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Abstract 

New drug entities (NDE) are constantly being developed with most of them intended 

for oral administration. For this reason, there is a need to estimate their absorption in 

order to save time and money that would be lost if the drug enters the clinical stage 

and is then found to exhibit poor absorption. For many years, the use of animals was 

the most abundant method for studying pharmacokinetics to predict parameters such 

as intestinal absorption. However, these methods are time consuming, and expensive 

as well as being ethically unfavourable. As a result, developing other methods to 

evaluate a drug’s pharmacokinetics is crucial. The aim of this work was to develop in 

vitro methods for estimation of human intestinal absorption (%HIA) to replace the use 

of the aforementioned, less favourable methods involving the use of animals. Among 

the developed methods in this thesis is a unique type of chromatography known as 

micellar liquid chromatography (MLC) using biosurfactants such as bile salts as a 

mobile phase. Furthermore, studies investigated the effect of a change in the 

stationary phase in addition to investigating the effect of the change in temperature on 

the elution of the analysed compounds. It was found that R2
PRED for the developed 

MLC methods was in the range of 43.3 % - 91.12 %.  Another developed method was 

a spectrophotometric method based on the use of the solubilising effects of bile salts, 

as well as their binding to compounds. Therefore, two spectrophotometric methods 

were developed, a solubilisation method and a double reciprocal method, and used in 

the prediction of %HIA. It was found that the solubilisation method had a better 

predictability for %HIA than that of the double reciprocal method where R2
PRED was 

found to be 82.32 % and 61.90 % respectively. Finally, a permeation method was 

developed using the ability of NaDC to form a hydrogel under specific conditions and 

applying the investigated drugs in an infinite dose to the prepared hydrogels. This 

facilitated the determination of permeability coefficients (Kp) that were then used in the 

prediction of %HIA using the obtained model. The two developed permeation methods 

were found to have close values of R2
PRED for % HIA where R2

PRED of the permeation 

method using flow through cells was found to be 79.8 % while that of the permeation 

method using Franz cells was found to be 79.67 %. In summary, this work reports 

several unique models for the in vitro prediction of human intestinal absorption, 

potentially removing the need for animal testing to predict %HIA. 

  



v 
 

List of Abbreviations 

Abbreviation Full term 

IAMs Immobilised Artificial Membranes. 

ILC Immobilised Liposome Chromatography. 

CMC Critical Micellar Concentration. 

HPLC High performance liquid chromatography 

TLC Thin layer chromatography 

GC Gas chromatography 

MLC Micellar Liquid Chromatography 

IP Ion Pairing. 

BMC Biopartitioning Micellar Chromatography 

QSAR Quantity structure activity relationship 

NaDC Sodium deoxycholate 

NaTDC Sodium taurodeoxycholate 

NaC Sodium cholate 

NaTC Sodium taurocholate 

SIFsp Simulated Intestinal Fluid sine pancreatine 

CM Micellar concentration 

%HIA % Human Intestinal Absorption 

CE Capillary electrophoresis 

MEKC Micellar electrokinetic chromatography 

MEEKC Microemulsion electrokinetic chromatography 

CCC Counter current chromatography 

PSA Polar Surface Area 

nHA Number of hydrogen bond acceptors 

nHD Number of hydrogen bond Donors 

FRB Free Rotatable bonds 

MLR Multiple linear regression 

MLP Molecular lipophilicity potentials 

Ko/w octanol-water partition coefficient 

SEM Scanning Electron Microscopy 

FT-IR Fourier Transform Infrared 



vi 
 

 List of Contents  
Chapter 1: Introduction and Literature   Review .................................................................... 1 

1. Introduction .................................................................................................................... 1 

1.1. Drug development and Intestinal permeability: ........................................................... 1 

1.2. Mechanisms of permeation of compounds across intestinal membrane:..................... 1 

1.2.1. Passive transcellular diffusion: ............................................................................. 2 

1.2.2. Paracellular passive transport: ............................................................................. 3 

1.2.3. Carrier-mediated transport: .............................................................................. 3 

1.2.3. a. Active and facilitated transport: .............................................................................. 3 

1.2.3. b. Receptor-mediated transcytosis: ............................................................................ 3 

1.2.3. c. Efflux mechanism: ..................................................................................................... 3 

1.3. Methods for determination of intestinal permeability: .................................................. 4 

1.3.1. Cell culture based models: e.g. (Caco-2 cells) ................................................. 4 

1.3.2. Membrane based models:................................................................................ 6 

1.3.3. Ex Vivo models: ............................................................................................... 7 

1.3.4. In Situ intestinal perfusion models .................................................................... 8 

1.3.5. Everted intestinal ring/sac ................................................................................ 9 

1.3.6. In silico models for prediction of intestinal permeability through in vitro-in vivo 

correlation ...................................................................................................................... 9 

1.4. Importance of lipophilicity in medicinal chemistry and drug discovery: ...................... 10 

1.5. Methods for determination of a partition coefficient: .................................................. 13 

1.5.1. Direct methods: ..................................................................................................... 13 

1.5.1. a. Shake Flask Method: ...................................................................................... 13 

1.5.1. b. Slow Stir Method: ........................................................................................... 13 

1.5.1. c. Generator column method: ............................................................................. 14 

1.5.1. d. Potentiometric method: .................................................................................. 14 

1.5.1. e. Counter current chromatography method (CCC): ........................................... 15 

1.5.2. Indirect methods: ................................................................................................... 15 

1.5.2. a. In silico methods: ........................................................................................... 15 

1.5.2. b. Chromatographic methods ............................................................................. 17 

1.5.2. b. 1. Electrochemical methods: ................................................................................. 17 

1.5.2. b. 2. UV spectrophotometry and spectrofluorimetry: ............................................. 18 

1.5.2. b. 3. RP-TLC method: ................................................................................................. 18 

1.5.2. b. 4. Immobilised artificial membranes (IAMs) and Immobilised Liposome 

Chromatography (ILC): .......................................................................................................... 18 

1.5.2. b. 5. Micellar Liquid Chromatography (MLC): ......................................................... 20 



vii 
 

1.6. Bile Salts: ................................................................................................................. 29 

Chapter 2: Materials and Methods ...................................................................................... 32 

2.1. Materials and reagents .......................................................................................... 32 

2.2. Methods ................................................................................................................ 38 

2.2.1. Micellar Liquid Chromatography ......................................................................... 38 

Micellar mobile phase stock solutions and dilutions preparation .................................... 38 

Instrumentation and measurement ...................................................................................... 39 

2.2.2. UV-Vis Spectrophotometry ................................................................................. 45 

2.2.2. a. Critical Micelle Concentration (CMC) determination ......................................... 45 

2.2.2. b. Solubilisation method ............................................................................................. 45 

2.2.2. c. Double Reciprocal Method .................................................................................... 46 

2.2.3. Permeation tests ................................................................................................ 47 

Saturated solubility and solutions of drugs under study ................................................... 47 

Preparation of bile salt hydrogel with infinite dose of a drug ........................................... 47 

Instrumentation and measurement ...................................................................................... 47 

2.2.4. Scanning Electron Microscopy (SEM) ................................................................ 48 

2.2.5. Fourier transform infrared (FT-IR) ...................................................................... 48 

Chapter 3: Micellar Liquid Chromatography ........................................................................ 49 

3.1. Introduction ............................................................................................................... 49 

Section (A): Use of sodium deoxycholate (NaDC) as a micellar mobile phase in MLC .... 50 

3.A.1. Results and Discussion ...................................................................................... 50 

3.A.1.1. Retention behaviour ................................................................................................ 61 

3.A.2. Statistical Modelling ........................................................................................... 66 

3.A.2.2. Statistical Modelling of permeability coefficients obtained from in vitro 

methods (PAMPA and Caco-2). ........................................................................................... 71 

3.A.3. Conclusion ......................................................................................................... 78 

Section (B): Use of sodium taurodeoxycholate (NaTDC) as a micellar mobile phase in 

MLC ................................................................................................................................ 79 

3.B.1. Introduction ........................................................................................................ 79 

3.B.2. Results & Discussion ......................................................................................... 79 

3.B.2.1. Retention behaviour ................................................................................................ 79 

3.B.3. Statistical Modelling ........................................................................................... 88 

3.B.3.2. Modelling of permeability coefficients obtained from PAMPA .......................... 91 

3.B.3.3. Modelling of permeability coefficients obtained from Caco-2 Peff. .................... 93 

3.B.4. Conclusion ......................................................................................................... 97 

Section (C): Use of sodium cholate (NaC) as a micellar mobile phase in MLC ................ 98 



viii 
 

3.C.1. Introduction ........................................................................................................ 98 

3.C.2. Results and Discussion ..................................................................................... 98 

3.C.2.1. Determination of CMC of NaC at 37 ºC ............................................................... 98 

3.C.2.1. Retention behaviour .............................................................................................. 100 

3.C.3. Statistical Modelling ......................................................................................... 110 

3.C.3.2. Modelling of permeability coefficients obtained from PAMPA ........................ 112 

3.C.3.3. Modelling of permeability coefficients obtained from Caco-2 Peff................... 114 

3.C.4. Conclusion ....................................................................................................... 117 

Section (D): Use of sodium taurocholate (NaTC) as a micellar mobile phase in MLC .... 118 

3.D.1. Results and Discussion ................................................................................... 118 

3.D.1.1. Retention behaviour .............................................................................................. 119 

3.D.2. Conclusion ....................................................................................................... 123 

Section (E): Use of physiological mixture of bile salts as a micellar mobile phase in MLC

 ...................................................................................................................................... 124 

3.E.1. Results and Discussion .................................................................................... 124 

3.E.1.1. Retention behaviour .............................................................................................. 126 

3.E.2. Statistical Modelling ......................................................................................... 134 

3.E.2.2. Modelling of permeability coefficients obtained from PAMPA ........................ 136 

3.E.2.3. Modelling of permeability coefficients obtained from Caco-2 Peff. .................. 138 

3.E.3. Conclusion ....................................................................................................... 141 

Section (F): Effect of using amino column with sodium deoxycholate (NaDC) as a micellar 

mobile phase in MLC ..................................................................................................... 142 

3.F.1. Results and Discussion .................................................................................... 142 

3.F.1.1. Retention behaviour .............................................................................................. 142 

3.F.2. Statistical Modelling ......................................................................................... 156 

3.F.2.2. Modelling of permeability coefficients obtained from PAMPA ........................ 160 

3.F.2.3. Modelling of permeability coefficients obtained from Caco-2 ......................... 162 

3.F.3. Conclusion ....................................................................................................... 164 

Section (G): Investigating the effect of temperature on partitioning of drugs in MLC using 

sodium deoxycholate (NaDC) ........................................................................................ 165 

3.G.1. Results & Discussion ....................................................................................... 165 

3.G.1.1. Determination of CMC of NaDC in water over the temperature range (30-45 

oC) ........................................................................................................................................... 165 

3.G.1.2. Effect of temperature change on the partitioning of analysed compounds in 

MLC ........................................................................................................................................ 167 

3.G.1.3. A thermodynamic study of partitioning in MLC ................................................. 170 

3.G.2. Conclusion ...................................................................................................... 178 



ix 
 

Chapter 4: Predicting Human Intestinal Absorption Using Spectrophotometry .................. 180 

4. Introduction ................................................................................................................ 180 

Section (A): Predicting human intestinal absorption through measurement of solubilisation

 ...................................................................................................................................... 180 

4.A.1. Results and Discussion ....................................................................................... 180 

4.A.1.1. Solubilisation Measurement Method ................................................................. 180 

4.A.2. Statistical Modelling ............................................................................................. 185 

4.A.2.2. Modelling of permeability coefficients obtained from PAMPA ........................ 188 

4.A.2.3. Modelling of permeability coefficients obtained from Caco-2 Peff. .................. 189 

4.A.3. Conclusion .......................................................................................................... 193 

Section (B): Predicting human intestinal absorption using the double reciprocal ............ 194 

4.B.1. Results and Discussion ....................................................................................... 194 

4B.1.1. Double Reciprocal method ............................................................................. 194 

4.B.2. Statistical Modelling ............................................................................................. 198 

4.B.2.2. Modelling of permeability coefficients obtained from PAMPA ........................ 201 

4.B.2.3. Modelling of permeability coefficients obtained from Caco-2 Peff. .................. 203 

4.B.3. Conclusion .......................................................................................................... 207 

Chapter 5: Predicting Human Intestinal Absorption Using bile salt hydrogels .................... 208 

5. Introduction ................................................................................................................ 208 

Section (A): Use of flow through cells in determination of Kp. ......................................... 212 

5.A.1. Results and Discussion ....................................................................................... 212 

5.A.1.1. Permeation study .......................................................................................... 212 

5.A.1.2. Scanning Electron Microscopy (SEM) ........................................................... 221 

5.A.1.3. FT-IR analysis ............................................................................................... 224 

5.A.2. Statistical Modelling ............................................................................................. 225 

5.A.2.2. Modelling of permeability coefficients obtained from PAMPA ........................ 229 

5.A.2.3. Modelling of permeability coefficients obtained from Caco-2 Peff. .................. 230 

5.A.3. Conclusion .......................................................................................................... 234 

Section (B): Use of Franz cells in determination of Kp. ................................................... 235 

5.B.1. Results and Discussion ....................................................................................... 235 

5.B.2. Statistical Modelling ............................................................................................. 236 

5.B.2.2. Modelling of permeability coefficients obtained from PAMPA ........................ 239 

5.B.2.3. Modelling of permeability coefficients obtained from Caco-2 Peff. .................. 241 

5.B.3. Conclusion .......................................................................................................... 245 

Chapter 6: Conclusions and future work............................................................................ 246 

References .................................................................................................................... 250 



x 
 

Appendix A .................................................................................................................... 266 

 

 

  



xi 
 

List of Figures 
 

Figure 1: Intestinal cell membrane structure ............................................................................ 2 

Figure 2: Mechanisms of transport across the intestinal membrane. Pathways of the intestinal 

barrier. A: paracellular passive diffusion, B: transcellular passive diffusion, CF: influx/efflux 

facilitated transport facilitated by membrane proteins, G: transcytosis, and H: endocytosis. 4 

Figure 3: Schematic representation of Caco-2 on a microporous filter .................................... 6 

Figure 4: Schematic representation of PAMPA model. ............................................................. 6 

Figure 5: Schematic diagram of an Ussing chamber ................................................................. 7 

Figure 6: Schematic representation of in situ intestinal perfusion ........................................... 8 

Figure 7: Schematic representation of the everted gut technique ........................................... 9 

Figure 8: A schematic diagram illustrating methods for determination of a partition ........... 12 

Figure 9: Structure of a Micelle ............................................................................................... 20 

Figure 10: Structure of the palisade region of the micelle ...................................................... 22 

Figure 11: Summary of interactions in MLC ............................................................................ 24 

Figure 12: Structure of bile salts. (A): Structural formula, (B): 3D structure, (C): Schematic 

representation of a dihydroxy bile salt .................................................................................... 29 

Figure 13: Schematic representation of different models for a bile salt micellar structure ... 30 

Figure 14: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) for 0.2 mM phenylbutazone. .............................................................. 54 

Figure 15: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) for 0.2 mM fenoprofen. ...................................................................... 54 

Figure 16: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) for 0.2 mM salicylic acid. ..................................................................... 54 

Figure 17: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) for 0.2 mM ibuprofen. ........................................................................ 55 

Figure 18: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) for 0.2 mM gemfibrozil. ...................................................................... 55 

Figure 19: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) for 0.2 mM indomethacin. .................................................................. 55 

Figure 20: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) for 0.2 mM caffeine. ........................................................................... 56 

Figure 21: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) for 0.2 mM acetaminophen. ............................................................... 56 

Figure 22: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) for 0.2 mM fluconazole. ...................................................................... 56 

Figure 23: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) for 0.2 mM theophylline. .................................................................... 57 

Figure 24: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) for 0.2 mM lidocaine. .......................................................................... 57 



xii 
 

Figure 25: Chromatograms showing binding behaviour of caffeine in different concentrations 

of NaDC mobile phase. ............................................................................................................ 58 

Figure 26: Chromatograms showing binding behaviour of fluconazole in different 

concentrations of NaDC mobile phase. ................................................................................... 59 

Figure 27: Chromatograms showing antibinding behaviour of phenylbutazone in different 

concentrations of NaDC mobile phase. ................................................................................... 60 

Figure 28: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in 0.15 M NaCl for 0.2 mM caffeine...................................... 64 

Figure 29: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in 0.15 M NaCl for 0.2 mM acetaminophen. ........................ 64 

Figure 30: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in 0.15 M NaCl with 10 % methanol for 0.2 mM Caffeine. ... 64 

Figure 31: Residual plot for optimal logit HIA  regression model. .......................................... 68 

Figure 32: Partial regression plots of experimental logit HIA values against log Pmw, Mwt and 

Sw. ............................................................................................................................................. 68 

Figure 33: Regression plot of predicted %HIA values against literature %HIA. ...................... 69 

Figure 34: Residual plot for optimal PAMPA regression model. ............................................. 73 

Figure 35: Partial regression plots of experimental log Po values against log Pmw and pKa. ... 73 

Figure 36: Plot of experimental vs. predicted PAMPA log Po values. ...................................... 74 

Figure 37: Residual plot for optimal Caco-2 regression model. .............................................. 75 

Figure 38: Partial regression plots of experimental Caco-2 log Peff. values against log Pmw, Mwt, 

HD and Sw. ................................................................................................................................ 75 

Figure 39: Plot of experimental vs predicted Caco-2 log Peff. values. ...................................... 76 

Figure 40: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTDC in water for 0.2 mM phenylbutazone. ................................ 82 

Figure 41: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTDC in water for 0.2 mM fenoprofen. ........................................ 82 

Figure 42: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTDC in water for 0.2 mM salicylic acid. ...................................... 82 

Figure 43: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTDC in water for 0.2 mM ibuprofen. .......................................... 82 

Figure 44: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTDC in water for 0.2 mM gemfibrozil. ........................................ 83 

Figure 45: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTDC in water for 0.2 mM caffeine. ............................................. 83 

Figure 46: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTDC in water for0.2 mM  acetaminophen. ................................ 83 

Figure 47: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTDC in water for 0.2 mM fluconazole. ....................................... 83 

Figure 48: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTDC in water for 0.2 mM theophylline. ...................................... 84 



xiii 
 

Figure 49: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTDC in water for 0.2 mM lidocaine. ........................................... 84 

Figure 50: Chromatograms showing binding behaviour of caffeine in different concentrations 

of .............................................................................................................................................. 85 

Figure 51: Chromatograms showing binding behaviour of fluconazole in different 

concentrations of NaTDC mobile phase. ................................................................................. 86 

Figure 52: Chromatograms showing binding behaviour of fenoprofen in different 

concentrations of NaTDC mobile phase. ................................................................................. 87 

Figure 53: Residual plot for optimal logit HIA regression model. ........................................... 89 

Figure 54: Partial regression plots of experimental logit HIA values against log Pmw, HD, HA, 

PSA and  VM, pKa. ..................................................................................................................... 90 

Figure 55: Plot of experimental vs. predicted %HIA. ............................................................... 91 

Figure 56: Residual plot for optimal PAMPA regression model. ............................................. 92 

Figure 57: Partial regression plots of experimental PAMPA log Po values against log Pmw and 

FRB. .......................................................................................................................................... 92 

Figure 58: Plot of experimental vs. predicted log Po. .............................................................. 93 

Figure 59: Residual plot for optimal Caco-2 regression model. .............................................. 93 

Figure 60: Partial regression plots of experimental log Peff. values against log Pmw, HA & PSA.

.................................................................................................................................................. 94 

Figure 61: Plot of experimental vs. predicted log Peff. ............................................................. 95 

Figure 62: Spectra of 10-5 M Dye in increasing concentrations of  NaC at 37 oC . .................. 99 

Figure 63: A plot of NaC concentration versus absorbance of the micellised dye showing the 

1ry and 2ry CMC of NaC at 37 oC . ............................................................................................. 99 

Figure 64: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaC in water for 0.2 mM phenylbutazone. .................................. 103 

Figure 65: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaC in water for 0.2 mM fenoprofen. .......................................... 103 

Figure 66: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaC in water for 0.2 mM salicylic acid.......................................... 104 

Figure 67: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaC in water for 0.2 mM ibuprofen. ............................................ 104 

Figure 68: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaC in water for 0.2 mM gemfibrozil. .......................................... 104 

Figure 69: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaC in water for 0.2 mM indomethacin. ...................................... 104 

Figure 70: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaC in water for 0.2 mM caffeine. ............................................... 105 

Figure 71: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaC in water for 0.2 mM acetaminophen. ................................... 105 

Figure 72: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaC in water for 0.2 mM fluconazole. .......................................... 105 



xiv 
 

Figure 73: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaC in water for 0.2 mM theophylline. ........................................ 105 

Figure 74: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaC in water for 0.2 mM lidocaine. .............................................. 106 

Figure 75: Chromatograms showing binding behaviour of fluconazole in selected 

concentrations of NaC mobile phase. .................................................................................... 107 

Figure 76: Chromatograms showing binding behaviour of caffeine in selected concentrations 

of NaC mobile phase. ............................................................................................................. 108 

Figure 77: Chromatograms showing binding behaviour of phenybutazone in selected 

concentrations of NaC mobile phase. .................................................................................... 109 

Figure 78: Residual plot for optimal %HIA regression model. ............................................... 110 

Figure 79: Partial regression plots of experimental %HIA values against log Pmw , Mwt and VM.

................................................................................................................................................ 111 

Figure 80: Plot of experimental vs. predicted %HIA. ............................................................. 112 

Figure 81: Residual plot for optimal PAMPA regression model. ........................................... 112 

Figure 82: Partial regression plots of experimental log Po values against log Pmw and pKa.. 113 

Figure 83: Plot of experimental vs. predicted log Po. ............................................................ 113 

Figure 84: Residual plot for optimal log Peff. regression model. ............................................ 114 

Figure 85: Partial regression plots of experimental log Peff. values against log Pmw , Mwt and 

pKa. ......................................................................................................................................... 114 

Figure 86: Plot of experimental vs. predicted log Peff.. .......................................................... 115 

Figure 87: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTC in 0.15 M NaCl for 0.2 mM caffeine. ................................... 119 

Figure 88: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTC in 0.15 M NaCl for 0.2 mM acetaminophen. ....................... 120 

Figure 89: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTC in 0.15 M NaCl for 0.2 mM ketoprofen. .............................. 120 

Figure 90: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTC in (SIFsp) for 0.2 mM caffeine. ............................................ 121 

Figure 91: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of (SIFsp) for 0.2 mM theophylline. .................................................. 122 

Figure 92: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaTC in (SIFsp) for 0.2 mM ibuprofen. ......................................... 122 

Figure 93: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of (SIFsp) for 0.2 mM ketoprofen. .................................................... 122 

Figure 94: Schematic of the self-assembled structures formed............................................ 126 

Figure 95: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM 

acetaminophen. ..................................................................................................................... 129 



xv 
 

Figure 96: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM 

caffeine. ................................................................................................................................. 129 

Figure 97: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM 

fluconazole. ............................................................................................................................ 129 

Figure 98: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM 

ibuprofen. .............................................................................................................................. 129 

Figure 99: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM 

ketoprofen. ............................................................................................................................ 130 

Figure 100: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM 

phenylbutazone. .................................................................................................................... 130 

Figure 101: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM 

terbutaline. ............................................................................................................................ 130 

Figure 102: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM 

zolmitriptan. ........................................................................................................................... 130 

Figure 103: Chromatograms showing binding behaviour of ketoprofen in increasing 

concentrations of physiological micellar bile salts mixture as a mobile phase. .................... 131 

Figure 104: Chromatograms showing binding behaviour of zolmitriptan in increasing 

concentrations of physiological micellar bile salts mixture as a mobile phase. .................... 132 

Figure 105: Residual plot for optimal logit HIA regression model. ....................................... 134 

Figure 106: Partial regression plots of experimental logit HIA values against log Pmw and PSA.

................................................................................................................................................ 135 

Figure 107: Regression plot of predicted %HIA values against Literature %HIA. ................. 135 

Figure 108: Residual plot for optimal PAMPA regression model. ......................................... 136 

Figure 109: Plot of experimental vs. predicted log Po values. ............................................... 137 

Figure 110: Residual plot for optimal Caco-2 regression model. .......................................... 138 

Figure 111: Partial regression plots of experimental Caco-2 log Peff. values against log Pmw, HD 

and HA. ................................................................................................................................... 138 

Figure 112: Plot of experimental vs predicted Caco-2 log Peff. values. .................................. 139 

Figure 113: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM acetaminophen. 147 

Figure 114: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM caffeine. ............. 147 

Figure 115: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM fluconazole. ....... 147 



xvi 
 

Figure 116: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM theophylline. ..... 148 

Figure 117: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM fenoprofen. ....... 148 

Figure 118: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM ibuprofen. .......... 148 

Figure 119: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM gemfibrozil. ....... 148 

Figure 120: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM phenylbutazone. 149 

Figure 121: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM lornoxicam......... 149 

Figure 122: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM meloxicam. ........ 149 

Figure 123: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM piroxicam. .......... 149 

Figure 124: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM salicylic acid. ...... 150 

Figure 125: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM lidocaine. ........... 150 

Figure 126: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 

concentration CM (M) of NaDC in water with amino column for 0.2 mM terbutaline. ....... 150 

Figure 127: Chromatograms showing binding behaviour of meloxicam in different  

concentrations of NaDC mobile phase using amino column as a stationary phase. ............ 151 

Figure 128: Chromatograms showing binding behaviour of phenylbutazone in different  

concentrations of NaDC mobile phase using amino column as a stationary phase. ............ 152 

Figure 129: Chromatograms showing binding behaviour of terbutaline in different  

concentrations of NaDC mobile phase using amino column as a stationary phase. ............ 153 

Figure 130: Residual plot for optimal logit HIA regression model. ....................................... 157 

Figure 131: Partial regression plots of experimental logit HIA. values against log Pmw, VM and 

Sw . .......................................................................................................................................... 158 

Figure 132: Plot of experimental vs. predicted  %HIA. .......................................................... 159 

Figure 133: Residual plot for optimal PAMPA regression model. ......................................... 160 

Figure 134: Partial regression plots of experimental PAMPA log Po values against log Pmw, 161 

Figure 135: Plot of experimental vs. predicted log Po. .......................................................... 162 

Figure 136: Spectra of 10-5 M dye in increasing concentrations of  NaDC at 30 oC . ............ 165 

Figure 137: Plots of NaDC concentration versus absorbance of the micellised dye showing the 

1ry and 2ry CMC of NaDC at (a) 30 oC, (b) 35 oC, (c) 40 oC and (d) 45 oC . ............................... 166 

Figure 138: A plot of inverse of the capacity factors  versus  micellar concentration for caffeine 

at various temperatures. ....................................................................................................... 170 



xvii 
 

Figure 139: A plot of inverse of the capacity factors  versus  micellar concentration for 

ibuprofen at various temperatures. ...................................................................................... 170 

Figure 140: A plot of inverse of the capacity factors  versus  micellar concentration for 

ketoprofen at various temperatures. .................................................................................... 171 

Figure 141: A plot of inverse of the capacity factors  versus  micellar concentration for 

acetaminophen at various temperatures. ............................................................................. 171 

Figure 142: A plot of inverse of the capacity factors  versus  micellar concentration for 

theophylline at various temperatures. .................................................................................. 171 

Figure 143: van’t Hoff plots for (a) caffeine, (b) ibuprofen, (c) ketoprofen, (d) acetaminophen, 

(e) Theophylline at 303, 308, 313 and 318 K. ........................................................................ 172 

Figure 144: Second order polynomial van’t Hoff plots for caffeine at 303, 308, 313 and 318 K.

................................................................................................................................................ 173 

Figure 145: Second order polynomial van’t Hoff plots for ibuprofen at 303, 308, 313 and 318 

K. ............................................................................................................................................ 173 

Figure 146: Second order polynomial van’t Hoff plots for ketoprofen at 303, 308, 313 and 318 

K. ............................................................................................................................................ 173 

Figure 147: Second order polynomial van’t Hoff plots for acetaminophen at 303, 308, 313 and 

318 K. ..................................................................................................................................... 174 

Figure 148: Second order polynomial van’t Hoff plots for theophylline at 303, 308, 313 and 

318 K. ..................................................................................................................................... 174 

Figure 149: Second polynomial van’t Hoff plots of caffeine, ketoprofen, acetaminophen and 

ibuprofen intersecting at one point. ...................................................................................... 174 

Figure 150: NaDC Concentration (mM) with solubilised alprenolol (mM). .......................... 182 

Figure 151: NaDC Concentration (mM) with solubilised amitriptyline (mM). ...................... 182 

Figure 152: NaDC Concentration (mM) with solubilised acetylsalicylic acid (mM). ............. 183 

Figure 153: NaDC Concentration in (mM) with solubilised flurbiprofen (mM). ................... 183 

Figure 154: NaDC Concentration in (mM) with solubilised propranolol (mM). .................... 183 

Figure 155: NaDC Concentration (mM) against solubilised terbutaline (mM). .................... 183 

Figure 156: Residual plot for optimal logit HIA  regression model. ....................................... 187 

Figure 157: Regression plot of Literature %HIA against predicted %HIA values................... 188 

Figure 158: Residual plot for optimal PAMPA regression model. ......................................... 188 

Figure 159: Plot of experimental vs. predicted log Po values. ............................................... 189 

Figure 160: Residual plot for optimal Caco-2 regression model. .......................................... 190 

Figure 161: Plot of experimental vs predicted Caco-2 log Peff. values. .................................. 191 

Figure 162: Double reciprocal plot for determination of Kp of amitriptyline. ....................... 196 

Figure 163: Double reciprocal plot for determination of Kp of phenylbutazone. ................. 196 

Figure 164: Double reciprocal plot for determination of Kp of lidocaine. ............................. 197 

Figure 165: Double reciprocal plot for determination of Kp of salicylic acid. ........................ 197 

Figure 166: Double reciprocal plot for determination of Kp of theophylline. ....................... 197 

Figure 167: Residual plot for optimal %HIA regression model.............................................. 199 

Figure 168: Partial regression plots of experimental %HIA values against log Kp and PSA. .. 200 



xviii 
 

Figure 169: Regression plot of predicted %HIA values against literature %HIA. .................. 200 

Figure 170: Residual plot for optimal PAMPA regression model. ......................................... 202 

Figure 171: Partial regression plots of experimental PAMPA log Po values against log    Kp,  Sw  

and HD.................................................................................................................................... 202 

Figure 172: Plot of experimental vs. predicted log Po values. ............................................... 203 

Figure 173: Residual plot for optimal Caco-2 regression model. .......................................... 204 

Figure 174: Partial regression plots of experimental Caco-2 log Peff. values against log Kp, VM 

and Mwt. ................................................................................................................................ 204 

Figure 175: Plot of experimental vs predicted Caco-2 log Peff. values. .................................. 205 

Figure 176:  Schematic representation of the formed salt-induced NaDC gels. ................... 209 

Figure 177:  A diagrammatic representation of a static cell (left) and flow through cell (right).

................................................................................................................................................ 211 

Figure 178: Permeability coefficients (Kp) of acetaminophen, fluconazole and carbamazepine 

at three different concentrations of NaDC hydrogels (left) and aqueous solutions (right). . 218 

Figure 179: Permeability coefficients (Kp) of flurbiprofen, gemfibrozil, ibuprofen and 

piroxicam at three different concentrations of NaDC hydrogels (left) and aqueous solutions 

(right). .................................................................................................................................... 218 

Figure 180: Permeability coefficients (Kp) of lidocaine at different concentrations of NaDC 

hydrogels (left) and aqueous solutions (right). ..................................................................... 219 

Figure 181: Permeability coefficients (Kp) of acetaminophen, fluconazole and carbamazepine 

at five different concentrations of NaDC hydrogels. ............................................................. 219 

Figure 182: Permeability coefficients (Kp) of flurbiprofen, gemfibrozil, ibuprofen and 

piroxicam at five different concentrations of NaDC hydrogels. ............................................ 219 

Figure 183: Permeability coefficients (Kp) of lidocaine at five different concentrations of NaDC 

hydrogels. ............................................................................................................................... 220 

Figure 184: Plot of Cumulative permeated amount of different drugs against time. .......... 220 

Figure 185: SEM images of gel formed by 70 mM NaDC of magnification power x1000 (left) 

and x1300 (right). ................................................................................................................... 221 

Figure 186: SEM images for carbamazepine-70mM hydrogel of magnification power a) x160 

b) x1000 c) x1100. .................................................................................................................. 222 

Figure 187:  SEM images for meloxicam-70mM hydrogel of magnification power a) x160 . 223 

Figure 188: FTIR spectra of Blank NaDC hydrogel and of selected drugs (piroxicam, 

carbamazepine, meloxicam and fluconazole) in NaDC hydrogel. ......................................... 224 

Figure 189: Residual plot for optimal HIA  regression model. .............................................. 226 

Figure 190: Partial regression plots of experimental logit HIA values against log Kp, nHD and 

VM. .......................................................................................................................................... 227 

Figure 191: Regression plot of predicted %HIA values against literature %HIA. .................. 228 

Figure 192: Residual plot for optimal PAMPA regression model. ......................................... 229 

Figure 193: Partial regression plots of experimental PAMPA log Po values against log Kp and

................................................................................................................................................ 229 

Figure 194: Plot of experimental vs. predicted log Po values. ............................................... 230 



xix 
 

Figure 195: Residual plot for optimal Caco-2 regression model. .......................................... 231 

Figure 196: Partial regression plots of experimental Caco-2 log Peff. values against pKa, Mwt 

and log Kp. .............................................................................................................................. 231 

Figure 197: Plot of experimental vs predicted Caco-2 log Peff. values. .................................. 232 

Figure 198: Plot of Cumulative permeated amount of different drugs against time. .......... 235 

Figure 199: Residual plot for optimal HIA  regression model. .............................................. 237 

Figure 200: Partial regression plots of experimental logit HIA values against log Kp, nHD and 

VM. .......................................................................................................................................... 237 

Figure 201: Regression plot of predicted %HIA values against literature %HIA. .................. 238 

Figure 202: Residual plot for optimal PAMPA regression model. ......................................... 239 

Figure 203: Partial regression plots of experimental PAMPA log Po values against log Kp, Sw 

and nHD. ................................................................................................................................ 240 

Figure 204: Plot of experimental vs. predicted log Po values. ............................................... 241 

Figure 205: Residual plot for optimal Caco-2 regression model. .......................................... 241 

Figure 206: Partial regression plots of experimental Caco-2 log Peff. values against log Kp, Mwt 

and pKa. .................................................................................................................................. 242 

Figure 207: Plot of experimental vs predicted Caco-2 log Peff. values. .................................. 243 

 

  



xx 
 

List of Tables 
 

Table 1:  A summary of the advantages and disadvantages of the micellar liquid ................. 27 

Table 2: General properties of bile salts and drugs under study. ........................................... 33 

Table 3: Micellar Liquid Chromatography (MLC) Methods. .................................................... 41 

Table 4: Total & micellar surfactant concentrations used as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM phenylbutazone. ............................................................................. 51 

Table 5: Total & micellar surfactant concentrations used as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM fenoprofen. ..................................................................................... 51 

Table 6: Total & micellar surfactant concentrations used as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM salicylic acid. ................................................................................... 52 

Table 7: Total & micellar surfactant concentrations used as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM ibuprofen. ....................................................................................... 52 

Table 8: Total & micellar surfactant concentrations used as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM gemfibrozil. ..................................................................................... 52 

Table 9: Total & micellar surfactant concentrations used as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM indomethacin. ................................................................................. 52 

Table 10: Total & micellar surfactant concentrations used as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM caffeine. .......................................................................................... 52 

Table 11: Total & micellar surfactant concentrations used as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM acetaminophen. .............................................................................. 53 

Table 12: Total & micellar surfactant concentrations used as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM fluconazole. ..................................................................................... 53 

Table 13: Total & micellar surfactant concentrations used as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM theophylline. ................................................................................... 53 

Table 14: Total & micellar surfactant concentrations used as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM lidocaine. ......................................................................................... 53 

Table 15: Partition coefficients obtained from the MLC method using NaDC for eleven drugs 

with their standard deviations against their octanol/water partition coefficients. ................ 61 

Table 16: Total & micellar concentrations used of NaDC in 0.15M NaCl as well as the inverse 

of the capacity factors (1/K’) for 0.2 mM caffeine. ................................................................. 63 

Table 17: Total & micellar concentrations used of NaDC in 0.15M NaCl as well as the inverse 

of the capacity factors (1/K’) for 0.2 mM acetaminophen. ..................................................... 63 

Table 18: Total & micellar concentrations used of NaDC in 0.15M NaCl with 10 % methanol as 

well as the inverse of the capacity factors (1/K’) for 0.2 mM caffeine. .................................. 64 

Table 19: Experimentally determined published literature absorption values (Expt. %HIA), 

calculated and predicted human oral absorption data (Pred. %HIA) ...................................... 69 

Table 20: Experimental and predicted values for PAMPA logPo. ............................................ 74 

Table 21: Experimental and predicted values for Caco-2 log Peff.. .......................................... 76 



xxi 
 

Table 22: A summary of molecular descriptors for the selected drugs analysed by MLC using 

NaDC in water and the reported experimental values of %HIA and permeability  coefficients 

of PAMPA and Caco-2 tests. .................................................................................................... 77 

Table 23: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM phenylbutazone. ............................................................... 80 

Table 24: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM fenoprofen. ....................................................................... 80 

Table 25: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM salicylic acid. ..................................................................... 80 

Table 26: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM ibuprofen. ......................................................................... 80 

Table 27: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM gemfibrozil. ....................................................................... 80 

Table 28: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM caffeine. ............................................................................ 81 

Table 29: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM acetaminophen. ............................................................... 81 

Table 30: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM fluconazole. ...................................................................... 81 

Table 31: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM theophylline. ..................................................................... 81 

Table 32: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM lidocaine. .......................................................................... 81 

Table 33: Partition coefficients obtained from MLC using NaTDC for ten drugs with their ... 84 

Table 34: Experimental and predicted values for %HIA. ......................................................... 90 

Table 35: Experimental and predicted values for PAMPA log Po. ........................................... 92 

Table 36: Experimental and predicted values for Caco-2 log Peff. ........................................... 94 

Table 37: A summary of molecular descriptors for the selected drugs analysed by MLC using 

NaTDC in water and the experimental values of PAMPA log Po, Caco-2 log Peff. and %HIA.... 96 

Table 38: Total & micellar concentrations used of NaC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM phenylbutazone. ............................................................. 100 

Table 39: Total & micellar concentrations used of NaC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM fenoprofen. ..................................................................... 101 

Table 40: Total & micellar concentrations used of NaC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM salicylic acid. ................................................................... 101 

Table 41: Total & micellar concentrations used of NaC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM ibuprofen. ....................................................................... 101 

Table 42: Total & micellar concentrations used of NaC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM gemfibrozil. ..................................................................... 101 

Table 43: Total & micellar concentrations used of NaC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM indomethacin. ................................................................ 102 



xxii 
 

Table 44: Total & micellar concentrations used of NaC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM caffeine. .......................................................................... 102 

Table 45: Total & micellar concentrations used of NaC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM acetaminophen. ............................................................. 102 

Table 46: Total & micellar concentrations used of NaC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM fluconazole. .................................................................... 102 

Table 47: Total & micellar concentrations used of NaC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM theophylline. ................................................................... 103 

Table 48: Total & micellar concentrations used of NaC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM lidocaine. ........................................................................ 103 

Table 49: Partition coefficients obtained from MLC using NaC for eleven drugs with their 106 

Table 50: Experimental and predicted values for %HIA. ....................................................... 111 

Table 51: Experimental and predicted values for PAMPA log Po. ......................................... 113 

Table 52: Experimental and predicted values for log Peff.. .................................................... 115 

Table 53: A summary of molecular descriptors for the selected drugs analysed by MLC using 

NaC in water and the experimental values of PAMPA log Po, Caco-2 log Peff. and %HIA. ..... 116 

Table 54: Total & micellar concentrations used of NaTC in 0.15 M NaCl as well as the inverse 

of the capacity factors (1/K’) for 0.2 mM caffeine. ............................................................... 119 

Table 55: Total & micellar concentrations used of NaTC in 0.15 M NaCl as well as the inverse 

of the capacity factors (1/K’) for 0.2 mM acetaminophen. ................................................... 119 

Table 56: Total & micellar concentrations used of NaTC in 0.15 M NaCl as well as the inverse 

of the capacity factors (1/K’) for 0.2 mM ketoprofen. .......................................................... 119 

Table 57: Total & micellar concentrations used of NaTC in (SIFsp) as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM caffeine. .......................................................................... 120 

Table 58: Total & micellar concentrations used of (SIFsp) as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM theophylline. ................................................................................. 121 

Table 59: Total & micellar concentrations used of NaTC in (SIFsp) as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM ibuprofen. ....................................................................... 121 

Table 60: Total & micellar concentrations used of (SIFsp) as well as the inverse of the capacity 

factors (1/K’) for 0.2 mM ketoprofen. ................................................................................... 121 

Table 61: Total & micellar concentrations used of physiologically simulating bile salt micellar 

mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM acetaminophen. .. 127 

Table 62: Total & micellar concentrations used of physiologically simulating bile salt micellar 

mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM caffeine. .............. 127 

Table 63: Total & micellar concentrations used of physiologically simulating bile salt micellar 

mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM fluconazole. ......... 127 

Table 64: Total & micellar concentrations used of physiologically simulating bile salt micellar 

mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM ibuprofen. ........... 127 

Table 65: Total & micellar concentrations used of physiologically simulating bile salt micellar 

mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM ketoprofen. ......... 128 



xxiii 
 

Table 66: Total & micellar concentrations used of physiologically simulating bile salt micellar 

mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM phenylbutazone. . 128 

Table 67: Total & micellar concentrations used of physiologically simulating bile salt micellar 

mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM terbutaline. ......... 128 

Table 68: Total & micellar concentrations used of physiologically simulating bile salt micellar 

mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM zolmitriptan. ........ 128 

Table 69: Partition coefficients obtained from MLC using a physiological bile salt micellar 

mixture ................................................................................................................................... 133 

Table 70: Experimental and predicted values for % HIA. ...................................................... 135 

Table 71: Experimental and predicted values for PAMPA logPo. .......................................... 137 

Table 72: Experimental and predicted values for Caco-2 log Peff.. ........................................ 139 

Table 73:   A summary of molecular descriptors for the selected drugs analysed by MLC using 

physiologically resembling bile salt-lecithin mixed micellar system and experimental human 

intestinal absorption (%HIA), permeability  coefficients of PAMPA and Caco-2 tests.......... 140 

Table 74: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM acetaminophen obtained with amino column. .............. 144 

Table 75: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM caffeine obtained with amino column. .......................... 144 

Table 76: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM fluconazole obtained with amino column...................... 144 

Table 77: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM theophylline obtained with amino column. ................... 144 

Table 78: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM fenoprofen obtained with amino column. ..................... 145 

Table 79: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM gemfibrozil obtained with amino column. ..................... 145 

Table 80: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM ibuprofen obtained with amino column. ....................... 145 

Table 81: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM phenylbutazone obtained with amino column. ............. 145 

Table 82: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM  lornoxicam obtained with amino column. .................... 146 

Table 83: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM  meloxicam obtained with amino column. ..................... 146 

Table 84: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM  piroxicam obtained with amino column. ...................... 146 

Table 85: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM  lidocaine obtained with amino column. ........................ 146 

Table 86: Total & micellar concentrations used of NaDC in water as well as the inverse of the 

capacity factors (1/K’) for 0.2 mM terbutaline obtained with amino column. ..................... 147 



xxiv 
 

Table 87: Partition coefficients obtained from MLC using NaDC with amino propyl column as 

a stationary phase for fourteen drugs with their standard deviations against their 

octanol/water partition coefficients. ..................................................................................... 154 

Table 88: Experimental and predicted values for %HIA. ....................................................... 159 

Table 89: Experimental and predicted values for PAMPA. ................................................... 161 

Table 90: A summary of molecular descriptors for the selected drugs analysed by MLC using 

NaDC in water with amino column and the experimental values of PAMPA log Po and %HIA.

................................................................................................................................................ 163 

Table 91: Partition coefficient and thermodynamic parameters from nonlinear van’t Hoff 

plots at different column temperatures. ............................................................................... 175 

Table 92: Second order polynomial forms of van’t Hoff equations with their coefficient values.

................................................................................................................................................ 175 

Table 93: NaDC concentration (mM) against solubilised amitriptyline (mM). ..................... 181 

Table 94: NaDC concentration (mM) against solubilised acetylsalicylic acid (mM). ............. 181 

Table 95: NaDC concentration (mM) against solubilised propranolol (mM). ....................... 181 

Table 96: NaDC concentration in (mM) against solubilised flurbiprofen (mM). ................... 181 

Table 97: NaDC concentration (mM) against solubilised alprenolol (mM). .......................... 182 

Table 98: NaDC concentration (mM) against solubilised terbutaline (mM). ........................ 182 

Table 99: Calculated solubilisation ratio (SR), mole fraction solubilised (Xm), mole fraction 

aqueous solubility (Xa) and micelle/water partition coefficient (Kxm/a) for the 26 compounds

................................................................................................................................................ 184 

Table 100: Experimental micelle/water partition coefficient (log Kxm/a), predicted %HIA 

(%HIApred.) and experimentally determined published literature %HIA (% HIAExpt.) values for 

the compounds analysed including four validation compounds (*). .................................... 187 

Table 101: Experimental and predicted values for PAMPA logPo. ........................................ 189 

Table 102: Experimental and predicted values for Caco-2 log Peff.. ...................................... 190 

Table 103: A summary of molecular descriptors for the selected drugs analysed by solubility 

method and the reported experimental values of %HIA and permeability coefficients of 

PAMPA and Caco-2 tests. ....................................................................................................... 192 

Table 104: [Sm]-1 and (Aw-Ai)-1 values for amitriptyline. ......................................................... 195 

Table 105: [Sm]-1 and (Aw-Ai)-1 values for phenylbutazone. ................................................... 195 

Table 106: [Sm]-1 and (Aw-Ai)-1 values for lidocaine. ............................................................... 195 

Table 107: [Sm]-1 and (Aw-Ai)-1 values for salicylic acid. .......................................................... 196 

Table 108: [Sm]-1 and (Aw-Ai)-1 values for theophylline. ......................................................... 196 

Table 109: Experimental partition coefficient (log Kp), predicted %HIA (%HIApred.) and 

experimentally determined published literature %HIA (%HIAExpt.) values for the compounds 

analysed including eight validation compounds (*). ............................................................. 201 

Table 110: Experimental and predicted values for PAMPA logPo. ........................................ 203 

Table 111: Experimental and predicted values for Caco-2 log Peff.. ...................................... 205 



xxv 
 

Table 112: A summary of molecular descriptors for the selected drugs analysed by double 

reciprocal method and the reported experimental values of %HIA and permeability 

coefficients of PAMPA and Caco-2 tests. ............................................................................... 206 

Table 113: A comparison of the two types of diffusion cells. ............................................... 210 

Table 114: A list of the obtained permeability coefficients (Kp) for eight drugs at different 

concentrations of NaDC solutions and hydrogels. ................................................................ 213 

Table 115: Experimental permeability coefficient (log Kp), predicted %HIA (%HIApred.) and 

experimentally determined literature %HIA (% HIAExpt.) values for the compounds analysed 

including seven validation compounds (*). ........................................................................... 228 

Table 116: Experimental and predicted values for PAMPA logPo. ........................................ 230 

Table 117: Experimental and predicted values for Caco-2 log Peff.. ...................................... 232 

Table 118:  A summary of molecular descriptors for the selected drugs analysed by 

permeation method using flow through cells and the reported experimental values of %HIA 

and permeability coefficients of PAMPA and Caco-2 tests. .................................................. 233 

Table 119: Experimental permeability coefficient (log Kp), predicted %HIA (%HIApred.) and 

experimentally determined literature %HIA (%HIAExpt.) values for the compounds analysed 

including seven validation compounds (*). ........................................................................... 238 

Table 120: Experimental and predicted values for PAMPA logPo. ........................................ 240 

Table 121: Experimental and predicted values for Caco-2 log Peff.. ...................................... 242 

Table 122:  A summary of molecular descriptors for the selected drugs analysed by 

permeation method using Franz diffusion cells and the reported experimental values of %HIA 

and permeability coefficients of PAMPA and Caco-2 tests. .................................................. 244 

 

 
 

  



 

 

 

 
 
 
 
 
 
 

CHAPTER 1 
 

Introduction & Literature Review 
 
 

 
 
  



 

1 
 

Chapter 1: Introduction and Literature   
Review 

1. Introduction 

1.1. Drug development and Intestinal permeability:  

Most emerging drug compounds are formulated as orally administered medicines due 

to the convenience of this route. However, the properties of some compounds can be 

incompatible with oral administration. In fact, the pharmaceutical industry suffers from 

major financial losses because of the poor bioavailability of some new drugs after their 

oral administration, only discovered once in the clinical development stage [1-4]. 

