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Abstract 

 

The basic questions that must be answered during the crime investigation is who left the 

biological evidence and when. DNA profiling can, in most cases, successfully identify the 

person who deposited the sample, leaving, therefore, as the main concern question about the 

length of time between deposition of the stain and its subsequent recovery. The research in the 

present thesis is concerned with development of the mRNA and miRNA analysis for correct 

assessment of the age of blood, saliva, and semen samples. It is widely accepted that the level 

of RNA in the sample decreases over time. Therefore, reverse transcription quantitative 

polymerase chain reaction (RT-qPCR) method was performed to quantity the selected 

markers and investigate how they degrade as a function of time. Single and multiple 

regression analysis were employed in data analysis, which suggested that some of tested 

markers could be used to predict the stain age. Human specific markers for blood, saliva and 

semen, as well as oxygen regulated factors such as vascular endothelial growth factor A 

(VEGFA) and hypoxia inducible factor 1A (HIF1A) were therefore investigated using 

TaqMan and SYBR Green chemistries. The predictive equations were derived to determine 

the age of an unknown sample. Linear regression analysis using relative quantification (RQ) 

and cycle quantification (Cq) of the primers revealed the strongest linearity for HIF1A and 

VEGFA in saliva samples. MicroRNA markers were also explored by targeting miRNA 451, 

205, and 891a for blood, saliva and semen samples, respectively, and it was shown that the 

targets were successfully detected in the samples that were up to 28 days old. Finally, upon 

development of the predictive models, blind testing was carried out. In blind blood samples, 

Cq of selected primers decreased over time and gave accurate prediction of samples’ age. 
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1. Introduction  

According to Locard’s principle, "every contact leaves a trace", so the majority of the 

evidence is deposited through the interactions between the perpetrator and the victim or the 

perpetrator and the crime scene. However, it is often difficult to determine if the evidence 

collected from crime scene was left through the same crime, or deposited during a previous 

interaction with that environment. It can be very important to accurately determine the link 

between the time of deposition of the sample and suspect’s presence at the crime scene, 

especially when the suspect has close personal relationships with the victim. One of the 

famous cases in forensic science, Orenthal James (O.J.) Simpson's case is a clear 

demonstration of the importance of age determination of bloodstains during the criminal 

investigation. According to the prosecution, the blood of Nicole Brown Simpson, O.J. 

Simpson’s wife, found in the vehicle owned by O.J. Simpson was a clear proof of his guilt, 

while the argument of the defence was that it could have been there long before the crime was 

committed. Since no forensic technique existed capable of accurately determining the time 

since deposition (TSD) of the sample, arguments from either side could not be accepted or 

rejected. 

Two key characteristics of the forensic material found at the crime scene, most commonly 

human body fluids such as blood and saliva, are of interest in the forensic science. The first is 

the person identification, which is easily answered by DNA profiling, and helps with the 

crime scene reconstruction and more in general with the whole criminal investigation and can 

be relied upon in court (Ackermann et al., 2010, Jobling and Gill, 2004). The second is the 

age of the biological sample found at the crime scene. The determination of these samples is 

considered a challenge in the forensic science field. For example, was the particular 

bloodstain deposited less than 24 hours ago when the alleged incident occurred, or did that 

happen 2 months ago when the involved party had an accident and cut his finger? 
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1.1. Gene Expression Analysis - Messenger RNA 

The central dogma of molecular biology explains the normal flow of biological information 

by describing three processes. These include deoxyribonucleic acid (DNA) replication when a 

new DNA is copied; transcription when the information is transcribed into messenger 

ribonucleic acid (mRNA); and translation when proteins are being synthesised from the 

mRNA template. Transcription is a complex process that has several stages: pre-initiation, 

initiation, promoter clearance, elongation, and termination. In pre-initiation phase, the pre-

initiation complex is formed of RNA polymerase and transcription factors at the promoter 

sequence of DNA, followed by promoter melting, which gives access to a single strand DNA 

molecule. This is followed by binding of RNA polymerase to the promoter sequence with the 

help of other transcription factors in the process known as initiation.  Promoter clearance is 

the step where RNA polymerase clears the promoter sequence, but only after first bond has 

been formed, thus preventing premature release of the transcript (Shandilya and Roberts, 

2012). In the elongation stage with presence of elongation factors, RNA polymerase with the 

help of elongation factors uses DNA as a template and starts to copy gene into mRNA. In 

termination phase, newly synthesised mRNA molecule is released from the complex. 

Termination is in eukaryotic organisms tightly linked to pre-mRNA processing which 

includes capping of 5‵ end, 3‵ polyadenylation, and splicing reactions to remove the introns. 

The 5' cap protects pre-mRNA from degradation and allows ribosome to recognise the 

beginning of the mRNA. Closely linked to termination of transcription, the poly (A) tail 

addition further increases stability of RNA during its transport from the nucleus into the 

cytoplasm.  

Messenger RNA inside the single cell accounts for only 1% to 5% of total RNA. On average, 

each cell contains 20,000 to 30,000 different mRNA species with copy numbers varying from 

15 to 12,000 (Fleming et al., 1998).  
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Although all biological cells conform to the rules of central dogma described above, there are 

few important exceptions. One of them is the process of reverse transcription, in which 

mature mRNA is used as template to transfer the information into DNA. Here, the 

transcription of RNA template into DNA is being catalysed by Reverse Transcriptase 

Enzyme, RNA-dependent DNA polymerase. All retroviruses such as human 

immunodeficiency virus (HIV) are able to synthesise DNA from RNA template and create a 

new single strand DNA complementary to the viral RNA. This process of reverse 

transcription is widely used in research (Su, 2017).     

1.2. mRNA decay pathways in mammalian cells 

RNA molecule may form many secondary structures, which are important for its function. 

This could suggest that RNA has better stability. On the contrary, however, several reasons 

make RNA less stabile comparing to DNA. First, ribose sugar in RNA contains one more 

hydroxyl group on the second carbon (C2‵- OH), which makes it more reactive than 

deoxyribose. This is because hydroxyl bond is prone to hydrolysis, creating C2‵- O ion, which 

reacts with P atom and breaks phosphodiester bond in the sugar-phosphate backbone, cleaving 

RNA molecule. In addition, unlike DNA which is double-stranded molecule with relatively 

small grooves, RNA is single stranded with large grooves that provide easier access to the 

damaging enzymes such as Ribonuclease that can decompose it easily. Therefore, less energy 

is required to break down RNA than DNA. Finally, half-life of RNA is relatively short and 

RNA cannot be preserved for a long time due to the abundance of Ribonuclease enzymes (Su, 

2017).  

Regulation of mRNA decay can be considered the main controlling point in gene expression 

process. Interactions between the structural elements of RNA and the proteins that bind it 

determine the stability of the mRNA, which can be specific for that particular mRNA or more 
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general. Several decay pathways have been characterised for mRNA (Figure 1), which depend 

on cellular conditions. The regulated decay of mRNA occurs through interactions between 

structural components of mRNA, namely 5` -cap structure, 5`-untranslated region (UTR), the 

protein coding region, 3` -UTR and the 3` - poly (A) tail, and the specific trans-acting factors 

(Guhaniyogi and Brewer, 2001). Sachs (Sachs, 1990) reported that almost all of the 

mammalian mRNAs are polyadenylated, which plays an important role in nuclear mRNA 

processing, cytoplasm exporting, translation and cytoplasmic mRNA stability. This is 

achieved with the help of the poly (A)-binding protein (PABP), shown to be present in high 

concentration and in excess over its poly (A) binding sites in cytoplasm, and as such binds 

most of the poly (A) tails (Görlach et al., 1994). Poly (A)-PABP interaction at the 3` end of 

mRNA molecule has a role in protecting this molecule from ribonucleases and rapid decay in 

vitro, given that the decay of many mammalian mRNA starts with deadenylation (Sachs, 

1990, Ross, 1995, Guhaniyogi and Brewer, 2001). Poly (A) plays a crucial role in the stability 

of mRNA, and together with the cap structure at 5‵ end facilitates the process of translation. 

Overall, two main activities of mRNA are serving as template for translation and substrate for 

cellular degradation (Roy and Jacobson, 2013), and it is not uncommon for polyadenylated 

mRNA to be targeted by the deadenylation-dependent mechanism of decay while still being 

engaged in the process of translation. All RNAs can be classified by their stability in the cell. 

For example, both transfer and ribosomal RNA (tRNA and rRNA, respectively) are 

considered to be the most stable RNA forms. On the other hand, mRNAs are unstable with 

half-live, a turnover rate or time required for degrading 50% of the existing mRNA molecule, 

in eukaryotic cells usually shorter than the generation time. The general pathway for normal 

mRNA turnover starts with deadenylation of the 3′ poly (A) tail and subsequent decapping of 

the 5′ end (Chen and Shyu, 2011). 
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The ratio of β-actin (ACTB) mRNA to 18S rRNA was one of the newly described methods to 

determine the relationship between the age of the blood sample and the degradation of RNA 

molecule. Both of these RNA molecules are commonly used as reference genes, due to their 

constitutive expression in all type of cells. However, Anderson et al. (2005) found that the 

cycle quantification (Cq ) value of 18S rRNA remained unchanged over the course of 150 

days, while the Cq values for β-actin significantly decreased over time (Anderson et al., 

2005). This led to the increase in the relative ratio of 18S rRNA to β-actin mRNA over time.   
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Figure 1. Pattern of two mRNA degradation pathways in mammalian cells. The structure of a mature mRNA 
molecule consists of a stem-loop and 5-cap structure located at 3 -UTR and 5 –UTR respectively. The starting 
and stopping codons are both indicated. The left panel describes the major pathway of deadenylation-
dependent decay, which shows that decapping occurred after removal of most or all of poly (A) tract. The 
image on the right side shows the deadenylation-independent decay pathway. Endonucleolytic cleavage of an 
mRNA generated two products likely to be subjected to exonucleolytic activities. New updating design 
according to Guhaniyogi and Brewer (2001). 
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1.3. Quantitative PCR (qPCR) 

The process known as polymerase chain reaction (PCR), in which a single or a small number 

of copies of DNA are amplified generating millions of copies, was first introduced by Kary 

Mullis in 1985 (Mullis, 1990). For this invention, Mullis won the Nobel Prize in 1993.  

Quantitative PCR has become the most important technique to identify and quantify 

accurately and sensitively RNA and/or DNA. The inherent problems generated by using gels, 

membrane transfers, radioactive probe hybridization and limitations of film as a detector, are 

all successfully overcome by using fluorescently labelled primers. In general, there are two 

problems related to real-time PCR. Firstly, the quantification methods are dependent on the 

available standards, the integrity of assay and statistical methods used. Second, the correct 

way needs to be chosen to perform a proper normalisation for different samples to correct the 

differences between the amounts of RNA for each sample-to-sample input. 

The advances in RT-PCR method have obviously influenced the area of quantification of gene 

expression. Quantitative PCR technique is used to collect the data during the normal PCR run, 

rather than at the end of PCR, consequently, combining the amplification and detection in a 

single process (Kubista et al., 2006). This is performed by using a variety of different 

fluorescent chemistries to detect a specific PCR product as it accumulates during PCR, by 

relating the amplicon concentration to the fluorescence intensity. The reaction is defined by 

the cycle value when the amplified target is detected. This point is usually called cycle 

quantification (Cq) and is defined by the cycle at which fluorescence intensity is greater than 

background fluorescence. Consequently, the higher target amplification in a sample will 

exceed the background signal sooner and give lower Cq value (Kubista et al., 2006). The best 

technique to quantify extracted RNA is qPCR because it produces quantitative data over 

dynamic range of 7 to 8 log orders of magnitude. Further, in qPCR, post-amplification 
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analysis is not required and these assays are far more sensitive than some other gene 

expression analysis, such as RNase protection assays (Morrison et al., 1998). 

There are four major steps in qPCR process: linear, early exponential, exponential, and the 

plateau phase. In linear stage, the first 10-15 cycles, qPCR is starting, and the fluorescence 

produced during each cycle does not increase over the baseline. During the early exponential 

phase, fluorescence intensity exceeds the threshold level indicating significant increase in the 

target molecule. The cycle or point where this change has occurred is known as "crossing 

point" (Cp), threshold cycle (Ct), or more adequately now referred to as the quantification 

point (Cq) (Bustin et al., 2009). This value is an indicator of an increase in a copy number 

over original template, and it is used in calculation of experimental results (Heid et al., 1996). 

Two common ways to perform RT-qPCR reaction are one-step and two-step methods. One-

step method combines both reverse transcription and PCR in a single tube. Two steps method, 

on the other hand, physically separates process of reverse transcription reaction and PCR 

amplification. The advantage of one-step qPCR is lower chance of experimental variability, 

given that the preparation for both reactions occur at the same time. Limitation, however, lies 

in higher chance of the degradation of RNA molecule used as a template, if not handled 

properly. Finally, two-step protocol is a method of choice if the samples are expected to be 

assayed more than once, and if the sensitivity of the assay is imperative (Battaglia et al., 

1998). 

1.3.1. Types of Real-time Quantification  

Reverse transcription followed by PCR is now widely accepted as a successful way of 

quantification of gene expression. There are two different methods to analyse the data in 

qPCR experiments: absolute quantification (AQ) and relative quantification (RQ) (Livak and 

Schmittgen, 2001).   
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1.3.1.1. Absolute quantification          

Absolute quantification (AQ) is normally achieved by preparing serial dilutions of standards 

molecules of known absolute quantities. These are then used to produce a standard curve. The 

concept of the standard curve establishes a linear relationship between Cq and starting 

amounts of RNA or cDNA (Pfaffl, 2001). The concentration of the unknown samples is then 

subsequently determined through their Cq values obtained during the qPCR.  This method 

requires, however, similar amplification efficiencies of standards and samples used. Further, 

the serial dilutions of the standard must cover all expected ranges for experimental sample 

they need to be within the range of accuracy quantification.  

For standard curve adequate number of dilutions should be prepared to cover the expect range 

of expression. Therefore, at least a 5-point 10 fold serial standard curve should be prepared, 

and each dilution tested in duplicate along with positive and negative controls. To control for 

the pipetting error, the highest and the lowest Cq value are discarded  and average of 

remaining values is used to calculate final Cq value. Cq value is inversely proportional to the 

logarithm of starting copy numbers, therefore linear regression fit of the standard curve can be 

used for calculating initial copy numbers and quantification of RNA. 

1.3.1.2. Relative Quantification  

Relative quantification (RQ), also called comparative quantification is simply defined as 

changes in gene expression relative to other reference group. The most comprehensive type of 

relative quantification is so called 2
-∆∆Ct

 method. Relative quantification does not require the 

calibration curve, but careful selection of controls, namely calibrator and internal controls 

instead (Livak and Schmittgen, 2001). Internal controls are reference genes, and when 

choosing these, care must be taken to maintain high sensitivity of the method, especially in 

case of studies where subtle physiological changes in gene expression are examined. This is 

done by adequately assessing and carefully selecting combination of reference genes that are 
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constantly expressed across all the conditions tested. These can then be co-amplified as 

endogenous controls in the same reaction tube in a multiplex assay, or as exogenous control 

when it is amplified in a separate tube or well (Morse et al., 2005). Choice of calibrator for 

the relative quantification method depends on the type of experiment planned, and it 

commonly involves untreated control or, as in the case of studies that determine age of 

biological samples, a fresh sample deposited at zero time point (Livak and Schmittgen, 2001). 

1.3.1.2.1. Normalisation 

To obtain an accurate relative quantification result, an appropriate normalisation strategy 

together with identical cycling conditions during real-time PCR are required to correct for an 

experimental error (Pfaffl et al., 2004). Additional source of errors are procedures performed 

prior to the qPCR (i.e. isolation of RNA), as well as RT reaction step and those performed 

during the PCR setup itself and by cycling process. For precise relative comparison, the 

normalisation should be performed based on the amount of extracted RNA, on analysed mass 

of tissue, or a number of cells obtained from a biopsy, cell culture or blood cells used as a 

source of RNA (Skern et al., 2005). In other words, to ensure that starting material is 

comparable in concentration and volume, the relative quantification data should be 

normalised using at least one of the following: 

• Amount of the sample, mass/size or volume of the tissue. 

• Total amount of isolated RNA 

• Reference genes (RG) such as Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

ACTB and β2 microglobulin (B2M). 
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1.3.1.2.1.1. Normalisation sample size 

In order to reduce experimental error, similar sample size should be used, such as similar 

tissue volume or weight. Sometimes it can be difficult to ensure that different samples contain 

the same amount of cellular material. Fortunately, in case of blood samples it is relatively 

easy to ensure similar volumes are compared (Huggett et al., 2005).  

Further, it is essential to determine accurate quantity and quality of RNA before the reverse 

transcription step. This is to ensure the similar input amount of extracted RNA during reverse 

transcription reaction. There are several methods for quantifying RNA, some more accurate 

than others. For example, ribogreen (Molecular Probes) is considered one of the most 

sensitive detection dye for determining the amount of RNA in the solution, more accurate 

than Lab Chip (Agilent 2100). In addition to quantity, RNA integrity should be checked as 

poor RNA quality can affect downstream measurements. RNA integrity can be determined by 

running a sample on agarose gel and examining bands for 28S and 18S rRNA.  This is the 

least expensive method although it requires higher quantities of RNA (0.1-1µg) and therefore 

not suitable if the analysed samples are precious and available in small amounts.  Another 

method to check for integrity that can work with smaller amounts of RNA but is more 

expensive are bio-analysers, such as Agilent Bioanalyzer.   

1.3.1.2.1.2. Normalisation reference genes 

Normalising to RG is a simple and common way of controlling error in RT-qPCR. This 

procedure is simplified because both the gene of interest and reference genes are measured 

using RT-qPCR. RG controls for input RNA amounts used in RT step. GAPDH, ACTB, 18S 

ribosomal RNA , and hypoxanthine-guanine phosphoribosyl transferase (HPRT) are the most 

commonly used reference genes in Northern blots, RNase protection assays and conventional 

RT-PCR assays (Riemer et al., 2012). RNA of these genes are expressed at relatively high 

levels in all cells; this makes them acceptable RG for non/semi-quantitative techniques where 
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a qualitative change is measured. In order words, they make ideal positive controls if the gene 

of interest is switched off. 

However, in more complex quantitative techniques such as qPCR, care must be taken to 

ensure that the chosen group of RG is confirmed to be expressed at the similar level in all the 

conditions used in experiment. For example, Tanaka and co-workers (Tanaka et al., 1975) 

reported that 18S rRNA increased in expression with cytomegalovirus infection. In 1984, 

Piechaczyk studied different rat tissues with different amount of mRNA and found that  

GAPDH transcription occurred at a similar rate (Piechaczyk et al., 1984). On the other hand, 

Dheda in 2004 validated 13 reference genes including GAPDH and reported that none of 

them was suitable to be used as a reference gene in blood (Dheda et al., 2004). Another study 

was stated that GAPDH mRNA was a highly expressed in a skeletal muscle, whereas, it was 

lower expressed in a breast tissue, with a15-fold copy numbers is different between both 

tissues (Barber et al., 2005). On the other hand, profile of nine candidate RG including 

GAPDH were calculated using four algorithms: geNorm, NormFinder, BestKeeper and the 

delta Cq method, and found that GAPDH is the most stable genes (Petriccione et al., 2015).  

1.3.1.2.1.3. Selection of internal control and calibrator for 2
-∆∆Cq

 method  

The internal control gene is used to normalise starting amount of input RNA during a reverse 

transcription PCR reaction. The choice of optimal reference genes used for normalisation is 

experiment-dependent and each researcher is responsible for determining the best 

combination by finding those that are consistently expressed across all experimental 

conditions used. Usually, standard housekeeping genes are appropriate and sufficient as 

internal control genes. Some examples of internal controls used to successfully normalise 

real-time quantitative PCR are GAPDH, ACTB, β2-microglobulin, and 18S rRNA. However, 

other commonly used reference genes could also be expected to work successfully. The point 
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is that for the best results, the internal control must be validated for each experiment to ensure 

that unaffected by experiment treatment are chosen. 

The choice of calibrator for the 2
-∆∆Cq

 method is dependent on the experimental question and 

the purpose of gene expression analysis, and the most commonly used calibrator is the 

untreated control. The 2
-∆∆Cq

 formula presents gene expression as fold change normalised to 

an endogenous reference gene and relative to an untreated control. Therefore, the result of the 

formula for untreated control sample which is also used as calibrator, equals one (∆∆Cq = 0 

and 2
0
=1). Similarly, if the aim of the study is to examine the time course of gene expression, 

then the calibrator should be copy number of transcript expressed at the beginning of 

experiment, or time zero sample (Livak and Schmittgen, 2001). Finally, this quantification 

method assumes that the amplification occurs with the same efficiency; therefore, PCR should 

be performed on dilutions of both target and internal control genes to confirm this. The risk 

with using reference genes as external standards is that there is no control for internal RT and 

PCR inhibitors. In other words, some samples may contain substances that affect 

amplification efficiency in PCR reaction, making it different to that of target gene (Pfaffl et 

al., 2004).   

1.3.1.2.1.4. Geometric mean normalisation 

 

The normalisation strategy in real time qPCR experiment is an essential step to control for 

experimental variations. One of the most common methods uses RG, which represents the 

best possible normaliser. However, the main problem with blindly choosing a single RG as a 

normaliser is that it does not necessarily have constant expression under all experimental 

conditions examined, and may depend on the type of samples, amount of staring material, 

enzymatic efficiencies, and individuals. This problem can be addressed by using multiple RG, 

confirming, at the same time, their stable expression under experimental conditions of interest 
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(Vandesompele et al., 2002, Chervoneva et al., 2010). This is not a simple problem but 

fortunately can be overcome with a help of algorithms and software available for this purpose.   

Bustin in the “Minimum Information for publication of Quantitative real-time PCR 

Experiments” (MIQE) guidelines, recommended the use of RG as internal controls as the 

most appropriate normalisation strategy (Bustin et al., 2009). A normalisation factor (NFa) 

that deals with multiple genes represents a geometric mean of relative expression value in the 

number of target genes in each sample. Several software packages have been established to 

normalise expression levels using RG, the most common include geNorm (Vandesompele et 

al., 2002),  NormFinder (Andersen et al., 2004),  and BestKeeper (Pfaffl et al., 2004). It 

should be kept in mind, however, that these programs do not always produce the same results, 

a consequence of different statistical algorithms used by these programs  (Xia et al., 2017).  

1.4. Forensic body fluids 

  

Traces of body fluid recovered at the crime scenes may be among the most important type of 

evidence for forensic investigations. Blood, saliva and semen are the most common body 

fluids recovered from the crime scene, and they can be used to obtain more information 

related to the crime. Messenger RNA analysis is the best method to identify body fluids and 

predict the time since deposition, which is of great importance in forensic science.  

1.4.1. Blood 

 

Blood is most common biological evidence found at the crime scene. It consists of three main 

components including plasma (54%), erythrocytes (45%), and leukocytes (1%). Leukocytes known as 

“white blood cells” (WBC) are classified into three major groups: granulocytes, lymphocytes, and 

monocytes (Adalsteinsson et al., 2012). Unlike erythrocytes, or “red blood cells”, leukocytes contain 

nucleus and as such are of great importance in the forensic science.   



15 
 

1.4.1.1. Previous Techniques Developed to Determine the Blood Age  

Currently, there are no techniques available that can precisely determine the age of 

bloodstains or any other biological stains. Attempts have been made to use RNA degradation 

as an indicator for the age of bloodstain but have so far proven unsuccessful.  

The earliest attempt reported was made by Tomellini (1907) who developed a method 

showing the change in colour from fresh bloodstain to the stain that was one year old by using 

chart illustration. The main disadvantage of this method is its subjectivity, since it was based 

on visual observation and dependant on the observer’s performance. Consequently, variable 

results were likely to be produced by different individuals (Tomellini, 1907). A few years 

later, Leers (Leers, 1910) focused on haemoglobin transformation during ageing of blood 

stain by comparing the reflectance spectra of dried blood to fresh blood. This is based on 

different absorption properties of haemoglobin derivatives. In other words, two dips in 

reflectance spectra caused by oxyhaemoglobin presence in a fresh blood stain reduces over 

time while in the same time tip caused by presence of methaemoglobin, result of 

haemoglobin’s exposure to the air, becomes more prominent as the bloodstain dries out 

(Schotsmans et al., 2017). Another pioneer in this area, Schwarzacher, (1930) found that the 

bloodstain solubility in distilled water decreases as a function of age. If a bloodstain is 

exposed directly to sunlight, the time period within which the changes in the sample are 

visible is 20 hours, whereas it would take several weeks for the same process to occur in a 

sample placed in complete darkness. Thus, Schwarazacher is a first person who emphasised 

the dependence of the rate of bloodstains ageing on light effects (Schwarzacher, 1930).  

In 1937, Schwarz used an enzymatic method called a guaiacum-based assay to determine the 

catalase and peroxidase activity of haemoglobin in bloodstains (Schwarz, 1937). The colour 

generated during this reaction varies with the age of the bloodstain. However, this method 
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was able to differentiate only very recent bloodstains deposited less than 24 hours from those 

that are at least few weeks old. 

Photo-spectrometry was used to record the reflectance spectra of bloodstains and found that 

temperature, light and humidity play a crucial role in the rate of colour change (Patterson, 

1960). A study conducted in 1962 described a way of determining the age of a bloodstain 

based on the progressive diffusion of chloride ions. The results showed a black border 

generated by fixing with AgCl upon reduction (Fiori, 1962). The border is observed when the 

stain is more than two months old, and the size of the border increases gradually up to nine 

months. The main disadvantage of this method is that it does not take into account the stain 

size, and it is also not human-specific. The approach developed in 1977 used 

immunoelectrophoresis method to examine the serum protein profile of a stain which was 

deposited from 15 days before the analysis up to a period of one year (Rajamannar, 1977). 

The analysis showed patterns of disappearance for globulin and albumin proteins over time. 

In contrast, Sensabaugh in 1971 tested albumin through its immunological reaction in dried 

blood and found that it is detectable in the stains up to eight years old (Sensabaugh et al., 

1971).   

1.4.1.2. High-Performance Liquid Chromatography (HPLC)  

The whole blood contains three main forms of blood cells, including WBC, platelets and red 

blood cells (RBC) which are the most abundant cells in human body. They contain no nucleus 

and therefore no DNA and have a large amount of the oxygen transport protein called 

haemoglobin. When a person is injured, the bleeding occurs and due to the exposure of RBC 

to the oxygen in the atmosphere, haemoglobin gets saturated. In addition, the amount of 

cytochrome b5 is diminished, therefore the conversion from oxy-haemoglobin (HbO2) to 

methaemoglobin (MetHb) to de-oxyhaemoglobin (Hb) stops. Therefore, physical and 
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chemical changes in RBC can be used as indicators to estimate the age of bloodstains (Morta, 

2012). 

HPLC is a method in analytical chemistry used to identify and quantify each compound in a 

mixture depending on a retention time of each compound. Each compound has a specific 

retention time, defined as a time needed by each particular compound to travel from the 

separation column into the detector. This time  defines from the point at which the display 

shows a maximum peak height for that compound (Morta, 2012). In addition, the peak area in 

the measurement is related to the amount of the particular compound present in the sample. 

This way it is possible to differentiate between the different compounds even if there are 

many compounds in a mixture analysed, as is the case with the proteins in the blood. Many 

studies conducted in this area used products of heme degradation in dried bloodstains as 

markers to estimate the blood age (Kapitulnik, 2004, Andrasko, 1997, Morta, 2012). The 

results obtained by Inoue and co-workers show that, in bloodstains, the ratio of the peak areas 

of haemoglobin α-globin chain and heme protein decreased with age of the bloodstain. In 

addition, they also concluded that it is possible to differentiate neonatal bloodstains from adult 

bloodstains by the presence of γ-globin chains in neonates up to 32 weeks old  (Inoue et al., 

1991). This significance of this protein is that it is only detected in aged bloodstains, and its 

peak area increases with the age of the bloodstain  (Inoue et al., 1992, Andrasko, 1997). This, 

so called protein ‘X’ is not affected by the temperature between 0-37˚C. The ratio of this 

protein to heme in fresh blood is 0 and increases to 0.3 when bloodstain becomes 52 weeks 

old.  

The difficulty with HPLC is its reproducibility. This is largely due to the way samples for 

analysis are being collected.  Bloodstain firstly removed from the substrate using a wet swab, 

and then dissolved in distilled water. This procedure could generate variation in the 
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concentration of the haemoglobin obtained from samples that leads to increased standard 

deviation that makes age prediction estimates quite difficult.  

1.4.1.3. Aspartic acid reaction 

Arany and Ohtani in 2011 suggested that it could be possible to use decaying amino acids 

from blood plasma to determine the age of bloodstains through aspartic acid racemisation 

(AAR). Depending on the D-L-aspartic acid ratio in some tissues such as teeth, it is also 

possible to predict the age of an individual by using this method. However, of note is that 

amino acids decay very slowly which is why this method is only suitable for stains over 10 

years old (Arany and Ohtani, 2011).  

1.4.1.4. Reflectance spectroscopy 

Numerous studies have been conducted focusing on a colour change in bloodstains by using 

optical spectroscopy methods to visualise their reflectance spectrum (450-700 nm) and relate 

it to their age (Patterson, 1960, Kind et al., 1972, Hanson and Ballantyne, 2010, Bremmer et 

al., 2012b). This method is not invasive since it does not require a sample preparation, and 

therefore no physical contact with the sample. However, the limitation of this method is that 

for it to work, the bloodstain must be on a white background. 

1.4.1.5. Oxygen Electrodes 

This method is based on the ratio of HbO2 to Hb. Matsuoka et al. (1995) demonstrated that 

the age of blood could be determined by using oxygen electrode immersed in water 

(MATSUOKA et al., 1995). Cyanomethemoglobin method is a conventional colorimetry 

method where blood is mixed with a solution that contains potassium ferricyanide and 

potassium cyanide to generate a stable colour pigment called cyano-met-haemoglobin. The 

total amount of haemoglobin  is then easily determined photometrically at a wavelength 540 

nm (Morta, 2012). 
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1.4.1.6. Atomic Force Microscopy (AFM) 

Atomic Force Microscopy is a microscopic technique that looks at a three-dimensional profile 

of a surface under investigation. High resolution is achieved by using a sensitive probe that is 

attached to a cantilever. AFM is used to determine the elasticity of the surface of RBC by 

determining the frequency resonance of cantilever. Strasser et al. (2007) showed that the 

elasticity changes occur in RBC which increase during 1.5 h after bleeding from 40 KPa to 

300 KPa, and then from 600 HPa within 30 h to 2.5 GPa after 30 days. Therefore, they 

concluded that there is a relationship between the blood elasticity and time since deposition 

(TSD) (Strasser et al., 2007). The main advantage of this method is that it does not require 

any sample preparation, but the main disadvantage is that bloodstains must be on the very flat 

surface, such as glass and tiles.         

1.4.1.7. Electron paramagnetic resonance (EPR) 

The haemoglobin molecule contains iron ion whose spin state has changed during the 

denaturation and generates four significant EPR related to ferric high-spin, ferric low-spin, 

ferric non-heme and free radical species (Miki et al., 1987). Fujita et al. (2005) found that 

there is a linear relationship between the ratio of ferric low-spin to ferric non-heme when 

compared with TSD up to 432 days (Fujita et al., 2005). However, environmental factors such 

as temperature and light exposure play a crucial role in affecting this relationship. Further, 

this technique is not commonly used in forensic science because bloodstains and other types 

of samples often cannot withstand conditions during sample preparation such as extremely 

low temperatures to which the sample must be cooled first (-196ºC). 

1.4.1.8. Enzyme-Linked Immunosorbent Assay (ELISA) 

The circadian biomarkers such as melatonin and cortisol can be detected by ELISA to 

determine at which time of a day bloodstain was deposited, up to a period of one month 
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(Ackermann et al., 2010). Further, high mobility group box-1 (HMGB1) measurement by 

ELISA can be used to determine post mortem interval (PMI). This is because this DNA-

binding protein is released from the cells after they die by necrosis, therefore, the starting 

concentration of HMGB1 when taken from the blood cells from live humans is very low, and 

then gradually increase over the period of 7 days when samples are kept at 24˚C (Kikuchi et 

al., 2010).  

1.4.1.9. Immunoelectrophoresis  

The blood serum contains proteins which are gradually deteriorating over time. Albumin and 

globulins are the most common proteins present in bloodstains. Rajamannar in 1977 

conducted an experiment to determine the presence of proteins in the bloodstains which are 

deposited in a period of 15 days up to one year. The study showed that when using 

immunoelectrophoresis to compare the pattern of various proteins between fresh human 

serum and bloodstains, the absence of some of the proteins was evident in the latter 

(Rajamannar, 1977). By determining which particular serum protein is missing, it is possible 

to determine the age of bloodstain using immunoelectrophoresis.   
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Figure 2. Different methods conducted to determine the age of bloodstains (Morta, 2012). 

 

In summary, all of the methods described above (Figure 2) are limited in its use in the modern 

forensic science. They lack the specificity and are often unable to differentiate between 

human blood and that of other species, unable to control for the different amounts of blood 

therefore leading to erroneous results, while harsh sample preparation methods render some of 

them inappropriate for use in forensic medicine. This is why further research in this area is 

warranted and development of the new methods in determining the age of bloodstain is 

imperative.   

1.4.1.10. Forensic RNA analysis  

Some of the chemical evidence related to a crime scene such as paint, ink, and drugs tend to 

age in a chemically predictable way, hence, it is often possible to obtain accurate results for 

measurement of these samples and to determine their age. On the contrary, determining the 

age of biological evidence such as semen, saliva and blood is more difficult due to its 

unpredictability. In the last few decades, attempts have been made to establish the methods 

for determining the age of bloodstains due to its importance in aiding the crime investigation. 
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Some methods such as spectroscopic, enzymatic and chromatographic analysis described in 

the previous sections were developed. Unfortunately, they have a number of limitations which 

interfere with obtaining accurate results. To date, the most promising work has involved RNA 

degradation studies (Hampson et al., 2011, Alshehhi et al., 2017). 

For many reasons RNA has more advantages over DNA as a forensic material. RNA is found 

in greater amounts within the cells, it offers high sensitivity with PCR amplification, as well 

as high specificity with its unique gene expression profile dependent on the cell type. This 

enables determination of the origin of a sample (e.g. bloodstain from rape or homicide rather 

than menstrual blood), which can be crucial in determining the link between the crime and the 

suspect (Bauer, 2007). Another important advantage of RNA in forensic science is its fast rate 

of degradation. This could be used to estimate the age of biological samples such as 

bloodstains. In recent years RNA molecule in forensic science research grows substantially, 

not only for the PMI, determination, identification of body fluids, and the age prediction of a 

biological sample, but also provide information about the physical characteristics of a subjects 

such as eye colour, hair colour, skin pigmentation, height, weight and relative age and gender 

(Morta, 2012). This information can be extremely valuable in cases where there are no known 

suspects.  

