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Efficient sampling methods enable the reconstruction of a generic surface with a limited 
amount of points. The reconstructed surface can therefore be used for inspection purpose. 
In this paper a sampling method that enables the reconstruction of a curve or surface is 
proposed. The input of the proposed algorithm is the number of required samples. The 
method takes into account two factors: the regularity of the sampling and the complexity 
of the object. A higher density of samples is assigned where there are some significant 
features, described by the curvature. The analysed curves and surfaces are described 
through the B-splines spaces. The sampling of surfaces generated by two or more curves is 
also discussed.

© 2017 Published by Elsevier B.V.

1. Introduction

Acquiring points from a freeform surface is usually a long process. Fast and reliable inspection of the product has become 
an important factor due to the market requirements, such as low volume and high customised products (Mackelprang et al., 
2015). An efficient sampling method enables the acquisition of small amount of point to reconstruct the surface and verify 
if the product is within tolerance.

Although triangular and quadrilateral meshes can represent a general freeform surface, it is not possible to represent the 
class of surfaces generated by the Cartesian product of two or more curves. In this paper non-uniform rational B-splines 
(NURBS, Piegl and Tiller, 1997) curves and surfaces are used to describe the shape of an object. NURBS are the standard 
surface representation in Computer Aided Geometric Design (CAGD). If only the point cloud is available there are some 
techniques to reconstruct the surface using interpolation (Piegl and Tiller, 1997) or approximation methods (Eck and Hoppe, 
1996). When the nominal shape is known, using its NURBS representation has several advantages also in finite element 
method simulation (Cottrell et al., 2009).

Sampling of parametric curve or surface is usually carried out by adding sampled points where critical points are found.
Hernández-Mederos and Estrada-Sarlabous (2003) proposed a sampling method using the re-parametrisation of the curve 

based on a mixture between the arc length, or uniform, parametrisation and the value of the bending energy of the curve 
section. The authors showed that with the parametrisation it is possible to add samples points where there are abrupt 
changes of the curve.

A seminal work on sampling of freeform surfaces can be found in the paper of Elkott et al. (2002). The authors have 
developed an automatic sampling plan for freeform surfaces. The developed algorithm selects the sampling points according 
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to the complexity of the NURBS surface, which is represented by the curvature changes and the size of the patches. Starting 
from the size of each patch of the NURBS surface and the mean of the Gaussian curvature, the patches are ranked according 
to a linear combination of the two computed values. The number of sampled points are distributed among the surface 
according to the rank.

Another sampling method can be found in Obeidat and Raman (2009), where it is proposed to sample the points with 
higher curvature for inspection purpose. The algorithm take as input a NURBS surface, it is divided into patches based on 
the knots vectors and ranked based on their size. The points are sampled according to the higher values of the surface 
curvature.

A sampling method that is not based on the curvature of the surface can be found in Yu et al. (2013). The authors 
developed an adaptive sampling method based on the distance between reconstructed geometry and the CAGD model.

A review of intelligent sampling techniques can be found in Wang et al. (2012). Among the reviewed techniques, two 
adaptive sampling methods have been analysed: triangle and rectangle patch adaptive subdivision. Both the algorithm are 
based on the iterative subdivision of the of the surface domain in triangle (rectangle) until the reconstruction error is 
smaller than a defined threshold.

In the previous papers sampling methods for complex curves and freeform surfaces have been analysed. Most of them 
are based on the incremental reconstruction of the surface, i.e. samples are incrementally added until the reconstruction 
error is lower than a pre-defined threshold. If the number of sample points it is set in advance, instead of the threshold, it 
is possible to use a non greedy algorithm to select the samples.

A class of freeform surfaces that have not been investigated in the aforementioned papers regards the surfaces generated 
from two or more curves such as ruled surface, skinned surfaces, etc. (Piegl and Tiller, 1997). A sampling method based on 
this curves, called generatrices, is proposed and the reconstruction performance are compared to the other methods.

This paper is construct as follows: in Section 2 a sampling method for NURBS curves is presented, in Section 3 a sampling 
method for freeform and generated surfaces is developed and Section 4 summarise the paper.