Therefore, poor drug candidates with poor biopharmaceutical properties, such as poor 

oral bioavailability, and aqueous solubility should be identified as soon as possible 

before entering the clinical development stage in which the cost of research performed 

for a compound is significantly high. 

In the past few years, drug discovery programs have been developed that help in the 

generation of a large number of lead compounds, however these compounds 

(compared with conventional drugs) tend to have high lipophilicity, low aqueous 

solubility, and high molecular weight. These are all unfavourable characteristics that 

decrease the success rates of such compounds in clinical development [5]. As a result, 

there has been a growing interest in the early prediction of biopharmaceutical 

properties by means of experimental and theoretical models. 

The two main properties that influence drug absorption from the intestinal lumen are 

drug solubility and permeation [6-8]. Low intestinal permeability of a drug has less 

possibility for improvement when compared with poor solubility, since drug solubility 

can be altered by choosing a suitable formulation. This is the main reason why 

synthesis of compounds with structures of reasonably high permeability during the 

early stages of drug development is considered as a very important and vital step. 

First, it is crucial to describe the mechanisms by which drug molecules cross the 

intestinal barrier to reach systemic circulation, and subsequently site of action. 

1.2. Mechanisms of permeation of compounds across intestinal membrane: 

Solutes encounter a number of barriers during their passage from intestine to systemic 

circulation. There are two main routes for the transport of molecules across the 

intestinal membrane: 1) the transcellular route in which the intestinal membrane is 
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penetrated by the drug molecule by the aid of channels and transporters, hence it is a 

carrier mediated route, 2) the paracellular route, in which the drug molecules cross the 

intestinal epithelium through aqueous pores in between the cells by means of a 

diffusion process that is not carrier mediated [9].  

As described in the fluid mosaic model, the construction of the cell membrane of a 

double phospholipid bilayer with various lipids and embedded proteins is what gives it 

its unique characteristics [10, 11] (Figure (1)). An example of these unique 

characteristics is the difference in the permeability properties between the apical and 

basolateral sides of the intestinal membrane due to the difference in the lipid and 

protein compositions between the two sides. Also the cell membrane structure has a 

sieving effect on the diffusion of molecules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Intestinal cell membrane structure (reference [12]). 

1.2.1. Passive transcellular diffusion: 
This mode of transport mainly requires molecules of reasonable lipophilicity and size 

as it occurs by the apical membrane penetration by the drug molecules followed by 

their diffusion into the cell cytoplasm, which is the rate limiting step of passive 

transcellular permeability [13]. 

Most of the drug molecules which are well absorbed across the intestinal membrane 

take this mode of transport [14-16]. 
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1.2.2. Paracellular passive transport: 
This is the mode of transport favoured by hydrophilic molecules which are incapable 

of penetrating the intestinal epithelial cell membrane. It takes place by means of 

aqueous pores in between the cells which form a small portion of the total surface area 

of the intestine [17-20]. 

1.2.3. Carrier-mediated transport: 

1.2.3. a. Active and facilitated transport: 

Nutrients and other essential compounds are extracted by the embedded proteins in 

the cell membrane through different carrier-mediated mechanisms. This mode of 

transport is only limited to a small number of drugs which structurally resemble the 

original substrates of cell membrane protein transporters[21]. 

Specificity, saturability, and regional variability are considered to be the three main 

properties of carrier–mediated transport of such drugs [21]. 

1.2.3. b. Receptor-mediated transcytosis: 

Receptor-mediated transcytosis is a subtype of transcellular transport where the drug 

molecule binds to a receptor found on the surface of the cell then crosses to the other 

membrane surface within an endocytic vesicle formed by endocytosis. This mode of 

transport is not abundant and is limited to highly potent macromolecular drugs [22]. 

1.2.3. c. Efflux mechanism: 

Carrier-mediated mechanisms help to enhance transcellular transport of drugs into the 

cell interior whereas efflux mechanisms carried out by efflux proteins (e.g. P-gp) help 

pump drugs in the opposite direction therefore decreasing the overall permeability of 

these drugs [23-25]. The efflux systems main role is to avoid toxic compound uptake 

or help in the excretion of such compounds across the intestinal mucosa [26]. 

An overall summary of transport across the intestinal membrane is shown in Figure (2). 
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Figure 2: Mechanisms of transport across the intestinal membrane (reference [27]). Pathways 
of the intestinal barrier. A: paracellular passive diffusion, B: transcellular passive diffusion, CF: 
influx/efflux facilitated transport facilitated by membrane proteins, G: transcytosis, and H: 
endocytosis. 
 
Over the years, the prediction of the biopharmaceutical properties of new drug entities 

(NDE) has received growing attention where a large number of experimental (in vitro 

and in situ) and theoretical (statistical) models have been developed. These developed 

models contribute in saving money and time by helping screen for the best drug 

candidates and exclude poor candidates during drug discovery and development [28].  

As drug intestinal permeability is one of the major biopharmaceutical properties it is 

worth investigating and predicting using these models. A brief description of some of 

the methods used in determination and measuring of intestinal permeability is given 

below:  

1.3. Methods for determination of intestinal permeability: 

1.3.1. Cell culture based models: e.g. (Caco-2 cells) 

For almost forty years Caco-2 cells have been used as an in vitro model for 

investigation of drug absorption. Caco-2 cells originating from the isolation of human 

colon tumour cells (adenocarcinoma) possess some of the main and important 

structure and function related characteristics of the small intestine. Therefore, this 

model is considered to be one of the most commonly used among cell culture based 

models in the study of the transport of already available and newly synthesised drugs. 

This is especially used in the drug discovery process for example, reducing the use of 
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animals for identification of pharmaceutical compounds with optimised properties [29]. 

A schematic representation of Caco-2 is shown in Figure (3).  

Caco-2 cells present some advantages such as:[30] 

- Human origin, i.e. a closer in vivo mimic 

- Less use of animals in studies. 

- No bioanalysis. 

- Good screening model. 

- Evaluation of absorption enhancing strategies, toxicity of compounds and 

transport mechanisms. 

- Availability of techniques to improve biorelevance of model. 

Limitations include:[30] 

- Very expensive. 

- Time consuming with a long differentiation period. 

- Laboratory intensive. 

- Inter and intra-laboratory variability of permeability data. 

- Low uptake transporters expression. 

Caco-2 cells have also been used in other applications involving [31]: 

1- Evaluation of the bioactivity of plant extracts: The bioavailability of these 

extracts is usually unclear, as they are often composed of a complicated 

mixture of molecules. Furthermore, they are metabolised to some extent before 

reaching their destination inside the body. It is possible to use these extracts in 

the formation of new functional foods, therefore Caco-2 has proven to be a 

suitable method for investigation of bioactivity by co-culturing of Caco-2 with 

the desired cells. 

2- Study of cell matrix interactions and wound healing in intestinal cells: A co-

culture system of Caco-2 cells and myofibroblasts was found to be efficient for 

studying the process of intestinal epithelium wound healing and its regulation. 

This is because Caco-2 cells have the capability of producing and releasing 

extracellular components responsible for controlling the ability (power) and rate 

of intestinal epithelium cells wound healing and repair. 

3- Genotoxicity of food contaminants: Human Caco-2 cells have been described 

by Erlejman et al. as a popular method for studying food contaminants crossing 

the intestinal barrier to get to systemic circulation. 
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Figure 3: Schematic representation of Caco-2 on a microporous filter (reference [32]). 

1.3.2. Membrane based models:  

For over almost four decades, synthetic membranes have been used in studying 

diffusion processes. Parallel artificial membrane permeation assay (PAMPA) is one of 

the most common membrane based models used since it was introduced by Kansy et 

al. in 1998 [33]. PAMPA is a method where the donor and the acceptor compartments 

are placed on top of each other in a microtiter plate with a lipid infused membrane 

hence called a ‘sandwich’ assembly. This lipid membrane system is made of a 

phospholipid ‘cocktail’ supported on a filter in an organic solvent (Figure 4) [34]. 

PAMPA presents some advantages such as: [30] 

- Relatively low cost. 

- Good predictability. 

- Availability of various lipid compositions. 

- High throughput. 

Limitations include: [30] 

- The obtained value depends on pH and lipid composition. 

- Membrane retention of lipophilic drugs. 

- Prediction is limited only to a part of the overall absorption process. 

 

Figure 4: Schematic representation of PAMPA model (reference [35]). 
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1.3.3. Ex Vivo models:  

In 1951, “Ussing chambers” were first developed by Ussing and Zerahn [36]. These 

were initially used for studies related to ion and water transport. However, 

modifications were further introduced by Grass and Sweetana to include determination 

of drug absorption across the intestine [37].  

In the Ussing set up, a tissue of an animal, usually rat, is fixed in between the two parts 

of a diffusion cell (Figure 5) [38]. This model differs from ordinary diffusion cells in that 

both compartments of the Ussing diffusion cell are supplied with bicarbonate buffer in 

which an oxygen/carbon dioxide mixture is bubbled through continuously to keep the 

excised segment viable  [39].  

Furthermore, when electrodes are fitted to the Ussing chambers, they become a useful 

model for investigating how some compounds affect the electrical characteristics of 

intestinal membrane physiology, as well as, to check the viability of the excised tissue 

[40].  

 

Figure 5: Schematic diagram of an Ussing chamber (reference [41]). 

Applications of Ussing chambers: 

This technique is useful for various purposes including the study of transepithelial drug 

transport and intestinal metabolism simultaneously [42-44]. 

Furthermore, it appears to be particularly useful in the assessment of the effect of 

surface active agents or additives on tissue integrity and on the transport of 

compounds [45-47]. Another important application for this technique is investigation of 

the effect of different diseases which cause changes in the intestinal membrane 

function with subsequent changes in permeability e.g. inflammatory bowel disease 

(IBD) and Crohn’s disease [48]. 
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Among its advantages, are [30]: 

- Permeability data obtained from this method correlates well with that 

obtained from in vivo experiments [49].  

- Good oxygenation. 

- No bioanalysis. 

Limitations, include [30, 50]: 

- Underestimation of drug transport due to membrane retention.   

- Viability and integrity of tissues used which is time dependant. 

- Surfactants can only be used at low concentrations especially in set ups 

fitted with gas lifts due to foaming in chambers. 

- Difficulty in obtaining suitable tissues. 

1.3.4. In Situ intestinal perfusion models 

In this approach, the small intestine of an anaesthetised rat is either chronically 

removed (open loop) or initially removed then may be returned to the intestine during 

perfusion (closed loop) by laparotomy which is an approach including a large incision 

in the abdominal wall giving access into the abdominal cavity (Figure 6) [32]. 

The blood supply in this approach remains intact allowing multiple sampling therefore, 

studying the kinetics of the drug introduced into the intestinal segment. 

Among its advantages, are [32]:  

- The rat in situ model shows good correlation with in vivo human data [51]. 

- Avoids exposure of the investigated drug to the stomach acidic conditions 

that lead to the precipitation or the breakdown of some drugs. 

- First pass effect by the liver can be studied if sampling from the hepatic 

vein is carried out.  

Limitations include: 

- Use of anaesthesia might affect the drug intestinal absorption [52]. 

- Use of animal in this approach [53]. 

 

 

Figure 6: Schematic representation of in situ intestinal perfusion (reference [54]). 
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1.3.5. Everted intestinal ring/sac 

Intestinal segments used in this approach are tied from both sides (everted or not) 

forming sacs and can therefore be used for measuring drug transport out or into the 

sacs (Figure 7). These sacs are placed in oxygenated buffer [41]. 

Among its advantages are [41, 53]: 

- Fast and inexpensive. 

- Measures permeability in all intestinal cell types and the mucus layer  

- Useful method for classifying compounds with high or low permeability 

according to the Biopharmaceutical Classification System (BCS). 

Some of its limitations are [54, 55]: 

- Enzymatic activity is lost within the experiment conditions. 

- The viability of the intestinal tissue is lost within the experiment conditions 

which leads to limited sampling points. 

- Absence of nervous response upon exposure to drug. 

 

 

 

Figure 7: Schematic representation of the everted gut technique (reference 
[54]). 

1.3.6. In silico models for prediction of intestinal permeability through in 

vitro-in vivo correlation 

An alternative method for prediction of intestinal absorption of drugs intended for oral 

administration is through the use of physiologically based in silico models. 

In literature, a large number of publications describe many mathematical models 

generated for prediction of the intestinal absorption that involve the use of coefficients 

of permeability obtained either from in vitro models such as Caco-2 [56-61] and 

PAMPA [62-65] or from in situ models [66-68] in combination with some 

physicochemical parameters such as log P, number of hydrogen bonds or aqueous 

solubility.  
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Among all of the previously mentioned physicochemical parameters, log P is 

considered to be one of the most important and widely investigated parameters in the 

field of prediction of drug pharmacokinetics such as prediction of intestinal absorption 

of pharmaceutical compounds. 

Among the advantages of this method are [69]: 

- Money and time saving as it decreases the number of molecules 

synthesised and tested. 

- Contribution to the decrease in animal use. 

- Reliable prediction of the pharmacokinetic and pharmacodynamic 

properties of pharmaceutical compounds. 

Some of its limitations are [69]: 

- Training in modelling and informatics is required. 

- Lack of the presence of a computer programme that can completely model 

a biological systems complexity. 

 
1.4. Importance of lipophilicity in medicinal chemistry and drug discovery: 

Pre-formulation is considered as the first learning phase where the main 

physicochemical properties of a drug are determined prior to its development into a 

dosage form. Determination of such properties is essential for selection of the drug 

candidate itself and selection of the optimum delivery system to ensure its delivery to 

the site of action [70, 71]. 

Since drug lipophilicity is considered as a key descriptor that controls permeation 

across biological membranes [72], the evaluation or determination of the lipophilicity 

of a drug is important for its characterisation to ensure its potential to penetrate lipid 

barriers and subsequently be absorbed [73, 74]. 

Among the most important pre-formulation studies, is determination of drug lipophilicity 

which reflects the ability of a compound to dissolve in lipids or nonpolar solvents, and 

it is generally expressed as a partition coefficient (log P). A partition coefficient is 

defined as, the ratio of the unionised drug distributed between organic and aqueous 

phases at equilibrium [70]. It is very useful in the prediction of various biological 

properties of chemicals. 

In the case of ionisable compounds partitioning is known to be a function of pH, this 

relationship is called the distribution coefficient (log D) and is pH dependant [75]. Log 

D is defined as the ratio of the concentration of a compound in the lipid phase to the 
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concentration of all species in the aqueous phase at a given pH (organic phase is 

assumed to contain only unionised species). Therefore, log P is the partitioning of the 

unionised form of a compound (in the case of neutral compounds) while log D is the 

net partition of ionised and unionised forms of a compound. 

log D can be estimated from log P and pKa [75]: 

Log D acids=Log P+ Log 
1

1+10(pH-pKa)
          Eq. (1) 

Log D bases=Log P+ Log 
1

1+10(pKa-pH)
         Eq. (2) 

When the compound is largely unionised, log P is assumed to be approximately equal 

to log D, then:     

Log D ≅ Log P 

A correlation is known between the oil-water partition coefficient of simple organic 

compounds and their biological activity [76]. For biological purposes, long chain esters 

or alcohols are often selected as the organic phase for partition coefficient 

determination. 

An octanol-water system is traditionally used in most biological correlation work as n-

octanol was found to be an appropriate oil phase for biological applications. 

The octanol-water partition coefficient was also found to be used for the correlation of 

structural changes of drugs with biological, biochemical, and toxic effects [77]. Log P 

values have been determined for a diverse set of compounds creating a large dataset 

of octanol-water partition coefficient (Kow) values. It has been widely used as a 

hydrophobicity parameter in pharmacological and toxicological modelling. 

Methods for determination of partition coefficient are summarised in Figure 8. 
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Figure 8: A schematic diagram illustrating methods for determination of a partition 
 coefficient. (IAMs: Immobilised artificial membranes, ILC:Immobilised liposome 

                   chromatography). 
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1.5. Methods for determination of a partition coefficient: 

Being the oldest parameter in physicochemical profiling, log P has been determined 

by a vast number of well-established experimental methods. These methods have 

been classified into two groups (direct and indirect). 

1.5.1. Direct methods: 

1.5.1. a. Shake Flask Method: 

It is generally regarded as the most reliable method for log P determination. The idea 

of this method is mainly based on an extraction procedure, where a solute is allowed 

to partition between a two liquid system (octanol-water) followed by determination of 

the concentration of that solute in each layer after equilibrium using either UV/Vis 

spectroscopy, fluorimetry, high performance liquid chromatography (HPLC), thin layer 

chromatography (TLC), gas chromatography (GC) or other detection techniques such 

as radiometry in the case of radioactive solutes [78, 79].  

Among its advantages, are: 

- Application to a wide range of solutes.  

- Accurate and precise. 

Limitations include: 

- Tedious and time consuming method. 

- Large amount of solute is required. 

- Pure solutes must be used as interference from impurities of the solute used 

will also partition into the liquid phases which may lead to inaccurate and erratic 

results [78]. 

- This method is not suitable for compounds of poor solubility in any of the solvent 

phases used as concentration will be difficult to quantify by any of the detection 

techniques used.   

1.5.1. b. Slow Stir Method: 

The “slow stir” method is similar to the “shake flask” method, it only differs in the 

procedure of the method where slow stirring under rigid temperature control is applied 

instead of vigorous shaking thus avoiding microemulsion formation [80, 81]. 

Advantages: 

- Avoids microemulsion formation. 

- Reliable for relatively all compounds. 

- Does not require expensive equipment. 

- Relatively fast. 
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Limitations: 

- Strict experimental conditions should be applied with slow stirring and close 

temperature monitoring to avoid formation of a microemulsion.  

1.5.1. c. Generator column method: 

To overcome the previous limitations of the “shake flask” method, a “generator 

column” method was developed. In this method, the generator column is packed with 

a solid support coated with an organic stationary phase, when water is pumped 

through the column an aqueous solution is generated which is in equilibrium with the 

stationary phase. The concentration of the solute eluted with the aqueous phase is 

measured by HPLC or solvent extraction followed by GC [82-85]. 

Advantages: 

- Avoids microemulsion formation. 

- Colloidal dispersion formation can be avoided by a slow flow rate. 

- Rapid equilibration by the large interfacial area. 

- No loss of volatile solutes as well as no errors from adsorption as it is a 

continuous and closed flow system. 

- Easy and requires no special skill of the operator. 

Limitation: 

- The requirement of sophisticated and expensive equipment.  

 

1.5.1. d. Potentiometric method: 

In dual phase potentiometric titrations, the tested compound is titrated twice, firstly in 

the absence of the partitioning solvent to measure its aqueous pKa then secondly, in 

the presence of a partitioning solvent (octanol) with stirring until the pH is measured. 

The partitioning of the unionised form of the compound in to octanol will cause a shift 

in titration curves. Log P is calculated from a difference in pKa values [86, 87]. 

Advantages: 

- Accurate and precise  

- Used for ionisable compounds. 

Limitation: 

- Limited capacity as compounds with a pKa out of the measurable pH range 

cannot be used in this method. 
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1.5.1. e. Counter current chromatography method (CCC): 

In this method, both the mobile phase and the stationary phase are liquid where the 

stationary phase has no solid support. These two phases are immiscible with each 

other and the only physicochemical interaction that controls the retention of solutes is 

liquid-liquid partitioning. Also, the centrifugal field keeps both immiscible phases 

together. This method is considered as a direct method for determination of log P as 

it directly relates the distribution volume to the partition coefficient of the solute as both 

phases present are only liquid and there is no chemical reaction, ionisation or 

complexation taking place in the mobile phase or stationary phase to be considered 

so the distribution ratio D= KD [88] 

Advantage: 

- CCC provides the D ratio of compounds directly and in any biphasic liquid 

system. 

Limitation: 

- The restriction over the range of the measurable D ratios where large D values 

need prohibitive times and mobile phase volumes to be determined. 

1.5.2. Indirect methods: 

1.5.2. a. In silico methods: 

Since the octanol-water partition coefficient was introduced by Hansch et al. [89, 90], 

it has been vastly used in quantitative structure activity relationship (QSAR) studies as 

a hydrophobicity descriptor. Lately, log P has proved to be a key descriptor for 

modelling and evaluation of absorption, distribution, metabolism, and excretion- 

toxicity (ADMET) properties through a large number of developed approaches which 

help detect unsatisfactory pharmacokinetic properties and the toxicity of drugs at the 

early stages of drug discovery therefore reducing the cost of these drugs failing at later 

stages [91].  

Since the 1970’s several computational methods have been developed for calculation 

or prediction of log P. These methods are classified in to two main classes: 

1.5.2. a. 1. Substructure-based Method:  

The substructure-based method is divided into two types: atom-based & fragment 

based. [92] 
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- Atom-based Methods 

The overall molecular log P is computed by this method through the additive 

contribution of individual atoms in the molecule.  

- Fragment-based Method 

This method determines log P through the contribution of the sum of non-

overlapping fragments and functional groups attached to the molecule.  

This latter method is better than the former because it includes corrections that 

account for electronic and steric effects. 

Both types of contributions are fitted on experimentally determined log P values 

leading to the generation of a molecular lipophilicity map. 

The main advantage of atom-based methods is the avoidance of ambiguities [93] 

therefore it provides good estimation results compared to the fragment-based methods 

which are considered to be very accurate methods [94].  

Limitations: 

   For atomic-based log P calculation methods [92]: 

- Ambiguity in the classification system. 

- Large number of atom types. 

- Unrealistic values of some atom contributions. 

- Perceived failure at prediction and bias towards underestimation of log P. 

For fragment-based log P calculation methods: 

- The inability to predict log P for molecules with unusual functional groups as a 

result of lack of experimental data for molecules containing such functional 

groups [95, 96]. 

1.5.2. a. 2. Property-based (Whole molecule) method: 

Log P calculation is based on physicochemical properties of the molecule under 

investigation such as volumes, partial charges, molecular surfaces or different 

topological and electrostatic indices. These can be used as parameters for log P 

quantification or molecular lipophilicity potentials (MLP) [97]. 

Advantages:  

- Substructure based methods are normally validated on a large group of data so 

they give more reliable and accurate results than the whole molecule approach 

so that is why they are more popular and more widely used [98, 99].  
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Limitations: 

- Many of these methods are validated based on small groups of organic 

compounds so the feasibility of their application to a larger chemical space is 

not known. Despite the correlation of many physicochemical properties to log 

P, there is still no clear explanation for the combination of certain 

physicochemical properties used to compute log P [97]. 

 

1.5.2. b. Chromatographic methods 

With chromatographic methods , log P determination is through a simple correlation of 

the obtained chromatographic data (retention or mobility time) characteristic of solutes 

with similar compounds of known log P [100]. 

A calibration graph of standard reference compounds with known log P values is 

plotted against their retention or migration times. Therefore, knowing the retention or 

migration time of the solute of interest, its log P can be easily calculated. 

Among these methods are reversed phase high performance liquid chromatography 

(RP-HPLC) [100], reversed phase thin layer chromatography (RP-TLC) [100], 

immobilised artificial membrane (IAM), micellar liquid chromatography (MLC), counter 

current chromatography (CCC), electrochemical chromatography (capillary 

electrophoresis (CE), micellar electrokinetic chromatography (MEKC) and 

microemulsion electrokinetic chromatography (MEEKC)). 

Advantages: 

- Fast and ease of automation. 

- Simultaneous determination of log P for more than one solute in a mixture. 

- Applicable for a wide range of analytes of different lipophilicity. 

- High precision, accuracy and reproducibility. 

1.5.2. b. 1. Electrochemical methods: 

CE has been widely used in the determination of partition coefficients where MEKC 

[101-103] and MEEKC [104-107] are commonly used types of CE for this purpose. 

These are rapid screening electrochemical methods that study and examine the 

transfer of charged species from one phase to another according to the type of the 

medium selected; one of the three previously mentioned methods is used. The 

introduction of micelles into CE for separation of neutral compounds according to their 

micelle affinity is a method called micellar electrokinetic chromatography (MEKC) 
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which allows the calculation of the partition coefficient for the solute of interest by 

relating the solute partitioning within the micelle to its log P. The use of a 

microemulsion instead of micelles as a mobile phase is known as MEEKC where the 

solutes of different lipophilicity are allowed to partition into the small oil droplets in the 

microemulsion and the aqueous phase with different mobility allowing both the 

separation and the calculation of the log P of more than one solute at the same time. 

Advantages: 

- These methods overcome the direct methods limitations.  

- Less time consuming, swift analysis and high automation. 

 
Limitations: 

- Its limitations are related to the method development as the need for internal 

standard incorporation to overcome poor injection precision [108]. 

1.5.2. b. 2. UV spectrophotometry and spectrofluorimetry: 

A partition coefficient can also be determined by means of spectroscopic methods 

such as spectrophotometry and spectrofluorimetry and then the obtained log P can be 

used as a tool for prediction of different biological activities [109, 110].  

1.5.2. b. 3. RP-TLC method: 

TLC is a rapid and easy tool for estimation of log P [111-114]. This method is similar 

to RP-LC where the Retention factor (K) and lipophilicity parameter (Rm) of a certain 

compound analysed are linearly plotted against log P. 

Advantages: 

- Samples used are of very small amounts and are not required to be pure. 

- Cheap and simple. 

Limitation: 

- Restriction of its application to mainly small data sets of compounds of similar 

properties. 

1.5.2. b. 4. Immobilised artificial membranes (IAMs) and Immobilised 

Liposome Chromatography (ILC): 

These previously mentioned methods are considered fast and reliable methods to 

predict biological properties such as drug distribution, absorption and transport across 

biological membranes including intestinal membranes [115-117], blood brain barriers 

[118, 119], and skin [120, 121] through chromatographic retention measurement [122]. 

IAMs were first introduced as HPLC packaging materials by Pidgeon and Venkataram 
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[123]. The IAMs structure is composed of synthetic phospholipid analogues linked 

covalently to silica propylamine particles, while in immobilised liposome 

chromatography (ILC), liposomes are stably immobilised in the pores of gel beads. 

Both methods are useful in the early profiling of drug candidates in the drug discovery 

process [124, 125]. 

The structure of these chromatographic surfaces are prepared in such a way to mimic 

the fluid phospholipid bilayers chemically and physically supporting drug-membrane 

partitioning based on lipophilicity and electrostatic interactions, thus the retention 

factors obtained on IAMs or liposomal columns are used for determination of the solute 

partition coefficient where the solute capacity factors K’m are measured in liposome 

systems [124, 126]. 

In addition to their ability to predict drug membrane interactions, distribution, 

absorption, and transport across various biological membranes, IAMs appear to have 

other applications as purification of membrane proteins[127-130], immobilising 

enzymes [131, 132], obtaining enzyme ligand binding constants for drugs and 

obtaining hydrophobic parameters [133]. 

Advantages of ILC [134]: 

- Electrostatic interactions are involved when partitioning into liposomes which is 

important especially when considering lipophilicity for ionisable compounds. 

- Good correlation between lipophilicity determined by ILC and Caco-2 drug 

permeability and absorption of orally administered drugs in humans. 

Limitations of ILC: 

- Limited stability of liposomes [135]. 

- Preparation of identical columns is difficult. 

- Unavoidable column to column variation because of the methods used to entrap 

liposomes [136]. 

- Laborious and very time consuming. 

Therefore, IAMs appear to be a simple, rapid and reproducible method for measuring 

partition coefficients and better for the prediction of drug transport than ILC and other 

conventional expensive, time consuming and laborious methods such as Caco-2 

permeability tests.  
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1.5.2. b. 5. Micellar Liquid Chromatography (MLC): 

The use of micelles in HPLC was first introduced by Armstrong and Henry in 1980 

[137], this technique is called micellar liquid chromatography (MLC) and was used to 

enhance retention and selectivity of various solutes that would be inseparable or 

poorly resolved. 

Micellar liquid chromatography is a reversed phase liquid chromatographic (RP-LC) 

mode which uses mobile phases containing a surfactant (ionic or non-ionic) above its 

critical micellar concentration (CMC). The stationary phase is modified with 

approximately constant amounts of surfactant monomers so the presence of micelles 

alters the solubilising capability of the mobile phase leading to diverse interactions 

(hydrophobic, ionic and steric) [138] with major implications in retention and selectivity. 

The basic and very important parts of MLC are the surfactants, the stationary phase 

and the micellar mobile phase. 

Surfactants used in MLC: 

Surfactants possess both hydrophobic and hydrophilic moieties where the 

hydrophobic moiety is represented by the tail of the molecule and the hydrophilic 

moiety is represented by the polar head group (as shown in Figure (9)). Surfactants 

are classified in to different classes: anionic, cationic, zwitterionic or nonionic. 

 

 

 

 

 

                                 

 

Figure 9: Structure of a Micelle (reference [139]). 

Because of the dual nature of surfactants, they have the ability for self-organisation in 

solution. When the surfactant concentration reaches the critical micellar concentration 

(CMC) or more, aggregates of monomers which are called micelles are formed. 

Selection of the most appropriate surfactant to be used in MLC depends upon different 

properties, such as CMC, Krafft point, cloud point and aggregation number (AN). 
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CMC:  Surfactants with a low CMC are the most appropriate type of 

surfactants to be used in MLC as those with a high CMC result in a viscous 

solution giving undesirable high system pressure and background noise in UV 

detectors. Sodium dodecyl sulphate (SDS), cetyltrimethyl ammonium 

bromide (CTAB), and Brij-35 are the most commonly used surfactants in MLC 

as they have low CMC values. CMC values are affected by the addition of 

organic modifiers to reduce retention in MLC from modification in the structure 

of the micelle [140]. 

Krafft point: In the case of ionic surfactants, the Krafft point is the 

temperature at which the solubility of an ionic surfactant monomer becomes 

equal to the CMC [141, 142]. 

If the solubility is very low, then no micelles are present below the Krafft point 

temperature. Therefore, chromatographic work should always be carried out 

above this temperature to avoid surfactant precipitation. 

Cloud point: In the case of non-ionic surfactants, the cloud point is the 

temperature above which phase separation takes place therefore 

chromatographic work using non-ionic surfactants should be carried out 

below this temperature. 

Micellar Mobile Phase: The mobile phase used in MLC consists of surfactants at a 

concentration above their CMC, where any increase in the surfactant concentration is 

translated into an increase in the concentration of micelles in solution while the number 

of the surfactant monomers in the mobile phase remains constant. Micelles provide 

hydrophobic and electrostatic sites (for ionic surfactants) of interaction [143]. 

Micelles have three sites of solubilisation: 

- The core, which is hydrophobic in nature. 

- The surface, which is hydrophilic in nature. 

- The palisade layer which is the region between the core and the surfactant head 

group (Figure 10). 
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Figure 10: Structure of the palisade region of the micelle (reference 
[144]) 

A non-polar stationary phase and a polar aqueous mobile phase are the common 

basic components of MLC and RPLC however in conventional RPLC the hydro-

organic mobile phase is homogenous, but in MLC the micellar mobile phase is 

microscopically heterogeneous as it is composed of two different media: the 

amphiphilic micellar aggregates (micellar pseudophase) and the aqueous-organic 

solvent containing surfactant monomers concentration (approximately equal to the 

CMC). 

Organic solvents may be added to the micellar mobile phase for modification of the 

eluent strength [145], peak efficiency improvement and retention time reduction (via 

changing the micelle structure) and lowering the polarity of the aqueous solution 

resulting in the so-called “Hybrid micellar mobile phase” containing micelles, surfactant 

monomers, molecules of organic solvent and water.  

The choice of the best organic solvent used in MLC depends on the polarity of the 

analytes. The maximal allowable organic solvent concentration used depends on the 

type of organic solvent and the surfactant, where a high concentration of organic 

solvent leads to the disaggregation of micelles and sweeping completely the adsorbed 

surfactant molecules from the bonded phase thus only free surfactant molecules 

remain in the mobile phase [139]. 

Modified Stationary Phase: The alkyl bonded C18 column is the most widely used 

stationary phase in MLC, other columns (e.g.  C8 and cyanopropyl) are also used [146]. 

Surfactant monomers incorporated in the mobile phase adsorb on the porous RPLC 

packing altering the various surface properties of the stationary phase, such as surface 

area, polarity, structure, and pore volume which majorly influences chromatographic 

retention. The stationary phase pores are also coated by the surfactant molecules 

which results in decreasing their volume [147]. 
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For most surfactants and stationary phases, the amount of the surfactant adsorbed 

remains constant after equilibrium between mobile and stationary phase is reached. 

The adsorption of a surfactant on a silica-bonded stationary phase can occur in two 

ways: 

Hydrophobic Interaction: The hydrophobic alkyl tail of the surfactant is adsorbed on 

the stationary phase while the ionic head is projected outwards which gives the 

stationary phase some ion exchange ability with charged analytes. 

Silanophilic Interaction: The ionic head group of the surfactant is adsorbed on the 

stationary phase giving the stationary phase more hydrophobic character. 

Competition between surfactant and analyte may possibly take place on the stationary 

phase. Owing to the number of interactions which are possible in MLC, factors 

affecting chromatographic separations for example electrostatic, hydrophobic or steric 

interactions plus surfactant monomers adsorbing on the stationary phase may lead to 

its modification. Therefore, the MLC system is more complex than conventional RP-

HPLC with hydro-organic solvents [148]. 

For buffering of pH and ionic strength adjustment, ionic compounds are commonly 

added to the micellar mobile phases in MLC. A change in the amount of the adsorbed 

ionic surfactant may occur by salt addition by decreasing surfactant CMC, electrostatic 

repulsion and hydrophobic interactions [149].  

Retention Behaviour: 

The separation behaviour in MLC is explained by taking three phases into 

consideration which are: stationary phase, micellar pseudophase, and bulk solvent. 

According to the analytes differential partitioning between micelles and bulk solvent 

either in the mobile phase or in surfactant-coated stationary phase, separation of 

analytes takes place. As a result, three coefficients explain the partitioning behaviour 

in MLC: 

Psw        Partition coefficient between aqueous solvent and stationary phase. 

Pmw       Partition coefficient between aqueous solvent and micelles. 

Pms            Partition coefficient between micelles and stationary phase. 

An outline of the interactions taking place between the three phases is shown in Figure 

(11). 
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Figure 11: Summary of interactions in MLC 

Psw and Pmw have opposite effects on solute retention. Psw represents solute affinity 

with the stationary phase, thus as Psw increases, the retention increases, whereas 

when Pmw increases, a decrease in retention is observed from the greater association 

with micelles as Pmw represents solute affinity with micelles. 

Nature of interactions:  

The retention behaviour of solutes in MLC depends on the interactions between the 

solute and the surfactant modified stationary phase and between the solute and 

micelles.  

The elution of neutral analytes with non-ionic and ionic surfactants and the elution of 

charged analytes with non-ionic surfactants is only influenced by dipole-dipole, 

nonpolar and proton donor acceptor interactions[150, 151]. 

In addition to the previously mentioned interactions, charged analytes interact 

electrostatically with ionic surfactants which form charged micelles and a charged 

surfactant layer on the stationary phase. 

According to the charges of the analyte and that of the ionic surfactant, repulsion or 

attraction may occur. 

In the case of electrostatic repulsion, unless significant hydrophobic interaction with 

the modified bonded layer exists, the charged analytes cannot be retained by the 

stationary phase and elute early at the dead time. On the other hand, in the case of 

combined electrostatic attraction and hydrophobic interactions with the modified 

stationary phase, strong retention may be achieved in MLC. 

 

Pms 
        Psw 

Pmw 

P
ms
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Solutes are classified according to their elution behaviour into three categories, which 

are binding, non-binding and antibinding solutes: 

- Binding solutes: solutes that bind or associate to micelles, they show 

decreased retention when the micelle concentration is increased.  

- Non-Binding solutes: solutes that do not bind or associate to micelles, they 

show unaltered retention by changing the micelle concentration. 

- Antibinding solutes: solutes that show increased retention with increasing the 

concentration of micelles; it should be noted that antibinding behaviour is not 

very common. 

Electrostatic repulsion is an important issue in antibinding behaviour, where the 

antibinding behaviour has never been observed between a charged solute and an 

oppositely charged surfactant. 

Antibinding behaviour has not been observed with C8 or C18 bonded phases modified 

by adsorption of ionic surfactants since repulsion between solutes and the charged 

surfactant layer on the stationary phase tend to result in elution in the void volume 

region.  

On the other hand, when using stationary phases which do not adsorb large amounts 

of surfactant (C1) or cyanobonded phases where the surfactant charge is buried close 

to the bonded phase, antibinding behaviour is observed, this is a consequence of a 

compound being strongly excluded or repelled from the micelle which forces the solute 

on to the stationary phase where it is retained as a result of hydrophobic interactions 

[152]. 

Retention behaviour in micellar mobile phases: 

 Retention behaviour of binding solutes as a function of the micellar concentration [M] 

(concentration of surfactant monomers forming micelles equal to total surfactant 

concentration minus the CMC) has been explained by many proposed theoretical 

approaches [153]. 

- Armstrong & Nome partitioning model:  

The model proposed by Armstrong and Nome [148] considers transitions 

among three environments in a micellar chromatographic system i.e. water, 

micelles and stationary phase. 

Ve-Vo

Vs
=

K

Ф
=

Psw

1+v (Pmw -1)[M]
               Eq. (3) 
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Where: 

Ve: The total volume of mobile phase needed to elute a given solute from the column. 

Vo: The column void volume. 

Vs: The volume of the active surface of the stationary phase. 

Ф: Vs/Vo phase ratio. 

ν: Partial specific volume of monomers of surfactant in the micelle. 

- Arunyanarat & Cline-Love model:  

Arunyanarat and Cline-Love [154] assumed association equilibrium of solute 

in bulk aqueous solvent (A) with the stationary phase binding sites (S) and 

with monomers of surfactant in the micelle (M) governed by the binding 

constants KAS and KAM respectively. 

 

K=Ф
[AS]

[A]+[AM]
=

ФKAS [AS]

1+KAM [M]
               Eq. (4) 

- Foley model: 

This model is based on the idea that the association between solute and 

micelle is a secondary equilibrium affecting the retention in the absence of 

micelles (Ko). Foley put forward the idea of treating the retention factor as an 

apparent parameter. 

K=Ko
1

1+KAM [M]
                           Eq. (5) 

This model resembles the previous two models as the retention factor of free 

solute (Ko) coincides with Psw in the Armstrong and Nome model and (KAS) in 

the Arunyanarat and Cline-Love model whereas (KAM) coincides with (KAM) in 

the Arunyanarat and Cline-Love model. 

 

A comparison of the pros and cons of the MLC method in general are listed in Table 

(1). 
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Table 1:  A summary of the advantages and disadvantages of the micellar liquid 

chromatography method 

 
Advantages Limitations 

- - It is an interesting technique for green 

chemistry because it uses a mobile phase 

containing 90 % or more water, these 

micellar mobile phases have low toxicity, 

are non-flammable and do not produce 

hazardous waste [139]. 

- - The incorporation of surfactants in the 

mobile phase leads to altering of the 

interactions formed inside the column which 

reduces the amount of organic solvent in 

the mobile phase compared with that in 

conventional RPLC [147]. 

- - It provides an alternative to conventional 

RPLC as it confers analytical procedures of 

greater accuracy and at a lower cost [155-

158].   

- - It  allows direct injection of real biological 

samples (for example urine, plasma, serum) 

for analysis of untreated physiological fluids 

as micelles have the ability to solubilise 

proteins therefore no sample extraction or 

preparation is required prior to analysis 

proving to be time saving compared with 

other analytical methods such as HPLC and 

ion pairing (IP) [159]. 

- Analysis of various pharmaceutical 

compounds. 

- One of the major drawbacks of MLC 

systems is the reduced chromatographic 

efficiency compared with conventional 

RPLC with an aqueous organic mobile 

phase, this decrease in chromatographic 

efficiency results from an increase in the 

resistance of solute mass transfer from the 

mobile phase to the stationary phase and 

poor wetting of the stationary phase by the 

mobile phase [170, 171]. Also, the increase 

in the thickness of the stationary phase (by 

the adsorbed surfactant) has a major effect 

on MLC efficiency [149, 172, 173]. 

 - The reduced chromatographic efficiency 

of MLC can be improved by: 

- Addition of small amounts of an 

organic modifier to the mobile phase 

causing surfactant desorption out of 

the stationary phase, therefore 

improving efficiency[170, 174]. 

- Increasing the working 

temperature[175]. 

- Working with low flow rates and low 

surfactant concentrations. 

To obtain efficiency in MLC similar to that 

obtained in conventional RPLC with 

aqueous organic mobile phase it is 

essential the eluent strength of the micellar 
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- - Excessive peak tailing that is observed in 

(IP) seen for basic drugs is reduced by the 

use of MLC. 

- - It is used in the separation of hydrophilic 

drugs that are usually unretained in HPLC. 

- - A novel application of MLC is separation 

and analysis of inorganic compounds 

(mostly simple ions) [160]. 

- - It  is considered as a superior technique to 

ion pairing and ion exchange for separation 

of charged molecules and mixtures of 

charged and neutral species [161]. 

- - Micelles can be considered as chemical 

models for biomembranes, which enable 

the application of MLC to hydrophobicity 

estimation of organic compounds [145] 

where partition coefficients can be 

calculated by plotting their capacity factors 

obtained from MLC against micellar 

concentration of surfactant used. 

- Micellar liquid chromatography is the same 

as biopartitioning micellar chromatography 

(BMC) but they differ in the composition of 

the micellar mobile phase. In BMC, a C18 

stationary phase and polyoxyethylene (23) 

lauryl ether (Brij 35) mobile phase are used 

for the prediction of biological behaviour of 

drugs [162]. BMC is useful in obtaining 

many models for the prediction of various 

biological behaviours of different drugs for 

example BBB penetration[163], ocular 

tissue permeability [164], skin 

mobile phase is very small. Despite that the 

eluent strength of purely micellar eluents 

increases with the increase in the micelle 

concentration in the mobile phase, the 

increase in the micelle concentration in the 

mobile phase causes a loss of efficiency.  

The eluent strength of a micellar mobile 

phase can be increased by addition of 

alcohols such as methanol, propanol or 

butanol [145]. 
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permeability[165], drug absorption [166], 

and mutagenicity of aromatic amines [167]. 

Similar to BMC, MLC has also been used in 

the prediction of biological behaviour such 

as skin permeability[168], and oral drug 

absorption[169].    

 

1.6. Bile Salts: 

One particular type of surfactants is the naturally occurring biosurfactants such as (bile 

salts) which have a distinguished shape and unusual micellar properties compared 

with conventional head and tail synthetic surfactants. 

Bile salts (Figure (12)) are metabolic products of cholesterol [176, 177]. They are 

derived from cholic acid, comprised of a rigid and slightly curved tetracyclic steroid 

ring based structure [176, 178, 179]. Hydrophilic groups are attached to the 

hydrophobic ring, these hydrophillic groups are one to three hydroxyl (OH)-groups and 

an acidic group. Bile salts are conjugated to either taurine or glycine amino acid. 

Because of their distinct structure, where the hydroxyl groups are oriented towards the 

concave side of the rigid steroid ring backbone so the hydrophilic part of the bile salt 

structure is its concave side while, the hydrophobic part is represented by the convex 

side. It appears that as a result of the rigid structure of the steroid ring there is no 

complete separation between hydrophilic and hydrophobic parts in micelles [176]. 

 

 

Figure 12: Structure of bile salts. (A): Structural formula, (B): 3D structure, (C): Schematic 
representation of a dihydroxy bile salt (reference [176]). 

According to the type of the bile salt, positions R1 to R3 can be hydroxylated. R4 is the 

acidic group that can be conjugated with taurine or glycine.  
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Based on their unique structure, there are different assumptions for explaining the 

micellisation process in bile salts as shown in Figure (13) where (A and B) are different 

primary micelles, (C) is a disclike micelle and (D) is a hellical micelle [176]. 

 

Figure 13: Schematic representation of different models for a 
bile salt micellar structure (reference [176]). 

Bile salts have both hydrophobic and hydrophilic sides; they form micelles in water by 

means of hydrophobic association of their hydrophobic sides. A variety of models have 

been proposed to describe bile salt aggregation (micellisation). Among the popular 

models for bile salt aggregation are: 

- Small’s model: This model suggested the formation of primary aggregates 

through hydrophobic association between the hydrophobic parts of (2-9) 

monomers of bile salts followed by further aggregation of the primary 

aggregates via hydrogen bonding between the hydroxyl groups. Furthermore, 

the model proposed that the primary aggregates are a globular shape while the 

secondary aggregates are oblate ellipsoidal in shape [180]. 

- Oakenfull and Fisher’s model: This model proposed that the bile salts form 

dimers while in water via a hydrophobic interaction. The dimers are claimed to 

be rod-like in structure [181]. 

- Kawamura et al. model: This model proposed that the secondary aggregates 

are disc-shaped in structure, in which the hydrophobic sides are facing each 

other towards the inside while the hydrophilic sides are facing outwards towards 

the solvent molecules [182].   

- Warren et al. model: According to this model the bile salt aggregates are 

formed by polar interactions between the bile salt molecules. The formed 

aggregates are proposed to be helical in shape which is based on the crystalline 

state rather than the liquid state. This model has since been discounted and the 
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so disc-shaped hypothesis of bile salt aggregates has become widely 

recognised [183]. 

 Aims of the work     

In this work MLC is used in the prediction of human intestinal absorption through the 

use of ‘biological surfactants’ to form the micellar mobile phase, the biosurfactants 

used are bile salts. Biosurfactants are used in this work as an attempt to mimic or 

simulate the human inner intestinal environment for prediction of intestinal absorption 

via a study of the retention behaviour of a diverse group of drugs as bile salts are very 

prominent components of intestinal fluid. This method will also be compared with other 

methods commonly used in the prediction of intestinal absorption, alongside 

spectroscopic predictive analysis. 

Overall, the aim of this work is to investigate the development of in vitro methods to 

predict in vivo performance for pharmaceutical compounds. This can be considered 

through the following objectives: 

1- Investigate the application of MLC for predicting human intestinal absorption. 

2- Investigate the effect of changing the type of the chromatographic column used 

in MLC. 

3- Investigate the effect of changing column temperature throughout MLC 

experiments.  

4- Investigate the application of spectroscopy for predicting human intestinal 

absorption. 

5- Develop a novel hydrogel to be considered as a predictor of human intestinal 

absorption. 
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Chapter 2: Materials and Methods 

2.1. Materials and reagents 

Sodium deoxycholate (NaDC) (97 %), sodium taurodeoxycholate (NaTDC) (95 %), 

sodium taurocholate (NaTC) (≥ 97 %), sodium cholate (NaC) (97 %), Sodium 

glycocholate (GC) (≥ 97 %), sodium glycodeoxycholate (GDC) (≥ 97 %) and L-α-

phosphatidylcholine from dried egg yolk (≥ 50 %) were used as purchased from Sigma 

Aldrich, Dorset, UK for preparation of stock solutions of mobile phase. Analytical 

grade, sodium chloride (NaCl), sodium dihydrogen orthophosphate dihydrate 

(NaH2PO4.2H2O), disodium hydrogen orthophosphate anhydrous (Na2HPO4) were 

purchased from Fisher Scientific, Loughborough, UK also 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES buffer) was purchased from Sigma Aldrich, 

Dorset, UK. The compounds considered in this work were caffeine 97 % (Sigma 

Aldrich, Dorset, UK), fenoprofen 97 % (Fluka, Dorset, UK), quinine 96 % (Fluka, 

Dorset, UK), acetaminophen 99 % (Sigma Aldrich, Dorset, UK), haloperidol 99 % 

(Sigma Aldrich, Dorset, UK), leflunomide 98 % (Sigma Aldrich, Dorset, UK), linezolid 

>98 % (Sigma Aldrich, Dorset, UK), ketoprofen 98 % (Sigma Aldrich, Dorset, UK), 

lidocaine 98 % (Sigma Aldrich, Dorset, UK), indomethacin 99 % (Sigma Aldrich, 

Dorset, UK), propranolol 98 % (Sigma Aldrich, Dorset, UK), phenylbutazone 99 % 

(Sigma Aldrich, Dorset, UK), fluconazole 98 % (Sigma Aldrich, Dorset, UK), alprenolol 

98 % (Sigma Aldrich, Dorset, UK), amitriptyline 98 % (Sigma Aldrich, Dorset, UK), 

carbamazepine 99 % (Sigma Aldrich, Dorset, UK), cimetidine (Sigma Aldrich, Dorset, 

UK), mannitol 98 % (Sigma Aldrich, Dorset, UK), moexipril >98 % (Sigma Aldrich, 

Dorset, UK), naproxen 98 % (Sigma Aldrich, Dorset, UK), piroxicam 98 % (Sigma 

Aldrich, Dorset, UK), terbutaline 96 % (Sigma Aldrich, Dorset, UK), zolmitriptan >98 % 

(Sigma Aldrich, Dorset, UK), salicylic acid 99 % (Fisher Scientific, Loughborough, UK), 

ibuprofen 98 % (BASF, Cheshire, UK), acetyl salicylic acid 99% (Acros Organics, 

Geel, Belgium), diclofenac 98 % (TCI Europe, Zwijndrecht, Belgium), 

diphenhydramine 98 % (TCI Europe), flurbiprofen 98 % (TCI Europe), gemfibrozil 98 

% (TCI Europe), lornoxicam >98 % (TCI Europe), nicotinic acid >98 % (Sigma Aldrich, 

Dorset, UK), theophylline 98 %, (TCI, Oxford, UK), meloxicam 98 % (TCI Europe). 2,7-

dichlorofluorescein was purchased from BDH chemicals Ltd, Poole, Dorset, UK for 
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CMC determination experiments and methanol was used as a solvent for preparation 

of the dye stock. The utilised Dialysis membrane was a high retention seamless 

cellulose tubing with an average flat width of 23 mm (0.9 in.) and molecular weight cut 

off (MWCO) of 12400. 

