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Abstract

Efficient sampling methods enable the reconstruction of a generic surface with a limited amount of

points. The reconstructed surface can therefore be used for inspection purpose. In this paper a

sampling method that enables the reconstruction of a curve or surface is proposed. The input of the

proposed algorithm is the number of required samples. The method takes into account two factors:

the regularity of the sampling and the complexity of the object. A higher density of samples is

assigned where there are some significant features, described by the curvature. The analysed curves

and surfaces are described through the B-splines spaces. The sampling of surfaces generated by two

or more curves is also discussed.

Keywords: Sampling, NURBS, Curvature

1. Introduction

Acquiring points from a freeform surface is usually a long process. Fast and reliable inspection of the

product has become an important factor due to the market requirements, such as low volume and

high customised products [8]. An efficient sampling method enables the acquisition of small amount

of point to reconstruct the surface and verify if the product is within tolerance.

Although triangular and quadrilateral meshes can represent a general freeform surface, it is not possible

to represent the class of surfaces generated by the Cartesian product of two or more curves. In this

paper non-uniform rational B-splines (NURBS, [12]) curves and surfaces are used to describe the shape

of an object. NURBS are the standard surface representation in Computer Aided Geometric Design

(CAGD). If only the point cloud is available there are some techniques to reconstruct the surface using

interpolation [12] or approximation methods [4]. When the nominal shape is known, using its NURBS

representation has several advantages also in finite element method simulation [3].

Sampling of parametric curve or surface is usually carried out by adding sampled points where critical

points are found.

Hernández and Estrada [7] proposed a sampling method using the re-parametrisation of the curve

based on a mixture between the arc length, or uniform, parametrisation and the value of the bending
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energy of the curve section. The authors showed that with the parametrisation it is possible to add

samples points where there are abrupt changes of the curve.

A seminal work on sampling of freeform surfaces can be found in the paper of Elkott et al. [5]. The

authors have developed an automatic sampling plan for freeform surfaces. The developed algorithm

selects the sampling points according to the complexity of the NURBS surface, which is represented

by the curvature changes and the size of the patches. Starting from the size of each patch of the

NURBS surface and the mean of the Gaussian curvature, the patches are ranked according to a linear

combination of the two computed values. The number of sampled points are distributed among the

surface according to the rank.

Another sampling method can be found in Obeidat and Raman [11], where it is proposed to sample the

points with higher curvature for inspection purpose. The algorithm take as input a NURBS surface,

it is divided into patches based on the knots vectors and ranked based on their size. The points are

sampled according to the higher values of the surface curvature.

A sampling method that is not based on the curvature of the surface can be found in Yu et al. [19].

The authors developed an adaptive sampling method based on the distance between reconstructed

geometry and the CAGD model.

A review of intelligent sampling techniques can be found in Wang et al. [16]. Among the reviewed

techniques, two adaptive sampling methods have been analysed: triangle and rectangle patch adaptive

subdivision. Both the algorithm are based on the iterative subdivision of the of the surface domain

in triangle (rectangle) until the reconstruction error is smaller than a defined threshold.

In the previous papers sampling methods for complex curves and freeform surfaces have been analysed.

Most of them are based on the incremental reconstruction of the surface, i.e. samples are incrementally

added until the reconstruction error is lower than a pre-defined threshold. If the number of sample

points it is set in advance, instead of the threshold, it is possible to use a non greedy algorithm to

select the samples.

A class of freeform surfaces that have not been investigated in the aforementioned papers regards

the surfaces generated from two or more curves such as ruled surface, skinned surfaces, etc. [12].

A sampling method based on this curves, called generatrices, is proposed and the reconstruction

performance are compared to the other methods.

This paper is construct as follows: in Section 2 a sampling method for NURBS curves is presented, in

Section 3 a sampling method for freeform and generated surfaces is developed and Section 4 summarise

the paper.

2. Curve sampling

The methods proposed in this paper is based on NURBS curves and surfaces, which can represent

both the nominal geometry of the CAGD model and the reconstruction of a general freeform surface.