DNA is a genetic material present in all nucleated cells. On the other hand, mRNA presence is 

under both temporal and spatial control. It is, therefore, possible to recognise both type and 

age of biological stain deposited at a crime scene by analysing the types of mRNA expressed. 

Quantitative RT-qPCR is one of most effective methods to obtain precise results. In qRT-

PCR, labile RNA is firstly converted to more stable form known as cDNA which is obtained 

through RT process; where a target sequence is amplified and quantified using specific 

primers and probes. 
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For highly degraded biological samples, the success of detection by qPCR depends on the size 

of a target sequence selected. Generally, it is easier to detected smaller sequences than large 

ones. Modelling the decay as a single molecule stochastic process shows that larger segments 

are more susceptible to degradation than smaller ones. As result of this more rapid 

degradation of larger segments, amplification through PCR will significantly decrease over 

time. This technique was used to determine the degradation patterns of mRNA segments of 

different lengths in bloodstains. Environmental factors such as microorganisms, humidity, 

temperature, UV light, pH, free radicals formation, also play an important role in this process 

of degradation (Anderson et al., 2005). 

RT-qPCR was employed to investigate two types of RNA. The result showed that the ratio of 

18S rRNA versus β-actin mRNA is changed in a linear fashion over a period of 150 days. The 

higher degradation rate observed in this study for β-actin mRNA is due to it not forming 

complex with the protein, while18S rRNA is integrated into the small subunit of ribosome 

and as such better protected from degradation (Anderson et al., 2005). The study has not 

looked at other body fluids of significance in forensic science, such as saliva and semen, and 

bloodstains were stored at 50% humidity, while it is known that high humidity can influence 

the degradation pattern of RNA (Bremmer et al., 2012a, Nakao et al., 2013). Nevertheless, 

these findings present a significant progress in forensic science offering a novel approach to 

determining the age of bloodstain that gives higher sensitivity, specificity and applicability of 

the method. 

Simard et al. (2012) conducted a similar study to investigate the ratio of mRNA vs. rRNA 

targets including β-actin mRNA and 18S rRNA in blood, saliva, and semen. The findings 

from this study showed that the decay rates of selected targets did not exhibit significant 

differences over a six-month period, and the authors suggested using the individual RNA 

markers instead of the ratio between different RNA types for estimating the age of the 
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samples (Simard et al., 2012). It is clear that two previous studies are very similar because 

they both investigated the bloodstains over the similar time period, and the same markers 

(18S rRNA and β-actin mRNA) were used. However, two different results were obtained, 

with one study finding linearly correlated ratio 18S rRNA: β-actin mRNA with the actual age 

of a sample, whilst other reported no correlation there. Therefore, more investigation is still 

required in this field by analysing different markers over a different time period. Relevant 

studies that have been conducted in this area so far are all listed in Table 1.     
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Table 1. Summary of using mRNA to ageing biological stains. 

Research group Selected marker Investigation 

time 

Key finding 

 
(Bauer et al., 2003a) 

 
Fatty acid synthase-messenger 

RNA 1,2,3, and 4(FASN) 

multiplex 

 
5 days 

Refrigerated post-mortem blood and brain 
samples were degraded significantly with 

blood samples taken from living individual 

in a period of 5 days. 

 

 

 

(Bauer et al., 2003b) 

 

 

 

β-actinβ & cyclophilin 

 

 

 

5 years, plus 8 and 15-

year-old samples 

Bloodstains were investigated under 

different environmental condition. Both 

targets were detected in aged samples. β-

actin peak areas in the samples aged up to 8 

months were significantly different than 

sample aged 41 months or older. 

Cyclophilin marker was significantly lower 

only in bloodstains older than 59 months. 

 

 

(Anderson et al., 2005) 

 

 

18S rRNA and β-actin mRNA 

 

 

150 days 

Bloodstains were tested over a period of 

time, and the result showed that 18S rRNA 

is still stable, while β-actin mRNA 

decreased with age of samples increased. 

Therefore, the ratio 18S/β-actin was 

linearly correlated with the age increased 

 

 
 

 

 

(Setzer et al., 2008) 

 

 
β-spectrin, porphobilinogen 

(blood), histatin 3, and statherin 

(saliva). Protamine 1 and 2 

(semen), and mucin 4 (vaginal 

secretions). Ribosomal protein S15 

rRNA  

 

 
 

 

 

547 days 

Body fluids including blood were exposed 

to various environmental conditions 

targeting specific markers. S15 was the 

most robust marker detected in bloodstains 

aged up to 547 days and kept at room 

temperature condition, 90 days in wet 

condition outside, and 30 days in dry 

condition outside. All targets varied 

between different ages and different 

environmental factors. 

 

(Anderson et al., 2011) 

 

18S rRNA and β-actin in three 

varying amplicons 

 

120 days 

All three amplicon pairs in bloodstains were 

generally decreased over time, with the 

large amplicon showing greater decrease in 

signal over time. 

 

 

(Simard et al., 2012) 

 

3 assays: 18S and cyclophilin A, 

18S and GAPDH, 18S and β actin 

 

 

169 days 

Blood and semen gave appropriate amount 

of RNA for amplification, whereas, saliva 

was limited. No correlation was found for 

rRNA: mRNA ratio, but individual markers 
were correlated over the time period. 

 

(Kohlmeier and Schneider, 

2012) 

 

β-haemoglobin and β-spectrin 

 

23 years 

Β-haemoglobin was detected in all 23 years 

old bloodstains, but β-spectrin could not be 

detected in any of the samples. 

 

 

 

 

(Morta, 2012) 

 

 

 

B-globin (HBB),Glucose-6-

phosphatedehydrogenase (G6PD), 

and 18S rRNA 

 

 

 

Days, weeks and months 

Selected markers were examined using 

capillary electrophoresis, and the regression 

analysis was performed using a peak height 

to generate an age prediction equation. This 

equation was the most accurate for 

prediction the age of bloodstains deposited 

on cotton cloth and stored at room 

temperature exposed to light. 

 

 

(Qi et al., 2013) 

 

 

18S rRNA and β-actin 

 

 

28 days 

Bloodstains were examined, and it found 

that 18S is stable over a period of 28 days, 

and β-actin continually increased. 18S: β-

actin ratio in female was greater than male, 

however, they generated lower amount of 

RNA overall than male. 

 

 

 
(Alshehhi et al., 2017) 

mRNA marker including α-globin 

(HBA),porhobilinogen 

deaminase(PBGD), and HBB. 
Micro RNA (miRNA) marker 

(miR16, miRNA 451). Reference 

gene :18S rRNA, ACTB mRNA, 

U6 small nuclear RNA (snRNA) 

 

 

 
270 days 

Blood samples were deposited onto cotton 

swabs and stored at room temperature. 

Individual RNA markers showed unique 
pattern of degradation during the nine-

month storage interval, whereas miRNA 

and U6 markers were more stable over this 

period. 
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1.4.2. Saliva  

 

1.4.2.1. Previous studies on saliva using mRNA 

 

Saliva is produced and secreted from salivary glands which contain water, electrolytes, 

mucus, and enzymes, all of which flow out of the acini into collecting ducts (Tiwari, 2011). 

Saliva and saliva-stained materials were examined as potential sources to obtain DNA profile 

in certain forensic settings. However, materials found in crime scene such as envelopes, gags, 

cans, and cigarette butts could be useful if linked to a time when they deposited. On looking 

through the literature, a little material is found on the age determination of saliva. A study was 

conducted by Simard et al. (2012) who assessed the possibility of using RNA transcript 

detection by duplex real-time PCR (RT-qPCR) to determine the age of body fluid stains 

commonly encountered in forensic biology including saliva. Over six month of storage, the 

result showed all targets used including the ribosomal 18S RNA and the human β-actin, 

GAPDH and cyclophilin A mRNAs have a similar rate of RNA decay (Simard et al., 2012). 

Each body fluid has a specific gene expression pattern; therefore, mRNA profiling utilises to 

identify body fluids in a forensically casework. Messenger RNA is more abundant than DNA, 

because present in many copies while DNA just two copies. Many of the methods already 

discussed for blood can be applied to saliva. The same RNA and DNA co-isolation method 

which was described by Alvarez et al. (2004) can be also applied for saliva samples (Alvarez 

et al., 2004).  

End-point PCR is an effective method to detect transcription for gene of interest, whereas it 

gives no information about the level of gene expression. The RT-PCR method proposed by 

Juusola and Ballantyne in 2005 also applies to saliva, and it is a more accurate and sensitive 

method of analysis. It allows to measure gene expression levels according to reference genes, 

which are ubiquitous and responsible for the basic functioning of cells. Saliva-specific genes 

such Statherian (STATH) , HTN3 , and MUC7 were detected and glyceraldehyde 3- 



27 
 

phosphate dehydrogenase (GAPDH) was recommended a common reference gene for mRNA 

in saliva (Haas et al., 2009). The almost of studies conducted on saliva just for body fluid 

identification. Bauer and Patzelt (2002) performed the first study in forensic casework using 

mRNA analysis to identify body fluid. Their study was developed a suitable co-isolation 

method, but limited for dried bloodstains and epithelia cells (Bauer and Patzelt, 2002). 

1.4.2.2. Stable RNA markers of saliva stains 

As described previously one of the main characteristics of mRNA is its instability. In the 

normal living cell, the activity of the gene is regulated in a number of ways, from 

transcription step up to the post-translational modification (Porrua et al., 2016). Gene 

expression regulation, therefore, occurs on the level of synthesis of both mRNA and protein, 

as wells by orchestrating their degradation (McManus et al., 2015). The lifetime of mRNA is 

determined by its function in the cell. Hence, some mRNA will be present for minutes such as 

c-fos mRNA (15 min) while others may be present for hours or even days such as ß-globin 

mRNA (Meyer et al., 2004).  

Similarly to mRNA levels in the cell, its decay is regulated by the efficiencies and nucleotide 

positions at which various stages in gene to protein pathway occur, such as transcription, pre-

mRNA splicing, pre-mRNA 3‵ end formation, post-translational modifications, and export of 

mRNA from nucleus to cytoplasm (Schoenberg and Maquat, 2012). Messenger RNA decay 

occurs by two main regulatory mechanisms, one which utilises AU rich elements (ARE) in 

the 3`UTR (untranslated region) of mRNA, while the other involves removal of the 

methylguanosine (m7G) cap at the 5` end of mRNA (Juusola and Ballantyne, 2003). 

Environmental factors including bacteria, ribonucleases, temperature, light and humidity also 

play an important role for messenger RNA degradation in biological stains. Therefore, stable 

sample in forensic research is considered the one that survives from time of deposition to time 
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of collection. The stability of mRNA molecule in body fluids has been subject of many 

investigations (Visser et al., 2011, Bauer et al., 2003b, Haas et al., 2011a). 

The key issue with mRNA molecule in forensic research is its lack of stability and the fact 

that it is highly prone to degradation. However, over the years it has been shown that it is 

possible to isolate enough of RNA of an acceptable quality from biological stains even those 

that are deposited for longer period of time, such as months or years. Zubakov et al. (2008) 

used whole-genome gene expression analyses on RNA isolated from blood and saliva stain 

samples of different ages in order to identify stable RNA markers. They found five stable 

mRNA markers showed tissue-specific expression signals in saliva samples aged 180 days 

(Zubakov et al., 2008). 

For determination of their stability, the same five mRNA markers were tested again in much 

older saliva stain samples, and the result showed successful amplification even in the samples 

that were 2-6 years old (Zubakov et al., 2009). Another study was performed to determine 

body fluid identity on dried biological samples involving blood, saliva and semen. The study 

selected candidate body fluid-specific genes (e.g. STATH and HTN3 for saliva in particular 

and KRT4, KRT13 and SPRR2A for mucosa in general and similarly chosen markers for 

other body fluids examined), as well as reference gene (18S rRNA, ACTB and GAPDH) to 

detect mRNA. Firstly, they successfully developed a 19-plex mRNA multiplex system 

capable of determining biological origin of body fluids. Their further approach was to 

combine RNA and DNA profiling in order to give more complete information about both the 

donor as well as the type of sample that was subjected to analysis, both important in forensic 

analysis (Lindenbergh et al., 2013, Lindenbergh et al., 2012a).  

Setzer et al. (2008) examined the influence of different environmental conditions on the 

stability of mRNA in saliva. Samples were aliquoted and dried onto cotton cloth and then 
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exposed to the different environmental factors: indoors and room temperature, in light or in 

the dark, in the humid or non-humid environments, while others were stored outdoors and 

exposed to humidity, light and heat with or without rain. They were left to decompose under 

these conditions from 0 to 547 days. When samples were stored indoors, saliva sample were 

reasonably robust and remained stable for 365 days for all but UV-exposed conditions where 

the limit was 180 days. On the contrary, when left outdoors, samples degraded quickly, with 

rain having particular influence on these samples, by decreasing time samples were stable for 

from 7 days in dry condition to less than a day in the presence of rain. This is most likely due 

to the variety of factors characteristic for outdoors environment, including intra- and 

extracellular activities such as presence of bacteria and RNases. These findings have 

convinced researchers at the time that mRNA analysis cannot be used in forensic research 

(Setzer et al., 2008).  

1.4.3. Semen 

Over 1.3 million violent and sexual offences were recorded in 2013/14, as reported by the 

National Crime Survey (Great Britain, 2014.) Crime scenes related to the most of these 

offences are likely to contain human body fluids such as blood, saliva, semen and vaginal 

secretions, that can all play an important role in criminal investigations (Orphanou, 2015).  

The average semen volume a healthy male ejaculates is between 2-5 ml (Owen and Katz, 

2005).Semen is a complex fluid and presents cellular mixture produced by a variety of 

different glands within the male reproductive organs (Owen and Katz, 2005). The cellular part 

of semen comprises predominately of one cell type, spermatozoa. Approximately 15-30% of 

seminal fluid originates from the prostate and contains highly abundant protein acid 

phosphatase, prostate-specific antigen and albumin. 
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RNA has been explored in detail for the identification of biological materials in a forensic 

context. For example, Bauer and Patzelt in 2003 performed the first study in forensic 

casework using mRNA analysis to identify body fluid (Bauer and Patzelt, 2002). By selecting 

specific marker matrix metalloproteinase (MMP) present in endometrium only but not in 

dried bloodstains and epithelial cells, they demonstrated the possibility of RNA profiling to be 

used for determining the type of sample found at the scene. Later, they developed a study that 

expended the discovery onto semen samples by showing that basic nucleoproteins protamine 

1 and 2, since exclusively expressed in haploid genome, were suitable markers of 

spermatozoa  (Bauer and Patzelt, 2003).   

Bauer et al. (2003) were also one of the first to apply the method of RNA analysis for 

determining bloodstain age. They examined two RNA methods; semi-quantitative duplex RT-

PCR with an internal standard and competitive RT-PCR with an external standard. Semi-

quantitative duplex RT-PCR takes an advantage of the underrepresented cDNA sequences 

reverse transcribed from 5‵ end mRNA, if they are produced by degraded mRNA fragments. 

Competitive RT-PCR is utilised as a control method to ensure PCR specificity and monitor 

RT efficiency and ribonuclease contamination (Bauer et al., 2003b). 

One of the first documented developments in determining the type of body fluids that used 

more sensitive, specific and conclusive body fluid identification method that involves RNA 

analysis was conducted by Juusola and Ballantyne (2003). They focused on mRNA, the 

molecule that acts as intermediary between genetic information in DNA and proteins specific 

for that cell type, thereby determining cell-specific gene expression profile (Juusola and 

Ballantyne, 2003). In other words, as certain genes are expressed in specific tissues and not 

others, the mRNA profiling will enable differentiation between different body fluids and 

tissues.  
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Table 2 shows the common mRNA markers which are used to identify human semen. By 

using these markers, it is possible to determine the age of semen stains through RNA 

degradation pattern, one of the key steps in gene regulation process.  

Table 2. Messenger RNA markers used to identify semen in human. 

mRNA Gene 

Marker 

Body Fluid 

Target 

Description                  Reference 

Prostate specific 

antigen (PSA); also 

known as kallikrein 

3 (KLK) 

Semen (seminal 

fluid) 

Produced by 

prostate epithelia. 

Hydrolyses 

Semenogelin during 

the liquefaction of 

ejaculated semen. 

(Haas et al., 2013); (Nussbaumer et 

al., 2006). 

Protamine 1 and 2 

(PRM1, PRM 2) 

Semen 

(spermatozoa) 

DNA binding 

protein involved in 

sperm chromatin 

condensation. 

(Alvarez et al., 2004); (Fleming and 

Harbison, 2010);  (Haas et al., 

2008, Haas et al., 2009, Haas et al., 

2013); (Juusola and Ballantyne, 

2005); (Lindenbergh et al., 2013);  

(Richard et al., 2012); (Sakurada et 

al., 2011); (Vandenberg and 

Oorschot, 2006). 

Semenogelin 1 and 

2 (SEMG1, 

SEMG2) 

Semen (seminal 

fluid) 

Coagulation 

proteins involved in 

the ejaculation of 

semen. 

(Haas et al., 2013); (Lindenbergh et 

al., 2013); (Sakurada et al., 2011); 

(Vandenberg and Oorschot, 2006) 

Transglutaminase 4 

(TGM4) 

Semen (seminal 

fluid) 

Catalyses 

irreversible cross-

links of glutamine 

residues to peptide-

bound lysines or 

primary amines 

(Fang et al., 2006); (Fleming and 

Harbison, 2010); (Haas et al., 

2013); (Richard et al., 2012).  
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1.5. MicroRNA 
 

Micro RNAs (miRNA, miR) are short RNA sequences, 18-25 nucleotides long, present in the 

non-coding regions of DNA. Together with short interfering RNA (siRNA) they belong to the 

small non-coding RNA and are mostly responsible for negative regulation of genes in the 

human body. They are located mostly along the intergenic regions, but can be found within 

the intronic regions of the human genome (Uchimoto, 2014, Wan et al., 2011). MiRNA plays 

an essential role in the regulation of gene expression at the post-transcriptional level. They 

can bind mRNA, usually in its 3' UTR and repress translation through a variety of 

mechanisms (Han et al., 2018, Moschenross, 2011). MiRNA can bind to its target mRNA 

resulting in gene silence (Silva et al., 2015, Santos et al., 2014). They are evolutionary 

conserved, as a way of preserving information from generation to generation (Landgraf et al., 

2007, Lagos-Quintana et al., 2001), probably due to their involvement in the important 

physiological processes such as cell growth, differentiation, glucose homeostasis, fat 

metabolism and immune regulation (Kannan et al., 2017). On the other hand, they implicated 

in different pathological conditions such as cancers, infections and autoimmune diseases as 

well as neurodegenerative disorders (Zubakov et al., 2010, Sun et al., 2010, Silva, 2012, 

Uchimoto, 2014). Overall, miRNA are major contributors to post-translational repression and 

degradation of mRNA (Benes and Castoldi, 2010, Courts and Madea, 2010, de Planell-Saguer 

and Rodicio, 2011).  

The biogenesis of miRNA begins in the nucleus (Figure 3) and involves many processing 

steps. Firstly, primary miRNA (pri-miRNA) which contains 60-80 nucleotide hairpin stem-

loop (SL) structure (Sun et al., 2010) is transcribed by RNA polymerase II (Lee et al., 2004). 

Following this, enzyme Drosha with co-factor DGCR8 are turning it into precursor miRNA 

(pre-miRNA) ready to be transported into the cytoplasm by cleaving secondary hairpin 

structure. The transport occurs with the help enzyme Exportin 5 and co-factor Ran-GTP. 



33 
 

There, pre-miR transcript is cleaved with the help of Dicer enzyme and its co-factor 

TRBP/PACT, and the remaining strand of miRNA binds to Argonaut protein (Ago) to form 

an RNA inducing silence complex (RISC) (Uchimoto, 2014, Silva et al., 2015). Binding to 

Ago protein makes miRNA resistant to degradation, much more than is the case with mRNA 

molecule (Winter and Diederichs, 2011).  

 

Figure 3. The biogenesis of microRNA in eukaryotic cells. The process starts from the nucleus, where pri-miRNA 
transcription is made with RNA polymerase II. Following this, Drosha enzyme turns pri-miRNA into Pre-miRNA. 
Transportation into cytoplasm occurs with Exportin 5 enzyme, after the secondary hairpin structure is cleaved. 
MiRNA binds into mRNA and if their sequences are completely match, mRNA can be degraded, whereas, if they 
partial matching this lead to the repression of translation. Image is taken from (Sand et al., 2009).  
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1.5.1. Discovery of miRNA 

The gene inhibition was first discovered by Richard Jorgensen and colleagues in petunias, in 

an attempt to use pigment-producing gene to enhance purple pigment in these flowers. Two 

flavonoid genes, dihydroflavonol-4-reductase (DFR) and chalcone synthase (CHS) were 

transferred into the plants. Although in majority transformed samples there was no clear 

change in flower pigmentation, in about 25% them the reduction in pigmentation was 

observed and it was accompanied by the reduced expression of both DFR and CHS gene (Van 

der Krol et al., 1990, Napoli et al., 1990). They called this phenomenon co-suppression, 

which was later predefined as RNA interference (RNAi). This is how they accidently 

discovered a mechanism of gene silencing (Uchimoto, 2014), a process that challenges central 

dogma of molecular biology by showing that RNA molecule, besides being mediator between 

genes and proteins, can also interfere with the flow of genetic information. 

The first miRNA was identified by Lee et al. (1993) during a study that compared the 

heterochronic patterns of two genes responsible for the development of Caenorhabditis 

elegans larva, lin-4 and lin-14. Caenorhabditis elegans is a free-living transparent nematode 

used as an important model system in biological research. The findings from this study 

showed that lin-4 transcripts inhibit the translation of lin-14 mRNA. Consequently, lin-4 was 

the first miRNA to be discovered (Lee et al., 1993). The second miRNA was also discovered 

in C. elegans, when the heterochronic patterns of let-7 with lin-14, lin-28, lin-42 and daf-2 

genes were investigated. The results showed that let-7 directly inhibited the 3‵ UTR of lin-14, 

lin-28 and lin-41, with the resulting inhibition of lin-41 leading to a complete loss of muscle 

function (Reinhart et al., 2000). 

The gene inhibition mechanism was also studied using C. elegans. In this study, C. elegans 

was injected with single stranded RNA (ssRNA) and double stranded RNA (dsRNA). The 

researchers utilised genes with well-characterised phenotypes such as unc-22 gene, which 
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codes for myofilament protein found in striated muscle cells. Partial inhibition and full 

inhibition of this gene will cause twitches and impaired mobility in the muscle, respectively. 

The result showed reduced activity in C. elegans when injected with ssRNA (antisense or 

sense), whereas, injection with dsRNA resulted in complete loss of muscle activity (Fire et 

al., 1998). This study was crucial to understanding the gene inhibition mechanism and the 

researchers involved won the Nobel Prize for Physiology and Medicine in 2006 (Sand et al., 

2009).  

The same group of researchers further used the same model and injected C. elegans with 

dsRNA derived from the unc-22 gene. This was to determine at what stage in the gene 

expression process gene inhibition occurs. After showing no interference with primary DNA 

sequence, as well as processes of initiation and elongation of transcription, they looked at the 

levels of accumulation of nascent transcripts in nucleus and cytoplasm using in situ 

hybridization. It was evident that the numbers in the nucleus were affected although not 

completely, while observing even more dramatic changes in the cytoplasm where the 

transcripts were virtually eliminated. These findings suggested that gene inhibition occurs at 

the post-transcriptional stage of mRNA (Montgomery et al., 1998). 

The structure features of dsRNA and its effect on gene inhibition in C. elegans was also 

investigated using different factors including RNA bases, length, sequence, homology and 

helical structure. It was shown that dsRNA from only 25 nt long could cause RNA 

interference and gene inhibition (Parrish et al., 2000). All miRNA which have been 

discovered across different species are recorded on a database called miRBase (Kozomara and 

Griffiths-Jones, 2014, Kozomara and Griffiths-Jones, 2010), which contains with the latest 

update (v22 released in March 2018) 38589 mature miRNA entries.  
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1.5.2. Micro RNAs as potential biomarker in forensic science  

As we have seen, miRNA plays a major role in many biological processes including 

degradation of mRNA. The complementarity between miRNA and mRNA occurs mainly in 

untranslated region (3‵ UTR) (Benes and Castoldi, 2010). Depending on a type of 

complementarity, miRNA can perform its function on the targeted mRNA in two ways. If 

their sequences perfectly match, miRNA cleaves and degrades mRNA, while only partial 

complementarity of the sequences will lead to the suppressed translation (Hutvágner and 

Zamore, 2002, Grimson et al., 2007, Silva, 2012, Santos et al., 2014, Silva et al., 2015).  

In forensic science, miRNA profiling has a number of advantages even when compared to 

mRNA analysis. For example, the short sequence of miRNA provides an inherent stability 

that is greater than mRNA, consequently, makes them less prone to degradation processes and 

therefore of great interest in forensic science (Courts and Madea, 2010, Zubakov et al., 2010, 

Uchimoto, 2014, Silva et al., 2015). Further, similarly to mRNA, the gene expression patterns 

of miRNA are also tissue specific, therefore enabling identification of the type of sample they 

were isolated from. Finally, the regulatory role of miRNA suggests their relatively high 

abundance within the cell. All these reasons make miRNA an excellent candidate in forensic 

casework, especially in cases when low-level samples recovery is the only option, or mixed 

body fluids are present. 

Most of the research groups in forensic science have used miRNA analysis to identify body 

fluids rather than time since deposition of bloodstains. Only two studies have used miRNA to 

estimate the age of bloodstains (Nakao et al., 2013, Lech et al., 2014), however, a few that 

were conducted used them to estimate PMI. In general, the miRNA studies performed have 

largely used method similar to RT-qPCR described for mRNA, with the exception that they 

would utilise special primers to accommodate for miRNA shorter size (Uchimoto, 2014). The 

first study explored miRNA as a potential biomarker to identify body fluids which was 
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performed by Hanson et al. (2009). In this study, five different body fluids were investigated. 

Nine potential miRNA markers were detected and could be used as a positive indicator of the 

presence of saliva (miR-658 and miR-205), semen (miR-135 and miR-10b),blood (miR-

451and miR-16), menstrual blood (miR-451 and miR-412) and vaginal secretions (miR-

372and miR-124a ) (Hanson et al., 2009). In addition, two potential reference genes were 

selected including RNU6B for blood and semen; and RNU44 only for blood. RNU44 was 

also identified as stable reference gene during a comprehensive study conducted with a focus 

on the miRNA (Zubakov et al., 2010). An important review was published by Silva et al. 

(2015) which summarised the use of miRNA as biomarkers to identify body fluids, when 

some factors are controlled such as, methodological approaches, physiological conditions, 

environmental factors, gender, as well as, pathologies and samples storage (Silva et al., 2015). 

Figure 4 gives an overview of all miRNA suggested as possible body fluid biomarkers to date. 

It is a clear demonstration of how variable conclusions were obtained from different 

experimental settings, with only few miRNA markers confirmed by two or more studies. For 

example, Hanson, Zubakov, Wang and respective co-workers suggested miR-16 as a venous 

blood-specific marker, and consequently, a potential biomarker for bloodstain (Hanson et al., 

2009, Zubakov et al., 2010, Wang et al., 2012). Further, several studies suggested miR-205 as 

a good biomarker for saliva, with the exclusion of Wang et al. (2012) who warned that 

presence of miR-205 in saliva samples is due to its presence in epithelial cells collected with 

saliva sample (Wang et al., 2012). No miRNA biomarker was found to be urine-specific, and 

given the importance of this human fluid in forensics, further research in this area is 

warranted (Silva et al., 2015). No forensic studies with the aim to predict the age of biological 

stains as well as to estimate the PMI were mentioned (Silva et al., 2015).   

A number of studies was conducted to investigate the stability, sensitivity, and specificity of 

miRNA with respect to body fluids identification. Dried blood (venous and menstrual) and 
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semen samples were most commonly used, and samples tested under conditions of controlled 

temperature and humidity and stored for up to a year showed reasonable stability (Zubakov et 

al., 2010, Courts and Madea, 2011, Wang et al., 2013b). These results not only confirmed the 

stability of blood and semen markers used but also suggested that miRNA analysis is more 

sensitive than mRNA (Zubakov et al., 2010), and confirmed their suitability in detecting 

blood (miR-126, mi-R150, and mi-R451) and saliva (miR-200c, miR-203 and miR-205) 

samples (Courts and Madea, 2011).  

 

Figure 4. Overview of all miRNA suggested as possible body fluid biomarkers by [a] (Hanson et al., 2009) ; [b] 
(Zubakov et al., 2010); [c] (Weber et al., 2010); [d] (Courts and Madea, 2010) ; [e] (Wang et al., 2012); and 
[f](Omelia et al., 2013). Image from Silva et al. (2015).  
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However, it is possible that the stability of miRNA markers is tissue specific, since poorer 

stability and relatively short half-life was detected in miRNA from brain tissue. This study 

has analysed specific miRNA abundances and kinetics of miRNA decay in primary cultures 

of human neural cells and human brain tissues after short post-mortem interval (Sethi and 

Lukiw, 2009). 

Overall, it is accepted that miRNA have higher resistance to degradation in comparison with 

mRNA but lower than DNA. The determination of PMI in principle requires parameters that 

change constantly and linearly with time after death (Liu et al., 2007). The degradation of 

DNA in post mortem samples may change constantly and linearly from the time of death (Liu 

et al., 2007), but miRNA are also emerging as a new marker with a potential to enable 

estimation of PMI. Given that both PMI and the estimation of stain age are based on 

understanding of degradation patterns of markers of interest, further development in one area 

will undoubtedly lead to advances in the other. 

The level of RNA, miRNA, and 18S rRNA were evaluated as an attempt to estimate PMI in 

heart tissues removed from adult rats at different PMI. The results suggested that there was a 

pattern of tissue 18S rRNA and miRNA degradation useful in determining the PMI during 

seven days period (Li et al., 2014). They further described equation of parabola that presented 

the relationship between Cq values of 18S rRNA and PMI. It is becoming clear that rather 

than focusing on a single marker, it is possible that developing an appropriate mathematical 

model to determine PMI that will be more widely applicable would require including both 

degradation of RNA and miRNA in different matrices. Indeed, the evidence available from 

the studies conducted so far indicate that combination of stable (miRNA) and more degraded 

(mRNA) transcripts could offer a successful breakthrough in developing a more robust 

mathematical model for PMI estimation (Silva, 2012). For example, tissues (rat and human) 

with known PMI and other parameters were collected. RNA was extracted and tissue specific 
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reference biomarkers mixture of miRNA and rRNA, were selected using geNorm, while 

mRNA for ACTB and GAPDH were used as target genes. The mathematical model using 

target genes (mRNA) normalised to reference biomarkers (miRNA and rRNA) showed 

significant relationship between the change in their Ct value and PMI (Lv et al., 2016).  

Although miRNAs are considered amongst the most stable elements in blood, it is important 

to have in mind that they too can degrade, especially under conditions of high humidity and 

when bloodstains are not completely dry (Courts and Madea, 2010, Patnaik et al., 2010). For 

example, bloodstains collected and incubated in chamber with 25°C and 50% humidity, as an 

attempt to explore any temporal changes in the relative levels of miR16 and miR-451 during 

incubation. Relative quantifications of both miR-16 and miR-451 concentrations were 

performed using the 2
-∆∆Cq

 method, and expression levels were normalised to that of U6B 

snRNA. It was shown that the target miRNA markers decreased significantly at day 5 and 

continued to decrease until the day 28. The correlation coefficients (r) of the miR-16 and 

miR-451 concentrations with dried time of bloodstains were 0.409 and 0.871, respectively. 

Therefore, it was suggested that the age of bloodstains could be calculated based on these 

findings (Nakao et al., 2013). Another interesting addition to this study was presence of 

ethanol, amphetamine sulfate or methamphetamine hydrochloride in these bloodstains in an 

attempt to examine if the concentration of any of these substances would prove useful in 

determining bloodstain age. Unfortunately, while ethanol degraded to quickly, within 180 

min, other two substances showed constant levels during the time period examined. However, 

although they could not be used for determining age of forensic sample, they could implicate 

that person who used them has been present at the scene when the crime was committed.   

Another study explored the suitability of miR-142-5p and miR-541 for bloodstain deposition 

timing. Both markers were normalised against miR-222 and using relative quantification 

method during the 24 h day/night period. No significant difference was observed with miR-
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142-5p, while Cq value was above 35 for miR-541, showing low abundance of this marker in 

blood. Therefore, both miRNA markers were proved unsuitable for estimating the deposition 

time of forensic bloodstains (Lech et al., 2014). The studies described above, however, did 

not explore any other important biological material such as saliva, semen, so further 

investigation into different miRNA assays as well as others body fluids are still needed.  

1.5.3. Micro RNA turnover and degradation 

The regulation of miRNA is important for correct cell development and function and for 

maintaining normal physiology in the cell and govern variety of cell processes such as cell 

cycle, development, differentiation and apoptosis (Palmero et al., 2011). Due to their function 

in targeting mRNA and interfering in protein synthesis process in that way, changes in their 

regulation can lead to diseases (Ha and Kim, 2014). In other words, with their role in dictating 

fate of mRNA molecules, miRNA are similar to transcription factors that regulate the 

expression of target genes, only here the regulation is happening on the transcript levels.  It is 

not surprising, therefore, that stability and lifespan of these small molecules is important for 

smooth functioning of the cells and entire body. 

From the point of molecular structure, as described, miRNA are formed from pri- and pre-

miRNA precursors in nucleus that, once transported into cytoplasm, are cut out from the 

stem-loop hairpin structure and packaged with proteins into relatively stable complexes (Krol 

et al., 2004). Stability of miRNA emerged as an important feature in the early studies. Some 

examples are miR-208, located within an intron of the gene for myosin heavy chain, that 

remains in the cells up to 3 weeks of blocking the transcription of the host gene, as well as 

mature miRNA in human 293T cells, where 8h long blocking of transcription with a chemical 

inhibitor had no effect on their expression levels (Zhang et al., 2012). Another mechanism 

involved in miRNA homeostasis, likely due to its higher stability within RISC complex, is 
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active degradation of mature. The stability of these molecules varies substantially between 

different cells and cell types. Unsurprisingly, perhaps, their turnover is tightly regulated on 

both transcriptional and post-transcriptional level, affected by the vast number of factors such 

as transcription factors, nucleotide content but also environmental factors and disease status 

(Li et al., 2013b). The miRNA can be degraded with 3'-to-5' or with 5'-to-3' exoribonucleases 

in that process that remain largely unknown (Rüegger and Großhans, 2012). The mechanism 

of degradation varies between different organisms, but Figure 5 below represent what is so far 

understood happens in cultured human cells. Briefly, two proteins have been discovered that 

govern degradation of miRNA in 3'-to-5' direction, namely polynucleotide phosphorylase 

(PNPaseold-35) and ribosomal RNA processing protein 41 (RRP41) (Rüegger and Großhans, 

2012).   