2. Curve sampling

The methods proposed in this paper is based on NURBS curves and surfaces, which can represent both the nominal 
geometry of the CAGD model and the reconstruction of a general freeform surface. The construction of the B-splines and 
NURBS curves is now introduced. Given a non decreasing sequence of knots t = (ti)

n+d
i=0 the B-splines base Bi,d(x) = Bi,d,t(x)

of degree d � 0 with support [ti, ti+1] is defined by the De Boor’s algorithm (Piegl and Tiller, 1997) by

Bi,d(t) = t − ti

ti+d − ti
Bi,d−1(t) + ti+d − t

ti+d+1 − ti+1
Bi+1,d−1(t) (1)

with

Bi,0(t) =
{

1 if ti � t < ti+1
0 otherwise.

(2)

A d-th degree B-splines curve is defined as

r(t) =
n∑

i=0

Bi,d(t) pi t1 � t � tn+d+1 (3)

where pi is the set of control points.
A d-th degree NURBS curve as

r(t) =
∑n

i=0 wi Bi,d(t) pi∑n
i=0 wi Bi,d(t)

t1 � t � tn+d+1 (4)

where wi is the weight of the i-th B-splines basis function.
The parametrisation proposed in this paper is similar to the one analysed in Hernández-Mederos and Estrada-Sarlabous

(2003). The authors have proposed to re-parametrise the curve according the arc length and the square of the curvature. 
The arc length parametrisation of a generic parametric curve can be computed as (do Carmo, 1976)

l(t) =
t∫

t1

‖r′(u)‖du, (5)

where ‖ • ‖ is the l2 norm. This is also called uniform parametrisation because if a curve is re-parametrised according 
to l(t) its speed is unitary. An example of a B-splines curve and a uniform arc length sampling is shown in Fig. 1a. The 
parameter value as a function of the computed parametrisation is reported in Fig. 1b, this function is used to perform the 
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Fig. 1. B-splines curve sampling and arc length parametrisation.

points sampling. It is possible to observe that the greater difference between the uniform and the initial parametrisation 
are located near the boundaries, i.e. the distances between the sampled points is smaller with arc length sampling.

The curvature is a geometric quantity that measures the rate of change of the unit tangent vector of the curve, it is 
usually computed to describe the complexity of a curve (Hernández-Mederos and Estrada-Sarlabous, 2003). The curvature 
of a parametric curve can be computed as (do Carmo, 1976)

k(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

. (6)

Considering that it is an intrinsic value of the curve, a curvature parametrisation can be computed as

kp(t) =
t∫

t1

k(u)dl(u) =
t∫

t1

k(u)‖r′(u)‖du (7)

where the integral is computed according to the infinitesimal arc length dl(u). Compared to the parametrisation proposed 
in Hernández-Mederos and Estrada-Sarlabous (2003), in this paper the square of the curvature is not used and the integral 
is performed on the curve, i.e. weighting the integrand function with ‖r′(u)‖. It should be noted that otherwise the value 
of kp(t) depends on the curve parameter t and not only on the geometry of the curve.

The cumulative integral in Equation (7) is shown in Fig. 2b. The curvature varies where there are high changes of the 
tangent vector, but where the curve is flat it is almost constant, such as in the end of the graph. This leads to an high density 
of sampled points in some parts of the curves and where the curve is flat there are few sampled points (see Fig. 2a).

To overcome the lack of points in the flat zones, it is possible to compute a mixed parametrisation, similar to the one in 
Hernández-Mederos and Estrada-Sarlabous (2003), as

p(t) = l(t)

2 l(tn+1)
+ kp(t)

2 kp(tn+d+1)
. (8)

In this paper it is assigned an equal weight both to the arc length and the curvature parametrisation.
In Fig. 3b the parametrisation computed with Equation (8) is shown. Since it is a mean of the two quantities in the flat 

zones the slope of the cumulative integral is higher compared to the curvature one; where there are big changes of the 
tangent vector the slope is higher than the arc length one. This parametrisation is a compromised between the uniform 
sampling and a sampling based only on the complexity of the curve. A 50 points uniform sampling is shown in Fig. 3a, the 
density of the sampled points is higher where the curvature is high but there are points also in the flat zones.