The bile salts and compounds used in the thesis are summarised in Table (2). 

Table 2: General properties of bile salts and drugs under study. 

 

Sodium Deoxycholate (NaDC) Structure 

Molecular weight 414.6 g/mol[184]  
Charge Anionic 

CMC 4-6 mM[185] 

Aggregation number 
(AN) 

5.1-7.1 [186] 

Sodium Taurodeoxycholate (NaTDC)  
Molecular weight 521.7 g/mol[184]  
Charge Anionic 

CMC 2-6 mM[185] 

Aggregation number 
(AN) 

2-3[187] 

Sodium Cholate (NaC)  
Molecular weight 430.6 g/mol[184]  
Charge Anionic 

CMC 9-15 mM[188] 

Aggregation number 
(AN) 

2-4[185] 

Sodium Taurocholate (NaTC)  
Molecular weight 537.7 g/mol[184]  

 Charge Anionic 

CMC 3-11 mM[189] 

Aggregation number 
(AN) 

5[185] 

Sodium glycocholate (GC)  
Molecular weight 487.6 g/mol[184]  
Charge Anionic 

CMC 13 mM[190] 

Aggregation number 
(AN) 

6[191] 

Sodium glycodeoxycholate (GDC)  
Molecular weight 471.6 g/mol[184]  
Charge Anionic 

CMC 2.12 mM[192] 

Aggregation number 
(AN) 

26[191] 
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L-α-Phosphatidylcholine Structure 
Molecular weight 758.1 g/mol[184]  

 
 
 

Charge Zwitterionic 

Acetaminophen (APAP)  

Molecular weight 151.2 g/mol[184]  
Charge Neutral 

Log Po/w 0.46[184] 

ʎmax 243 nm[193] 

Acetylsalicylic acid (ASA)  
Molecular weight 180.2 g/mol[184]  
Charge Anionic 

Log Po/w 1.19[184] 

ʎmax 295 nm[193] 

Alprenolol (Alp)  
Molecular weight 249.3 g/mol[184]  

 
 
 

Charge Anionic 

Log Po/w 3.10[184] 

ʎmax 270 nm[193] 

Amitriptyline (AMI)  
Molecular weight 277.4 g/mol[184]  

 
 
 

Charge Anionic 

Log Po/w 4.92[184] 

ʎmax 240 nm[193] 

Caffeine (CAF)  
Molecular weight 194.2 g/mol[184]  
Charge Neutral 

Log Po/w - 0.07[184] 

ʎmax 273 nm[193] 

Carbamazepine (CBZ)  
Molecular weight 236.3 g/mol[184]  

 Charge Anionic 

Log Po/w 2.45[184] 

ʎmax 284 nm[193] 

Cimetidine (CIMET)  
Molecular weight 252.3 g/mol[184]  
Charge Neutral 

Log Po/w 0.40[184] 

ʎmax 218 nm[193] 

Diclofenac (dicl)  
Molecular weight 296.1 g/mol[184]  
Charge Anionic 

Log Po/w 4.51[184] 

ʎmax 276 nm[193] 
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Diphenhydramine (DIPHEN) Structure 

Molecular weight 255.4 g/mol[184]  
Charge Cationic 

Log Po/w 3.27[184] 

ʎmax 221 nm[193] 

Fenoprofen (FEN)  
Molecular weight 242.3 g/mol[184]  
Charge Anionic 

Log Po/w 3.10[184] 

ʎmax 271 nm[193] 

Fluconazole (Fluc)  
Molecular weight 306.3 g/mol[184]  
Charge Neutral 

Log Po/w 0.40[184] 

ʎmax 260 nm[193] 

Flurbiprofen (FBP)  
Molecular weight 244.3 g/mol[184]  
Charge Anionic 

Log Po/w 4.16[184] 

ʎmax 247 nm[193] 

Fosinopril (FOS)  
Molecular weight 563.3 g/mol[184]  
Charge Anionic 

Log Po/w 6.30[184] 

ʎmax 208 nm[193] 

Gemfibrozil (Gem)  
Molecular weight 250.3 g/mol[184]  
Charge Anionic 

Log Po/w 3.40[184] 

ʎmax 274 nm[193] 

Haloperidol (Halo)  
Molecular weight 375.9 g/mol[184]  
Charge Cationic 

Log Po/w 4.30[184] 

ʎmax 248 nm[193] 

Ibuprofen (IBU)  
Molecular weight 206.3 g/mol[184]  

 
 
 

Charge Anionic 

Log Po/w 3.97[184] 

ʎmax 272 nm[193] 

Indomethacin (Indo)  

Molecular weight 357.8 g/mol[184]  

Charge Anionic 

Log Po/w 4.27[184] 

ʎmax 320 nm[193] 
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Ketoprofen (Keto) Structure 

Molecular weight 254.3 g/mol[184]  
 Charge Anionic 

Log Po/w 3.12[184] 

ʎmax 261 nm[193] 

Leflunomide (LEF)  
Molecular weight 270.2 g/mol[184]  

Charge Neutral 

Log Po/w 2.80[184] 

ʎmax 258 nm[193] 

Lidocaine (LDC)  
Molecular weight 234.3 g/mol[184]  

Charge Cationic 

Log Po/w 2.44[184] 

ʎmax 262 nm[193] 

Linezolid (lzd)  

Molecular weight 337.3 g/mol[184]  

Charge Neutral 

Log Po/w 0.90[184] 

ʎmax 251 nm[193] 

Lornoxicam (LORN)  
Molecular weight 371.8 g/mol[184]  

Charge Anionic 

Log Po/w 2.62[184] 

ʎmax 381 nm[193] 

Mannitol (MAN)  
Molecular weight 182.2 g/mol[184]  

Charge Neutral 

Log Po/w -3.10[184] 

ʎmax 295 nm[193] 

Meloxicam (MEL)  
Molecular weight 351.4 g/mol[184]  

Charge Anionic 

Log Po/w 3.43[184] 

ʎmax 362 nm[193] 

Moexipril (MOEX)  

Molecular weight 498.6 g/mol[184]  

Charge Anionic 

Log Po/w 2.70[184] 

ʎmax 282 nm[193] 

Naproxen (NAP)  
Molecular weight 230.3 g/mol[184]  

Charge Anionic 

Log Po/w 3.18[184] 

ʎmax 230 nm[193] 
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Nicotinic acid (NIC) Structure 
Molecular weight 123.1 g/mol[184]  

Charge Anionic 

Log Po/w 0.36[184] 

ʎmax 262 nm[193]  

Phenylbutazone (PBZ)  
Molecular weight 308.4 g/mol[184]  

Charge Anionic 

Log Po/w 3.16[184] 

ʎmax 264 nm[193] 

Piroxicam (PRX)  
Molecular weight 331.3 g/mol[184]  

Charge Anionic 

Log Po/w 3.06 

ʎmax 355 nm[193] 

Propranolol (PROP)  

Molecular weight 259.3 g/mol[184]  
 Charge Anionic 

Log Po/w 3.48[184] 

ʎmax 292 nm[193] 

Quinine (QN)  

Molecular weight 324.4 g/mol[184]  

Charge Cationic 

Log Po/w 3.44[184] 

ʎmax 332 nm[193] 

Salicylic acid (SA)  
Molecular weight 138.1 g/mol[184]  

Charge Anionic 

Log Po/w 2.26[184] 

ʎmax 296 nm[193] 

Terbutaline (Terb)  

Molecular weight 225.3 g/mol[184]  

Charge Cationic 

Log Po/w 0.90[184] 

ʎmax 280 nm[193] 

Theophylline (Theo)  
Molecular weight 180.2 g/mol[184]  

Charge Neutral 

Log Po/w -0.02[184] 

ʎmax 273 nm[193] 

Zolmitriptan (ZMT)  
Molecular weight 287.4 g/mol[184]  

Charge Cationic 

Log Po/w 1.60[184] 

ʎmax 283 nm[193] 



 

38 
 

2.2. Methods 

This thesis includes data from a number of methods, mainly involving micellar liquid 

chromatography (MLC) and spectroscopy. Two separate methods for studying 

permeation of compounds through prepared gels using Franz diffusion cells and flow 

through cells are discussed in Chapter 5. Also scanning electron microscopy (SEM) 

and Fourier transform infrared (FT-IR) techniques were used for the characterisation 

of the prepared gels.  

2.2.1. Micellar Liquid Chromatography 

Micellar mobile phase stock solutions and dilutions preparation 

- Preparation of stock solutions of NaDC, NaTDC, NaC and NaTC in water 

or 0.15 M NaCl or (SIFsp) 

20 mM stock solutions for NaDC, NaTDC and NaTC and 35 mM stock solutions for 

NaC bile salts in water or 0.15 M NaCl were prepared by transferring an accurately 

weighed amount of each bile salt to a 250 mL volumetric flask and completing to the 

mark with deionised water (for NaDC, NaTDC and NaC) or 0.15 M NaCl (for NaDC 

and NaTC) or SIFsp (for NaTC). 

- Preparation of bile salt dilutions in water or 0.15 M NaCl or (SIFsp) 

Preparation of bile salt solutions over the concentration range of (5-20 mM for NaDC), 

(6-20 mM for NaTDC), (19-35 mM for NaC) and (3-20 mM for NaTC) was carried out 

by serial dilution of the stock solution of each bile salt to give the different micellar 

mobile phase concentrations. Accurately measured aliquots were transferred from the 

stock solution in water or 0.15 M NaCl to 50 mL volumetric flasks; solutions were 

completed to the final volume with deionised water or 0.15 M NaCl. 

- Preparation of stock solution of mixed micellar mixture simulating the 

physiological bile salt mixture 

17 mM stock solution of a mixed micellar system was prepared by transferring 

accurately weighed amounts equivalent to 2.71 mM, 2.00 mM, 2.08 mM, 2.08 mM, 

4.70 mM and 3.43 mM of NaTC, NaTDC, NaDC, NaC, NaGC and NaGDC bile salts 

respectively and 0.75 mM of egg phosphatidylcholine (PC) to a 250 mL volumetric 

flask and completing to the mark with a buffer solution of 10 mM HEPES, pH of 6.5, in 

0.15 M NaCl. The solution was then sonicated for 30 minutes and stored for 12 hours 

before use to allow the formation of stable mixed micelles. 
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- Preparation of a mixed micellar solution for dilution  

Different concentrations of the micellar mixture were prepared over the range of (5-17 

mM) by diluting the stock mixture solution (17 mM) using a 2 mM mixture solution. The 

2 mM mixture solution contained the same six bile salts and lecithin used in the 

preparation of the stock mixture solution in the same molar ratios. The 2 mM diluting 

mixture was prepared by transferring accurately weighed amounts equivalent to 0.32 

mM, 0.25 mM, 0.24 mM, 0.24 mM, 0.55 mM, 0.4 mM of NaTC, NaTDC, NaDC, NaC, 

NaGC and NaGDC bile salts respectively and 0.75 mM of egg phosphatidylcholine 

(PC) to a 250 mL volumetric flask and completing to the mark with a buffer solution of 

10 mM HEPES, pH of 6.5, in 0.15 M NaCl. The resultant solution was then sonicated 

for 30 minutes then stored for 12 hours before use. Dilution was carried out in this way 

as the 2 mM mixture is considered to be the monomer bile salt concentration that is 

required to be kept constant in each solution in order to keep the size of the micelle 

constant while its concentration is being changed. 

In unbuffered MLC experiments, samples solutions were prepared each at a 

concentration of 0.2 mM. All the solutions used were freshly prepared. The pH of the 

medium was measured before each experiment and it was found to be in the range of 

6.4 to 8 (for NaDC), 5.2 to 6.1 (for NaTDC) and 7.1 to 9.6 (for NaC).  

Instrumentation and measurement 

Experiments were carried out with a chromatographic system consisting of a Severn 

Analytical SA 6410B pump, a Rheodyne injector through which 20 μL samples were 

injected in to the system and a UV detector (Perseptive Biosystems UVIS-205), set at 

a wavelength appropriate for each drug producing a peak via Picolog software 

indicating the retention of the solute within the column as a function of time. The mobile 

phase was filtered through a 0.45 µm Nylon filter and degassed in an ultrasonic bath. 

Data were recorded and then analysed to obtain capacity factors and each run was 

repeated three times to ensure that reasonable accuracy and precision were achieved. 

Analytical separation was accomplished using a reversed phase cyanopropyl column 

(Spherisorb 5 μm, 15 cm × 4.6 mm i.d., WATERS) using different mobile phases and 

conditions or an aminopropyl column (APS) (Hypersil 5µm, 15 cm x 4.6mm, Thermo 

Scientific) using different mobile phases and conditions (Table (3)). The flow rate used 

was 1.34 mL/min with all assays carried out at room temperature (25 ºC -methods A, 

B and C) or (37 ºC -methods D, E and F) or over the temperature range of (30-45 ºC) 
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(method G) using the column chiller (Jones Chromatography model 7950). During the 

course of this study the Severn Analytical SA 6410B pump was replaced with an 

Agilent1100 Series Binary Pump. 

Determination of dead time t0 

The dead time (t0) is defined as the time taken by the solvent front to reach the 

detector. According to literature, dead time in MLC is measured by the injection of 

water [194] or an organic solvent e.g. acetonitrile or methanol [195, 196] and observing 

the base line for the appearance of the first major perturbation while recording the 

retention time of the first peak that appeared. In this work, dead time was determined 

by injecting distilled water or acetonitrile in to the system and recording the retention 

time of the first peak that appeared after injection (solvent front). The same method 

was repeated for each of the bile salt concentrations used and dead time was 

recorded. A reliable value of the dead time used in the calculation of capacity factor 

(K’) for all the experiments (using Equation 4) was determined from an average of at 

least ten recordings. 

Calculation of log Pmw 

Retention time of each drug was recorded for each bile salt concentration. The 

capacity factor for each retention time was calculated using the following equation: 

K’ =
(Retention time−dead time) 

dead time
           Eq. (6) 

The reciprocal of each capacity factor was obtained (1/K’) with the average plotted 

against the micellar concentration (CM) that was calculated according to the following 

equation: 

(CM) = Total surfactant concentration − Critical micellar concentration (CMC)   Eq. (7) 

The partition coefficient (log Pmw) was obtained from the slope and intercept of the line 

obtained from the plot of (CM) against (1/K’). 

Log Pmw = log [intercept slope⁄ ]             Eq. (8) 
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Table 3: Micellar Liquid Chromatography (MLC) Methods. 

MLC Method Mobile Phase Column Used Column Temperature Drugs Used 

Method A 

“Use of NaDC as mobile 

phase with RP-CN 

column” 

Sodium deoxycholate (NaDC) 

in water used over 

concentration Range (5-20 

mM). 

 

 

 

 

 

 

 

 

Reversed phase 

cyanopropyl column 

(Spherisorb 5 μm, 

15 cm × 4.6 mm i.d., 

WATERS) 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

25 ºC 

 
 
 
 
 
 
 
 
 
 

Acetaminophen, acetyl salicylic acid, 

diclofenac, diphenhydramine, 

fenoprofen, fluconazole, gemfibrozil, 

ibuprofen, indomethacin, ketoprofen, 

lidocaine, nicotinic acid, 

phenylbutazone, piroxicam, 

propranolol and theophylline. 

Sodium deoxycholate (NaDC) 

in 0.15 M NaCl used over 

concentration Range (5-20 

mM). 

Trials for method development with 

acetaminophen and caffeine. 

Method B  

“Use of NaTDC as mobile 

phase with RP-CN 

column” 

Sodium taurodeoxycholate 

(NaTDC) in used water over 

concentration Range (6-20 mM). 

Acetaminophen, acetyl salicylic acid, 

caffeine, diclofenac, diphenhydramine, 

fenoprofen, fluconazole, gemfibrozil, 

ibuprofen, ketoprofen, lidocaine, 

phenylbutazone, propranolol, salicylic 

acid, theophylline. 
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Method C 

“Use of NaTC as mobile 

phase with RP-CN 

column” 

Sodium taurocholate (NaTC) in 

0.15 M NaCl over 

concentration range (5-20 

mM). 

 

Sodium taurocholate (NaTC) in 

SIFsp (pH 6.8) over 

concentration range (5-20 

mM). 

 

 

 

 

 

 

 

Reversed phase 

cyanopropyl column 

(Spherisorb 5 μm, 

15 cm × 4.6 mm i.d., 

WATERS) 

 

 

 

 

 

 

 

 

 
 
 
 
 

25 ºC 

 

Acetaminophen, caffeine and 

ketoprofen. 

 

Caffeine, ibuprofen, ketoprofen and 

theophylline. 

 

Method D 

“Use of NaC as mobile 

phase with RP-CN 

column” 

 

Sodium cholate (NaC) in water 

used over concentration range 

(17-35 mM). 

 
 

37 ºC 
 
 
 
 
 
 
 
 
 
 
 
 
 

Acetaminophen, caffeine, diclofenac, 

fenoprofen, fluconazole, gemfibrozil, 

ibuprofen, indomethacin, ketoprofen, 

lidocaine, meloxicam, phenylbutazone, 

salicylic acid and theophylline. 

Method E 

“Physiological Mixture 

Method” 

 

A 17 mM stock of mixed micellar 

system of 2.71 mM Sodium 

taurocholate, 2 mM Sodium 

taurodeoxycholate, 2.08 mM 

Acetaminophen, aspirin, caffeine, 

carbamazepine, cimetidine, diclofenac, 

fenoprofen, fluconazole, flurbiprofen, 

ibuprofen, ketoprofen, naproxen, 
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Method E 

“Physiological Mixture 

Method”  

(cont.) 

Sodium deoxycholate, 2.08 mM 

Sodium cholate, 4.7 mM Sodium 

glycocholate, 3.43 mM Sodium 

glycodeoxycholate and 0.75 mM 

egg PC in 10 mM HEPES (pH 6.5) 

and 0.15 M NaCl used over the 

concentration range (5-17mM). 

A 2 mM mixture of the same 

ratios of bile salts used in the 

stock mixture was used in the 

preparation of different mixture 

concentrations by dilution of the 

stock mixture.  

 

 

 

 

Reversed phase 

cyanopropyl column 

(Spherisorb 5 μm, 

15 cm × 4.6 mm i.d., 

WATERS) 

 
 

 
 

 
37 ºC 

 

 

 

 

 

 

 

 

 

 

nicotinic acid, phenylbutazone, salicylic 

acid, terbutaline, theophylline and 

zolmitriptan. 
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Method F 

“Effect of Change in 

Column Type” 

Sodium deoxycholate (NaDC) in 

water used over concentration 

Range (5-20 mM). 

Aminopropyl column 

(APS) (Hypersil 5µm, 15 

cm x 4.6mm, Thermo 

Scientific) 

37 ºC 
 

 

 

 

Acetaminophen, aspirin, caffeine, 

carbamazepine, cimetidine, diclofenac, 

fenoprofen, fluconazole, flurbiprofen, 

gemfibrozil, ibuprofen, indomethacin, 

ketoprofen, lidocaine, lornoxicam, 

meloxicam, naproxen, nicotinic acid, 

phenylbutazone, piroxicam, salicylic 

acid, terbutaline and theophylline. 

Method G 

“Effect of Change of 

Temperature” 

Sodium deoxycholate (NaDC) in 

water used over concentration 

Range (5-20 mM). 

Reversed phase 

cyanopropyl column 

(Spherisorb 5 μm, 15 

cm × 4.6 mm i.d., 

WATERS) 

Runs were carried out 

at different 

temperatures (30, 35, 

40 and 45 ºC). 

Acetaminophen, caffeine, ibuprofen, 

ketoprofen and theophylline. 
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2.2.2. UV-Vis Spectrophotometry 

For all spectrophotometric experiments an Agilent Model Cary 60 UV-Vis was fitted with a 

Cary single cell Peltier accessory to keep the samples in the sample compartment at a 

specified temperature. A quartz cuvette of 10 mm internal thickness was used in all 

measurements. Samples were scanned over the wavelength range of (200-400 nm) or (400-

800 nm) depending on the aim of the experiment.  

2.2.2. a. Critical Micelle Concentration (CMC) determination 

Stock and working solution preparation 

- Dye stock solution preparation: 

A stock solution of 10-3 M of the dye was prepared by dissolving an accurately weighed 

amount of dye in a certain volume of methanol. A 10-5 M concentration was then used for 

CMC determination tests. 

- Bile salt stock solution preparation 

A 20 mM and 35 mM stock solution of NaDC and NaC respectively were prepared by 

transferring accurately weighed amounts of each bile salt to two volumetric flasks then 

completing to the mark with deionised water. Dilutions from each stock solution were then 

prepared and scanned with the sample compartment thermostat set to each of the 

temperatures at which CMC is required to be determined. 

Measurement 

Temperatures studied were 30, 35, 40, 45 ºC for NaDC CMC determination and at 37 ºC for 

NaC CMC determination. Each dilution was scanned over the wavelength range from 400-

800 nm and absorbance of the dye was recorded at its wavelength of maximum absorbance 

(ʎmax) (503 nm). 

For NaDC the absorbance at each temperature (30, 35, 40, 45 ºC) was recorded and plotted 

against the corresponding NaDC concentration for determination of CMC. For NaC the 

absorbance at 37 ºC was recorded and then plotted against the corresponding NaC 

concentration for determination of CMC.  

The sample compartment thermostat was set to each temperature at which CMC was 

required to be determined. 

2.2.2. b. Solubilisation method 

 

Standard and sample solution preparation 

- Bile salt stock solutions preparation  

Since a calibration plot was required for each drug at different concentrations of the bile salt 

used (NaDC), a stock solution of the drug at each bile salt concentration over the range (7-
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20 mM) was prepared. Different dilutions of NaDC from its stock (20 mM) were carried out 

using deionised water then each dilution was used in the preparation of different 

concentrations of the drug in the corresponding bile salt dilution. 

- Sample preparation 

An excess solid of each drug included in this study (acetaminophen, acetyl salicylic acid, 

alprenolol, amitriptyline, carbamazepine, cimetidine, diclofenac, diphenhydramine, 

fenoprofen, fluconazole, flurbiprofen, gemfibrozil, ibuprofen, indomethacin, ketoprofen, 

lidocaine, mannitol, meloxicam, naproxen, phenylbutazone, piroxicam, propranolol, quinine, 

and terbutaline) was placed in a microcentrifuge tube to which a 1 mL of each bile salt 

solution of concentrations over the range (7-20 mM) was added. The samples were 

equilibrated in a shaking water bath for 2 days at 37 ºC. Samples were centrifuged at 13000 

rpm to remove the solid phase. A certain volume of the supernatant was taken, diluted then 

analysed by ultraviolet spetrophotometry.  

Measurement 

The absorbance was then determined at the wavelength of maximum absorption of each 

drug under study in the thermostated cell set at a temperature of 37 ºC using UV-Vis 

spectrophotometry. 

2.2.2. c. Double Reciprocal Method 

Standard and sample solution preparation 

- Micellar mobile phase stock solution preparation 

A stock solution of 10 mM NaDC was prepared. From the stock, several dilutions of the bile 

salt over the concentration range (0.5 - 9.5 mM) were prepared using deionised water. 

- Sample preparation 

A stock solution of 1 mM of each drug was prepared. A fixed volume of this stock was then 

diluted with a series of freshly prepared bile salt concentrations over the range (0.5 - 9.5 

mM) to prepare 0.05 mM of drug in each corresponding bile salt concentration.  

Measurement 

The prepared samples were incubated in a water bath at 25 ºC in the dark for 12 hours. The 

absorbance was then determined at the wavelength of maximum absorption of each drug 

under study in the thermostated cell set at a temperature of 25 ºC by using UV-Vis 

spectrophotometry. 
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2.2.3. Permeation tests 

Saturated solubility and solutions of drugs under study 

An excess amount of each of the drugs under study in this method (acetaminophen, 

caffeine, carbamazepine, cimetidine, diclofenac, fenoprofen, fluconazole, flurbiprofen, 

fosinopril, gemfibrozil, haloperidol, ibuprofen, indomethacin, ketoprofen, leflunomide, 

lidocaine, linezolid, meloxicam, moexipril, naproxen, phenylbutazone, piroxicam, quinine, 

theophylline and zolmitriptan) was added to 5 mL PBS in 7 mL vials closed with screw cap 

and stored at 37 ºC. The solutions were then filtered through 0. 45 µm Nylon filters to remove 

excess solid and then diluted using PBS to assay for the drug under study using UV 

spectrophotometry at its wavelength of maximum absorption and already established 

calibration plot of the drug in PBS.   

Preparation of bile salt hydrogel with infinite dose of a drug  

A NaDC hydrogel (70 mM) was prepared by gradually adding a certain volume of PBS (a 

mixture of 0.2 M disodium orthophosphate, sodium dihydrogen orthophosphate and sodium 

chloride at a pH 7.4) and accurately weighed amount of each of the previously mentioned 

drugs under study (for the formation of drug saturated hydrogel) to an accurately weighed 

amount of NaDC in a 50 mL beaker. The mixture of NaDC and drug in PBS was then 

sonicated in an ultrasonic water bath for 2 minutes until the consistency of the mixture 

solution thickened and the gel began to form. Stiring was then performed after sonication 

and the gel allowed to stand for 24 hours to ensure homogenous distribution of the drug 

throughout the gel.   

Instrumentation and measurement 

Franz diffusion cells 

A set up of six 30 mL-Franz cells were used in the study of the permeation of the drugs from 

the drug saturated hydrogels in the donor chamber to PBS in the receptor chamber. Each 

Franz cell was formed of two chambers; donor and receptor chambers held together by 

clamps with a dialysis membrane cut down to cover the diffusion area (3.14 cm2) mounted 

between the two chambers as a support for the hydrogel. A 5 mL sample of the drug 

saturated hydrogel was placed in the donor chamber while the clean, dried receptor 

chamber was filled with deaerated PBS and allowed to equilibrate at 37 ºC. All openings 

including donor top and receptor arm were occluded with parafilm to prevent evaporation. 

The receptor compartment was stirred at 450 rpm using a six stage magnetic stirrer. Using 

a glass syringe, sample volumes (1 mL) were extracted for UV assay at the wavelength of 
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maximum absorption (ʎmax) of each drug and fresh replacement medium of (PBS) of the 

same volume kept at 37 ºC was reintroduced into the receptor. Sampling was carried out at 

45-minute intervals for a total of 6 hours. 

Flow through diffusion cells 

A set up of 6 flow through cells were used. Each cell consisted of two compartments; the 

donor and the receptor compartments fixed together by clamps and screws with a dialysis 

membrane cut down to cover the diffusion area (0.554 cm2) mounted in between as a 

support for the hydrogel placed in the donor compartment. 0.8 mL of the drug saturated 

hydrogel was placed in the donor chamber while PBS was pumped continuously through 

the six receptor compartments at a flow rate of 0.52 mL/min using a peristaltic pump. All the 

cells were kept at a temperature of 37 ºC using a heat conducting cell holder using a water 

circulator adjusted to the same temperature. The receptor compartment did not need to be 

stirred as PBS flowed continuously through it. The donor compartments were covered by 

parafilm to avoid drying of the hydrogel. Samples from the six cells were collected in small 

7 mL vials every 45 minutes over a duration of 6 hours. The samples were then taken for 

UV assay at the wavelength of maximum absorption (ʎmax) of each drug. The cumulative 

permeated amount was plotted against time and Kp calculated from the slope. 

2.2.4. Scanning Electron Microscopy (SEM) 

Electron micrographs of hydrogel with no drug as well as hydrogels saturated with each of 

the following drugs (carbamazepine and meloxicam) were obtained using a scanning 

electron microscope (Leica Cambridge S360, UK) operating at 15 kV. The hydrogel samples 

were freeze dried and mounted on a metal stub with double-sided adhesive tape and coated 

under vacuum with gold in an argon atmosphere prior to observation. Micrographs with 

different magnifications were taken to facilitate the study of the morphology of the hydrogels. 

2.2.5. Fourier transform infrared (FT-IR) 

The FT-IR spectra (650-4000 cm−1) of hydrogels saturated with (caffeine, carbamazepine, 

fluconazole, meloxicam and piroxicam) each of the previously mentioned drugs under study 

were dried then recorded using ATR with a FT-IR spectrophotometer (PerkinElmer, UK). 

Spectra with sharp peaks of reasonable intensity were obtained to consider the stability of 

the hydrogel after the addition of the drugs. 
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Chapter 3: Micellar Liquid Chromatography 

3.1. Introduction 

Having the ability to explore the effects of micelles on the behaviour of compounds, the MLC 

technique has been known, since its development 30 years ago, for providing different 

analytical information on a wide variety of compounds. A very important physicochemical 

property indicating lipophilicity, log Pmw was obtained using MLC with different types of 

surfactants as micellar mobile phases and used over the years in modelling of different 

pharmacokinetics of compounds. 

Prior to this study, there have been no previous reports of the use of bile salts as a micellar 

mobile phase in MLC. In this chapter a number of novel MLC methods were developed. 

Sections A to D include the study of the effect of the use of different types of bile salts 

individually (Methods A, B, C and D) or in a mixture resembling that available physiologically 

(Method E). Section F includes a study of the use of an amino column with NaDC in MLC. 

Section G includes a study of the effect of the change of temperature using NaDC in MLC. 

All the log Pmw data obtained from sections A to F were then used in statistical modelling of 

human intestinal absorption and in vitro permeation constants of PAMPA and Caco-2 

methods. Data from section G was used in calculation of thermodynamic parameters from 

the obtained polynomial equations which therefore helped explain how complex the nature 

of bile salt partitioning process is. 
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(As published in Biomedical Chromatography in March 2016) 
See Appendix I 
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Section (A): Use of sodium deoxycholate (NaDC) as a micellar mobile phase 

in MLC  

3.A.1. Results and Discussion 

A set of eleven compounds (anionic, cationic and neutral) were used to evaluate the use of 

NaDC in MLC. Acetaminophen, caffeine, fluconazole and theophylline represented neutral 

compounds while fenoprofen, gemfibrozil, indomethacin, ibuprofen, phenylbutazone and 

salicylic acid represented anionic compounds. Lidocaine represented a cationic compound. 

Micelle –water partition coefficients were accurately determined by relating the capacity 

factors, calculated from the recorded retention times of compounds, to the micellar mobile 

phase composition which makes the obtained Pmw independent of the method flow rate. On 

the other hand, capacity factors are more susceptible to errors if the dead time is not 

accurately determined. The effect of dead time on the calculated capacity factors was 

described in literature, where it greatly affected the determination of some physicochemical 

properties such as solute-micelle association constants [197] 

As a result, dead time was accurately determined for all the surfactant concentrations and 

an average of all of these determinations was taken. The average value of dead time was 

determined in this work to be 46.83 seconds.   

The pH of the micellar mobile phase was measured at both the lowest (0.005 M) and the 

highest (0.020 M) concentrations of the mobile phase in order to explore the ionisation state 

of the compounds and therefore be able to explain interactions between the compounds and 

the micellar mobile phase and the column. 

The pH of the mobile phase was determined to be in the range of (6.4-8.0). 

Each compound interacted with the stationary phase and the micelles in the mobile phase 

in which the surfactant was present at a concentration higher than its CMC.  

The surfactant monomers adsorbed on the surface of the mobile phase causing changes in 

the surface properties of the column thus affecting the retention behaviour of compounds. 

As a result of the surfactant adsorption on the surface of the column and coating its pores, 

the silanophilic interaction decreased.  

Retention behaviour was greatly affected by the type of column used and the surfactant 

within the mobile phase. This was expected, for example, Lavine et al. reported the 

hydrophobic alkyl group of SDS was found to interact with a C8 and C18 bonded layer with 

its polar sulphate head group protruding out rendering the stationary phase more negatively 

charged. On the other hand, an opposite scenario was found with the cyano-bonded column 
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where the polar group of SDS strongly binds to the cyanopropyl phase electrostatically. 

Therefore, the negatively charged SDS head group was hidden in the cyano-bonded phase 

[198]. Usually, less surfactant tends to be adsorbed on the surface of cyanopropyl columns. 

Therefore, hydrophobic interactions with compounds in the presence of surfactants are 

predominant in these kinds of columns and antibinding behaviour can be seen. 

In this work a cyanopropyl bonded stationary phase was used with NaDC anionic surfactant. 

The negatively and positively charged compounds were expected to interact electrostatically 

with charged surfactants where electrostatic repulsion occurs between the negatively 

charged compounds and negatively charged surfactant while an electrostatic attraction 

occurs between the positively charged compounds and the negatively charged surfactant. 

The obtained log Pmw was considered as an apparent value for ionised compounds since 

they have higher water solubility than the unionised state [199]. 

Once the retention times were determined, capacity factors (K’) and their inverse (1/K’) were 

calculated. Linear plots of (1/K’) against (CM) “concentration of micelles in the mobile phase” 

were obtained as shown in Figures (14-24). CM was calculated by subtraction of CMC of 

NaDC in water from total surfactant concentration used. CMC of NaDC in water used in this 

work was 0.005 M [200]. 

Pmw was calculated from the ratio of the slope and the intercept obtained from plotting (1/K’) 

against (CM) [201, 202]. 

 

Table 4: Total & micellar surfactant concentrations used as well as the inverse of the capacity 
factors (1/K’) for 0.2 mM phenylbutazone. 

Conc. (M) CM (M) 1/K' 

0.007 0.002 1.118 

0.009 0.004 0.996 

0.013 0.008 0.875 

0.015 0.010 0.875 
 

Table 5: Total & micellar surfactant concentrations used as well as the inverse of the capacity 
factors (1/K’) for 0.2 mM fenoprofen. 

Conc. (M) CM (M) 1/K' 

0.007 0.002 1.637 

0.011 0.006 1.524 

0.017 0.012 1.287 

0.020 0.015 1.314 
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Table 6: Total & micellar surfactant concentrations used as well as the inverse of the capacity 
factors (1/K’) for 0.2 mM salicylic acid. 

Conc. (M) CM (M) 1/K' 

0.007 0.002 2.364 

0.011 0.006 2.333 

0.015 0.01 2.327 

0.020 0.015 2.162 

 
Table 7: Total & micellar surfactant concentrations used as well as the inverse of the capacity 
factors (1/K’) for 0.2 mM ibuprofen. 
 

Conc. (M) CM (M) 1/K' 

0.011 0.006 0.870 

0.013 0.008 0.886 
0.017 0.012 1.013 

0.020 0.015 1.041 

 

Table 8: Total & micellar surfactant concentrations used as well as the inverse of the capacity 
factors (1/K’) for 0.2 mM gemfibrozil. 

Conc. (M) CM (M) 1/K' 

0.007 0.002 0.969 

0.013 0.006 1.058 

0.015 0.008 1.181 

0.020 0.015 1.320 

 

Table 9: Total & micellar surfactant concentrations used as well as the inverse of the capacity 
factors (1/K’) for 0.2 mM indomethacin. 

Conc. (M) CM (M) 1/K' 

0.011 0.006 0.477 

0.013 0.008 0.511 

0.017 0.012 0.622 

0.020 0.015 0.642 

 

Table 10: Total & micellar surfactant concentrations used as well as the inverse of the capacity 
factors (1/K’) for 0.2 mM caffeine. 

Conc. (M) CM (M) 1/K' 

0.009 0.004 0.265 

0.011 0.006 0.279 
0.015 0.01 0.306 
0.017 0.012 0.318 

0.020 0.015 0.340 
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Table 11: Total & micellar surfactant concentrations used as well as the inverse of the capacity 
factors (1/K’) for 0.2 mM acetaminophen. 

Conc. (M) CM (M) 1/K' 

0.011 0.006 0.540 

0.013 0.008 0.550 

0.015 0.010 0.573 

0.020 0.015 0.593 
 

Table 12: Total & micellar surfactant concentrations used as well as the inverse of the capacity 
factors (1/K’) for 0.2 mM fluconazole. 
 

Conc. (M) CM (M) 1/K' 

0.007 0.002 0.244 

0.009 0.004 0.262 

0.011 0.006 0.276 

0.015 0.01 0.297 

0.017 0.012 0.312 

0.020 0.015 0.332 

 

Table 13: Total & micellar surfactant concentrations used as well as the inverse of the capacity 
factors (1/K’) for 0.2 mM theophylline. 

Conc. (M) CM (M) 1/K' 

0.007 0.002 0.627 

0.013 0.008 0.647 

0.015 0.010 0.676 

0.020 0.015 0.729 
 

Table 14: Total & micellar surfactant concentrations used as well as the inverse of the capacity 
factors (1/K’) for 0.2 mM lidocaine. 

Conc. (M) CM (M) 1/K' 

0.009 0.004 1.123 

0.011 0.006 1.362 

0.017 0.012 1.818 

0.020 0.015 2.358 
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Figure 14: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) for 0.2 mM phenylbutazone. 

 

 
 

Figure 15: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) for 0.2 mM fenoprofen. 

 

 
 

Figure 16: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) for 0.2 mM salicylic acid. 
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Figure 17: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) for 0.2 mM ibuprofen. 
 

 

Figure 18: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) for 0.2 mM gemfibrozil. 
 

 

Figure 19: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) for 0.2 mM indomethacin. 
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Figure 20: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) for 0.2 mM caffeine. 

 

Figure 21: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) for 0.2 mM acetaminophen. 
 

 

 
Figure 22: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) for 0.2 mM fluconazole. 
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Figure 23: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) for 0.2 mM theophylline. 
 

 

Figure 24: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) for 0.2 mM lidocaine. 
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Figure 25: Chromatograms showing binding behaviour of caffeine in different concentrations of 
NaDC mobile phase. (The dotted line is only used for visual guidance). 
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Figure 26: Chromatograms showing binding behaviour of fluconazole in different concentrations 
of NaDC mobile phase. (The dotted line is only used for visual guidance). 
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Figure 27: Chromatograms showing antibinding behaviour of phenylbutazone in different 
concentrations of NaDC mobile phase. (The dotted line is only used for visual guidance). 
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Table 15: Partition coefficients obtained from the MLC method using 
NaDC for eleven drugs with their standard deviations against their 
octanol/water partition coefficients. 

 

Compound Log Pmw Log Po/w [184] 

Acetaminophen 1.26±0.15 0.46 

Caffeine 1.45 ± 0.04 -0.07 

Fluconazole 1.44±0.07 0.40 

Theophylline 1.12±0.27 -0.02 

Fenoprofen 1.22±0.7 3.10 

Gemfibrozil 1.48±0.04 3.40 

Ibuprofen 1.46±0.03 3.97 

Indomethacin 1.74±0.02 4.27 

Phenylbutazone 1.42±0.003 3.16 

Salicylic acid 0.78±0.09 2.26 

Lidocaine 2.17±0.16 2.44 
                                               

In MLC, the increase in the concentration of the micellar mobile phase is expected to result 

in a decrease in the retention of compounds but this does not apply if the solute-micelle 

interaction is not strong enough or if the compound undergoes electrostatic repulsion [152]. 

For compounds which are totally non polar, they reside in the core of the micelle [203]. 

The location where the compound is incorporated in the micelle is affected to a great extent 

by the presence of a polar group which represents a small part of the molecule even though 

the compound is hydrophobic where hydrophobic compounds are mostly expected to be 

nonpolar.    

3.A.1.1. Retention behaviour 

A variety of drugs were analysed using the MLC method using NaDC bile salt as a mobile 

phase to simulate the intestinal environment.  

The retention behaviour of selected drugs was observed with an increase in bile salt 

concentration. Retention times (obtained as an average of 3 replicates for each 

concentration) were used to calculate the inverse of the capacity factors that were then 

linearly plotted against each micellar concentration used. 
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The relevant chromatographic data for eleven selected drugs are represented in Tables 4-

14. 

Based on these results, two types of behaviour were seen upon increasing the concentration 

of NaDC; either binding or antibinding behaviour as shown in the selected chromatograms, 

Figures 25-27. 

Anionic drugs such as phenylbutazone, fenoprofen & salicylic acid (pKa= 4.4, 4.5 & 3 

respectively), will be ionised in the mobile phase pH (6.4-7.4). For these drugs the retention 

time increased with an increase in bile salt concentration (as shown in Tables 4 - 6 and 

Figures 14 - 16). Antibinding behaviour such as this can be attributed to the repulsion 

between their negative charge and that of NaDC micelles. Therefore, they are repelled from 

the hydrophobic core of the micelle and retained on the stationary phase by hydrophobic 

interactions.   

For other anionic drugs (ibuprofen, gemfibrozil and indomethacin) an opposite pattern was 

observed where the retention times of these drugs decreased with an increase in bile salt 

concentration (as shown in Tables 7-9 and Figures 17-19). These drugs appear to favour 

the hydrophobic micellar core more than expected; this might be from possessing more 

structural apolar properties than the previous drugs. Since water tends to expel apolar 

solutes this counter-balances the electrostatic repulsion between them and the micelles.  

As for neutral drugs, caffeine, acetaminophen, fluconazole and theophylline, they all show 

decreased retention with an increase in the mobile phase concentration which represents a 

normal binding phenomenon in MLC thus preference by the compounds for the micelles (as 

shown in Tables 10-13 and Figures 20-23).  

As for the cationic drug, lidocaine, it was expected that it would bind to the micelle through 

electrostatic interaction and have more chance of residing in the micellar core as a result of 

hydrophobic interactions. Since this drug is in its ionised form in the mobile phase (pH 6.4-

7.4 and pKa=8.01) it shows normal binding behaviour to the micelle where the retention time 

decreased with an increase in the concentration of the micellar mobile phase (as shown in 

Table 14 and Figure 24).  In Table 15, the MLC based partition coefficients are listed along 

with the published octanol-water partition coefficients of the eleven drugs. From this table it 

was observed that the log Pmw of neutral drugs (acetaminophen, caffeine, fluconazole and 

theophylline) are higher than their log Po/w, this increase in the partition coefficient value 

could be attributed to the preference of these drugs to reside inside the micelle hydrophobic 

core or at the surface of the micelle. On the other hand, log Pmw values were found to be 

lower than that of log Po/w for the anionic drugs (fenoprofen, phenylbutazone and salicylic 
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acid) suggesting the preference of these drugs to the aqueous phase promoting greater 

interactions with the stationary phase than the micelle core. For the anionic drugs (ibuprofen, 

indomethacin and gemfibrozil) log Pmw values were also found to be lower than those of log 

Po/w suggesting these drugs have a preference for the aqueous phase. However, these 

drugs displayed binding behaviour suggesting their preference for the micelles. This could 

be due to these drugs possessing apolar structural properties (as mentioned before) which 

consequently leads to their partial expelling by water and binding to the micelles’ surface 

through these apolar parts. This gives the drug the chance to associate with the aqueous 

phase through H-bonding by binding to the micelle at the same time. For the cationic drug 

lidocaine, the log Pmw value was approximately the same as that of log Po/w suggesting its 

preference for the micelle hydrophobic core leading to its binding behaviour. 

3.A.1.2. Method Development 

Trials carried out using NaDC in 0.15 M NaCl 

During method development a number of trials were carried out using NaDC in 0.15 M NaCl 

and 0.15 M NaCl with certain ratios of organic modifiers e.g. methanol. Two drugs were 

analysed (caffeine and acetaminophen) using dilutions of NaDC in 0.15 M NaCl as the 

micellar mobile phase in an attempt to decrease the electrostatic repulsion between the 

micelles and therefore decrease the CMC of the bile salt in order to mimic intestinal 

conditions as 0.15 M NaCl is the physiological concentration of NaCl [176].  

Trials of 0.2 mM acetaminophen and caffeine in dilutions of 20 mM of NaDC in 0.15 M NaCl 

are illustrated in Tables 16-17 and Figures 28-29. 

Table 16: Total & micellar concentrations used of NaDC in 0.15M NaCl as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM caffeine. 

Conc.(M) CM (M) 1/k' 

0.007 0.004 0.506 

0.011 0.008 0.473 

0.015 0.012 0.511 

0.020 0.017 0.544 
 

Table 17: Total & micellar concentrations used of NaDC in 0.15M NaCl as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM acetaminophen. 
 

Conc. (M) CM (M) 1/K' 

0.007 0.004 1.035 

0.011 0.008 1.073 

0.015 0.012 1.120 

0.020 0.017 1.143 
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Figure 28: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaDC in 0.15 M NaCl for 0.2 mM caffeine. 
Log Pmw = 0.894±0.021 
 

 

Figure 29: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaDC in 0.15 M NaCl for 0.2 mM acetaminophen. 
Log Pmw = 0.884±0.002 
 
Trials of 0.2 mM caffeine in dilutions of 20mM of NaDC in 0.15M NaCl with 10 % methanol 

are illustrated in Table 18 and Figure 30. 

Table 18: Total & micellar concentrations used of NaDC in 0.15M NaCl with 10 % methanol as well 
as the inverse of the capacity factors (1/K’) for 0.2 mM caffeine. 

Conc.(M) CM (M) 1/K' 

0.005 0.002 0.906 

0.009 0.006 0.870 

0.013 0.010 0.838 

0.017 0.014 0.790 

 

 

Figure 30: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaDC in 0.15 M NaCl with 10 % methanol for 0.2 mM Caffeine. 
Log Pmw =1.012±0.111 
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It was observed that the viscosity of the mobile phase increased with the increase in 

concentration of the mobile phase when 0.15 M NaCl was used as a solvent for the 

preparation of each concentration. As a result,10 % methanol was added to the mobile 

phase in order to decrease its viscosity and help decrease the back pressure. 

In the first trial of caffeine in NaDC in 0.15 M NaCl, a poor correlation between the inverse 

of the capacity factor (1/K’) and micellar concentration (CM) (R2 = 0.491) was observed. In 

the second trial the correlation was greatly improved by the addition of 10 % methanol to 

the mobile phase also an increase in the retention time was observed with the increase in 

concentration of NaDC. This could be attributed to the ability of methanol to decrease the 

viscosity of the micellar mobile phase (NaDC in 0.15M NaCl) so caffeine, which has a 

relatively large molecular weight (194 a.m.u), will move easier in the presence of organic 

modifier than in its absence. Also the retention behaviour of caffeine changes from binding 

to antibinding (in trials using NaDC with 0.15 M NaCl and 10 % methanol) where the 

retention time of caffeine increased with the increase in bile salt concentration which could 

be due to the drug being sterically hindered by the Na+ atoms present in the medium that 

neutralise the charge of the micelles. This prevents its inclusion into, or association with, the 

micelles in the mobile phase and force it to reside in the stationary phase more than the 

mobile phase. Correlation between the inverse of the capacity factor (1/K’) and micellar 

concentration (CM) obtained in the case of acetaminophen was better (R2= 0.992) without 

the need to add 10 % methanol this could be due it having a lower molecular weight than 

caffeine. Although the results with NaDC in 0.15 M NaCl and 10 % methanol were relatively 

good, it was not used as a mobile phase due to the high back pressure also the retention 

behaviour of caffeine was not typical to what is expected, where it is expected to be binding 

but it was found to be antibinding. In all of the previous trials the back pressure and 

background noise were high due to the gelatinous nature of NaDC in 0.15 NaCl. As an 

attempt to decrease the back pressure by decreasing the viscosity of the gelatinous mobile 

phase, different ratios of methanol were used with NaDC in 0.15 M NaCl but it was found 

that a large ratio of methanol had to be added to decrease the background noise and 

pressure which compromised the stability of the formed micelles in the mobile phase as high 

amounts of organic solvents destroy micelles.  

Also trials included different pH mobile phases, where the mobile phase was prepared at 

both pH 7.4 and 3.0 using a phosphate buffer mixture. It was observed that the mobile phase 

turned in to a thick gelatinous matrix at pH 7.4 which cannot be pumped in to the 

chromatographic system. Precipitation of the mobile phase was observed at pH 3.0 due to 
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cholic acid precipitating. As a result, NaDC in water was found to be the best mobile phase 

to be used for this MLC method.   

3.A.2. Statistical Modelling 

The aim of this part of the work was to expand MLC applications from studying the effect of 

bile salts on the retention behaviour of drugs to using the data obtained from the retention 

profile of the diverse set of drugs analysed by the MLC method to calculate their 

corresponding log Pmw. Along with other molecular descriptors (or alone) the obtained log 

Pmw was then used to deduce or develop a model equation correlating the intestinal 

permeability coefficient obtained experimentally from in vitro tests using artificial membranes 

such as PAMPA or cell cultures (Caco-2 cells) or in vivo tests with these descriptors 

including log Pmw by using various statistical methods such as multiple linear regression 

(MLR). The latter in vitro methods are relatively expensive[204], also in vivo tests are very 

rare and their data are limited from the difficulty of carrying out such tests on humans, 

especially from a moral perspective[67]. Therefore, other cheaper, easier and quick methods 

are required for assessing such an important pharmacokinetic factor that is intestinal 

absorption or intestinal permeability.  