 

Figure 5. Biochemical pathways for miRNA decay. Updated image obtained  from (Rüegger and Großhans, 
2012). 

 

1.6. Summary 

Blood, saliva, and semen are the most common biological materials found at the crime scene. 

DNA profiling is a technique which enables identification of the person responsible for the 

deposition of the biological sample but provides no information about the time of the sample 
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deposition. Answer to when biological stain was deposited may be given through RNA 

analysis; therefore, many studies have been conducted in this direction. The ability to predict 

the age of any biological samples would be undoubtedly the most important breakthrough in 

forensic science, because it could link the sample recovered at the crime scene with the time 

when it was deposited.  

As we have seen, RNA has several advantages over DNA; it is more sensitive, more 

abundant, and has a fast rate of degradation. In contrast, miRNA with short sequences is more 

stable than RNA and both have a specific transcription which could be used to identify the 

type of body fluids, as well as to generate the mathematical model which help in stain age 

prediction. Up to date, there are no techniques available that can precisely determine the age 

of any biological stain, with attempts so far still being inaccurate, unspecific, and with low 

sensitivity. In addition, almost of them require a specific set of conditions not always 

available in a real crime. Forensic RNA analysis emerges as an appropriate tool for filling this 

gap. A successful attempt to correlate two types of RNA described with bloodstain age up to 

six months, that is able to distinguish between recent sample and the sample that is up to six 

months old, would offer a significant improvement in forensic analysis. Determination of the 

age of saliva and semen stains is also a very important in forensic investigation, especially in 

rape and sexual assaults cases. According to the literature, only one study attempted to 

determine the age of saliva and semen, and no correlation was detected between RNA profile 

and age of the investigated samples.  

Micro RNA analysis is still a relatively new field where not enough is known, especially 

about the degradation pattern of miRNA. No studies have been conducted using miRNA for 

saliva and semen age prediction.  
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1.7. Aims of study  

Present thesis was conducted with the aim to quantify RNA extracted from blood, saliva, and 

semen and compare it to the same type of sample deposited at the time zero, in order to 

predict the age of the biological stain. It focused on identifying and examining specific and 

more sensitive markers for the samples that have not been thoroughly investigated, such as 

semen samples.  

RNA has been proven to have a fast rate of degradation when compared to DNA and miRNA. 

Thus, this thesis aimed to further explore the advantages of using mRNA and miRNA in 

forensic science investigations. An attempt was made to generate models which could be 

useful to predict the age of blood, saliva, and semen. Relative quantification was employed as 

a method of choice in order to look at the relationship between the quantity of particular 

markers and the actual age. This was done using a formula 2
-ΔΔCq

 following the hypothesis 

that the overall abundance of RNA in the sample decreases as the age of the sample increases, 

therefore giving a negative correlation between the age of the sample and the ΔCq value.  

This thesis has been divided into three parts. 

1. Optimization and validation of the RT-qPCR experiment by investigation of some of 

the chemical reagents, and their influence on accurate quantification.   

2. Generation of the mathematical models for blood, saliva, and semen by monitoring  

           several candidates of a known actual age over a time period. These candidates 

            include mRNA and miRNA markers. 

3. A combination between more stable candidates (miRNA) and more degraded 

candidates (mRNA) by using geometric mean normalisation strategy as an attempt to 

improve the accuracy of models obtained.  
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2.1. Ethical approval 

One of the most important factors when embarking on a new research study and experimental 

test is to consider all potential ethical implications that might arise and make sure that 

appropriate approval is obtained. This is essential so that development and the nature of the 

research study are set in the way that will increase the benefit and minimise the risk of harm. 

The physical and mental safety, as well as the privacy and comfort of the donors must be 

maintained if the method is to be implemented by the forensic community. For the studies 

presented in this thesis, the information sheet was provided to participants prior to taking part 

in the study, and they were encouraged to ask questions related to the research conducted and 

their involvement. Following their interest in taking part, the consent was taken, and they 

were further assured that they can withdraw at any time. All studies presented have been 

approved by the University Of Huddersfield School Of Applied Sciences Ethics Committee. 

2.2. Sample collection 

Samples were collected from healthy individuals, mostly from the team members within the 

research group at the University of Huddersfield. This way, it was possible to collect the 

samples efficiently and effectively, and to minimise chances of contamination from the 

surrounding areas. This was important since poor sample collection method can be a cause for 

many unnecessary problems, including low-quality yields during the extraction of sample and 

can affect downstream processes such as cDNA synthesis and qPCR. Table 3 shows all 

information about the samples under investigation in both TaqMan and SYBR Green 

chemistries. The present study was focused only on the environmental conditions such as the 

temperature, light, and time, whereas other factors involved including age, sex, and ethnicity 

were ignored.   
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Table 3. Information of the samples investigated using TaqMan and SYBR Green chemistry.

TaqMan chemistry method (mRNA and miRNA markers) SYBR Green chemistry method 

 

Sample 

type 

Frame 

time 

Number of samples Age Sex Ethnicity Sample 

type 

Frame 

time 

Number of samples Age sex Ethnicity 

 

Blood 

 

One 

week 

56 = 7*8 (7 individuals with 8 

time points from fresh until day 7 

of storage. 

 

20-45 

5 males 

and 2 

females 

Arabic , 

Caucasian 

, and 

Japanese 

 

Blood 

 

One 

week 

105 = 21*5 ( 21 individuals 

with  5 time points from fresh, 

first, second, third , and fourth 

week of storage. 

 

20-45 

19 

males 

and 2 

females 

Arabic , 

and 

Caucasian 

 

Blood 

 

One 

month 

75 = 15*5 (15 individuals with 5 

time points including, fresh, first, 

second, third, and fourth week. 

 

20-45 

10 males 

and 5 

females 

Arabic and 

Caucasian 

 

Saliva 

 

One 

month 

40 = 8*5 ( 8 individuals with  5 

time points from fresh, first, 

second, third , and fourth week 
of storage. 

 

20-45 

5 males 

and 3 

females 

Arabic , 

and 

Caucasian 

 

Saliva 

 

One 

month 

45 = 9*5 ( 9 individuals with 5 

time points from fresh, first, 

second, third , and fourth week. 

 

20-45 

6 males 

and 3 

females 

Arabic and 

Caucasian 

 

 

 

Semen 

 

 

One 

month 

 

 

30 = 6*5 ( 68 individuals with  

5 time points from fresh, first, 

second, third , and fourth week 

of storage. 

 

 

 

25-45 

 

 

 

6 males 

 

 

 

Arabic  

Semen 

One 

month 

60 = 12*5 ( 12 individuals with 5 

time points from fresh, first, 

second, third , and fourth week. 

 

25-45 

 

12 males 

Arabic and 

Caucasian 
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2.2.1. Blood samples 

Blood samples were deposited on a sterile filter paper by a finger prick test (Owen Mumford 

Unistick 3: 1.8 mm depth, 23G gauge). Bloodstain was deposited and covered about 5 cm
2
 of 

the filter paper, and then packaged into a sterile RD polyethylene bag (Fisher Scientific, UK) 

to minimise the chances of contamination and to decrease the exposure to environmental 

factors including light and humidity. Sample protected in this way were then stored at room 

temperature until the extraction. For blood, two time periods were investigated: samples were 

collected after one week and second one after one month.    

2.2.2. Saliva samples  

Saliva samples were collected at least one hour after food and drink consumption. This was 

done in order to minimize any possible contamination that could introduce experimental 

variations. All saliva samples were collected using sterile buccal swabs (Sarstedt, UK), by 

swabbing both cheeks for 30s. This was to ensure that a sufficient number of epithelial cells is 

collected. Samples were then stored in the dark area at room temperature until extraction. 

2.2.3. Semen samples  

For the semen samples collection, donors were provided with a sterile collection tube. After 

the sample was collected, sterile cotton swabs were used to prepare five samples for future 

analyses: one to be analysed fresh, while remaining four cotton swabs were stored for the 

analyses in the weeks to follow, namely, after one week, two weeks, three weeks, and four 

weeks, with one cotton swab being analysed each week. All samples (cotton swabs) were 

stored in a dark at a room temperature until the extraction.      
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2.3. RNA extraction  

Unlike DNA, RNA is rapidly degraded especially in the areas contaminated with RNases, 

enzymes that catalyse the degradation of RNA into smaller subunits. Hands and dust particles 

are the most common sources of bacteria and fungi, and as such rich in RNases. For this 

reason, benches and all equipment used in the experiments were decontaminated with 5% 

Trigene before each extraction. Care was taken when handling RNA samples before and after 

the extraction in order to minimise unwanted changes for the further process.         

RNeasy Mini Kit from Qiagen was used to isolate total RNA from saliva, blood, and semen 

samples. The process was conducted according to the manufacturer’s protocol, with 

modification as described by Zubakov et al. (2008) (Zubakov et al., 2008). These involved 

soaking two circles hole-punched from blood stained filter paper, or a whole head cotton swab 

from saliva and semen samples in 350µl RLT buffer for one hour at 4°C before extraction. 

For semen extraction, two different methods were applied. First method involved soaking the 

whole head of cotton swab in 300µl RLT buffer, after which 50 µl Dithiothreitol was added 

(+DTT), while in the second case no DTT was added (-DTT). This was an attempt to explore 

the influence of DTT reagent on mRNA and miRNA targets. Blood samples were extracted 

daily for one week, after which weekly extractions were performed until one month from the 

start of extraction. Saliva and semen samples underwent only a weekly extraction for one 

month. RNA was eluted with 40 µl RNase free water and stored -20˚C until further analysis. 

2.4. DNase digestion  

Presence of genomic DNA in the sample after RNA extraction, even traces of DNA molecule 

can influence the accuracy of sensitive applications such RT-PCR. This is because both RNA 

and DNA targets may be amplified, resulting in erroneous quantification of the RNA target. 

Therefore, two strategies were performed to digest DNA. The first method involved using 

Turbo DNA- Free kit (Life Technologies) as followed: 1µl and 5 µl from 10x Turbo DNase 
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and Turbo DNase buffer were respectively added into the extracted RNA, followed by 

vortexing and incubation at 37˚C for 25 min. 5µl of re-suspended DNase inactivation reagent 

was added, and thoroughly mixed by inverting only (DNase is highly sensitive to physical 

degradation, therefore vortexing was avoided at this stage), and incubated at room 

temperature for 5 min. Samples were then centrifuged for 1.5 min, and RNA was transferred 

to a fresh tube and stored at -20˚C until needed. The second method was performed using On-

Column DNase Digestion with the RNase-Free DNase Set (Qiagen) according to the 

manufacturer’s protocol.   

2.5. Quantification and purity assessment of RNA  

The integrity and purity of extracted RNA are the most important factors can influence the 

accuracy of the results. Proteins, carbohydrates, and lipids could be the common factors that 

affect the purity of RNA. Therefore, the quality and quantity of RNA were measured using 

NanoDrop ND-1000 software version 3.7.1.The solution used to elute the extracted RNA was 

used as a blank measurement to calibrate the system. The system measured the absorbance of 

the sample giving the concentration in ng/µl. The process was repeated three times for each 

sample, and average value taken as final.        

2.6. Standard reverse transcription  

Extracted RNA must be converted into cDNA to prevent it from the degradation process as 

well as to undergo PCR for detection of mRNA. For the reverse transcription reaction, 

random primers (Hexamer, Decamer, and Oligo dT) were used to prime cDNA individually. 

Two Reverse Transcriptase Enzymes were also employed, Molony Murine Leukemia Virus 

(M-MLV) Reverse Transcriptase Enzyme (Life technologies, UK) and Multiscribe Reverse 

Transcriptase first strand synthesis (Life Technologies, UK). Samples underwent standard 

reverse transcription following the RETROscript protocol RT (Technologies, 2011). Samples 
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were initially heat denatured with 50 μM of chosen random primer and nuclease-free water on 

a Veriti thermocycler (Fisher Scientific, UK) for 3 min at 75 ºC. This step is commonly used 

for removing any secondary structure that may inhibit reverse transcription. Other essential 

reagents including dNTP mix (2.5 mM), RT buffer (10X), RNase inhibitor (10 units/μl), and 

100 units/μl of selection RT enzymes were then added to the reaction mix with a total volume 

of 20 µl. Samples then underwent standard RT using the following conditions: 60 min at 42 

ºC, 10 min at 92 ºC. Negative control of reverse transcription was conducted (used water 

instead of Reverse Transcriptase Enzymes) and negative control (water instead of template) 

were prepared along with each blood, saliva, and semen samples, and all were stored at -20˚C 

until needed.  

2.7. Stem-loop reverse transcription 

A mature miRNA is a short oligonucleotide sequence (only 18-25 nucleotide long), which 

makes it difficult for annealing of primers and accurate synthesis of cDNA strand.  A stem-

loop reverse transcription is the best choice to overcome this problem. There are two options 

to perform this method, stem-loop primers (TaqMan® chemistry) or poly-T primers utilised 

after polyadenylation (SYBR® Green chemistry). In the present thesis, stem-loop primers 

were selected due to their high specificity and frequent use in forensic RNA studies (Chen et 

al., 2005, Uchimoto, 2014, Meer et al., 2013, Zubakov et al., 2010).  

The stem-loop primer is a universal stem-loop sequence with 6 bases attached that are 

complementary to the end of the miRNA sequence (sequences marked in bold in Table 4). 

Forward primer is essentially the DNA version of the miRNA of interest, except for the bases 

that were used in RT primer binding. During RT, the 3ʹ end of the stem-loop primer binds on 

the last 6 bp of the mature miRNA sequence while the 5ʹ end, which is artificial (in nature) 
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will fold on itself. The RT enzymes (e.g. Multiscribe) will then extend this sequence. The 

stem-loop stays unfolded during PCR running. All miRNA primers used are listed in Table 4.  

The TaqMan® microRNA reverse transcription kit and custom microRNA primers from 

MWG Eurofins were used for miRNA transcripts. The essential reagents were prepared using 

TaqMan microRNA protocol (Technologies, 2011), and master mix included nuclease-free 

water, reverse transcription buffer (10x), multiscribe RT (50U/ µl), RNase inhibitor (20U/ µl), 

and dNTPs (100 mM). This master mix was combined with a primer (2.5 nM) and extracted 

RNA in a single tube. Samples then underwent stem-loop RT on a Veriti thermocycler with 

the same cycling conditions as described in the protocol. Similarly, to the standard reverse 

transcription assay described above, the negative control was also prepared.   
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Table 4. MicroRNA primers using in blood, saliva, and semen.

Micro RNA marker Mature microRNA sequence Stem-loop reverse transcription PCR Forward Primer 

has-micro-205 UCCUUCAUUCCACCGGAGUCUG GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCAGACT GCGCGTCCTTCATTCCACC 

has-micro-451 AAACCGUUACCAUUACUGAGUU GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAACTCA GCGCGAAACCGTTACCATTAC 

has-micro-891a UGCAACGAACCUGAGCCACUGA GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCAGTG GCGCGTGCAACGAACCTGAG 

has-RNU44 CTTGTACCAATTAATCGAGGAU GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGAC ATCCTC ACTGAACATGAAGGTCTTAATTAGCTC 
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2.8. Quantification PCR analysis using TaqMan probe  

The TaqMan universal master mix II protocol (Life Technologies, UK) was used to amplify 

RT product. All samples and reagents were briefly centrifuged before real-time PCR was 

performed using RQ method on a 7500 Fast Real-Time PCR system (The Applied 

Biosystems, Life Technologies, UK). The total volume reaction was 10 μl and contained 2 μl 

of RT product or 2 μl of RNase free H2O (Sigma) for negative controls, 5 μl fast universal 

master mix (Life Technology, UK), and 1μl assay primer and probe (Life Technology). The 

quantitative PCR reactions were prepared in triplicate and then transferred to MicroAmp® 

optical 96-well reaction plate (Life Technologies, UK), and sealed with a MicroAmp® clear 

adhesive film and applicator (Life Technologies, UK). All reactions were run in the qPCR 

machine with manufacturer's cycling conditions. All TaqMan probes specific for different 

body fluids and 6 RG used for normalisation are listed in Table 5. The selection of these 

markers was based on their success in previous experiments (Anderson et al., 2005, Haas et 

al., 2008, Haas et al., 2009). 

Table 5. TaqMan probe used for blood, saliva, and semen. 

Assays Name Amplicon length Specificity 

ALAS2 Aminolevulinate, delta, synthase 2 128 bp Blood marker 

GYPA Glycophorin A 141bp Blood marker 

HBB Hemoglobin beta  Blood marker 

HTN3 Histatin 3 136 bp Blood marker 

MUC7 Mucin 7 77 bp Saliva 

PRM1 Protamine 1 99 bp Semen (spermatozoa) 

SEMG1 Semenogelin 1 82 bp Semen (seminal fluid) 

ACTB Actin, beta 87 bp Reference gene 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 93 bp Reference gene 

B2M Beta 2 microglobulin 95 bp Reference gene 

RPLP0 Ribosomal protein, large, P0 76 bp Reference gene 

FFRC Transferrin receptor 156 bp Reference gene 

GUSB Glucuronidase, beta 149 bp Reference gene 



55 
 

2.9. Real-Time PCR analysis using SYBR Green   

 Real-time PCR was performed using the relative quantitation method with SYBR Green 

including a melting curve analysis on a 7500 Fast Real-Time PCR system. Reaction master 

mix was prepared in a total volume of 10 µl containing 2 μl of cDNA (or 2 μl of DNA/RNA 

free H2O (Sigma) for negative controls), 5 µl SYBR Green master mix (Life Technologies, 

UK), 0.5 μl of forward primer (500 nM), 0.5 μl reverse primer (250 nM) and 2 μl DNA/RNA 

free H2O. All PCR primers used were unlabelled from MWG Eurofins. Table 6 shows a list of 

these primers with their sequences. Some of the genes play an important role in oxygen 

homeostasis such as hypoxia-inducible factor 1(HIF1A), vascular endothelial growth factor 

A (VEGFA) and endothelial PAS domain protein 1(EPAS1). 

 Table 6. Unlabelled assays for blood and saliva. 

 

Assays Name  Forward primer sequence  Reveres primer sequence  

 

HIF1A 

Hypoxia 

inducible 

factor 1 , 

alpha subunit 

GCTCCCTATATCCCAATGGA GCTTGCGGAACTGCTTTC 

EPAS1 

Endothelial 

PAS domain 

protein 1 

GCGCTAGACTCCGAGAACAT TGGCCACTTACTACCTGACCCTT 

FGB 

Fibrinogen 

beta chain CGGTGGTGGATGGTGGTATAA AGGTGTACTGTCCACCCCAGTAGT 

FN1 
Fibronectin 1 

CCTTCATGGCAGCGGTTT AGCGTCCTAAAGACTCCATGATCT 

VEGFA 

Vascular 

endothelial 

growth factor 

A 

GCCTTGCCTTGCTGCTCTA ACTTCGTGATGATTCTGCCCT 

F12 
Coagulation 

factor X AGAACCCCTTCGACCTGCT CCACGATCCTGGTGAGGTTG 

HBB 

Haemoglobin 

beta chain GGCAACCCTAACCCTAAGGTGAAGGC GGTGAGCCAGGCCATCACTA 

ACTB 
Actin beta 

ATAGCACAGCCTGGATAGCAACGTAC CACCTTCTACAATGAGCTGCGTGTG 
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2.10. Quantification PCR of stem-loop RT products 

The stem-loop RT products underwent qPCR using TaqMan fast universal master mix (Life 

Technologies, UK) and a 10X primer solution containing a universal probe (250 nM), a 

specific forward primer (1500 nM) and universal reverse primer (700 nM). The universal 

reverse primer was described by Chen et al. (2005) (Chen et al., 2005), and the universal 

probe was described by Jung et al. (2013) (Jung et al., 2013). The total reaction volume was 

10 µl; a negative control containing all the components of the PCR reaction except RT 

product was included along with each marker. Quantitative PCR was performed on a 7500 

fast real-time PCR system using relative quantification method and following the 

manufacturer’s cycling conditions. 

2.11. Data analysis 

Relative quantification (RQ) is generally accepted as the best method of choice to quantify 

RNA degradation. To evaluate if RNA degradation is a good parameter for the prediction of 

the age of blood, saliva, and semen samples, Livak or ∆∆Cq method was used (Livak and 

Schmittgen, 2001). A fresh sample of blood, saliva, and semen was selected as calibrator to 

investigate how the transcripts of chosen markers degraded over time. This method involves 

three steps as follows: 

i. Normalise Cq (Target) to Cq (reference gene) for both GOI and calibrator, to generate 

∆Cq of both.  

ii. Normalise ∆Cq of the test sample to ∆Cq of the calibrator, to obtain ∆∆Cq.   

iii. Calculate expression ratio, or fold difference via the equation of 2
-∆∆Cq

 . 

The starting point for this analysis is the cycle threshold (Ct) or cycle quantification (Cq) of 

both target and reference genes. This point is termed as a number of cycles required for 

fluorescence signal to  cross the threshold (exceeds the background signal). There are two 
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ways that ΔCq was calculated, either using the formula ∆Cq = (Cq Target – Cq Reference) or 

following ∆Cq = Cq Max –Cq GOI.   

Linear regression analysis was used to predict the age of blood, saliva and semen samples. 

This was achieved by using single and multiple regression analysis with confidence (CI) and 

prediction interval (PI) at 95%. The Analysis of Variance (ANOVA) and Pearson’s 

correlation were also performed using the SPSS statistical software v 22. The level of 

significance was set at p<0.05, and the interpretation of the Pearson’s correlation coefficient 

(r) was as shown in Table 7 (Mukaka, 2012).  

 

Table 7. Rule of Thumb to interpret the level of a Correlation Coefficient. This table as described by (Mukaka, 
2012).    

Size of correction Interpretation 

0.90 to 1.00 (-0.90 to -1.00) Very high positive (negative) correlation 

0.70 to 0.90 (-0.70 to -0.90) High positive (negative) correlation 

0.50 to 0.70 (-0.50 to -0.70) Moderate positive (negative) correlation 

0.30 to 0.50 (-0.30 to -0.50) Low positive (negative) correlation 

0.00 to 0.30 (-0.00 to -0.30) Negligible correlation 
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3.1. Introduction 

The method that has revolutionised molecular biology and became a routine laboratory tool to 

study low abundance gene expression is amplification of cDNA products reverse transcribed 

from mRNA by real time polymerase chain reaction (RT-PCR). The main advantage of this 

technique is that it is easy to perform and yet it obtains the necessary accuracy, 

reproducibility, and rapid quantification of the results. To achieve this, it is necessary to 

establish not only method that is reproducible but also to identify appropriate mathematical 

model for data analysis  (Pfaffl, 2001).  

The quantification of gene expression starts with RNA extraction from biological samples, 

followed by DNA digestion, cDNA synthesis and PCR. To perform these steps smoothly and 

to obtain accurate results, optimisation of the experiment is required. A number of protocols 

and reagents are available from a variety of suppliers and it is important to choose the best 

combination of reagents and procedures for every experiment. The choice of quantification 

method is strongly dependent on the gene of interest (GOI), its abundancy, the degree of 

accuracy and whether relative or absolute quantification will be applied. Finally, it is 

important to properly investigate and compare chemical reagents such as TaqMan probe and 

SYBR Green in order to select the best option for a particular experimental set up. This 

chapter aims to investigate the commonly used reagents in the process of quantification RNA. 

These include DNA digestion kits, cDNA priming reagents and PCR chemistries including 

TaqMan probe and SYBR Green. 
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3.2. Experimental design 

Blood samples were used to optimise the experimental conditions and investigate the best 

choice of the reagents. This is because the blood is more sensitive and as such more difficult 

to optimise than either saliva or semen samples. No extraction kits or methods were 

investigated, since RNase Mini Kit (Qiagen, UK) was already validated by our group, and the 

results indicated that RNase Mini Kit is an appropriate kit for extraction of RNA, miRNA as 

well as DNA (Uchimoto, 2014). Blood samples were collected and extracted as described in 

chapter two. Two DNA digestion kits, three random primers, and two Reverse Transcriptase 

enzymes were investigated. In addition, semen extraction with (+DTT) or without (-DTT) 

reagent was also explored. The stability and sensitivity of some markers were also tested. 

3.3. Influence of different reagents on qRT-PCR experiment  

3.3.1. Reverse transcription-priming strategy 

In this study, three different primer types were compared on cDNA from the fresh blood 

samples and those processed one-week post-collection. These included random decamer (10 

bp), random hexamer (6 bp) and oligo-dT (12-18 bp) primers. The cDNA synthesised 

underwent the same protocol which was described earlier (chapter two) using M-MLV RT. 

cDNA obtained was amplified using TaqMan primers and probe targeting 5'-aminolevulinate 

synthase 2 (ALAS2) and GAPDH because both markers have poly-A tails. The ΔCq values 

were obtained for each marker for clearer representation of the data (∆Cq = 40- Cq of GOI). 

Value of 40 in the equation is commonly chosen arbitrary value for transforming Cq data and 

originate in the fact that most qPCR reactions run for 40 cycles. The results showed the 

highest ΔCq value in both genes when hexamer primers were used, indicating a highest 

quality of reverse transcription (Figure 6).  
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Figure 6. Amplifications of ALAS2 and GAPDH in blood samples with different RT primers. Column denoted with 
one asterisk (*) indicates p< 0.05, and that with NS indicates No significance. Error bars represent one standard 
deviation (N=3). 

 

Cycle threshold value (Cq) is logarithmic in nature, so it is normally distributed (Svingen et 

al., 2014).To support this statement, the normality of ΔCq was tested using Shapiro-Wilk test 

(Shapiro and Wilk, 1965), and the results showed that data are normally distributed, (p>0.05, 

Table 8).This finding allowed the usage of the T-test for each marker between fresh samples 

and those that were one-week old, and the results showed that for Hexamer and oligo dT 

primers the significance was achieved only when GAPDH marker was used, whereas, with 

decamers significant difference was achieved with ALAS2 only (Figure 6). All random 

primers gave higher amplification in fresh blood samples when compared to those processed 

one week after collection. This is particularly obvious for decamer primers in ALAS2 marker 

and hexamer primers in GAPDH. The oligo-dT, although to a lesser extent, also showed 

similar patterns in both markers. The main disadvantage of oligo-dT primer is that the target 

gene must have poly-A tail, which is not the case for all the genes. In conclusion, hexamer 

primers emerged as the best choice to prime cDNA, particularly in the aged samples. This is 
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because these primers have short nucleotides, and therefore the option to bind degraded 

fragments.  

 

Table 8. Normality test for Random primers using GAPDH and ALAS2 in blood samples.  

 
 Age Shapiro-Wilk test for normality 

test value df p value 

Decamer in GAPDH .00 .807 3 .132 

7.00 .909 3 .414 

Oligo-dT in GAPDH .00 .933 3 .501 

7.00 .952 3 .579 

Hexamer in GAPDH .00 .908 3 .411 

7.00 .909 3 .414 

Decamer in ALAS2 .00 .938 3 .520 

7.00 1.000 3 .977 

Oligo-dT in ALAS2 .00 .810 3 .139 

7.00 .945 3 .549 

Hexamer in ALAS2 .00 .970 3 .666 

7.00 1.000 3 .994 

 

 

The second experiment was conducted to investigate two different Reverse Transcriptase 

enzymes, namely Molony Murine Leukemia Virus (M-MLV) (Life Technologies, UK) and 

first strand Multiscribe synthesis (Life Technologies, UK).The cDNA was synthesised using 

hexamer primers targeting ALAS2 and GAPDH markers in fresh and one-week old blood 

samples. The finding from this experiment demonstrated that ∆Cq of both primers with 

Multiscribe first strand synthesis enzyme was higher than M-MLV enzyme (Figure 7).The T-

test also showed there is a significant difference between the primers with both RT enzymes 

in fresh and one week-old blood samples (p < 0.05).     
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Figure 7. Comparison between ALAS2 and GAPDH with different RT kits. Column denoted with one asterisk (*) 
indicates p< 0.05. Error bars represent one standard deviation (N=3). 

 

3.3.2. Assays specificity and sensitivity 

New method of interest in forensic research for the body fluids identification is the analysis of 

cell-specific mRNA expression. To date, few mRNA markers have been proposed for use in 

blood, saliva, semen, menstrual blood and vaginal secretion (Haas et al., 2011a, Haas et al., 

2008, Roeder and Haas, 2016, Wang et al., 2013b). In the present work, all assays gave 

specific results for detection of blood, saliva, and semen samples. In blood, ALAS2, HBB, 

and GYPA were investigated. The ΔCq of three markers were calculated, and the results 

indicated that HBB was abundantly amplified, ALAS2 moderately and GYPA significantly 

less (Figure 8). This finding was further supported by the study where HBB was the most 

highly expressed marker in the blood sample when compared with all other markers used 

(Haas et al., 2011b).  
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Figure 8. Amplifications of three blood markers HBB, GYPA and ALAS2. Data presented as mean ± SD (N=3). 

 

Following this, the specificity of the assay was tested in an experiment designed to examine 

two different strategies for obtaining cDNA. These were subsequently used in qPCR with 

primers targeting ALAS2, B2M, GAPDH, and ACTB markers. In the first experiment, 

following RNA extraction, Turbo DNA free kit (Thermo Fisher Scientific, UK) was used in 

order to achieve the complete digestion of DNA. The second experiment did not include DNA 

digestion step. In both cases, reverse transcription was performed in the presence of hexamer 

primers and Multiscribe RT (Figure 9). The results showed that all markers were successfully 

amplified when both cDNA were used as templates, but the amplifications occurred at a 

different rate. It is easy to conclude then that RNase mini kit, despite the claims from a 

supplier, is a co-isolation kit, meaning it will isolate both RNA and DNA simultaneously. 

Therefore, the DNA digestion is a necessary step in RNA quantification experiments. Only 
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ALAS2 and B2M primers gave no amplification with a negative sample when second cDNA 

template, created without DNA digestion (gDNA only) (Figure 10). This was expected since 

these primers span exon-exon junction and therefore will not detect genomic DNA 

(Ginzinger, 2002, Biosystimic, 2008). The ∆Cq of all the assays from the second experiment 

(without DNA digestion step and therefore with both cDNA and gDNA being made in RT 

step) were higher when compared to those obtained for the first experiment (where DNase 

was used and only cDNA was present at the end of RT), suggesting a high amplification was 

detected. These differences could be caused by the presence of Turbo DNase in the first 

experiment which could inhibited RT reaction (Haas et al., 2011b). 

Figure 9. Assays specificity in a fresh blood sample using different cDNA synthesis targeting ALAS2, B2M, 

GAPDH, and ACTB.  Blank control indicates those for which Reverse Transcriptase was not used. 
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Figure 10. Amplification of assays in different templates (cDNA, cDNA and gDNA; and gDNA). Data are 
presented as mean ± SD (N=one sample with three replicates). 

 

Figure 10 shows the specificity of four markers used. As described, it is highly likely for 

gDNA to be co-isolated during RNA extraction step. That is why extracted RNA should be 

treated with DNA digestion kit. If no DNA digestion is performed during RNA extraction 

step, as was the case with the second experiment, the negative control (blank control) from 

RT step will contain gDNA. For this reason, the markers whose primers do not span an exon-

exon junction will detect this gDNA. This was the case for GAPDH and ACTB in the present 

experiment (Figure 10). 

3.3.3. DNA digestion reagents 

To examine previously suspected influence of Turbo DNase on the amplification of the 

markers, two different DNA digestion kits, Turbo DNA free and RNase-Free DNase set, were 

compared. In this experiment, blood samples underwent RNA extraction process, followed by 

DNA digestion using each of the kit described as per suppliers’ instructions (chapter two for 

details). Further, cDNA was synthesised using hexamer primers and Multiscribe RT enzyme 
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as described previously. The quantification RT-PCR was conducted and ALAS2, B2M, 

GAPDH, and ACTB markers were targeted. The result indicated that ΔCq value (40 – Cq of 

GOI) of these markers was higher when using RNase –free DNase kit (Figure 11). Lower 

∆Cq obtained for the samples treated with Turbo DNA Free suggested that the reagents in this 

kit act as inhibitors of PCR reaction, the finding already described by Haas et al. (2011b) 

(Haas et al., 2011b).  

 

Figure 11. ∆Cq for primers using different DNA digestion kits. Column denoted with one asterisk (*) indicates p< 
0.05, and column with NS indicate no statistically significant difference. Data presented as mean ± SD (N=3). 

 

3.3.4. Influence of DTT on semen extraction 

To extract the right amount of RNA/DNA during PCR analysis that targets semen markers, 

reagents such as carrier RNA, Proteinase K with/without sodium dodecyl sulphate (SDS) and 

DTT should be taken into considerations. Carrier RNA prevents permanent binding of small 

amounts of target nucleic acid typically present in semen samples to the silica membrane of 

the RNA extraction spin column. Therefore, an addition of carrier RNA during sperm RNA 
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extraction is recommended to increase the recovery of total RNA (Kildemo, 2012) . Up to 

date, no publication was found on the influence of DTT on RNA and miRNA extraction. 

Therefore, in the present study, the influence of DTT on RNA/miRNA recovery and their 

degradation patterns were investigated. Fresh semen samples underwent total RNA extraction 

with and without DTT followed by cDNA synthesis using hexamer primers and Multiscribe 

RT. qPCR was conducted and mRNA markers including sperm protamine 1 (PRM1), 

semenogelin 1 (SEMG1), and B2M, as well as miRNA markers (891a and RNU44) were 

targeted (Figures 12 and 13).   

 

Figure 12. Quantification PCR data using TaqMan primers and probe in fresh and one-week old semen samples. 
ΔCq of PRM1, SEMG1, and B2M markers in semen with and without DTT. Column denoted with one asterisk (*) 
indicates p< 0.05. Error bars represent one standard deviation (N=3). 
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As seen in the Figure 12, ΔCq of B2M was the highest, indicated the most abounded B2M in 

the absence of DTT, whereas the highest yield of PRM1 was achieved with the extraction in 

the presence of DTT.  

 

Figure 13. Comparison between two extraction methods of miRNA markers. ΔCq of miRNA 891a and RNU 44 
markers were extracted with and without DTT. Column marked with one asterisk (*) indicates p< 0.05. Error 
bars represent one standard deviation (N=3). 