2.1. Reconstruction results

In this Section the reconstruction performances based on different sampling methods are evaluated. Three curves are 
analysed: the curve used in the previous paragraph, a curve representing a simulation of a milled profile and a profile of a 
real surface. The root mean square error (RMSE) is used as a performance indicator
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Fig. 2. B-splines curve sampling and curvature parametrisation.

Fig. 3. B-splines curve sampling and mixed parametrisation.

RMSE =

√√√√√1

n

n∑
i=1

d∑
j=1

(
ri j(s) − r̂i j(s)

)2 (9)

where n is the number of the points, d is the dimension of the B-splines curve or surface, ri j(s) is the true value and 
r̂i j(s) is estimated point with the reconstruction model. The reconstruction algorithms used in this paper are the piecewise 
cubic splines interpolation implemented in MATLAB® (2014) through the cubicinterp function and the Akima splines 
interpolation (Akima, 1970; Henning, 2012). The piecewise cubic spline interpolation is a globally C2 cubic function, the 
second derivative is usually set to zero, this lead to the so called natural cubic spline. The Akima interpolation is third degree 
function with a globally C1 continuity. Since there are less constraints in the Akima spline, it can easily describe curves with 
abrupt changes. The reconstruction is then performed with the method that allows to achieve the better performance, i.e.
the Akima interpolation when the curve has some jumps while the piecewise interpolation when it is “smoother”. In this 
analysis it is assumed that the true value of the parameter of the curve is known, i.e. the point cloud parametrisation is not 
taken into account.

Five sampling methods are investigated:

• uniform arc length sampling, arc_length;
• uniform mixed arc length and curvature sampling, al_curv;
• uniform parametric sampling, uniform;
• random latin hypercube sampling (LHS), lhs (Santner et al., 2003);
• the method implemented in Hernández-Mederos and Estrada-Sarlabous (2003), al_curv2.
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Fig. 4. Sampling and RMSEs of the reconstructed curve with piecewise cubic interpolation.

The first analysed curve is the curve described in the previous Section; 30 points sampled with the mixed parametrisa-
tion are shown in Fig. 4a. The RMSEs of the analysed models with the piecewise cubic reconstruction are shown in Fig. 4b. 
It is possible to observe that the reconstruction with the proposed mixed parametrisation has a smaller reconstruction error.

In Fig. 5 are shown the sampling of 30 points with the analysed methods along with the reconstruction errors. It is 
possible to observe that the reconstruction errors with the uniform method are high in a region with high curvature 
and where the parametrisation is not linear, i.e. the sampling points are uniformly distributed in the parametrisation but 
not in the curve. The errors with the arc_length parametrisations are high in a part of the curve where there is a 
curvature change, while with the al_curv sampling the errors appear constant along the curve, compared to the other 
methods. Reconstruction with the lhs sampling has the worst performance where the points are too far each other. Due to 
the computation of the square of the curvature the parametrisation proposed in Hernández-Mederos and Estrada-Sarlabous
(2003) adds more points in regions with high curvature, so there are some flat part of the curve uncovered.

A comparison based on the reconstruction of a simulated manufactured profiles (NPL, 2015) and a profile of a real 
measurements are now presented. Starting form the measured points, the curves have been reconstructed with a second 
degree B-splines interpolation (Piegl and Tiller, 1997). A sampling of, respectively, 30 and 100 points with the al_curv 
method are shown in Figs. 6a and 7a, the points seem to be placed where there are critical points of the curve.

The values of the RMSEs are shown in Figs. 6b and 7b. The reconstruction, based on the Akima interpolation, with the 
proposed methods produces better reconstruction results. It should be noted that, due to the reconstruction algorithm, the 
parametrisation of the initial point cloud is close to the arc length parametrisation, consequently the arc_length and the 
uniform have similar performances.

This Section has shown that the reconstruction based on the proposed sampling method outperforms the other analysed 
models. The mean of the arc length and curvature parametrisations is a good compromise between the uniformity and the 
complexity of the curve. In the next Section the curve sampling is extended to the surface scenario.