The construction of the B-splines and NURBS curves is now introduced. Given a non decreasing
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sequence of knots t = (ti)
n+d
i=0 the B-splines base Bi,d(x) = Bi,d,t(x) of degree d > 0 with support

[ti, ti+1] is defined by the De Boor’s algorithm [12] by

Bi,d(t) =
t− ti

ti+d − ti
Bi,d−1(t) +

ti+d − t
ti+d+1 − ti+1

Bi+1,d−1(t) (1)

with

Bi,0(t) =

 1 if ti 6 t < ti+1

0 otherwise.
(2)

A d-th degree B-splines curve is defined as

r(t) =

n∑
i=0

Bi,d(t)pi t1 6 t 6 tn+d+1 (3)

where pi is the set of control points.

A d-th degree NURBS curve as

r(t) =

∑n
i=0 wiBi,d(t)pi∑n
i=0 wiBi,d(t)

t1 6 t 6 tn+d+1 (4)

where wi is the weight of the i-th B-splines basis function.

The parametrisation proposed in this paper is similar to the one analysed in [7]. The authors have

proposed to re-parametrise the curve according the arc length and the square of the curvature. The

arc length parametrisation of a generic parametric curve can be computed as [2]

l(t) =

∫ t

t1

‖r′(u)‖ du, (5)

where ‖ • ‖ is the l2 norm. This is also called uniform parametrisation because if a curve is re-

parametrised according to l(t) its speed is unitary. An example of a B-splines curve and a uniform

arc length sampling is shown in Figure 1a. The parameter value as a function of the computed

parametrisation is reported in Figure 1b, this function is used to perform the points sampling. It is

possible to observe that the greater difference between the uniform and the initial parametrisation are

located near the boundaries, i.e. the distances between the sampled points is smaller with arc length

sampling.
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(a) B-splines curve with 50 samples (b) Arc length parametrisation

Figure 1: B-splines curve sampling and arc length parametrisation

The curvature is a geometric quantity that measures the rate of change of the unit tangent vector

of the curve, it is usually computed to describe the complexity of a curve [7]. The curvature of a

parametric curve can be computed as [2]

k(t) =
‖r′(t)× r′′(t)‖
‖r′(t)‖3

. (6)

Considering that it is an intrinsic value of the curve, a curvature parametrisation can be computed as

kp(t) =

∫ t

t1

k(u) dl(u) =

∫ t

t1

k(u) ‖r′(u)‖ du (7)

where the integral is computed according to the infinitesimal arc length dl(u). Compared to the

parametrisation proposed in [7], in this paper the square of the curvature is not used and the integral

is performed on the curve, i.e. weighting the integrand function with ‖r′(u)‖. It should be noted that

otherwise the value of kp(t) depends on the curve parameter t and not only on the geometry of the

curve.

The cumulative integral in Equation (7) is shown in Figure 2b. The curvature varies where there are

high changes of the tangent vector, but where the curve is flat it is almost constant, such as in the

end of the graph. This leads to an high density of sampled points in some parts of the curves and

where the curve is flat there are few sampled points (see Figure 2a).
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(a) B-splines curve with 50 samples (b) Curvature parametrisation

Figure 2: B-splines curve sampling and curvature parametrisation

To overcome the lack of points in the flat zones, it is possible to compute a mixed parametrisation,

similar to the one in [7], as

p(t) =
l(t)

2 l(tn+1)
+

kp(t)

2 kp(tn+d+1)
. (8)

In this paper it is assigned an equal weight both to the arc length and the curvature parametrisation.

In Figure 3b the parametrisation computed with Equation (8) is shown. Since it is a mean of the two

quantities in the flat zones the slope of the cumulative integral is higher compared to the curvature

one; where there are big changes of the tangent vector the slope is higher than the arc length one.

This parametrisation is a compromised between the uniform sampling and a sampling based only on

the complexity of the curve. A 50 points uniform sampling is shown in Figure 3a, the density of the

sampled points is higher where the curvature is high but there are points also in the flat zones.