 

Unlike mRNA markers, higher yield for both miRNA was achieved in the absence of DTT. In 

addition, a significantly higher amount of miRNA 891a was extracted form fresh samples 

when compared to those that were one week old, and this was true for both extraction 

methods (Figure 13). These findings indicated that miRNA could be more susceptible to DTT 

reagent because both markers were the most abundant when DTT was avoided. It is possible 

that the location, nature and the function of miRNA markers are, at least partially, responsible 

for this behaviour. Further, the overall abundance of markers was not the same in fresh and 

one-week old samples, which could be due to the degradation of chosen markers in the older 

samples.  
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3.4. Optimisation of primers 

Optimisation of qPCR conditions is very important for the development of a robust assay. On 

the other hand, poor optimization leads to the lack of reproducibility between replicates as 

well as inefficient and insensitive assays. Two main approaches available to overcome this 

issue are optimisation of primer concentrations and/or annealing temperatures.  

All TaqMan assays were performed successfully according to manufacturer's instruction, and 

no amplification was detected in negative control. For SYBR Green assays optimisation of 

primer concentration is essential. Typically, using less primers is better and optimal results 

may require different ratios of forward to reverse primers. Therefore, primers with SYBR 

Green were optimised into 10 pmol/µl (0.5 µl of each primer per reaction) and showed good 

results in almost of the samples. However, there were few exceptions to this rule where, 

unexpectedly, amplification was detected in negative controls. A positive signal in the no 

template controls is the most commonly reported problem with SYBR Green assays. This 

could be due to contamination in the samples, as well as primer-dimer effect. Alternatively, it 

could results from the product of the SYBR Green fluorescent dye itself. Indeed, the 

amplification detected in the negative control samples when using SYBR Green dye in the 

previous study was attributed to the technique itself rather than contamination of the samples 

(Connolly and Williams, 2011). To understand this anomaly better, it is the standard practice 

in experiments with SYBR Green for the melting curve analysis to also be employed. Melting 

curve is used to confirm that the amplification detected is related to the specific target 

sequence. The results from the melting curve analysis demonstrated that all amplifications 

were indeed detected as complementary to the primer used, and that all have similar Tm. 

Example of the melting curve in Figure 14 shows the amplification peaks of ACTB marker in 

blood with approximately the same Tm confirming that all amplification occurred in the same 

target sequence, whereas the negative control with the same marker showed peak at different, 
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and much lower Tm. It is generally accepted that Tm in non-template controls that is 5 cycles 

or higher away from Tm of target sequence will not affect the interpretation of the data (Bustin 

and Nolan, 2004). 

 

Figure 14. The melting curve of the amplification of ACTB in blood using SYBR Green. Blue peaks represented 
ACTB and show that all amplification occurred in the sample target sequence. Red peaks represent negative 
control. For red peaks, the amplification occurred at the lower temperature compared to the blue peaks. This 
figure was generated from in house data.    

 

In this study, the oxygen regulated factors were also investigated and optimized with SYBR 

Green chemistry. The HIF1A and VEGFA could be used as useful markers to predict the age 

of blood, saliva, and semen. These primers were successfully detected in all of the samples in 

the present study, which will be discussed in more details in chapter five.  
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3.5. Validation of reference genes for normalising RNA in blood samples 

Control genes, previously known as housekeeping genes and now commonly referred to as 

reference genes, are frequently used to normalise mRNA levels between different samples. 

However, the expression of some of the genes commonly used as reference is shown to vary 

among different tissues or cells and can be influenced by the treatment used in the study 

(Dheda et al., 2004). Thus, the selection of reference genes for quantification of RNA studies 

is critical for accurate normalisation and correct interpretation of the data. To address this 

issue, six genes which are the most commonly used in this type of research (Moreno et al., 

2012, Roeder and Haas, 2013, Haas et al., 2011a) were investigated in blood. For this, a 

simple ΔCq approach was applied by comparing relative quantification of all assays in fresh 

and one-week old samples. All markers were amplified in both types of samples, however, 

ΔCq values showed the highest gene amplification with B2M, whereas GUSB gave the lowest 

(Figure 15). The present results were consistent with those previously reported where B2M 

was shown to exhibit the highest amplification in all body fluids (Moreno et al., 2012). T-test 

was performed to check for differences between fresh and one-week old blood samples, and 

the difference was observed only in case of GAPDH.   



73 
 

 

Figure 15. Delta Cq values of TaqMan assays in fresh and one-week old blood samples. Column denoted with 
one asterisk (*) indicates p< 0.05, and column with NS indicate no significant difference. Error bars represent 
one standard deviation (N=3 for each target in each time). 

 

The amplification levels of reference genes should remain stable between the samples 

obtained from the different tissues and under different experimental conditions (Thellin et al., 

1999, Dheda et al., 2004). At a 100% reaction efficiency, 1 cycle threshold indicates a 2-fold 

change, and the variability of the individual reference genes is reflected as standard deviation 

and range, expressed as an average fold change or maximum fold change, respectively. To 

check the stability of assays, the same data underwent the box plot analysis (Figure 16).  
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Figure 16. Box plot analysis of reference genes in fresh blood samples. A line across the box is depicted as the 
median. The box indicates the 25th and 75th percentiles and the whiskers caps represent the maximum and 
minimum values. (N=3) for each.  

 

3.6. Validation of ΔΔCq experiment 

Accurate real-time PCR results are highly dependent on reagents used, experimental set-up, 

and sample quality. Investigation of most of these factors was already described, and the 

results showed the importance of optimisation of any experiments. In addition, for the ∆∆Cq 

calculations to be valid, the PCR efficiency of target gene must be approximately equal to the 

PCR efficiency of the reference gene. The adequate method to apply and check if two 

amplicons have the same PCR efficiency is to look at how ∆Cq changes with template 

dilution. PCR amplification efficiency is determined as a percentage of the rate at which a 

PCR amplicon is generated. If a particular PCR amplicon is doubled in quantity during the 

geometric phase of its PCR amplification, then the PCR assay has 100% efficiency. If the 

amplification efficiency of the two PCR reactions is the same, the scatter plot of log input 
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amount versus ∆Cq has a slope nearly zero. Therefore, in order for a validation experiment to 

passes, the absolute value of the slope of ∆Cq vs. log input should be less than 0.1. 

A validation of an experiment is necessary to determine if the ∆∆Cq calculation is applicable. 

However, TaqMan® Gene Expression Assays have amplification efficiencies of 100% in 

high-quality samples. Applied Biosystems (AB) reports 100% efficiency (±10%) in the 

resulting assays when measured over a 6-log dilution range, provided that samples are free of 

contaminants, such as carry over phenol, proteins, and inhibitors. In this study, experiments 

were performed to investigate some primers used, to make sure they have the approximately 

the same PCR efficiency of reference genes, using the same procedure described by Life 

Technologies (Biosystems, 2004).  

For this experiment, blood samples were selected, RNA extracted, and DNA was digested 

using on-column DNase digestion with the RNase-Free DNase kit according to the 

manufacturer's protocol. Reverse transcription reaction was performed using random 

hexamers and Multiscrible First Strand Synthesis Transcriptase Enzyme (Life Technologies, 

UK) as described by manufacturer's protocol. Quantification of the cDNA yield was 

performed using a standard curve method. For this purpose, 1 μl of Burkitts Lymphoma (Raji) 

AM7856 (Life Technologies) was reverse transcribed into cDNA in a 20 μl reaction. This 

cDNA yield was used as a standard to quantify cDNA obtained from a fresh blood sample. 

The standard curves were generated by amplifying the Raji cDNA with chosen primers. The 

Raji cDNA concentration was estimated nominally, as 50 ng/μl by assuming that total RNA 

was reverse transcribed into cDNA. The Raji cDNA was serially diluted by one-third such 

that the starting concentration was 50 ng/μl and the lowest was 0.023 ng/μl creating 8 

different concentrations (50, 16.7, 5.56, 1.85, 0.62, 0.21, 0.069, 0.023 ng/μL). 2 μl of the 

template was used for each qPCR reaction.  
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As mentioned earlier, for validation of ΔΔCq calculations both efficiencies of the target and 

the reference gene must be approximately equal. In this study, primers for both the target and 

reference genes were calibrated using the same source (fresh samples). In addition, TaqMan 

assays which chosen were custom designed (on demand) and already shown to have 

amplification efficiency of 100% (Biosystems, 2004). 

 Calculation of the relative efficiencies for amplification of the target gene and the reference 

(endogenous control) gene was achieved by running standard curves for blood primers 

(ALAS2 and HBB) with B2M as a reference gene. The Cq values generated from comparable 

standard curve mass points (ALAS2 or HBB vs. B2M) are used in the ΔCq calculation. 

Finally, the ΔCq values are plotted vs. log input amount to create a semi-log regression line. 

The experiment passed the validation, because the slopes of the resulting semi-log regression 

lines are < 0.1 (Figure 17). 

 

Figure 17. Validation plot of ∆Cq vs.log input amount of RNA (HBB with B2M:0.0806; ALAS2 with B2M:0.0097). 
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The assays with SYBR Green were also validated. Here, two oxygen –regulated factors 

(VEGFA and HIF1A) were selected and normalised to ACTB as a reference gene. The 

standard curves for VEGFA, HIF1A and ACTB mRNA transcripts were linear over four 

orders of magnitude (Figure 18). The amplification efficiency of each target was 

approximately equal to that of the reference gene (ACTB), which provides the validity of 

using the ∆∆Cq method for relative quantification. 

Many studies have been conducted to validate RQ method. Validation of GAPDH as a 

reference gene with some chosen markers including B2M, RPLPO, and ACTB was 

investigated. Similar efficiencies were obtained for reference and target genes regardless of 

initial RNA concentration before performing a comparison study, and slopes were 

consistently close to zero (Moreno et al., 2012). RQ validity was also tested when the 

standard curves for EPO, VEGF, HIF1A and GAPDH mRNA transcripts were created. These 

were linear over four orders of magnitude for most of the markers, except for HIF1A. The 

amplification efficiency of each target was equal to that of the reference gene (GAPDH), 

which confirmed the validity of using the ∆∆Cq method for relative quantification  (Zhao et 

al., 2006).  

 



78 
 

  

Figure 18. Validation of the experiment by plotting ∆Cq vs. log input amount of RNA. All slopes were 
consistently close to zero (VEGFA with ACTB: 0.091; HIF1A with ACTB: 0.0848). 

 

3.7. Discussion 

RT-qPCR is a widely used method of quantification of RNA in a target sample. Many 

reagents and protocols are available from different suppliers that guarantee high quality 

performance of the assay. The selection of adequate reagents, target and reference genes to be 

used is one of the most challenging steps. Understanding the patterns of gene expression for 

any biological samples is very important because it provides information about genes relevant 

to the biological processes. However, for an adequate interpretation of the results, 

quantification of RNA studies requires an appropriate normalisation strategy.   

The aim of this chapter was divided into two parts; first, to perform the necessary 

investigation of the reagents needed to conduct RNA quantification experiment and how they 

influence accuracy and reproducibility of the results. The second part focused on the stability 

of the reference genes and their validation for RQ analysis. RT-qPCR consists of a number of 
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stages, all of which need to be completed successfully in order for the accurate results to be 

obtained. Each of these stages have different reagent and protocols which all need to be 

carefully chosen and justified. RNeasy mini kit for total RNA extraction (Qiagen) achieved 

the second highest ranking when five different kits were compared (Grabmüller et al., 2015), 

and it was selected as the main extraction kit in the present study. Reverse transcription is a 

critical step that can be performed by using variety of different random primers and RT 

enzymes available. With this in mind, Stahlberg et al. (2004) emphasised the importance of 

controlling for the variations in RT step of RT-qPCR. For example, oligo-dT primers are used 

to synthesise long, not fragmented cDNA, since these primers only anneal to the poly-A tail 

junction of the mRNA template (Ståhlberg et al., 2004). All cDNA made in this way will 

contain the 3' end of the gene. However, if a gene is long, the primer can sometimes fall off, 

leading to the missing 5' end. Random hexamer primers, on the other hand, randomly bind 

along the RNA, so that the resulting cDNA represent fragment of the gene, with all its regions 

possibly not equally represented. Therefore, if GOI is near the 3' end of the gene, then using 

oligo-dT primers to synthesise cDNA may indicate higher amplification than if random 

hexamer primers were used and vice versa. In other words, different priming strategies could 

lead to the differences in the way different regions of the gene are represented in the cDNA 

that is being synthesised. This could then lead to the differences in PCR-generated 

amplification levels of these regions.  

In this chapter, the comparison of three different random primers was conducted, and the 

result showed GAPDH and ALAS2 were more abounded when random hexamers were used 

(Figure 6), confirming them as the best choice to generate RT-qPCR experiment in the present 

study. These findings were in agreement with the study that reported approximately 19-fold 

increase in the calculated mRNA copy number from cDNA synthesis reactions primed with 

random hexamers (Zhang et al.,1999). Another study found that Cq value was not stable 
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when five genes were compared including β-tubulin, GAPDH, Glut2, CaV1D, and insulin II 

genes, using random hexamers, oligo-dT, and gene-specific reverse transcription primers. It 

was suggested that the efficiency of the reverse transcription reaction depends on the priming 

strategy and also varies among different genes (Ståhlberg et al., 2004).  

Okello et al. (2010) assessed the sensitivity and reproducibility of 11 commercially available 

Reverse Transcriptase enzymes in cDNA synthesis from low copy number RNA levels, 

including M-MLV. Their findings supported use of Accuscript or Superscript III when 

dealing with low copy number RNA levels rather than using M-MLV (Okello et al., 2010). 

This was consistent with the data presented in this chapter where for both ALAS2 and 

GAPDH the highest ΔCq was obtained with Multiscribe RT enzyme (Figure 7).  

DNA digestion is an essential step for quantification of RNA experiment, because RNeasy 

mini kit is a co-isolation kit. Consequently, gDNA would amplify if DNA digestion step was 

missed. In addition, in this study, not all primers spanned an exon-exon junction expecting to 

amplify DNA (Figure 10). On-column DNase digestion with the RNase-free DNase kit was 

proven to be the preferred method of DNA digestion because it did not influence or inhibit 

reverse transcription and qPCR and it generated acceptable ∆Cq when compared with Turbo 

DNA free kit (Figure 11). This was consistent with the previous reports that showed that an 

addition of an extra volume of Turbo DNase inhibited the PCR reaction (Haas et al., 2011b).  

DTT is a reducing agent and its influence on RT-qPCR was tested in semen markers. The 

results showed that ΔCq of PRM1 was significantly increased in the presence of DTT, 

whereas ΔCq of SEMG1 remained relatively stable (Figure 12). This was, perhaps, not 

surprising, since SEMG1 is a seminal vesicle and prostate specific gene and PRM1 is 

spermatozoa specific gene. Hence, disulfide cross-links in the protamine surrounding the 

sperm are broken when treated with reducing agent such as DTT (Chapman et al., 1989, 
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Nakanishi et al., 2014). In miRNA markers of the semen samples, on the other hand, ΔCq of 

891a and RNU44 was increased in the absence of DTT (Figure 13). The main reason could be 

the high sensitivity of miRNA markers to DTT or higher overall volume which may influence 

the amplification rate of these markers. Treatment of sperm cells with 100 mM DTT resulted 

in gradual decrease in the percentage of sperm cells/mL cell suspension observed over a 

period of 20 minutes (De Gannes, 2014). 

The selection of GOI and reference gene for normalisation is one of the most important steps 

during RT-qPCR. Selecting the markers with adequate specificity, sensitivity, and abundance 

is an imperative. Here, ALAS2 and HBB emerged as specific blood markers and showed 

higher abundance than GYPA (Figure 8). The specificity of ALAS2 as a blood marker was 

investigated by evaluating highly specific mRNA markers to identify body fluids; eight 

markers were tested in a single and multiplex PCR reaction when ALAS2 showed a high 

specificity to detect only blood samples (Haas et al., 2011b). Another study performed by 

Roeder and Haas (2013) showed that ALAS2 was detected at a low frequency in a non-target 

body fluid such as menstrual blood and cervicovaginal fluid (CVF) (Roeder and Haas, 2013). 

Successful qPCR was conducted using both fluorescent chemistries, and initial screening for 

all assays was conducted. Boxplot analysis was carried out to check for outlier data and to 

provide more information about the stability of sex reference genes. The results demonstrated 

that GAPDH was the most stable reference gene (Figure 16). This was in contrast with the 

study conducted to assess the level of 13 reference gene including GAPDH, B2M, and ACTB. 

The results showed that GAPDH, B2M, and ACTB had an average fold of >2 and a maximum 

variability of 20-to 35-fold which made them unsuitable as internal references in that 

particular experiment (Dheda et al., 2004). 
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DNA melting curve analysis that uses SYBR Green I is widely used in the identification of 

body fluids (Stewart et al., 2015, Li et al., 2013a, Antunes et al., 2016). Its advantage is that it 

enables diagnostic even in case of a failed reaction. In the study for determining the 

applicability of SYBR Green chemistry for Body Fluid Identification test (BFI), the melting 

curve analysis was performed to ensure that fluorescence detected did indeed correspond to 

the targeted amplicons (Connolly and Williams, 2011). In the present study, melting curve 

analysis was performed and the results showed that all of the amplifications were from the 

targeted markers:  a series of peaks with the same Tm value was detected (Figure14). If, on the 

contrary, all of the amplification was the result of contamination then a series of peaks with a 

variety of Tm values would be obtained (Connolly and Williams, 2011). For a current study, 

the melting curve was applied, and the results showed all amplifications were detected in real 

target sequences.  

Relative quantification is the best method to quantify RNA in a biological sample. However, 

to obtain an accurate result and avoid any unspecific amplification, the experiment should be 

validated. As mentioned previously, relative quantification is valid only when amplification 

efficiency of target genes and reference gene is approximately equal (Biosystimic, 2008, 

Livak and Schmittgen, 2001). Therefore, the variation in efficiencies between markers and the 

chosen reference genes ALAS2 with B2M, HBB with B2M, HIF1A with ACTB, and VEGFA 

with ACTB were examined at various input concentrations of cDNA. In all cases, the 

verification of the experiments passed because the slopes were < 0.1. 

3.8. Conclusion  

That experimental variation in reverse transcription-qPCR is essentially attributable to the 

reverse transcription step. Oligo-dT primers are not recommended as they require presence of 

poly-A tail for cDNA synthesis, and as such, they are sensitive to RNA degradation. Random 

hexamer primers, on the other hand, generate a short cDNA, and as such are considered not to 
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be affected by RNA degradation. Multiscribe Reverse Transcriptase enzyme is also 

recommended to prime cDNA, since it showed higher ∆Cq than M-MLV, and it is suitable for 

the degraded sample (those with the low copy number). 

Reverse transcription followed by PCR is confirmed to be a successful way for quantification 

any target gene. Relative quantification can be performed using a TaqMan probe or SYBR 

Green chemistries. In this chapter, both methods gave excellent preliminary results. SYBR 

Green has many advantages over TaqMan because it is cheaper, simpler, and its specificity 

can be easily improved by performing post-run melting curve analysis. Finally, it is important 

to demonstrate that starting RNA concentration has no significant effect on the amplification 

efficiency of any given marker. Indeed, similar efficiencies were detected between reference 

and target genes regardless of initial RNA concentration before performing a comparison 

study utilizing a comparative Cq method. 
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Chapter Four: Degradation of mRNA as an 

indicator to predict the age of biological stains using 

TaqMan Markers 
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4.1. Introduction  

Establishing age prediction of any biological sample would be one of the most significant 

findings in forensic science. The basic question that should be answered during the 

investigation of any crime is, who left the biological evidence and when? DNA analysis using 

PCR is able to identify the person that biological sample belongs to; however, it provides no 

information about the time when the sample was deposited. 

TaqMan probe is one of the most common methods used to perform gene expression analysis. 

It relies on more specific detection of signal by the introduction of fluorogenic-labelled probes 

that hybridise to the target sequence during amplification in real-time PCR systems. The assay 

uses the 5‵-3‵ exonuclease activity of Taq DNA polymerase, to cleave the probe and release 

the fluorescence signal. The intensity of the signal measured during an exponential phase of 

PCR is proportional to the amount of target DNA at the start of the assay (Navarro et al., 

2015). 

When compared to DNA, cellular content of RNA is eight times more abundant.  However, 

this molecule is also more labile and has a fast rate of degradation than DNA, all of which 

could allow for the estimation of the ex-vivo age of biological specimens (Smith, 2010). Many 

studies have been conducted in an attempt to solve this dilemma. Simard et al. (2011-2012) 

tested the stability of four different RNA targets up to six months old, namely 18S rRNA, β-

actin mRNA, GAPDH mRNA and PPIA mRNA obtained from blood, semen, and saliva 

stains to determine TSD  of these body fluids (Simard et al., 2011, Simard et al., 2012). No 

significant difference between rRNA and mRNA decay rates was observed, whereas 

Anderson et al. (2005) found a good correlation between relative mRNA/18S rRNA in the 

approximately the same time frame (Anderson et al., 2005). In addition, the ratio of GAPDH 
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and β-actin was also investigated, and the result showed a linear downward expression of both 

genes over time (Connolly et al., 2011). 

4.2. The problem under investigation 

It is usual to find the suspect’s DNA in the area where the victim was, but the problem that 

forensic science faces is how to estimate the age of any biological samples. One example that 

proves the importance of determining the age of the sample and its impact on the resolution of 

the crime is Eltham district case in London in which young woman was seriously injured. 

What followed was the arrest of her friend and alleged lover because his clothes were found 

to contain number of blood spots that belonged to the victim. Despite this, no conviction 

occurred since the examiner was unable to claim the moment in which the blood was 

deposited on his shirt.  Therefore, the perpetrator of this crime remains unknown (Guo et al., 

2013). In an attempt to overcome this limitation of forensic science, the aim of this chapter 

was to generate mathematical models based on the degradation patterns of selected TaqMan 

markers over a period of time at the room temperature.  

4.3. Experimental design  

 

The current study was conducted to quantify degraded RNA in old stains relative to the fresh 

sample (sample processed at the time zero) as a calibrator to predict the age of any biological 

stains via a formula of 2
-∆∆Cq

.  

RT-qPCR technique was conducted using TaqMan probe markers for blood, saliva, and 

semen in two different time- frames. One-week experiment was only conducted for blood, 

while one-month long study was performed for blood, saliva, and semen, to investigate the 

degradation pattern of chosen primers. Simple and multiple regression analysis (SRA & 

MRA) were employed in an attempt to generate models that could be used to predict the age 

of the samples under investigation.   
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4.4. Results 

The photometrical assessment of quantity and purity, as well as the measurement of RNA 

integrity of each sample was required. Absolute quantification test for RNA is currently not 

reliable (Uchimoto, 2014), thus, quantity and quality of extracted RNA was verified by an 

average A260/A280 and A260/A230 for proteins and carbohydrates, respectively. The 

acceptable values were obtained, because A260/A280 and A260/A230 values greater than 1.8 

and 2.0 confirmed lack of proteins and carbohydrates contamination, respectively (Teare et 

al., 1997, Silva et al., 2015).  

4.4.1. Quantification of RNA degradation in one-week-old samples 

In this experiment, relative quantification was performed on blood samples using TaqMan 

probe only. The ALAS2 marker was selected as a target gene to look at its pattern of 

degradation over a given period of time (one week), while GAPDH and B2M were chosen as 

reference genes for normalisation. Therefore, target (ALAS2) level was normalised to 

endogenous control (GAPDH and B2M) level and then for any given day (e.g. day 7 in the 

present case) amplified at different level (increase or decrease) of the target gene at day 0. 

This was achieved by obtaining ΔCq of chosen markers, and subsequent calculation of RQ 

(Figure 19). 
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Figure 19. The degradation patterns of ALAS2, GAPDH, and B2M in blood samples using TaqMan chemistry. (A) Delta cycle quantification (∆Cq) of assays over one week. (B) 
RQ patterns of ALAS2/GAPDH and (C) B2M (ALAS2/B2M) as reference genes. (D) The RQ patterns of B2M with GAPDH as the reference gene (B2M/GAPDH). Column 
denoted with one asterisk (*) indicates p< 0.05, and column with NS indicates no significant difference. Error bars represent one standard deviation (N=56).
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As shown in Figure 19 A, the B2M was the most abundant marker detected, and this finding 

was also supported by a previous study conducted to determine the effective housekeeping 

genes for the quantification of mRNA for forensic applications (Moreno et al., 2012). The 

delta-Cq (∆Cq) in qPCR data had symmetrical and normal distribution, whereas, the 

distribution of relative gene expression was skewed (Guo et al., 2010). The normality test was 

employed for ∆Cq and RQ of blood markers. The sample size was 56 so the Shapiro-Wilk test 

(Shapiro and Wilk, 1965) was used to confirm a normal distribution of the ∆Cq data (p >0.05, 

Table 9). In addition, the Q-Q plots were produced. When there is a normal distribution, the 

scatter should be close to the line, which was the case in the present experiment (Figure 20. A, 

B, and C). In contrast, RQ of blood markers showed skewed distribution, with p < 0.5 (Table 

10. Figure 20 D, E, and F).    

Statistical differences using the paired samples T-test between fresh samples (calibrator) and 

other time points over a period of week was employed with ∆Cq for each marker. The result 

showed comparable levels of target gene between different time points, except for GAPDH at 

day seven and B2M at day three and six. RQ was calculated for ALAS2 marker using 

GAPDH and B2M for normalisation, ALAS2/GAPDH and ALAS2/B2M, respectively. In 

addition, both reference genes were also normalised with each other (B2M/GAPDH). The 

degradation patterns of selected markers were investigated, and two types of curves were 

explored. The results indicated that ALAS2/GAPDH had the strongest linearity with an R
2
= 

0.65, whereas, B2M/GAPDH had highly polynomial curve with an R
2
= 0.81 (Figure 19. B, 

and D, respectively). Therefore, ALAS2/GAPDH and B2M/GAPDH emerged as the most 

appropriate combinations for blood stain age prediction in the period of up to 7 days.  
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Table 9. Test of Normality of Delta Cq (∆Cq) of blood markers in one-week period. 

 

 

Shapiro-Wilk test 

test value df p value 

Delta Cq (∆Cq) of ALAS2 .969 56 .153 

Delta Cq (∆Cq) of B2M .971 56 .192 

Delta Cq (∆Cq)  of GAPDH .973 56 .235 

 

 

Table 10. Test of Normality of RQ for blood markers during one-week period. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shapiro-Wilk test 

test vale df p value 

RQ of ALAS2/B2M .911 56 .001 

RQ of ALAS2/GAPDH .914 56 .001 

RQ of B2/GAPDH .853 56 .000 
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Figure 20. Normal Q-Q plot of (A, B, and C) using ∆Cq of ALAS2, B2M, and GAPDH in blood respectively. (D, E, 
and F) for RQ of ALAS2/GAPDH, ALAS2/B2M, and B2M/GAPDH in blood respectively. The x-axis represents data 
points. The y-axis is the expected data point if the population distribution of the variable is normal with the 
population mean and standard deviation. The line is the sample mean ±2 x standard deviation.  
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To generate any model, the correlation between dependent variable (DV) Y and independent 

variable (IV) X should be detected. Therefore, the relationship between DV (Age) and IV 

(RQ) was investigated. Pearson’s correlation was conducted using RQ of ALAS2/GAPDH, 

ALAS2/B2M, and B2M/GAPDH against actual age of the sample (Appendix 4. Table 44). 

Moderate negative correlations r = -0.60, and r = -0.64, and low negative correlation r = -0.45 

were detected for ALAS2/B2M, B2M/GAPDH, and ALAS2/GAPDH, respectively. A simple 

regression analysis with CI and PI of 95% was performed to assess the ability of RQ of 

chosen markers to predict the age of unknown samples. Linear, quadratic and cubic curves 

were tested to find an optimal curve fitting the model. To achieve that, RQ of 

ALAS2/GAPDH, ALAS2/B2M, and B2M/GAPDH was plotted individually against the 

actual age of sample. The graphs show different patterns of degradation for ALAS2 marker, 

with R
2
 = 0.39 and R

2 
=

 
0.22 when normalised to B2M and GAPDH, respectively (Figure 21. 

A and B), while R
2
 = 0.43 for B2M/GAPDH (Figure 21 C). Three equations were generated 

for regression line and are listed in Table 11. Once regression equation was obtained, the 

prediction age was calculated for each model and plotted again with the actual age (Figure 21. 

D, E, and F).   

 

Table 11. Simple regression analysis model generated in blood during 7 days.   

Type of 
sample 

Frame 
time  

Number 

of 
samples 

Pearson’s 
correlation 

Target 
gene 

Reference 
gene 

Optimal 
curve 

Estimated curve 
equation 

R
2
 MAD 

(day) 

Blood Week 56 -0.45** ALAS2 GAPDH Quadratic y=4.51+3.61x-6.26x
2
 0.22 ±1.7 

Blood Week 56 0.60** ALAS2 B2M Cubic y=5.02-5.08x+9.13x
2
-8.84x

3
 0.39 ±1.4 

Blood Week 56 -0.64** B2M GAPDH Cubic y=5.04-4.84x+7.34x
2
-7.3x

3
 0.43 ±1.4 

Notes: (*) represented of p<0.05 and (**) p<0.01.  
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Figure 21. Simple regression analysis of chosen markers in blood samples over a one-week period. RQ of (A) 
ALAS2/B2, (B) ALAS2/GAPDH, and (C) B2M/GAPDH. (D-F) Age prediction obtained with the same models. The 
solid red line in the graph represents the modelled space where predicted age and actual age are equal. Small 
dashed green lines indicate confidence limits. Large dashed green lines indicate prediction limits (N=56). 
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Wide CI depicted on the graphs above are a consequence of high SD (Motulsky and 

Christopoulos, 2003). Further, difference in SD values could also explain high R
2
 value of 

B2M/GAPDH when compared to either ALAS2/GAPDH or ALAS2/B2M. Overall, the 

models presented above were able to predict to a certain extent the actual age of the sample 

especially in case of samples up to 3 days old.  

Once the equation was obtained, the mean age prediction was also calculated (Appendix 1. 

Table 32). Figure 22 shows the mean age prediction plotted against the actual age. 

ALAS2/B2M and B2M/ GAPDH were able to predict a fresh sample while ALAS2/GAPDH 

was not. In addition, models ALAS2/GAPDH, ALAS2/B2M, and B2M/ GAPDH were also 

able to predict the age at day 2, 3, 4, and 5 reasonably close to observed values. Two 

parameters were established to evaluate which model was the best, an R
2
 value of model 

linearity and the standard deviation of predicted age. Overall, the models showed good 

prediction ability with the highest R
2
 = 0.54 generated with ALAS2/GAPDH model. The 

stability of reference gene during any relative quantification study plays a crucial role in 

obtaining a responsible data analysis. In this experiment, the same marker (ALAS2) obtained 

two different R
2
 values when using two different reference genes.  
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Figure 22. The age prediction plotted against actual age. (A) ALAS2/GAPDH model (B) ALAS2/B2M model(C) 
B2M/GAPDH model. Data presented as Mean ± SD. 
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4.4.2. Degradation of RNA during one-month period 

The quantification cycle (Cq) is a cycle number at which the exponential amplification is 

detected above the background. The differences in the Cq value correspond to differences in 

the amount of template, therefore, the amount of template is the likely cause of the difference 

in Cq values for short decomposition times. On the other hand, the stain with longer 

deposition time shows clearer degradation pattern than the recent stain (Simard et al., 2011, 

Williams et al., 2013). For this reason, a decomposition of time frame was increased to 28 

days.  

All current qPCR detection systems use fluorescent technologies and there are varieties of 

different template detection methods. In the present study, relative quantification was 

performed using TaqMan probe chemistry in blood, saliva and semen stains that were allowed 

to decompose for up to 28 days. This was similar to the study that used the comparative delta-

delta Cq (2 
-∆∆Cq

 ) method to estimate PMI over 13 days, using the transcript abundances of 

mRNA, miRNA, 18S rRNA, and U6 snRNA in rat’s spleen (Lv et al., 2014).  

4.4.3. Age prediction using TaqMan chemistry 

Reverse transcription PCR (RT-qPCR) is a common method to quantify mRNA degradation. 

The link between stain ageing and the degradation pattern of RNA was detected by Anderson 

and co-workers in 2005 when the relative amount of 18S rRNA compared to β-actin mRNA 

was explored (Anderson et al., 2005). Therefore, in the present study, the sets of mRNA 

TaqMan primers and probes were investigated in blood, saliva, and semen samples.  
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4.4.3.1. Blood samples 

In blood samples, ALAS2, HBB, and GYPA were investigated in an attempt to obtain models 

which may be useful to predict the unknown age of samples. All transcripts were normalised 

with B2M as a reference gene. In this experiment, most of the markers examined were 

successfully detected and showed tendency towards linear correlation with time. This was not 

the case with GYPA which was less abundant than other transcripts and showed a low 

correlation with age (Figure 23). Consistent with previous reports, HBB emerged as the most 

abundant marker in the present study (Haas et al., 2011a). The same statistical analysis which 

was performed in one-week experiment was also employed, therefore, T-test analysis was 

preformed between fresh samples and later time points for each marker, and the results 

showed comparable ΔCq values for the samples up to one week old, except in case of GYPA. 

For samples older than one week, decrease in ΔCq when compared to the fresh samples were 

observed for most of the markers examined, except HBB and GYPA.  

RQ of GYPA with B2M showed weak linear correlation and large standard deviation 

suggesting that GYPA was not sensitive enough and had the lowest ∆Cq value. This finding 

was consistent with previous reports of GYPA demonstrating only a medium sensitivity for 

detection limit of RNA (Xu et al., 2014). The RQ for ALAS2 and HBB were also obtained 

and the trend was checked with two types of curves. The results indicated that HBB marker 

had a strong linear and polynomial relationship with the actual age with corresponding R
2 

values of 0.92 and 0.99 respectively. Further, The ALAS2 also generated strong linear and 

polynomial correlations with R
2
 value of 0.87 and 0.98, respectively (Figure 23. B and C).    
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Figure 23. Amplification of ALAS2, HBB, and B2M in blood using TaqMan chemistry. (A) The ΔCq of markers ALAS2, HBB, GYPA and B2M over 28-day period. RQ of (B) 
ALAS2/B2M (C) HBB/B2M and (D) GYPA/B2M in blood using TaqMan chemistry. Column denoted with one asterisk (*) indicates p< 0.05, column with two asterisks (**) 
indicates p<0.01 and column with NS indicates no significant difference. Error bars represent one standard deviation (N=40 for ALAS2 and HBB; GYPA N=20).
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As mentioned earlier, the correlation between dependent (real age) and independent variables 

(RQ) should be determined. Therefore, Pearson’s correlation was also performed, and a strong 

negative correlation that was highly statistically significant (p˂0.01) for RQ of both 

ALAS2/B2M and HBB/B2M (R
2
 = -0.86 and -0.90, respectively). On the other hand, GYPA 

was weakly correlated with an R
2
 = -0.32 (Table 12). A strong negative correlation means that 

RQ of selected markers decreases as actual time increases, and this could allow the use of SR 

analysis to obtain models to predict the age of known bloodstains during one-month period. 