3. Surface sampling

A simple sampling method based on the vector product of two sampling in u and v direction is presented. After a brief 
introduction of the NURBS surfaces, the proposed sample method is presented and the reconstruction is compared with 
some common sampling techniques. An investigation on the sampling of some surfaces generated from curves is finally 
performed; the surface sampling methods are compared with generatrices curves-based samplings.

A NURBS surface can be computed through the tensor product of two NURBS basis function in two orthogonal direction 
u and v . A NURBS surface of degree p in u direction and degree q in v direction is a piecewise rational function described 
by (Piegl and Tiller, 1997)

r(u, v) =
∑n

i=0
∑m

j=0 wij Bi,p(u) B j,q(v) pi j∑n
i=0

∑m
j=0 wij Bi,p(u) B j,q(v)

u1 � u � un+p+1, v1 � v � vm+p+1

(10)

where pi j are the control points, wij is the weights of the product of the B-splines basis Bi(u) and B j(v), u and v are the 
knots vectors of the B-splines basis in u and v direction. An example of a B-splines surface is shown in Fig. 8.

In order to present the proposed sampling method, the first step is to compute the area of a parametric surface 
(do Carmo, 1976)
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Fig. 5. Sampled points and reconstruction error.

A =
un+1∫
u1

vm+1∫
v1

‖ru(u, v) × rv(u, v)‖dudv (11)

then it is possible to calculate the marginal cumulative area along the u direction as

Au(u) =
u∫

ds

vm+1∫
‖rs(s, v) × rv(s, v)‖dv (12)
u1 v1
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Fig. 6. Sampling and RMSEs of the reconstructed curve with Akima interpolation.

Fig. 7. Sampling and RMSEs of the reconstructed curve with Akima interpolation.

Fig. 8. B-splines surface (Spink et al., 2015).



L. Pagani, P.J. Scott / Computer Aided Geometric Design 59 (2018) 32–48 39
Fig. 9. B-splines surface sampling and marginal cumulative parametrisation.

and along v direction as

Av(v) =
v∫

v1

ds

un+1∫
u1

‖ru(u, s) × rs(u, s)‖du. (13)

The values A•(•) are used to compute the uniform sampling along the u and v directions. The sampling on the surface 
can then be computed as the cross product of the two marginal samples. This is not the exact equal area sampling, but 
it uses the same principle of the NURBS surface construction. An example of the B-splines surface with the two marginal 
cumulative areas is shown in Fig. 9b, while a 10 × 10 uniform sampling along the marginal areas is reported in Fig. 9a.

As for the curve sampling a value that measures the complexity of the surface has to be chosen. An important shape 
property is the mean curvature, that is computed as (do Carmo, 1976)

k(u, v) = k1(u, v) + k2(u, v)

2
(14)

where k1(u, v) and k2(u, v) are the principal curvatures of the surface. The mean curvature is used instead of the Gaussian 
one because if one of the principal curvatures is null, the Gaussian curvature vanish to 0. When a principal curvature is 0 
and if it is not possible to find the right parametrisation, a sampling model based on the Gaussian curvature cannot “see” 
that the curvature in one direction is changing. Similar to the curve case, the cumulative integral of the mean curvature on 
the surface is computed. The marginal cumulative integral along the u direction is

ku(u) =
u∫

u1

ds

vm+1∫
v1

k(s, v)‖rs(s, v) × rv(s, v)‖dv (15)

and along v direction is

kv(v) =
v∫

v1

ds

un+1∫
u1

k(u, s)‖ru(u, s) × rs(u, s)‖du. (16)

These quantities can be used to derive other two sampling strategies: one is based on the curvature and the other is based 
on a mixed measure between the area and the curvature. The mixed marginal parametrisations are

pu(u) = Au(u)

2 Au(un+1)
+ ku(u)

2 ku(un+1)
(17)

pv(v) = Av(v)

2 Av(vm+1)
+ kv(v)

2 kv(vm+1)
(18)

where the area and the curvature have the same importance. The mixed marginal parametrisations of the example surface 
are shown in Fig. 10b, while a sample of 10 × 10 points is drawn in Fig. 10a.
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Fig. 10. B-splines surface sampling and marginal cumulative parametrisation.