(a) B-spliane curve with 50 samples (b) Mixed parametrisation

Figure 3: B-splines curve sampling and mixed parametrisation
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2.1. Reconstruction results

In this Section the reconstruction performances based on different sampling methods are evaluated.

Three curves are analysed: the curve used in the previous paragraph, a curve representing a simulation

of a milled profile and a profile of a real surface. The root mean square error (RMSE) is used as a

performance indicator

RMSE =

√√√√ 1

n

n∑
i=1

d∑
j=1

(rij(s)− r̂ij(s))
2

(9)

where n is the number of the points, d is the dimension of the B-splines curve or surface, rij(s)

is the true value and r̂ij(s) is estimated point with the reconstruction model. The reconstruction

algorithms used in this paper are the piecewise cubic splines interpolation implemented in MATLAB®

[9] through the cubicinterp function and the Akima splines interpolation [1, 6]. The piecewise cubic

spline interpolation is a globally C2 cubic function, the second derivative is usually set to zero, this

lead to the so called natural cubic spline. The Akima interpolation is third degree function with a

globally C1 continuity. Since there are less constraints in the Akima spline, it can easily describe

curves with abrupt changes. The reconstruction is then performed with the method that allows to

achieve the better performance, i.e. the Akima interpolation when the curve has some jumps while

the piecewise interpolation when it is “smoother”. In this analysis it is assumed that the true value of

the parameter of the curve is known, i.e. the point cloud parametrisation is not taken into account.

Five sampling methods are investigated:

• uniform arc length sampling, arc_length;

• uniform mixed arc length and curvature sampling, al_curv;

• uniform parametric sampling, uniform;

• random latin hypercube sampling (LHS), lhs [13];

• the method implemented in [7], al_curv2.

The first analysed curve is the curve described in the previous Section; 30 points sampled with the

mixed parametrisation are shown in Figure 4a. The RMSEs of the analysed models with the piecewise

cubic reconstruction are shown in Figure 4b. It is possible to observe that the reconstruction with the

proposed mixed parametrisation has a smaller reconstruction error.
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(a) Sampling, 30 points (b) RMSEs as function of the number of sampled points

Figure 4: Sampling and RMSEs of the reconstructed curve with piecewise cubic interpolation

In Figure 5 are shown the sampling of 30 points with the analysed methods along with the recon-

struction errors. It is possible to observe that the reconstruction errors with the uniform method are

high in a region with high curvature and where the parametrisation is not linear, i.e. the sampling

points are uniformly distributed in the parametrisation but not in the curve. The errors with the

arc_length parametrisations are high in a part of the curve where there is a curvature change, while

with the al_curv sampling the errors appear constant along the curve, compared to the other meth-

ods. Reconstruction with the lhs sampling has the worst performance where the points are too far

each other. Due to the computation of the square of the curvature the parametrisation proposed in [7]

adds more points in regions with high curvature, so there are some flat part of the curve uncovered.

(a) arc length (b) al curv (proposed method)
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(c) uniform (d) lhs

(e) al curv2

Figure 5: Sampled points and reconstruction error

A comparison based on the reconstruction of a simulated manufactured profiles [10] and a profile of

a real measurements are now presented. Starting form the measured points, the curves have been

reconstructed with a second degree B-splines interpolation [12]. A sampling of, respectively, 30 and

100 points with the al_curv method are shown in Figure 6a and 7a, the points seem to be placed

where there are critical points of the curve.

The values of the RMSEs are shown in Figure 6b and 7b. The reconstruction, based on the Akima

interpolation, with the proposed methods produces better reconstruction results. It should be noted

that, due to the reconstruction algorithm, the parametrisation of the initial point cloud is close to the

arc length parametrisation, consequently the arc_length and the uniform have similar performances.
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(a) Sampling, 30 points (b) RMSEs as function of the number of sampled points

Figure 6: Sampling and RMSEs of the reconstructed curve with Akima interpolation

(a) Sampling, 100 points (b) RMSEs as function of the number of sampled points

Figure 7: Sampling and RMSEs of the reconstructed curve with Akima interpolation

This Section has shown that the reconstruction based on the proposed sampling method outperforms

the other analysed models. The mean of the arc length and curvature parametrisations is a good

compromise between the uniformity and the complexity of the curve. In the next Section the curve

sampling is extended to the surface scenario.