Therefore, a single regression analysis with 95% confidence and prediction interval was also 

performed. The predictive equations were obtained to determine the age of an unknown 

sample resulted from a regression line of RQ parameter. The RQ of ALAS2/B2M and 

HBB/B2M was plotted against actual age and the result showed a good negative relationship 

(R
2
 = 0.75 and 0.82, respectively) (Figure 24. A and B). Finally, two formulas based on the 

optimal curve were generated (Table 12), then the predicted age (Appendix 1.Table 34) was 

plotted against the actual age. Both models generated good predictions, which is confirmed by 

a number of points located within the confidence and prediction intervals at 95% (Figure 24. 

C and D).  

Table 12. Summary of models obtained in blood using a simple regression analysis for 28 days period. 

Not: * represented of p< 0.05and ** represented that p< 0.01 

Table 12 shows the relationship between Pearson’s correlations, R
2
 value, and mean absolute 

deviation (MAD). When Pearson’s correlation increases, R
2
 becomes a higher, while MAD is 

decreases, and the vice versa. The strongest correlation was detected in blood with HBB/B2M 

model (r = -0.90) and this gave highest R
2
 value (0.82). Therefore, could be considered that 

Type of 

sample 

Frame 

time 

Number of 

samples 

Pearson’s 

correlation 

Target 

gene 

Reference 

gene 

Optimal 

curve 
Estimated curve equation R

2
 

MAD 

(day) 

Blood Month 40 -0.86** ALAS2 B2M Linear y=27.19-26.5x 0.75 ±3.8 

Blood Month 40 -0.90** HBB B2M Linear y=26.76-26.15x 0.82 ±3.2 

Blood Month 20 -0.32 GYPA B2M Quadratic y=17.23+2.48x-10.23x
2
 0.11 ±8.1 
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HBB/B2M is the best model of those examined to predict the age of bloodstains that are up to 

28 days old, with MAD ±3.2. 

 

Figure 24. Regression analysis to obtain models in blood samples using TaqMan chemistry. (A and B) Relative 
quantification of ALAS2 and HBB with B2M as a reference gene, respectively. (C and D) Prediction age 
generated with ALAS2/B2M and HBB/B2M models, respectively. The solid red line in the graph represents the 
modelled space where predicted age and real age are equal. Small dashed green lines indicate confidence 
limits. Large dashed green lines indicate prediction limits.   
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Figure 25. The mean predicted age fitted with actual age in blood models. (A) ALAS2/B2M model (B) HBB/B2M 
model. Error bars represented one standard deviation. 

 

Figure 25 shows the mean age prediction plotted against the actual age to compare the fit of 

all the models used. Overall, two models gave good fit with high R
2
 values, with some data 

points, such as point zero (fresh sample), 7 and 21 days in HBB/B2M model falling exactly 

on the regression line. The comparison between two different times (7 and 28 days) showed 

an improved R
2
 value, which was especially obvious with ALAS2 marker used in both 
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experiments. It is possible that the deposition time strongly influenced clearer detection of the 

degradation patterns, as previously reported (Williams et al., 2013). 

4.4.3.2. Saliva samples  

 Saliva age prediction is critical in the situations when the saliva is only the biological 

evidence recovered. With saliva samples perhaps more often than with other types of samples, 

determination of the TSD is important in order for sample to be used as a valid evidence. For 

example, some samples such as cigarette butts, cans of drinking, and envelopes are likely to 

be found before the crime was committed, therefore prediction of TSD would allow the 

forensic investigation to focus only on the relevant evidence that fits into a frame time when 

crime was committed. In order to achieve this, the same procedures and statistical methods 

used for blood samples were also performed on saliva in an attempt to predict the age of these 

stains. Two TaqMan primers and probe were investigated, namely HTN3 and MUC7, and 

both were normalised to GAPDH as a reference gene. The HTN3 and GAPDH markers 

successfully detected, whereas MUC7 marker was not sensitive enough and therefore 

excluded. The HTN3 primer was also previously reported as the most abundant and sensitive 

primer in saliva samples (Setzer et al., 2008).  
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Figure 26. ∆Cq of HTN3 in saliva samples using TaqMan probe. Column denoted with one asterisk (*) indicates 
p< 0.05, column with two asterisks (**) indicates p<0.01 and column with NS indicates no significant difference. 
Error bars represent one standard deviation. N= 30 (six samples with five time points). 

 

Figure 26 shows ∆Cq of HTN3 and GAPDH over 28 days period. The result demonstrated 

that GAPDH was more abundant than HTN3 at all-time points. The T-test analysis showed 

significant differences of HTN3 marker at all-time points when compared to the fresh sample, 

whereas, GAPDH was significantly different at 7 and 14 days only. The RQ of HTN3 was 

plotted and the result showed a weak linear relationship with the actual age, whereas a strong 

linear relationship with R
2 

= 0.95 was observed for the mean ∆Cq of HTN3 (Cq max – Cq 

target). This is likely due to decrease in ∆Cq of GAPDH over the first three-time points. Cq of 

the target gene should be strongly correlated with actual age, but at the same time Cq of 

reference gene should be stable in order to obtain the accurate normalisation. In this 

experiment, the mean ∆Cq of HTN3 has a strong R
2
 value, which was decreased in 2

-∆∆Cq
 

calculation.  
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Simple regression was employed using RQ of HTN3/GAPDH and ∆Cq of HTN3 (Figure 27. 

A and B), and the results showed higher R
2
 value of ∆Cq HTN3 when compared to RQ 

HTN3/GAPDH. The two equations were obtained and listed in Table 13. The age prediction 

was calculated (Appendix 1. Table 34), and the data were plotted against the actual age. The 

results demonstrated that the prediction limits of RQ of HTN3/GAPDH are wider than for 

∆Cq of HTN3 (Figure 27. C and D). In addition, almost of the data generated from ∆Cq of 

HTN3 model fitted within the set confidence and prediction intervals, especially at day 21. 

 

Table 13. Saliva models obtained using simple regression analysis up to 28 days. 

Type of 

sample 

Frame 

time  

Number 

of 

samples 

Pearson’s 

correlation 

Target 

gene 

Reference 

gene 

Optimal 

curve 

Estimated curve equation R
2
 MAD 

(day) 

Saliva Month 30 -0.49** HTN3 GAPDH Quadratic y=11.5+43.28x-52.29x
2
 0.45 ±5.8 

Saliva Month 30 0.87** HTN3 
No 

reference* 
Quadratic y=85.64-12.2x+0.34x

2
 0.79 ±3.3 

Note: * represented of p<0.05 and ** represented that p<0.01, no reference means HTN3 marker without normalisation. 

 

Figure 28 shows the mean age prediction obtained with ∆Cq model was very close to an 

actual age (R
2 

= 0.98). These data suggest the possibility of using ∆Cq of HTN3 instead of 

RQ to predict the age of saliva. This finding was also supported by Simard et al. (2012) who 

suggested of using individual markers for age prediction (Simard et al., 2012).  
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Figure 27. Regression analysis in saliva (A) ΔCq of HTN3 and (B) RQ of HTN3/GAPDH. (C and D) Age prediction 
using previous models, respectively. The solid red line in the graph represents the modelled space where 
predicted age and actual age are equal. Small dashed green lines indicate confidence limits. Large dashed green 
lines indicate prediction limits.   
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Figure 28. Age prediction generated by (A) ΔCq HTN3 model (B) RQ of HTN3/GAPDH model. Data presented as 
Mean ± SD. 

 

4.4.3.3. Semen samples  

 

Semen age prediction using TaqMan chemistry was also employed, and for this experiment, 

two semen specific primers and probes, namely PRM1 and SEMG1 were investigated and 

normalised using B2M as a reference gene. In this experiment, the influence of DTT reagent 

was also investigated over a 28 days period. In presence of DTT, all markers were detected, 

and the result showed that PRM1 was the most abundant (Figure 29 A), whereas in the 

absence of DTT the B2M marker was the most abundant (Figure 30 A).   
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The same procedure and the same analysis conducted on blood and saliva were also 

performed in semen samples. In the presence of DTT. The RQ was calculated for 

PRM1/B2M, SEMG1/B2M and PRM1/SEMG1. Moreover, for all markers selected, a linear 

downward trend was observed with R
2
 value of 0.92, 0.86, and 0.91 respectively (Figure 29. 

B, C and D). In contrast, in the absence of DTT the correlation of the same markers with the 

actual age was decreased (Figure 30. B, C, and D).  

Pearson’s correlation (Table 14) also showed a strong negative relationship between semen 

markers (+DTT) and actual age, and this finding confirmed the possibility of using regression 

analysis to obtain model for semen age prediction. Therefore, the RQ was plotted against 

actual age, and the results showed that all of the markers used were able to generate an 

optimal cubic curve with R
2
 value of 0.64 for both PRM1/B2M and SEMG1/B2M models, 

and 0.71 for PRM1/SEMG1 (Figure 31. A, B, and C). All three equations obtained are 

presented in Table 14.   
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Figure 29. Semen markers with DTT (+DTT). (A) ΔCq of markers PRM1, SEMG1, and B2M in semen samples using TaqMan chemistry. RQ of (B) PRM1/B2M (C) SEMG1/B2M 
and (D) PRM1/SEMG1. Column denoted with one asterisk (*) indicates p< 0.05, column with two asterisks (**) indicates p<0.01 and column with NS indicates no significant 
difference. Error bars represent one standard deviation (N= 30). 



109 
 

Figure 30. Semen markers without DTT (-DTT) over 28 days period. (A) ∆Cq of PRM1, SEMG1, and B2M in semen samples. (B and C) RQ of PRM1 and SEMG1 with B2M as 
reference gene, respectively. (D) RQ of PRM1 with SEMG1 as reference gene. Column denoted with one asterisk (*) indicates p< 0.05, column with two asterisks (**) 
indicates p<0.01 and column with NS indicates no significant difference. Error bars represent one standard deviation (N=30). 
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Figure 31. Simple regression analysis using semen TaqMan markers. (A - C) RQ of PRM1/B2M, SEMG1/B2M, 
and PRM1/SEMG1, respectively.  (D -F) Actual age was plotted with predicted age, which was generated using 
previous models. The solid red line in the graph represents the modelled space where predicted age and actual 
age are equal. Small dashed green lines indicate confidence limits. Large dashed green lines indicate prediction 
limits (N=30). 
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Table 14. Summary of semen models obtained using simple regression analysis over a 28 days period. 

Type 

of 
sample 

Frame 
time  

Number 

of 
samples 

Pearson’s 
correlation 

Target 
gene 

Reference 
gene 

Optimal 
curve 

Estimated curve 
equation 

R
2
 MAD 

(day) 

Semen Month 30 -0.77** PRM1 B2M Cubic 
y=24.53-28.06x+49.02x2-

44.45x3 
0.64 ±4.7 

Semen Month 30 0.75** 
SEMG

1 
B2M Cubic 

y=23.47-19.28x+38.44x2-
42.34x3 

0.64 ±4.4 

Semen Month 30 -0.81** PRM1 SEMG1 Cubic 
y=23.71-29.19x+56.68x2-

49.74x3 
0.71 ±4.3 

Note: * represented of p<0.05 and ** represented that p<0.01 

Figure 30 shows decreased R
2
 value when compared to the same value in Figure 29, which is 

likely due to the large standard deviation of RQ detected within each week. Using the formula 

generated (Figure 31. A, B, and C), the age prediction of semen was obtained (Appendix 

1.Table 34), and a number of data points were located within the confidence intervals region, 

especially in case of PRM1/B2M and SEMG1/B2M models at day 7 until day 28 (Figure 31. 

D, E, and F).  

To support that, the predicted age using semen models (+DTT) was calculated and plotted 

against the actual age. As can be seen in Figure 32, all models demonstrated good fit, with 

some of the data points overlapping actual time points, especially at 0, 14 and 21 days. The 

best fit was obtained using PRM1/SEMG1 model (R
2
 = 0.87). 

The comparison between the same marker with and without DTT was performed. The same 

procedure and the same statistical analysis were conducted on the semen markers in the 

absence of DTT. As expected, the results showed that RQ of the markers were weakly 

decreased and generated low R
2
 value. The mean age prediction was calculated 

(Appendix1.Table 33) and plotted against the actual age, and the result showed that DTT had 

a clear influence on these models, because no strong R
2
 was obtained except with 

SEMG1/B2M, and large MAD was detected (Figure 33). This finding could be related that 
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SEMG1 was not more influence, because as mentioned early this gene is located in the 

surface of semen cell.     

 

Figure 32. Age prediction that was obtained in semen (+DTT) with TaqMan chemistry. (A) Scatterplot of the 
mean age prediction using (A) PRM1/B2M, (B) SEMG1/B2M and (C) PRM1/SEMG1 model. Data presented as 
Mean ± SD. 
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Figure 33. The age prediction in semen without DTT extraction (-DTT). (A, B, and C) Age prediction was 
calculated using models PRM1/B2M, SEMG1/B2M and PRM1/SEMG1, respectively. Data presented as Mean ± 
SD (N=30). 
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4.4.3.4. Multiple regression analysis  

As an attempt to improve models obtained above, multiple regression analysis (MRA) was 

also employed. MRA is used to predict value of the variable using more than one independent 

variable (IV). In the one-week time frame, ALAS2/GAPDH, ALAS2/B2M and B2M/GAPDH 

were all tested. The data generated from this analysis (Appendix 4.Table 49) showed that two 

variables, ALAS2/GAPDH and ALAS2/B2M show significant changes over time, suggesting 

that both contribute in a new model for prediction of the bloodstains age for up to one week. 

The multiple regression analysis was also employed for blood and semen samples up to one 

month old, to obtain a combined model of prediction. In semen samples, two models 

(PRM1/B2M and SEMG1/B2M) demonstrated differences with the actual age, and therefore 

contributed to a new model for semen age prediction (Appendix 4. Table 50). Three new 

equations emerged from multiple regression analysis are presented in Table 15. 

 

Table 15. Summary of models generated by using multiple regression analysis in blood and semen sample. 

 

Type of 
sample 

 

Frame 
time  

Number 

of 

samples 

 

Models using 

 

X1 

 

X2 

 

Estimated curve equation 

 

R
2
 

 

MAD 
(day) 

 

Blood 

 

Week 

 

56 

ALAS2/GAPDH*  

ALAS2/GAPDH 

 

ALAS2/B2M 

 

y=7.155-2.906(X1) - 3.707(X2) 

 

0.44 

 

±1.4 ALAS2/B2M** 

 

Blood 

 

Month 

 

40 

ALAS2/B2M**  

ALAS2/B2M 

 

HBB/B2M 

 

y=27.859 -10.465(X1) -17.74 (X2) 

 

0.84 

 

±3.4 HBB/B2M** 

 

Semen 

 

Month 

 

30 

PRM1/B2M**  

PRM1/B2M 

 

SEMG1/B2M 

 

y=29.045 -14.207(X1) -13.092(X2) 

 

0.69 

 

±4.4 SEMG1/B2M* 

Note :( *) Represented of p< 0.05 and (**) mean p< 0.01 

 

When compared to the single regression analysis, multiple regression had an improved R
2
 

value, followed by decreased MAD. For example, ALAS2/B2 and HBB/B2M run as a single 

model in blood gave R
2
 value of 0.75 and 0.82 with MAD of ±3.8 and ±3.2, respectively, 
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whereas multiple regressions analysis improved R
2
 to 0.84 with a MAD of ±3.4. Similarly, 

multiple regression analysis improved R
2 

to 0.69 in semen samples, and this was observed in 

blood samples over one-week period. Two models including B2M/GAPDH and 

PRM1/SEMG1 for blood and semen, respectively, showed no significant difference with 

actual age, and they were excluded from the analysis. Once the equations were generated, the 

prediction age was also calculated in blood and semen samples (Appendix 1. Table 34).   
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Figure 34. Age prediction using multiple regression models. Age prediction in (A) blood samples during one-
week (B and C) blood and semen samples up to one month, respectively. The solid red line in the graph 
represents the modelled space where predicted age and actual age are equal. Small dashed green lines indicate 
confidence limits. Large dashed green lines indicate prediction limits.  
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For one-week age prediction, the graph shows an improved R
2
 = 0.44 with MAD ± 1.4 and 

fits the data more closely than when each model individually is used (Figure 34 A). Similarly, 

in blood model over one-month period, the data gave an improved R
2
 = 0.84 with MAD of 

±3.4 (Figure 34 B). Finally, predicted age in semen became more closely fitted meaning the 

improved standard deviation for age prediction (Figure 34 C).  

The mean age prediction generated by multiple regression models was also calculated 

(Appendix 1. Tables 32 and 34), as showed in Figure 35. This model gave the highest R
2
 

value in blood samples over one-month period, with at least three data points closely fitted 

(Figure 35 B), as well as in semen model where time points were also reasonably closely 

fitted, especially at 21 day (Figure 35 C). In summary, the multiple regression models overall 

gave higher R
2
 values when compared to a simple regression analysis.   
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Figure 35. Mean age prediction calculated using multiple regression models (A) Mean prediction in blood 
samples up to 7 days old. (B and C) Mean age prediction in blood and semen samples up to one-month old, 
respectively. Error bars represent one standard deviation. 
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4.4.4. Blind samples  

All of the samples examined thus far were of a known age. In order to test the models 

obtained, blind samples of blood, saliva, and semen were investigated as an attempt to predict 

their ages using the models obtained previously. The same procedures and statistical analysis 

were employed, and some of models in blood and semen were validated.  

4.4.4.1. Blind blood samples 

Five blind blood samples were tested using ALAS2/B2M and HBB/B2M models with 

TaqMan chemistry. The age of samples used varied from fresh to one-year old (Table 16).  

Table 16. Blind blood samples with actual age used for the validation process. 

Sample A B C D E F 

Source  Blood Blood Blood Blood Blood       Water 

      Age Two weeks One month One year Six months Fresh sample 

  

All samples underwent RNA extraction, DNA digestion, cDNA synthesis, and qPCR. RQ of 

selected markers was obtained using B2M as reference gene. Both models with TaqMan 

chemistry generated similar findings, and both gave no amplification with F sample (Negative 

control). The samples were ordered according to the RQ of selection markers (Figure 36). The 

RQ of ALAS2/B2M and HBB/B2M decreased as a function of time and were able to put in 

the right order most of blind samples when compared to the actual age.  
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Figure 36. Relative quantification (RQ) of blind blood samples using TaqMan chemistry with ALAS2/B2M and 
HBB/B2M. Data presented as Mean ± SD.   

 

By using the HBB/B2M model, blind blood samples were put into the correct order while this 

was almost true with ALAS2/B2M model, with only C and D samples being swapped. 

Therefore, it is reasonable to assume that the RQ could be a method of choice for samples age 

prediction. With this in mind, to predict the age of the blind samples, RQ value was used as 

parameter and simple and multiple regression models were used to calculate the prediction 

age (Appendix 2. Table 38), as presented in Table 17.   
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Table 17. Age prediction of blind blood using the models obtained. 

Sample Actual age ALAS2/B2M model HBB/B2M model Multiple regression model 

A Two weeks 16.93 ±3.8 23.06 ±3.2 21.30 ±3.4 

B One month 20.85 ±3.8 24.78 ±3.2 24.02 ±3.4 

C One year 22.18 ±3.8 26.01 ±3.2 25.37 ±3.4 

D Six months 25.47 ±3.8 25.73 ±3.2 26.48 ±3.4 

E Fresh 09.66 ±3.8 06.02  ±3.2 06.87 ±3.4 

 

 

Overall, models were able to reasonably accurately predict the age of the samples that were 

up to one month old, while having more difficulty with assessing the aged samples. This is 

perhaps not surprising, since the models used for prediction were generated using samples up 

to 28 days old. Indeed, the prediction age obtained for these samples was within CI and PI 

regions previously generated using simple and multiple regression analysis as described. 

4.4.4.2. Blind semen samples 

As the same as conducted in blood was also performed in semen blind samples, the RQ of 

PRM1/B2M, and SEMG1/B2M, and PRM1/SEMG1 was obtained as described earlier. The 

RQ was used as a parameter to predict the blind semen samples with selection models. 

Prediction age was calculated using all TaqMan semen models (Appendix 2.Table 41) and the 

data are presented in Table 18.   

The best age prediction for semen samples at the time zero and 28 days was generated with 

PRM1/SEMG1and multiple regression models (3.17 and 23.85 day, with MAD of ±4.3 and 

±4.4, respectively). In addition, an appropriate age prediction for day 14 was generated with 

PRM1/B2M and SEMG1/B2M models giving values of 15.39 and 15.84 days, respectively. 

For easier representation of the data, age prediction for all models plotted against actual age is 

presented in figure 37.     
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Table 18. Blind semen samples with TaqMan models. 

 

 

Actual Age 

PRM1/B2M 

Model 

 

Difference 

between ages 

SEMG1/B2M 

Model 

 

Difference 

between ages 

PRM1/SEMG1M

odel 

 

Difference 

between ages 

Multiple 

regression model 

 

Difference 

between ages 

Fresh (0day) 05.58 ±4.7 05.58 03.78 ±4.4 03.74 03.17 ±4.3 03.17 03.59 ±4.4 03.59 

One week (7days) 14.49 ±4.7 07.49 06.65 ±4.4 -00.35 15.94 ±4.3 08.94 07.89 ±4.4 00.89 

Two weeks (14days) 15.39 ±4.7 01.39 15.84 ±4.4 01.84 17.96 ±4.3 03.96 11.89 ±4.4 -02.11 

Three weeks (21days) 17.07 ±4.7 -03.93 20.02 ±4.4 -00.98 20.41 ±4.3 -00.59 17.90 ±4.4 -03.10 

Four weeks(28days) 19.20 ±4.7 -08.80 22.47 ±4.4 -05.53 23.20 ±4.3 -04.80 23.85 ±4.4 -04.15 
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Figure 37. Blind semen samples predicted using TaqMan markers. Age prediction using (A) PRM1/B2M (B) 
SEMG1/B2M (C) PRM1/SEMG1 (D) multiple regression model. Error bars presented mean absolute deviation 
(MAD). 

 

The strongest R
2
 value for age prediction was obtained with multiple regression model, 

further confirming the advantage of using the multiple regression over a single regression 

analysis. The SEMG1/B2M generated a good score, and closely predicted the actual age 

especially at 7, 14, and 21 days (Figure 37 B). In general, all TaqMan models for semen 

showed reasonably accurate prediction of the unknown age.   
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4.5. Discussion  

 

The current study was conducted to quantify degraded RNA in old stains and to compare it to 

the fresh samples (samples processed at the time zero) in order to create a time calibration 

curve. The fresh sample was used as a calibrator to predict the age of any biological stains 

using the formula 2
-∆∆Cq

.  

In one-week experiment, bloodstains were allowed to decompose at room temperature for up 

to a week. RNA was then extracted from the samples, and they then underwent cDNA 

synthesis and qPCR targeting of ALAS2, GAPDH and B2M markers. Lack of strong 

correlation detected here between RQ and age of the samples (Figure 19. B, C, and D) could 

be influenced by the reagents used, such as DNA digestion kit (Turbo DNA free) and RT 

enzyme (M-MLV). As described in chapter Three, M-MLV is not suitable for unbounded 

gene or low copy gene reverse transcription, while Turbo DNase reagents can inhibit PCR 

reaction (Okello et al., 2010, Haas et al., 2011b). Indeed, the mean ΔCq of the same markers 

(ALAS2 and B2M) were different when different reagents were used (Figures 23 A). The 

influence of reagents was also observed in semen with and without DTT extraction, because 

the mean age prediction has different R
2
 values (Figures 32 and 33).  

Another important factor for the selection of reference gene is its stability. Up until recently, it 

was a common practice to use GAPDH as endogenous control for normalisation of the target 

genes. This was because, due to playing an important role in cell function and homeostasis, it 

was considered that GAPDH is constitutively and at similar levels expressed across different 

cell types. However, studies that would dispute this started to emerge. For example, Dheda et 

al. (2004) (Dheda et al., 2004) stated that GAPDH was unsuitable as a reference gene in the 

whole blood study, while another group found that GAPDH was not a successful reference 

gene in one step experiment with saliva and blood samples (Moreno et al., 2012). This could 

explain the poor correlation detected in saliva samples in the present study when using 
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HTN3/GAPDH (Figure 27 B). It is now widely accepted that the optimal reference gene 

should not vary as a function of treatment or condition (time in the present example). It is, 

however,  often difficult to identify a gene or a combination of genes, that would meet this 

criterion (Thellin et al., 1999).   

Further, an optimal primer should be abundantly expressed and sensitive enough even in low 

template concentration. In addition, its ability to decay should be easy to observe. Half-life 

and its function are both very important. An appropriate reference gene should be stable in all 

the samples under investigation. For example, strong correlation was reported for the ratio 

generated between β2 mRNA, which degraded over time, and 18S rRNA, which remained 

stable over the course of experiment, up to 150 days (Anderson et al., 2005). The stability of 

reference genes is also dependent on the main source of samples. For examples, some genes 

are proven to be good reference genes in blood but were not stabile in saliva and verse versa. 

In this chapter, HTN3 was detected in all samples, but RQ of HTN3/GAPDH was not 

strongly correlated with actual age. In contrast, ∆Cq of NHT3 showed a strong correlation 

(Figure 26), and as such was used to predict the age of saliva instead of RQ of the same 

marker (Figure 27 A and C). Surprisingly, perhaps, the best fit was obtained, however, when 

both genes initially selected as targets were subsequently normalised with each other instead 

of using common reference genes. This is likely to be due to the similarity of amplification 

rate between both targets, because when ALAS2 and HBB were normalised with each other 

(ALAS2/HBB), no correlation was detected.  

It is important to note that the gene expression no long occurs once the stain is completely 

dried. The environmental factors such as a humidity and temperature also influence for the 

drying time of any deposited stains. It is widely accepted that the level of RNA transcription 

generally decreases with a longer PMI (Bauer et al., 2003a, Sampaio-Silva et al., 2013, 

Partemi et al., 2010). Therefore, the transcript mRNA could be detected and quantified by 
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using a fresh sample as calibrator with either TaqMan or SYBR Green chemistries over four 

weeks period. Therefore, in the follow up experiment, the time frame was increased from one 

week to one month, and RQ was employed. This was achieved by allowing blood, saliva, and 

semen stains to decompose at room temperature for up to 28 days.  

The stability of mRNA was tested in a number of studies and showed the possibility to detect 

mRNA expression in aged biological stains. The longest time reported was for HBB marker 

that remained the most stable when compared to seven different markers including ALAS2, 

and GYPA, in bloodstains aged from 30-50 years old (Zhao et al., 2017).    

In current study, the amplification of selected markers was successfully detected in the 

samples up to 28 days old, except for MUC7 in saliva. The sensitivity, specificity and stability 

of this marker could be the main reason for these findings, and it is further confirmed by the 

previous studies that were able to detect MUC7 was in one negative 1-year old sample, but 

not in the fresh sample at time 0. This marker also showed low Q value level and was 

amplified in non-saliva samples (Parker, 2011, Roeder and Haas, 2013, Orphanou, 2015).  

Regression analysis is dependent on four principle assumptions: the assumption of normality, 

assumption of linearity, assumption of constant variance (Age) and assumptions of 

independence (RQ). However, the violation of the normality assumption may be attributed to 

the skewed nature of dependent variable. Consequently, the validity of normality can be 

ignored in the application of linear regression model (Li et al., 2012, Nangia et al., 2011, 

Sherwin et al., 2011, Zheng et al., 2011). Therefore, when all of the assumptions, except the 

assumption of normality, were met, the regression analysis was applied. The selection primers 

showed to be suitable markers for estimating the age of blood, saliva, and semen samples. 

Wider confidence and prediction intervals obtained throughout the study are likely related to 

the small amount of starting material, and non-normal distribution of the data. Increasing the 
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sample size would decrease the sampling error and narrow both confidence and prediction 

intervals (Wei et al., 2016), as well as improved the normality (Li et al., 2012).   

RQ was calculated and used as a parameter to generate models for blood, saliva, and semen 

samples. However, MAD in blood samples with ALAS2/B2M (7 days) was lower than with 

the same model at 28 days, although R
2
 of ALAS2/B2M (7 days) was the lowest. In general, 

HBB/B2M emerged as the best model generated for blood (R
2
 = 0.82), whereas, 

PRM1/SEMG1 in semen showed the strongest fit (R
2
 = 0.71) (Tables 12 and 14).  

Once the predictive models for blood, saliva, and semen were developed, blind testing was 

carried out. In the blind blood samples, two-time frames were investigated. The RQ of 

selected markers clearly decreased over time and positioned most of the blind samples in the 

right way, despite most of them being over 28 days old (Figure 36). Therefore, the predicted 

age in the aged stains (over 30 days old) provided good results. To test the models with 

shorter degradation time, semen models including PRM1/M2M, SEMG1/B2M, 

PRM1/SEMG1, and multiple regression models were employed to investigate blind sample 

ranged from fresh up to one-month old. Appropriate results were obtained, and the best age 

prediction was generated with multiple regression model (R
2
 = 0.99) (Figure 37 D).  

4.6. Conclusion  

 

Accurate quantification of degraded RNA dependents on many factors including reagents, 

normalisation strategy, and time of deposition. In this chapter, the linearity value of the same 

markers was improved when different reagents for cDNA synthesis (Random primers, DNA 

digestion, and RT enzymes) and different deposition times (One week and one month) were 

investigated.  
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Chapter Five: Degradation of mRNA as an indicator 

to predict the age of biological stains by using SYBR-

Green chemistry. 
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5.1. Introduction 

 

SYBR Green chemistry is the simplest and cheapest method to perform qPCR analysis. In this 

technique, a fluorescent dye binds with the minor groove of double stranded DNA (dsDNA). 

When SYBR Green is free in solution where only single-stranded DNA (ssDNA) is present, it 

emits a low intensity signal. As the PCR progression starts, the quantity of dsDNA increases, 

so more dye binds with the amplicons generated and hence, the signal intensity increases as a 

consequence. This dye is the most common dsDNA-binding dye with a long history of using 

in molecular biology (Dragan et al., 2012). Although the reagents and instruments required 

for real-time PCR are more expensive than those used in traditional PCR, it is becoming 

increasingly more affordable, especially when employing SYBR Green as the fluorescent 

reporter dye. 

 SYBR Green chemistry has been successfully used in a number of studies to examine gene 

expression analysis. Yin and co-workers (2001) demonstrated that the reproducible and 

acceptable quantification could be obtained with SYBR Green I method in cases where the 

target gene had moderate to high expression levels. Further, they found that the specificity of 

SYBR Green I detection improved once they optimised the melting temperature (Yin et al., 

2001).  

A pioneering mathematical model for RQ in RT–qPCR was made using SYBR Green, where 

the relative expression of target gene transcript was presented in comparison to a reference 

gene transcript. Here, relative expression ratio was calculated using only the qPCR 

efficiencies and the crossing point deviation of an unknown sample when compared to the 

control (Pfaffl, 2001). Therefore, the aim of this chapter is to investigate a number of markers 

including the hypoxia marker using SYBR Green chemistry for samples that were up to one-

month old.  
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5.2. Experimental design 

Sample collection, RNA extraction, cDNA synthesis, and qPCR were performed in blood, 

saliva and semen. All samples were allowed to dry and left to decompose in a one-month 

period. Relative quantification was obtained using SYBR Green chemistry followed by a 

melting curve analysis to increase confidence in the fact that the amplification was detected in 

a real target sequence as discussed in chapter 3.The same analysis which was performed with 

theTaqMan probe was conducted in the present study using unlabelled markers listed in Table 

6. Some of these markers are related to the hypoxia condition, suggesting the possibility of 

using the hypoxia as an indicator for age prediction in blood, saliva, and semen.   

5.3. Results  

5.3.1. Blood markers 

 

Three experiments were conducted on blood samples using SYBR Green. The first 

experiment was performed using HBB, the second used FN1 and EPOS1 markers, while the 

third used FGB and CO-A. ACTB was used as a reference gene throughout. All markers were 

successfully detected and delta Cq was calculated in all cases. HBB emerged as the most 

abundant marker, and ACTB generally appears to have high amplification rate (Figure 38. A, 

B, and C). 
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Figure 38. Delta Cq of blood markers using SYBR Green chemistry over a period of 28 days. ΔCq of 
markers (A) HBB (B) FN1 and EOPS2 and (C) FGB and CO-A markers. ACTB was used as reference 
gene in all cases. Column denoted with one asterisk (*) indicates p< 0.05, and column with NS 
indicates no significant difference. Error bars represent one standard deviation (N= 25 for HBB 
marker, N = 20 for all other markers). 
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Figure 39. RQ in blood samples over 28 days using markers (A) HBB, (B) FN1 and (C) EPOS1. ACTB was used as 
reference gene in all cases. Data presented as Mean ± SD. 
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As before, RQ was calculated for selected markers, and the strongest correlation was detected 

when using FN1 /ACTB (R
2
 = 0.92 and 0.99 for linear and polynomial relationships, 

respectively) (Figure 39. A, B, and C).  

Pearson’s correlation was conducted for all markers and the strongest negative correlation 

was detected using HBB/ACTB (r = -0.87) (Table 19). Therefore, single regression analysis 

with confidence and prediction intervals at 95% was employed in an attempt to generate 

models. As expected, the strongest linear curve with an R
2
 = 0.76 was obtained for 

HBB/ACTB (Figure 40 A).  

 

Figure 40. Regression analysis of HBB/ACTB in blood using SYBR Green. Solid red line on the graph represents 
the modelled space where predicted age and actual age are equal. Small dashed green lines indicate 
confidence limits. Large dashed green lines indicate prediction limits.   

 

RQ of HBB/ACTB was plotted against actual age, resulting in a linear curve with R
2
 = 0.76 

(Figure 40 A). Age prediction was calculated and plotted against the actual age. It is clear that 

some of the prediction data points were reasonably close to actual age, especially at 14 and 21 

days (Figure 40 B). For all other markers, the same statistical approach was used, and details 

are presented in Table 19.   
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Table 19. Summary of the models obtained for blood samples using SYBR Green chemistry.  