In the MLC method used in this work biosurfactants were used instead of ordinary synthetic 

surfactants in order to simulate the intestinal environment to try to get results as close as 

possible to reality. 

3.A.2.1. Statistical Modelling of Human Intestinal absorption (HIA) 

After analysis of a group of 20 drugs using NaDC as the mobile phase and then calculation 

of log Pmw (slope/intercept of each calibration plot of (1/K’) against CM for each drug), the 

obtained log P values were used among a number of other molecular descriptors. These 

included molecular weight (Mwt), polar surface area (PSA), freely rotating bonds (FRB), 

molar volume (VM), dissociation constant (pKa), aqueous solubility (Sw), number of hydrogen 

bond donors (nHD)and number of hydrogen bond acceptors (nHA). Lipophilicity represented 

by log Pmw experimentally obtained from this work using the MLC method is shown in Table 

40. Log Po/w is only included among descriptors just for the purpose of comparison with log 

Pmw to determine the effect of predictability of replacing log Pmw in the model equation.  

Since Caco-2 and PAMPA methods proved to be successful in prediction of intestinal 

permeability it was important to try to develop a model equation relating log Pmw with each 

of these methods permeability coefficients obtained from literature and scientific databases 

as shown in Table 22. Also log Pmw was included in a model equation with % HIA 

experimental values for orally administered drugs (as shown in Table 22) which allows the 
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prediction of the fraction absorbed of the drug and therefore reflecting the extent of drug 

absorption in the intestine. 

The experimental values for %HIA, PAMPA and Caco-2 were not available for a number of 

drugs. In addition, some values were removed from each model for being outliers so not all 

20 drugs were included in each model construction. 

Data analysis was conducted using Minitab 17®. Multiple linear regression analysis was 

carried out where all the molecular descriptors were included and regressed against the 

dependant variable [Caco-2 permeability coefficient (log Peff.) or PAMPA permeability 

coefficient (log Po) or %HIA (%Fa) and backward elimination modelling strategy. Variables 

with high variance inflation factors (VIF) were removed to take (VIF) to acceptable limits. At 

the end an optimum model was obtained that provides a good summary of data.    

The variables remaining in the optimal model were assessed for significance and relative 

importance by standardised coefficients and the associated p-values. 

The predictive ability of the preferred model was assessed using adjusted-R2 and R2 for 

prediction (R2
PRED) derived from predicted residual error sum of squares (PRESS statistic) 

which is used to evaluate the predictive ability of the obtained model compared with other 

candidate models having the same data set. While R2
PRED can indicate the predictive ability 

of the model itself and consequently reflects the far wider ability to apply the model.  

The model obtained for the prediction of %HIA: 

 

logit HIA = -0.410 – 0.482 log Pmw + 0.00852 Mwt + 0.04797 Sw      Eq. (9) 

Sixteen drugs were used in the development of the final model. The model’s R2 =86.28 %, 

R2 adjust.= 82.17 % , R2
PRED = 74.97 %, S=0.195 

A 95 % confidence interval for log Pmw is given by (-0.796, 0.167), t-statistic and standardised 

coefficient of log Pmw are -3.42 (p<0.05) and -0.431 respectively suggesting the statistical 

significance of log Pmw as a predictor. Also the F-ratio of the overall model is statistically 

significant, F=20.97 and P value 0.007 (p<0.05). Figure 31 shows no marked relationship 

between residuals and predicted values through the scattering of points around zero while 

Figure 32 summarises the model with scatter plots showing a good relationship between the 

response and the independent variables. 
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Figure 31: Residual plot for optimal logit HIA  regression model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 
 
 
Figure 32: Partial regression plots of experimental logit HIA values against log Pmw, Mwt and Sw. 
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Table 19: Experimentally determined published literature absorption values (Expt. %HIA), calculated 
and predicted human oral absorption data (Pred. %HIA)  
 

Drug Expt. %HIA  Pred. %HIA   

Acetaminophen 80.00[205] 74.73 

Acetylsalicylic acid 82.00[205] 74.40 

Diclofenac 97.00[206] 95.85 

Diphenhydramine 72.00[205] 79.19 

Fenoprofen 85.00[206] 92.18 

Fluconazole 97.50[205] 97.40 

Gemfibrozil 95.00[207] 91.14 

Ibuprofen 80.00[208] 81.65 

Indomethacin* 100.00[205] 98.40 

Ketoprofen  92.00[205] 95.43 

Lidocaine 75.00[209, 210] 78.63 

Nicotinic acid 88.00[205] 89.17 

Phenylbutazone 98.00[206] 97.21 

Piroxicam* 100.00[205] 98.70 

Propranolol 90.00[205] 89.54 

Theophylline 98.00[33] 97.98 

The asterisk (*) indicates the validation compounds. 

 

 

                        

Figure 33: Regression plot of predicted %HIA values against literature %HIA. 
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In spite of the linear relationship between the published absorption values and experimental 

log Pmw values, logit(Abs) was used to improve this relationship as seen in studies of a 

similar type [211-213]. The human intestinal absorption values were transformed to logit by 

substitution in Equation 10, where %HIA = %Human Intestinal Absorption. 

Logit (%HIA) = log (%HIA / (100-%HIA))                Eq. (10) 

As a result, exclusion of all drugs with absorption percentages of 100 or 0 % from the training 

set was carried out for simplification. An appropriate equation was developed using multiple 

linear regression analysis of experimentally determined log Pmw alongside a group of 

molecular descriptors (molecular weight, number of hydrogen bond donors/acceptors, polar 

surface area, molar volume, freely rotating bonds and solubility). Final model descriptors 

were assessed for significance and relative importance using standardised coefficients and 

associated p-values. The standardised coefficients for log Pmw (micelle–water partition 

coefficient), Mwt (molecular weight) and Sw (aqueous solubility) were found to be -0.431, 

1.050 and 0.761, respectively, while their p-values at 95 % confidence level were found to 

be 0.007, 0.000 and 0.001, respectively, proving their statistical significance. Through 

putting the data together in Tables 19 and 22, a residual plot for optimal regression and 

partial regression plots of experimental logit(Abs) values against log Pmw, Mwt and Sw 

(Figures 31 and 32) the establishment of an equation using experimental MLC data to 

predict the percentage of human intestinal absorption in vivo was made easier. Overall, as 

previously stated, the optimal model obtained incorporated 3 descriptors (Equation 9): 

logit(HIA)= -0.410–0.482 log Pmw + 0.00852 Mwt + 0.04799 Sw                 Eq. (9) 

where log Pmw is the partition coefficient experimentally determined by MLC, Mwt is the 

molecular weight and Sw is the solubility in water (Table 22). Equation 10 can be used to 

convert the logit values obtained from Equation 9 into percentage of absorption. R2=0.86, 

R2
adj.=0.82, R2

Pred.=0.75, F = 20.994, Standard error (SE) = 0.195, PRESS=0.7 and Mallows’ 

Cp= 4 where R2
Pred. is defined as the predicted coefficient of determination and it determines 

the model’s predictive power. The predicted residual sum of squares (PRESS) is a statistical 

term used in the determination of the model’s predictive ability when compared with other 

models of an identical dataset. Mallows’s Cp helped in selection of the best model among 

multiple regression models with a value of 4.0 which is exactly equal to the number of 

predictors plus the constant showing the model being relatively precise and unbiased in 

evaluation of the true regression coefficients and predicting future response. The obtained 

p-values for this model being less than 0.05 indicated statistical significance of the 

relationship between %HIA and Pmw values at the 95 % confidence. An unadjusted R2 value 



 

71 
 

of 0.86 obtained from the current data indicated a good fit of the sampled drugs to the model, 

with about 86 % of the variance in the outcome measure being accounted for by log Pmw 

and other descriptor values included in the final model. A value of 0.75 for R2
Pred. showed 

suitable fitting of the drugs to the model and verified the potential suitability of MLC using 

NaDC to predict intestinal drug absorption in the human gastrointestinal tract. Furthermore, 

log Pmw was proved to be a significant predictor in the final model when the experimental 

log Pmw values were replaced with published octanol–water values and there was no 

predictability of %HIA possible. The 95 % confidence interval for Pmw, Mwt and Sw parameter 

was found to be (-0.796, -0.167), (0.006, 0.011) and (0.026, 0.070) respectively. No marked 

relationship between residuals and predicted values was found using residual analysis as 

illustrated. All covariates were statistically significant (t1 =-3.42, p< 0.05 for log Pmw; t1 =-

6.93, p< 0.05 for molecular weight; t1=4.84, p< 0.05 for aqueous solubility), with the model 

F-ratio value found to be (F = 20.99, p< 0.05) suggesting statistical significance of the model. 

According to studentised residuals or Cook’s distance, none of the drugs used in the current 

dataset for development of the previous model represented by Equation 9 had high residuals 

or were found to be influential. Also the consistency of the R2
adj and R2

Pred. suggested the 

absence of any model or data inadequacies in the current model. 

In summary, the values presented in Table 19 and plotted in Figure 33 for %HIA predicted 

with those from literature show remarkably similar trends. For example, differences between 

the two values are found to be in the range of 0 % (e.g. theophylline) to a maximum of 7.6 

% (e.g. acetylsalicylic acid) with the vast majority successfully predicting within 4 % of the 

literature value. Two extra compounds were investigated, namely indomethacin and 

piroxicam as a final aspect of investigation to evaluate the success of the model in prediction 

of %HIA. For indomethacin, with an experimental MLC log Pmw value of 1.74 and applying 

Equation 9, the %HIA was calculated (i.e. predicted) to be 98.4 %. With a literature 

percentage of human intestinal absorption value of 100 % [205] the model was considered 

to be a successful method for prediction of in vivo behaviour, that is, with <2 % difference 

between the predicted and literature values. A poorer match was obtained for piroxicam with 

an experimental MLC log Pmw value of 3.37 whereby the published experimental value of 

%HIA is known to be 100 % [205] and the predicted value was 86.04 %. 

3.A.2.2. Statistical Modelling of permeability coefficients obtained from in vitro 

methods (PAMPA and Caco-2). 

A key factor for prediction of bioavailability is predicting the extent to which drugs may 

permeate the intestinal barrier. As previously discussed, several methods are used to predict 
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intestinal absorption with their data available in published literature allowing comparisons to 

be made between this MLC-based method and others. Firstly, comparing the MLC method 

with Caco-2, it can be said that it is comparable in predictive ability but it is simpler, cheaper 

and faster to carry out. Various values for Caco-2 absorption have been published, such as 

Stȩpnik et al. work [214], with published data ranging in predictive ability where, in general, 

the prediction level is similar to the one published in this work. Based on the comparable 

ability of MLC for prediction along with its various advantages it appears to prove its potential 

as a method of choice. Secondly, prediction of intestinal absorption has been carried out by 

artificial membrane based techniques, such as PAMPA. In addition to Caco-2 published 

data, predictions have been also carried out using PAMPA and their success rates have 

been generally high as described in the work of Bujard et al. (2014) [62]. Again, the MLC 

method predictive ability shown in this paper is found to be generally comparable with that 

of an artificial membranes method yet not showing the same limitations as discussed earlier.  

In addition to their use in the development of a model equation for the prediction of %HIA, 

experimentally determined log Pmw values were used in the prediction of permeability 

coefficients obtained from PAMPA and Caco-2 which are, as discussed before, two of the 

most abundant and reliable methods used in the prediction of %HIA using permeability 

coefficients obtained for a series of model drugs. 

3.A.2.2.1. Modelling of permeability coefficients obtained from PAMPA 

The model obtained for the prediction of PAMPA log Po is given by Equation 11: 

 

log Po = - 4.990 + 3.370 log Pmw - 0.4239 pKa      Eq. (11) 

Fifteen drugs were used in the development of the final model. The model’s R2 =81.80 %, 

R2
adjust.= 78.76 % , R2

PRED = 72.70 %, S=0.831 

A 95 % confidence interval for log Pmw is given by (2.205, 4.535), t-statistic and standardised 

coefficient of log Pmw are 6.303 (p<0.05) and 0.824 respectively suggesting statistical 

significance of log Pmw as a predictor. Also the F-ratio of the overall model is statistically 

significant, F=26.96 and P value 0.000 (p<0.05). 

The close agreement of the values of R2
adjust. & R2

PRED indicates that the model does not 

over-fit the data. The residual analysis did not detect any relationship between residuals and 

predicted values as shown in Figure 34. The model is shown in Figure 35. The predicted 

values of PAMPA log Po were found to be in accordance with the experimental values 

reported in literature as shown in Table 20 and Figure 36. 
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Figure 34: Residual plot for optimal PAMPA regression model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: Partial regression plots of experimental log Po values against log Pmw and pKa. 
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Table 20: Experimental and predicted values for PAMPA logPo. 

Drug Expt. PAMPA log Po [215] Pred. PAMPA log Po  

Acetaminophen -5.81 -4.94 

Benzoic acid -3.94 -2.69 

Caffeine -5.55 -6.03 

Diclofenac -1.37 -1.49 

Diphenhydramine -0.71 -0.48 

Flurbiprofen -1.78 -1.61 

Gemfibrozil -1.59 -1.92 

Ibuprofen -1.15[64] -2.29 

Indomethacin -1.65 -1.04 

Ketoprofen -2.67 -3.56 

Lidocaine -1.42 -1.01 

Phenylbutazone -1.96 -2.06 

Propranolol -1.57[64] -2.91 

Salicylic acid -3.46[64] -3.63 

Theophylline -5.99 -4.96 
 

 

Figure 36: Plot of experimental vs. predicted PAMPA log Po values. 

3.A.2.2.2. Modelling of permeability coefficients obtained from Caco-2 Peff.   

The model obtained for the prediction of Caco-2 Peff. is shown by Equation 12: 

 
log Peff. = - 3.7004 + 0.2138 log Pmw - 0.002953 Mwt - 0.2510 nHD+ 0.01622 Sw   Eq. (12) 

Thirteen drugs were used in the development of the final model. The model’s R2 =98.08 %, 

R2 adjust.= 97.13 % , R2
PRED = 95.14 %, S= 0.035 

A 95 % confidence interval for log Pmw is given by (0.169, 0.258). t-statistic and standardised 

coefficient of log Pmw are 11.047 (p<0.05) and 0.686 respectively suggesting statistical 
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significance of log Pmw as a predictor. Also the F-ratio of the overall model is statistically 

significant, F= 102.393 and P value 0.000 (p<0.05). 

Figure 37 shows no marked relationship between residuals and predicted values while 

Figure 38 summarises the model. A close agreement between both the predicted and 

experimental log Peff. was found as shown in Table 21 and Figure 39.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Residual plot for optimal Caco-2 regression model. 
 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 38: Partial regression plots of experimental Caco-2 log Peff. values against log Pmw, Mwt, HD 
and Sw. 
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Table 21: Experimental and predicted values for Caco-2 log Peff.. 

Drug Expt. Caco-2 log Peff. Pred. Caco-2 log Peff. 

Acetaminophen -4.44[56] -4.45 

Benzoic acid -4.15[56] -4.17 

Caffeine -4.14[215] -4.14 

Diclofenac -4.75[56] -4.74 

Fluconazole -4.52[216] -4.57 

Ibuprofen -4.28[216] -4.25 

Indomethacin -4.69[60] -4.64 

Ketoprofen -4.48[56] -4.51 

Lidocaine -4.21[217] -4.19 

Piroxicam -4.45[60] -4.46 

Propranolol -4.56[60] -4.58 

Salicylic acid -4.66[60] -4.63 

Theophylline -4.61[56] -4.62 
 

 

 

 

 

 

 

 

 

 

Figure 39: Plot of experimental vs predicted Caco-2 log Peff. values. 
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Table 22: A summary of molecular descriptors for the selected drugs analysed by MLC using NaDC in water and the reported experimental 
values of %HIA and permeability  coefficients of PAMPA and Caco-2 tests. 

NA: no available data, NI: value not included in training set. 

Drug Log Pmw log Po/w
[184] Mwt[218] pKa

[184] Sw 
[184] HD[218] HA[218] FRB[218] PSA[219] VM

[218] 
log Po

[215] log Peff. %HIA  

Acetaminophen 1.26 0.46 151.2 9.90[220] 4.15 2 2[184] 1 49.3 131.1 -5.81 -4.44[56] 80[205] 

Acetylsalicylic acid 1.52 1.19 180.16 4.19 1.46 1 4 3 63.6 139.6 NA NA 82[205] 

Benzoic Acid  1.21 1.87 122.12 4.20[221] 7.08 1 2 1 37.0 102.0 -3.94 -4.15[56] NA 

Caffeine 1.45 -0.07 194.19 14.0[222] 11 0 6 0 58.0 133.4 -5.55 -4.14[215] NI 

Diclofenac 1.56 4.51 296.15 4.15 0.00447 2 3 4 49.3 206.8 -1.37 -4.75[56] 97[206] 

Diphenhydramine  2.47 3.27 255.35 9.0 0.0752 0 2 6 12.5 249.2 -0.71 NA 72[205] 

Fenoprofen 1.22 3.10 242.27 4.5 0.0811 1 3 4 46.5 204.7 NA NA 85[206] 

Fluconazole 1.44 0.40 306.27 12.71  1.39 1 7 5 81.6 205.3 NA -4.53[216] 97.5[205] 

Flurbiprofen 1.56 4.16 244.26 4.42 0.0249 1 2 3 37.0 203.6 -1.78 NA NI 

Gemfibrozil 1.48 3.40 250.33 4.5[219] 0.0278 1 3 6 46.5 239.7 -1.59 NA 95[207] 

Ibuprofen 1.46 3.97 206.28 5.2[223] 0.0684 1 2 4 37.3 200.3 -1.15[64] -4.28[216] 80[208] 

Indomethacin 1.74 4.27 357.79 4.5 0.0024 1 4[184] 4 68.5 269.6 -1.65 -4.69[60] 100[205] 

Ketoprofen 0.91 3.12 254.28 3.88 0.0213 1 3 4 54.4 212.2 -2.67 -4.48[56] 92[205] 

Lidocaine 2.18 2.44 234.34 7.9[224] 0.593 1 2[184] 5 32.3 238.8 -1.42 -4.21[217] 75[209, 210] 

Nicotinic acid 1.22 0.36 123.11 4.75 18 1 3 1 50.2 95.2 NA NA 88[205] 

Phenylbutazone 1.42 3.16 308.37 4.4[225] 0.144 0 2[184] 5 40.6 262.8 -1.96 NA 98[206] 

Piroxicam 3.37 3.06 331.35 6.3 0.023/0.14

3 

2 6[219] 2 108.0 222.8 NI -4.45[60] 100[205] 

Propranolol 1.81 3.48 259.34 9.5[226] 0.0794 2 3 6 41.5 237.2 -1.57[64] -4.56[60] 90[205] 

Salicylic acid 0.78 2.26 138.12 3.0[227] 11.3 2 3 1 58.0 100.4 -3.46[64] -4.66[60] NI 

Theophylline 1.12 -0.02 180.16 8.8[228] 22.9 1 3[184] 0 69.3 122.9 -5.99 -4.61[56] 98[33] 
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3.A.3. Conclusion 

Prior to this work MLC has been considered in a limited manner with the use of simpler and 

conventional surfactant systems, such as sodium dodecyl sulfate and Brij 35. The advantage 

of using bile salt surfactants can be clearly seen in the enhanced predictive ability due to 

the increased similarity to the in vivo environment.  

A good prediction of intestinal absorption using MLC is considered to be an exciting advance 

in analysis for many reasons, not only for the replacement of using animal models but also 

to enhance the development of new drugs therefore, saving time and money. Based on 

analysis for the model compounds it has been found that NaDC can be used for prediction 

of human intestinal absorption as well as for prediction of the PAMPA and Caco-2 

permeability coefficients which are also used in prediction of HIA.  
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Section (B): Use of sodium taurodeoxycholate (NaTDC) as a micellar 

mobile phase in MLC 

 3.B.1. Introduction 

In this section a set of ten compounds (anionic, cationic and neutral) were used to evaluate 

the use of NaTDC in MLC. Acetaminophen, caffeine, fluconazole and theophylline 

represented neutral compounds while fenoprofen, gemfibrozil, ibuprofen, phenylbutazone 

and salicylic acid represented anionic compounds. The cationic compound used was 

lidocaine. 

Micelle-water partition coefficients were accurately determined in the same way explained 

in Section (3A) by relating the capacity factors, calculated from the recorded retention times 

of compounds, to the micellar mobile phase composition. 

Dead time was accurately determined for all the surfactant concentrations and an average 

of all of these determinations was taken. The average value of dead time was determined 

in this work to be 44.82 seconds which is close to that of NaDC. 

The pH of the micellar mobile phase was measured at both the lowest (0.006 M) and the 

highest (0.020 M) concentrations of the mobile phase in order to have an idea about the 

ionisation state of the used compounds and therefore be able to explain the expected kind 

of interactions between the used compounds and the micellar mobile phase and the column. 

The pH of the mobile phase was determined to be in the range of 5.2-6.1. 

3.B.2. Results & Discussion 

3.B.2.1. Retention behaviour 

The injected test compounds are said to interact with: the stationary phase, the micelles in 

the micellar mobile phase and the water in between. The stationary phase was represented 

by the cyanopropyl column (CN-RP) used in this work while the micellar mobile phase used 

was NaTDC. As mentioned before in Section (3A) a small amount of the used surfactant in 

the mobile phase (NaTDC in this section) is adsorbed on the surface of the used CN-RP 

column. The CMC of NaTDC in water used in this work was 0.006 M [229]. 

Pmw was calculated from the ratio of the slope and the intercept obtained from linear plots of 

(1/K’) against (CM) represented by Tables 23-32 and Figures 40-49.     
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Table 23: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM phenylbutazone. 
 

Conc. (M) CM (M) 1/K' 

0.008 0.002 0.196 

0.010 0.004 0.168 

0.012 0.006 0.154 

0.016 0.010 0.120 

 
Table 24: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM fenoprofen. 
 

Conc. (M) CM (M) 1/K' 

0.008 0.002 0.466 

0.010 0.004 0.442 

0.014 0.008 0.396 

0.016 0.01 0.367 

 
Table 25: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM salicylic acid. 

Conc. (M) CM (M) 1/K' 

0.008 0.002 0.894 

0.010 0.004 0.833 

0.012 0.006 0.784 

0.014 0.008 0.742 

0.020 0.014 0.594 

 
Table 26: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM ibuprofen. 
 

Conc. (M) CM (M) 1/K' 

0.010 0.004 0.285 

0.012 0.006 0.289 

0.014 0.008 0.308 

0.020 0.014 0.360 

 
Table 27: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM gemfibrozil. 
 

Conc. (M) CM (M) 1/K' 

0.007 0.001 0.575 

0.008 0.002 0.580 

0.010 0.004 0.585 

0.012 0.006 0.599 
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Table 28: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM caffeine. 
 

Conc. (M) CM (M) 1/K' 

0.007 0.001 0.262 

0.012 0.006 0.290 
0.014 0.008 0.301 

0.016 0.010 0.303 

 

Table 29: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM acetaminophen. 

Conc. (M) CM (M) 1/K' 

0.008 0.002 0.567 

0.010 0.004 0.585 

0.014 0.008 0.606 

0.016 0.010 0.608 

 

Table 30: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM fluconazole. 

Conc. (M) CM (M) 1/K' 

0.007 0.001 0.433 

0.010 0.004 0.451 

0.016 0.010 0.493 

0.020 0.014 0.528 

 
Table 31: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM theophylline. 
 

Conc. (M) CM (M) 1/K' 

0.008 0.002 0.435 

0.012 0.006 0.457 

0.016 0.010 0.466 

0.020 0.014 0.499 

 
Table 32: Total & micellar concentrations used of NaTDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM lidocaine. 
 

Conc. (M) CM (M) 1/K' 

0.007 0.001 1.038 

0.008 0.002 1.063 

0.012 0.006 1.353 

0.016 0.010 1.563 
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Figure 40: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTDC in water for 0.2 mM phenylbutazone. 
 

 
 
Figure 41: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTDC in water for 0.2 mM fenoprofen. 
 

 
Figure 42: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTDC in water for 0.2 mM salicylic acid. 
 

 
Figure 43: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTDC in water for 0.2 mM ibuprofen. 
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Figure 44: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTDC in water for 0.2 mM gemfibrozil. 
 

 

Figure 45: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTDC in water for 0.2 mM caffeine. 

 
 
Figure 46: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTDC in water for0.2 mM  acetaminophen. 

 

Figure 47: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTDC in water for 0.2 mM fluconazole. 
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Figure 48: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTDC in water for 0.2 mM theophylline. 
 

 
 
Figure 49: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTDC in water for 0.2 mM lidocaine. 
 

Table 33: Partition coefficients obtained from MLC using NaTDC for ten drugs with their  
   standard deviations against their octanol/water partition coefficients. 

Compound Log Pmw Log Po/w [184] 

Acetaminophen 0.96±0.15 0.46 

Caffeine 1.27±0.01 -0.07 

Fluconazole 1.24±0.01 0.40 

Theophylline 1.08±0.03 -0.02 

Fenoprofen 1.40±0.04 3.10 

Gemfibrozil 0.90±0.04 3.40 

Ibuprofen 1.50±0.08 3.97 

Phenylbutazone 1.64±0.002 3.16 

Salicylic acid 1.42±0.02 2.26 

Lidocaine 1.80±0.02 2.44 
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Figure 50: Chromatograms showing binding behaviour of caffeine in different concentrations of  
NaTDC mobile phase. (The dotted line is only used for visual guidance). 
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Figure 51: Chromatograms showing binding behaviour of fluconazole in different concentrations 
of NaTDC mobile phase. (The dotted line is only used for visual guidance). 
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Figure 52: Chromatograms showing binding behaviour of fenoprofen in different concentrations of 
NaTDC mobile phase. (The dotted line is only used for visual guidance). 
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Anionic, neutral and cationic drugs used in this work followed the same retention behaviour 

as seen with NaDC. Phenylbutazone, fenoprofen, salicylic acid, ibuprofen and gemfibrozil 

were the anionic drugs used in this work. Except for ibuprofen and gemfibrozil all of the 

previously mentioned drugs exhibited antibinding behaviour with their retention times 

increasing with an increase in the mobile phase concentration (Tables 23-25 and Figures 

40-42). Ibuprofen and gemfibrozil displayed the same behaviour they showed when using 

NaDC, as explained in Section (3A), (Tables 26-27 and Figures 43-44).   

Caffeine, acetaminophen, fluconazole and theophylline were the neutral drugs used. Since 

their retention times decreased with an increase in mobile phase concentration it can be 

concluded that these solutes interacted with the bile salt micelles as binding solutes (Tables 

28-31 and Figures 45-48). 

As shown from the data in Table 32 and Figure 49, the cationic drug lidocaine followed the 

same pattern of interaction with NaTDC as with NaDC, where it was ionised in the pH of the 

mobile phase medium, and consequently attached strongly to the micelles. This decreased 

retention time with the increase in the micelle concentration in the mobile phase, i.e. typical 

of what is expected with a cationic compound.  

The chromatograms for some selected drugs showing their binding or antibinding behaviour 

can be seen in Figures 50-52. 

In Table 33, it can be seen that log Pmw values for neutral drugs (acetaminophen, caffeine, 

theophylline and fluconazole) were higher than those of the published log Po/w values while 

log Pmw values for anionic drugs (fenoprofen, ibuprofen, gemfibrozil, phenylbutazone and 

salicylic acid) and the cationic drug lidocaine were lower than those of log Po/w, as discussed 

in Section (3A). It was also observed that the salicylic acid log Pmw value obtained with 

NaTDC was higher than that obtained with NaDC suggesting more solubilisation of salicylic 

acid in NaTDC than NaDC because of the preference of salicylic acid to NaTDC micelles. 

On the other hand, the gemfibrozil log Pmw value obtained with NaTDC was found to be 

lower than that obtained with NaDC suggesting less preference of gemfibrozil to NaTDC 

micelles than NaDC micelles. This preference for the aqueous phase is in spite of it being a 

binding solute, as discussed in Section (3A).    

3.B.3. Statistical Modelling 

3.B.3.1. Statistical Modelling of Human Intestinal absorption (HIA) 

Statistical modelling of %HIA, PAMPA & Caco-2 log P was carried out as discussed in 

Section (3A). Analysis of 15 drugs using NaTDC facilitated calculation of log Pmw and data 
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analysis of log Pmw with a number of molecular descriptors (listed in Table 37) to establish a 

model equation for the prediction of each of %HIA, PAMPA & Caco-2 log P using multiple 

linear regression. Significance of the included model descriptors was given by P and t values 

while statistical significance of the model itself was given by F-ratio. 

The predictive ability of the preferred model was assessed using adjusted-R2 and R2 for 

prediction (R2
PRED) which can indicate the predictive ability of the model itself. 

A summary of the experimental values for each of (%HIA) and PAMPA & Caco-2 log P 

along with the molecular descriptors and the dependant variables is shown in Table 37. 

The model obtained for the prediction of % HIA is given by Equation 13: 

 
Logit HIA = -0.998–0.747 log Pmw - 0.3675 HD +0.05782 PSA + 0.0082 HA +0.0686 pKa   Eq. (13) 

Fourteen drugs were used to develop the final model.  

The model’s R2 =97.70 %, R2 adjust.= 95.73 % , R2
PRED = 91.21 %, S=0.107 

A 95 % confidence interval for log Pmw is given by (-1.044, -0.451), t-statistic and 

standardised coefficient of log Pmw are -5.958 (p<0.05) and -0.443 respectively suggesting 

statistical significance of log Pmw as a predictor. Also the F-ratio of the overall model is 

statistically significant, F=49.579 and P value 0.000 (p<0.05). The close agreement of the 

values of R2
adjust. & R2

PRED indicates that the model does not over-fit the data. 

The residual analysis did not detect any relationship between residuals and predicted values 

as shown in Figure 53. The model is shown in Figure 54. The predicted % HIA values were 

found to be in close agreement with experimental values obtained from literature as shown 

in Figure 55 and listed in Table 34. 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 53: Residual plot for optimal logit HIA regression model. 
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Figure 54: Partial regression plots of experimental logit HIA values against log Pmw, HD, HA, PSA 
and  VM, pKa. 

Table 34: Experimental and predicted values for %HIA. 

Drug Expt. %HIA Pred. %HIA  

Acetaminophen 95.00[205] 94.18 

Acetylsalicylic acid 84.00[213] 85.19 

Caffeine 99.00[230] 98.75 

Diclofenac 82.00[63, 207] 79.36 

Diphenhydramine 61.00[207] [209] 62.40 

Fenoprofen 85.00[206] 82.55 

Fluconazole 95.00[205] 94.97 

Gemfibrozil 95.00[207] 95.56 

Ibuprofen 80.00[208] 80.18 

Ketoprofen 92.00[205] 91.06 

Lidocaine 75.00[127, 132] 79.85 

Phenylbutazone 98.00[206] 97.75 

Propranolol 92.50[231] 92.75 

Theophylline 98.00[33] 98.60 
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Figure 55: Plot of experimental vs. predicted %HIA. 

 

3.B.3.2. Modelling of permeability coefficients obtained from PAMPA 

The model obtained for the prediction of PAMPA log Po is given by Equation 14: 

 

log Po = - 7.051+ 1.313 log Pmw + 0.7266 FRB        Eq. (14) 

Twelve drugs were used to develop the final model.  

The model’s R2 = 91.66 %, R2 adjust.= 89.81 % , R2
PRED = 87.14 %, S= 0.608 

A 95 % confidence interval for log Pmw is given by (0.046, 2.58), t-statistic and standardised 

coefficient of log Pmw are 2.344 (p<0.05) and 0.228 respectively suggesting statistical 

significance of log Pmw as a predictor. Also the F-ratio of the overall model is statistically 

significant, F= 49.46 and P value 0.000 (p<0.05). The close agreement of the values of 

R2
adjust. & R2

PRED indicates that the model does not over-fit the data. The residual analysis 

did not detect any relationship between residuals and predicted values as shown in Figure 

56. The model is shown in Figure 57. Plotting of the experimental values obtained from 

literature against predicted values calculated from the obtained model (Figure 58) showed 

a close agreement between both values listed in Table 35.  
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Figure 56: Residual plot for optimal PAMPA regression model. 

  
Figure 57: Partial regression plots of experimental PAMPA log Po values against log Pmw and FRB. 

 
Table 35: Experimental and predicted values for PAMPA log Po. 

  

Drug Expt. PAMPA log P0
[215] Pred. PAMPA log P0 

Acetaminophen -5.81 -5.26 

Caffeine -5.55 -5.39 

Diclofenac -1.37 -2.52 

Diphenhydramine -0.71 -0.74 

Gemfibrozil -1.59 -1.51 

Ibuprofen -2.11 -2.17 

Ketoprofen -2.43[64] -2.06 

Lidocaine -1.42 -1.06 

Phenylbutazone -1.96 -1.47 

propranolol -1.57[64] -1.7 

Salicylic acid -3.46 -4.46 

Theophylline -5.99 -5.64 
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Figure 58: Plot of experimental vs. predicted log Po. 

3.B.3.3. Modelling of permeability coefficients obtained from Caco-2 Peff.   

The model obtained for the prediction of Caco-2 log Peff. is given by Equation 15: 

 
log Peff. = - 4.929 + 0.940 log Pmw + 0.432 HA – 0.04982 PSA       Eq. (15) 

Twelve drugs were used to develop the final model.  

The model’s R2 =84.49 %, R2 adjust.= 78.67 % , R2
PRED = 63.32 %, S=0.337 

A 95 % confidence interval for log Pmw is given by (0.139, 1.742), t-statistic and standardised 

coefficient of log Pmw are 2.706 (p<0.05) and 0.399 respectively suggesting statistical 

significance of log Pmw as a predictor. Also the F-ratio of the overall model is statistically 

significant, F=14.526 and P value 0.001 (p<0.05). The close agreement of the values of 

R2
adjust. & R2

PRED indicates that the model does not over-fit the data. The residual analysis 

did not detect any relationship between residuals and predicted values as shown in Figure 

59. The model is shown in Figure 60. The values presented in Table 36 and plotted in Figure 

61 for %HIA predicted vs those from the literature show remarkably similar trends. 

 

 

 

 

 

 

 

 

Figure 59: Residual plot for optimal Caco-2 regression model. 
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Figure 60: Partial regression plots of experimental log Peff. values against log Pmw, HA & PSA. 

 

Table 36: Experimental and predicted values for Caco-2 log Peff. 

Drug 
 Expt. Caco-2 log Peff.  Pred. Caco-2 log Peff.  

Acetaminophen -6.00[216] -5.51 

Acetylsalicylic acid -5.66[217] -5.37 

Caffeine -4.07[216] -4.03 

Diclofenac -4.75[56] -4.91 

Diphenhydramine -3.12[215] -3.27 

fluconazole -4.82[56] -4.83 

Ibuprofen -4.58[56] -4.49 

Ketoprofen -4.48[56] -4.83 

Lidocaine -4.21[217] -3.73 

Propranolol -4.66[60] -4.96 

Salicylic acid -4.92[217] -5.19 

Theophylline -4.61[56] -4.76 
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Figure 61: Plot of experimental vs. predicted log Peff. 

The use of log Pmw derived from NaTDC appears to give model equations with better 

predictive power (higher adjusted-R2 & R2 PRED) than that derived from NaDC but it has to 

be taken into consideration that different variables and numbers of variables were used to 

establish these final models. The inclusion of Caco-2 log Peff. in an equation with log Pmw 

gave the best model with the best predictability in the case of NaDC related data followed 

by %HIA then PAMPA log Po. While in case of NaTDC, the obtained models were able to 

predict %HIA better than PAMPA log Po and Caco-2 log Peff..  
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Table 37: A summary of molecular descriptors for the selected drugs analysed by MLC using NaTDC in water and the experimental values of 
PAMPA log Po, Caco-2 log Peff. and %HIA. 

Drug Log Pmw log Po/w
[184]

  Mwt[218] pKa
[184] Sw

[184] HD[218] HA[218] FRB[218

] 

PSA[219] VM
[218] Log Po [215]  Log Peff. %HIA  

Acetaminophen 0.81 0.46 151.2 9.9 4.15 2 2[184] 1 49.3 131.1 -5.81 -6.00[216] 95[205] 

Acetyl salicylic acid 1.09 1.19 180.16 3.41 1.46 1 4 3 63.6 139.6 NA -5.66[217] 84[213] 

Caffeine 1.27 -0.07 194.19 14 11 0 3[184] 0 58.4 133.4 -5.55 -4.07[216] 99[230] 

Diclofenac 1.24 4.51 296.15 4.15 0.0044

7 

2 3 4 49.3 206.8 -1.37 -4.75[56] 82[63, 207] 

Diphenhydramine 1.48 3.27 255.35 9 0.0752 0 2 6 12.5 249.2 -0.71 -3.12[215] 61[207] [209] 

Fenoprofen 1.22 3.1 242.27 4.5 0.0811 1 3 4 46.5 204.7 NA NA 85[206] 

Fluconazole 1.24 0.4 306.27 12.71 1.39 1 7 5 81.6 205.3 NA -4.82[56] 95[205] 

Gemfibrozil 1.48 3.4 250.33 4.5 0.0278 1 3 6 46.5 239.7 -1.59 NA 95[207] 

Ibuprofen 1.40 3.97 206.28 5.2 0.0684 1 2 4 37.3 200.3 -2.11 -4.58[56] 80[208] 

Ketoprofen 1.50 3.12 254.28 3.88 0.0213 1 3 4 54.4 212.2 -2.43[64] -4.48[56] 92[205] 

Lidocaine 1.59 2.44 234.34 7.9 0.593 1 2[184] 5 32.3 238.8 -1.42 -4.21[217] 75[209, 210] 

Phenylbutazone 1.80 3.16 308.37 4.4 0.144 0 2[184] 5 40.6 262.8 -1.96 NA 98[206] 

propranolol 0.76 3.48 259.34 9.5[226] 0.0794 2 3 6 41.5 237.2 -1.57[64] -4.66[60] 92.5[231] 

Salicylic acid 1.48 2.26 138.12 2.97 11.3 2 3 1 58 100.4 -3.46 -4.92[217] NI 

Theophylline 1.08 -0.02 180.16 8.8[228] 22.9 1 3[184] 0 69.3 122.9 -5.99 -4.61[56] 98[33] 

NA: no available data, NI: value not included in training set. 
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3.B.4. Conclusion 

Overall, log P obtained from NaDC was more predictive of the in vitro Caco-2 permeability 

coefficient rather than the in vivo %HIA data. In contrast, log P obtained from NaTDC was 

more predictive of the in vivo %HIA data rather than the in vitro permeability coefficients. In 

summary, by combining the findings of Sections 3A and 3B it can be concluded that NaTDC 

is a more suitable MLC surfactant for simulating the intestinal environment for the prediction 

of %HIA. 
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Section (C): Use of sodium cholate (NaC) as a micellar mobile phase in MLC  

3.C.1. Introduction 

A set of eleven compounds (anionic, cationic and neutral) were used to evaluate the use of 

NaC in MLC. Acetaminophen, caffeine, fluconazole and theophylline represented the neutral 

compounds while fenoprofen, gemfibrozil, indomethacin, ibuprofen, phenylbutazone and 

salicylic acid represented the anionic compounds. Lidocaine represented a cationic 

compound. 

In the same manner as in the previous two sections (A&B), micelle-water partition 

coefficients were determined from the relation between the inverse of capacity factors (1/K’) 

and micellar concentration (CM). Dead time was accurately determined for all the surfactant 

concentrations and an average of all of these determinations was taken. The average value 

of dead time was determined in this work to be 47.41 seconds.   

The pH of the micellar mobile phase was measured at both the lowest (0.017 M) and the 

highest (0.035 M) concentrations of the mobile phase to determine the ionisation state. The 

pH of the mobile phase was determined to be in the range of (7.1-9.6). All MLC runs were 

carried out at 37 ºC in order to simulate intestinal conditions. Linear plots of (1/K’) against 

(CM) were obtained as shown in Figures (64-74). Micellar concentration in the mobile phase 

was calculated by subtraction of CMC of NaC in water from the total surfactant concentration 

used. CMC of NaC in water was determined at 37 ºC by means of spectrophotometry using 

dichlorofluorescein dye and it was found to be 0.017 M. 

3.C.2. Results and Discussion 

3.C.2.1. Determination of CMC of NaC at 37 ºC 

Theory 
The dye micellisation method was applied for the determination of CMC of NaC at 37 ºC 

using dichlorofluorescein dye where the dye attaches to the hydrophobic part of the micelle 

causing a change in the absorbance of the micellised dye at a fixed wavelength (503 nm ) 

as a function of surfactant concentration [232]. 

The effect of the anionic surfactant NaC on the absorption spectrum of dichlorofluorescein 

dye was studied and the visible spectra of aqueous dichlorofluorescein solution in several 

NaC concentrations ranging from (0.003 M to 0.035 M) for a fixed dye concentration of 10-5 

M (Figure 62). The dye exhibits a maximum absorption band at 503 nm. 



 

99 
 

 

Figure 62: Spectra of 10-5 M Dye in increasing concentrations of  NaC at 37 oC . 
  
It was found that, below the CMC, as the NaC concentration gradually increased, the dye 

absorbance at 503 nm decreased. The decrease in the absorbance indicates the formation 

of a molecular complex between the dye and the surfactant molecules due to the interaction 

between the dye and the surfactant molecules. Above the CMC, the absorbance at 503 nm 

increased significantly. The increase in absorbance values with the increase in surfactant 

concentration above CMC was attributed to the incorporation of dye molecules with micelles.  

 

 
 

Figure 63: A plot of NaC concentration versus absorbance of the micellised dye 
showing the 1ry and 2ry CMC of NaC at 37 ºC . 

 
Two critical micellar concentrations were detected as shown in Figure 63. The values of the 

primary CMC and the secondary CMC were found to be 0.012 M and 0.022 M respectively.  

The value of CMC was taken as an average of the two CMC values (CMCAV.=0.017 M) which 

is consistent with the value in literature [233]. According to literature the CMC value of NaC 

is 0.014 M at 25 ºC [190] or (0.009-0.015 M) at 20-25 ºC according to the manufacturer 

specification sheet, this shows that as the temperature increased to 37 ºC, the CMC value 
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increased. This increase in the CMC value with the increase in temperature was because of 

its negative effect on micellisation where it decreases the surfactant hydration of the 

hydrophilic groups and also disrupts the structural water around the hydrophobic groups 

hence the CMC increases [234]. 

3.C.2.1. Retention behaviour 

In this section, a cyanopropyl column was used as the stationary phase where the anionic 

surfactant NaC adsorbed on its surface. The binding and antibinding behaviour of some 

selected drugs are shown in Figures 75-77. 

Chromatographic data for anionic drugs: phenylbutazone, fenoprofen, salicylic acid, 

ibuprofen, gemfibrozil and indomethacin are shown in Tables 38-43 and Figures 64-69. 

Using NaC with the MLC system, it was observed that phenylbutazone changed from an 

antibinding solute to a binding solute which could be as a result of the presence of the extra 

hydroxyl group in the NaC structure which leads to a decrease in the repulsion between the 

negatively charged group of the drug and that of the micelle [109] or because of the higher 

pH of sodium cholate bile salt used than the previous two bile salts. Another assumption is 

that NaC forms a type of “inverse micelles”. The inner core of this micelle is negatively 

charged while its surface is uncharged and hydrophobic; such a structure gives more 

opportunity for hydrophobic interaction [235]. As a result, phenylbutazone binds to the 

hydrophobic surface of the inverse cholate micelles. 

Similar to the previous two sections (A & B) the neutral drugs (acetaminophen, caffeine, 

fluconazole and theophylline) and the cationic drug (lidocaine) displayed binding behaviour 

where their retention decreased with the increase in NaC concentration as shown in Tables 

44-48 and Figures 70-74. 

Table 38: Total & micellar concentrations used of NaC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM phenylbutazone. 

 
 
 
 
 
 
 
 
 

 
 
 
 

Conc. (M) CM (M) 1/K' 

0.017 0 0.796 

0.019 0.002 0.868 

0.021 0.004 0.937 

0.025 0.008 1.088 

0.027 0.010 1.113 

0.030 0.013 1.168 

0.035 0.018 1.261 
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Table 39: Total & micellar concentrations used of NaC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM fenoprofen. 
 

Conc. (M) CM (M) 1/K' 

0.017 0 1.640 

0.019 0.002 1.602 

0.021 0.004 1.585 

0.025 0.008 1.550 

0.027 0.010 1.371 

0.030 0.013 1.296 

0.035 0.018 1.176 

Table 40: Total & micellar concentrations used of NaC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM salicylic acid. 
 

Conc. (M) CM (M) 1/K' 

0.017 0 2.303 

0.019 0.002 2.303 

0.021 0.004 2.303 

0.025 0.008 2.196 

0.027 0.010 2.099 

0.030 0.013 2.010 

0.035 0.018 1.928 
 
Table 41: Total & micellar concentrations used of NaC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM ibuprofen. 
 

Conc. (M) CM (M) 1/K' 

0.017 0 1.501 

0.019 0.002 1.658 

0.021 0.004 1.718 

0.025 0.008 1.783 

0.027 0.010 1.853 

0.030 0.013 1.928 

0.035 0.018 2.001 
 
Table 42: Total & micellar concentrations used of NaC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM gemfibrozil. 
 

Conc. (M) CM (M) 1/K' 

0.017 0 1.122 

0.019 0.002 1.250 

0.021 0.004 1.276 

0.025 0.008 1.426 

0.027 0.010 1.501 

0.030 0.013 1.603 

0.035 0.018 1.829 
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Table 43: Total & micellar concentrations used of NaC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM indomethacin. 
 

Conc. (M) CM (M) 1/K' 

0.017 0 0.919 

0.019 0.002 0.997 

0.021 0.004 1.029 

0.025 0.008 1.206 

0.027 0.010 1.320 

0.030 0.013 1.489 

0.035 0.018 1.658 

 
Table 44: Total & micellar concentrations used of NaC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM caffeine. 
 

Conc. (M) CM (M) 1/K' 

0.017 0 0.389 

0.019 0.002 0.420 

0.021 0.004 0.413 

0.025 0.008 0.435 

0.027 0.010 0.453 

0.030 0.013 0.481 

0.035 0.018 0.504 
 
Table 45: Total & micellar concentrations used of NaC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM acetaminophen. 
 

Conc. (M) CM (M) 1/K' 

0.017 0 0.723 

0.019 0.002 0.734 

0.021 0.004 0.746 

0.025 0.008 0.770 

0.027 0.010 0.853 

0.030 0.013 0.868 

0.035 0.018 0.976 
 
Table 46: Total & micellar concentrations used of NaC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM fluconazole. 
 

Conc. (M) CM (M) 1/K' 

0.017 0 0.356 

0.019 0.002 0.399 

0.021 0.004 0.407 

0.025 0.008 0.429 

0.027 0.010 0.433 

0.030 0.013 0.446 

0.035 0.018 0.496 
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Table 47: Total & micellar concentrations used of NaC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM theophylline. 
 

Conc. (M) CM (M) 1/K' 

0.017 0 0.853 

0.019 0.002 0.885 

0.021 0.004 0.902 

0.025 0.008 0.919 

0.027 0.010 0.956 

0.030 0.013 0.976 

0.035 0.018 0.996 

 
Table 48: Total & micellar concentrations used of NaC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM lidocaine. 
 

Conc. (M) CM (M) 1/K' 

0.017 0 1.371 

0.019 0.002 1.485 

0.021 0.004 1.829 

0.025 0.008 2.420 

0.027 0.010 2.550 

0.030 0.013 2.658 

0.035 0.018 3.781 
 
 

 
Figure 64: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaC in water for 0.2 mM phenylbutazone. 
 

 
Figure 65: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaC in water for 0.2 mM fenoprofen. 
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Figure 66: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaC in water for 0.2 mM salicylic acid. 
 

 

Figure 67: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaC in water for 0.2 mM ibuprofen. 
 

 

Figure 68: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaC in water for 0.2 mM gemfibrozil. 
 

 
 
Figure 69: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaC in water for 0.2 mM indomethacin. 

y = -23.512x + 2.3476
R² = 0.9508

0

0.5

1

1.5

2

2.5

0 0.005 0.01 0.015 0.02

1
/K

'

CM (M)

y = 26.106x + 1.5736
R² = 0.9452

0

0.5

1

1.5

2

2.5

0 0.005 0.01 0.015 0.02

1
/K

'

CM (M)

y = 37.402x + 1.1358
R² = 0.9919

0

0.5

1

1.5

2

0 0.005 0.01 0.015 0.02

1
/K

'

CM (M)

y = 42.67x + 0.896
R² = 0.9895

0

0.5

1

1.5

2

0 0.005 0.01 0.015 0.02

1
/K

'

CM (M)



 

105 
 

 

Figure 70: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaC in water for 0.2 mM caffeine. 

 

Figure 71: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaC in water for 0.2 mM acetaminophen. 
 

 
 
Figure 72: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaC in water for 0.2 mM fluconazole. 
 

 
 
Figure 73: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaC in water for 0.2 mM theophylline. 
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Figure 74: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaC in water for 0.2 mM lidocaine. 

 
 
 

Table 49: Partition coefficients obtained from MLC using NaC for eleven drugs with their  
   standard deviations against their octanol/water partition coefficients. 