Fig. 11. Freeform surface sampling and RMSEs.

3.1. Reconstruction results

In this Section three freeform surfaces are analysed. The first and the second are surfaces with some, respectively, slow 
and rapid changes of the shape; the third surface is a structured surface. The following sampling strategies are analysed:

• uniform based on the cumulative marginal areas, area;
• uniform based on the mixed cumulative marginal areas and mean curvatures, area_curv;
• uniform on the parameters space u–v, uniform;
• latin hypercube sampling, lhs (Santner et al., 2003);
• Hammersley sampling, hammersley (Wong et al., 1997);
• Halton sampling, halton (Wong et al., 1997);
• triangular patch sampling implemented in Shih et al. (2008), tri_patch.

The performances of the parametrisation based only on the mean curvature are not evaluated because, as in the curve 
scenario, it does not add points on the flat parts of the surface. The analysed adaptive sampling is the triangular patch 
sampling since it has achieved good reconstruction performances in Wang et al. (2012) and Shih et al. (2008). The recon-
struction is performed through the piecewise cubic interpolation implemented in the fit function of MATLAB® (2014). 
As for the curve test cases the u and v parameters during the reconstruction are assumed known, i.e. the parametrisation 
problem in not considered. The RMSEs of the surface in Fig. 8 are shown in Fig. 11. The uniform, area and area_curv 
sampling have comparable reconstruction errors, which are smaller than the errors of the other sampling strategies.
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Fig. 12. Sampled points and reconstruction error.

Fig. 12 shows the sampled points and the colour map of the reconstruction error. Reconstruction with both uniform 
and area have the same disadvantages of, respectively, the uniform and the arc_lenght parametrisations. With the 
area_curv parametrisation the errors appear almost constant along the surface. The three random sample techniques 
analysed, i.e. hammersley, halton and lhs, generate some cluster of points in the surface domain, so the reconstruction 
is poor in regions where the points’ density is not high. The reconstruction with the samples of the tri_patch method 
has the worst performance in some parts of the surface with small curvature, bad not flats.

Since the previous surface has a simple behaviour, the performances of a more complex surface are evaluated (X3D, 
2015). The plot of the surface with a sampling of 10 × 10 points with the area_curv method and the RMSEs values are 
shown in Fig. 13. When the surface has a complex shape both the area and the mixed parametrisation can ensure better 
reconstruction results.
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Fig. 12. (Continued.)

Fig. 13. Freeform surface sampling and RMSEs.

The third surface analysed is shown in Fig. 14a. It represents a structured surface. The values of the RMSE are reported 
in Fig. 14b. With the proposed sampling method it is possible to add more samples on the critical points of the surface and 
this leads to better reconstruction results.

In this Section it has been shown that a reconstruction with samples that take into account the complexity of the surface 
through the mean curvature leads to a smaller RMSE when the complexity of the surface increases.

3.2. Generated surfaces

After the analysis of some general freeform surfaces, the reconstruction of surfaces generated from two or more curves 
is analysed. These surfaces can be classified into: prism surface, ruled surface, surface of revolution, swung surface, skinned 
surface, swept surface and coons surface; for a better explanation regarding their construction see Piegl and Tiller (1997).

During the design phase the generatrices are known, it is therefore possible to use these information to extract the 
sampled points. The curves based sampling is build independently along the generatrices curve; the samples on the surface 
are, in most of the cases, the cross product of the two curves based samples. In this paper this sampling method is called 
curves.

Each type of generated surface is briefly recalled the construction and a sampling method is proposed. The reconstruction 
results are finally compared with the surface based sampling.

3.2.1. Prism surface
A prism surface is a generalisation of the cylinder, a curve r1(u) on the x–y plane is swept to a distance d. The surface 

can be represented as

r(u, v) = r(u) + v 0 � v � d. (19)
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Fig. 14. Structured surface sampling and RMSEs, values in mm.

Since a prism surface is generated extruding a curve along an axis, the proposed sampling method along the curves is:

• a sampling based on the mixed curve parametrisation along the swept curve;
• a uniform sampling along the extrusion direction.