Type of 
sample 

Time 
frame  

Number 

of 
samples 

Pearson’s 
correlation(r) 

Target 
gene 

Reference 
gene 

Optimal 
curve 

Estimated curve equation R
2
 MAD 

(day) 

Blood Month 25 -0.87** HBB ACTB Linear y=27.96 - 27.62x 0.76 ±3.4 

Blood Month 20 0.72** EPOS1 ACTB Cubic y=21.6-20.27x+39.97x2– 41.46x3 0.57 ±5 

Blood Month 20 -0.73** FN1 ACTB Cubic y=20.7-1.7x+0.25x2-17.9x3 0.60 ±4.9 

Blood Month 20 -0.65** FN1 EPOS1 Cubic y=17.21-8.61x+61.01x2-70.1x3 0.58 ±4.9 

Blood Month 20 -0.43* FGB ACTB Cubic y=8.9+33.86x+33.35x2-75.9x3 0.73 ±3.9 

Blood Month 20 -0.53* COA ACTB Quadratic y=10.15 + 51.56x - 61.51x2 0.54 ±5.1 

Blood Month 20 -0.43* FGB COA Quadratic Y=2.68 -78.18x -76.69x2 0.54 ±5.8 

                                      Note: (*) represented p<0.05 and (**) p<0.01  
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It is clear that all models were significantly correlated with the actual age. The HBB/ACTB 

model has the strongest R
2
 value accompanied by the lowest MAD. Therefore, HBB/ACTB 

could be considered as the best model to predict the age of blood samples. The HBB marker 

in both chemical chemistries (TaqMan and SYBR Green) was correlated reasonably with the 

actual age, giving a similar result between the different approaches. This supports the use of 

SYBR Green chemistry with melting curve analysis, since the increased specificity of the 

marker used is not compromised, while the cost of the experiment is reduced. 

Multiple regression analysis, the method that uses more than one variable, was also conducted 

for SYBR Green chemistry. Here, however, because the combined models showed no 

differences with actual age, they could not be used in mixed models to generate prediction.      

The mean age prediction was calculated (Appendix 1.Table 35) for an observation of the 

accuracy of each model individually (Figure 41). Unsurprisingly, HBB/ACTB was the best 

model obtained. All models had good predictive capabilities overall, with some data points 

particularly closely fitted to the prediction curve, such as time point of a fresh sample (zero 

point). The comparison between the HBB/ACTB model obtained with SYBR Green and the 

HBB/B2M performed with TaqMan, showed that HBB/B2M has stronger correlation and a 

higher R
2
 value, even though MAD prediction values were comparable (±3.2 and ±3.4 for 

HBB/B2M and HBB/ACTB, respectively) (Tables 12 and 19).  
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Figure 41. Age prediction in blood samples using the models obtained. (A, B, and C) HBB, FN1, and EPOS1 
models generated with ACTB as reference gene. (D) FN1/EPOS1 model. (E and D) FGB and COA models 
generated with ACTB as reference gene. Data presented as Mean ± SD. 
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5.3.2. Oxygen regulated factors  

Many studies have been conducted using mRNA from oxygen-regulated factors such as 

VEGF, EPO, and HIF1A, to estimate PMI (Thaik-Oo et al., 2002b, Zhao et al., 2006). These 

factors play a crucial role in regulating oxygen level under the condition of disturbed oxygen 

homeostasis; i.e, hypoxia. This is why they can be used as useful markers to predict the age of 

any biological stains. This experiment aimed to investigate VEGFA and HIF1A genes in 

blood, saliva, and semen using ACTB as a reference gene. The selection of ACTB was based 

on the study that confirmed ACTB as a stable RG for data normalisation of hypoxia –related 

genes (Tan et al., 2012). On the contrary, previous reports of the study conducted under 

hypoxia condition revealed GAPDH as the RG with the highest stability value M, and thus 

GAPDH becomes the least suitable gene for normalisation of quantitative target gene data 

(Huth et al., 2013).     

5.3.2.1. Hypoxia markers in blood   

 

In these experiments, all markers were successfully detected in all samples under 

investigation. In the blood, the mean ∆Cq and RQ of hypoxia markers were calculated, with 

results showing a similar amplification for all of them. Overall, the amplification of ACTB 

was different for every subsequent time point when compared to the fresh sample, HIF1A was 

significantly lower at 14 days only, while VEGFA amplification was consistent across a time 

points (Figure 42 A).  
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Figure 42. The degradation patterns of hypoxia markers using SYBR Green in blood samples. (A)The mean delta cycle quantification (∆Cq) of assays over the period of four 
weeks. (B, C) The RQ patterns of VEGFA and HIF1A with ACTB as reference gene, respectively. (D) The RQ patterns of HIF1A with VEGFA as the reference gene 
(HIF1A/VEGFA). Column denoted with one asterisk (*) indicates p< 0.05, and column with NS indicates no significant difference. Error bars represent one standard 
deviation (N=40). 
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Figures 42. B, C and D show the degradation pattern of selected markers in bloodstains over a 

28-day period. Markers tested in the study were all tested as the reference gene. In all cases, 

there is a downward trend in the RQ value, suggesting degradation over time, as expected. 

The trend appears to be reasonably linear with R
2
 = 0.928, 0.871 and 0.839 for 

VEGFA/ACTB, HIF1A/ACTB and HIF1A/VEGFA, respectively. Further, these data 

indicated that targeting VEGFA with ACTB as the reference gene is the most appropriate 

combination for bloodstain age prediction. However, the polynomial method gave a higher 

correlation overall, with R
2 

= 0.995, 0.997 and 0.976, for VEGFA/ACTB, HIF1A/ACTB and 

HIF1A/VEGFA, respectively, which suggests that HIF1A as a target with ACTB as a 

reference gene is better choice for bloodstain age prediction.  

5.3.2.2. Hypoxia markers in saliva  

 

This same procedure described for blood was also performed on saliva samples. The same 

hypoxia markers were used and both ∆Cq and RQ were calculated. It is clear from Figure 43A 

that the markers were overall more abundant in fresh saliva samples when compared to the 

fresh blood described above. ACTB as the reference gene was the most abundant marker 

detected. Unlike in blood samples, ΔCq of hypoxia markers as well as ACTB showed a clear 

linear function of time in saliva. Hypoxia markers in saliva have the highest correlation with 

actual age. T-test was used to compare ΔCq values at different time points, showing 

significant differences when compared to the fresh sample, with the exclusion of VEGFA and 

ACTB at 7 and 28 days, respectively. Among all selected markers, HIF1A with VEGFA as a 

reference gene (HIF1A/VEGFA) gave the highest linear and polynomial correlation with R
2
 

values of 0.986 and 0.996, respectively.  

Figure 43. B, C and D show the degradation pattern of selected markers in saliva swabs over a 

28-day period. As in the blood samples, the RQ value followed a downward trend suggesting 
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a decrease in the amount of marker present in the sample over time. This trend also appears to 

be reasonably linear with R
2
 values of 0.943, 0.924 and 0.986, respectively. This suggests that 

targeting HIF1A with VEGFA as the reference gene should be the most appropriate 

combination for saliva stain age prediction. The polynomial correlation gave 0.977, 0.953 and 

0.996, respectively, further confirming HIF1A/VEGFA as the best combination for saliva 

stain age assessment.  

Figure 43. The degradation patterns of hypoxia markers using SYBR Green in saliva samples. (A) Delta cycle 
quantification (∆Cq) of assays over four weeks. (B, C) The RQ patterns of VEGFA and HIF1A with ACTB as 
reference gene, respectively. (D) The RQ patterns of HIF1A with VEGFA as the reference gene (HIF1A/VEGFA). 
HIF1A normalised with VEGFA had the highest linear and quadratic curves with R2 values of 0.99. Column 
denoted with one asterisk (*) indicates p< 0.05, column with two asterisks (**) indicates p<0.01 and column 
with NS indicates no significant difference. Error bars represent one standard deviation (N=40). 
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5.3.2.3. Hypoxia markers in semen  

 

In the semen samples, ACTB gave the highest ΔCq values, while the amplification of 

VEGFA was the most stable and comparable to the fresh sample, except at 28 days. On the 

other hand, both HIF1A and ACTB markers showed a decrease in ΔCq values over time 

(Figure 44 A). Finally, all markers exhibited a downward trend over a 28 day period; 

however, the correlation values were lower than they were in the blood and saliva samples, 

with R
2
 = 0.664, 0.772, 0.732 for VEGFA/ACTB, HIF1A/ACTB, and HIF1A/VEGFA, 

respectively. Overall, the results seem to once again point to HIF1A with ACTB as the 

reference gene for the most appropriate combination for age prediction in semen samples as 

well. Polynomial correlations gave values of R
2 

=
 
0.897, 0.99, and 0.97 for VEGFA/ACTB, 

HIF1A/ACTB, and HIF1A/VEGFA, respectively, confirming the above conclusion obtained 

from the linear fit (Figure 44. B, C, and D).  

In general, the hypoxia markers showed a strong correlation for all samples under 

investigation. Further, VEGFA and HIF1A in blood, saliva, and semen samples had a similar 

amplification pattern, which suggests that normalising these markers with each other should 

also be considered.  
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Figure 44. Relative quantification in semen samples. (A) ∆Cq of assays over one-month period. (B-C) The pattern of degradation of RQ of VEGFA and HIF1A with ACTB as RG, 
respectively. (D) The pattern of degradation of HIF1A with VEGFA as RG. Column denoted with one asterisk (*) indicates p< 0.05, column with two asterisks (**) indicates 
p<0.01 and column with NS indicates no significant difference. Error bars represent one standard deviation (N=30). 
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Pearson’s correlation was also performed to test the relationship between hypoxia markers 

and the actual age of the samples. All markers had a strong negative correlation with time that 

was statistically significant. Therefore, it is possible to use the regression analysis to obtain 

models for predicting the age of blood, saliva, and semen samples under hypoxia condition, 

using oxygen haemostats as indicators. The pervious experiments were conducted 

individually for blood, saliva, and semen, using the same markers. Therefore, it might be 

clearer to present each marker in blood, saliva and semen at the same time.   

5.3.3. Vascular Endothelial Growth Factors A (VEGFA) 

VEGFA is the member of PDGF/VEGF growth factor family, which is upregulated in many 

known tumours and its expression is associated with tumour stage and progression. This 

marker was tested in blood, saliva, and semen samples. Simple regression analysis with 

confidence and prediction intervals at 95% was performed. The best fit was obtained for 

VEGFA/ACTB with a cubic curve for blood and saliva (R
2
 = 0.70 and 0.75, respectively), 

and a linear curve for semen samples (R
2
 = 0.55) (Figure 45. A, B, and C). The equations 

resulting from the regression analysis are listed in Table 20 below. Using these equations, the 

prediction age was calculated based on VEGFA/ACTB model and plotted against the actual 

age (Appendix 1.Table 36).  

Table 20. Models obtained with VEGFA marker in blood, saliva, and semen.  

Type of 
sample 

Time 
frame  

Number 

of 
samples 

Pearson’s 

correlation(
r) 

Target 
gene 

Reference 
gene 

Optimal 
curve 

Estimated curve equation R
2
 MAD 

(day) 

Blood Month 40 -0.82** VEGFA ACTB Cubic y=24.39-26.24x+32.14x2-29.73x3 0.70 ±4.4 

Saliva Month 40 0.87** VEGFA ACTB Cubic y=27.69-22.4x-6.39x2+1.79x3 0.75 ±3.9 

Semen Month 30 -0.74** VEGFA ACTB Linear y=23.09 – 22.15x 0.55 ±5.4 

Note: (**) represented p< 0.01  
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Figure 45. Simple regression analysis of VEGFA marker with ACTB as reference gene. (A) Blood, (B) saliva, and 
(C) semen. (D, E, and F) Age prediction using VEGFA/ACTB model in blood, saliva, and semen, respectively. Solid 
red line represents the modelled space where predicted age and actual age are equal. Small dashed green lines 
indicate confidence limits. Large dashed green lines indicate prediction limits. 
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The higher the R
2
 value, the more accurate age prediction becomes. Higher R

2
 value in saliva 

samples overall suggests that these samples can provide better age prediction when compared 

to blood and semen. A higher number of age prediction points located in the CI region (Figure 

45. D, E, and F) also readily confirms this. Further, the mean predicted age was calculated and 

plotted against the actual age, in order to confirm which samples that have appropriate 

predictions, and for the evaluation of the model three parameters were used: R
2
 value, 

standard division, and MAD.  
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Figure 46. Age prediction obtained with VEGFA/ACTB model in (A) blood, (B) saliva, and (C) semen samples. 
Data presented as Mean ± SD. 
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In conclusion, Figure 46 supports VEGFA/ACTB as an acceptable model for age prediction 

in saliva samples with the highest R
2
 value (0.94), lowest standard division, and lowest MAD 

(± 3.9) (Table 20). In saliva samples, it was able to accurately predict three time points at 0, 

14, and day 21.     

5.3.4. Hypoxia Inducible Factor 1 Alpha Subunit (HIF1A) 

There are two forms of this gene, an alpha and a beta subunit that form a heterodimer. This 

gene plays a major role in the hypoxia condition by regulating cellular and systemic responses 

to the changes in available oxygen. In the present study, HIF1A was also examined in blood, 

saliva, and semen samples. Pearson’s correlation of HIF1A/ACTB was conducted and the 

strongest negative correlation was observed in saliva samples (R
2
 = -0.80), while semen 

samples demonstrated the lowest correlation (R
2
 = -0.71) (Table 21). A simple regression 

analysis was performed using RQ of HIF1A/ACTB. The best fit for this factor was obtained 

with cubic curve in blood (R
2
 = 0.65), and quadratic curves in saliva and semen (R

2
 = 0.65 

and 0.52, respectively (Figure 47. A, B, C). The low R
2
 values could be due to the high 

standard deviation at each time point. This is probably why the mean RQ of HIF1A/ACTB for 

blood, saliva, and semen reported previously (Figures 42C, 43C and 44C) showed a strong 

correlation with the actual age.  

Table 21. Models obtained with HIFA1/ACTB in blood, saliva, and semen. 

Type of 
sample 

Time 
frame  

Number 

of 
samples 

Pearson’s 
correlation(r) 

Target 
gene 

Reference 
gene 

Optimal 
curve 

Estimated curve equation R
2
 MAD 

(day) 

Blood Month 40 -0.77** HIFA1 ACTB Cubic y=23.36-32.89x+74.64x2-
64.25x3 

0.65 ±4.6 

Saliva Month 40 0.80** HIFA1 ACTB Quadratic y=24.43 - 11.48x - 11.23x2 0.65 ±4.9 

Semen Month 30 -0.71** HIFA1 ACTB Quadratic y=21.39 + 0.44x - 19.91x2 0.52 ±5.2 

Note: (**) represented p<0.01  
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Figure 47. Scatterplots for RQ of HIF1A/ACTB against predicted age. (A-C) RQ of HIF1A in blood, saliva, and 
semen, respectively. (D-F) Age prediction using HIF1A/ACTB model for blood, saliva and semen samples, 
respectively. Solid red line represents modelled space where predicted age and actual age are equal. Small 
dashed green lines indicate confidence limits. Large dashed green lines indicate prediction limits.   
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Equations obtained from regression analysis for blood, saliva, and semen samples are 

presented in Table 21. Predicted age was calculated (Appendix 1.Table 36) using the 

HIF1A/ACTB model for blood, saliva, and semen and plotted against actual age (Figure 47. 

D, E, and F). 

In summary, this model was able to fit a number of data points within the confidence interval 

region, with most of them located close to each other. Therefore, it is reasonable to expect that 

similar results will be obtained using new samples, especially for saliva and semen as well as 

samples that are over 7 days old. Mean age predictions for blood, saliva, and semen samples 

were also calculated, and the R
2
 values obtained were 0.80, 0.89 and 0.67 for blood, saliva, 

and semen, respectively (Figure 48. A, B, and C). The highest R
2
 was obtained for saliva; 

however, the best fit for HIF1A/ACTB model was generated with the blood samples. This is 

likely to be due to the low SD and MAD in blood (Table 21).  
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Figure 48. Age prediction generated from HIF1A/ACTB model (A) in blood, (B and C) for saliva, and semen, 
respectively. Data presented as Mean ± SD.  
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5.3.5. HIF1A with VEGFA 

As mentioned earlier both HIF1A and VEGFA show similar amplification in blood, saliva, 

and semen samples. This could mean that better normalisation would be achieved when using 

VEGFA, instead of ACTB, as a reference gene. However, it is now widely accepted that there 

is no optimal reference gene for normalisation, and that a unique reference gene, or a 

combination of several reference genes, should be determined for each experiment separately 

(Huang et al., 2013, Kozera and Rapacz, 2013, Gilsbach et al., 2006). Therefore, the HIF1A 

marker in blood, saliva, and semen, was normalised using VEGFA as a reference gene. The 

same procedures and analysis were performed. The results showed a strong linear relationship 

with R
2
 = 0.84, 0.99, and 0.73 for blood, saliva, and semen respectively (Figures 42D, 43D, 

and 44D). Pearson’s correlation was also performed and showed the strongest correlation in 

saliva with R
2
 = -0.96 (Table 22). Therefore, a simple regression analysis was preformed 

using RQ of HIF1A/VEGFA against the actual age for blood, saliva, and semen. Optimal 

curves for HIF1A/VEGFA were linear for blood and saliva (R
2
 = 0.70 and 0.92, respectively), 

and quadratic in semen (R
2
 = 0.54) (Figure 49. A, B, and C).   

As a result of the best fitting regression lines, three equations were derived as predictors of the 

age of blood, saliva, and semen samples, as presented in Table 22. The prediction age was 

calculated for all samples using the HIF1A/VEGFA model (Appendix 1. Table 36) with data 

plotted against the actual age to show the fit of the model (Figure 49. D, E, and F). The best 

scatterplot was obtained for saliva samples, with data points tightly clustered around the line. 

For blood and semen samples, 21 and 28-day time points had most of the data points located 

within the confidence interval region. For a clearer representation of the data, mean predicted 

age was calculated and plotted against the actual age (Figure 50. A, B, and C). 
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Table 22. The summary of all models obtained by single regression analysis in blood, saliva, and semen samples using SYBR Green chemistry. 

Type 

of 
sample 

Time 
frame  

Number 

of 
samples 

Pearson’s 
correlation(r) 

Target 
gene 

Reference 
gene 

Optimal 
curve 

Estimated curve equation R
2
 MAD 

(day) 

Blood Month 40 -0.84** HIFA1 VEGFA Linear y=23.66 - 23.45x 0.70 ±4.2 

Saliva Month 40 0.96** HIFA1 VEGFA Linear y=28.23 - 28.21x 0.92 ±2.1 

Semen Month 30 -0.65** HIFA1 VEGFA Quadratic y=17.07+22.15x-38.54x2 0.54 ±5.0 

                                    Note: (**) represented p< 0.01  
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 Figure 49. Simple regression analysis of HIF1A with VEGFA as reference gene in (A) blood, (B) saliva, (C) semen. 

(D-F) age prediction using previous models in blood, saliva, and semen, respectively. Solid red line in the graph 

represents the modelled space where predicted age and actual age are equal. Small dashed green lines indicate 

confidence limits. Large dashed green lines indicate prediction limits.    
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Figure 50. Age prediction using HIF1A/VEGFA model in (A) blood, (B) saliva, and (C) semen.  Data presented as 
Mean ± SD.  
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The HIF1A/VEGFA model was the most stable in saliva, with the highest R
2
 = 0.99, and 

lowest MAD = ±2.1 (Figure 50 B). Overall, HIF1A/VEGFA showed a good fit in blood, 

saliva, and semen samples, and this was particularly true for time zero. 

Tables 20, 21, and 22 showed all models generated with hypoxia markers using SYBR Green 

chemistry in blood, saliva, and semen samples. The highest Pearson’s correlation was 

detected with HIF1A/VEGFA model in saliva, whereas the lowest was detected with the same 

model in semen. According to R
2 

value and MAD in the present experiment, it seems that 

HIF1A/VEGFA is an appropriate model to predict the age of blood saliva, and semen, with 

the best fit emerging in saliva samples. 

Further, multiple regression analysis was employed in an attempt to increase the fit of the 

model using markers in combination as opposed to each individually. Here, the 

HIF1A/VEGFA model gave comparable values over time, suggesting that it has no 

contribution to age prediction (blood and saliva), and was subsequently excluded. This left 

VEGFA/ACTB and HIF1A/ACTB remaining for multiple regression analysis in an attempt to 

improve the previously obtained model.  

Figure 51 shows the strongest R
2
 value for saliva (0. 82), and the lowest achieved in semen 

(0.63). Overall, multiple regression analysis improved prediction fit, and lowered MAD value, 

and this was particularly true for both blood and semen samples. Data points were positioned 

close to each other, with tighter CI than in single regression analysis. The equations that 

described the models are presented in Table 23. 
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Figure 51. Multiple regression analysis using hypoxia models. (A-B) Age prediction by using VEGFA/ACTB and 
HIF1A/ACTB models in blood and saliva, respectively. (C) Age prediction using HIF1A/VEGFA and HIFA1/ACTB in 
semen. Solid red line in the graph represents the modelled space where predicted age and actual age are 
equal. Small dashed green lines indicate confidence limits. Large dashed green lines indicate prediction limits.    
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Table 23. Multiple regression for models in blood, semen, and saliva samples using SYBR Green chemistry.  

 

Type of 
sample 

 

Frame 
time  

Number 

of 
samples 

 

Models using 

 

X1 

 

X2 

 

Estimated curve equation 

 

R
2
 

 

MAD 
(day) 

 

Blood 

 

Month 

 

40 

VEGFA/ACTB**  

VEGFA/ACTB 

 

HIF1A/ACTB 

 

y=26.794-15.606(X1) – 10.373(X2) 

 

0.74 

 

±3.7 HIF1A/ACTB** 

 

Saliva 

 

Month 

 

40 

VEGFA/ACTB**  

VEGFA/ACTB 

 

HIF1A/ACTB 

 

y=29.992-19.171(X1) -10.973 (X2 ) 

 

0.82 

 

±3.0 HIF1A/ACTB** 

 

Semen 

 

Month 

 

30 

HIF1A/VEGFA**  

HIF1A/VEGFA 

 

HIF1A/ACTB 

 

y=28.790-11.777 (X1) -16.671 (X2) 

 

0.63 

 

±4.6 HIF1A/ACTB** 

                                   Note: * represented of p<0.05 and ** represented that p<0.01 
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It is clear that the best multiple regression model was detected in saliva. Prediction age was 

calculated for blood, saliva, and semen using the equations derived (Appendix 1.Table 36), 

and the data were plotted against the actual age. Improved R
2
 values were obtained when 

compared to each model individually (Figure 51. A, B, and C). Mean age prediction was also 

calculated and plotted against the actual age, and there was an improvement in prediction, 

particularly for 14 and 21-day data points in blood and semen samples. Finally, the correlation 

between the predicted age and the actual age was higher than in single regression analysis, 

particularly for blood and semen where it increased from 0.84 and 0.63 to 0.91 and 0.66, 

respectively (Figures 50 and 52).   

Figure 52. Age prediction derived from multiple regression analysis. (A-C) Age prediction in blood, saliva, and 
semen, respectively. Data presented as Mean ± SD.  
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5.4. Blind samples with SYBR Green  

5.4.1. Blind blood samples  

 

Similar to the experiment performed with TaqMan markers in blood samples, SYBR Green 

was used to investigate the age of the blind blood target using the HBB/ACTB model. Based 

on the obtained RQ it was possible to put the samples in the correct order based on their age 

(Figure 53). Age prediction was calculated, and the results listed in Table 24.     

Figure 53. Relative quantification obtained by using HBB/ACTB model in blind blood sample with SYBR Green 
chemistry. 

 

Table 24. Age prediction of blind blood samples using HBB/ACTB model. 

Sample Actual age HBB/ACTB model 

A Two weeks 26.12 ±3.5 

B One month 26.54 ±3.5 

C One year 27.84 ±3.5 

D Six months 27.87 ±3.5 

E Fresh 07.27 ±3.5 
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The next step was to compare the hypoxia models obtained with blind blood samples from 

fresh to 28 days old. After obtaining RQ of markers under investigation, the age of the 

unknown samples was calculated using previously generated models. Cq values were 

obtained in an experiment and used to calculate RQ of hypoxia markers. RQ value was used 

as a parameter for age prediction calculation (Appendix 2. Table 39) and the results presented 

in Table 25. Similarly, as before, the prediction of recent age (less than one month) was more 

accurate with these models than aged samples (one year old). All models gave acceptable 

predictions (Table 25). For fresh age prediction the best prediction was generated with a 

multiple regression model with only 1.8 day over the actual age. Figure 54 shows prediction 

age generated with hypoxia marker plotted against the actual age. It is a clearly demonstrated 

that the multiple regression model gave the best fit (R
2
 = 0.88), with accurate age prediction, 

especially at 14 and 21 days. Other models also produced good R
2 

values, with HIF1A/ACTB 

closely predicting samples age at 21 day, while this was true for fresh and one -week old 

samples using the HIF1A/VEGFA model (Figure 54. A, B, and C). This is consistent with 

previously reported strongest R
2 
value with VEGFA/ACTB and multiple regression models. 

5.4.2. Blind saliva sample 

To test the hypoxia models, blind saliva samples were also investigated for a period of time 

ranging between time zero and 28 days. Using the same approach, RQ was calculated and 

used for age prediction with each model (Appendix 2.Table 40), with the data presented in 

Table 26. The HIF1A/VEGFA model was able to accurately predict the age of the fresh 

sample and gave the best age prediction at 28 days. In contrast, for one-week old samples, this 

model was the least accurate with over 5 days in difference. The mean age prediction was also 

plotted with actual age, and the results demonstrated that the HIF1A/VEGFA and multiple 

regression analysis models gave the best fit (R
2
 = 0.90 and 0.96, respectively) (Figure 55. C 

and D). 
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Table 25. Prediction of blood samples using oxygen regulated factors models. 

  

VEGFA/ACTB 

Difference 

between ages 

 

HIF1A/ACTB 

Difference 

between ages 

 

HIF1A/VEGFA 

Difference 

between ages 

Multiple 

regression model 

Difference 

between ages 

Fresh (0day) 2.04 ±44 2.04 4.39 ±4.6 4.39 2 ±4.2 2 1.8 ±3.7 1.8 

One week (7days) 5.93 ±4.4 -1.07 14.39 ±4.6 7.39 4.54 ±4.2 -2.46 5.59 ±3.7 -1.41 

Two weeks 

(14days) 

14.91 ±4.4 0.91 18.24±4.6 4.24 8.24 ±4.2 -5.76 14.74 ±3.7 0.74 

Three weeks 

(21days) 

20.03 ±4.4 -0.98 19.89 ±4.6 -1.11 7.58 ±4.2 -13.42 21.96 ±3.7 0.96 

Four 

weeks(28days) 

17.13 ±4.4 -10.87 20.75 ±4.6 -7.25 17.61 ±4.2 -10.39 19.51 ±3.7 -8.49 
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Figure 54. The blind blood samples using hypoxia models. (A) VEGFA/ACTB model (B) HIF1A/ACTB model. (C) HIF1A/VEGFA model. (D) Multiple regression model. Error bars 
represent MAD.  
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Table 25. Age prediction for blind saliva samples using hypoxia models. 

  

VEGFA/ACTB 

Difference 

between ages 

 

HIF1A/ACTB 

Difference 

between ages 

 

HIF1A/VEGFA 

Difference 

between ages 

Multiple 

regression model 

Difference 

between ages 

Fresh (0day) 03.62 ±3.9 03.62 05.55 ±4.9 05.55 0.6 ±2.1 00.6 03.03 ±3.0 03.03 

One week (7days) 09.98 ±3.9 02.98 10.56 ±4.9 03.56 1.17 ±2.1 -05.83 09.08 ±3.0 02.08 

Two weeks (14days) 12.14 ±3.9 -01.86 07.86 ±4.9 -06.14 14.42 ±2.1 00.42 09.50 ±3.0 -04.50 

Three weeks (21days) 12.83 ±3.9 -12.73 22.33 ±4.9 01.33 24.92 ±2.1 03.92 17.09 ±3.0 -03.91 

Four weeks(28days) 23.00 ±3.9 -05.00 22.11 ±4.9 -05.89 24.34 ±2.1 -03.66 24.28 ±3.0 -03.72 
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The other two models used were also reasonably good at predicting the age of the samples, 

with VEGFA/ACTB being the closest at 14 days, and HIF1A/ACTB best at predicting 21- 

day old saliva samples (Figure 55. A and B). Overall, HIF1A/VEGFA and multiple regression 

models were the best models to predict the age of the saliva stains. The same model emerged 

as the best fit for previously reported samples of the known age. The multiple regression 

model in blind blood and saliva samples obtained the best result, further confirming the 

advantage of using multiple variables instead of a single variable.    

Figure 55. Saliva blind sample age prediction. (A) VEGFA/ACTB model (B) HIF1A/ACTB model (C) HIF1A/VEGFA 
model (D) Multiple regression model. Error bars present mean absolute deviation (MAD). 

 

5.4.3. Blind semen samples 

Hypoxia models for blind semen samples were also investigated, and RQ of VEGFA/ACTB, 

HIF1A/ACTB, and HIF1A/VEGFA were generated and used to predict the unknown age for 

semen. Age prediction was calculated (Appendix 2.Table 42) with the help of these models 

and the data presented in Table 27. Good prediction for a fresh semen sample was observed 

with the VEGFA/ACTB model (1.69 days), whereas the multiple regression model was the 
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most accurate at 28 days (with a value of 26.8 days). Further, VEGFA/ACTB gave accurate 

prediction at 14 and 21 days, while this was true for HIF1A/VEGFA at day 21.  Figure 56 

shows predicted age plotted against the actual age, demonstrating that the VEGFA/ACTB 

model has the strongest R
2
 value (0.89), and the HIF1A/ACTB model the weakest fit (R

2
 = 

0.50).  

For easier comparison of all data points described above, age prediction for all blind samples 

was plotted against actual age (Figure 57). In saliva samples, age prediction becomes more 

accurate with an increased in the real age, which was especially obvious for the oldest sample 

used (28-day sample). The best age prediction at time zero was observed in saliva samples 

with the HIF1A/VEGFA model, while the closest prediction at day 7 was generated with the 

VEGFA/ACTB model in blood. At day 14, an appropriate age prediction obtained with 

HIF1A/VEGFA in saliva, and the optimal age prediction at day 21 was seen in semen with 

multiple regression analysis. Overall, across 5 different time points, the best prediction was 

obtained with the multiple regression model which accurately predicted age at 2 of the time 

points (out of total of 5).   
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Table 26. Semen age prediction using SYBR Green models. 

  

VEGFA/ACTB 

Difference 

between ages 

 

HIF1A/ACTB 

Difference 

between ages 

 

HIF1A/VEGFA 

Difference 

between ages 

Multiple 

regression model 

Difference 

between ages 

Fresh (0day) 1.69 ±5.4 01.69 03.74 ±5.2 03.74 04.82 ±5 04.82 02.07 ±4.6 02.07 

One week (7days) 13.04 ±5.4 06.04 18.81 ±5.2 11.81 09.40 ±5 02.41 12.97 ±4.6 05.97 

Two weeks (14days) 14.52 ±5.4 00.52 20.67±5.2 06.67 18.14 ±5 04.15 19.29 ±4.6 19.29 

Three weeks (21days) 20.59 ±5.4 -00.40 16.14 ±5.2 -04.86 20.05 ±5 -00.95 17.51 ±4.6 -03.49 

Four weeks(28days) 21.67 ±5.4 -06.33 21.18 ±5.2 -06.82 17.23 ±5 -10.77 26.80 ±4.6 -01.20 
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Figure 56. Blind semen samples using models obtained from hypoxia markers. Errors bars resent mean absolute deviation (MAD). 
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Figure 57. Age prediction using hypoxia models in blind blood, saliva, and semen samples. Errors bars represent mean absolute deviation (MAD) (N= 15).
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5.5. Discussion  

Since its development in 1985 by Sir Alec Jeffreys. DNA profiling has revolutionised the way 

in which criminal investigations are conducted. DNA profiling allow the identification of the 

individual or individuals who deposit the body fluid or other biological material at the crime 

scenes (Jeffreys, 1987). However, there is a limit to its application within the forensic 

investigations: DNA profiling can only identify the donor, it cannot confirm the source of 

DNA and, till now, the time of deposition. 

RNA is less stable than DNA, and as such, through the measurement of its degradation 

patterns, it stands out as a potential candidate for determining the age of biological stains 

(Sampaio-Silva et al., 2013, Bauer et al., 2003a). The focus of this study was the degradation 

of primers over time, when compared to time zero. Therefore, the aim of this chapter was to 

explore the degradation pattern of chosen RNA markers at a one-month period, using the 

SYBR Green chemistry method. This was achieved by using the RQ method to obtain models 

that could be useful in forensic investigation to predict the unknown age of blood, saliva, and 

semen stains. A correlation value was obtained for selection markers as an indicator of the 

validity of the chosen markers to be used in the RQ method. Once all RQ of chosen markers 

were obtained, linear regression analysis was employed. The data then underwent simple and 

multiple regression analysis, using standard confidence and prediction intervals of 95%, in 

order to develop the basis for predictive modelling. Linear regression analysis revealed that 

certain primers could be used to predict the age of unknown stains. RQ and ∆Cq of selected 

markers were established as indicators to predict the age of samples under investigation. 

Under normal physiological conditions, cells in the adult human body are provided with an 

adequate supply of oxygen. On the other hand, oxygen becomes sharply depleted during fatal 

processes. Recent advances in molecular biology suggest that HIF1, a transcription factor that 
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responds to low oxygen concentrations, together with EPO and VEGF, increases 

vascularisation of hypoxic areas in an attempt to maintain oxygen homeostasis (Paulding and 

Czyzyk-Krzeska, 2002). It is not surprising, therefore, that the cellular response to hypoxic 

and ischemic conditions is to increase the concentrations of these factors on both mRNA and 

protein levels (Bernaudin et al., 2002). Therefore, the aim was to explore whether hypoxia 

sensitive biomarkers could be viable candidates for stain age prediction based upon the 

change in oxygen concentrations in the surrounding environment (i.e. in the blood compared 

to the atmosphere).  