Compound Log Pmw Log Po/w
[184] 

Acetaminophen 1.30±0.00 0.46 

Caffeine 1.20±0.01 -0.07 

Fluconazole 1.25±0.01 0.40 

Theophylline   0.96±0.00 -0.02 

Fenoprofen 1.21±0.08 3.10 

Gemfibrozil 1.52±0.01 3.40 

Ibuprofen 1.21±0.00 3.97 

Indomethacin 1.68±0.03 4.27 

Phenylbutazone 1.50±0.00 3.16 

Salicylic acid 1.00±0.00 2.26 

Lidocaine 2.00±0.09 2.44 
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Figure 75: Chromatograms showing binding behaviour of fluconazole in selected concentrations of 
NaC mobile phase. (The dotted line is only used for visual guidance). 
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Figure 76: Chromatograms showing binding behaviour of caffeine in selected concentrations of 
NaC mobile phase. (The dotted line is only used for visual guidance). 
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Figure 77: Chromatograms showing binding behaviour of phenybutazone in selected concentrations 
of NaC mobile phase. (The dotted line is only used for visual guidance). 
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In agreement with Sections (3A & 3B), Table 49 log Pmw values were less than those of log 

Po/w for the anionic drugs (fenoprofen, ibuprofen, gemfibrozil, phenylbutazone and salicylic 

acid) and cationic drug lidocaine. Furthermore, the log Pmw values were more than those of 

log Po/w for neutral drugs acetaminophen, caffeine, theophylline and fluconazole as 

previously discussed in Section (3A). 

3.C.3. Statistical Modelling 

3.C.3.1. Statistical Modelling of Human Intestinal absorption (HIA) 

 

The model obtained for the prediction of %HIA is given by Equation 16: 

 
%HIA = 79.88 + 24.18 log Pmw + 0.1254 Mwt - 0.2377 VM       Eq. (16) 

Fourteen drugs were used in the development of the final model. The model’s R2 = 66.94 

%, R2
adjust.= 57.02 % , R2

PRED = 43.33 %, S= 3.5 

A 95 % confidence interval for log Pmw is given by (10.617, 37.736), t-statistic and 

standardised coefficient of log Pmw are 3.973 (p<0.05) and 1.267 respectively suggesting 

statistical significance of log Pmw as a predictor. Also the F-ratio of the overall model is 

statistically significant, F= 6.749 and P value 0.009 (p<0.05). The residual analysis did not 

detect any relationship between residuals and predicted values as shown in Figure 78 but 

the model had poor predictive power 43.33 %, Figure 79. The literature and predicted values 

of %HIA are listed in Table 50 and plotted against each other in Figure 80.  

 

 
 

Figure 78: Residual plot for optimal %HIA regression model. 
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Figure 79: Partial regression plots of experimental %HIA values against log Pmw , Mwt and VM. 

Table 50: Experimental and predicted values for %HIA. 

Drug Expt. %HIA  Pred. %HIA  

Acetaminophen 100.00[205] 99.20 

Caffeine 100.00[205] 101.44 

Diclofenac 99.00[208] 97.18 

Fenoprofen 85.00[206] 90.83 

Fluconazole 100.00[205] 99.66 

Gemfibrozil 95.00[207] 90.99 

Ibuprofen 85.00[207] 87.41 

Indomethacin 100.00[205] 101.23 

Ketoprofen 92.00[205] 96.14 

Lidocaine 100.00[236] 100.86 

meloxicam 97.00[207] 97.71 

Phenylbutazone 98.00[206] 92.30 

Salicylic acid 100.00[205] 97.51 

Theophylline 98.00[33] 96.54 
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Figure 80: Plot of experimental vs. predicted %HIA. 
 

3.C.3.2. Modelling of permeability coefficients obtained from PAMPA 
 

The model obtained for the prediction of PAMPA log Po is given by Equation 17: 

 
log Po = - 4.55+ 3.441 log Pmw - 0.528 pKa                      Eq. (17) 

Eleven drugs were used in the development of the final model. The model’s R2 =83.81 %, 

R2
adjust.= 79.76 % , R2

PRED = 71.04 %, S=0.749 

A 95 % confidence interval for log Pmw is given by (1.68, 5.202), t-statistic and standardised 

coefficient of log Pmw are 4.505 (p<0.05) and 0.645 respectively suggesting statistical 

significance of log Pmw as a predictor. Also the F-ratio of the overall model is statistically 

significant, F=20.707 and P value 0.001 (p<0.05). The close agreement of the values of 

R2
adjust. & R2

PRED indicates that the model does not over-fit the data. The residual analysis 

did not detect any relationship between residuals and predicted values as shown in Figure 

81. The model is shown in Figure 82. The literature and predicted values for log Po were 

listed in Table 51 and plotted in Figure 83 showing good predictability of the model. 

 
 

Figure 81: Residual plot for optimal PAMPA regression model. 
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Figure 82: Partial regression plots of experimental log Po values against log Pmw and pKa. 

Table 51: Experimental and predicted values for PAMPA log Po. 

Drug Expt. PAMPA log Po[215] Pred. PAMPA log Po 

Acetaminophen -5.81 -5.29 

Diclofenac -1.37 -2.57 

Gemfibrozil -1.59 -1.7 

Ibuprofen -2.11 -3.13 

Indomethacin -1.65 -1.15 

Ketoprofen  -2.43[64] -1.64 

Lidocaine -1.42 -1.84 

meloxicam -2.8 -2.98 

Phenylbutazone -1.96 -1.72 

Salicylic acid -3.46[64] -2.69 

Theophylline -5.99 -5.88 

 

 

Figure 83: Plot of experimental vs. predicted log Po. 
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3.C.3.3. Modelling of permeability coefficients obtained from Caco-2 Peff.   

The model obtained for the prediction of Caco-2 log Peff. is given by Equation 18: 
 

log Peff. = - 4.837 + 0.2494 log Pmw - 0.000856 Mwt + 0.02327 pKa         Eq. (18) 

Eleven drugs were used in the development of the final model. The model’s R2 =81.15 %, 

R2
adjust.= 73.07 % , R2

PRED = 58.31 %, S=0.077 

A 95 % confidence interval for log Pmw is given by (0.053, 0.446), t-statistic and standardised 

coefficient of log Pmw are 3.006 (p<0.05) and 0.516 respectively suggesting statistical 

significance of log Pmw as a predictor. Also the F-ratio of the overall model is statistically 

significant, F=10.042 and P value 0.006 (p<0.05). The residual analysis did not detect any 

relationship between residuals and predicted values as shown in Figure 84. The model is 

shown in Figure 85. The predictive power of this model (58.31 %) was not as high as that of 

the model used for prediction of log Po (71.04 %) as shown in Table 52 and Figure 86. 

 
Figure 84: Residual plot for optimal log Peff. regression model. 

 

 

 

 

 

 

 

 

 

 

Figure 85: Partial regression plots of experimental log Peff. values against log Pmw , Mwt and pKa. 
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Table 52: Experimental and predicted values for log Peff.. 

Drug Expt. log Peff. [56] Pred. log Peff. 

Acetaminophen -4.44 -4.41 

Caffeine -4.30[60] -4.38 

Diclofenac -4.75 -4.69 

Fluconazole -4.53[216] -4.49 

Ibuprofen -4.58 -4.59 

Indomethacin -4.69[60] -4.62 

Ketoprofen -4.48 -4.61 

Lidocaine -4.36 -4.36 

meloxicam -4.71 -4.77 

Salicylic acid -4.66[60] -4.64 

Theophylline -4.61 -4.55 

 
 
 
 

 

Figure 86: Plot of experimental vs. predicted log Peff.. 
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Table 53: A summary of molecular descriptors for the selected drugs analysed by MLC using NaC in water and the experimental values of 
PAMPA log Po, Caco-2 log Peff. and %HIA. 

Drug Log Pmw Log PO/W
[184] Mwt[218] pKa

[184] Sw
[184] HD[218] HA[218] FRB[218] PSA[219] VM

[218] Log Po [215] Log Peff. %HIA 

Acetaminophen 1.30 0.46 151.2 9.38 4.15 2 3 1 49.3 120.9 -5.81 -4.44[56] 100.00[205] 

Caffeine 1.20 -0.07 194.2 10.4 11.00 0 6 0 58.4 133.4 -5.55 -4.30[60] 100.00[205] 

Diclofenac 1.21 4.51 296.20 4.15 0.00447 2 3 4 49.3 206.8 -1.37 -4.75[56] 99.00[208] 

Fenoprofen 1.21 3.10 522.6 4.5 0.0811 1 3 4 46.5 204.7 NA NI 85.00[206] 

Fluconazole 1.25 0.4 306.27 1.76[237] 1.39 1 7 5 81.6 205.3 NA -4.526[216] 100.00[205] 

Gemfibrozil 1.52 3.40 250.33 4.50 0.0278 1 3 6 46.5 239.7 -1.59 NA 95.00[207] 

Ibuprofen 1.21 3.97 206.3 4.91 0.0684 1 2 4 37.3 200.3 -2.11 -4.58[56] 85.00[207] 

Indomethacin 1.68 4.27 357.80 4.50 0.0024 1 5 4 68.5 269.6 -1.65 -4.69[60] 100.00[205] 

Ketoprofen 1.44 3.12 254.3 4.45 0.0213 1 3 4 54.4 212.2 -2.43[64] -4.48[56] 92.00[205] 

Lidocaine 2.00 2.44 234.4 8.01 0.593 1 3 5 32.3 228.3 -1.42 -4.36[56] 100.00[236] 

Meloxicam 1.08 3.43 351.40 4.08 0.154 2 7 2 136 220.3 -2.80 -4.71[56] 97.00[207] 

Phenylbutazone 1.50 3.16 308.4 4.5 0.144 0 4 5 40.6 262.8 -1.96 NA 98.00[206] 

Salicylic acid 1.00 2.26 138.1 2.97 11.3 2 3 1 57.5 100.4 -3.46[64] -4.66[60] 100.00[205] 

Theophylline 0.97 -0.02 180.17 8.80[228] 22.9 1 6 0 69.3 122.9 -5.99 -4.61[56] 98.00[33] 

NA: no available data, NI: value not included in training set. 
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3.C.4. Conclusion 

Generally, it can be concluded that the predictive ability of NaC when used as a micellar 

mobile phase in MLC was poor and not as promising as the other two bile salts considered 

(NaDC and NaTDC) since NaC is a less hydrophobic trihydroxy bile salt. Therefore, using 

NaC alone as a MLC mobile phase is not recommended for prediction of either human 

intestinal absorption or in vitro Caco-2 permeability constants yet its use in a mixture with 

other bile salts could potentially still be beneficial for prediction of human intestinal 

absorption (HIA).  
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Section (D): Use of sodium taurocholate (NaTC) as a micellar mobile phase 

in MLC  

3.D.1. Results and Discussion 

In this section results of trials using trihydroxy bile salt sodium taurocholate (NaTC) as a 

micellar mobile phase in MLC are reported.  

Trials of NaTC in water 

An evaluation of MLC using NaTC in water was carried out through the analysis of a set of 

drugs with aqueous dilutions of NaTC. The drugs used in these trials were ketoprofen, 

caffeine, diphenhydramine and lidocaine. Unfortunately, retention times obtained with 

ketoprofen and caffeine using different concentrations of NaTC in water were inconsistent 

and the obtained plots of the inverse of the capacity factors against NaTC micellar 

concentration were not linear so determination of log Pmw was not possible. The use of NaTC 

in the analysis of the cationic drugs (diphenhydramine and lidocaine) was very difficult 

because of the great tailing these drugs exhibited. This could be attributed to the fact that 

NaTC is a trihydroxy bile salt where these types of bile salts are known for having high CMCs 

compared with dihydroxy bile salts so as a result, high concentrations of the surfactant were 

used [238] which might have led to more surfactant adsorbed on the column surface. This 

assumption was supported by the fact that the dead time of NaTC in water was found to be 

higher than that obtained with the previous bile salts used, (93.64 seconds). This led to a 

magnification of the tailing problem of the basic drugs with NaTC and therefore failure to 

facilitate analysis. 

Trials of NaTC in 0.15 M NaCl 

A second trial where 0.15 M NaCl was used as a solvent for NaTC was used in an attempt 

to decrease the repulsion between NaTC micelles therefore, reaching the CMC at a lower 

concentration. 

Analysis of acetaminophen, caffeine, ketoprofen, lidocaine and diphenhydramine using 

dilutions of 20 mM NaTC in 0.15 M NaCl was used to evaluate the system. Data calculated 

and plotted from the retention profiles obtained are shown in Tables 54-56 and Figures 87-

89.   

Dead time was accurately determined for all the surfactant concentrations and an average 

of all of these determinations was taken. The average value of dead time for NaTC in 0.15 

NaCl was determined to be 35.23 seconds which indicates less interaction and adsorption 
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of NaTC with the stationary phase (CN-RP column) in the presence of 0.15 M NaCl. CMC 

of NaTC in 0.15 M NaCl was taken to be 0.004 M [239]. 

3.D.1.1. Retention behaviour 

Table 54: Total & micellar concentrations used of NaTC in 0.15 M NaCl as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM caffeine. 
 

Conc. (M) CM (M) 1/K' 

0.006 0.002 0.160 

0.008 0.004 0.169 

0.013 0.009 0.184 

0.018 0.014 0.192 
 

Table 55: Total & micellar concentrations used of NaTC in 0.15 M NaCl as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM acetaminophen. 
 

Conc. (M) CM (M) 1/K' 

0.005 0.001 0.362 

0.008 0.004 0.388 

0.009 0.005 0.391 

0.013 0.009 0.428 

0.016 0.012 0.450 

Table 56: Total & micellar concentrations used of NaTC in 0.15 M NaCl as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM ketoprofen. 
 

Conc. (M) CM (M) 1/K' 

0.005 0.001 0.781 

0.006 0.002 0.715 

0.010 0.006 1.196 

0.013 0.009 1.238 

 

 

Figure 87: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTC in 0.15 M NaCl for 0.2 mM caffeine. 
Log Pmw= 1.219±0.554 
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Figure 88: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTC in 0.15 M NaCl for 0.2 mM acetaminophen. 
Log Pmw= 1.361±0.046 

 

Figure 89: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTC in 0.15 M NaCl for 0.2 mM ketoprofen. 
Log Pmw= 2.016±0.012 

Acetaminophen, caffeine and ketoptofen showed more binding to the micelles of the NaTC 

surfactant as their concentration increased which can be seen in the shorter retention times 

of the previously mentioned drugs with the increase in the surfactant micellar concentration. 

The unexpected behaviour of ketoprofen as a binding solute could be attributed to the use 

of 0.15 M NaCl as a solvent as it neutralises the charge on the micelles therefore cancelling 

or decreasing the effect of repulsion forces in the medium.  

As an attempt to solve the cationic drugs tailing problem with NaTC, as well as to mimic the 

conditions inside the intestine more closely, trials using simulated intestinal fluid (adjusted 

to pH 6.8) were used instead of 0.15 M NaCl. 

Using NaTC in Simulated Intestinal Fluid (SIFsp) 

Table 57: Total & micellar concentrations used of NaTC in (SIFsp) as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM caffeine. 
 

Conc. (M) CM (M) 1/K' 

0.009 0.032 0.580 

0.013 0.027 0.600 

0.017 0.042 0.630 

0.02 0.018 0.650 
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Table 58: Total & micellar concentrations used of (SIFsp) as well as the inverse of the capacity factors 
(1/K’) for 0.2 mM theophylline. 
 

Conc. (M) CM (M) 1/K' 

0.009 0.005 1.673 

0.013 0.009 1.600 

0.018 0.014 1.433 

0.02 0.016 1.442 

 
Table 59: Total & micellar concentrations used of NaTC in (SIFsp) as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM ibuprofen. 
 

Conc. (M) CM (M) 1/K' 

0.005 0.001 1.231 

0.008 0.004 1.341 

0.01 0.006 1.475 

0.018 0.014 1.741 

 

Table 60: Total & micellar concentrations used of (SIFsp) as well as the inverse of the capacity 
factors (1/K’) for 0.2 mM ketoprofen. 
 

Conc. (M) CM (M) 1/K' 

0.008 0.004 1.110 

0.01 0.006 1.055 

0.013 0.009 0.967 

0.016 0.012 0.692 
 

 

Figure 90: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTC in (SIFsp) for 0.2 mM caffeine. 
Log Pmw= 1.07±0.13 
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Figure 91: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of (SIFsp) for 0.2 mM theophylline. 
Log Pmw= 1.11±0.24 

 

 

Figure 92: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of NaTC in (SIFsp) for 0.2 mM ibuprofen. 
Log Pmw= 1.51±0.03 

 

Figure 93: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of (SIFsp) for 0.2 mM ketoprofen. 
Log Pmw= 1.58± 0.08 

Caffeine and theophylline differ in the way they interact with the mobile phase and stationary 

phase as shown in Tables 57-58 and Figures 90-97. As expected caffeine interacts as a 

binding solute while theophylline unexpectedly interacts as an antibinding solute. This is 

assumed to be as a result of the high hydrophilicity of theophylline which makes it favour 

the aqueous phase rather than the micelle core so it becomes more available to associate 

with the surfactant monomers adsorbed in a relatively high amount on the surface of the 
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column (indicated by a dead time value of 73.23 seconds) via hydrogen bonding with the 

extra hydroxyl group of trihydroxy NaTC.  

The anionic drugs ketoprofen and ibuprofen also show opposite types of interaction in 

Tables 59-60 and Figures 92-93, where ketoprofen as expected acts as an antibinding 

solute while ibuprofen, as in previous sections, acts as a binding solute.  

The retention times for cationic drugs diphenhydramine and lidocaine could not be 

determined because of a tailing problem with NaTC, as discussed before. 

3.D.2. Conclusion   

Based on the previous trials carried out for developing an MLC method with NaTC in water, 

0.15 M NaCl or in simulated intestinal fluid it can be concluded that aqueous solutions of 

NaTC cannot be used as a micellar mobile phase in MLC for determination of a reliable 

retention profile for the analysed drugs. Furthermore, NaTC in 0.15 M NaCl or in (SIFsp) 

could not be used for analysis of cationic drugs because of the tailing phenomenon. 

Therefore if a method was developed with NaTC in 0.15 M NaCl or (SIFsp), the dataset 

obtained would be restricted to a narrow range of compounds and so it would not be a good 

general method for prediction of %HIA. 
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Section (E): Use of physiological mixture of bile salts as a micellar mobile 

phase in MLC  

3.E.1. Results and Discussion 

In this section an attempt to use a combination of bile salts in molar ratios similar to that 

present physiologically rather than using individual bile salts was carried out to investigate 

its effect on the retention behaviour of the analysed compounds and whether this developed 

method provides a better method than the previous methods for prediction of human 

intestinal absorption.  

Since bile salts and lecithin (phosphatidylcholine) are considered to be two of the most 

common biosurfactants present in bile and involved in the digestion process, it was 

important to study the effect of using a mixed micellar system consisting of six bile salts and 

lecithin phospholipid as a mobile phase in MLC with the cyanopropyl column as a stationary 

phase.  

The mixed micellar system used in this method consisted of a mixture of six bile salts (NaDC, 

NaC, NaTDC, NaTC, NaGC and NaGDC) which included dihydroxy, trihydroxy, conjugated 

and unconjugated bile salts with lecithin phospholipid in 0.15 M NaCl with the pH controlled 

by HEPES buffer at 6.5. The CMC of the mixed micellar system was 0.00458 M which is an 

average value of all the CMCs of the bile salts included in the mixture in 0.15 M NaCl (NaTC 

CMC =0.004 M [239], NaDC CMC =0.0024 M [239], NaTDC CMC =0.0024 M [239], NaC 

CMC =0.0075 M [192], NaGC CMC =0.009 M [239] and NaGDC CMC =0.0022 M [239]). A 

0.002 M dilution mixed micellar solution with the same bile salts-lecithin molar ratios as that 

of the mixed micellar stock was used for preparation of different concentrations of this stock. 

The size of the micelles was constant, while concentration changed, by keeping the bile salt 

monomer concentration, represented by the dilution mixture, constant in each solution. The 

bile salt-lecithin mixed micellar solution was used over a concentration range of (0.005-0.017 

M). Also its dead time was measured to be 106.4 seconds. 

The mixed micellar system was prepared in molar ratios similar to that present 

physiologically [240].  Having both a positively charged choline head group and a negatively 

charged phosphate group, lecithin is considered to be a zwitterionic compound that tends to 

self-assemble in water forming characteristic bilayer membrane like structures [241]. Bile 

salts are distinguishable from conventional amphiphiles by their facial structure as they are 

amphiphiles with polar and nonpolar faces. Such unique structures is what leads to the 

unusual micelle structures formed upon bile salts’ self-assembly in water which further 
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separates them from conventional head and tail surfactants. Various models have been 

proposed for bile salt micelle formation and several hypotheses have been made regarding 

their aggregates’ structures formed through hydrophobic interactions between the steroid 

nuclei of bile salts (nonpolar face) and the hydrogen bonding between the bile salts hydroxyl 

groups (polar face) [242]. It was reported in previous studies that short rod like micelles were 

formed upon combining both bile salts and lecithin in a mixture [241]. The lecithin-bile salt 

complex is considered as a balanced system where the lecithin on its own in water forms 

unstable bilayer structures of low aqueous solubility because of its bulky hydrophobic tails 

inhibiting its solubility in water that is compensated and balanced by the presence of the bile 

salts of much greater water solubility. These can, in small amounts, stabilise the lecithin self-

assembled structures by intercalating into these structures and thus promoting their water 

solubility which is one of the main physiological applications of bile salts. 

Initially, it was suggested by Mazer, Benedek and Carey that the aqueous lecithin/bile salt 

micelles were disc-like in shape but later on, different techniques provided evidence that 

these micelles are cylindrical in shape that can further grow into long flexible cylindrical 

micellar chains termed “worms” which are similar to polymer chains where they entangle in 

a transient network rendering the solution highly viscous. This transformation of short 

cylinders to worms depends on the molar ratio of the two species and the ionic strength 

where molar ratio of bile salt: lecithin near equimolar with high background counterion 

concentration would induce the growth of the cylindrical micelles to worms [241]. As a result, 

caution was taken to avoid the previous conditions that lead to the formation of a highly 

viscous solution since the prepared micellar mixture was intended to be pumped in to the 

MLC chromatographic system. Additionally, the bile salt-lecithin mixed micellar system was 

prepared in a molar ratio of bile salt to lecithin much higher than one while using an optimum 

counterion concentration (0.15 M NaCl). 

Lecithin prefers to be present in the form of low curvature cylindrical shaped bodies owing 

to its molecule possessing two tails. It is expected for the bile salts to form and stabilise the 

hemispherical end caps of these cylinders as bile salts are generally present in water as 

highly curved small micelles. Since stable end caps prevent the formed cylindrical micelles 

from further growing into long chains, adding more bile salts will result in more end caps 

being formed and therefore shorter cylinders. Figure 94 summarises the mechanism of 

micellisation in the bile salt-lecithin mixed micellar system where lecithin prefers to form 

bilayers when alone in water (left side of the figure). On the other hand, when bile salts are 

added to the solution they bind to lecithin head groups with themselves binding back-to-back 
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to each other resulting in expansion of the head group area (right side of the figure). As a 

result, bilayers turn into cylinders where the net geometry changes from a cylinder to 

truncated cone. In the case of low ionic strength, the negatively charged groups of bile salts 

suffer from high repulsion forces therefore bile salts get packed at the curved hemispherical 

end caps of the cylinders. The presence of a counterion (NaCl) of an optimum concentration 

is important because it decreases or neutralises the surface charge on the micelle thereby 

diminishing electrostatic repulsion and encouraging interaction between micelle forming 

species and hydrophobic association of bile salts and lecithin to give mixed micelles. It has 

to be taken into consideration that upon increasing the concentration of counterion, the 

electrostatic repulsion between the bile salts decreases, therefore the aggregation number 

of bile salt micelles increase and bile salts become less likely to form the highly curved end 

caps of the cylindrical mixed micelles inducing the growth of cylinders in to long chains which 

increase the viscosity of solution. So in the current method the concentration of the 

counterion should not be too high to avoid the formation of the long chains that render the 

solution viscous.    

Eight drugs were used in the evaluation of the MLC method in this study. Acetaminophen, 

caffeine and fluconazole represented neutral drugs while ibuprofen, ketoprofen and 

phenylbutazone represented anionic drugs. Terbutaline and zolmitriptan represented 

cationic drugs. 

 

 
 

Figure 94: Schematic of the self-assembled structures formed 
           by lecithin with and without bile salt in water (reference [241]). 

 

3.E.1.1. Retention behaviour 

Micelle-water partition coefficients were calculated as before. Data calculated and plotted 

from the retention profile obtained for the eight drugs are shown in Tables 61-68 and from 

Figures 95-102.   
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All the analysed drugs showed a binding interaction with the bile salt-lecithin mixed micelles 

as they showed a decrease in the retention time with the increase in the concentration of 

the mixed micellar system (Figures 103-104).  

 

Table 61: Total & micellar concentrations used of physiologically simulating bile salt micellar 
mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM acetaminophen. 
 

Conc. (M) CM (M) 1/K' 

0.007 0.00242 2.189 

0.010 0.00542 2.189 

0.014 0.00942 2.404 

0.017 0.01242 2.589 
 

Table 62: Total & micellar concentrations used of physiologically simulating bile salt micellar 
mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM caffeine. 
 

Conc. (M) CM (M) 1/K' 

0.005 0.00042 0.821 

0.007 0.00242 0.868 

0.010 0.00542 0.860 

0.014 0.00942 0.902 

0.017 0.01242 0.915 

 
Table 63: Total & micellar concentrations used of physiologically simulating bile salt micellar 
mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM fluconazole. 
 

Conc. (M) CM (M) 1/K' 

0.005 0.00042 0.878 

0.007 0.00242 0.893 

0.01 0.00542 0.935 

0.014 0.00942 1.121 

0.017 0.01242 1.090 

 
 
Table 64: Total & micellar concentrations used of physiologically simulating bile salt micellar 
mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM ibuprofen. 
 

Conc. (M) CM (M) 1/K' 

0.005 0.00042 0.404 

0.007 0.00242 0.415 

0.010 0.00542 0.469 

0.014 0.00942 0.514 
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Table 65: Total & micellar concentrations used of physiologically simulating bile salt micellar 
mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM ketoprofen. 
 

Conc. (M) CM (M) 1/K' 

0.005 0.00042 0.752 

0.007 0.00242 0.783 

0.010 0.00542 0.800 

0.014 0.00942 1.001 

0.017 0.01242 1.058 

 
Table 66: Total & micellar concentrations used of physiologically simulating bile salt micellar 
mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM phenylbutazone. 
 

Conc. (M) CM (M) 1/K' 

0.005 0.00042 0.467 

0.007 0.00242 0.498 

0.010 0.00542 0.684 

0.014 0.00942 1.076 

0.017 0.01242 1.061 

 
Table 67: Total & micellar concentrations used of physiologically simulating bile salt micellar 
mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM terbutaline. 
 

Conc. (M) CM (M) 1/K' 

0.007 0.00242 0.370 

0.010 0.00542 0.373 

0.014 0.00942 0.989 

0.017 0.01242 1.081 

 
Table 68: Total & micellar concentrations used of physiologically simulating bile salt micellar 
mixture as well as the inverse of the capacity factors (1/K’) for 0.2 mM zolmitriptan. 
 

Conc. (M) CM (M) 1/K' 

0.005 0.00042 0.154 

0.007 0.00242 0.272 

0.01 0.00542 0.420 

0.014 0.00942 0.518 

0.017 0.01242 0.587 
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Figure 95: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM acetaminophen. 
 

 
Figure 96: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM caffeine. 
 

 
 
Figure 97: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM fluconazole. 
 

 
 
Figure 98: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM ibuprofen. 
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Figure 99: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM ketoprofen. 
 

 
 
Figure 100: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM phenylbutazone. 
 

 

Figure 101: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM terbutaline. 
 

 

Figure 102: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar concentration 
CM (M) of physiologically simulating bile salt micellar mixture for 0.2 mM zolmitriptan. 
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Figure 103: Chromatograms showing binding behaviour of ketoprofen in increasing concentrations 

of physiological micellar bile salts mixture as a mobile phase. (The dotted line is only used for visual 

guidance).  
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Figure 104: Chromatograms showing binding behaviour of zolmitriptan in increasing concentrations 

of physiological micellar bile salts mixture as a mobile phase. (The dotted line is only used for visual 
guidance). 
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The neutral drugs (acetaminophen, caffeine and fluconazole) showed a binding interaction 

with the bile salt-lecithin mixed micelles. The neutral analysed drugs are solubilised inside 

the hydrophobic core of the cylindrical mixed micelles. 

Also the anionic drugs (ibuprofen, ketoprofen and phenylbutazone) showed atypical 

retention behaviour where they acted as binding solutes rather than acting as antibinding 

solutes. This could be attributed to the diminished repulsion forces between micelles 

resulting from charge neutralisation brought about by counterion (NaCl) binding. As a result, 

these anionic drugs could overcome any remaining weak repulsion forces and were not 

repelled away from the micelles thus they became solubilised inside the hydrophobic core 

of the mixed micelles. 

The cationic drugs (terbutaline and zolmitriptan), behaved as binding solutes as expected. 

Binding of these drugs to the mixed micelles takes place through electrostatic attraction 

between the positively charged drug and the remaining non-neutralised negatively charged 

groups within the mixed micelles in addition to binding to the hydrophobic core of the mixed 

micelle thereby resulting in the solubilisation of these drugs in both cases. 

As shown in Table 69, it can be seen that for all the analysed drugs the obtained log Pmw 

values were greater than those of log Po/w which reflects the preference of the analysed 

drugs to the bile salt-lecithin mixed micelles due to their stability, bigger hydrophobic core 

diameter and core fluidity [110]. 

 

Table 69: Partition coefficients obtained from MLC using a physiological bile salt micellar mixture 
                 for eight drugs with their standard deviations against their octanol/water partition 
                 coefficients. 

 

Compound Log Pmw Log Po/w
[184] 

Acetaminophen 1.31±0.06 0.46 

Caffeine 0.93±0.001 -0.07 

Fluconazole 1.40±0.05 0.40 

Ibuprofen 1.52±0.21 3.97 

Ketoprofen 1.58±0.04 3.12 

Phenylbutazone 2.15±0.02 3.16 

Terbutaline 2.96±0.08 0.90 

Zolmitriptan 2.30±0.11 1.60 
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3.E.2. Statistical Modelling 

After the analysis of a group of 18 drugs using a physiologically simulating bile salt-lecithin 

mixed micellar solution, followed by calculation of log Pmw from the calibration plots of (1/K’) 

against (CM),  the obtained log P with a number of other molecular descriptors such as 

molecular weight (Mwt), polar surface area (PSA), freely rotating bonds (FRB), molar volume 

(VM), dissociation constant (pKa), aqueous solubility (Sw), number of hydrogen bond donors 

(nHD) and number of hydrogen bond acceptors (nHA) were used for developing models for 

prediction of %HIA and Caco-2 and PAMPA permeability coefficients. Experimentally 

obtained log Pmw using this MLC method with the other molecular descriptors used in 

developing the three models are shown in Table 73.  

3.E.2.1. Statistical Modelling of Human Intestinal absorption (HIA) 

Log Pmw was included in a model equation with %HIA experimental values for orally 

administered drugs (as shown in Table 70) which allowed the prediction of human intestinal 

absorption (%HIA). The model obtained for the prediction of %HIA is given by Equation 19: 

logit HIA = 4.103 – 0.939 log Pmw - 0.02218 PSA    Eq. (19) 

Fifteen drugs were used in the development of the final model. The model’s R2 = 86.40 %, 

R2 adjust.= 84.13 % , R2
PRED = 80.73 %, S= 0.247 

A 95 % confidence interval for log Pmw is given by (-1.18, -0.699), t-statistic and standardised 

coefficient of log Pmw are -8.51 (p<0.05) and -0.964 respectively suggesting statistical 

significance of log Pmw as a predictor. Also the F-ratio of the overall model is statistically 

significant, F=38.12 and P value 0.007 (p<0.05). Figure 105 shows no marked relationship 

between residuals and predicted values while Figure 106 summarises the model. The 

literature and predicted values of %HIA are shown in Table 70 and Figure 107. Three drugs 

(acetaminophen, ibuprofen and salicylic acid) were used to test the obtained model. The 

model was able to predict the %HIA for these compounds within a minimum of 0.61 % and 

a maximum of 4.43 % difference between predicted and published data for %HIA. 

 
Figure 105: Residual plot for optimal logit HIA regression model. 
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Figure 106: Partial regression plots of experimental logit HIA values against log Pmw and PSA. 
 
 

Table 70: Experimental and predicted values for % HIA. 

Drug Expt. %HIA Pred. %HIA 

Acetaminophen* 100.00[205] 98.35 

Acetylsalicylic acid 82.00[205] 91.98 

Caffeine 99.00[230] 98.85 

Carbamazepine 83.50[209, 243] 87.24 

Cimetidine 68.00[205, 244] 65.58 

Diclofenac 54.00[245] 64.00 

Fenoprofen 85.00[206] 83.39 

Fluconazole 94.00[246] 90.42 

Flurbiprofen 92.00[247] 88.34 

Ibuprofen* 98.00[246] 98.61 

Ketoprofen 95.00[246] 96.24 

Naproxen 94.00[205] 87.44 

Nicotinic acid 94.00[246] 97.19 

Phenylbutazone 94.00[206, 245] 93.82 

Salicylic acid* 99.00[247] 94.57 

Terbutaline 25.00[248] 34.01 

Theophylline 98.00[33] 97.57 

Zolmitriptan 91.50[246] 82.46 

The asterisk (*) indicates the validation compounds. 

 

 

 

 

 

 

 

 

Figure 107: Regression plot of predicted %HIA values against Literature %HIA. 
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3.E.2.2. Modelling of permeability coefficients obtained from PAMPA 

The model obtained for the prediction of PAMPA log Po is given by Equation 20: 

 

log Po = - 7.180 + 2.104 log Pmw               Eq. (20) 

Thirteen drugs were used in the development of the final model. The model’s R2 = 

59.24 %, R2
adjust.= 55.54 % , R2

PRED = 46.33 %, S= 1.122 

A 95 % confidence interval for log Pmw is given by (0.946, 3.262). t-statistic and 

standardised coefficient of log Pmw are 4 (p<0.05) and 0.77 respectively suggesting 

that its statistical significance of log Pmw as a predictor. Also the F-ratio of the overall 

model is statistically significant, F=15.99 and P value 0.002 (p<0.05). 

The close agreement of the values of R2
adjust. & R2

PRED indicates that the model does 

not over-fit the data. The residual analysis did not detect any relationship between 

residuals and predicted values as shown in Figure 108. The model had poor prediction 

power for log Po (46.33 %) as shown in Table 71 and Figure 109.  

  

  
Figure 108: Residual plot for optimal PAMPA regression model. 
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Table 71: Experimental and predicted values for PAMPA logPo. 

Drug Expt. PAMPA log Po
[215]  Pred. PAMPA log Po  

Acetaminophen -5.81 -4.42 

Aspirin -4.45 -3.53 

Caffeine -5.55 -5.23 

carbamazepine -3.73 -2.16 

Diclofenac -1.37 -1.00 

Flurbiprofen -1.78 -1.82 

Ibuprofen -2.11 -3.99 

Ketoprofen -2.43[64] -3.85 

Naproxen -2.30 -2.19 

Phenylbutazone -1.96 -2.65 

Salicylic acid -2.64 -3.63 

Theophylline -5.99 -5.03 

Zolmitriptan -1.71 -2.35 
 

 

 

Figure 109: Plot of experimental vs. predicted log Po values. 
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3.E.2.3. Modelling of permeability coefficients obtained from Caco-2 Peff.   

The model obtained for the prediction of Caco-2 Peff. is given by Eq. (21): 

 
log Peff. = - 3.697 - 0.3913 log Pmw + 0.288 nHD - 0.1672 nHA        Eq. (21) 

Fourteen drugs were used in the development of the final model. The model’s R2 = 

79.97 %, R2 adjust.= 73.96 % , R2
PRED = 65.77%, S= 0.147 

A 95 % confidence interval for log Pmw is given by (-0.554, -0.228), t-statistic and 

standardised coefficient of log Pmw are -5.35 (p<0.05) and -0.854 respectively 

suggesting statistical significance of log Pmw as a predictor. Also the F-ratio of the 

overall model is statistically significant, F=13.31 and P value 0.001 (p<0.05). 

Figure 110 shows no marked relationship between residuals and predicted values 

while Figure 111 summarises the model. The log Peff. values obtained from literature 

were plotted against that predicted by the model (Figure 112) showing its good 

prediction power. The literature and predicted log Peff. values are listed in Table 72. 

 
Figure 110: Residual plot for optimal Caco-2 regression model. 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 111: Partial regression plots of experimental Caco-2 log Peff. values against log Pmw, 
HD and HA. 
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Table 72: Experimental and predicted values for Caco-2 log Peff.. 

Drug Expt. Caco-2 log Peff.  Pred. Caco-2 log Peff.  

Acetaminophen -4.00 -3.97 

Caffeine -4.51[63] -4.56 

carbamazepine -4.38[56] -4.51 

cimetidine -4.52[249] -4.44 

Diclofenac -4.75[56] -4.77 

Fenoprofen -4.95[230] -4.73 

Fluconazole -4.82[56] -4.79 

Flurbiprofen -4.70[230] -4.74 

Ibuprofen -4.58[56] -4.34 

Ketoprofen -4.48[56] -4.53 

Naproxen -4.66[56] -4.84 

Phenylbutazone -5.00[250] -4.87 

Theophylline -4.17[215] -4.31 

Zolmitriptan -4.26[215] -4.35 

 

 

Figure 112: Plot of experimental vs predicted Caco-2 log Peff. values. 
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Table 73:   A summary of molecular descriptors for the selected drugs analysed by MLC using physiologically resembling bile salt-lecithin mixed 
micellar system and experimental human intestinal absorption (%HIA), permeability  coefficients of PAMPA and Caco-2 tests. 

NA: no available data, NI: value not included in training set. 

Drug Log Pmw  Log Po/w
[184] Mwt[218] pKa

[184] Sw
[184] HD[218] HA[218] FRB[218] PSA[219] VM

[218] Log Po
[215] Log Peff. %HIA 

Acetaminophen 1.31 0.46 151.20 9.9 14 2 2 1 49.3 131.1 -5.81 -4.00 100[205] 

Acetylsalicylic acid 1.74 1.19 180.15 3.41 10[219] 1 4 3 63.6 139.6 -4.45 NA 82[205] 

Caffeine 0.93 -0.07 194.20 14 21.6 0 3 0 58.4 133.4 -5.55 -4.51[63] 99[230] 

Carbamazepine 2.39 2.45 236.36 13.9 0.21 1 1 0 46.3 186.6 -3.73 -4.38[56] 83.5[205, 243] 

Cimetidine 1.97 0.4 252.34 6.8 9.38 3 5 8 88.89 198.2 NI -4.52[249] 68[205, 244] 

Diclofenac 2.94 4.51 296.20 4.15 0.00237 2 3 4 49.3 206.8 -1.37 -4.75[56] 54[245] 

Fenoprofen 2.52 3.1 242.27 4.5 0.033 1 2 4 46.5 204.7 NA -4.95[230] 85[206] 

Fluconazole 1.40 0.4 306.27 12.71 9 1 5 5 81.6 205.3 NA -4.82[56] 94[246] 

Flurbiprofen 2.55 4.16 244.26 4.42 0.008 1 2 3 37.3 203.6 -1.78 -4.7[230] 92[247] 

Ibuprofen 1.52 3.97 206.30 5.2 0.0684 1 2 4 37.3 200.3 -2.11 -4.58[56] 98[246] 

Ketoprofen 1.58 3.12 254.30 3.88 0.051 1 3 4 54.4 212.2 -2.43[64] -4.48[56] 95[246] 

Naproxen 2.37 3.18 230.26 4.15 0.0159 1 3 3 46.5 192.3 -2.3 -4.66[56] 94[205] 

Nicotinic acid 1.55 0.36 123.11 4.75 83.1 1 3 1 50.2 95.2 NA NA 94[230] 

Phenylbutazone 2.15 3.16 308.37 4.4 0.7 0 2 5 40.6 262.8 -1.96 -5[250] 94[206, 245] 

Salicylic acid 1.69 2.26 138.12 3 11.3 2 3 1 57.5 100.4 NI NI 99[247] 

Terbutaline 2.96 0.9 225.28 9.76 213 4 4 4 72.7 192.3 NI NI 25[248] 

Theophylline 1.02 -0.02 180.16 8.8[228] 22.9 1 3 1 69.3 122.9 -5.99 -4.17[215] 98[33] 

Zolmitriptan 2.30 1.6 287.36 9.52 0.19 2 2 5 57.4 236.1 -1.71 -4.26[215] 91.5[246] 
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3.E.3. Conclusion 

Developing an MLC method that used a physiologically resembling bile salt-lecithin 

mixed micellar system was successful. Such a method had a significant impact on the 

elution of compounds and the type of interaction they experienced upon being injected 

into used MLC system. The bile salt/phospholipid combination had a higher 

solubilising capacity for compounds than that of the individual bile salt systems used 

in the previous sections which is confirmed by the switch of all compounds into binding 

solutes favouring the formed micelles. This developed MLC method appears to be a 

closer approach for prediction of HIA than for prediction of in vitro methods which is 

reflected in the model obtained for prediction of %HIA having higher predictive power 

(R2
PRED= 81 %) compared with in vitro permeability (R2

PRED= 46 % for PAMPA and 

R2
PRED= 66 % for Caco-2). Overall, it can be concluded that there is a close 

resemblance between the physiologically occurring and the synthetic bile 

salt/phospholipid micellar mixture used in this MLC method which helped the 

compounds to act in a way closer to how they permeate through the human intestine 

therefore simulating the human intestinal absorption process to some extent. 
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Section (F): Effect of using amino column with sodium deoxycholate 

(NaDC) as a micellar mobile phase in MLC  

3.F.1. Results and Discussion 

This section reports results arising from changing the type of stationary phase, 

represented by the column used, on the partitioning of analysed compounds in MLC. 

The change in the type of the column used in an MLC method has a great impact on 

the retention pattern of the analysed compounds and consequently on the obtained 

log Pmw which is a reflection of the partitioning process of the compounds under study. 

In the previous sections the effect of the change in the mobile phase type used was 

considered. In this section the column type used was changed from cyanopropyl to 

aminopropyl in order to investigate the effect of the change in the stationary phase on 

the way the analysed drugs interact with both the stationary phase and micellar mobile 

phase. 

NaDC was used as the micellar mobile phase with the same conditions and 

concentration range (0.005-0.020 M) as used in Section (3A) in this chapter. As before, 

the pH was measured at both the lowest and the highest concentrations of the mobile 

phase and found to be in the range of (6.4-8.0). 

The dead time average value was determined to be 79.40 seconds reflecting more 

interaction of the micellar mobile phase NaDC with the amino column rather than the 

cyanopropyl column, which suggests a higher amount of NaDC adsorbed on the 

column surface.  

A set of fourteen compounds (anionic, cationic and neutral) were used to evaluate the 

amino column with NaDC in MLC. Acetaminophen, caffeine, fluconazole and 

theophylline represented neutral compounds while fenoprofen, gemfibrozil, ibuprofen, 

lornoxicam, meloxicam, phenylbutazone, piroxicam and salicylic acid represented 

anionic compounds. Lidocaine and terbutaline represented cationic compounds.  

Micelle-water partition coefficients were determined and calculated in the same way 

as in the previous sections. The CMC value of NaDC was taken to be 0.005 M [200]. 

3.F.1.1. Retention behaviour 

Data calculated and plotted from the retention profile obtained for the previously 

mentioned fourteen drugs, used for evaluation of the current MLC system, using 
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dilutions of 20 mM NaDC in water as a mobile phase and aminopropyl (APS) column 

as a stationary phase are shown in Tables 74-86 and Figures 113-126. 

A significant change in the retention behaviour of the analysed drugs was observed 

upon the use of the amino column as a stationary phase in this MLC method. Opposite 

to what was expected, neutral drugs showed antibinding behaviour while cationic and 

anionic drugs showed both binding and antibinding behaviour according to their 

molecular weight. Salt bridge formation is assumed to be the theory behind the change 

in the way drugs interacted with the stationary phase (aminopropyl column) that leads 

to unconventional patterns of elution taking place. This assumption is supported by 

the work of Takeuchi et al. who showed the possibility of using bile acids as stationary 

phases in liquid chromatography through their immobilisation on aminopropyl silica 

through electrostatic interactions [179]. Salt bridge is a combination of two noncovalent 

interactions which are hydrogen bonding and electrostatic interaction. Although such 

bridges are abundant in protein folded conformations giving them stability they are 

also found in supramolecular chemistry. Since the pH of the medium was found to be 

in the range of (6.4-8) the amino group (-NH2) is thought to undergo protonation 

converting to the ammonium ion (-NH3
+) and in this case rendering the column 

positively charged. As a result, a salt bridge is assumed to be formed through 

electrostatic attraction between the negatively charged carboxylic group (–COO-) of 

NaDC bile salt and the positively charged ammonium group (-NH3
+) of the column also 

through hydrogen bonding between the hydrogen atom of the ammonium group (-

NH3
+) and the oxygen atom of the carboxylic group (–COO-) which adds up to the 

overall stability of the formed network as it acts as a small stabilising interaction [251]. 

The charge on both the column and the bile salt adsorbed on its surface are masked 

by their electrostatic attraction. Salt bridges form between the bile salt monomers and 

the column creating a stable network. Also, H-bonds form in between the bile salts 

hydroxyl groups as well as the nonpolar binding of the hydrophobic moiety of NaDC 

molecules, creating a network with the free monomers from the mobile phase leading 

to the formation of what looks like bilayers of bile salt. 
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Table 74: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM acetaminophen obtained with amino column. 
 

Conc. (M) CM (M) 1/K' 

0.007 0.002 2.867 

0.009 0.004 2.745 

0.011 0.006 2.437 

0.013 0.008 2.381 

0.015 0.010 2.210 

0.017 0.012 2.112 

0.020 0.015 2.075 
 

Table 75: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM caffeine obtained with amino column. 
 

Conc. (M) CM (M) 1/K' 

0.007 0.002 3.854 
0.009 0.004 3.567 
0.011 0.006 3.144 
0.013 0.008 2.985 
0.015 0.010 2.714 
0.017 0.012 2.595 
0.020 0.015 2.461 

 
Table 76: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM fluconazole obtained with amino column. 
 

Conc. (M) CM (M) 1/K' 

0.007 0.002 2.877 

0.009 0.004 2.776 

0.011 0.006 2.540 

0.013 0.008 2.487 

0.015 0.010 2.273 

0.017 0.012 2.190 

0.020 0.015 2.022 

 
Table 77: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM theophylline obtained with amino column. 
 

Conc. (M) CM (M) 1/K' 

0.005 0.000 3.513 

0.007 0.002 3.319 

0.009 0.004 3.063 

0.011 0.006 2.776 

0.013 0.008 2.682 
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Table 78: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM fenoprofen obtained with amino column. 

Conc. (M) CM (M) 1/K' 

0.009 0.004 4.783 

0.011 0.006 4.511 

0.013 0.008 4.269 

0.015 0.010 3.985 

0.017 0.012 3.985 

 
Table 79: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM gemfibrozil obtained with amino column. 

Conc. (M) CM (M) 1/K' 

0.007 0.002 2.542 

0.009 0.004 2.411 

0.011 0.006 2.210 

0.013 0.008 1.989 

0.015 0.010 1.741 

 
Table 80: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM ibuprofen obtained with amino column. 

Conc. (M) CM (M) 1/K' 

0.009 0.004 6.302 

0.011 0.006 5.322 

0.013 0.008 4.519 

0.015 0.010 3.838 

0.017 0.012 3.513 

0.020 0.015 2.985 

 
Table 81: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM phenylbutazone obtained with amino column. 

Conc. (M) CM (M) 1/K' 

0.009 0.004 4.693 

0.011 0.006 4.430 

0.013 0.008 3.985 

0.015 0.010 3.676 

0.017 0.012 3.027 

0.020 0.015 2.985 
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Table 82: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM  lornoxicam obtained with amino column. 

Conc. (M) CM (M) 1/K' 

0.011 0.006 4.383 

0.013 0.008 8.263 

0.015 0.010 17.261 

0.017 0.012 30.538 

0.020 0.015 49.625 

 
Table 83: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM  meloxicam obtained with amino column. 

Conc. (M) CM (M) 1/K' 

0.013 0.008 1.741 

0.015 0.010 1.921 

0.017 0.012 2.150 

0.020 0.015 2.340 

 
Table 84: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM  piroxicam obtained with amino column. 

Conc. (M) CM (M) 1/K' 

0.007 0.002 2.057 

0.009 0.004 2.295 

0.011 0.006 2.461 

0.013 0.008 3.063 

0.015 0.010 3.567 

0.017 0.012 3.854 

0.020 0.015 4.051 
 

Table 85: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM  lidocaine obtained with amino column. 

