

between the bearing elements. This was executed by the movement of a precision positioning screw 

nut relative to the reference position. The schematic diagram of the test rig and the clearance 

measurement system are described in Figure 2 (a) and (b) respectively. Assume that the recommended 
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installation condition is zero clearance, the measurement slips are used to measure the gap between 

the groove and the nut edge. 

40 mm60cm

4
0
 c

m

3
0

cm

Coupling

3
5
cm

       Motor

Test bearing

Double row angular 
contact ball bearing

Shaft

Positioning screw nut

TRB

Measured gap by 

slip metric gauge 

Slip grove
(Reference)

(a) (b)

Bush

Grub screw

 
Figure 2. (a) Test rig sketch diagram, and (b) clearance measurement system 

5.3 Fault Seeding and Experimental Procedure 

In this experiment, one defective tapered roller bearing was used. The defect was artificially made 

using an electro-discharge machine (EDM). As it can be seen in Figure 3, the defective area has only 

a tiny size of 2.0mm length and 0.2mm depth, which was seeded to simulate the incipient faults. The 

data acquisition system is National Instruments PCI6221 and 5 channels were used for data recording 

at the sampling rate of 50kHz per channel. Five recordings were logged for 30 seconds when the 

bearing temperature was stable at around 30ºC, which can exclude the influence of the temperature 

on the bearing internal clearance. The vibration data with three different internal clearances 

(+0.02mm, 0.00mm, -0.20mm) are obtained for evaluating the developed approach. 

(a) (b)

2mm

2mm

 
Figure 3. Bearings with seeded defects on the outer race 

6 Results and Discussion 

To accurately evaluate the performance of the proposed method, DD-DWT was applied to both 

simulated data and measured vibration data. The signals decomposed into 5 levels and the optimal 

decomposition levels are selected based on the energy distribution. Thus coefficients with the largest 

values have been selected[35]. The benchmark thresholding methods used for denoising the selected 

wavelet coefficients. 

6.1 Performance Evaluation Based on Simulated Data 

Several models have been developed to simulate the vibration signals since the first attempt to model 

a nonstationary vibration signal by McFadden in [36]. However, in reality, the combination of impacts 

produced by a defect on the bearing and stochastic components lead to periodically time-varying 

ensemble statistics. In this research, the model, described in equation (11), is that takes into account, 

the periodicity nature and the random variation in the spaces between adjacent pulses. Moreover, it 

takes into account the modulation due to the varying loads and transmission path influences. It was 
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presented by Randall et al. in [37] as a statistical vibration model produced by a single defect. The 

model can be expressed as 

( ) ( ) ( )j j

j

x t A y t jT n t       (11) 

where, jA  can be a possible modulator; T  stands for average time between two adjacent impacts 

and it is derived by 1/T fr ; rf  is the fault frequency; jT  is the jth  time of single impact 

occurrence; j  is the randomness of the time between the impacts; and ( )n t  is the additive white 

noise from other vibrations in the system. ( )y t  is considered as the impulse response function, which 

can be simplified as an exponential damping cosinusoidal signal. 

cos(2 ) ; 0
y( )

0 ;

n
de f n n

n
otherwise

  
 


   (12) 

where, df  is the resonance frequencies and were set as (3kHz, 5kHz, and 8kHz),  is the damping 

ratio was set as ( 0.05). In order to simulate a vibration signal similar to the signal derived from 

experimental case studies, a signal was generated. Taking into account the outer race fault as well as 

the shaft imbalance, jA  can be simplified as  

1 cos(2 ( ))j s jA A f jT      (13) 

where, 1A  considers the amplitude of the modulator, sf  is the shaft frequency, jjT  represents the 

specific time of the jth  impact.  

The simulated time signal of outer race fault with low SNR of -13.8dB is showed in Figure 4 (a). In 

Figure 4 (b), the envelope spectrum of the generated signal is displayed. Both DWT and DD-DWT 

were applied to the simulated signal and the results obtained are shown in Figure 5. Blue bars show 

a slight improvement achieved using DWT 5.8% without thresholding. Thresholding based DWT 

achieves the improvement from 3.2% to 12% when applying different threshold techniques. In 

contrast, Magenta bars show significant improvement by using DD-DWT. The reconstructed 

coefficients improved at least by 36%, which indicates that DD-DWT can effectively extract the 

diagnostic features even when applied without any thresholding methods. In addition, the 

thresholding methods of Sqtwolog, Heursure and Minimaxi can significantly improve the fault 

features. 
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Figure 4 (a) Time domain, (b) envelope spectrum of the simulated vibration signal 

 
Figure 5 Improvement results of harmonic ratio using DWT and DD-DWT for simulated data 

6.2 Performance Evaluation Based on Real Data 

Three sets of data for a defective tapered roller bearing with small outer race fault are analysed using 

DD-DWT. The three sets are associated with three different clearances: +0.02 0.00 -0.02 which 

correspond to progressive wear levels. The envelope spectrum in Figure 6 shows the improvement of 

the first three harmonics to signal ratio of reconstructed coefficients in (b) compared to the original 

signal (a). It shows the effectiveness of DD-DWD in extracting and periodic fault features.  

Figure 7 illustrates that the thresholding methods Sqtwolodt, Heusure and Minimaxi based DD-DWT 

can effectively suppress the noise and enhance the diagnostic features. 
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Figure 6 Improvement of the reconstructed coefficients compared to the original signal 

   
Figure 7 Envelope spectrum of the reconstructed and thresholded coefficients  

Figure 8 presents a comparison made between the results obtained from applying both DWT and DD-

DWT, and the results proved that DD-DWT outperforms DWT in all studied real cases. The harmonic 
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ratio of outer race fault in reconstructed coefficients improved more than 30% by using the Sqtwolog 

and HeurSure thresholding based DD-DWT approach. The Rigsure thresholding method is not 

effective, which is identical with the simulation study. Both Sqtwolog, Heursure yielded the same 

improvement because Heursure is a hybrid approach and automatic procedure thus, it gives a fixed 

threshold value based on Sqtwolog as it explained above. 

 
Figure 8 A comparison between DWT and DD-DWT results for all clearance cases 

7 Conclusions 

The study has shown the outstanding performance of the DD-DWT based method in extracting and 

enhancing the fault features. In addition, shrinkage in the transformation domain is found to be a very 

effective approach in suppressing the noise from the vibration data. Based on the evaluation of four 

thresholding methods, it can be concluded that Sqtwolog and Heursure consistently outperform the 

other studied wavelet-based techniques, which allows accurate early fault detection and diagnosis 

based on DD-DWT. Compared with about 10% improvement by conventional DWT, the thresholding 

based DD-DWT can produce more promising diagnostic results in that it achieves an improvement 

of more than 30% for enhancing the diagnostic features. In addition, the proposed method does not 

require any skilled labours or any advanced techniques to choose an optimal frequency band when 

applying demodulation analysis and the whole frequency band signals can be directly used to achieve 

the online detection and diagnosis of the rolling element bearings. 
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