Many studies have been conducted using oxygen-regulated factors, such as EPO, VEGF and 

HIF1A mRNAs, to estimate PMI (Thaik-Oo et al., 2002a, Zhao et al., 2006). In this chapter, 

hypoxia condition was investigated in order to assess any changes or trends in blood, saliva, 

and semen samples taken at zero days, 7 days, 14 days, 21 days, and 28 days. For hypoxia 

markers in blood, saliva, and semen, the data were analysed in three ways, targeting VEGFA 

and HIF1A with ACTB as the reference gene, and then targeting HIF1A with VEGFA as the 

reference gene. In addition, multiple regression model was also tested. Two parameters were 

used to determine the model with the best fit, R
2
 value, and MAD. The result indicates that 

the rate of degradation of hypoxia gene could be used as a good indicator for ageing blood, 

saliva, and semen, because this rate was reported to increase with time in storage in vitro 

(Almac et al., 2014). A strong correlation was detected in saliva using the HIF1A/VEGFA 

model. While no trend could be observed when considering each marker on its own, a linear 

trend with a correlation value of 0.94 and 0.92 was observed in saliva with VEGFA and 

HIF1A, respectively, when ACTB was used as a reference gene. Finally, a correlation value 

of 0.99 was calculated for HIF1A as a target when VEGFA was a reference gene, thus 

indicating a linear decrease in marker expression over a one-month period (Figure 43).  
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Linear correlations were also observed in samples taken at the same intervals with, 0.93, 0.87 

and 0.84 in blood and 0.66, 0.77, and 0.73 in semen of VEGFA/ACTB, HIF1A/ACTB, and 

HIF1A/VEGFA respectively. Higher linear correlation values in saliva samples could be due 

to it being a less dynamic fluid when compared to blood and semen samples. More ongoing 

intracellular processes that occur in blood and semen could introduce a wider range of 

variables, thereby making any decomposition processes less linear. All prediction models 

were developed with hypoxia markers for blood, saliva and semen, with the lowest MAD = 

2.1 days for saliva detected with HIF1A/VEGFA model, and MAD = 4.6 days and MAD = 

3.7 days with multiple regression model for semen and blood samples, respectively. Given the 

lower linear correlation value for the blood samples, it was expected that the MAD for blood 

and semen would be greater than that for saliva. 

Hypoxia models were also tested in blind samples up to one-month old. The result showed the 

strongest R
2
 value of 0.88, 0.96, and 0.88 when using the multiple regression model in blood, 

saliva, and semen, respectively (Figures 54D, 55D, and 56D). Consequently, it has been 

demonstrated that hypoxia sensitive biomarkers could be used for predicting stain age up to 

one month, at least in saliva and semen stains, and to a lesser extent in blood stains. There is a 

substantial margin of error, however, and any calculated day could be within a time- frame 

ranging from ~2 days through to ~5 days. However, whilst this time frame is rather 

substantial, it is an improvement when compared to the existing capabilities, whereby the 

difference between fresh and one-month old stains cannot be determined. Therefore, the 

present study indicates the possibility of using relative quantification when it is necessary to 

avoid any externally influencing factors. Quality and integrity of RNA play a critical role in 

performing accurate study and the selection of an adequate reference gene is one of the most 

important aspects. An imprecise RNA measurement after extraction could also lead to 

erroneous results, because RNA levels ex-vivo are more unpredictable. Further, the 
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differences in the quality and integrity of the extracted mRNA between the samples, as well 

as the performance of reverse transcription reaction and PCR, and the normalisation with the 

reference gene can all influence the accuracy of the results (Huggett et al., 2005). Finally, 

environmental factors can exert an influence on the samples, with oxygen from the air having 

a particularly potent effect through its denaturation of ribonucleases, the key proteins 

responsible for the oxidative damage on RNA (Lund et al., 2011). It is possible for this to 

affects the poor correlation between RNA degradation and PMI previously reported (Heinrich 

et al., 2007, Zubakov et al., 2008).  

5.6. Conclusion 

Stain age prediction models have been developed for blood, saliva, and semen stains up to 

one-month old. Despite the limitations described above, the proof of principle has been 

demonstrated, and it was shown that some markers, especially hypoxia sensitive biomarkers, 

could be used to predict stain age. The capability of differentiating between fresh stains and 

one-month old stains has also been demonstrated on selection samples. Further work should 

focus on identifying further markers, exploring longer time frames, and efforts to reduce the 

margin of error/mean absolute deviation. 
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Chapter Six: Exploring the degradation pattern of 

miRNA in biological stains to estimate time since 

deposition 
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6.1. Introduction  

RNA forensic analysis has been used for many purposes, including identifying body fluids, 

estimating the age of biological stains, and determining PMI by focusing on RNA decay 

analysis (Bauer et al., 2003a, Bauer and Patzelt, 2003). MicroRNA (miRNA) is short in 

length and is considered relatively stable compared to mRNA. Silva, et al. (2012), 

demonstrated that PMI evaluation based only on mRNA decay is limited by several physical 

and chemical factors, occurring at the time of death, or during PMI. It was suggested that 

miRNA profiling is the preferred method compared to mRNA quantification methods because 

it is more stable and sensitive. Furthermore, the potential of miRNA for PMI estimation is 

relatively unknown (Silva, 2012). 

As the similarity between PMI and age estimation of biological stains, this chapter aims to 

explore the potential of miRNA in estimating the age of blood, saliva, and semen, as well as 

its stability as optimal reference genes. It is noted that the stability of reference genes has been 

investigated in many previous studies, focusing on specific tissues in several species (de Kok 

et al., 2005, Ohl et al., 2005, Silver et al., 2006, Zhang et al., 2005). These previous studies 

demonstrated the difficulty in finding a ‘universal’ reference gene that has a stable expression 

in all cell types and tissues, as well as remaining stable at different points of time, in varying 

experiments (Nygard et al., 2007). Here, a combination of the most degraded elements 

(mRNA) and the most stable elements (miRNA) could be useful in generating models of age 

prediction of blood, saliva, and semen. Currently, no study has been conducted using 

geometric mean normalisation, with a combination of mRNA and miRNA for age prediction. 

A similar study explored the level of 18S rRNA and miRNA to estimate PMI up to 7 days (Li 

et al., 2014).  
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6.2. Experimental design   

ytxiS samples based on availability were investigated, targeting miRNA markers 451, 205 and 

891a for blood, saliva, and semen, respectively. The RNU 44 marker was also employed, 

together with three other markers as reference genes. Information related to these markers is 

listed in chapter Two (Table 4). The blood, saliva, and semen samples underwent total RNA 

extractions, DNA digestions, cDNA synthesis and triplicated qPCR, as described in chapter 

Two. Negative controls were also included in this study. The data were statistically processed 

using SPSS analysis software (v22). The normality was tested with the Shapiro and Wilk test 

(Shapiro and Wilk, 1965). The level of significance was set at p< 0.05, and an acceptable 

Pearson’s correlation value was used, as previously described (Mukaka, 2012). The data were 

plotted using SPSS and Excel 2013. Data were normalised using a single reference gene, and 

geometric mean normalisation with multiple reference genes. The formula used for geometric 

mean normalisation was described by Vandesompele, et al. (2002). 

6.3. Results  

Ideally, an accurate age estimation of any biological sample requires the evaluation of 

parameters that potentially correlate with a deposition time. Furthermore, the normalisation 

into a stable reference gene is also an important factor. Here, miRNA analysis was employed 

to identify the stability of the chosen markers, over a period of time. The results showed all 

assays were successfully detected up to 28 days; this was expected as all miRNA markers 

were adopted from other research groups. Hanson, et al. (2009) reported that miRNA 451 is 

stable in dried bloodstains ranging from 15 months to 84 years old, whereas, miRNA 205 is 

stable in aged saliva samples from 26 to 58 years old (Hanson et al., 2009).  

Once all markers were detected, the ∆Cq of each marker was calculated (Cq max - Cq target). In 

saliva, the ∆Cq value indicated that miRNA 205 was more abundant than miRNA 44. This 
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unexpected result showed that both markers tend to decrease over all time points. Statistical 

analysis was performed (Shapiro and Wilk test followed by T-test) and revealed that the ∆Cq 

of both markers was significantly lower than the calibrator sample (0 days), except at day 7 

and day 28, for miRNA 205 and RNU 44, respectively (Figure 58A). The trend of both assays 

was investigated using ∆Cq as an indicator with two relationships: linear and polynomial. 

This finding demonstrated that miRNA 205 has linear and polynomial curves, with R
2
 values 

of 0.93 and 0.97, respectively, whereas, ∆Cq of RNU 44 has linear and polynomial curves, 

with R
2
 values of 0.73 and 0.91, respectively (Figures 58. B and C).  
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Figure 58. MiRNA in saliva samples. (A) Mean ∆Cq of markers miRNA 205 and miRNA 44, up to 28 days, (B and 
C) the patterns of degradation of miRNA 205 and miRNA 44 in saliva, respectively. Column denoted with one 
asterisk (*) indicates p< 0.05, column with two asterisks (**) indicates p<0.01 and column with NS indicates no 
significant difference. Error bars represent one standard deviation (N=15). 
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In the blood samples, ∆Cq was calculated in the same way as it was in the saliva samples. 

Whilst miRNA 451 was more abundant than the reference gene, no significant difference was 

detected in both markers, except in miRNA 451, at day 14 (Figure 59A). This finding 

suggests a minor variation was observed between fresh (0 days) and 14 days. The degradation 

patterns of miRNA in the blood samples was also investigated, and the results showed that 

miRNA 451 had the strongest linear and polynomial curves, with R
2
 values of 0.29 and 0.67, 

respectively. No correlation was observed with RNU 44 (Figures 59. B and C). Generally, 

∆Cq of blood markers showed a weak correlation when compared to the saliva markers. A 

similar study was conducted by Nakao, et al. (2013), and results showed that miRNA 451 and 

miRNA 16 significantly decreased over time. The authors of this study explained that this 

correlation was evident because of humidity rather than the increasing the age of samples 

(Nakao et al., 2013).  

Data relating to the semen samples are illustrated in Figures 60 and 61. Here, RNU 44 and 

miRNA 891a markers were detected in all semen samples, aged up to 28 days. As previously 

mentioned, two extraction methods were tested in the semen samples: with DTT (+DTT) and 

without DTT (-DTT). To show the influence of the DTT reagent on miRNA markers, the ∆Cq 

of semen markers was calculated (Ct max - Ct target) in both experiments. The results indicate 

that DTT has a strong impact on RNA extraction because the ∆Cq of both markers was high, 

in the absence of DTT (Figures 60A and 61A). In addition, miRNA 891a was more abundant 

than RNU 44 when DTT was added, and the opposite was observed when DTT was not 

included. Furthermore, both markers at all-time points were significantly differenced with a 

fresh sample when DTT was avoided. This finding suggests that miRNA 891a is internally 

abounded, or RNU 44 is strongly influenced by the DTT reagent. No clear explanation for this 

finding has been found in previous literature; however, it is possible that an extra amount of 

DTT works as an inhibitor with miRNA, resulting in a lower rate of amplification. A similar 
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explanation was reported by Haas et al. (2011b) in the Turbo DNA free kit which used for 

DNA digestion (Haas et al., 2011b).  

 

Figure 59. MiRNA in blood samples. (A) Mean ∆Cq of miRNA 451 and 55, aged up to 28 days, (B and C) the 
degradation patterns of miRNA 451 and RNU 44 in blood, respectively. Column denoted with one asterisk (*) 
indicates p< 0.05, column with two asterisks (**) indicates p<0.01 and column with NS indicates no significant 
difference. Error bars represent one standard deviation (N=15). 
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Figure 60. MiRNA in semen samples with DTT (+DTT). (A) Mean ∆Cq of miRNA 891a and miRNA 44, (B and C) 
the degradation pattern of miRNA 891a and miRNA 44, aged up to 28 days, respectively. Column denoted with 
one asterisk (*) indicates p< 0.05, column with two asterisks (**) indicates p<0.01 and column with NS 
indicates no significant difference. Error bars represent one standard deviation (N=15). 
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Figure 61. MiRNA in semen samples without DTT (-DTT), aged up to 28 days. (A) Mean ∆Cq of miRNA 891a and 
miRNA 44. (B and C) the degradation pattern of miRNA 891a and miRNA 44. Column denoted with one asterisk 
(*) indicates p< 0.05, column with two asterisks (**) indicates p<0.01 and column with NS indicates no 
significant difference. Error bars represent one standard deviation (N=15). 
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As seen in Figures 60 and 61, an unexpected result was also detected in the semen samples. 

Here, it was demonstrated that both markers generally tend to correlate with actual age, and 

both have different patterns with and without DTT. MiRNA 891a decreased linearly with R
2
 

values of 0.25 and 0.80, with and without DTT, respectively (Figures 60B and 61B). 

Whereas, RNU 44 had the strongest R
2
 value of 0.77, with DTT (Figures 60C and 61C). The 

stability and ability of markers to be degraded could be the mean reason because the pattern 

of miRNA degradation is still poorly understood (Gutiérrez-Vázquez et al., 2017, Zhang et 

al., 2012). These results are likely to have been influenced by experimental factors or storage 

conditions. The observed correlation suggests that ∆Cq could be used as an indicator to 

predict age, particularly in saliva, but less so in semen and blood. 

6.3.1. The patterns of ΔCt in microRNA markers as an indicator to predict the age of a 

stain   

  

A previous study concluded that high quality and intact RNA produced highly amplicon level 

(low Cq) and verse versa when integrity and quality are decreased (Silva, 2012). To explore 

the correlation patterns of Cq values, calculations, such as ∆Cq (Cq Max - Cq Target), ∆Cq (Cq 

Target – Cq Reference), and the relative ratio between markers (ΔCq Target /ΔCq Reference) were 

performed. The Pearson’s correlation analysis was performed on all Ct calculations 

(Appendix 4. Table 45), to explore which form was the most suitable in blood, saliva, and 

semen. The results of this analysis showed that all Cq forms in saliva samples were 

significantly correlated with actual age, except the relative ratio (ΔCq 205/ΔCq 44). The 

strongest negative correlation was detected in the ΔCq (40 - Cq 205), with a correlation 

coefficient (r) of -0.85. In the blood samples, no significant difference in age was observed in 

all Cq forms (Appendix 4. Table 47); the strongest correlation (0.51) was observed in the ∆Cq 

of miRNA 451 (40 - Cq 451). In the semen samples (+DTT), the strongest correlation (0.68) 

was observed in the ∆Cq of RNU 44, whereas, ∆Cq of miRNA 891a showed the highest 
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correlation (0.69) when DTT was avoided (Appendix 4. Tables 46 and 48). Only the two 

previous parameters (∆Cq of RNU 44 and ∆Cq of miRNA 891a) in semen samples were 

significantly correlated with actual age. Regardless of the type of correlation, the possibility 

of using single and multiple regression analysis was still available, especially in the saliva 

samples. Therefore, all ΔCq forms were tested and the results showed that appropriate models 

for saliva age prediction were generated (Table 28).  

Table 27. Models were generated in saliva using Ct forms as indicators.  

Note: * represented of p<0.05 and ** represented that p<0.01 

As seen in the table above, the strongest correlation was obtained with ΔCq model (40 - Cq 

205), and the lowest MAD value with the same model. Therefore, ∆Cq of 205 could be the best 

model generated to predict the age of saliva samples. The multiple regression analysis showed 

no significant difference in all combinations, except in ∆Cq (Cq 205 - Cq44), and in relative 

ratio (Cq 205/Cq 44), with a R
2 

value of 0.61, and MAD value of 5.5. This equation is listed 

in Table 29. By using the three best models obtained in the saliva samples, the mean age 

prediction was calculated (Figure 62).   

Table 28. Age prediction model using multiple regression analysis in saliva samples. 

 

 

Model 

 

Unstandardized Coefficients 

Standardized 

Coefficients 

 

t 

 

Sig. 

B Std. Error Beta 

1 (Constant) 

ΔCq (Cq 205-Cq 44) 

Relative Ratio (ΔCq 205/ΔCq 44) 

-122.289 

-16.600 

142.799 

46.694 

4.674 

47.308 

 

-3.391 

2.881 

-2.619 

-3.552 

3.019 

.022 

.004 

.011 

Saliva samples Pearson’s correlation Optimal curve Estimated curve equation R
2
 MAD (day) 

ΔCq of 205 0.85** Quadratic y=28.8-0.03x-0.09x2 0.74 4.4 

ΔCq of 44 0.81** Linear y=45.72-2.97x2 0.65 4.7 

ΔCq (Cq 2055-Cq44) 0.56** Linear y=18.49-2.75x 0.32 6.9 

Relative ratio(ΔCq205/ΔCq44) 0.45** Linear y=39.42-22.21x 0.20 7.4 
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Figure 62. The mean age prediction using miRNAs markers in saliva. (A, B, and C) the mean age predictions 
using ΔCq of 205, 44, and multiple regression in saliva, aged up to 28 days, respectively. Error bars represent 
one standard deviation. 
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As illustrated in figures 62A and B, the saliva miRNA models were close to predicting the 

fresh samples (0 days). In addition, ΔCq miRNA 205 and multiple regression models were 

close to predicting the real points at 14 and 21 days, except high SD at these points. 

Furthermore, ΔCq of the RNU 44 model appropriately predicted age at previous points, with 

the lowest SD compared to other models. Therefore, ∆Cq 205 can be considered as the best 

model to predict the age of saliva, as three points were approximately predicted, with the 

highest R
2 
value.   

6.3.2. The patterns of RQ of microRNA markers as an indicator to predict the age of a 

stain    

 

Relative transcripts of miRNAs were also applied to generate models that could be used to 

predict the age of blood, saliva and semen. In these experiments, miRNA 451, 205, and 891a 

were investigated, and all normalised with RNU 44. The mean value of the quantification 

cycle (Cq) was used to calculate RQ. The results showed that relative levels of miRNA 

markers tended to decrease over time (Figure 63).  
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Figure 63. The mean RQ of selected miRNA aged to up 28 days. (A) The relative level of miRNA 451 in the blood (B) the relative level of miRNA 205 in saliva, (C and D) the 
relative level of miRNA 891a with and without DTT, respectively. Error bars represent one standard deviation. 



187 
 

As seen in Figure 63, the strongest linear and polynomial correlation was observed in miRNA 

205 in saliva samples, with R
2
 values of 0.898 and 0.99, respectively (Figure 63B). As 

mentioned previously, the calibrator sample (Time 0) is normalised with itself and the 

resulting is always equal 1 without any error. For this reason, the standard division of the 

calibration sample is always 0 (Livak and Schmittgen, 2001, Rao et al., 2013). 

To generate the models, the Pearson’s correlation analysis was performed using RQ as the 

parameter, and the results showed appropriate values were found. Consequently, a simple 

regression analysis with CI and PI at 95% was performed to explore the regression line of RQ 

in selected markers. Linear, quadratic and cubic curves were investigated. The results showed 

that blood and saliva markers have a linear curve, with R
2
 values of 0.34 and 0.59, 

respectively, whereas, the semen markers have two different curves: linear and cubic, with R
2
 

values of 0.62 and 0.51, with and without DTT, respectively. Based on the results of this 

analysis, four equations were obtained and listed in Table 30. 
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Table 29. The simple regression analysis using RQ of miRNA markers in blood, saliva and semen samples.  

 

Type of sample 

 

Frame time 

Number of 

samples 

Pearson’s 

correlation(r) 

 

Target gene 

Reference 

gene 

Optimal 

curve 

 

Estimated curve equation 

 

R
2
 

MAD 

(day) 

Saliva Month 15 0.77** miRNA 205 RNU 44 Linear y=25.82 - 22.71x 0.59 5.2 

Blood Month 15 0.58** miRNA 451 RNU 44 Linear y=23.24 -18.48x 0.34 6.4 

Semen(+DTT) Month 15 0.79** miRNA 891a RNU 44 Linear y=70.16 - 66.13 0.62 5.3 

Semen(-DTT) Month 15 0.51* miRNA 891a RNU 44 Cubic y=15.54 +11.31x +21.85x2- 48.72x3 0.51 5.1 

Note: * represented of p< 0.05 and ** represented that p< 0,001 

 

Table 30 illustrates all models generated, using RQ of miRNA, and in each model, a unique optimal curve was observed. As mentioned 

previously, a strong correlation also generates strong R
2
 value, and verse versa. All RQ obtained illustrated a significant correlation with actual 

age. The MAD in all models was high and this could be due to low R
2
 values that were obtained. By using these models, age prediction was 

calculated in the saliva, blood and semen samples (Appendix 1.Table 37), and the data generated were plotted against actual age (Figure 64).   
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Figure 64. Age prediction obtained, using SRI. (A) Age prediction calculated with miRNA 451/44 in blood, (B) 
predicted age using miRNA 205/44 in saliva, (C and D) age prediction using the semen models, with and 
without DTT, respectively. The solid red line in the graph represents the modelled space where predicted age 
and actual age are equal, the small dashed green lines represent confidence limits, and the large dashed green 
lines represent prediction limits. 

 

As illustrated in Figure 64, a wide confidence interval was observed, particularly in the blood 

samples. The main reason could be related to a high standard error, due to the small sample 

size and different Cq values obtained. As seen, no data were observed out the PI level (large 

dashed green line). To present the findings clearly, the predicted mean age was calculated and 

plotted against actual age (Figure 65).  
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Figure 65. The mean age prediction using miRNA models. (A) Blood age prediction, using miRNA 451/44 model, (B) miRNA 205/44 model in saliva samples, (C and D) semen 
models, with and without DTT, respectively. The error bars represent one standard deviation. 
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Figure 65 shows the predicted mean age that was calculated in the blood, saliva and semen 

samples. The saliva model (RQ of miRNA 205/44) has the strongest correlation with actual 

age, whereas, the miRNA 451/44 model in blood has the lowest correlation (Figure 65A and 

B). Therefore, the accuracy of any model depends on the best choice of markers and 

reference genes. In time-based experiments, the stability of reference genes is the most 

important factor to generate accurate normalisation. To measure expression levels accurately 

and improve the obtained models, normalisation of multiple reference genes, rather than just 

one, is required. 

6.3.3. Geometric mean normalisation strategy  

 

The instability of reference genes has two main sources: experimental variability including 

technology variation, and natural variability between tissues, individuals, and time. To 

minimise the likelihood of these variations occurring, normalisation with multiple reference 

genes is the most useful approach (Chervoneva et al., 2010, Vandesompele et al., 2002, 

Peltier and Latham, 2008, Imai et al., 2014). A normalisation factor (NFN) using multiple 

genes was defined as the geometric mean of relative expression value in the N gene regions, 

in each sample (Imai et al., 2014). Here, the geometric mean normalisation was employed 

using multiple reference genes, including miRNA and mRNA markers. This strategy could be 

used to improve the models, as well as reduce the MAD value.   

Three models were used in the geometric mean normalisation strategy; the selection of these 

models was based on the lowest R
2
 obtained. In the saliva samples, the HTN3/GAPDH model 

(R
2
 = 0.45) was selected, and ∆Ct of HTN3 was normalised geometrically. Firstly, this was 

achieved using a combination of miRNA 205, RNU 44, and GAPDH, and secondly, with 

only miRNAs 205 and 44. All obtained data underwent SRI in the same way as described 

earlier to generate a new prediction model (Figure 66).  
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Figure 66. Geometric mean normalisation strategy in saliva samples. (A) The model that was generated using 
RQ of HTN3, normalised with miRNAs 205 and 44, and GAPDH, (B) the model generated with RQ of HTN3 that 
was normalised with miRNAs 205 and 44, (C and D) the age prediction using the previous models, respectively. 
The solid red line in the graph represents the modelled space where predicted age and actual age are equal. 
The small dashed green lines indicate confidence limits and the large dashed green lines indicate prediction 
limits (N=30). 

 

As seen in the figure above, there are two models with two different normalisation strategies. 

The first normalisation strategy was conducted using three reference genes, including 

miRNAs 205 and 44, and GAPDH (Figure 66A), and the second normalisation strategy 

included miRNAs 205 and 44 only (Figure 66 B). Two models with different R
2
 values were 

generated and illustrated in each graph; the highest R
2
 value was obtained by using only 
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miRNA as reference genes. The results indicate that GAPDH was unstable reference gene, 

and it could be the main reason for generating a low R
2
 value when it was used as individual 

reference gene with HTN3 marker in saliva samples (Table 13, chapter 4).  

Figure 67. The mean age prediction in saliva samples. (A) The mean age prediction using RQ model of HTN3 
normalised with GAPDH, miRNA205 and RNU 44 as reference genes, (B) the same model that was normalised 
with miRNA205 and RNU 44 only. The error bars represent one standard deviation. 
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By using the two equations as listed in graphs above, the mean age prediction for the saliva 

samples was calculated (Appendix 3.Table 43). The results obtained strongly indicate that the 

best model used was the normalised one with miRNA only, as reference genes. Three points 

were approximately predicted as same as the actual age, especially in a zero sample, whereas, 

another model generated low R
2
 value and was so far of almost of real points (Figures 67. A 

and B). Furthermore, the MAD value decreased from 5.8 to 4.5 in the HTN3/ GAPDH and 

HTN3/ (205+44) models, respectively.  

Similarly, the same geometric mean normalisation strategy was employed in the semen 

samples. This was an attempt to improve the SEMG1/B2M model that obtained a R
2 

value of 

0.64, when it was normalised with B2M (Table 14, chapter 4). This was achieved when RQ 

of SEMG1 was normalised with three reference genes, including B2M, miRNA 891a, and 

RNU 44, as well as with two reference genes, including miRNA assays only. Again, a single 

regression analysis (SRA) was performed, and two models were obtained (Figures 68. A and 

C). The same finding that was obtained in the saliva samples was also observed in the semen 

samples. The highest R
2
 value was obtained when the SEMG1 was normalised with 

geometric miRNA assays only (0.768). Once the two equations were generated, the age 

prediction was calculated (Appendix 3. Table 43) and plotted against actual age (Figures 68. 

B and D). The results obtained confirmed the advantage of using geometric mean, especially 

with the miRNA assays only. The mean age prediction was calculated to compare the two 

new models and plotted against actual age (Figures 69. A and B).   
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Figure 68. Geometric mean normalisation in semen samples. (A and C) models of RQ of SEMG1 that were 
normalised using a geometric mean of miRNA assays only, and accompanied with miRNA 891a, RNU 44, and 
B2M, respectively. (B and D) Age prediction using previous models, respectively. The solid red line in the graph 
represents the modelled space where predicted age and actual age are equal. The small dashed green lines 
indicate confidence limits and the large dashed green lines indicate prediction limits. 
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Figure 69. Mean age prediction in semen samples. (A and B) Mean age prediction calculated using SEMG1 
models that was normalised using miRNA 891a and RNU 44, or normalised with miRNA 891a, RNU 44, and 
B2M, respectively. The error bars represent one standard deviation (N=30).  
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As illustrated in the figures above, a SEMG1 model using miRNA assays only generated 

strong R
2
 values, indicating a correlation with actual age. At least three-time points were 

approximately detected, whereas, other models predicted the same time-point at day 14, with 

a large error bar. Therefore, a new SEMG1 model is greatly improved when compared to 

previous models, when B2M was used for normalisation. The final R
2
 value for the mean 

prediction was 0.76 (Figure 33 B, chapter 4); however, the SEMG1 model with geometric 

normalisation generated the highest R
2 

value (Figures 69. A and B).      

The GYPA model used in the blood samples was also normalised with a geometric mean, 

using miRNA 451, RNU 44, and B2M, as described in the saliva and semen examples. In 

fact, the GYPA marker obtained a low R
2
 value when it was normalised with B2M (0.11) 

(Table 12, chapter 4). For new normalisation, both groups obtained approximately the same 

R
2
 value (Figures 70A and B). The prediction age was calculated using two new formulas 

(Appendix 3. Table 43), and the results showed great confidence and prediction intervals due 

to using inaccurate models. Therefore, the mean age prediction for both new models was 

calculated and plotted against actual age. As seen in Figures 71A and B, there was no 

improvement to the new models, using two types of normalisation strategies. The main 

reason for this observation could be related to GYPA that showed a weak correlation with 

actual age. As previously mentioned, a good marker for age prediction should be correlated 

with an increase in time. 
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Figure 70. The new model generated with geometric mean in blood samples. (A and C) Models of RQ GYPA 
that were normalised with miRNA 451, RNU 44, and B2M, or normalised with only miRNA 451 and RNU 44, 
respectively, (B and D) age prediction generated by previous models, respectively. The solid red line in the 
graph represents the modelled space where predicted age and actual age are equal. The small dashed green 
lines indicate confidence limits and the large dashed green lines indicate prediction limits (N=20). 
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Figure 71. New normalisation with GYPA in the blood samples. (A and B) the mean age prediction calculation 
using GYPA models that were normalised with miRNA 451, RNU 44, and mRNA B2M, or only miRNA451 and 
RNU44, respectively. The error bars represent one standard deviation.  
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6.4. Discussion  

The prediction of age in any biological stains in forensic investigations plays a major role in 

determining the elapsed time between deposition and sample recovery. Age prediction for 

biological stains based on qPCR of RNA decay has precisely required the evaluation of 

parameters that correlated with the time after deposition. In previous chapters, it was 

illustrated that some mRNA markers have a strong correlation with actual age; however, in 

some cases, these markers generated models with low R
2
 values. As discussed previously, 

this could be due to inaccurate normalisation with unstable reference genes. Therefore, this 

chapter aimed to explore the patterns of miRNA degradation up to 28 days, and the 

possibility of using the most stable miRNA markers as reference genes to improve 

normalisation of the previous mRNA models, through geometric mean normalisation 

strategies. This was achieved by using the qPCR method, targeting miRNA 451, miRNA 205, 

and miRNA 891a in blood, saliva and semen samples, respectively. Furthermore, RNU 44 

was also investigated as an additional reference gene alongside each marker, in all samples. 

Once all markers were successfully detected, ∆Cq was calculated using several methods in 

the blood, saliva and semen samples. Although miRNAs are among the most stable elements, 

an unexpected result was detected in the saliva samples that showed that ∆Cq significantly 

decreased over time. The strongest linear and polynomial correlations were observed in saliva 

samples, with miRNA 205 and R
2
 values of 0.93 and 0.97, respectively (Figure 58B). The 

lowest linear and polynomial correlations were observed in blood samples, with R
2
 values of 

0.026 and 0.089, respectively (Figure 59C). In the blood samples, a minor variation was also 

observed with miRNA 451, between fresh (0 days) and 14 days (Figures 59A and B). The 

study of Wang, et al. (2013a) also supported this finding where the minor fluctuation in 

expression levels between a 24-hour and 1 month was observed (Wang et al., 2013a). 



201 
 

Furthermore, the study of Uchimoto (2014) concluded that a variation was found in a 24-hour 

versus 1 week (Uchimoto, 2014).  

Another study was conducted to estimate the age of bloodstains based on biological and 

toxicological analyses. In this experiment, miRNA 451 significantly decreased over time, up 

to 28 days. The authors explained that degradation occurred as a result of the blood samples 

only partially drying, before being placed in a chamber at 25°C and 50% humidity (Nakao et 

al., 2013).  

The time-wise stability of miRNA markers was tested in the aged sample for 1 year, in 

laboratory conditions. In this study, three miRNA markers for blood samples, and four 

miRNA markers for semen samples, including miRNA 891a, were tested. The results 

indicated that no time-wise degradation was detected in the miRNA markers tested 

(Zubakov et al., 2010). Therefore, the correlation observed in the current study is possibly 

related to extended storage conditions, over 1 year at -20°C. Unfortunately, the amount of 

RNA was limited and did not allow for quality and quantity testing of the samples. Although 

the stability of miRNA in degraded RNA was investigated, the results indicated robust 

miRNA measurements with RT-qPCR, even in degraded RNA (Jung et al., 2010). In 

contrast, other studies reported that the expression profiling of miRNA is potentially 

influenced not only by the method used for isolation, but also by the RNA storage conditions 

and handing (Bravo et al., 2007, Wang et al., 2008, Doleshal et al., 2008). The stability of 

isolated miRNA in stored RNA samples was also investigated, where Trizol/TRI-Reagent 

isolation methods were tested, and compared to the mirVana isolation kit (Ambion) and 

RNeasy kit (Qiagen) (Mraz et al., 2009). The results showed that Trizol/TRI-Reagent based 

isolation methods are robust and can be reproduced and obtained miRNA samples without 

the tendency to degradation when the sample is stored and handled properly. The conclusion 
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of previous statements could be explained that RNase Mini kit which was used for miRNA 

extraction may influence the patterns of miRNA expression.   

On the contrary, the observed correlation between miRNA and actual age, particularly in the 

saliva samples, could be related to reasons other than the degradation of miRNA. In addition, 

saliva samples were the least stable, when compared to blood samples, in a study that 

demonstrated blood-specific and saliva-specific mRNA markers can be amplified 

successfully and reliably, in old stains up to 16 years old and 6 years old, respectively 

(Zubakov et al., 2009). The tendency to decrease was also observed in semen samples; the 

reason could be the same as discussed previously, as well as DTT reagent could be 

potentially affected on miRNA. 

The correlation patterns of different forms of ∆Cq were explored in the blood, saliva, and 

semen samples. The results showed that ∆Cq in saliva has the strongest correlation value, 

therefore, those samples underwent single and multiple regression analysis to obtain models 

for saliva age prediction (Tables 28 and 29). The ∆Cq of miRNA 205 and RNU 44 had R
2
 

values of 0.888 and 0.73, respectively (Figures 62A and B). The ∆Cq forms in blood samples 

showed no significant difference with actual age and were therefore excluded. In semen 

samples, ∆Cq forms are significantly correlated with actual age, but with Low R
2
 values.  

As was achieved in mRNA markers, RQ was also employed for miRNA markers to generate 

models that could be used for age prediction in blood, saliva and semen (+DDT and –DTT) 

samples. The average Cq of each marker in every sample was calculated, after normalisation 

with reference gene RNU 44 was achieved. Three curves were tested as regression lines, and 

the results showed that blood, saliva and semen (+DTT) samples have an optimal linear 

curve, with R
2
 values of 0.34, 0.59, and 0.62, respectively (Table 30). Although the mean RQ 

of markers used showed appropriate correlations with actual age, particularly in saliva 
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(Figure 63), the regression analysis showed this average decreased. This could be related to 

high SD, due to the variability of samples, and small number of samples used.         

Once the equations were generated, age prediction in the blood, saliva, and semen samples 

was calculated, plotted against actual age, and the accuracy of models used was compared. 

The results indicated that the mean age predictions in saliva and semen (+DTT) samples have 

the highest correlation with actual age, with R
2
 values of 0.898 and 0.81, respectively (Figure 

65. B and C).  

MiRNAs with short sequences are more stable than mRNAs. In contrast, miRNAs showed 

limited stability over a short period in the Sethi and Lukiw (2009) study that investigated 

miRNA as an endogenous gene in human brain tissue (Sethi et al., 2009). Another study was 

conducted to investigate the level of RNA, 18S rRNA and miRNA, to estimate PMI (Li, et 

al., 2014). The findings of this study indicated that the degradation pattern of tissue 18S-

rRNA and miRNA is useful in the determination of the interval, within 7 days (Li et al., 

2014). The pattern of five miRNA expressions was investigated within 48-hours, in room 

temperature, to determine PMI in adult mice (Wang, et al., 2013a). The results indicated that 

miRNA remained stable in the first 24-hours, before some of miRNA started decreasing; the 

authors suggested to study degradation patterns of miRNA before employed miRNA for PMI 

(Wang et al., 2013a). The previous statements could be supported the finding that miRNA 

can stay stable and degraded according to its function. A similar study was conducted using 

miRNA-142-5p and miRNA-541, for bloodstain deposition timing (Lech, et al., 2014). The 

results concluded that two miRNA markers were not suitable for estimating time deposition 

of the bloodstain. miRNA-142-5p showed no statistical significant differences in expression 

during the 24-hour day/night period, and miRNA 541 was abundantly low (Lech et al., 2014).  
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Normalisation, using a single reference gene, leads to inaccurate normalisation up to 6.4-fold, 

in 10% of cases (Leitao et al., 2014, Vandesompele et al., 2002). Therefore, to improve the 

data obtained in this study, the combination of mRNA and miRNA markers could be useful. 