3. Surface sampling

A simple sampling method based on the vector product of two sampling in u and v direction is

presented. After a brief introduction of the NURBS surfaces, the proposed sample method is presented

and the reconstruction is compared with some common sampling techniques. An investigation on the

sampling of some surfaces generated from curves is finally performed; the surface sampling methods

are compared with generatrices curves-based samplings.

A NURBS surface can be computed through the tensor product of two NURBS basis function in two

orthogonal direction u and v. A NURBS surface of degree p in u direction and degree q in v direction
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is a piecewise rational function described by [12]

r(u, v) =
∑n

i=0

∑m
j=0 wij Bi,p(u)Bj,q(v)pij∑n

i=0

∑m
j=0 wij Bi,p(u)Bj,q(v)

u1 6 u 6 un+p+1, v1 6 v 6 vm+p+1

(10)

where pij are the control points, wij is the weights of the product of the B-splines basis Bi(u) and

Bj(v), u and v are the knots vectors of the B-splines basis in u and v direction. An example of a

B-splines surface is shown in Figure 8.

Figure 8: B-splines surface [15]

In order to present the proposed sampling method, the first step is to compute the area of a parametric

surface [2]

A =

∫ un+1

u1

∫ vm+1

v1

‖ru(u, v)× rv(u, v)‖ dudv (11)

then it is possible to calculate the marginal cumulative area along the u direction as

Au(u) =

∫ u

u1

ds

∫ vm+1

v1

‖rs(s, v)× rv(s, v)‖ dv (12)

and along v direction as

Av(v) =

∫ v

v1

ds

∫ un+1

u1

‖ru(u, s)× rs(u, s)‖ du. (13)

The values A•(•) are used to compute the uniform sampling along the u and v directions. The

sampling on the surface can then be computed as the cross product of the two marginal samples. This

is not the exact equal area sampling, but it uses the same principle of the NURBS surface construction.

An example of the B-splines surface with the two marginal cumulative areas is shown in Figure 9b,

while a 10× 10 uniform sampling along the marginal areas is reported in Figure 9a.

As for the curve sampling a value that measures the complexity of the surface has to be chosen. An

important shape property is the mean curvature, that is computed as [2]

k(u, v) =
k1(u, v) + k2(u, v)

2
(14)

where k1(u, v) and k2(u, v) are the principal curvatures of the surface. The mean curvature is used

instead of the Gaussian one because if one of the principal curvatures is null, the Gaussian curvature
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(a) B-splines surface and sampling (15× 15 points) (b) Normalised marginal cumulative area

Figure 9: B-splines surface sampling and marginal cumulative parametrisation

vanish to 0. When a principal curvature is 0 and if it is not possible to find the right parametrisation,

a sampling model based on the Gaussian curvature cannot “see” that the curvature in one direction

is changing. Similar to the curve case, the cumulative integral of the mean curvature on the surface

is computed. The marginal cumulative integral along the u direction is

ku(u) =

∫ u

u1

ds

∫ vm+1

v1

k(s, v) ‖rs(s, v)× rv(s, v)‖ dv (15)

and along v direction is

kv(v) =

∫ v

v1

ds

∫ un+1

u1

k(u, s) ‖ru(u, s)× rs(u, s)‖ du. (16)

These quantities can be used to derive other two sampling strategies: one is based on the curvature

and the other is based on a mixed measure between the area and the curvature. The mixed marginal

parametrisations are

pu(u) = Au(u)
2Au(un+1)

+ ku(u)
2 ku(un+1)

(17)

pv(v) = Av(v)
2Av(vm+1)

+ kv(v)
2 kv(vm+1)

(18)

where the area and the curvature have the same importance. The mixed marginal parametrisations

of the example surface are shown in Figure 10b, while a sample of 10× 10 points is drawn in Figure

10a.