Conc. (M) CM (M) 1/K' 

0.009 0.004 0.186 

0.011 0.006 0.151 

0.013 0.008 0.125 

0.015 0.010 0.109 

0.017 0.012 0.093 

0.020 0.015 0.084 
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Table 86: Total & micellar concentrations used of NaDC in water as well as the inverse of the 
capacity factors (1/K’) for 0.2 mM terbutaline obtained with amino column. 

Conc. (M) CM (M) 1/K' 

0.011 0.006 0.277 

0.013 0.008 0.283 

0.015 0.010 0.303 

0.017 0.012 0.450 

0.020 0.015 0.565 

 

 

Figure 113: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM acetaminophen. 

 

Figure 114: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM caffeine. 

 

Figure 115: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM fluconazole. 
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Figure 116: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM theophylline. 

 

Figure 117: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM fenoprofen. 

 

Figure 118: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM ibuprofen. 

 

Figure 119: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM gemfibrozil. 
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Figure 120: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM phenylbutazone. 

 

Figure 121: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM lornoxicam. 

 

Figure 122: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM meloxicam. 

 

Figure 123: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM piroxicam. 
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Figure 124: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM salicylic acid. 

 

Figure 125: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM lidocaine. 

 

Figure 126: Calibration plot of the inverse of the capacity factor (1/K’) versus micellar 
concentration CM (M) of NaDC in water with amino column for 0.2 mM terbutaline. 
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Figure 127: Chromatograms showing binding behaviour of meloxicam in different  
concentrations of NaDC mobile phase using amino column as a stationary phase. (The dotted 
line is only used for visual guidance). 
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Figure 128: Chromatograms showing binding behaviour of phenylbutazone in different  
concentrations of NaDC mobile phase using amino column as a stationary phase. (The dotted 
line is only used for visual guidance). 
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Figure 129: Chromatograms showing binding behaviour of terbutaline in different  
concentrations of NaDC mobile phase using amino column as a stationary phase. (The dotted 
line is only used for visual guidance). 
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Table 87: Partition coefficients obtained from MLC using NaDC with amino propyl column 
as a stationary phase for fourteen drugs with their standard deviations against 
their octanol/water partition coefficients. 

 

Compound Log Pmw Log Po/w
[184] 

Acetaminophen 1.34±0.001 0.46 

Caffeine 1.45±0.001  -0.07 

Fluconazole 1.35±0.02 0.40 

Theophylline 1.50±0.01 -0.02 

Fenoprofen 1.31±0.07 3.10 

Gemfibrozil 1.56±0.03 3.40 

Ibuprofen 1.62±0.01 3.97 

Phenylbutazone 1.50±0.02 3.16 

Lornoxicam 2.23±0.03 2.62 

Meloxicam 1.92±0.03 3.43 

Piroxicam 2.02±0.01 3.06 

Lidocaine 1.64±0.01 2.44 

Terbutaline 3.13±0.07 0.90 

 

Anionic drugs showed an antibinding behaviour which is typical for conventional 

retention however a number of anionic drugs showed the opposite behaviour i.e. a 

binding interaction with NaDC. Both cases can be explained according to the 

previously mentioned theory for bile salt (micellar mobile phase) interaction with the 

amino column used in this method as follows: 

The anionic drugs fenoprofen, ibuprofen, gemfibrozil and phenylbutazone showed a 

retention behaviour typical to what is expected for anionic drugs with anionic surfactant 

where they undergo antibinding interaction with the NaDC micelles. The retention time 

of these drugs increased with the increase in the concentration of the micelles in the 

mobile phase.  

Other anionic drugs, namely lornoxicam, meloxicam and piroxicam showed an 

opposite pattern of interaction as they acted as binding solutes where the retention 

time of these drugs decreased with the increased concentration of micelles in the 

mobile phase. This is unusual for anionic drugs when analysed with anionic 

surfactants in MLC. The typical antibinding behaviour of anionic surfactants can be 

attributed to the electrostatic repulsion taking place between the negatively charged 
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drugs and the negatively charged surfactant. As a result of this repulsion the drug 

binds to the column showing an increase in retention on the column with the increase 

in the surfactant concentration. In this case the drug also has to have a low molecular 

weight in order to be entrapped inside the layers of the bile salt network structure 

formed with the amino column by means of electrostatic attraction and H-bonding. As 

a result, fenoprofen, ibuprofen, gemfibrozil and phenylbutazone, having relatively low 

molecular weight values of 242.3, 206.3, 250.3 and 308.4 g/mol respectively, were 

entrapped inside the bile salt network structure showing antibinding interaction. On the 

other hand, lornoxicam, meloxicam and piroxicam, having relatively higher molecular 

weight values of 371.8, 351.4 and 331.4 g/mol respectively, could not be entrapped 

inside the bile salt network structure. Instead, they were entrapped inside the micellar 

core as they overcame the repulsion forces with the micelles as they have high 

molecular weights. 

Neutral drugs (acetaminophen, caffeine, fluconazole and theophylline) exhibited an 

antibinding retention behaviour which is again, against convention, where neutral 

drugs are supposed to undergo a binding interaction. This can be attributed to the 

preference of these drugs to bind to the more stable hydrophobic core of the bile salt 

network structure rather than that of the bile salt micelles in the mobile phase. Also 

these drugs have significantly lower molecular weights of 151.2, 194.2, 306.27, 180.2 

g/mol respectively so they could easily get entrapped inside the hydrophobic core of 

the bile salt network structure within the column therefore showing antibinding 

retention behaviour. 

The cationic drug terbutaline showed a binding behaviour which is consistent with what 

was expected to take place for cationic drugs analysed with anionic surfactants in 

MLC. On the other hand lidocaine, which is also a cationic drug, acted as an 

antibinding solute. It is assumed that terbutaline acts as a binding solute not only 

because of the electrostatic attraction between the positively charged drug and the 

negatively charged surfactant but also because terbutaline has a higher water 

solubility so it is more exposed and available in the aqueous medium so it binds easily 

to the micelles. As for the unusual antibinding behaviour that was observed with 

lidocaine, it is thought that lidocaine being a more lipophilic drug (log Po/w =2.44) than 

terbutaline (log Po/w=0.9) preferred to bind to the more hydrophobic core of the bile 

salt network structure within the column and also its relatively low molecular weight 

(234.4 g/mol) made it easier for it to get entrapped inside this network structure. 
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In Table 86, it can be seen that the log Pmw values for the analysed drugs were found 

to be higher than their log Po/w reflecting their preference to the bile salt surfactant. 

Also a significant difference can be seen between the binding and the antibinding 

solutes in their log Pmw values. This can, to some extent, allow comparison of the type 

of retention phenomenon for the analysed drug when compared with other drugs 

analysed using the same method where log Pmw was found to be in the range of (1.31-

1.64) for antibinding solutes and in the range of (1.92-3.33) for binding solutes. For the 

previously used micellar systems with a cyanopropyl column the obtained log Pmw 

values were only a reflection of the drug’s preference to the surfactant in general 

whether it is in the aqueous phase as micelles (binding phenomenon) or adsorbed on 

the surface of the column (antibinding phenomenon).  

3.F.2. Statistical Modelling 

After analysis of a group of 23 drugs using NaDC with an aminopropyl (APS) column 

and calculation of log Pmw, a number of molecular descriptors such as molecular 

weight, polar surface area, freely rotating bonds, molar volume, dissociation constant 

(pKa), aqueous solubility (Sw), number of hydrogen bond donors and number of 

hydrogen bond acceptors were used along with the obtained log Pmw to develop 

models for prediction of %HIA and PAMPA & Caco-2 permeability coefficients using 

multiple linear regression. Lipophilicity represented by log Pmw experimentally obtained 

using this MLC method is shown in Table 90.  

3.F.2.1. Statistical Modelling of Human Intestinal absorption (HIA) 

Log Pmw was successfully included with 2 other molecular descriptors in the final model 

equation with %HIA experimental values for orally administered drugs (shown in Table 

88) which successfully predicts %HIA with 72 % predictability. The final model was 

validated using a set of seven compounds.  

The model obtained for the prediction of %HIA is given by Equation 22: 

 

logit HIA = -0.758 – 0.369 log Pmw + 0.01157 VM + 0.0714 Sw         Eq. (22) 

Sixteen drugs were used in the development of the final model. The model’s R2 = 84.62 

%, R2 adjust.= 80.77 % , R2
PRED = 71.51 %, S= 0.203 

A 95 % confidence interval for log Pmw is given by (-0.726, -0.011), t-statistic and 

standardised coefficient of log Pmw are –2.25 (p<0.05) and -0.294 respectively 

suggesting statistical significance of log Pmw as a predictor. Also the F-ratio of the 

overall model is statistically significant, F= 22 and P value 0.000 (p<0.05). Figure 130 
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shows no marked relationship between residuals and predicted values while Figure 

131 summarises the model. 

Seven drugs (cimetidine, fenoprofen, lornoxicam, nicotinic acid, piroxicam, salicylic 

acid and terbutaline) were used to test the model predictability. The model was able 

to predict the %HIA for these drugs within a minimum of 0.1 % and a maximum of 8.07 

% difference between the predicted %HIA and the published %HIA. The model 

appears to have underestimated %HIA for both lornoxicam and salicylic acid with a 12 

% and 24 % difference between the two predicted and published values. The MLC 

method used here was able to develop a model for prediction of HIA with a reliable 

predictability. It is thought that if trials were carried out using the amino column with 

other bile salts that had good predictability with a CN-RP column, models with an even 

higher predictive ability could have been developed. 

 

 
 

Figure 130: Residual plot for optimal logit HIA regression model. 
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Figure 131: Partial regression plots of experimental logit HIA. values against log Pmw, VM and 
Sw . 
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Table 88: Experimental and predicted values for %HIA. 

Drug Expt. %HIA Pred. %HIA 

Acetaminophen 95.00[205] 94.82 

Acetylsalicylic acid 82.00[205] 87.00 

Caffeine 99.00[230] 98.42 

Carbamazepine 70.00[209] 73.53 

Cimetidine* 73.50[230, 245] 73.60 

Diclofenac 90.00[210] 90.73 

Fenoprofen* 85.00[206] 93.07 

Fluconazole 97.50[205] 98.29 

Flurbiprofen 92.00[247] 84.68 

Gemfibrozil 95.00[207] 96.57 

Ibuprofen 85.00[207] 90.25 

Indomethacin 99.00[252] 98.22 

Ketoprofen 96.00[205] 92.94 

Lidocaine 95.00[210, 252] 96.30 

Lornoxicam* 100.00[246] 88.67 

Meloxicam 90.00[205] 92.40 

Naproxen 94.00[205] 91.02 

Nicotinic acid* 94.00[230] 100.00 

Phenylbutazone 98.00[206] 98.36 

Piroxicam* 99.00[252] 92.28 

Salicylic acid* 99.00[247] 75.44 

Theophylline 98.00[33] 98.24 

Terbutaline* 80.00[248] 84.25 
The asterisk (*) indicates the validation compounds. 

 

 

Figure 132: Plot of experimental vs. predicted  %HIA. 
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3.F.2.2. Modelling of permeability coefficients obtained from PAMPA 

The model obtained for the prediction of PAMPA log Po is given by Equation 23: 

 

log Po = 0.897 – 1.504 log Pmw – 0.771 HD – 0.1894 Sw      Eq. (23) 

Sixteen drugs were used in the development of the final model. The model’s R2 =84.96 

%, R2
adjust.= 81.20 % , R2

PRED = 76.53 %, S= 0.742 

A 95 % confidence interval for log Pmw is given by (-2.525, -0.484), t-statistic and 

standardised coefficient of log Pmw are -3.21 (p<0.05) and -0.439 respectively 

suggesting statistical significance of log Pmw as a predictor. The statistical significance 

of the overall model was tested by F-ratio and P-value which were found to be; F= 

22.6 and P value 0.000 (p<0.05) confirming the model’s significance. 

The close agreement of the values of R2
adjust. & R2

PRED indicates that the model does 

not over-fit the data. 

The residual analysis did not detect any relationship between residuals and predicted 

values as shown in Figure 133. The model is shown in Figure 134. 

The MLC method used in this section showed a resemblance to the PAMPA method. 

This could be attributed to the possibility of the presence of similarity between the 

membrane used in PAMPA and the formed bile salt network structure adsorbed on the 

surface of the amino column, i.e. creating a system with which the analysed drugs 

interact in a similar manner to how they interact with the lipid membrane in PAMPA. 

 

 
 

Figure 133: Residual plot for optimal PAMPA regression model. 
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Figure 134: Partial regression plots of experimental PAMPA log Po values against log Pmw, 
                     HD and Sw. 

 

Table 89: Experimental and predicted values for PAMPA. 

Drug Expt. PAMPA logP0 [215] Pred. PAMPA logP0  

Acetaminophen -5.81 -5.32 

Caffeine -5.55 -5.37 

Carbamazepine -3.73 -3.88 

Cimetidine -6.20 -6.25 

Diclofenac -1.37 -3.27 

Flurbiprofen -1.78 -3.37 

Gemfibrozil -1.59 -2.25 

Ibuprofen -2.11 -2.33 

Indomethacin -1.65 -2.40 

Ketoprofen -2.43[64] -2.25 

Lidocaine -1.42 -2.39 

Meloxicam -2.86 -3.53 

Naproxen -2.30 -1.76 

Phenylbutazone -1.96 -1.50 

Piroxicam -3.32 -3.68 

Theophylline -5.99 -6.46 
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Figure 135: Plot of experimental vs. predicted log Po. 
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prediction of Caco-2 permeability coefficient using multiple linear regression. No model 

equation could be obtained having log Pmw (either alone or with other descriptors) 

included with the published experimentally determined Caco-2 log Peff. where the 

obtained P values for log Pmw were always greater than 0.05 at 95 % confidence 

interval, i.e. suggesting statistical nonsignificance as a descriptor. Also the obtained 

R2
PRED value was always zero. As a result, this MLC system was not successful in the 

prediction of the in vitro Caco-2 permeability coefficient as there was no correlation 

found between the MLC based log Pmw data and Caco-2 log P. 
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Table 90: A summary of molecular descriptors for the selected drugs analysed by MLC using NaDC in water with amino column and the 
experimental values of PAMPA log Po and %HIA. 

Drug Log Pmw Log Po/w
[184] Mwt[218] pKa

[184] Sw
[184] HD[218] HA[218] FRB[218] PSA[219] VM

[218] log Po
[215] %HIA 

Acetaminophen 1.34 0.46 151.20 9.9 14 2 2[184] 1 49.3 131.1 -5.81 95.00[205] 

Acetylsalicylic acid 2.02 1.19 180.15 3.41 10[219] 1 4 3 63.6 139.6 NA 82.00[205] 

Caffeine 1.45 -0.07 194.20 14 21.6 0 3[184] 0 58.4 133.4 -5.55 99.00[230] 

Carbamazepine 2.64 2.45 236.36 13.9 0.21 1[184] 3 0 46.3 186.6 -3.73 70.00[209] 

Cimetidine 3.11 0.4 252.34 6.8 0.816 3 6 8 114 198.2 -6.20 73.50[230, 245] 

Diclofenac 1.75 4.51 296.20 4.15 0.00237 2 3 4 49.3 206.8 -4.56[62] 90.00[210] 

Fenoprofen 1.31 3.1 242.27 4.5 0.033 1 3 4 46.5 204.7 NA 85.00[206] 

Fluconazole 1.35 0.4 306.27 12.71 9 1 7 5 81.6 205.3 NA 97.50[205] 

Flurbiprofen 2.32 4.16 244.26 4.42 0.008 1 2 3 37.3 203.6 -4.52[62] 92.00[247] 

Gemfibrozil 1.56 3.4 250.33 4.5 0.13 1 3 6 46.5 239.7 -1.59 95.00[207] 

Ibuprofen 1.62 3.97 206.30 5.2 0.0684 1 2 4 37.3 200.3 -2.11 85.00[207] 

Indomethacin 1.68 4.27 357.79 4.5 0.000937 1 5 4 68.5 269.6 -1.65 99.00[252] 

Ketoprofen 1.58 3.12 254.30 3.88 0.051 1 3 4 54.4 212.2 -2.43[64] 96.00[205] 

Lidocaine 1.64 2.44 234.40 7.9 0.2337 1 2[184] 5 32.3 238.8 -1.42 95.00[210, 252] 

Lornoxicam 2.23 2.62 371.81 6.8 0.0437 2 7 2 136 213.4 NA 100.00[246] 

Meloxicam 1.92 3.43 351.40 4.08 0.00715 2 7 2 136 220.3 -2.86 90.00[205] 

Naproxen 1.25 3.18 230.26 4.15 0.0159 1 3 3 46.5 192.3 -2.30 94.00[205] 

Nicotinic acid 1.45 0.36 123.11 4.75 83.1 1 3 1 50.2 95.2 NA 94.00[230] 

Phenylbutazone 1.50 3.16 308.37 4.4 0.7 0 2[184] 5 40.6 262.8 -1.96 98.00[206] 

Piroxicam 2.02 3.06 331.35 6.3 0.023 2 7 2 108 222.8 -3.32 99.00[252] 

Salicylic acid 1.96 2.26 138.12 3[227] 11.3 2 3 1 57.5 100.4 NI 99.00[247] 

Terbutaline 3.13 0.9 225.28 9.76 213 4 4 4 72.7 192.3 NA 80.00[248] 

Theophylline 1.50 -0.02 180.16 8.8[228] 22.9 1 3 0 69.3 122.9 -5.99 98.00[33] 
NA: no available data, NI: value not included in training set. 
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3.F.3. Conclusion 

The change in the type of the stationary phase used in the MLC method from 

cyanopropyl to aminopropyl (APS) had a significant impact on the interaction of the 

analysed drugs with both the micellar mobile phase and the stationary phase used 

and consequently on their elution therefore affecting its predictive ability. This method 

was able to predict %HIA using a reliable model also it provided another model for 

prediction of PAMPA permeability coefficient with better predictability showing more 

resemblance to the PAMPA in vitro method. On the other hand, the log Pmw obtained 

using this method had no correlation with Caco-2 permeability coefficients therefore 

the method was unable to provide a model for its prediction. 
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Section (G): Investigating the effect of temperature on partitioning of 

drugs in MLC using sodium deoxycholate (NaDC) 

3.G.1. Results & Discussion 

3.G.1.1. Determination of CMC of NaDC in water over the temperature range 

(30-45 oC) 

In this section the effect of temperature on the elution of selected drugs was 

investigated by carrying out the chromatographic runs using MLC with the column set 

at different temperatures in the range of (30-45 oC). The mobile phase used in this 

method consisted of the biosurfactant NaDC in water whose CMC is known to change 

with temperature. Therefore, the CMC of NaDC in water was measured 

spectroscopically at all temperatures (30, 35, 40 and 45 oC) considered for the MLC 

study.  

As in Section (3C), the dye micellisation method was applied for the determination of 

CMC of NaDC at (30, 35, 40 and 45 oC) using dichlorofluorescein dye where the dye 

attaches to the hydrophobic part of the micelle causing a change in the absorbance of 

the micellised dye at a fixed wavelength (503 nm) as a function of surfactant 

concentration [232]. 

 The effect of anionic surfactant on the absorption spectrum of dichlorofluorescein dye 

was studied and the visible spectra of aqueous dichlorofluorescein solution in several 

NaDC concentrations ranging from (0.0005 M to 0.02 M) for a fixed dye concentration 

of 10-5 M are represented in Figure 136. The dye exhibits a maximum absorption at 

503 nm. 

     
Figure 136: Spectra of 10-5 M dye in increasing concentrations of  

NaDC at 30 0C . 
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Below the CMC, as the NaDC concentration gradually increased, the dye absorbance 

at 503 nm decreased. The decrease in the absorbance indicates the molecular 

complex formation between the dye and the surfactant molecules due to the 

interaction between the dye and the surfactant. Above the CMC, absorbance at 503 

nm increased significantly. The increase in absorbance values with the increase in 

surfactant concentrations above the CMC is attributed to the incorporation of dye 

molecules into the micelles.  

          
(a)                                                                     (b)  
 

          
(c)                                                                         (d) 
Figure 137: Plots of NaDC concentration versus absorbance of the micellised dye showing 
the 1ry and 2ry CMC of NaDC at (a) 30 ºC, (b) 35 ºC, (c) 40 ºC and (d) 45 ºC . 

 
The CMC was found to be in the range of (0.005-0.009 M) (Figure 137) where the 

primary CMC was found to be 0.005 M while the secondary CMC was found to be 

0.009 M. Values of the CMC of NaDC at 25 ºC have been reported in literature to be 

0.005 M [190] and within the range of (0.002-0.006 M) according to the manufacturer 

specification sheet, thus confirming the values reported here. This shows that when 

the temperature increased an increase in the surfactant CMC value followed which is 
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an expected behaviour. The CMC value for NaDC over the temperature range (30-45 

ºC) was taken to be 0.009 M which is the higher end of the experimentally obtained 

CMC range. This value was used in calculation of micelle-water partition coefficients 

for the MLC analysed drugs at the selected temperature range so that the whole range 

of CMC values that NaDC could have throughout the experiments be taken into 

consideration which could have an impact on the calculated thermodynamic 

parameters.  

3.G.1.2. Effect of temperature change on the partitioning of analysed 

compounds in MLC  

Many papers in literature described the use of thermodynamics in studying solute 

retention in various chromatographic methods such as reversed phase liquid 

chromatography, liposome electrokinetic chromatography (LEKC), gas 

chromatography (GC) and others [170, 253, 254]. van’t Hoff analysis is the most 

commonly used method for providing thermodynamic information for studying 

retention in chromatography. One of the earliest applications of van’t Hoff studies was 

the characterisation of a stationary phase developed by DuPont by means of 

calculating heats of transfer for selected solutes by Knox and Vasvari [255]. For many 

decades van’t Hoff studies have been used for studying the thermodynamics of solute 

transfer from the mobile phase to the stationary phase which has helped in studying 

retention mechanisms and understanding the whole process [170, 256].  In 

chromatography the calculation of enthalpies and entropies of transfer is feasible using 

the classical representation of the van’t Hoff equation (Equation 24) as in Melander et 

al.’s work [257]. 

ln K’= −
ΔH

RT
+

ΔS

R
+ lnφ    (Eq. 24) 

where K’ is the capacity factor, R is the gas constant and equals 8.314 J K-1 mol-1, T 

is the temperature in Kelvin, ΔH and ΔS are the enthalpy and entropy of transfer of 

the solute from mobile phase to the stationary phase, and φ is the volume phase ratio 

that is the ratio of volume of stationary phase to the volume of the mobile phase.  

MLC is considered as a form of reversed phase liquid chromatography but a limited 

number of publications for describing MLC using thermodynamic parameters have 

been published. A direct application of the previously mentioned equation was carried 

out in the work of Dorsey et al. for detecting the effect of temperature change on the 

thermodynamics of compounds partitioning in MLC [170]. More recently, 
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thermodynamic information including enthalpy, entropy and Gibbs free energy, were 

calculated based on the relation between the partitioning data obtained from MLC and 

the change in the temperature at which the MLC experiments were carried out for 

studying the partitioning of three dialkyl phthalate esters in MLC [258]. 

Two equations are used to describe Gibbs free energy which can be expressed as  

𝛥Go= - R T lnK               (Eq. 25) 

ΔGo= ΔHo−TΔSo                (Eq. 26) 

where 𝛥Go is Gibbs free energy, R is the gas constant, T is the temperature in Kelvin 

and K is the thermodynamic distribution constant. 

In a study by Waters et al. [258], K’ was replaced with Pmw where Pmw is the micelle-

water partition coefficient of the solute in MLC. Therefore, a description of the 

dependence of partition coefficient Pmw between the micellar pseudo-phase and the 

stationary phase is given by a linear function of the van’t Hoff equation as follows: 

ln Pmw = −
ΔH

RT
+

ΔS

R
            (Eq. 27) 

where Pmw, R, ΔH and ΔS were defined previously. Furthermore, φ is the volume 

phase ratio and considered constant and can be neglected from the equation as the 

adsorbed surfactant on the bonded phase is stated to be constant with micellar mobile 

phases [259].  

It is reported that the linear relationship between partition coefficient (Pmw) and (1/T) is 

an indication that the changes in enthalpy and entropy are independent of temperature 

change. Where enthalpy is considered a reflection of bonds being formed, broken or 

distorted (H-bonds) also it is related to van der Waals interactions while entropy is 

related to the hydrophobic effect [253] which results from the transfer of non-polar 

molecules to water from a less polar environment or even transfer of polar molecules 

from water to a non-polar environment. Accordingly, the thermodynamic parameters, 

ΔH and ΔS, can be calculated respectively from the slope and the intercept of van’t 

Hoff plots as described in (Eq. 28 and Eq. 29).  

Slope = −
ΔH

RT
            (Eq. 28) 

Intercept = 
ΔS

R
            (Eq. 29) 

According to Fisher and co-workers such a linear relationship is believed to be 

evidence of the maintenance of the micellar structure integrity throughout the studied 

temperature range [170]. On the other hand, nonlinearity of van’t Hoff plots have been 



 

169 
 

reported several times in literature presenting different assumptions for this anomaly. 

Cole and Dorsey reported that a phase transition was the reason for the non-linear 

van’t Hoff plots they obtained when the bonding density was above a certain limit [260]. 

Also the parabolic van’t Hoff plot obtained with benzene was attributed to the 

hydrophobic effect rather than a change in phase ratio by Cole and co-workers [261]. 

Liu and co-workers observed an unusual van’t Hoff plot of two linear regions disjoined 

at a certain temperature and they attributed such anomalous behaviour to a stationary 

phase conformation above this temperature. They also observed that the plot might 

have been linear if the studied temperature range was smaller [262]. Furthermore, 

Bidlingmeyer and Henderson investigated the concept of a change in phase ratio 

where they observed the retention mechanism of selected compounds on bare silica 

at different temperatures. Non-linear van’t Hoff plots resulted, therefore ruling out 

phase ratio as being the reason for such nonlinearity, which led them to the conclusion 

that changes in the adsorptive or electrostatic forces or change in the amount of the 

adsorbed mobile phase on the silica surface with the change in temperature could be 

the reason for the unusual plots [263]. Also non-linear van’t Hoff plots were obtained 

with partitioning of selected compounds into lipid bilayers in LEKC [253]. In total, 

obtaining nonlinear van’t Hoff plots is not considered an anomaly but justification can 

be complex.  

Non-linear van’t Hoff plots can be considered beneficial as they facilitate studying the 

thermodynamics of a system where ΔH and ΔS can still be obtained at each 

temperature by fitting the obtained data to a polynomial eqaution of an order that gives 

the best fit. In literature, Horvath and co-workers described the dependence of the 

retention factor in hydrophobic interaction chromatography on temperature using a 

quadratic equation [264]. Also Hearn and co-workers described the dependence of the 

natural logarithm of partition coefficient on temperature for the interaction of 

polypeptides with ligands using a third order polynomial equation [265, 266].  

In summary, the aim of this section was to study the thermodynamic changes that take 

place in the micellar microenvironment that arise due to changes in the interaction and 

the retention mechanism of the eluted drugs or changes in the micellisation process. 

Since the surfactant used in this work is a bile salt whose micelles look and behave 

differently compared with conventional surfactants, it was expected that the changes 
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in this system upon the change in temperature would be more complicated than the 

changes seen with conventional surfactants.  

3.G.1.3. A thermodynamic study of partitioning in MLC   

In this section the influence of temperature on the partitioning and consequently the 

retention of selected compounds was studied where the chromatographic retention of 

these compounds was determined at different column temperatures in the range of 

(303 K – 318 K) using different micellar concentrations of NaDC bile salt in water. Log 

Pmw was calculated from the slope and the intercept of the linear plots of (1/K’) versus 

CM at 303, 308, 313 and 318 K as shown in Figures 138-142. 

 

 

                     
Figure 138: A plot of inverse of the capacity factors  versus  micellar 

concentration for caffeine at various temperatures. 
 

 

 
Figure 139: A plot of inverse of the capacity factors  versus  micellar 
concentration for ibuprofen at various temperatures. 
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Figure 140: A plot of inverse of the capacity factors  versus  micellar 
concentration for ketoprofen at various temperatures. 

 

 
Figure 141: A plot of inverse of the capacity factors  versus  micellar 
concentration for acetaminophen at various temperatures. 

 

  
Figure 142: A plot of inverse of the capacity factors  versus  micellar 

concentration for theophylline at various temperatures. 
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(a)    (b) 

 

 

 
 
 
 
(c)                                                                            (d) 
 
 

 

 

                                    
 
                                 
                                  (e)    

 
 
 
Figure 143: van’t Hoff plots for (a) caffeine, (b) ibuprofen, (c) ketoprofen, (d) acetaminophen, 
(e) Theophylline at 303, 308, 313 and 318 K. 
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Figure 144: Second order polynomial van’t Hoff plots for 
caffeine at 303, 308, 313 and 318 K. 

 

 
Figure 145: Second order polynomial van’t Hoff plots for 
ibuprofen at 303, 308, 313 and 318 K. 

 

 

Figure 146: Second order polynomial van’t Hoff plots for 
ketoprofen at 303, 308, 313 and 318 K. 
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Figure 147: Second order polynomial van’t Hoff plots for 
acetaminophen at 303, 308, 313 and 318 K. 

 

 
Figure 148: Second order polynomial van’t Hoff plots for 
theophylline at 303, 308, 313 and 318 K. 

 

  
Figure 149: Second polynomial van’t Hoff plots of caffeine, 
ketoprofen, acetaminophen and ibuprofen intersecting at 
one point. 
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Table 91: Partition coefficient and thermodynamic parameters from nonlinear van’t Hoff 
plots at different column temperatures.  
 

Drugs 
Temp. 

K 
Pmw Ln Pmw ΔH  

Kcal.mol-1 
ΔS  

Kcal.mol-1.K-1 
ΔG  

Kcal.mol-1 
ΔCp 

Kcal.mol-1 

Acetaminophen 

303 6.801 1.917 19.607 0.069 -1.189 -2.93 

308 11.134 2.410 5.195 0.021 -1.414 -2.836 

313 8.344 2.122 -8.756 -0.024 -1.4078 -2.746 

318 6.640 1.893 -22.268 -0.066 -1.182 -2.660 

Caffeine 

303 14.271 2.658 -33.019 -0.096 -3.797 4.917 

308 11.497 2.442 -8.832 -0.017 -3.514 4.759 

313 9.461 2.247 14.582 0.058 -3.618 4.608 

318 25.971 3.257 37.259 0.130 -4.09 4.464 

Ibuprofen 

303 14.501 2.674 -17.345 -0.052 -1.661 2.251 

308 11.669 2.457 -6.273 -0.016 -1.494 2.179 

313 9.855 2.288 4.446 0.019 -1.503 2.11 

318 13.837 2.627 14.828 0.052 -1.681 2.044 

Ketoprofen 

303 5.348 1.677 13.502 0.048 -1.061 -0.042 

308 9.938 2.296 13.296 0.047 -1.3 -0.041 

313 9.530 2.255 13.097 0.047 -1.535 -0.039 

318 17.282 2.85 12.904 0.046 -1.767 -0.038 

Theophylline  
  

303 21.253 3.057 -8.270 -0.021 -1.845 1.083 

308 17.904 2.885 -2.943 -0.004 -1.783 1.048 

313 18.282 2.906 2.215 0.013 -1.806 1.015 

318 20.181 3.005 7.210 0.029 -1.910 0.983 

 
Table 92: Second order polynomial forms of van’t Hoff equations with their coefficient values.  
 

Drugs van’t Hoff quadratic Equations a b c 

 
Acetaminophen 

 

𝑙𝑛𝑃𝑚𝑤 = −705.2 +
438455

𝑇
−

67926153

𝑇2
  -67926153 438455 -705.2 

 
Caffeine 

 
𝑙𝑛𝑃𝑚𝑤 = 1193 −

735799

𝑇
+

1.14∗108

𝑇2
                 1.14*108 -735799 1193 

 
Ibuprofen 

 

𝑙𝑛𝑃𝑚𝑤 = 542.3 −
335716

𝑇
+

52188135

𝑇2
  52188135 -335716 542.3 

 
Ketoprofen 

 

𝑙𝑛𝑃𝑚𝑤 = 13.7 −
411

𝑇
−

970849

𝑇2
  -970849 -411 13.7 

 
Theophylline  

  
𝑙𝑛𝑃𝑚𝑤 = 262.8 −

161570

𝑇
+

25110653

𝑇2
  25110653 -161570 262.8 
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Van’t Hoff plots were constructed for the five compounds analysed using MLC by 

plotting the natural logarithm of their micelle-water partition coefficients ln Pmw against 

the inverse of temperature 1/T as shown in Figure (143). The obtained van’t Hoff plots 

were nonlinear showing that the change in heat capacity (ΔCp) is nonzero and the 

dependence of the thermodynamic parameters on temperature. This nonlinear 

behaviour also suggests that the partitioning process is more complex, similar to 

partitioning through lipid bilayers which also follows the same nonlinear pattern 

suggesting the presence of a mixed retention mechanism.  

For calculation of the thermodynamic parameter values (enthalpy (ΔH) entropy (ΔS) 

free energy (ΔG) and heat capacity (ΔCp)) the data were fitted to second order 

polynomial equations generally expressed as [253]: 

ln Pmw =
𝑎

𝑇2 +
𝑏

𝑇
+ 𝑐      (Eq. 30) 

Enthalpy was derived as [267]: 

ΔH= −𝑅 [
2𝑎

𝑇
+ 𝑏]        (Eq. 31) 

And entropy was given by [267]: 

ΔS= 𝑅 [𝑐 −
𝑎

𝑇2]           (Eq. 32) 

While heat capacity was calculated from [267]:  

ΔCp= 𝑅 [
2𝑎

𝑇
2]                        (Eq. 33) 

The values of a, b and c of the second order polynomial equations obtained by fitting 

the data to second order polynomial using Minitab 17® are listed in Table 92. Using 

parameters listed in Table 91. 

As shown in Table 91, ΔG values for all compounds were negative confirming that 

partitioning from the aqueous to the micellar phase was thermodynamically favoured. 

Also when comparing ΔH values to ΔS it was observed that ΔH values were greater 

than that of ΔS which suggest that the partitioning process was enthalpically driven. 

It was observed that in some cases a pattern in the change of micelle-water partition 

coefficient with temperature was apparent. Acetaminophen displayed an initial 

increase followed by a decrease while, other drugs showed an initial decrease 
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followed by an increase (caffeine, ibuprofen and theophylline) giving the characteristic 

dome-shaped and inverted dome-shaped van’t Hoff plots (Figures 144-148). Similar 

plots have been reported for unfolding of proteins in bulk solutions and in solid/liquid 

interfaces as well as protein-ligand interactions [267]. It was interesting to consider if 

there was a common temperature between these drugs before and after which the 

Pmw pattern changed. It was found that by overlaying all the second order polynomial 

plots of ln Pmw against 1/T, the four compounds intersected at the same point 

corresponding to a temperature of approximately 311 K (38 oC) as shown in Figure 

(149). This temperature could be an indication of a critical point after which the pattern 

of partitioning changes or a change in the micelle structure. 

A negative ΔCp is an indication of the transfer of nonpolar solute from water to the 

nonpolar phase while a large positive heat capacity is an indication of a hydrophobic 

effect of a nonpolar solute in water [253]. For ΔS a positive value is commonly 

interpreted as a hydrophobic interaction where the molecules’ hydrophobic moieties 

come in contact with each other forming aggregates rejecting water molecules from 

the surrounding contact surface therefore increasing the system entropy by the 

disordered state of the rejected water molecules. According to a recent theory the 

positive ΔS could be attributed to the cavity reduction at the interface resulting from 

reconstruction of water molecules leading to solvent volume expansion. Therefore, it 

would be assumed that no intermolecular short bonds formed only hydrophobic 

association (not hydrophobic bonding), as molecular surfactant self-assemblies [268]. 

A negative value could be a result of the loss of entropy of a solute upon partitioning 

in to the micellar pseudophase being greater than the gain of entropy resulting from 

the H-bond vanishing within the water network surrounding the solute in the aqueous 

phase [253]. 

A positive enthalpy (ΔH) is said to be an indication of the partitioning of solute in to the 

micellar pseudophase [253, 269] while a negative enthalpy indicates the occurrence 

of hydrogen bond breaking or formation between solutes and micelles showing an 

interaction between the solute and the micelles. It could also be an indication of solutes 

being transferred to micelles by a van der Waals interaction between them [253].    

The process of partitioning of solute in to micelles is said to be mainly enthalpically 

driven with a small contribution of entropy as reported by Terabe. However, Woodrow 

and Dorsey reported the opposite as per their results i.e. the partitioning process was 

entropically driven [253, 270]. 
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From Table (91), it can be concluded that for acetaminophen, the partitioning process 

is enthalpically driven with a small contribution of hydrophobic interaction (positive ΔS) 

where the drug appears to be deeply incorporated into the core of micelles (negative 

ΔCp and positive ΔH) within the temperature range (303-308 K). Within the range (313-

318 K) a decreased drug preference to the micelles is noted which is reflected by 

negative values of ΔS and ΔH within this range, which is consistent with the initial 

increase followed by the decrease in the Pmw values. As for the three drugs (caffeine, 

ibuprofen and theophylline) the partitioning process appears to be enthalpically driven 

with decreased binding to the micelles reflected by negative values of ΔH and ΔS 

within the temperature range (303-308 K). Within the range (313-318 K) an increased 

drug preference to the micelles is noted which is reflected by a switch of the negative 

ΔS and ΔH values to positive within this range, which is consistent with the initial 

decrease followed by the increase in the Pmw values. For ketoprofen, it appears to be 

deeply incorporated in the micellar pseudophase with the partitioning process being 

enthalpically driven which is reflected by the positive values of ΔH and ΔS and 

negative ΔCp confirming the transfer of the drug to the micellar core within the 

temperature range (303-318 K) which is consistent with the increase in the Pmw of 

ketoprofen over the temperature range (303-318 K). 

3.G.2. Conclusion 

The partitioning process of solutes into micelles of naturally occurring biosurfactant, 

such as NaDC, appears to be more complex than that of conventional synthetic 

surfactants which is evident from the nonlinear van’t Hoff plots. Bui reported that 

nonlinear van’t Hoff plots described the more complex partitioning process of solutes 

through lipid bilayers as in LEKC [253]. Additionally, Waters et al. found that the 

process of micelle formation compared well with properties of the complexes formed 

by substrates with proteins [268]. Accordingly, it can be concluded that there are many 

common findings between the micelle formation process and many physiological 

processes. Since one of the main advantages of MLC over alternative methods is the 

formation of a hydrophobic micellar interior mimicking the bilayer, this thermodynamic 

study could be confirmation that this MLC method fulfils this advantage to a great 

extent. In summary, MLC can be considered a successful approach to achieve the 

main aim of this work, i.e. to develop a method simulating drug absorption through the 

human intestinal membrane. 
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Chapter 4: Predicting Human Intestinal 
Absorption Using Spectrophotometry 

4. Introduction 

Cholanology is the science of bile acids and plays a very important role in 

biotechnology and the pharmaceutical industry. Such a role is attributed to the 

uniqueness of the bile salt structure having hydrophilic and hydrophobic binding sites 

that enables them to deliver both hydrophilic and hydrophobic drug entities. Among 

the various advantages of bile salts inside the human body is their capacity to 

solubilise and dissolve both soluble substances and nonpolar/lipidic substances such 

as cholesterol, phospholipids and monoglycerides by the formation of bile salt simple 

and mixed micelles with different structures and characteristics [242]. Based on these 

valuable characteristics, many investigations have been made regarding the effect of 

bile salt micelles on the dissolution and solubilisation of poorly water soluble drug 

molecules and thereby their effect on the oral administration of these drugs. 

Furthermore, other studies have utilised the solubilising capacity of bile salt micelles 

in the calculation of a micelle/aqueous partition coefficient of selected compounds 

through measurement of the extent of solubilisation of these drugs 

spectrophotometrically from the changes in drug absorbance [240, 271].  

The study of the absorption of poorly soluble drug molecules with bile salt micelles is 

thought to be advantageous for further investigation of bile salt-drug interactions yet 

is a field that has not been extensively investigated.  

Such studies could be helpful in overcoming drug induced liver injury (DILI) which is 

considered a major unresolved scientific problem [242]. Peterson et al. recently 

reported studies that have involved measuring the extent of drug dissolution or 

solubilisation in media (containing bile salt micellar systems) which closely resemble 

the reported physiological bile salts composition in the human intestine. The results of 

these studies suggest that the bile salt micellar system is a promising method for 

predicting in vivo drug solubilisation [272, 273].

 

 
 



    

 

 
 

 

 

 

 

 

 

CHAPTER 4 
Section (A) 

 
Predicting Human Intestinal Absorption Using 

solubilisation method 
(As published in Journal of Pharmaceutical Sciences in October 2016) 

See Appendix I 

 
 
 



    

180 
 

Section (A): Predicting human intestinal absorption through measurement of 

solubilisation 

In this section, the solubilising capacity of an increasing concentration of NaDC 

micelles in water for a selected number of drugs was used for the calculation of 

partition coefficients. 

4.A.1. Results and Discussion 

4.A.1.1. Solubilisation Measurement Method 

The micelle solubilisation of drugs can be expressed by what is called the solubilisation 

ratio (SR), which is calculated from the slope of the linear portion of the plot of the total 

drug concentration in solution at saturation against the total bile salt concentration 

above its CMC. For micelle solubilisation, the two-state model was assumed in 

Equation 34 as follows[240]:  

𝑆𝑅 = 𝑁𝐷 𝑁𝐵𝑆⁄          Eq. (34) 

Where ND is defined as the number of moles of drug in solution while NBS is defined 

as the number of moles of the bile salt in solution. 

Mole fraction solubilised (Xm) was calculated from (SR) which was obtained from the 

slope of the linear portion of the graph of total drug concentration versus the total 

NaDC concentration used in this work as shown in Equation 35.   

𝑋𝑚 = 𝑆𝑅 (1 + 𝑆𝑅)⁄     Eq. (35) 

Micelle-water partition coefficient (log Kxm/a) was calculated from the mole fraction of 

drug solubilised in the bile salt micelle (Xm) and the mole fraction aqueous solubility 

(Xa) (Eq. (36). For calculation of the mole fraction aqueous solubility (Xa), drug 

aqueous solubility data was extracted from literature. 

𝐾𝑥𝑚/𝑎 = 𝑋𝑚 𝑋𝑎⁄         Eq. (36) 

The solubilising effect of different concentrations of NaDC in water within the 

concentration range of (0.007-0.02 M) was investigated upon its addition to an excess 

amount of each of the drugs within the studied data set. Additionally, this solubilising 

effect was quantified and expressed as a solubilisation ratio by means of UV-

spectrophotometric determination of the amount of drug solubilised within the NaDC 

micelles and using the calibration plots previously constructed for each drug in each 

of the used NaDC concentrations (0.007, 0.009, 0.011, 0.013, 0.017 and 0.020 M).  
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The total concentration of solubilised drug by NaDC (mM) with the total NaDC 

concentration used for a selected number of drugs under investigation are shown in 

Figures 150-155 with their data listed in Tables 93-98. 

Figures 150-155 and Tables 93-98 show an increase in the amount of solubilised drug 

as the concentration of the bile salt used increased. 

Table 93: NaDC concentration (mM) against solubilised amitriptyline (mM). 
 

NaDC (mM) Solubilised Drug (mM) 

9 0.577 

11 0.865 

13 1.442 

17 2.596 

20 2.740 
 

Table 94: NaDC concentration (mM) against solubilised acetylsalicylic acid (mM). 
 

NaDC (mM) Solubilised Drug (mM) 

9 8.876 

11 10.624 

13 12.933 

17 15.392 

20 18.917 
 

Table 95: NaDC concentration (mM) against solubilised propranolol (mM). 
 

NaDC (mM) Solubilised Drug (mM) 

9 0.887 

11 1.272 

13 1.388 

17 2.005 

20 2.159 
 

Table 96: NaDC concentration in (mM) against solubilised flurbiprofen (mM). 
 

NaDC (mM) Solubilised Drug (mM) 

7 2.804 

9 3.296 

11 3.553 

13 3.570 

17 4.078 

20 4.233 
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Table 97: NaDC concentration (mM) against solubilised alprenolol (mM). 
 

NaDC (mM) Solubilised Drug (mM) 

7 0.630 

9 0.794 

11 0.818 

13 1.007 

17 1.400 
 

Table 98: NaDC concentration (mM) against solubilised terbutaline (mM). 
 

NaDC (mM) Solubilised Drug (mM) 

9 291.011 

13 322.633 

17 331.293 

20 359.972 
 

 

Figure 150: NaDC Concentration (mM) with solubilised alprenolol (mM). 
 

 

 

Figure 151: NaDC Concentration (mM) with solubilised amitriptyline (mM). 
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Figure 152: NaDC Concentration (mM) with solubilised acetylsalicylic acid (mM). 
 
 

 

Figure 153: NaDC Concentration in (mM) with solubilised flurbiprofen (mM). 
 
 
 

 

Figure 154: NaDC Concentration in (mM) with solubilised propranolol (mM). 
 

 
 
Figure 155: NaDC Concentration (mM) against solubilised terbutaline (mM). 
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Table 99: Calculated solubilisation ratio (SR), mole fraction solubilised (Xm), mole fraction 
aqueous solubility (Xa) and micelle/water partition coefficient (Kxm/a) for the 26 compounds 

 

Drug SR Xm Xa Log Kxm/a log Po/w
[184] 

Acetaminophen 2.569 0.720 4.94E-04 3.16 0.46 

Acetylsalicylic acid 0.881 0.468 9.98E-04 2.67 1.19 

Alprenolol 0.075 0.070 1.36E-05 3.71 3.10 

Amitriptyline 0.216 0.178 6.30E-07 5.45 4.92 

Caffeine 5.174 0.838 10.18 E-04 2.92 -0.07 

Carbamazepine 0.055 0.052 1.35E-06 4.59 2.45 

Cimetidine 1.240 0.554 6.69E-4 2.92 0.40 

Diclofenac 0.079 0.073 1.34E-07 5.74 4.51 

Diphenhydramine 5.867 1.206 2.16E-04 3.75 3.27 

Fenoprofen 0.075 0.070 2.79 E-06 4.40 3.10 

Fluconazole 0.040 0.039 5.88E-08 5.82 0.50 

Flurbiprofen 0.103 0.093 5.89E-07 5.20 4.16 

Gemfibrozil 0.056 0.053 2.00E-06 4.42 3.40 

Ibuprofen 0.129 0.114 5.97E-06 4.28 3.97 

Indomethacin 0.030 0.029 4.71 E-08 5.79 4.27 

Ketoprofen 0.141 0.123 3.61E-06 4.53 3.12 

Lidocaine 0.539 0.350 3.15E-04 3.05 2.44 

Mannitol 3.179 0.761 2.09E-02 1.56 -3.1 

Meloxicam 0.031 0.030 3.66E-07 4.92 3.43 

Naproxen 0.115 0.103 1.24E-06 4.92 3.18 

Nicotinic acid 3.520 0.779 1.2 E-02 1.81 0.36 

Phenylbutazone 0.090 0.083 8.40E-06 3.99 3.16 

Piroxicam 0.013 0.012 1.25 E-06 4.00 3.06 

Propranolol 0.117 0.104 4.28E-06 4.39 3.48 

Quinine 2.047 0.672 2.77E-05 4.38 3.44 

Terbutaline 5.780 0.853 1.67E-02 1.71 0.90 
 

A group of twenty-six drugs were analysed using this method for calculation of their 

micelle-water partition coefficient (log Kxm/a). A linear relationship can be seen between 

the total solubilised drug concentration and the total NaDC concentration used over 

the range (7-20 mM) for the majority of the drugs under investigation notwithstanding 

that some drugs showed nonlinear relationships at low or high concentrations of 

NaDC. This could be attributed to drug-drug interactions rather than drug-NaDC 

interactions if the drugs are known to self-associate [274].  

In a study involving an investigation of the solubilisation of steroids by taurocholate 

bile salt, it was observed that for all of the studied compounds the solubilising capacity 

of the bile salt was on the same order of magnitude while the solubilising capacity of 
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water for the same compounds varied widely. This proves that the hydrophobicity of 

these compounds is the driving force determining their solubilisation by the bile salt 

rather than their affinity for the bile salt micelles [271]. Additionally, it was noted by 

several authors that an increase in a compound’s lipophilicity increases its tendency 

for solubilisation by a surfactant where linear relationships were reported between 

lipophilicity, that can be represented by Po/w, and its micelle water partition coefficient. 

As a result, predictions of the increase in solubility can be made on the basis of 

aqueous solubility and partition coefficient [271]. 

Looking at the results obtained with this method it was observed that lipophilic 

compounds with a high log Po/w (representing the majority of the compounds in the 

dataset) showed high micelle-water partition coefficient (log Kxm/a) values while 

hydrophilic compounds with a low log Po/w (such as mannitol, nicotinic acid and 

terbutaline) had lower (log Kxm/a) values. However, some hydrophilic drugs with very 

small log Po/w values had a high log Kxm/a such as acetaminophen, cimetidine and 

fluconazole, this could be attributed to their low aqueous solubility compared with other 

hydrophilic compounds. 