The surface sampling is then computed as the cross product of the two curves’ samplings.
An example of an extruded surface is show in Fig. 15a with the curves based sampling of 30 × 3 points.

3.2.2. Ruled surface
Let r1(u) and r2(u) be two B-splines curves, the surface representing the linear interpolation between the two curves is 

called ruled surface.
Let nu and nv be the samples along u and v directions, the sampling is computed as:

• sampling along the generatrices curves nu samples with the mixed sampling method;
• for each pair of the samples along the u direction compute nv samples through linear interpolation.

A ruled surface with the two generating curves is show in Fig. 15b. In this Figure there is the sampling of 30 × 3 points 
with the curves sampling method.

3.2.3. Surface of revolution
A surface of revolution, see Fig. 15c, is a surface that is build through the rotation of a curve, called generatrix, along an 

axis. The proposed sampling is:

• compute nu , uniformly spaced, samples along a circle;
• compute nv sample along the generatrix with the mixed sampling method;
• compute the samples on the surface as the cross product of the samples along the curves.

3.2.4. Swung surface
A swung surface is a generalisation of the surface of revolution. Let r1(u) be a curve defined on the x–z plane, called 

profile curve

r1(u) =
∑n

i=1 Bi(u) w1
i p1

i∑n
i=1 Bi(u) w1

i

(20)

and r2(v) a curve on the x–y plane, called trajectory

r2(v) =
∑m

j=1 B j(v) w2
j p2

i∑m
j=1 B j(v) w2

j

. (21)

The swung surface is a surface defined as

r(u, v) =
∑n

i=1
∑m

j=1 Bi(u) B j(v) wij Q i, j∑n ∑m B (u) B (v) w
(22)
i=1 j=1 i j i j
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Fig. 15. Example of generated surfaces and sampling.

where

Q i, j =
(
α p1

i,1 p2
j,1,α p1

i,2 p2
j,2, p2

i,3

)T

wij = w1
i w2

j ,

and α is a scaling parameter. The sampling strategy can be defined similarly to the surface of revolution case:

• compute nu samples along the profile curve with the mixed sampling method;
• compute nv samples along the trajectory curve with the mixed sampling method;
• compute the samples on the surface as the cross product of the samples along the curves.
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Fig. 15. (Continued.)

Fig. 15d shows an example of a swung surface and the point generated from the proposed sampling.

3.2.5. Skinned surface
Let {rk(u)} be a set of curves, called section curves. These curves represent the cross section of the surface along the 

u direction, the curves along the v direction are defined through an interpolation with a desired continuity. The sampling 
strategy can be defined similarly to the ruled surface one:

• sampling along the section curves nu samples with the mixed sampling method;
• for each tuple of the samples along the u direction perform an interpolation with the same continuity of the skinned 

surface in v direction;
• for each interpolated curve compute nv sampling through the arc length based sampling method.

In the last step the sampling method based on the arc length is preferred because it leads to a better reconstruction result. 
An example of a skinned surface build from four profile curves is shown in Fig. 15e, the surface is of class C2 along the v
direction. The sample size used for the reconstruction is equal to n × 5.

3.2.6. Swept surface
A swept is a surface that is generated sweeping a section curve along an arbitrary trajectory. A general swept surface is 

defined as

r(u, v) = r2(u) + M(v) r1(v) (23)

where r1(u) is the section curve, r2(v) is the trajectory and M(v) ∈ R
3×3 is a rotation and scaling matrix. If M(v) is the 

identity matrix, the swept surface can be computed as

r(u, v) =
∑n

i=1
∑m

j=1 Bi(u) B j(v) wij pi, j∑n
i=1

∑m
j=1 Bi(u) B j(v) wij

(24)

where

pi j = p1
i + p2

j (25)

wij = w1
i w2

j . (26)

The sampling strategy can be defined as:

• compute nu samples along the section curve with the mixed sampling method;
• compute nv samples along the trajectory curve with the mixed sampling method;
• compute the samples on the surface as the cross product of the samples along the curves.