This was achieved by employing the geometric mean normalisation strategy as a link 

between more stable candidates (miRNA), and the most degraded assays (mRNA markers). 

Three models with the lowest R
2 

values were selected, including HTN3/GAPDH, 

SEMG1/B2M, and GYPA/B2M for saliva, semen and blood, respectively. All three models 

underwent geometric mean normalisation strategy in two different ways. The results showed 

that new models are improved, particularly when using miRNA markers, and this suggests 

that miRNAs are the most useful candidates for normalisation, rather than for using them as 

parameters of age prediction. 

6.5. Conclusion  

The expression patterns of miRNA could be dependent on different factors, including 

isolation methods, storage time, and natural of target marker and sample. MiRNA is more 

sensitive and stable compared to mRNA, and this could lead to improvements in 

quantification RT-PCR data, by using it as a reference gene. In some cases, miRNA tended to 

decrease over time, therefore, so this behaviour requires further investigations. 
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Blood, saliva, and semen are the most common biological evidence found at a crime scene 

(Sirker et al., 2016). However, identification of the person whose sample was found at the 

crime scene is not sufficient to ground their conviction or an exoneration as the perpetrator of 

the crime. This is because the deposition of the sample could have taken place before 

particular offence was committed. Consequently, determination of the TSD is the most 

important factor in linking relevant evidence to the crime scene and/or excluding those that 

happened outside of the time period in which the crime was committed. Some efforts have 

been made to overcome this dilemma using different techniques and methods. Amongst 

these, RNA decay rate measurement stands out as one of the most sensitive and accurate 

methods. Therefore, the aim of this thesis was to explore the forensic applications of RNA 

analysis for a stain age prediction. Several factors were examined, namely mRNA and 

miRNA in an attempt to determine the age of blood, saliva, and semen samples using RT-

qPCR method.  

A number of studies showed that level of RNA transcription generally decreased with a 

longer PMI (Sampaio-Silva et al., 2013, Partemi et al., 2010, Bauer et al., 2003a). The 

stability of mRNA has been tested in many studies and showed that it is possible to detect 

mRNA expression in aged biological stains. For example, mRNA was found on seminal 

stains that were 33 and 56 years old (Nakanishi et al., 2014), whereas, Lindenbergh et al. 

(2012a) detected mRNA in 28-years old samples (Lindenbergh et al., 2012a). Bauer et al. 

(2003b) demonstrated that although RNA gradually degrades in dried bloodstains, mRNA is 

still suitable for RT-qPCR and can be extracted from blood samples stored up to 15 years 

(Bauer et al., 2003b). Another study demonstrated that the blood and saliva –specific mRNA 

markers can be amplified successfully and reliably in old stains up to 16 and 6 years old, 

respectively, suggesting their suitability for tissue identification in forensic studies (Zubakov 

et al., 2009). 
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In the present thesis, the amplification of all markers was successfully detected over 28 days 

period. Two common reporter systems were used, namely TaqMan probe system (Holland et 

al., 1991, Livak et al., 1995), and intercalating SYBR Green assay (Wittwer et al., 1997). The 

most important step in RT-qPCR to ensure that a single strand cDNA is successfully 

generated. Therefore, good cDNA synthesis strategy is an imperative for successful method 

and generation of good quality data. Interestingly, SYBR Green assay proved the most 

valuable when evaluating RNA formation and decay (Schmittgen et al., 2000). In Schmittgen 

and co-workers (2000) study, four quantitative RT-PCR methods, band densitometry and 

probe hybridisation as end-point, and SYBR Green and TaqMan as real-time methods, were 

compared in the ability to test the same cDNA. The linear regression analysis of the first-

order mRNA decay plots was performed for different methods, and the R
2
 values obtained 

were the highest for SYBR Green. Unsurprisingly, real-time methods (SYBR Green and 

TaqMan probe) proved to be more precise and offer greater dynamic range then end point 

methods. Interestingly, SYBR Green detection was more precise and gave more linear decay 

plot than TaqMan chemistry. Previously, mRNA was used for BFI using SYBR Green, and 

the authors showed that SYBR Green based BFI test could be developed, and may even be 

more appropriate for commercial forensic science environment use when compared to 

TaqMan based BFI test. However, caution is warranted here since high background signal in 

RT negative controls may render SYBR Green based BFI unreliable for use in a court of law 

(Connolly and Williams, 2011). In summary, each chemistry has its advantages and 

limitations. For example, the limitation of SYBR Green dye is that it cannot be used in 

multiplex reactions, due to the fact that it non-specifically binds any double-stranded DNA. 

This will influence the specificity and the sensitivity of this method, making it difficult to 

generate accurate result when the template is at the low starting concentration. However, a 

post-PCR melting curve can help to improve the specificity of the reaction. The main 
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advantage of SYBR Green dye is that it is flexible and can be used to monitor amplification 

of any dsDNA sequence, as well as that it does not require probe and therefore reduces the 

steps in the assay set up and the running costs.  Finally, SYBR Green chemistry is easily 

detectable by the most real-time PCR systems. 

In current study, the comparison between both chemistries (TaqMan and SYBR Green) was 

performed, and for clearer representation of the data, the mean age prediction was calculated 

for all models. In blood, HBB/B2M model using TaqMan chemistry had the strongest R
2
 

value (0.91) (Figure 25 B), while the best fit when using SYBR Green chemistry was 

observed for FGB/ACTB model (R
2
 = 0.88) (Figure 41E). In saliva, with TaqMan chemistry, 

the mean age prediction using ∆Cq of HTN3 model had the strongest R
2
 value of 0.98 

(Figure 28 A). With SYBR Green the strongest R
2
 value (0.99) was observed when 

HIF1A/VEGFA model was used (Figure 50B). Moreover, in blood samples HBB marker was 

used for both chemistries, and showed the strongest linearity with R
2
 value of 0.82 obtained 

when Taqman was applied (Figure 24 B).  

The comparative Ct method has been widely used as a relative quantification strategy for RT-

qPCR method (Rao et al., 2013). This method is a convenient way of calculating relative 

target gene levels using directly the threshold cycles of different samples. However, this 

approach is mostly dependent on an invalid assumption of 100% PCR amplification 

efficiency across all samples under the investigation. Following the hypothesis that RNA 

decay should decrease over time, an RNA expression experiment was conducted to determine 

the age of the forensic hair sample that was up to 3 months old. The ratio between 18S rRNA 

and β-actin was explored, and the result showed both 18S rRNA and β-actin are suitable 

targets for age estimation of hair samples (Hampson et al., 2011). The current study also 

examined the decay rate of mRNA and miRNA over a certain time. The single and multiple 

regression analysis were performed, and mathematical models for age prediction were 
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generated. In the first experiment, blood samples were left to decompose for one week. Here, 

B2M/GAPDH emerged as the best predictor of the age of blood stain for up to 7 days, with 

an R
2
 value of 0.43 and MAD of ±1.4 day (Table 11). The reason for the weak correlation in 

this experiment could be related to inoperative selection markers in short period. The 

deposition time is another factor thought to influence the degradation patterns of genes 

(Simard et al., 2011). Therefore, in order to investigate this further, the time-frame for sample 

decomposition was increased up to 1 month, with analyses performed at 7, 14, 21 and 28 

days. The quality of all markers was acceptable, except for GYPA1 and MUC7. Delta Cq was 

obtained and showed that HBB and PRM1 were the most abundant markers detected in blood 

and semen, respectively. This finding was also supported by the study that revealed HBB and 

PRM1 as the most stable and reliable markers explored, and they were both detected up to 71 

weeks of dry storage (Sirker et al., 2016). 

Oxygen-regulated factors such as HIF1A and VEGFA were also explored in blood, saliva, 

and semen. The RQ was calculated in three different ways, using VEGFA/ACTB, 

HIF1A/ACTB, and HIF1A/VEGFA as the models. Particularly strong correlation detected for 

saliva, strongly supports the advantage of using hypoxia marker in these analyses. This was 

further supported by Bai et al. ( 2017) in a study that showed that hypoxia genes are suitable 

markers for PMI (Bai et al., 2017). Up to date, no studies were found that used hypoxia genes 

for stain age prediction, almost of efforts using hypoxia genes were only for PMI (Zhao et al., 

2006, Thaik-Oo et al., 2002a).      

Micro RNA levels are dictated by both biosynthetic and decay process, which can be 

presented by three events transcription, maturation, and degradation. To date, the pattern of 

miRNA degradation and the processing involved remains largely unclear (Marzi et al., 2016). 

Therefore, miRNA was also explored in the same way as with mRNA markers, namely using 

qPCR targeting of miRNA 205, 451, and 891a for saliva, blood, and semen, respectively. The 
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strong correlation which was detected especially in saliva could be related to the hypothesis 

that RNU44 had affected the sensitivity range of miR-451 and miR-205 on the expression 

levels. This was also supported by the sensitivity study conducted on saliva and blood 

deposits using miRNA 205, 451, and RNU44. The result indicated that the sensitivity range 

of RNU44 was between 1 in 10 and 1 in 100, which was 10-fold higher than miR-205 

(Uchimoto, 2014).  

Once all models were obtained, age prediction for blood, saliva, and semen was calculated. 

Table 31 shows the linearity of mean age prediction using mRNA and miRNA models 

(miRNA models marked in grey). The strongest linearity with mRNA markers was detected 

using HIF1A/VEGFA model in saliva (0.99). On the other hand, the highest linearity using 

miRNA marker was detected with ∆Cq miRNA 205 in saliva (0.89). In blood age prediction, 

HBB/B2M could be considered the best model obtained, while in semen the multiple 

regression model (PRM1/B2M and SEMG1/B2M) was the best model (0.90).  

Dependent on the availability of stock reagents, some of the models were validated using 

blind samples for blood, saliva, and semen. Although all models obtained covered a time 

period from fresh samples (0 days) up to a month of decomposition, blind blood samples 

aged from fresh until one year were tested, targeting ALAS2/B2M, HBB/B2M, and 

HBB/ACTB models. The data obtained from this experiment has strongly supported the 

hypothesis mentioned earlier because the RQ of almost of models was gradually decreased as 

the age increased. Therefore, RQ method could be the best choice to quantify RNA 

degradation because strong correlation was detected in almost all of the markers investigated 

in the current stssudy. This finding was also supported by Bauer et al. (2003b) who 

investigated the degradation of mRNA as a possible indicator of the age of bloodstains 

(Bauer et al., 2003b). 
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Table 30. Mean age prediction calculated with all mRNA and miRNA models obtained using TaqMan and SYBR-
GREEN chemistries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 
Frame 

time 

Number 

of 

sample 

fluorescent 

chemistries 

Model using 

(Single or 

multiple 

regression 

Linearity 

R
2
 

MAD  

(days) 

Blood Week 56 TaqMan ALAS2/GAPDH 0.54 ±1.7 

Blood Week 56 TaqMan ALAS2/B2M 0.48 ±1.4 

Blood Week 56 TaqMan GAPDH/B2M 0.53 ±1.4 

Blood Week 64 TaqMan 
ALAS2/GAPDH 

ALAS2/B2M 
0.63 ±1.4 

Blood Month 40 TaqMan ALAS2/B2M 0.87 ±3.8 

Blood Month 40 TaqMan HBB/B2M 0.91 ±3.2 

Blood Month 40 TaqMan 
ALAS2/B2M 

HBB/B2M 
0.9 ±3.4 

Blood Month 25 SYBRGREEN HBB/ACTB 0.87 ±3.4 

Blood Month 20 SYBRGREEN FN1/ACTB 0.78 ±4.9 

Blood Month 20 SYBRGREEN FN1/EPOS1 0.61 ±4.9 

Blood Month 20 SYBRGREEN FGB/ACTB 0.88 ±3.9 

Blood Month 20 SYBRGREEN EPOS1/ACTB 0.63 ±5.0 

Blood Month 20 SYBRGREEN CO A/ACTB 0.59 ±5.1 

Blood Month 40 SYBRGREEN VEGFA/ACTB 0.86 ±4.4 

Blood Month 40 SYBRGREEN HIF1A/ACTB 0.8 ±4.6 

Blood Month 40 SYBRGREEN HIF1A/VEGFA 0.84 ±4.2 

Blood Month 40 SYBRGREEN 
VEGFA/ACTB 

0.91 ±3.7 
HIF1A/ACTB 

Blood Month 15 TaqMan miRNA 451/RNU44 0.47 ±6.4 

Saliva Month 30 TaqMan HTN3/GAPDH 0.55 ±5.8 

Saliva Month 30 TaqMan ∆Cq of HTN3 0.98 ±3.3 

Saliva Month 40 SYBRGREEN VEGFA/ACTB 0.94 ±3.9 

Saliva Month 40 SYBRGREEN HIF1A/ACTB 0.89 ±4.9 

Saliva Month 40 SYBRGREEN HIF1A/VEGFA 0.99 ±2.1 

Saliva Month 40 SYBRGREEN 
VEGFA/ACTB 

0.95 ±3.0 
HIF1A/ACTB 

Saliva Month 15 TaqMan ∆Cq 0f miRNA 205 0.89 ±4.4 

Saliva Month 15 TaqMan ∆Cq 0f RNU44 0.73 ±4.7 

Saliva Month 15 TaqMan Multiple R model 0.88 ±5.5 

Saliva Month   TaqMan miRNA 205/RNU44 0.9 ±5.2 

Semen Month 30 TaqMan PRM1/B2M 0.81 ±4.7 

Semen Month 30 TaqMan SEMG1/B2M 0.76 ±4.4 

Semen Month 30 TaqMan PRM1/SEMG1 0.87 ±4.3 

Semen Month 30 TaqMan 
PRM1/B2M  

0.9 ±4.4 
SEMG1/B2M 

Semen Month 30 SYBRGREEN VEGFA/ACTB 0.66 ±5.4 

Semen Month 30 SYBRGREEN HIF1A/ACTB 0.67 ±5.2 

Semen Month 30 SYBRGREEN HIF1A/VEGFA 0.63 ±5.3 

Semen Month 30 SYBRGREEN 
HIF1A/VEGFA 

0.66 ±4.6 
HIF1A/ACTB 

Semen(+DTT) Month 15 TaqMan miRNA891a/RNU44 0.81 ±5.3 

Semen(-DTT) Month 15 TaqMan miRNA891a/RNU44 0.55 ±5.1 
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In order to obtain accurate results, some of the limitation factors need to be successfully 

overcome. Integrity and quality of samples are likely the most important factors, because 

both could be influenced the accuracy of normalisation strategy through reference genes. 

Consequently, the controlling for input amount of RNA makes the biggest difference. 

Quantification of extracted RNA via Nano-drop and checking of the quality of RNA samples 

by electrophoresis are the key initial steps in the process. Following this, all RNA samples 

should be diluted in the same concentration before cDNA synthesis is performed. Application 

of these steps would undoubtedly lead to more robust and reproducible RT-qPCR. In 

addition, the stability of the reference genes during all experiment stages is another 

potentially limiting factor in the procedure. There is no unique reference gene available; 

however, normalisation with more than one reference gene would increase the accuracy of 

normalisation. In this study, a geometric mean normalisation proved to be a useful procedure 

to improve the data obtaining.  

The amplification efficiency of selected markers is another problem related to RQ method. 

This approach assumes a uniform PCR efficiency of 100% across chosen markers (Arocho et 

al., 2006, Livak and Schmittgen, 2001). The presence of inhibitors or enhancers, the choice 

of RNA extraction methods, and the use of different reagents are the most common factors 

which that could influence the efficiency of PCR assay (Liu and Saint, 2002).  

In the current study, some markers were successfully validated, and the slope of < 0.1 

allowed for the use of RQ experiment. However, the assumption for obtaining 100% PCR 

efficiency at all-time points became problematic, because variation in PCR efficiency could 

lead to the distortion of quantification results. For example, previous study showed that the 

difference in PCR efficiency as small as 0.04 would generated a 4-fold  error in fold change 

(Ramakers et al., 2003). Therefore, PCR efficiency between the target and the reference gene 

should be less than 5%, since increase in this value could result in miscalculation of 
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expression ratio by as high as 43.2% (Rao et al., 2013). In general, different results obtained 

in the present study could be related to the difference in PCR efficiency at the different time 

points for the period of up to 28 days. In order to overcome this limitation, the validation 

experiment at different time points should be performed. Finally, in 2
-ΔΔCq

 method, the 

subtraction of a background fluorescence is automatically performed by the qPCR software. 

This would mean that an imprecise background fluorescence calculation would lead to the 

distortion of the results. To improve RQ data analysis, a calculation of a corrected individual 

efficiency is required (Rao et al., 2013).       

Finally, the data obtained and the conclusions throughout the thesis are highly influenced by 

the statistical analysis methods applied. For example, many statistical analyses have been 

developed to test normality of the data. In present study, The Shapiro Wilk analysis was used, 

and the results showed that the symmetric bell-shaped distribution was not present in the 

observed data. As mentioned earlier, the normal distribution is not essential when dealing 

with a regression analysis for prediction models. However, the data must be normally 

distributed for the calculation of standard error (Guo et al., 2010), therefore, big error bars 

presented as MAD in some models could be related to the non-normally distributed data. It is 

a common practice to use transformation, such as log-transformation in order to convert 

skewed distributed data into normally distributed. The problem with this approach in the 

present experiments is that, even if the transformation would be successful, it could be lead to 

incorrect interpretation of the experimental results. In fact, in some cases, applying the 

transformation made the distribution more skewed than the original data. This is why in some 

studies the authors recommended the use of the new analytic analysis that is not dependent on 

the distribution of that data such as generalised estimating equations (GEE) (Changyong et 

al., 2014, Guo et al., 2010). 
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7.1. Novel work  

The first novel aspect in this work was the generation of the mathematical models for age 

prediction of blood, saliva, and semen stains, based on the degradation patterns of mRNA 

markers using TaqMan and SYBR Green chemistries. The second novel aspect was the 

exploration of the patterns of miRNA markers as indicators for age prediction of blood, 

saliva, and semen samples. Further, the combination of mRNA and miRNA models were 

performed through geometric mean normalisation strategy.  

7.2. Future work 

The sensitivity and stability of mRNA and miRNA markers are the most important factors in 

selecting the candidate for determining the age of the biological stains. This is because each 

candidate has a unique pattern of degradation. Consequently, continual mRNA and miRNA 

markers screenings are required. Also, the degradation patterns of mRNA and miRNA 

markers may differ dependent on several factors. The environmental factors such as 

temperature, light, humidity and the rain could influence the degradation patterns of selection 

markers. Therefore, further study under the different environmental conditions is warranted. 

Further, age, race, and the sex of the person from whom the sample was obtained could also 

influence the degradation pattern of chosen markers. Finally, the data presented in this thesis 

showed different degradation levels in the samples that were left to decompose for one week 

and one month, further supporting that the sensitivity and stability of selection markers 

requires more attention. 

In this study, all samples under investigation were collected with sterile cotton swabs and 

filter paper which is currently not readily available at the real crime scene. Therefore, further 

exploration of the common deposition surfaces such as carpet, denim, and leather is required.  
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Geometric mean normalisation stood out as a method of choice to normalise multiple 

reference genes. Therefore, a combination of the ratio of mRNA and DNA at a different time 

points should be required to understand the relationship between more degraded and stable 

candidates. 

All models in this study were generated using a singleplex RT-qPCR method. However, it 

would be interesting to develop multiplex PCR markers in one kit that would be able to 

predict the age and identification of blood, saliva, and semen in one reaction. This would 

reduce the amount of sample required and would also be more cost-effective and less time-

consuming. Additionally, this multiplex PCR would be more adequate method for subsequent 

analysis by multiple regression models. However, the method for quantification of degraded 

mRNA markers via DNA analyser is now available, and this enables generation of DNA 

profiling, age prediction, and identification of body fluids, all in one run.   
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Appendix 1. Age prediction 

 
Table 31. The mean age prediction in blood using TaqMan chemistry among 1 week. 

 

 

Table 32. The mean age prediction in semen (-DTT) using TaqMan. 

Actual age ALAS2/GAPDH SD ALAS2/B2M SD B2M/GAPDH SD Multiple regression model SD

0 1.86 0.00 0.23 0.00 0.24 0.00 0.54 0.00

1 3.19 0.91 3.85 0.38 3.78 0.45 3.33 0.70

2 3.41 0.85 3.10 1.14 2.56 1.48 2.72 1.00

3 4.15 0.97 3.96 0.89 3.96 0.92 4.20 1.44

4 3.82 0.76 4.18 0.60 4.46 0.38 4.16 0.60

5 3.92 1.00 4.21 0.65 4.41 0.55 4.18 0.95

6 3.62 1.11 4.56 0.32 4.47 0.34 4.67 0.99

7 4.05 1.07 3.91 0.57 4.09 0.37 4.20 0.86

MAD ±1.7 ±1.4 ±1.4 ±1.4

Actual age PRM1/B2M SD SEMG1/B2M SD PRM1/SEMG1 AS

0 0.01 0.00 2.52 0.00 8.83 0.00

7 17.63 0.06 14.98 5.43 16.54 1.55

14 17.23 0.77 13.12 6.62 15.36 3.47

21 17.55 0.23 19.95 3.60 15.06 3.10

28 17.57 0.10 19.52 3.59 14.24 3.93

MAD 

Semen model (-DTT) 

±5.6 ±5.4 ±8.2
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Table 33. The mean age prediction using TaqMan chemistry in blood, saliva, and semen among 1 month. 

 

Table 34. The mean age prediction in blood using SYBRGREEN chemistry among 1 month. 

 

 

 

 

PRM1/B2M

SEMG1/B2M

0.00 0.69 0.00 0.61 0.00 -0.79 0.18 9.18 0.00 1.04 0.00 0.29 0.00 1.46 0.00 1.75 0.00 2.19 0.00 2.32 2.23

7.00 9.41 5.51 7.94 4.58 7.60 3.68 16.36 0.27 12.42 5.70 12.94 4.87 9.52 6.96 10.12 4.92 17.03 5.16 8.09 4.63

14.00 18.95 3.04 18.52 4.15 17.62 3.16 16.25 1.95 17.69 2.76 17.56 4.87 17.82 4.04 17.07 6.08 16.27 2.29 15.66 6.81

21.00 19.07 3.51 20.68 2.66 19.00 1.82 12.75 3.51 18.72 5.46 20.00 1.25 20.65 2.82 20.26 4.13 16.52 2.95 20.13 1.77

28.00 21.97 2.98 22.84 2.77 21.68 1.60 14.78 3.05 20.22 3.44 19.23 3.21 20.56 2.57 20.86 4.38 17.97 2.98 23.93 3.77

MAD ±4.4 ±4.3 ±4.4 ±5.8 ±3.3±3.8 ±3.2 ±3.4 ±8.1 ±4.7

SD Ct HTN3 SDALAS2/B2M SD HBB/B2M SD SEMG1/B2M SD PRM1/SEMG1 SD SD HTN3/GAPDH

Blood models Semen models Saliva models

Actual age
ALAS2/B2M 

HBB/B2M
SD GYPA/B2M SD PRM1/B2M SD

0 0.34 0.00 -0.16 0.00 1.35 0.00 -0.49 0.00 0.21 0.00 0.20 0.00 4.17 0.00

7 10.28 6.00 15.76 3.76 13.69 5.42 16.00 4.28 12.19 4.55 15.84 3.90 15.70 3.76

14 15.83 3.40 17.82 2.85 17.75 5.58 17.20 0.62 16.03 6.28 17.65 2.87 13.48 3.44

21 22.75 1.99 17.82 2.85 17.62 5.79 19.20 0.19 19.91 3.80 18.53 2.10 14.56 8.76

28 20.81 2.75 18.85 1.26 20.41 0.30 18.11 0.96 21.77 3.00 17.74 1.49 22.07 0.79

MAD ±5.1 ±5.8

Blood models 

±3.4 ±5 ±4.9 ±4.9 ±3.9

FGB/COA SDFN1/EPOS1 SD FGB/ACTB SD COA/ACTB SDActual age HBB/ACTB SD EPOS1/ACTB SD FN1/ACTB SD
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Table 35.The mean age prediction using SYBRGREEN chemistry in blood, saliva, and semen among 1 month. 

 

 

 

 

Table 36. The mean age prediction calculated by using miRNA models in blood, saliva, and semen among 1 month. 

 

 

Actual age miRNA 451/44 SD miRNA 205/44 SD miRNA (+DTT) 891a/44 SD miRNA (-DTT) 891a/44 SD

0 4.77 0.00 3.11 0.00 4.03 0.00 -0.02 0.00

7 15.26 2.89 11.96 7.51 11.99 5.15 17.32 2.12

14 15.94 4.44 15.67 3.36 10.82 6.46 16.51 1.97

21 19.63 1.11 19.07 7.23 22.87 4.28 18.07 2.06

28 14.53 6.10 20.17 4.70 20.28 4.62 18.11 2.25

MAD ±6.40

    Age prediction in saliva model 

±5.3 ±5.1

Age prediction in semen model 

±5.20

Age prediction in blood model 
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Appendix 2. Blind samples 

 

Table 37. Age predicted of blind sample using single and multiple regression models with ALAS2/B2M and 
HBB/B2M. 

  

Fresh A B C D E

33.26 29.9 28.24 37.03 32.07 33.76

34.02 30.02 28.17 35.7 32.2 34.4

32.57 29.88 28.15 36.9 31.94 33.27

Mean Cq 33.28 29.93 28.19 36.54 32.07 33.81

SD 0.00 0.11 0.06 0.19 0.01 0.19

1.00 0.34 0.23 0.10 0.06 0.85

1.00 0.31 0.18 0.06 0.06 0.48

1.00 0.51 0.31 0.41 0.08 0.66

Mean RQ 1.00 0.39 0.24 0.19 0.07 0.66

Age prediction 16.93 20.85 22.18 25.47 9.66

MAD ±3.8 ±3.8 ±3.8 ±3.8 ±3.8

Fresh A B C D E

26.7 21.85 19.89 27.52 24.67 26.63

26.68 21.88 19.94 27.53 24.73 26.72

26.65 21.92 19.96 27.56 24.71 26.72

Mean Cq 26.68 21.88 19.93 27.54 24.70 26.69

SD 0.03 0.04 0.04 0.02 0.03 0.05

1.00 0.12 0.07 0.01 0.03 0.79

1.00 0.18 0.10 0.04 0.05 0.60

1.00 0.12 0.06 0.04 0.03 0.99

Mean RQ 1.00 0.14 0.08 0.03 0.04 0.79

Age  prediction 23.06 24.78 26.01 25.73 6.02

MAD ±3.2 ±3.2 ±3.2 ±3.2 ±3.2

Multiple regression 21.30 24.02 25.37 26.48 6.87

MAD ±3.4 ±3.4 ±3.4 ±3.4 ±3.4

Fresh A B C D E

27.97 26.17 25.04 35.11 30.93 28.24

28.65 26.33 25.3 34.3 30.91 27.96

28.01 26.29 25.3 33.64 31.03 28.1

Mean Cq 28.21 26.26 25.21 34.35 30.96 28.10

SD 0.38 0.08 0.15 0.74 0.06 0.14

Cq

    ALAS2

RQ 

HBB

Cq

RQ 

B2M

Cq
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Table 38. Blind blood samples using hypoxia models. 

 

 

Table 39. Blind saliva samples using hypoxia models. 

 

 

 

Table 40. Prediction the blind samples using TaqMan models in semen. 
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Table 41. Age prediction using hypoxia models in semen. 
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Appendix 3. Models generate with geometric mean normalisation 

 

 

Table 42. The mean age prediction using geometric mean in blood, saliva, and semen.  

 

  

 

 

 

 

 

 

 

 

 

 

Actual age GYPA/(B2M+miRNA451+44) SD GYPA/(miRNA451+44) SD HTN3/(GAPDH+miRNA205+44) SD HTN3/(miRNA 205+44) SD SEMG1/(B2M+miRNA891a+44) SD SEMG1/(miRNA 891a+44) SD

0 8.43 0.00 8.64 0.00 4.53 0.00 -0.06 0.00 2.75 0.00 0.94 0.00

7 14.16 3.05 13.65 3.16 16.63 3.06 16.23 4.80 13.01 5.80 10.58 1.62

14 15.85 5.14 15.50 3.97 16.66 1.36 15.55 2.38 13.91 8.43 15.57 4.97

21 16.31 4.95 18.12 3.95 16.27 3.16 19.09 1.82 18.92 2.95 19.61 6.50

28 15.25 5.67 14.11 6.20 15.91 5.66 19.18 2.40 21.41 1.58 23.31 2.90

MAD

Age prediction using geometric mean normalization in Blood Age prediction using geometric mean normalization in saliva Age prediction using geometric mean normalization in semen 

±7.6 ±7.2 ±6.7 ±4.5 ±5.4 ±3.8
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Appendix 4. Pearson’s correlation 
 

Table 43. Relationship between ALAS2, HBB and B2M in blood among one week 

 

 Age RQ of ALAS2/B2M RQ of ALAS2/GAPDH RQ of B2M /GAPDH  

Age Pearson’s  

Correlation 
1    

Sig. (2-tailed)     

N 56    

RQ of ALAS2/B2M Pearson’s  

Correlation 
-.596

**
 1   

Sig. (2-tailed) .000    

N 56 56   

RQ of ALAS2/ GAPDH Pearson’s  

Correlation 
-.447

**
 .296

*
 1  

Sig. (2-tailed) .001 .027   

N 56 56 56  

RQ of B2M/GAPDH  Pearson’s  

Correlation 
-.643

**
 .876

**
 .409

**
 1 

Sig. (2-tailed) .000 .000 .002  

N 56 56 56 56 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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Table 44. Pearson’s correlation calculation in miRNA 205 and 44 in saliva samples. 

 

Age ∆Cq of 205 ∆Cqof 44

∆Cq (Cq 205-

Cq44) Ratio 205/44 RQ of 205/44

Pearson 

Correlation
1

Sig. (2-tailed)

N 15

Pearson 

Correlation
-.851

** 1

Sig. (2-tailed) .000

N 15 15

Pearson 

Correlation
-.807

**
.872

** 1

Sig. (2-tailed) .000 .000

N 15 15 15

Pearson 

Correlation
-.561

*
.760

** .345 1

Sig. (2-tailed) .030 .001 .209

N 15 15 15 15

Pearson 

Correlation
-.448 .634

* .176 .982
** 1

Sig. (2-tailed) .094 .011 .530 .000

N 15 15 15 15 15

Pearson 

Correlation
-.767

**
.815

**
.787

**
.519

* .408 1

Sig. (2-tailed) .001 .000 .001 .047 .131

N 15 15 15 15 15 15

Ratio 205 

/44

RQ of 

205/44

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Correlations

Age

∆Cqof 205 

∆Cq of 44

∆Cqof (Cq of 

205-Cq 44)
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Table 45. Correlation between miRNA 891a and 44 (+DTT) in semen samples. 
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Table 46. Correlation in blood with miRNA markers. 

 

 

Age ∆Cq of 451 ∆Cq of 44

∆Cq (Cq 451-

Cq44) Ratio of 451/44 RQ of 451/44

Pearson 

Correlation
1

Sig. (2-tailed)

N 15

Pearson 

Correlation
-.512 1

Sig. (2-tailed) .051

N 15 15

Pearson 

Correlation
.081 -.364 1

Sig. (2-tailed) .774 .183

N 15 15 15

Pearson 

Correlation
.385 -.864

**
.784

** 1

Sig. (2-tailed) .156 .000 .001

N 15 15 15 15

Pearson 

Correlation
-.321 .789

**
-.856

**
-.989

** 1

Sig. (2-tailed) .244 .000 .000 .000

N 15 15 15 15 15

Pearson 

Correlation
-.584

*
.656

** .071 -.399 .298 1

Sig. (2-tailed) .022 .008 .801 .141 .281

N 15 15 15 15 15 15

Correlations

Age

∆Cq of 451 

∆Cq of 44

∆Cq  (Cq 

451 -Cq 44)

Ratio of 

451/44

RQ of 

451/44

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).
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Table 47. Semen markers without DTT (-DTT).  

Age ∆Cq of 891a ∆Cq of 44

∆Cq (Cq 891a-

Cq44) Ratio 891a/44 RQ of 891a /44

Pearson 

Correlation
1

Sig. (2-tailed)

N 15

Pearson 

Correlation
-.689** 1

Sig. (2-tailed) .004

N 15 15

Pearson 

Correlation
-0.490 0.296 1

Sig. (2-tailed) .064 .285

N 15 15 15

Pearson 

Correlation
-0.144 -0.216 .869** 1

Sig. (2-tailed) 0.61 .439 .000

N 15 15 15 15

Pearson 

Correlation
.170 0.219 -.858** -.990** 1

Sig. (2-tailed) .545 .433 .000 .000

N 15 15 15 15 15

Pearson 

Correlation
-.518* 0.27 .924** .805** -.775** 1

Sig. (2-tailed) .048 .330 .000 .000 .001

N 15 15 15 15 15 15

Ratio of 

891a /44

RQ of 891a 

/44

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Correlations

Age

∆Cqof 891a 

∆Cq of 44

∆Cq of (Cq 

of 891a -Cq 

44)
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Appendix 5. Normal disruption of RQ of ALAS2/B2M 
 

Table 48. Multiple regression analysis in blood during one week. 

 

  Coefficients 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 6.817 .792  8.605 .000 

RQ of ALAS2/B2M -1.484 1.551 -.203 -.957 .034 

RQ of ALAS2/GAPDH -2.313 1.104 -.236 -2.095 .041 

RQ of B2M/GAPDH -2.602 1.572 -.368 -1.655 .104 

 
Table 49. Multiple regression analysis in semen samples during 28 days. 

Coefficients 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 28.123 2.164  12.994 .000 

RQ of PRM1/B2M -9.113 4.886 -.308 -1.865 .023 

RQ of SEMG1/B2M -7.656 5.118 -.249 -1.496 .033 

RQ of PRM1/SEMG1 -9.676 5.051 -.375 -1.916 .066 

 