Generally, for all compounds the concentration of the solubilised drug increased with 

the increase in the total NaDC concentration used which could be attributed to the full 

or partial incorporation of the drug molecule in the NaDC micellar hydrophobic core 

via strong hydrophobic interactions with the NaDC hydrophobic steroid nucleus 

(mainly for neutral compounds) and/or polar/electrostatic interactions for charged 

compounds. Compared with conventional surfactants, bile salts especially dihydroxy-

based structures have a more solubilising capacity because of the presence of 

hydroxyl groups in the surface of the micelles which contributes to reducing the net 

surface charge on the micelles. This subsequently reduces the electrostatic repulsion 

between the negatively charged drug molecules and the micelles [109].  

4.A.2. Statistical Modelling 

Calculating log Kxm/a from the solubilisation ratio (SR), other molecular descriptors 

such as molecular weight (Mwt), polar surface area (PSA), freely rotating bonds (FRB), 

molar volume (VM), dissociation constant (pKa), aqueous solubility (Sw), number of 

hydrogen bond donors (nHD) and number of hydrogen bond acceptors (nHA) were 

collected from literature to be used alongside the experimentally determined log Kxm/a 

for the statistical modelling of human intestinal absorption (HIA) and permeability 
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coefficients obtained by (PAMPA and Caco-2) in vitro methods. Lipophilicity 

represented by log Kxm/a experimentally obtained from this work using the solubility 

method was combined with data in the following sections and included as a part of the 

summary data as shown in Table 103.  

4.A.2.1. Statistical Modelling of Human Intestinal absorption (HIA) 

Analysing the experimentally obtained log Kxm/a values alongside other molecular 

descriptors against the reported %HIA values enabled the application of simple linear 

regression and therefore the successful inclusion of log Kxm/a in a model equation with 

%HIA experimental values for orally administered drugs (as shown in Table 100). The 

generated model allows the prediction of the %HIA of any compound when its solubility 

is experimentally determined in a NaDC simple micellar system in water with a 

prediction ability of 82 %. The model obtained for the prediction of %HIA is shown by 

Equation 37 as follows: 

logit HIA = -0.919 + 0.4618 log Kxm/a                Eq. (37) 

Twenty drugs were used in the development of the final model. The model’s R2 = 84.92 

%, R2 adjust.= 84.09 % , R2
PRED = 82.32 %, S= 0.236 

A 95 % confidence interval for log Kxm/a is given by (0.365, 0.558), t-statistic and 

standardised coefficient of log Kxm/a are 10.069 (p<0.05) and 0.922 respectively 

suggesting statistical significance of log Kxm/a as a predictor. Also the F-ratio of the 

overall model is statistically significant, F= 101.388 and P value 0.000 (p<0.05). 

Absence of autocorrelation in the current regression model was proved by a Durbin- 

Watson statistic value of 2.309. Figure 156 shows no marked relationship between 

residuals and predicted values. A plot of literature values of %HIA against their 

corresponding predicted values can be seen in Figure 157. Four compounds 

(acetylsalicylic acid, fenoprofen, indomethacin and piroxicam) were used in testing the 

validation of the generated model. The model was able to successfully predict the 

%HIA for the compounds in the test set within a minimum of 0.63 % and a maximum 

of 9.6 % difference between the predicted %HIA and the published %HIA.  
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Figure 156: Residual plot for optimal logit HIA  regression model. 
 
 
 
Table 100: Experimental micelle/water partition coefficient (log Kxm/a), predicted %HIA 
(%HIApred.) and experimentally determined published literature %HIA (% HIAExpt.) values 
for the compounds analysed including four validation compounds (*). 

 
Drug % HIAExpt. % HIAPred. 

Acetaminophen 80.00[205]  77.71 

Acetylsalicylic acid* 68.00[245] 67.37 

Alprenolol 93.00[205] 86.18 

Amitriptyline 95.00[209]  97.54 

Carbamazepine 97.00[243]   94.06 

Cimetidine 68.00[244]   72.86 

Diclofenac 99.00[208]  98.17 

Diphenhydramine 72.00[207]  86.63 

Fenoprofen* 85.00[206] 92.83 

Fluconazole 97.50[205] 98.32 

Flurbiprofen 95.00[210]  96.81 

Gemfibrozil 95.00[207]  93.01 

Ibuprofen 85.00[208, 275]  91.97 

Indomethacin* 100.00[205]  98.26 

Ketoprofen 95.00[205, 210]  93.74 

Lidocaine 75.00[206, 207, 230]  75.54 

Mannitol 38.67[276] 38.81 

Meloxicam 97.00[207] 95.74 

Naproxen 97.67[205]  95.75 

Phenylbutazone 90.00[245]   89.37 

Piroxicam* 99.00 [205] 89.40 

Propranolol 95.00[205]  92.75 

Quinine 85.00[246]   92.73 

Terbutaline 44.00[216, 275]  42.55 
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Figure 157: Regression plot of Literature %HIA against predicted %HIA values. 

4.A.2.2. Modelling of permeability coefficients obtained from PAMPA 

The model obtained for the prediction of PAMPA log Po is shown in Equation (38): 

 
                       log Po = - 8.910 + 1.414 log Kxm/a          Eq. (38) 

Seventeen drugs were used in the development of the final model. The model’s R2 

=58.70 %, R2
adjust.= 55.95 % , R2

PRED = 48.22 %, S= 1.101 

A 95 % confidence interval for log Kxm/a is given by (0.761, 2.067), t-statistic and 

standardised coefficient of log Kxm/a are 4.617 (p<0.05) and 0.766 respectively 

suggesting statistical significance of log Kxm/a as a predictor. Also the F-ratio of the 

overall model is statistically significant, F= 21.318 and P value 0.000 (p<0.05). 

The close agreement of the values of R2
adjust. & R2

PRED indicates that the model does 

not over-fit the data. The residual analysis did not detect any relationship between 

residuals and predicted values as shown in Figure 158. The literature and predicted 

values of PAMPA permeability coefficients are listed in Table 101 and plotted in Figure 

159.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 158: Residual plot for optimal PAMPA regression model. 
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Table 101: Experimental and predicted values for PAMPA logPo. 

Drug Expt. PAMPA log Po
[215]  Pred. PAMPA log Po  

Acetaminophen -5.81 -4.44 

Acetylsalicylic acid -4.45 -5.13 

Caffeine -5.55 -4.79 

Carbamazepine -3.73 -2.42 

Cimetidine -6.20 -4.78 

Diclofenac -1.37 -0.80 

Flurbiprofen -1.78 -1.56 

Gemfibrozil -1.59 -2.65 

Ibuprofen -2.11 -2.85 

Indomethacin -1.65 -1.35 

Ketoprofen -2.67 -2.50 

Lidocaine -1.42 -3.41 

Meloxicam -2.86 -1.96 

Naproxen -2.30 -1.95 

Phenylbutazone -1.96 -3.26 

Piroxicam -3.32 -3.26 

Quinine -1.05 -2.71 

 

 

Figure 159: Plot of experimental vs. predicted log Po values. 

4.A.2.3. Modelling of permeability coefficients obtained from Caco-2 Peff.   

The model obtained for the prediction of Caco-2 Peff. is shown in Equation (39): 

log Peff. = - 3.7871 - 0.1643 log Kxm/a          Eq. (39) 

 
Fifteen drugs were used in the development of the final model. The model’s R2 = 82.89 

%, R2 adjust.= 81.57 % , R2
PRED = 78.35 %, S= 0.065 

A 95 % confidence interval for log Kxm/a is given by (-0.209, -0.120), t-statistic and 

standardised coefficient of log Kxm/a are -7.935 (p<0.05) and -0.910 respectively 
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suggesting statistical significance of log Kxm/a as a predictor. Also the F-ratio of the 

overall model is statistically significant, F= 62.96 and P value 0.000 (p<0.05). 

Figure 160 shows no marked relationship between residuals and predicted values. 

Table 102 lists the experimental and predicted values of Caco-2 permeability 

coefficient while a plot of these values against each other is given by Figure 161. 

 

 
 

Figure 160: Residual plot for optimal Caco-2 regression model. 

 

Table 102: Experimental and predicted values for Caco-2 log Peff.. 

Drug Expt. Caco-2 log Peff.  Pred. Caco-2 log Peff.  

Acetaminophen -4.34[215] -4.31 
Caffeine -4.30[277] -4.27 
Carbamazepine -4.64[278] -4.54 
Diclofenac -4.75[56] -4.73 
Fluconazole -4.67[56, 217] -4.74 
Flurbiprofen -4.70[230] -4.64 
Gemfibrozil -4.41[246] -4.51 
Ibuprofen -4.43[56, 277] -4.49 
Indomethacin -4.69[277] -4.67 
Ketoprofen -4.48[56] -4.53 
Lidocaine -4.36[56] -4.43 
Meloxicam -4.70[277] -4.60 
Naproxen -4.58[56, 246] -4.60 
Piroxicam -4.45[60] -4.44 
Quinine -4.50[246] -4.51 
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Figure 161: Plot of experimental vs predicted Caco-2 log Peff. values. 

 
In summary, the predictive ability of the obtained models for the prediction of the in 

vitro permeability coefficients for PAMPA and Caco-2 methods was not as high as that 

of the obtained model for the prediction of human intestinal absorption (HIA) which 

showed that the method is more closely related to the physiological human intestinal 

environment.  This is a very promising result, confirming the potential applicability of 

the micellar system.
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Table 103: A summary of molecular descriptors for the selected drugs analysed by solubility method and the reported experimental values of 
%HIA and permeability coefficients of PAMPA and Caco-2 tests.   

NI: value not included in training set. 

Drug Log Kxm/a LogP o/w
[184] Mwt[218] pKa

[184] Sw 
[184] HD[218] HA[218] RB[218] PSA[219] VM

[218] Log Po [215] Log Peff.   %HIA 

Acetaminophen 3.16 0.46 151.20 9.9[220] 4.15 2 3 1 49.3 131.1 -5.81 -4.34[215] 80[205] 

Acetylsalicylic acid 2.67 1.19 180.15 3.41 10[219] 1 4 3 63.6 139.6 -4.45 NI 68[245] 

Alprenolol 3.71 3.10 249.35 9[279] 0.547 2 3 8 41.5 247.5 NI NI 93[205] 

Amitriptyline 5.45 4.92 277.40 9.4 0.00971 0 1 3 3.2 257.8 NI NI 95[209] 

Caffeine 2.92 -0.07 194.20 14[222] 11 0 6 0 58.4 133.4 -5.55 -4.30[277] NI 

Carbamazepine 4.59 2.45 236.36 13.9 0.0177 2 3 0 46.3 186.6 -3.73 -4.64[278] 97[243]   

Cimetidine 2.92 0.40 252.34 6.8 9.38 3 6 8 114 198.2 -6.2 NI 68[244]   

Diclofenac 5.74 4.51 296.20 4.15 0.00237 2 3 4 49.3 206.8 -1.37 -4.75[56] 99[208] 

Diphenhydramine 3.75 3.27 255.36 8.98 3.06 0 2 6 12.5 249.2 NI NI 72[207] 

Fenoprofen 4.40 3.10 242.27 4.5 0.0811 1 3 4 46.5 204.7 NI NI 85[206] 

Fluconazole 5.82 0.40 306.27 12.71 0.001 1 7 5 81.6 205.3 NI -4.673[56, 217] 97.5[205] 

Flurbiprofen 5.20 4.16 244.26 4.42 0.008 1 2 3 37.3 203.6 -1.78 -4.697[230] 95[210] 

Gemfibrozil 4.42 3.40 250.33 4.5[219] 0.0278 1 3 6 46.5 239.7 -1.59 -4.407[246] 95[207] 

Ibuprofen 4.28 3.97 206.30 5.2[223] 0.0684 1 2 4 37.3 200.3 -2.11 -4.430[56, 277] 85[208, 275] 

Indomethacin 5.35 4.27 357.79 4.5 0.000937 1 5 4 68.5 269.6 -1.65 -4.690[277] 100[205] 

Ketoprofen 4.53 3.12 254.30 3.88 0.051 1 3 4 54.4 212.2 -2.67 -4.48[56] 95[205, 210] 

Lidocaine 3.89 2.44 234.40 7.9[224] 4.1 1 3 5 32.3 238.8 -1.42 -4.36[56] 75[206, 207, 230] 

Mannitol 1.56 -3.10 182.17 13.5 216 6 6 5 121 114.1 NI NI 38.67[276] 

Meloxicam 4.92 3.43 351.40 4.08 0.00715 2 7 2 136 220.3 -2.86 -4.70[277] 97[207] 

Naproxen 4.92 3.18 230.26 4.15 0.0159 1 3 3 46.5 192.3 -2.3 -4.584[56, 246] 97.67[205] 

Nicotinic acid 1.81 0.36 123.11 4.75 83.1 1 3 1 50.2 95.2 NI NI NI 

phenylbutazone 3.99 3.16 308.37 4.4[225] 0.7[219] 0 4 5 40.6 262.8 -1.96 NI 90[245] 

Piroxicam 4.00 3.06 331.35 6.3 0.023 2 7 2 108 222.8 -3.32 -4.450[60] 99[205] 

Propranolol 4.39 3.48 259.34 9.5[226] 0.0617 2 3 6 41.5 237.2 NI NI 95[205] 

Quinine 4.38 3.44 324.42 9.05 0.5 1 4 4 45.6 266.4 -1.05 -4.498[246] 85[246]   

Terbutaline 1.71 0.90 225.28 9.76 213 4 4 4 72.7 192.3 NI NI 44[216, 275] 
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4.A.3. Conclusion 

Overall, the solubilisation method, i.e. using a simple NaDC micellar system in water, 

was successful in the development of a model predicting human intestinal absorption 

of compounds via calculation of the micelle/water partition coefficient. The obtained 

model has been shown to be reliable for the prediction of human intestinal absorption. 

This simple method is economic, robust and avoids the disadvantages of other 

methods using animals based experiments.  
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Section (B): Predicting human intestinal absorption using the double reciprocal 

method  

This section presents an alternative UV-based spectrophotometric method for the 

calculation of partition coefficients for a group of compounds via the determination and 

quantitation of spectroscopic changes induced in aqueous solutions of drugs, 

prepared at their minimal concentrations, when added to bile salt solutions of 

concentrations prepared around the CMC. Therefore, this method like the previously 

mentioned method in section A, is based on the effects of the bile salt monomers and 

micelles on the drug molecules present in solution.  

4.B.1. Results and Discussion 

4B.1.1. Double Reciprocal method 

Using the double reciprocal approach presents two main benefits. Firstly there is no 

need for the physical separation of the aqueous and micellar phases and secondly, 

prevents changes of the equilibria in solution [110]. The method is based on the UV-

spectrophotometric measurement of spectroscopic changes occurring for the studied 

drugs as a result of drug-NaDC (monomer and micelle) interactions upon the addition 

of the drug solutions to different NaDC solutions. These were prepared in a 

concentration range of (0.0005-0.0095 M) followed by incubation of the resulting 

solutions in the dark at 25 oC for 12 hours. The drug solutions were prepared at 

minimal concentrations to ensure that no self-micellisation of drugs took place. 

The double reciprocal method was used in the calculation of partition coefficients of 

different compounds by fitting the following equation (Eq.(40)) to the experimental data  

[110]. 

(𝐴𝑤 − 𝐴𝑖)−1 = (𝐴𝑤 − 𝐴𝑚)−1 +
1

(A𝑤−A𝑚)𝐾𝑝
 [𝑆𝑚]−1        Eq. (40) 

Where: 

Ai: Sum of absorbencies due to free and micelle bound forms of a drug. 

Aw: The absorbance of the free form of a drug. 

Am: The absorbance of the micelle bound form of a drug. 

Kp: Partition coefficient of the drug. 

[Sm]: Micellar concentration which is equal to ST – CMC (ST: total concentration of a 

drug, CMC: critical micelle concentration of the surfactant used). 
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From the slope and intercept of the plots of (Aw-Ai)-1 against [Sm]-1 (Figures 162-166), 

Tables 104-108), partition coefficient (log Kp) was calculated where log Kp=log 

(intercept/slope). 

According to this method, there was no change in the wavelength of maximum 

absorption of the studied drugs at NaDC concentrations higher than the CMC. 

However, the observed absorbance (Ai) was found to decrease as the bile salt 

concentration increased. At NaDC concentrations below the CMC, values of (Ai) were 

found to increase with the increase in NaDC concentration until reaching the CMC. 

This was found to take place for dihydroxy bile salts (NaDC) while no change in the 

value of Ai occurred for trihydroxy bile salts and was equal to that observed in the 

absence of bile salt. As a result, in this work using NaDC as a bile salt, the value of Aw 

used in Equation 40 was not the value of absorbance observed in the absence of 

NaDC but the value observed at the CMC. Therefore, the technique provided 

compensation for any alterations in the molar extinction coefficients (ɛ) because of the 

formed (1:1) complexes of drug/bile salt monomer therefore confirming that further 

alterations in ɛ above the CMC were related to effects resulting from incorporation or 

aggregation of drug in to the micelles.    

Table 104: [Sm]-1 and (Aw-Ai)-1 values for amitriptyline. 
  

[Sm]-1 (Aw-Ai)-1 

500 7.605 

400 7.458 

333.3333 7.163 

222.2222 6.400   
Table 105: [Sm]-1 and (Aw-Ai)-1 values for phenylbutazone. 
 

[Sm]-1 (Aw-Ai)-1 

1000 25.158 

500 18.848 

400 15.947 

333.3333 15.185 

222.2222 15.150 
 
Table 106: [Sm]-1 and (Aw-Ai)-1 values for lidocaine. 
 

[Sm]-1 (Aw-Ai)-1 

500 45.539 

400 28.159 

333.3333 26.208 

222.2222 15.224 
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Table 107: [Sm]-1 and (Aw-Ai)-1 values for salicylic acid. 
 

[Sm]-1 (Aw-Ai)-1 

500 200.759 

400 110.021 

333.3333 85.149 

222.2222 68.421 
 
Table 108: [Sm]-1 and (Aw-Ai)-1 values for theophylline. 
 

[Sm]-1 (Aw-Ai)-1 

1000 148.152 

500 59.769 

400 48.214 

333.3333 44.701 

222.2222 68.421 

 

 

Figure 162: Double reciprocal plot for determination of Kp of amitriptyline.  
 
 

  
Figure 163: Double reciprocal plot for determination of Kp of phenylbutazone. 
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Figure 164: Double reciprocal plot for determination of Kp of lidocaine. 
 

 
 
Figure 165: Double reciprocal plot for determination of Kp of salicylic acid. 
 

 
 
Figure 166: Double reciprocal plot for determination of Kp of theophylline. 
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Calculated values were considered along with values from the following sections, as 

summarised in Table 112. Overall, log Kp for most of the compounds was on the same 

order of magnitude as log Po/w. However, the log Kp values of lipophilic compounds 

with a log Po/w in the range of 4.92-2.26, i.e. amitriptyline, propranolol, phenylbutazone, 

fenoprofen, piroxicam, carbamazepine, lidocaine, salicylic acid were found to increase 

with the increase in their log Po/w values. Conversely, some anionic lipophilic 

compounds of relatively high log Po/w (gemfibrozil, indomethacin, ibuprofen, 

diclofenac, meloxicam, ketoprofen, flurbiprofen and alprenolol) were found to have 

lower than expected log Kp values which could be attributed to strong repulsion forces 

between the negatively charged drug molecules and the negatively charged NaDC 

molecules. Diphenhydramine (a lipophilic compound) with a log Po/w value of 3.27 had 

a lower than expected log Kp value that might be attributed to the formation of stable 

(1:1) complexes with NaDC monomers by hydrophobic association and electrostatic 

attraction between the positively charged diphenhydramine molecules and the 

negatively charged NaDC monomers. The formed complex could be slowly breaking 

with the increase in NaDC concentration above the CMC. Generally, the log Kp of 

polar/hydrophilic compounds (theophylline, benzoic acid, cimetidine, fluconazole) was 

lower than that of lipophilic compounds. Moreover, some neutral poplar compounds 

had higher than expected log Kp values due to their low molecular weight (151.2, 

123.1, 194.2 g/mol) for acetaminophen, nicotinic acid and caffeine respectively.  

4.B.2. Statistical Modelling 

A number of molecular descriptors such as molecular weight (Mwt), polar surface area 

(PSA), freely rotating bonds (FRB), molar volume (VM), dissociation constant (pKa), 

aqueous solubility (Sw), number of hydrogen bond donors (nHD) and number of 

hydrogen bond acceptors (nHA) were collected from literature and used alongside 

experimentally determined log Kp for the statistical modelling of human intestinal 

absorption (HIA) and permeability coefficients obtained by (PAMPA and Caco-2) in 

vitro methods.  

4.B.2.1. Statistical Modelling of Human Intestinal absorption (HIA) 

Experimentally obtained log Kp values, along with other molecular descriptors, were 

statistically analysed against the reported %HIA values to give a model for prediction 

of %HIA using multiple linear regression. Experimentally determined log Kp of the 
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studied compounds with their reported experimental values of %HIA are listed in Table 

109.   

The model obtained for the prediction of %HIA is shown in Equation 41: 

 

%HIA = 92.15 + 0.2295 PSA – 5.88 log Kp          Eq. (41) 

Sixteen drugs were used in the development of the final model. The model’s R2 = 74.77 

%, R2 adjust.= 70.89 % , R2
PRED = 61.90 %, S= 2.413 

A 95 % confidence interval for log Kp is given by (-9.91, -1.855), t-statistic and 

standardised coefficient of log Kp are -3.16 (p<0.05) and -0.455 respectively 

suggesting statistical significance of log Kp as a predictor. Also the F-ratio of the overall 

model is statistically significant, F= 19.28 and P value 0.000 (p<0.05). Absence of 

autocorrelation in the current regression model was proved by a Durbin- Watson 

statistic value of 2.062. Figure 167 shows no marked relationship between residuals 

and predicted values while Figure 168 summarises the model. 

As shown in Table 109, eight compounds were used to test the model. The model was 

able to predict six of these within a range of 0.2 % - 8.36 % difference between their 

reported and predicted %HIA. However, two of the validation drugs were over 

predicted by the model (diphenhydramine and meloxicam) suggesting that the model 

is over predicting compounds where %HIA < 77 % or > 97 % which could be a 

limitation for the obtained model. A plot of literature %HIA values against the predicted 

values by the obtained model is shown in Figure 169.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 167: Residual plot for optimal %HIA regression model. 
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Figure 168: Partial regression plots of experimental %HIA values against log Kp and PSA. 
 
 
 

 

Figure 169: Regression plot of predicted %HIA values against literature %HIA. 
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Table 109: Experimental partition coefficient (log Kp), predicted %HIA 
(%HIApred.) and experimentally determined published literature %HIA 
(%HIAExpt.) values for the compounds analysed including eight validation 
compounds (*). 

 

Drug %HIA Expt. %HIA Pred. 

Acetaminophen 90.00[205] 90.22 

Acetylsalicylic acid* 95.00[33, 208] 94.80 

Alprenolol 93.00[205] 94.27 

Amitriptyline* 77.50[62, 210] 74.64 

Caffeine* 99.00[230] 92.70 

Carbamazepine 89.00[63, 67, 280] 89.67 

Cimetidine* 100.00[246]   108.36 

Diclofenac 90.00[210] 91.63 

Diphenhydramine* 72.00[205] 90.35 

Fenoprofen 85.00[206] 88.33 

Fluconazole 100.00[205] 101.86 

Flurbiprofen 92.00[247] 91.95 

Gemfibrozil 95.00[207] 90.44 

Ibuprofen 85.00[207] 88.62 

Indomethacin 98.00[245] 95.55 

Ketoprofen 93.50[63, 210, 280] 94.26 

Lidocaine 90.00[210] 88.13 

Meloxicam* 97.00[207] 111.74 

Nicotinic acid 91.00[230] 90.57 

Phenylbutazone* 90.00[245] 84.34 

Piroxicam* 99.00[252] 103.52 

Propranolol 90.00[205] 88.25 

Salicylic acid 99.00[247] 96.06 

Theophylline 96.00[231] 96.68 
 

4.B.2.2. Modelling of permeability coefficients obtained from PAMPA 

The model obtained for the prediction of PAMPA log Po is shown in Equation 42: 

log Po = 3.29 – 1.015 HD – 1.98 log Kp – 0.2091 Sw      Eq. (42) 

 
Seventeen drugs were used in the development of the final model. The model’s R2 = 

74.19 %, R2
adjust.= 68.66 % , R2

PRED = 55.11 %, S= 0.999 

A 95 % confidence interval for log Kp is given by (-3.562, -0.399), t-statistic and 

standardised coefficient of log Kp are -2.69 (p<0.05) and -0.403 respectively 

suggesting statistical significance of log Kp as a predictor. Also the F-ratio of the overall 

model is statistically significant, F= 13.41 and P value 0.000 (p<0.05). 
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The close agreement of the values of R2
adjust. & R2

PRED indicates that the model does 

not over-fit the data. The residual analysis did not detect any relationship between 

residuals and predicted values as shown in Figure 170. The model is shown in Figure 

171. Experimental and predicted values of PAMPA permeability coefficients are given 

in Table 110. Also, the plot of these experimental values against their corresponding 

predicted values is shown in Figure 172.  

 

 

 

 

 

 

 

 

 Figure 170: Residual plot for optimal PAMPA regression model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 171: Partial regression plots of experimental PAMPA log Po values against log    Kp,  Sw  
and HD. 
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Table 110: Experimental and predicted values for PAMPA logPo. 

Drug Expt. PAMPA log Po
[215] Pred. PAMPA log Po  

Acetaminophen -5.81 -6.13 

Acetylsalicylic acid -4.45 -3.84 

Alprenolol 0.02 -1.35 

Benzoic acid -3.94 -2.95 

Caffeine  -5.55 -5.56 

Carbamazepine -3.73 -3.20 

Cimetidine -6.20 -5.07 

Diclofenac -1.37 -2.73 

Flurbiprofen -1.78 -0.68 

Gemfibrozil -1.59 -1.92 

Ibuprofen -1.15[64] -1.81 

Indomethacin -1.65 -1.88 

Ketoprofen -2.43[64] -1.23 

Lidocaine -1.42 -1.63 

Meloxicam -2.86 -2.66 

Phenylbutazone -1.96 -2.63 

Piroxicam -4.23[281] -3.27 

Salicylic acid -2.64 -4.23 

 

 

Figure 172: Plot of experimental vs. predicted log Po values. 

4.B.2.3. Modelling of permeability coefficients obtained from Caco-2 Peff.   

The model obtained for the prediction of Caco-2 Peff. is shown in Equation 43: 

log Peff. = - 5.301 + 0.3585 log Kp + 0.003155 VM – 0.002148 Mwt      Eq. (43) 

 
Seventeen drugs were used in the development of the final model. The model’s R2 = 

85.27 %, R2 adjust.= 81.25 % , R2
PRED = 74.11 %, S= 0.059 

A 95 % confidence interval for log Kp is given by (0.218, 0.499), t-statistic and 

standardised coefficient of log Kp are 5.62 (p<0.05) and 0.657 respectively suggesting 

y = 0.7419x - 0.7563
R² = 0.7419
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statistical significance of log Kp as a predictor. Also the F-ratio of the overall model is 

statistically significant, F=21.23 and P value 0.000 (p<0.05). 

Figure 173 shows no marked relationship between residuals and predicted values 

while Figure 174 summarises the model. As shown in Table 111, two compounds were 

used to test the obtained model. The model was able to successfully predict Caco-2 

log Peff. of the test compounds. Figure 175 shows a plot of literature values of Caco-2 

permeability coefficients against their corresponding predicted values obtained by the 

model. 

 

 

 

 

 

 

 

 

 
 
 

Figure 173: Residual plot for optimal Caco-2 regression model. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 174: Partial regression plots of experimental Caco-2 log Peff. values against log Kp, VM 

and Mwt. 
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Table 111: Experimental and predicted values for Caco-2 log Peff.. 

 

Drug logPeff. Expt. logPeff. Pred. 

Acetaminophen -4.44[56] -4.41 

Caffeine  -4.51[63] -4.51 

Carbamazepine -4.38[56] -4.42 

Cimetidine -4.52[249] -4.61 

Diclofenac -4.491[56, 246] -4.56 

Fenoprofen* -4.95[230] -4.29 

Fluconazole -4.82[56] -4.76 

Flurbiprofen -4.70[230] -4.65 

Gemfibrozil -4.41[246] -4.33 

Ibuprofen -4.38[246] -4.38 

Indomethacin -4.43[246] -4.47 

Ketoprofen -4.48[56] -4.55 

Lidocaine -4.36[56] -4.35 

Meloxicam -4.71[56] -4.65 

Phenylbutazone* -5.00[250] -4.09 

Piroxicam -4.52[246] -4.49 

Theophylline -4.61[56] -4.61 

The asterisk (*) indicates the validation compounds.  

 

 

Figure 175: Plot of experimental vs predicted Caco-2 log Peff. values. 
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Table 112: A summary of molecular descriptors for the selected drugs analysed by double reciprocal method and the reported experimental 

values of %HIA and permeability coefficients of PAMPA and Caco-2 tests.   

NI: value not included in training set. 

Drug Log Kp Log P o/w
[184] Mwt[218] pKa 

[184] Sw 
[184] HD[218] HA[218] FRB[218] PSA[219] VM

[218] log Po
[215] Log Peff.  %HIA  

Acetaminophen 2.25 0.46 151.20 9.38 14 2 3 1 49.3 131.1 -5.81 -4.44[56] 90.00[205] 

Acetylsalicylic acid 2.03 1.19 180.15 3.49 10[219] 1 4 3 63.6 139.6 -4.45 NI 95.00[33, 208] 

Alprenolol 1.26 3.1 249.35 9[279] 0.547 2 3 8 41.5 247.5 0.02 NI 93.00[205] 

Amitriptyline 3.10 4.92 277.40 9.4 0.00971 0 1 3 3.2 257.8 NI NI 77.50[62, 210] 

Benzoic acid 1.89 1.87 122.12 4.19 7.08 1 2 1 37.3 102.0 -3.94 NI NI 

Caffeine 2.19 -0.07 194.20 14[222] 21.6 0 6 0 58.4 133.4 -5.55 -4.51[63] 99.00[230] 

Carbamazepine 2.23 2.45 236.36 13.9 0.21[184, 282] 2 3 0 46.3 186.6 -3.73 -4.379[56] 89.00[63, 67, 280] 

Cimetidine 1.69 0.4 252.34 6.8 9.38 3 6 8 114 198.2 -6.2 -4.52[249] 100.00[246]   

Diclofenac 2.01 4.51 296.20 4.15 0.00237 2 3 4 49.3 206.8 -1.37 -4.4905[56, 246] 90.00[210] 

Diphenhydramine 0.79 3.27 255.36 8.98 3.06 0 2 6 12.5 249.2 NI NI 72.00[205] 

Fenoprofen 2.46 3.1 242.27 4.5 0.033[218] 1 3 4 46.5 204.7 NI -4.947[230] 85.00[206] 

Fluconazole 1.53 0.4 306.27 12.71 9[283] 1 7 5 81.6 205.3 NI -4.82[56] 100.00[205] 

Flurbiprofen 1.49 4.16 244.26 4.42 0.008 1 2 3 37.3 203.6 -1.78 -4.697[230] 92.00[247] 

Gemfibrozil 2.11 3.4 250.33 4.5[219] 0.13[284] 1 3 6 46.5 239.7 -1.59 -4.407[246] 95.00[207] 

Ibuprofen 2.06 3.97 206.30 4.91 0.0684 1 2 4 37.3 200.3 -1.15[64] -4.377[246] 85.00[207] 

Indomethacin 2.10 4.27 357.79 4.5 0.000937 1 5 4 68.5 269.6 -1.65 -4.430[246] 98.00[245] 

Ketoprofen 1.76 3.12 254.30 4.45 0.051 1 3 4 54.4 212.2 -2.43[64] -4.48[56] 93.50[63, 210, 280] 

Lidocaine 1.94 2.44 234.40 8.01 0.2337[285] 1 3 5 32.3 238.8 -1.42 -4.36[56] 90.00[210] 

Meloxicam 1.98 3.43 351.40 4.08 0.00715 2 7 2 136 220.3 -2.86 -4.71[56] 97.00[207] 

Nicotinic acid 2.23 0.36 123.11 4.75 83.1 1 3 1 50.2 95.2 NI NI 91.00[205, 230] 

Phenylbutazone 2.91 3.16 308.37 4.5 0.7[219] 0 4 5 40.6 262.8 -1.96 -4.998[250] 90.00[245] 

Piroxicam 2.28 3.06 331.35 6.3 0.023 2 7 2 108 222.8 -4.227[281] -4.518[246] 99.00[252] 

Propranolol 2.28 3.48 259.34 9.42 0.0617 2 3 6 41.5 237.2 NI NI 90.00[205] 

Salicylic acid 1.58 2.26 138.12 2.97 11.3 2 3 1 57.5 100.4 -2.64 NI 99.00[247] 

Theophylline 1.93 -0.02 180.16 8.81 22.9 1 6 0 69.3 122.9 NI -4.61[56] 96.00[231] 
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4.B.3. Conclusion 

In summary, the double reciprocal method is considered to be a simple, rapid and cost 

effective method for the determination of partition coefficients that could be used in the 

prediction of human intestinal absorption if may be more compounds were included in 

the model development. Also the models obtained from the partition coefficients 

calculated by this method were found to be good for prediction of the Caco-2 

permeability coefficient and to a lesser extent predictive for PAMPA permeability 

coefficients. However, the main finding from this work is that the double reciprocal 

method can be considered a suitable in vitro system for predicting in vivo intestinal 

absorption. 
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Chapter 5: Predicting Human Intestinal 
Absorption Using bile salt hydrogels 

5. Introduction 

A branch of smart chemistry is supramolecular self-assembly which is concerned with 

chemical systems formed from a distinct number of assembled molecular subunits. 

Developing self-assembling small molecular hydrogels is considered an important 

example of supramolecular self-assembly which has been given significant attention 

by soft-material research because of their possible applications in a wide variety of 

fields such as drug delivery, pharmaceutical formulations, biomaterials, cosmetics and 

sensors.  

Hydrogels consisting of biocompatible fragments including cholic acid derivatives, 

amino acid derivatives, peptides and carbohydrate systems have received special 

attention because they can be safely used in biomedical applications. One group of 

cholic acid derivatives are bile salts which are biosurfactants possessing an 

amphiphilic structure with steroidal backbone, a unique structure that distinguishes 

this class of surfactants from conventional synthetic surfactants. As a result of this 

unique structure, bile salts are known to self-assemble giving aggregates with 

characteristic properties having important biological functions such as cholesterol 

solubilisation, absorption of dietary fat and fat soluble vitamins in addition to removal 

of fatty acids resulting from pancreatic hydrolysis. There has been a growing interest 

in studying the physiological importance of bile salts reflected in a greater number of 

recent publications. It was found that certain bile salts such as NaDC, were able to 

self-assemble into gels in water which is a process that was found to be driven by the 

balance of van der Waals forces, H-bonding, hydrophobic interaction and steric effect. 

The hydrogels formed by bile salts are extremely different from polymeric gels which 

are basically formed as a result of chemical cross-linking. Bile salt hydrogels are 

formed through a network of intertwined fibrils developed by massive cycles of bile salt 

molecules brought together by noncovalent interactions particularly the H-bonds. NaCl 

is considered to have a pronounced influence on promoting the gelation of NaDC 

solutions forming supramolecular hydrogels with superior gelation capability and 

mechanical force due to the small radius of hydration of the ions of NaCl [286, 287]. 
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Both the sodium and the chloride ions are believed to play an important role in the 

formation of the hydrogels by decreasing the electrostatic repulsion between the polar 

heads of NaDC molecules therefore contributing to the compression of the thickness 

of the electric double layer. Sodium ions form weak coordination bonds with 

carboxylate groups, stimulating connection of the polar head of carboxyl groups via H-

bonding. This leads to the formation of a more regular crystalline interface thus shifting 

the growth of aggregates along one direction towards fibrous aggregate formation. 

Furthermore, the chloride ions play a role in the hydrogel formation as well as the weak 

electrostatic interaction which is thought to exist between the sodium salt anion 

(chloride ions) and the α-methylene attached to the carboxylate group of NaDC, as it 

is changed to a weak positive charge by the presence of cations [286]. NaDC solutions 

were reported to give highly viscous gels by the formation of polymer-like aggregates 

at pH values less than 7.8 but not above 8 [287, 288]. Figure 176 shows a schematic 

representation of the formed salt-induced NaDC gels.  

 

 

 

 

 

 

 

 

Figure 176:  Schematic representation of the formed salt-induced NaDC gels.(reference 

[286]) 

Concept of the work 

This work investigated bile salt based hydrogels as a permeation membrane by 

analysing drug permeation for a set of compounds. All experiments used a drug 

saturated hydrogel. Such a procedure was adopted to ensure uniform distribution of 

the drug within the gel thus, uniform permeation from all areas of the gel. The 

synthesised hydrogel was then used as a synthetic membrane in Franz diffusion cells 

and flow through cells, with completely permeable dialysis membrane used only as 

support for the gel to rest on, to determine the permeability coefficient (Kp) of the 

studied drugs. This was then statistically analysed for developing models for prediction 
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of human intestinal absorption and other in vitro permeability coefficients obtained 

from PAMPA and Caco-2 methods.  

Diffusion cells 

Diffusion cells have been one of the popular methods used in prediction of permeation 

of drugs and chemicals across the skin. They can be static, for example Franz cells or 

continuous flow (flow through) cells, both having acceptor and receiver compartments 

with a membrane placed in between and a water jacket surrounding them set at 37 

ºC. 

A comparison of the two types of diffusion cells is summarised in Table 113. 

Table 113: A comparison of the two types of diffusion cells. 

Flow through cell  Franz cell  

Sink conditions are maintained over the 

whole experiment period by the stirring 

resulting from the turbulence effect 

caused by the continuous flow of solvent 

to the receiver cell against the membrane 

lower surface. The flow carries the 

permeated drug to be collected as 

samples at predetermined time intervals 

[289].  

Sink conditions are maintained by 

stirring of the receptor chamber fluid 

with a magnetic stirrer [289]. 

Receiver chamber size must be small 

(e.g. 0.5 mL) to allow complete and 

rapid flushing of the sample out during 

its collection [290]. 

Receiver chamber size is bigger (e.g. 

5 mL) to prevent the accumulation of 

pronounced amounts of the sample 

inside it as the receiver solution is not 

being continuously replaced as in 

case of  flow through cells [290, 291]. 

Samples are collected automatically 

[289]. 

Samples are collected manually 

through the sampling port [289]. 

More complex therefore more expensive 

[292].  

Cheaper therefore its use is more 

common than flow through cells 

[292]. 
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The two types of cells are illustrated in Figure 177.  
 
                           

 

 

 

 

 

                   
 
 
 
Figure 177:  A diagrammatic representation of a static cell (left) and flow 

through cell (right) (reference [293]). 
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Section (A): Use of flow through cells in determination of Kp. 

This section involved the use of flow through cells for the study of the permeation of a 

group of studied drugs through the synthesised drug saturated NaDC hydrogels and 

determination of Kp. The data was used to evaluate whether the method could be used 

in the prediction of human intestinal absorption and the permeability coefficients of 

other in vitro methods.    

5.A.1. Results and Discussion 

5.A.1.1. Permeation study 

Since the drug is added to the hydrogel in an infinite (saturated) dose, the permeability 

coefficient (Kp) can be calculated from the following relationship [293]: 

𝐾𝑝 = 𝑄 [𝐴⁄ . 𝑡. (𝐶𝑜 −  𝐶𝑖)]    Eq. (44) 

Where: 

Q: the quantity of drug transported through the hydrogel in time t in (min).  

Co: the concentration of the drug in the donor chamber.  

Ci: is the concentration of the drug in the receptor chamber.  

A: the area of the exposed hydrogel in cm2 which is 0.552 cm2 in this work.  

Since the drug was applied to the hydrogel in an infinite dose therefore Ci can be 

simplified to zero. Kp, which is defined as the permeant penetration rate per unit 

concentration is given in cm/min. 

In this work Kp was first calculated for eight compounds for the determination of the 

best NaDC concentration to be used for the preparation of membrane-like hydrogel 

that would be used in the permeation studies of the rest of the compounds for 

prediction of human intestinal absorption and other in vitro permeability coefficients 

using the obtained Kp.   
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Table 114: A list of the obtained permeability coefficients (Kp) for eight drugs at different concentrations of NaDC solutions and hydrogels. 

 

 

 

 

 

 

Drug Acetaminophen Carbamazepine Fluconazole Flurbiprofen Gemfibrozil Ibuprofen Lidocaine Piroxicam 

Kp  (cm/min) 

50 mM  NaDC solution 20.98x10-4 23.49x10-4 25.77x10-4 77.86x10-4 152.25x10-4 164.86x10-4 20.03x10-4 9.79x10-4 

70 mM  NaDC solution 23.57x10-4 31.69x10-4 25.93x10-4 53.10x10-4 109.91x10-4 282.34x10-4 20.41x10-4 10.48x10-4 

100 mM  NaDC solution 18.10x10-4 25.90x10-4 19.89x10-4 115.27x10-4 194.43x10-4 198.55x10-4 15.1x10-4 47.57x10-4 

Kp in different NaDC hydrogel 

50 mM  NaDC hydrogel 29.10x10-4 30.09x10-4 0.87x10-4 9.98x10-4 8.42x10-4 12.32x10-4 6.20x10-4 7.35x10-4 

60 mM  NaDC hydrogel 20.59x10-4 16.94x10-4 7.00x10-4 9.72x10-4 7.96x10-4 12.22x10-4 11.78x10-4 7.73x10-4 

70 mM  NaDC hydrogel 36.58x10-4 40.17x10-4 15.93x10-4 13.54x10-4 8.65x10-4 13.21x10-4 17.57x10-4 7.99x10-4 

80 mM  NaDC hydrogel 20.97x10-4 17.98x10-4 12.45x10-4 5.76x10-4 7.37x10-4 9.45x10-4 16.01x10-4 8.01x10-4 

100 mM  NaDC hydrogel 23.82x10-4 33.17x10-4 2.74x10-4 5.20x10-4 8.24x10-4 9.83x10-4 2.82x10-4 7.11x10-4 

Kp in zero mM NaDC 
 (buffer only) i.e. 0 mM NaDC 

29.14x10-4 75.32x10-4 32.22x10-4 37.67x10-4 27.75x10-4 22.21x10-4 16.96x10-4 26.65x10-4 
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Looking at Table 114, it can be seen that Kp values of neutral drugs (acetaminophen 

and fluconazole) with low lipophilicity were about 1.5 times higher in buffer pH 7.4 (no 

NaDC) than that in NaDC aqueous solutions. Also the Kp values of the neutral drug, 

carbamazepine, of relatively higher lipohiphilicity was about 3 times higher in buffer 

pH 7.4 than in NaDC aqueous solutions. Therefore, it can be concluded that the 

presence of neutral drugs in NaDC aqueous solution hinders their rate of permeation 

as the Kp obtained in these solutions were found to be 1.5 to 3 times less than the Kp 

obtained as a result of the permeation of these drugs from their buffered aqueous 

solutions free from NaDC. This could be attributed to the binding of these drugs to the 

NaDC micelles or their inclusion inside these micelles. On the other hand, three 

ionisable compounds (flurbiprofen, gemfibrozil and ibuprofen) showed lower values of 

Kp in buffer pH 7.4 than in NaDC aqueous solutions. Since flurbiprofen, gemfibrozil 

and ibuprofen have similar lipophilicities, pKa values (4.42, 4.5 and 5.2 respectively) 

[184, 219, 223] and molecular weights (244.26, 250.33 and 206.3 g/mol respectively) 

[218], the higher Kp in NaDC aqueous solutions can be attributed to the ionisation of 

these anionic drugs in the NaDC solutions leading to strong repulsion forces between 

the negatively charged drugs and the negatively charged NaDC micelles forcing the 

ionised drug molecules to leave the donor solution to the receiver chamber and 

subsequently eluting out to be collected. The greatest increase in Kp was observed 

with ibuprofen as its Kp in NaDC was almost 10 times higher than its Kp in buffer while 

the Kp of gemfibrozil was almost 5 times higher and that of flurbiprofen was almost 3 

times higher, this could be a result of the extent of ionisation being the highest in 

ibuprofen followed by gemfibrozil and flurbiprofen. Also, ibuprofen has the smallest 

molecular weight while gemfibrozil and flurbiprofen have higher molecular weights 

thus ibuprofen was the easiest to leave the donor solution to the receiver chamber 

after repelling from the NaDC micelles in the donor chamber. On the other hand, 

piroxicam, which is another anionic drug, showed higher Kp values in NaDC solution 

than in buffer at higher NaDC concentrations (100 mM) while at lower concentrations 

of NaDC in solution (50 and 70 mM) Kp was lower than that in buffer which could be 

due to partial ionisation of the drug (pKa=6.3) [184] and its high molecular weight 

(331.35 g/mol) [218] which enables it to overcome repulsion forces with the negatively 

charged micelles at  lower NaDC concentrations therefore staying in the donor solution 

while at higher NaDC concentration (100 mM) the drug experiences greater repulsion 

with the micelles forcing it to leave the donor solution to the receiver chamber. The 
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cationic drug lidocaine had a similar Kp in NaDC solutions and buffer. This could be 

due to neutralisation of the negatively charged NaDC micelles by the binding of the 

positively charged ionised lidocaine molecules forming uncharged drug-micelles 

complexes which can somewhat pass to the receiver chamber.  

Comparing the Kp values of all drugs in buffer with those in NaDC hydrogels, it was 

observed that Kp was always higher in buffer than that in the hydrogels which could 

be attributed to the entrapment of the drug in the highly viscous gel matrix. 

Acetaminophen was an exception as its Kp in buffer was almost the same as its Kp in 

hydrogel. This was because acetaminophen was the only drug with significant 

aqueous solubility, a low molecular weight (151.2 g/mol) [218] and was the least 

lipophilic (log Po/w = 0.46) of all the drugs studied [184].     

Comparing the Kp values of acetaminophen, carbamazepine, fluconazole, flurbiprofen, 

gemfibrozil, ibuprofen, lidocaine and piroxicam in NaDC hydrogels and NaDC aqueous 

solutions at the 3 concentrations (50, 70 and 100 mM) (Figures 178-180), it can be 

observed that there is a change in the permeation behaviour of almost all drugs at 

about 70 mM NaDC in solution or hydrogel matrix. The reason for such behaviour is 

assumed to be because as the NaDC concentration increases, the hydrogel formed 

becomes more compact. The microstructure of the hydrogel was investigated by SEM 

examination of a freeze-dried sample of a blank NaDC hydrogel (free from drug) which 

showed the hydrogel comprised of networks of characteristic thread-like shaped 

bundles of fibrils entangled and intertwined together with small hollow pockets in 

between (Figure 185). The microstructure of the NaDC hydrogel, observed by SEM, 

confirmed the previous assumption. The parabolic behaviour seen for most drugs in 

hydrogels can therefore be explained. Polar neutral drugs (acetaminophen and 

fluconazole), are forced to leave the increasingly hydrophobic environment in the 

donor solution with the increase in the NaDC concentration thus their Kp increases 

until a certain concentration is reached after which the gel matrix becomes compact 

enough to force these drugs to stay in the gel matrix in the donor chamber thus 

decreasing their Kp and creating the parabolic relation between the Kp of these drugs 

and the NaDC concentration in the hydrogel. Furthermore, carbamazepine which is a 

neutral lipophilic drug also showed a parabolic behaviour in hydrogel. This parabolic 

behaviour can be explained based on the increase in the hydrophobic interaction 

between the drug and the less compact NaDC polymer-like aggregates in the hydrogel 

as a result of the increase in the NaDC concentration. Also, the lipophilicity of 
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carbamazepine being the highest among the studied neutral drugs, having a log P 

value of 2.28 at pH 7.4 [218], makes the drug more capable of binding to the polymer-

like aggregates forming highly lipophilic drug-NaDC aggregates which can rapidly 

cross over to the receiver chamber thus increasing the Kp value up to a certain 

concentration after which a drop in Kp occurs which is believed to be due to the 

inclusion of the drug itself in the more compact matrix structure. Then, at a higher 

concentration (100 mM) allows the drug to permeate out due to the replacement of the 

lipophilic drug in the matrix with the more lipophilic NaDC molecules which become 

more abundant at 100 mM causing a steric hindrance in the medium. By the 

examination of a freeze-dried sample of carbamazepine in 70 mM hydrogel using SEM 

it was observed that it has the same intertwined network of fibrils as that observed in 

the blank hydrogel but carbamazepine hydrogel had larger pockets which is consistent 

with the highest Kp reached at 70 mM thus confirming the theory. This idea assumes 

that the increase in Kp is attributed to the formation of highly lipophilic complexes of 

carbamazepine and the loose polymer-like aggregates in the gel matrix structure thus 

crossing to the receiver chamber while leaving large pockets behind in the gel matrix 

structure (Figure 186). Similarly, the same behaviour was observed for the neutral 

drugs (acetaminophen, carbamazepine and fluconazole) in aqueous solutions of 

NaDC which supports the assumption of polar drugs (acetaminophen and fluconazole) 

leaving the donor chamber as the hydrophobic environment increases with the 

increasing NaDC concentration. For these drugs, values of Kp increase until reaching 

a certain concentration after which the aggregates formed are large in number 

therefore, keeping the drug in the donor solution and so leading to a drop in Kp. Also 

carbamazepine showed an increase in Kp with increased NaDC concentration until 70 

mM due to the solubilising effect of NaDC on carbamazepine which has poor aqueous 

solubility and the binding of the lipophilic neutral carbamazepine to NaDC micelles 

then after 70 mM the number of the formed NaDC aggregates is too large thus blocking 

the drug molecules passing to the donor chamber. On the other hand, ionisable drugs 

showed a difference in their permeation behaviour between their NaDC hydrogels and 

aqueous solutions. The ionisable drugs show a parabolic permeation behaviour in 

hydrogel except for gemfibrozil and piroxicam which appear to be not significantly 

affected by the change in the NaDC concentration in hydrogel. The parabolic 

behaviour for flurbiprofen and ibuprofen can be attributed to the ionisation of these 

drugs at pH 7.4. These are polar drugs with log P values of 0.68 and 0.45 respectively 
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[218] thus the drugs are expelled out of the donor to the receiver chamber then after 

a certain concentration the gel structure becomes too compact so entrapping the drugs 

inside. As for gemfibrozil, with a log P value of 1.58 at pH 7.4 [218] implies that the 

drug might have equal preference to aqueous medium and the hydrophobic hydrogel 

medium so it was not greatly affected by the increase in NaDC concentration in the 

hydrogel. Although piroxicam in hydrogel was expected to show a significant parabolic 

behaviour with a log P of 0.46 at pH 7.4 [218], it showed very weak parabolic behaviour 

suggesting almost no significant effect upon the change in the NaDC concentration in 

hydrogel. The reason could be that piroxicam has a high molecular weight (331.35 

g/mol) [218]  and poor aqueous solubility therefore resisting the effect of the low log P 

value at pH 7.4.  An opposite permeation pattern for the two ionisable drugs 

(flurbiprofen and gemfibrozil) in the NaDC aqueous solutions was observed where 

they showed an opposite inverted parabolic behaviour where Kp values decreased 

until a certain concentration after which it started increasing again. This could be due 

to the ability of the drugs to overcome repulsion forces at lower concentrations of 

NaDC while at high concentration the ionised drug molecules were expelled out to the 

receiver chamber due to higher repulsion forces with NaDC micelles. The inverted 

parabolic permeation pattern in the case of gemfibrozil was found to be more 

prominent in NaDC aqueous solutions than in the hydrogels because of the drug’s 

equal preference for NaDC polymeric aggregates and aqueous buffer solution. 