An example of a swept surface with the profile and the trajectory and its samplings are shown in Fig. 15f.
A general swept surface can also be built through a additional rotation of the section curve in order to follow the 

behaviour of the trajectory curve (Piegl and Tiller, 1997). Applying these transformations to the section and trajectory above 
the resulting swept surface is shown in Fig. 15g.
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Fig. 16. RMSEs of generated surfaces.

3.2.7. Coons surface
A coons surface is defined through four boundary curves. Let r1,u(u) and r2,u(u) the two boundaries curve on the u

parameter space and r1,v(v) and r2,v(v) the two boundaries curve on the u parameter space, the bilinearly blender coons 
surface is defined by:

r(u, v) = r1(u, v) + r2(u, v) − r3(u, v) (27)

where r1(u, v) and r2(u, v) are the ruled surfaces between, respectively, the curves r1,u(u) and r2,u(u) and the curves 
r1,v(v) and r2,v(v) and r3(u, v) is a bilinear tensor product surface (plane) defined as
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Fig. 16. (Continued.)

r3(u, v) = (
1 u

)[
p0,0 p0,1
p1,0 p1,1

](
1
v

)
(28)

and

p0,0 = r1,u(0) = r1,v(0)

p1,0 = r1,u(1) = r2,v(0)

p0,1 = r2,u(0) = r1,v(1)

p1,1 = r2,u(1) = r2,v(1)

Since a coons surface is a sum of three surface that are linear in at least one direction, possible sampling strategy is:

• compute nu samples along the two generatrices curves in u direction with the mixed sampling method;
• for each couple of nu samples perform an interpolation in the u–v space;
• compute nv samples along the two generatrices curves in v direction with the mixed sampling method;
• for each couple of nv samples perform an interpolation in the u–v space.

An example of a coons surface is shown in Fig. 15h.

3.3. Discussion of results

In this Section reconstruction performance of the proposed sampling methods are compared.
Fig. 16 shows the RMSEs of the analysed surfaces. Although some sampling have different sizes along the u and v

directions, on the abscissa is reported the square root of the total number of samples to maintain the scale linear. The 
samples based on LHS, Halton, Hammersley and the triangular patch sampling are not shown for prism, ruled and skinned 
surfaces because the RMSE values are too high.

From the figures is possible to conclude that the curve based and area_curv methods achieve, compared to the 
analysed sampling methods, equal or better reconstruction performance in most of the analysed cases. The reconstruction 
of the skinned surface with the curve based method is not as good as the reconstruction with the area and mixed sampling 
(see Fig. 16e). The sampling based on the mixed parametrisation has some problem in the reconstruction of the revolution 
surface, this is due to the effect of the small radius on the flat part of the surface. The area based sampling achieves good 
prediction results. The uniform sampling has lower performance compared to the previous mentioned methods. Performance 
of LHS, Halton and Hammersley samplings, since the information of the surface shape is not included in the model, are lower 
compared to other sampling procedures. The method based on the triangular patches achieves oscillating performances: if 
the number of samples is small the reconstruction is not good as the proposed methods.

4. Conclusion

In this paper a curve sampling method based on a mixed parametrisation between the arc length and the curvature has 
been proposed. If the analysed shape is a surface a simple sampling method based on the marginal cumulative integrals 
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along a NURBS surface has been proposed. The reconstruction with the proposed methods have been compared with other 
common sampling strategies. It has been shown that the proposed methods achieve comparable or better reconstruction 
performance if the surface to be reconstructed has a freeform shape. The proposed sampling plan based on the mixed 
parametrisation attains the best performances except in the reconstruction of the surface of revolution.

The sampling of freeform surfaces generated from two or more curves has been investigated. A sampling method that 
take into account the generatrices curves has been developed. In all the tested scenario the reconstruction with the sampling 
based on the curves can achieve good results. In almost all the cases it has the smallest RMSE values, this means that with 
the generating curves it is possible to “understand” the behaviour of the surface.

In this paper a real equal sampling on the area or on the mixed parametrisation has not been computed. It can be 
performed through an optimisation algorithm, but the samples of the proposed methods can be used as a starting point 
in order to improve the convergence of the algorithm. The critical points of the curve or surface has not been analysed, 
these points can be added to the resulting samples or the closet point to each critical point can be moved to achieve better 
reconstruction results.
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