Ibuprofen, has a preference for NaDC micelles due to its lipophilicity (log Po/w = 3.97) 

[184] but it suffers from repulsion forces with the micelles carrying a negative charge 

thus forcing the small drug (206.3 g/mol) [218] to leave the donor chamber for the 

receiver chamber leading to an increase in Kp values until 70 mM of NaDC after which 

Kp starts decreasing. This could be attributed to the increase in the size of the formed 

aggregates through which the lipophilic drug can reside, overcoming repulsion forces, 

thus its Kp decreased. Furthermore, the ionisable drug; lidocaine in NaDC hydrogel 

showed a parabolic permeation behaviour which can be attributed to the binding of the 

drug to the NaDC loose polymer-like aggregates and thus permeating out to the 

receiver chamber. This occurs until reaching a certain NaDC concentration after which 

the drugs permeation started going down with the increase in the NaDC concentration 

because of the more compact structure of the NaDC polymer formed at high NaDC 

concentrations. On the other hand, lidocaine in NaDC aqueous solutions is ionised, 

carrying a positive charge, which neutralised the negative charge carried by the NaDC 
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micelles giving a neutral lipophilic drug-micelle complex which crossed easily to the 

receiver chamber. The permeation of these complexes appears not to be affected by 

the change in NaDC concentration from 50 and 70 mM to 100 mM, only a slight 

decrease in Kp at 100 mM was observed which could be due to the increase in size of 

these complexes. For piroxicam the change in NaDC concentration appears to have 

no effect on the formation of these complexes at low concentrations of NaDC (50 and 

70 mM) but there was a great increase in Kp at 100 mM of NaDC which could be 

attributed to the high molecular weight of piroxicam (331.35 g/mol) [218], its poor 

aqueous solubility and partial ionisation. At low NaDC concentrations the drug is able 

to overcome the repulsion forces and remain in the donor solution while at high 

concentration the repulsion forces with the micelles become greater forcing it to leave 

the donor solution for the receiver chamber. 

  

 

 

 

 

 

 

Figure 178: Permeability coefficients (Kp) of acetaminophen, fluconazole and carbamazepine at three 

different concentrations of NaDC hydrogels (left) and aqueous solutions (right). 

  

 

 

 

 

 

 

Figure 179: Permeability coefficients (Kp) of flurbiprofen, gemfibrozil, ibuprofen and piroxicam 

at three different concentrations of NaDC hydrogels (left) and aqueous solutions (right). 
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Figure 180: Permeability coefficients (Kp) of lidocaine at different concentrations of 
NaDC hydrogels (left) and aqueous solutions (right). 

 

More data points were added to the studied NaDC concentration range used for the 

preparation of the hydrogels and their corresponding Kp values in order to confirm the 

parabolic permeation behaviour of the drugs under study. The further obtained data 

as shown in Figures (178-180) confirm the parabolic permeation behaviour of 

compounds over the studied NaDC increasing concentration range. In the 

carbamazepine plot, it is observed that the drug’s Kp increased again after 80 mM 

which could be attributed to the lipophilic NaDC micelles bound to carbamazepine and 

escaping to the receiver chamber due to the increased repulsion between the NaDC 

micelles with the increase in NaDC concentration.  

 

 

 

 

 

 

   

  

 

 

Figure 181: Permeability coefficients (Kp) of 
acetaminophen, fluconazole and 
carbamazepine at five different 
concentrations of NaDC hydrogels. 

 Figure 182: Permeability coefficients (Kp) of 
flurbiprofen, gemfibrozil, ibuprofen and 
piroxicam at five different concentrations of 
NaDC hydrogels. 
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Figure 183: Permeability coefficients (Kp) of lidocaine 
at five different concentrations of NaDC hydrogels. 
 

As a result of these findings, an NaDC concentration of 70 mM was selected to be 

used in a permeation study of twenty-five compounds. Calculated Kp values were then 

used in the statistical modelling of human intestinal absorption and other in vitro 

permeability coefficients. This exact concentration was selected because the highest 

permeation rate from the hydrogel was obtained at 70 mM for most drugs used. Using 

Equation (44), the permeability coefficient (Kp) for twenty-five compounds was 

calculated from the donor concentration (Co) and the slopes of the plots of cumulative 

amount of drug permeated through the hydrogel (µg/cm2) against time (min). Figure 

184 shows the plots of cumulative permeated amount of eight selected representative 

compounds against time. 

 

 

      

 

 

 

 

 

 

 
 
 

Figure 184: Plot of Cumulative permeated amount of different drugs against time. 
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5.A.1.2. Scanning Electron Microscopy (SEM) 

In order to investigate the microstructures of the hydrogels formed by NaDC at pH 7.4, 

scanning of the freeze dried samples of blank NaDC hydrogel, as well as drug loaded 

NaDC hydrogel, using SEM was carried out. The results are summarised in Figure 

185. The obtained SEM observations for the blank NaDC hydrogel freeze dried 

samples showed a network structure of intertwined fibrils with medium size pockets in 

between. 

 

 

 

 

 

 

 

 

 

Figure 185: SEM images of gel formed by 70 mM NaDC of magnification power x1000 (left) 
and x1300 (right). 

 
The microstructure of 70 mM NaDC hydrogels of two drugs (carbamazepine and 

meloxicam) was investigated. The SEM observations of the freeze dried samples of 

carbamazepine and meloxicam hydrogels showed the same network structure as the 

freeze dried sample of blank NaDC hydrogel but the carbamazepine showed a 

network structure with wider pockets than that of meloxicam hydrogel, i.e. a more 

compact network structure with narrow pockets in between (Figures 186-187). The 

difference in the structure of carbamazepine and meloxicam hydrogels could be 

attributed to carbamazepine being more hydrophobic than meloxicam where the log P 

of carbamazepine at pH 7.4 is 2.28 [218] while that of meloxicam at the same pH is 

1.04. As a result, carbamazepine became more involved in the construction of the 

hydrogel network thus partially interrupting the crystalline like arrangement of NaDC 

molecules together in the gel and as a result wide pockets in the NaDC network 

structure are created. The anionic drug meloxicam is less hydrophobic (log P at pH 

7.4=1.04) [218] and has a high molecular weight of 351.40 g/mol [218] so it is less 

involved in the main structure of hydrogel therefore, the network was more compact 
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with the presence of the drug entrapped inside the network structure. This was 

confirmed by the higher Kp value obtained for carbamazepine than that obtained for 

meloxicam which also confirms that the hydrophobic neutral carbamazepine was more 

solubilised in the network structure thus passing to the receptor chamber due to the 

hydrophobicity of the formed complex between the drug-polymer like aggregate of the 

hydrogel. The less hydrophobic, negatively charged, meloxicam with a higher 

molecular weight remained entrapped inside the network making the structure more 

compact with narrower pockets (Figures 186-187).   

 

    

 

 

 

 

 

 

 

a)                                                                                         b) 
 
 
 

 

 

 

 

 

 

 

                                  c) 
Figure 186: SEM images for carbamazepine-70mM hydrogel of magnification power a) x160 
b) x1000 c) x1100. 
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a)                                                                                  b) 
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Figure 187:  SEM images for meloxicam-70mM hydrogel of magnification power a) x160  
b) x300 c) x1000. 
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5.A.1.3. FT-IR analysis 

FT-IR analysis of the hydrogels was carried out upon the drying of the sample to 

confirm the stability of the hydrogel upon addition of the drug where the blank hydrogel 

samples were analysed as well as samples of hydrogel containing the investigated 

drugs. This was to detect whether new characteristic peaks appeared or, if already 

existing peaks disappeared. All the drug containing hydrogels exhibited intense and 

continuous absorption peaks within the region 3500-1500 cm-1 in FT-IR spectra. A 

broad peak appeared at the range of 3350-3500 cm-1 which is known for antisymmetric 

and symmetric O-H stretching. Other peaks were seen in the regions 2928-2940 cm-1 

and 2860-2865 cm-1 which are indicative for asymmetric and symmetric methylene 

stretching bands [286]. Furthermore, the peaks in the range 1552-1556 cm-1 can be 

related to N-H vibration [286]. In the range of 1644 and 1659 cm-1, the stretching 

vibration can be correlated with carbonyl groups [286]. The peaks appearing at 1069-

1098 cm-1 are consistent with the stretching vibration of the C-O bond [286]. These 

peaks are attributed to the asymmetric stretching vibration of COO- in the 

crystallisation of NaDC indicating the combination of Na+ ions and COO- ions. This 

result proves that the behaviour of NaDC molecules in gels is similar to that in crystals. 

The results of the FT-IR analysis for a selection of drugs are shown in Figure 188. 

 
 

Figure 188: FTIR spectra of Blank NaDC hydrogel and of selected drugs (piroxicam, 
carbamazepine, meloxicam and fluconazole) in NaDC hydrogel. 

Piroxicam 
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As shown in Figure 188, it was observed that upon the inclusion of drugs to the NaDC 

hydrogel there was a decrease in the wave number of the O-H broad peak appearing 

at 3334 cm-1 for the blank NaDC hydrogel sample. This decrease shows destruction 

of H-bonding between the NaDC molecules and the formation of new H-bonding 

between the NaDC and each drug molecule [286]. The decrease was the highest in 

the case of carbamazepine (3233 cm-1) indicating carbamazepine was more involved 

in the hydrogel structure confirming the previous SEM results for carbamazepine 

(Figure 186). While the decrease was the least in the case of meloxicam (3327 cm-1) 

showing less inclusion of this drug in the NaDC hydrogel structure thus confirming the 

previous SEM results for meloxicam (Figure 187).  

No appearance of new peaks or disappearance of existing peaks was observed 

suggesting no chemical interaction between the added drugs and NaDC gel 

suggesting NaDC gel as a safe carrier which is an advantage if such gel was 

considered as a carrier inside the human body, or if the gel was to be considered for 

analytical use. 

5.A.2. Statistical Modelling 

After measuring the permeation of a group of 25 drugs from the drug-loaded NaDC 

hydrogels and calculation of the permeability coefficients (Kp) of these drugs from the 

slopes of the plots of the cumulative permeated amount of each of the studied drugs 

against time, the obtained permeability coefficients (Kp) were statistically analysed 

alongside some molecular descriptors which were collected from literature such as 

molecular weight (Mwt), polar surface area (PSA), freely rotating bonds (FRB), molar 

volume(VM), dissociation constant (pKa), aqueous solubility (Sw), number of hydrogen 

bond donors (nHD) and number of hydrogen bond acceptors (nHA) using multiple 

linear regression for the prediction of human intestinal absorption (HIA) and 

permeability coefficients obtained by (PAMPA and Caco-2) in vitro methods. The 

obtained permeability coefficients (Kp) are listed with other molecular descriptors in 

Table 118.  

5.A.2.1. Statistical Modelling of Human Intestinal absorption (HIA) 

Analysing the obtained permeability coefficients, i.e. Kp values, alongside other 

molecular descriptors against the reported %HIA values enabled the application of 

multiple linear regression and therefore the successful inclusion of log Kp in a model 

equation with the logit form of %HIA experimental values for orally administered drugs 
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(as shown in Table 48) with other molecular descriptors (nHD and VM) for the 

prediction of %HIA.  

The model obtained for the prediction of %HIA is given by Equation 45: 
 

logit HIA = -0.59 - 0.5522 nHD – 0.006085 VM - 0.765 log Kp      Eq. (45) 

Eighteen drugs were used in the development of the final model. The model’s R2 = 

87.58 %, R2 adjust.= 84.92 % , R2
PRED = 79.80 %, S= 0.267 

A 95 % confidence interval for log Kp is given by (-1.19, -0.34). t-statistic and 

standardised coefficient of log Kp are -3.86 (p<0.05) and -0.397 respectively 

suggesting the statistical significance of log Kp as a predictor. Also the F-ratio of the 

overall model is statistically significant, F=32.90 and P value 0.000 (p<0.05). Absence 

of autocorrelation in the current regression model was proved by a Durbin- Watson 

statistic value of 2.532. Figure 189 shows no marked relationship between residuals 

and predicted values while Figure 190 summarises the model. Seven compounds 

(carbamazepine, fenoprofen, linezolid, naproxen, piroxicam, quinine and zolmitriptan) 

were used for testing the obtained model as shown in Table 115. The model was able 

to successfully predict the %HIA for six compounds in the test set within a minimum 

of 0.29 % and a maximum of 10.97 % difference between the predicted %HIA and the 

published %HIA. The model underestimated the %HIA for piroxicam where its 

predicted value for human intestinal absorption was found to be 82.65 % against a 

literature value of 99 % experimentally obtained in humans. However, the obtained 

predicted value was found to be closer to a literature value of 89 % for piroxicam’s 

intestinal absorption in dogs [294]. Figure 191 shows an overall close agreement 

between literature and predicted values of %HIA.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 189: Residual plot for optimal HIA  regression model. 
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Figure 190: Partial regression plots of experimental logit HIA values against log Kp, nHD and 
VM. 
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Table 115: Experimental permeability coefficient (log Kp), predicted %HIA (%HIApred.) 
and experimentally determined literature %HIA (% HIAExpt.) values for the compounds 
analysed including seven validation compounds (*). 

 

Drug Expt. %HIA Pred. %HIA 

Acetaminophen 80.00[205] 84.32 

Caffeine  99.00[230] 98.87 

Carbamazepine* 70.00[209] 69.71 

Cimetidine 60.00[205] 57.13 

Diclofenac 80.50[206, 207] 88.02 

Fenoprofen* 85.00[206] 95.97 

Fluconazole 94.00[230] 92.76 

Flurbiprofen 95.00[210] 93.69 

Fosinopril 35.00[246] 35.68 

Gemfibrozil 95.00[207] 92.66 

Haloperidol 60.00[245] 49.70 

Ibuprofen 85.00[207] 94.07 

Indomethacin 98.00[245] 95.38 

Ketoprofen 96.00[205] 93.67 

Leflunomide 80.00[246] 89.14 

Lidocaine 90.00[210] 88.14 

Linezolid* 100.00[246] 91.16 

Meloxicam 90.00[205] 76.70 

Moexipril 23.00[246] 37.83 

Naproxen* 94.00[205] 95.06 

Phenylbutazone 96.00[230, 245, 252] 97.45 

Piroxicam* 99.00[252] 82.65 

Quinine* 95.00[210] 96.72 

Theophylline 98.00[33] 98.41 

Zolmitriptan* 70.25[246, 294] 68.01 

 

 

 

 

 

 

 

 

 

 

              Figure 191: Regression plot of predicted %HIA values against literature %HIA. 
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5.A.2.2. Modelling of permeability coefficients obtained from PAMPA 

The model obtained for the prediction of PAMPA log Po is given by Equation 46:  

 
log Po = - 8.56 - 1.363 log Kp – 0.1658 Sw            Eq. (46) 

Seventeen drugs were used in the development of the final model. The model’s R2 = 

83.81 %, R2
adjust.= 81.49 % , R2

PRED = 76.95 %, S= 0.708 

A 95 % confidence interval for log Kp is given by (-2.488, -0.237). t-statistic and 

standardised coefficient of log Kp are -2.6 (p<0.05) and -0.292 respectively suggesting 

that its statistical significance of log Kp as a predictor. Also the F-ratio of the overall 

model is statistically significant, F= 36.23 and P value 0.000 (p<0.05). 

The close agreement of the values of R2
adjust. & R2

PRED indicates that the model does 

not over-fit the data. The residual analysis did not detect any relationship between 

residuals and predicted values as shown in Figure 192. The model is shown in Figure 

193. As shown in Table 116 and Figure 194 the obtained model was found to have a 

good predictive ability for PAMPA permeability coefficient. 

 

 

 

 

 

 

 

 
Figure 192: Residual plot for optimal PAMPA regression model. 

 

 

 

 

 

 

 

 

 
 
 
Figure 193: Partial regression plots of experimental PAMPA log Po values against log Kp and   
                     Sw. 
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Table 116: Experimental and predicted values for PAMPA logPo. 

Drug log Po Expt. [215] log Po Pred. 

Acetaminophen -5.81 -5.14 

Caffeine  -5.55 -6.18 

Carbamazepine -3.73 -2.91 

Diclofenac -1.37 -1.75 

Flurbiprofen -1.78 -2.23 

Gemfibrozil -1.59 -1.98 

Ibuprofen -1.15[64] -2.22 

Indomethacin -1.65 -1.26 

Ketoprofen -3.19[64, 215, 281, 295] -2.15 

Lidocaine -1.42 -2.42 

Meloxicam -2.86 -2.23 

Naproxen -2.3 -2.15 

Phenylbutazone -1.96 -1.95 

Piroxicam -2.70[64, 215] -1.92 

Quinine -1.05 -1.1 

Theophylline -5.99 -5.79 

Zolmitriptan -1.71 -2.43 
 

 

 

 

 

 

 

 

 

Figure 194: Plot of experimental vs. predicted log Po values. 

5.A.2.3. Modelling of permeability coefficients obtained from Caco-2 Peff.   

The model obtained for the prediction of Caco-2 Peff.is given by Equation 47: 

log Peff. = - 15.18 – 1.695 log Kp + 0.00658 Mwt + 0.1463 pKa       Eq. (47) 
 
Seventeen drugs were used in the development of the final model. The model’s R2 = 

87.69 %, R2 adjust.= 84.85 % , R2
PRED = 79.08 %, S= 0.289 

A 95 % confidence interval for log Kp is given by (-2.155, -1.235). t-statistic and 

standardised coefficient of log Kp are -7.96 (p<0.05) and -0.926 respectively 
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suggesting that its statistical significance of log Kp as a predictor. Also the F-ratio of 

the overall model is statistically significant, F= 30.88 and P value 0.000 (p<0.05). 

Figure 195 shows no marked relationship between residuals and predicted values 

while Figure 196 summarises the model. The model successfully predicted log Peff. for 

the five compounds (fluconazole, ibuprofen, lidocaine, phenylbutazone and piroxicam) 

which were used to test the obtained model. The literature and predicted values of 

Caco-2 permeability coefficients were found to be in close agreement as shown in 

Table 117 and Figure 197.   

 

 
 

 

 

 

 

 

 

 
 

Figure 195: Residual plot for optimal Caco-2 regression model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 196: Partial regression plots of experimental Caco-2 log Peff. values against pKa, 
Mwt and log Kp. 
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Table 117: Experimental and predicted values for Caco-2 log Peff.. 

Drug log Peff. Expt. log Peff. Pred. 

Acetaminophen -6.00[216] -5.59 

Caffeine  -4.51[63] -4.44 

Carbamazepine -4.38[56] -4.52 

Cimetidine -4.52[249] -4.59 

Diclofenac -4.23[246] -4.16 

Fenoprofen -4.94[230] -4.58 

Fluconazole* -4.52[246] -3.55 

Flurbiprofen -4.70[230] -5.05 

Gemfibrozil -4.41[246] -4.67 

Haloperidol -4.79[246] -4.88 

Ibuprofen* -4.58[56] -5.17 

Indomethacin -2.85[56, 215] -3.09 

Ketoprofen -4.71[246] -4.95 

Lidocaine* -4.36[56] -4.8 

Linezolid -5.16[246] -4.79 

Meloxicam -4.70[277] -4.4 

Naproxen -4.66[56] -5.08 

Phenylbutazone* -5.00[250] -4.15 

Piroxicam* -3.26[215, 246] -3.81 

Quinine -2.83[215] -2.71 

Theophylline -4.61[56] -4.54 

Zolmitriptan -4.26[215] -4.23 
 
 

 

Figure 197: Plot of experimental vs predicted Caco-2 log Peff. values. 
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Table 118:  A summary of molecular descriptors for the selected drugs analysed by permeation method using flow through cells and the 

reported experimental values of %HIA and permeability coefficients of PAMPA and Caco-2 tests. 

Drug log Kp
* Mwt[218] pKa

[184] Sw
[184] HD[218] HA[218] RB[218] PSA[219] VM

[218] log Po
[215] log Peff.  %HIA 

Acetaminophen -4.21 151.20 9.9[220] 14 2 3 1 49.3 131.1 -5.81 -6.000[216] 80[205] 

Caffeine  -4.37 194.20 14[222] 21.6 0 6 0 58.4 133.4 -5.55 -4.51[63] 99[230] 

Carbamazepine -4.17 236.36 13.9 0.21[184, 282] 2 3 0 46.3 186.6 -3.73 -4.379[56] 70[209] 

Cimetidine -4.68 252.34 6.8 9.38 3 6 8 114 198.2 NI -4.52[249] 60[205] 

Diclofenac -4.99 296.20 4.15 0.00237 2 3 4 49.3 206.8 -1.37 -4.231[246] 80.5[206, 207] 

Fenoprofen -4.92 242.27 4.5 0.033[218] 1 3 4 46.5 204.7 NA -4.947[230] 85[206] 

Fluconazole -4.58 306.27 12.71 9[283] 1 7 5 81.6 205.3 NA -4.515[246] 94[230] 

Flurbiprofen -4.65 244.26 4.42 0.008 1 2 3 37.3 203.6 -1.78 -4.697[230] 95[210] 

Fosinopril -4.98 563.66  -4.4 0.00101 1 8 15 110 480.4 NA NA 35[246] 

Gemfibrozil -4.84 250.33 4.5[219] 0.13[284] 1 3 6 46.5 239.7 -1.59 -4.407[246] 95[207] 

Haloperidol -3.90 375.86 8.3[296] 0.014 1 3 6 40.5 303.3 NI -4.792[246] 60[245] 

Ibuprofen -4.66 206.30 5.2[223] 0.0684 1 2 4 37.3 200.3 -1.15[64] -4.58[56] 85[207] 

Indomethacin -5.36 357.79 4.5 0.000937 1 5 4 68.5 269.6 -1.65 -2.85[56, 215] 98[245] 

Ketoprofen -4.71 254.30 3.88 0.051 1 3 4 54.4 212.2 -3.19[64, 215, 281, 295] -4.707[246] 96[205] 

Leflunomide -4.23 270.21  -0.45 0.021 1 4 3 55.1 194.1 NA NA 80[246] 

Lidocaine -4.53 234.40 7.9[224] 0.2337[285] 1 3 5 32.3 238.8 -1.42 -4.36[56] 90[210] 

Linezolid -4.88 337.35 -0.66 1.44 1 7 4 71.1 259.0 NA -5.161[246] 100[246] 

Meloxicam -4.65 351.40 4.08 0.00715 2 7 2 136 220.3 -2.86 -4.7[277] 90[205] 

Moexipril -5.18 498.57 5.2 0.00585 2 9 12 114 408.1 NA NA 23[246] 

Naproxen -4.70 230.26 4.15 0.0159 1 3 3 46.5 192.3 -2.3 -4.66[56] 94[205] 

Phenylbutazone -4.93 308.37 4.4[225] 0.7[219] 0 4 5 40.6 262.8 -1.96 -4.998[250] 96[230, 245, 252] 

Piroxicam -4.88 331.35 6.3 0.023 2 7 2 108 222.8 -2.70[64, 215] -3.264[215, 

246] 

99[252] 

Quinine -5.54 324.42 6.5 0.5 1 4 4 45.6 266.4 -1.05 -2.83[215] 95[210] 

Theophylline -4.82 180.16 8.8[228] 22.9 1 6 0 69.3 122.9 -5.99 -4.61[56] 98[33] 

Zolmitriptan -4.52 287.36 9.52[297] 0.19 2 5 5 57.4 236.1 -1.71 -4.26[215] 70.25[246, 294] 
*The logarithm is taken for the Kp value (cm/sec), NA: no available data, NI: value not included in training set. 
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5.A.3. Conclusion 

Using NaDC based supramolecular hydrogels in the presence of halide salts such as 

NaCl and also at a pH of 7.4, was achieved in this work by using phosphate buffer 

solution. Furthermore, determination of Kp from the permeation of a number of 

compounds from the prepared NaDC hydrogels using flow through cells was 

successful in the development of models of high predictive capabilities for human 

intestinal absorption and permeability coefficients of other in vitro methods such as 

PAMPA and Caco-2 by using the experimentally obtained Kp. NaDC, being a natural 

physiological surfactant and having gelation properties in the presence of certain 

factors, makes this method mimic the biological membrane and the absorption process 

inside the human intestine. 
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Section (B): Use of Franz cells in determination of Kp. 
This section reports the results of experiments using Franz cells for the study of the 

permeation of a group of studied drugs through the synthesised drug saturated NaDC 

hydrogels and determination of Kp of these drugs. Then the use of the obtained 

permeability coefficients (Kp) in the prediction of human intestinal absorption and the 

permeability coefficients of other in vitro methods. Two different pieces of apparatus 

(flow through and Franz cells) were used in the permeation study of the same group 

of compounds in order to detect which method would be the best for prediction of 

%HIA through the obtained permeability coefficients. In addition, it was a way of 

confirming the capability of using the proposed hydrogel as an intestinal membrane 

mimic for prediction of %HIA using different permeation apparatus. 

5.B.1. Results and Discussion 

A 70 mM hydrogel already loaded with an infinite (saturated) dose of the drug studied 

was used in all the permeation experiments carried out using Franz diffusion cells to 

investigate the permeation profile for a group of twenty-five compounds against time. 

Based on the same equation used in the previous section for calculation of 

permeability coefficient (Kp), calculations of the permeability coefficients (Kp) for the 

investigated twenty-five compounds in this section were carried out. A different area 

of exposed hydrogel was used (3.14 cm2). Kp was determined from the donor 

concentration (Co) and the slopes of the plots of cumulative amount of drug permeated 

through the hydrogel (µg/cm2) against time (min) constructed from the permeation 

studies performed using Franz cells. For illustration, Figure 198 shows the plots of 

cumulative permeated amount of eight compounds against time. 

 

 

 

 

 

 

 

 

Figure 198: Plot of Cumulative permeated amount of different drugs against time. 
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From Figure 198, it can be seen that the drugs had similar patterns and similar rates 

of permeation to the rates they had using flow through cells. The exception was the 

lipophilic neutral drug carbamazepine which showed a higher Kp than that of 

fluconazole although when using flow through cells it had a lower Kp than that of 

fluconazole. This could be related to the greater area of hydrogel exposed when using 

Franz diffusion cells.       

5.B.2. Statistical Modelling 

For 25 drugs the obtained permeability coefficients (Kp) were statistically analysed 

alongside some molecular descriptors which were collected from literature such as 

molecular weight (Mwt), polar surface area (PSA), freely rotating bonds (FRB), molar 

volume(VM), dissociation constant (pKa), aqueous solubility (Sw), number of hydrogen 

bond donors (nHD) and number of hydrogen bond acceptors (nHA) using multiple 

linear regression for the prediction of human intestinal absorption (HIA) and 

permeability coefficients obtained by (PAMPA and Caco-2) in vitro methods. The 

obtained permeability coefficients (Kp) are listed with other molecular descriptors in 

Table 122.  

5.B.2.1. Statistical Modelling of Human Intestinal absorption (HIA) 

Analysing the obtained permeability coefficients Kp values alongside other molecular 

descriptors against the reported %HIA values enabled the application of multiple linear 

regression and therefore the successful inclusion of log Kp in a model equation with 

the logit form of %HIA experimental values for orally administered drugs (as shown in 

Table 122) with other molecular descriptors (nHD and VM) for the prediction of %HIA.  

The model obtained for the prediction of %HIA is given by Equation 48: 

 

logit HIA = 0.515 - 0.4294 nHD – 0.006005 VM - 0.453 log Kp          Eq. (48) 

Eighteen drugs were used in the development of the final model. The model’s R2 = 

86.61 %, R2 adjust.= 83.74 % , R2
PRED = 79.67 %, S= 0.253 

A 95 % confidence interval for log Kp is given by (-0.874, -0.031). t-statistic and 

standardised coefficient of log Kp are -2.3 (p<0.05) and -0.261 respectively suggesting 

the statistical significance of log Kp as a predictor. Also the F-ratio of the overall model 

is statistically significant, F= 30.19 and P value 0.000 (p<0.05). Absence of 

autocorrelation in the current regression model was proved by a Durbin- Watson 

statistic value of 2.105. Figure 199 shows no marked relationship between residuals 
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and predicted values while Figure 200 summarises the model. Seven compounds 

(carbamazepine, fenoprofen, indomethacin, linezolid, piroxicam, quinine and 

zolmitriptan) were used for testing the obtained model. As shown in Table 119, the 

model was able to successfully predict the %HIA for six compounds in the test set 

within a minimum of 0.6 % and a maximum of 12.60 % difference between the 

predicted %HIA and the published %HIA. The model underestimated the %HIA for 

piroxicam where its predicted value for %HIA was found to be 80.73 % against a 

literature value of 99 % experimentally obtained in humans. However, the obtained 

predicted value was found to be closer to a literature value of 89 % for piroxicam’s 

intestinal absorption in dogs [294]. The model’s good predictive power is shown in 

Figure 201.  

 

 

 

 

 

 

 

 

Figure 199: Residual plot for optimal HIA  regression model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 200: Partial regression plots of experimental logit HIA values against log Kp, nHD 
and VM. 
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Table 119: Experimental permeability coefficient (log Kp), predicted %HIA (%HIApred.) 
and experimentally determined literature %HIA (%HIAExpt.) values for the compounds 
analysed including seven validation compounds (*). 

 

Drug %HIA Expt. %HIA Pred. 

Acetaminophen 80.00[205] 88.97 

Caffeine  99.00[230] 98.24 

Carbamazepine* 70.00[209] 70.60 

Cimetidine 60.00[205] 57.16 

Diclofenac 80.50[206, 207] 85.47 

Fenoprofen* 85.00[206] 92.37 

Fluconazole 94.00[230] 93.77 

Flurbiprofen 95.00[210] 91.79 

Fosinopril 35.00[246] 34.68 

Gemfibrozil 95.00[207] 90.64 

Haloperidol 60.00[245] 62.80 

Ibuprofen 90.00[207, 231] 92.01 

Indomethacin* 98.00[245] 86.36 

Ketoprofen 90.00[210] 89.69 

leflunomide 80.00[246] 86.12 

Lidocaine 80.75[209, 210, 230, 252] 86.71 

Linezolid* 100.00[246] 87.40 

Meloxicam 90.00[205] 77.64 

Moexipril 23.00[246] 26.55 

Naproxen 96.50[205, 210] 91.95 

Phenylbutazone 90.00[245] 94.44 

Piroxicam* 99.00[252] 80.73 

Quinine* 95.00[210] 93.94 

Theophylline 96.00[231] 97.95 

Zolmitriptan* 70.25[246, 294] 70.94 
 

 

 

 

 

 

 

 

 

Figure 201: Regression plot of predicted %HIA values against literature %HIA. 
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5.B.2.2. Modelling of permeability coefficients obtained from PAMPA 

The model obtained for the prediction of PAMPA log Po is given by Equation 49: 

 

log Po = - 7.66 - 1.297 log Kp – 0.1879 Sw – 0.685 nHD           Eq. (49) 

Seventeen drugs were used in the development of the final model. The model’s R2 = 

86.75 %, R2
adjust.= 83.91 % , R2

PRED = 78.63 %, S= 0.721 

A 95 % confidence interval for log Kp is given by (-2.254, -0.340). t-statistic and 

standardised coefficient of log Kp are -2.91 (p<0.05) and -0.289 respectively 

suggesting that its statistical significance of log Kp as a predictor. Also the F-ratio of 

the overall model is statistically significant, F= 30.56 and P value 0.000 (p<0.05). 

The close agreement of the values of R2
adjust. & R2

PRED indicates that the model does 

not over-fit the data. The residual analysis did not detect any relationship between 

residuals and predicted values as shown in Figure 202. The model is shown in Figure 

203. The literature and predicted values of PAMPA permeability coefficients were 

found to be in agreement (Table 120 and Figure 204). 

 

 

 

 

 

 

 

 

 

 

Figure 202: Residual plot for optimal PAMPA regression model. 
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Figure 203: Partial regression plots of experimental PAMPA log Po values against log 
Kp, Sw and nHD. 

 

Table 120: Experimental and predicted values for PAMPA logPo. 

Drug log Po Expt. [215] log Po Pred. 

Acetaminophen -5.81 -5.82 

Caffeine  -5.53 -5.89 

Carbamazepine -3.73 -3.09 

Cimetidine -6.2 -5.49 

Diclofenac -1.37 -2.28 

Flurbiprofen -1.78 -2.08 

Gemfibrozil -1.59 -1.66 

Ibuprofen -1.15[64] -2.11 

Indomethacin -1.65 -1.65 

Ketoprofen -3.19[64, 215, 281, 295] -2.25 

Lidocaine -1.42 -2.18 

Meloxicam -2.86 -2.70 

Naproxen -2.3 -2.25 

Phenylbutazone -1.96 -1.22 

Piroxicam -3.32 -2.43 

Quinine -1.05 -0.68 

Theophylline -5.99 -5.96 

Zolmitriptan -1.71 -2.90 
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Figure 204: Plot of experimental vs. predicted log Po values. 

5.B.2.3. Modelling of permeability coefficients obtained from Caco-2 Peff.   

The model obtained for the prediction of Caco-2 Peff. is given by Equation 50: 

 
log Peff. = - 5.996 - 0.2882 log Kp - 0.001507 Mwt + 0.06532 pKa            Eq. (50) 

 
Seventeen drugs were used in the development of the final model. The model’s R2 = 

88.73 %, R2 adjust.= 86.13 % , R2
PRED = 82.03 %, S= 0.103 

A 95 % confidence interval for log Kp is given by (-0.451, -0.125). t-statistic and 

standardised coefficient of log Kp are -3.81 (p<0.05) and -0.442 respectively 

suggesting that its statistical significance of log Kp as a predictor. Also the F-ratio of 

the overall model is statistically significant, F= 34.13 and P value 0.000 (p<0.05). 

Figure 205 shows no marked relationship between residuals and predicted values 

while Figure 206 summarises the model. The model successfully predicted log Peff. for 

the five compounds (fluconazole, fenoprofen, gemfibrozil, phenylbutazone and 

piroxicam) which were used to test the obtained model. The good predictive power of 

the obtained model was shown in Table 121 and Figure 207. 

 

 

 

 

 

 

 

 
Figure 205: Residual plot for optimal Caco-2 regression model. 
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Figure 206: Partial regression plots of experimental Caco-2 log Peff. values against log Kp, 
Mwt and pKa. 

 
Table 121: Experimental and predicted values for Caco-2 log Peff.. 

Drug log Peff. Expt. log Peff. Pred. 

Acetaminophen -4.44[56] -4.08 

Caffeine -4.07[216] -4.28 

Carbamazepine -4.38[56] -4.27 

Cimetidine -4.52[249] -4.60 

Diclofenac -4.75[56] -4.67 

Fenoprofen* -4.95[230] -4.65 

Fluconazole* -4.52[246] -4.15 

Flurbiprofen -4.70[230] -4.68 

Gemfibrozil* -4.41[246] -4.59 

Haloperidol -4.79[246] -4.77 

Ibuprofen -4.58[56] -4.58 

Indomethacin -4.89[56] -4.75 

Ketoprofen -4.71[246] -4.77 

Lidocaine -4.36[56] -4.46 

Linezolid -5.16[246] -5.08 

Meloxicam -4.75[246] -4.85 

Naproxen -4.66[56] -4.72 

Phenylbutazone* -5.00[250] -4.71 

Piroxicam* -4.52[246] -4.62 

Quinine -4.50[246] -4.488 

Theophylline -4.17[215] -4.21 

Zolmitriptan -4.26[215] -4.44 

                     The asterisk (*) indicates the validation compounds. 
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Figure 207: Plot of experimental vs predicted Caco-2 log Peff. values. 
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Table 122:  A summary of molecular descriptors for the selected drugs analysed by permeation method using Franz diffusion cells and the 

reported experimental values of %HIA and permeability coefficients of PAMPA and Caco-2 tests.   

Drug  log Kp
* Mwt[218] pKa

[184] Sw
[184] HD[218] HA[218] RB[218] VM

[218] Log Po
[215] log Peff.  %HIA  

Acetaminophen -4.50 151.20 9.9[220] 14 2 3 1 131.1 -5.81 -4.44[56] 80[205] 

Caffeine  -4.49 194.20 14[222] 21.6 0 6 0 133.4 -5.53[298] -4.074[216] 99[230] 

Carbamazepine -4.08 236.36 13.9 0.21[184, 282] 1[184] 3 0 186.6 -3.73 -4.379[56] 70[209] 

Cimetidine -4.62 252.34 6.8 9.38 3 6 8 198.2 -6.2 -4.52[249] 60[205] 

Diclofenac -5.20 296.20 4.15 0.00237 2 3 4 206.8 -1.37 -4.75[56] 80.5[206, 207] 

Fenoprofen -4.92 242.27 4.5 0.033[218] 1 3 4 204.7 NA -4.947[230] 85[206] 

Fluconazole -5.14 306.27 12.71 9[283] 1 7 5 205.3 NA -4.515[246] 94[230] 

Flurbiprofen -4.83 244.26 4.42 0.008 1 2 3 203.6 -1.78 -4.697[230] 95[210] 

Fosinopril -5.58 563.66 -4.4 0.00101 1 8 15 480.4 NA NA 35[246] 

Gemfibrozil -5.17 250.33 4.5[219] 0.13[284] 1 3 6 239.7 -1.59 -4.407[246] 95[207] 

Haloperidol -4.34 375.86 8.3[296] 0.014 1 3 6 303.3 NI -4.792[246] 60[245] 

Ibuprofen -4.81 206.30 5.2[223] 0.0684 1 2 4 200.3 -1.15[64] -4.58[56] 90[207, 231] 

Indomethacin -5.16 357.79 4.5 0.000937 1 5 4 269.6 -1.65 -4.89[56] 98[245] 

Ketoprofen -4.70 254.30 3.88 0.051 1 3 4 212.2 -3.19[64, 215, 281, 295] -4.707[246] 90[210] 

Leflunomide -4.14 270.21 -0.45 0.021 1 4 3 194.1 NA NA 80[246] 

Lidocaine -4.78 234.40 7.9[224] 0.2337[285] 1 3 5 238.8 -1.42 -4.36[56] 80.75[209, 210, 230, 252] 

Linezolid -5.11 337.35 -0.66 1.44 1 7 4 259.0 NA -5.161[246] 100[246] 

Meloxicam -4.88 351.40 4.08 0.00715 2 7 2 220.3 -2.86 -4.752[246] 90[205] 

Moexipril -5.20 498.57 5.2 0.00585 2 9 12 408.1 NA NA 23[246] 

Naproxen -4.70 230.26 4.15 0.0159 1 3 3 192.3 -2.3 -4.66[56] 96.5[205, 210] 

Phenylbutazone -5.07 308.37 4.4[225] 0.7[219] 0 4 5 262.8 -1.96 -4.998[250] 90[245] 

Piroxicam -5.09 331.35 6.3 0.023 2 7 2 222.8 -3.32 -4.518[246] 99[252] 

Quinine -5.98 324.42 4.2 0.5 1 4 4 266.4 -1.05 -4.498[246] 95[210] 

Theophylline -5.15 180.16 8.8[228] 22.9 1 6 0 122.9 -5.99 -4.17[215] 96[231] 

Zolmitriptan -4.75 287.36 9.52[297] 0.19 2 5 5 236.1 -1.71 -4.26[215] 70.25[246, 294] 
*The logarithm is taken for the Kp value (cm/sec), NA: no available data, NI: value not included in training set. 
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5.B.3. Conclusion 

Determination of Kp from the permeation of a number of compounds using Franz 

diffusion cells was found to be a successful method for prediction of human intestinal 

absorption and permeability coefficients obtained from other in vitro methods. Overall, 

the two permeation methods yielded highly predictive models for both the in vivo %HIA 

and in vitro Caco-2 and PAMPA permeability coefficients. Although Franz cells 

presented a cheaper option, flow through cells could be considered as a better method 

as it requires less volumes of buffer solution and tested samples in addition to the 

easier sample collection. 
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Chapter 6: Conclusions and future work 

The aims of the work carried out in this thesis can be summarised as follows: 

a) The first aim was to develop an MLC method for the determination of log Pmw 

for a set of compounds using biosurfactants such as bile salts, which are unlike 

conventional synthetic surfactants, in order to mimic the physiological 

conditions in the intestine to predict human intestinal absorption and other 

related permeability coefficients obtained from in vitro methods such as Caco-

2 and PAMPA.  

This aim was achieved in Chapter 3 (section A, B, C and E) where different MLC 

methods were developed using different types of bile salts. The use of different bile 

salts led to obtaining different patterns of binding of the analysed compounds to the 

bile salt formed micelles which could be as a result of their different structures and 

hydropohobocities which affect their micellisation and the way they behave in the 

presence of some of the analysed compounds in the medium. The different MLC 

methods that were developed in this work have successfully led to the development 

of models useful in the prediction of human intestinal absorption (%HIA) and 

permeability coefficients in Caco-2 and PAMPA. These developed MLC methods are 

very useful in acting as a replacement for the use of animals in experiments performed 

for determination of compounds’ absorption in the intestine where animals have 

always been considered to be the best mimics for humans in such experiments. Also 

it saves time and money as it can be used in preformulation studies for determination 

of the absorption of new drug entities (NDE) before getting to the clinical stage. This 

would otherwise waste a lot of money if the drug entered the clinical stage and turned 

out not to be suitable for oral administration because of poor oral absorption. After 

using a single component bile salt system as a mobile phase in MLC, such as the 

individual use of NADC, NATDC and NaC as a mobile phase, an attempt to investigate 

the use of a multiple component bile salt system with lecithin included in the system 

was carried out. This was because of the similarity to the intestinal membrane bilayer 

due to the formation of mixed micelles with a larger diameter and fluidic core capable 

of incorporating and solubilising compounds inside even if it was of opposite charge 

to that of the mixed micelles where the net surface charge on these micelles was much 

less than that of the simple micelles. Using the mixed micellar system provided a better 
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mimic to the physiological conditions inside the intestine therefore providing better 

prediction of %HIA. The use of such a system led to a change for most drugs to the 

binding behaviour, confirming better solubilisation of drugs in the core of the mixed 

micelles.  

b) The second aim was to investigate the effect of using another type of 

chromatographic column such as an amino column on the partitioning of the 

analysed compounds.       

The aim was achieved by the developed method using NaDC as a mobile phase and 

the amino column used as a stationary phase that led to a change in the binding 

behaviour of some of the analysed compounds. This was mostly to antibinding 

behaviour because of the special interaction between the micelles and the column that 

led to the formation of a bilayer like network of bile salts on the surface of the column. 

A reliable model capable of predicting HIA was obtained using the log Pmw calculated 

from this method. 

c) The third aim was to study the thermodynamics of NaDC binding to the 

analysed compounds with the change in temperature.  

The result of the study was interesting as the nonlinear vant’s Hoff plots proved that 

the micellar interaction with the analysed compounds and their partitioning into the 

micelles was a complex process due to the natural source of the bile salt surfactants 

which confirms the need to further investigate the nature of the thermodynamic 

interaction between the bile salt micelles and the analysed compounds, also to 

investigate such interaction in the mixed micellar systems as well. 

d) The fourth aim was to develop a simple spectrophotometric method using a 

simple NaDC micellar system for determination of micelle-water partition 

coefficients and their use in the prediction of %HIA.     

This aim was achieved where two spectrophotometric methods were developed 

depending on the use of the solubilising capacity of NaDC micelles and also the 

binding of NaDC micelles to the analysed compounds. The developed solubilisation 

spectrophotometric method was more successful than the double reciprocal method 

in the prediction of %HIA. This method can play an important role in reducing or even 

replacing the use of animals in experiments for the determination of a drugs absorption 

properties. 

e) The fifth aim was to develop permeation methods using Franz and flow 

through cells with a prepared NaDC hydrogel as a membrane to determine the 
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permeability coefficient (Kp) for a series of compounds and their use in 

prediction of %HIA.  

The aim was achieved by the use of NaDC hydrogel of optimum concentration which 

led to developing models for prediction of %HIA with high predictability. This method 

is the first method to use bile salt hydrogels and also Franz and flow through cells in 

the prediction of intestinal absorption. Like the other developed methods in this thesis 

it is considered a simple, rapid and cost effective method that can contribute to the 

reduction of the use of animals in experimentation. 

All the obtained models with a good predictive ability were found to cover 

compounds with a wide variety of physicochemical properties, which reflects that 

these models can be applied to a wide range of compounds. However, most of the 

compounds included in the development of these models were found to be of relatively 

low aqueous solubility, especially those involved in the solubilisation method. 

It was observed that compounds of relatively higher aqueous solubility, for example 

salicylic acid, caffeine and nicotinic acid, were excluded from the development of most 

prediction models because they were considered as outliers although these 

compounds were included in the development of some prediction models. This could 

be a result of compounds behaving differently in each experimental method, such as 

the use of different bile salts which exhibit different characteristics, such as solubilising 

capacities, as discussed in Chapter 3 (sections A-D). Further analysis was undertaken 

to investigate alternative potential relationships yet none of significance could be 

found. Therefore, it can be concluded that the developed predictive models worked 

well for specific groups of compounds yet there was not one specific overall model 

that could be applied to encompass all compounds considered.  

In summary, all the aims of the thesis were successfully fulfilled by providing promising 

and reliable replacement methods to animal testing that can save time and money. 
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Future work 

The overall aim of this project was to develop an in vitro method to predict 

human intestinal absorption. 

Although many of the methods developed show a promise (and have the 

potential to be adopted by industry to replace animal testing), more research is still 

required. In order of priority, the six main avenues for future research are: 

- Investigating the use of other types of columns (monolithic, HILIC and 

polymeric) for the determination of log Pmw of compounds using micellar liquid 

chromatography could be useful in detecting other patterns of binding of 

compounds to micelles and the column and its effect on the determination of 

human intestinal absorption. 

- Expanding the applications of MLC to the prediction of other pharmacokinetic 

parameters by using other biologically relevant compounds such as using the 

physiological surfactant system found in human lungs for prediction of 

pulmonary absorption of drugs administered through the pulmonary route. 

- Using other types of bile salts in the prediction of human intestinal absorption 

such as chenodeoxycholate, glycochenodeoxycholate and lithocholate. 

- Use of isothermal calorimetry (ITC) to further study the binding of compounds 

to bile salt micelles and to provide a better understanding of the characteristic 

micellisation behaviour of bile salts.   

- Further studying of the thermodynamics of compounds binding to bile salt 

micelles in MLC using a larger set of compounds and wider range of 

temperatures such as expanding to the range of temperatures less than 25 ºC 

taking in to consideration not to go below the Krafft temperature of the studied 

bile salt. 

- Studying the permeation of drugs available on the market through prepared bile 

salt hydrogels using diffusion cells and its correlation with the already 

developed method.     
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