3.1. Reconstruction results

In this Section three freeform surfaces are analysed. The first and the second are surfaces with some,

respectively, slow and rapid changes of the shape; the third surface is a structured surface. The

following sampling strategies are analysed:

• uniform based on the cumulative marginal areas, area;

• uniform based on the mixed cumulative marginal areas and mean curvatures, area_curv;
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(a) B-splines surface and sampling (15× 15 points) (b) Normalised mixed marginal cumulative

parametrisation

Figure 10: B-splines surface sampling and marginal cumulative parametrisation

• uniform on the parameters space u-v, uniform;

• latin hypercube sampling, lhs [13];

• hammersley sampling, hammersley [17];

• halton sampling, halton [17];

• triangular patch sampling implemented in Shih et al. [14], tri_patch.

The performances of the parametrisation based only on the mean curvature are not evaluated because,

as in the curve scenario, it does not add points on the flat parts of the surface. The analysed adaptive

sampling is the triangular patch sampling since it has achieved good reconstruction performances in

Wang et al. [16] and Shih et al. [14]. The reconstruction is performed through the piecewise cubic

interpolation implemented in the fit function of MATLAB® [9]. As for the curve test cases the u

and v parameters during the reconstruction are assumed known, i.e. the parametrisation problem in

not considered. The RMSEs of the surface in Figure 8 are shown in Figure 11. The uniform, area

and area_curv sampling have comparable reconstruction errors, which are smaller than the errors of

the other sampling strategies.
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(a) Surface and sampling (10× 10 points) (b) RMSEs as function of the number of samples

Figure 11: Freeform surface sampling and RMSEs

Figure 12 shows the sampled points and the colour map of the reconstruction error. Reconstruction

with both uniform and area have the same disadvantages of, respectively, the uniform and the

arc_lenght parametrisations. With the area_curv parametrisation the errors appear almost constant

along the surface. The three random sample techniques analysed, i.e. hammersley, halton and lhs,

generate some cluster of points in the surface domain, so the reconstruction is poor in regions where

the points’ density is not high. The reconstruction with the samples of the tri_patch method has

the worst performance in some parts of the surface with small curvature, bad not flats.

(a) area (b) area curv (proposed method)
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(c) uniform (d) lhs

(e) hammersley (f) halton

(g) tri patch

Figure 12: Sampled points and reconstruction error

Since the previous surface has a simple behaviour, the performances of a more complex surface are

evaluated [18]. The plot of the surface with a sampling of 10× 10 points with the area_curv method

and the RMSEs values are shown in Figure 13. When the surface has a complex shape both the area

and the mixed parametrisation can ensure better reconstruction results.

The third surface analysed is shown in Figure 14a. It represents a structured surface. The values of

the RMSE are reported in Figure 14b. With the proposed sampling method it is possible to add more

samples on the critical points of the surface and this leads to better reconstruction results.
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(a) Surface and sampling (10× 10 points) (b) RMSEs as function of the number of samples

Figure 13: Freeform surface sampling and RMSEs

(a) Surface and sampling (30× 30 points) (b) RMSEs as function of the number of samples

Figure 14: Structured surface sampling and RMSEs, values in mm

In this Section it has been shown that a reconstruction with samples that take into account the

complexity of the surface through the mean curvature leads to a smaller RMSE when the complexity

of the surface increases.

3.2. Generated surfaces

After the analysis of some general freeform surfaces, the reconstruction of surfaces generated from

two or more curves is analysed. These surfaces can be classified into: prism surface, ruled surface,

surface of revolution, swung surface, skinned surface, swept surface and coons surface; for a better

explanation regarding their construction see [12].

During the design phase the generatrices are known, it is therefore possible to use these information to

extract the sampled points. The curves based sampling is build independently along the generatrices

curve; the samples on the surface are, in most of the cases, the cross product of the two curves based

samples. In this paper this sampling method is called curves.
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Each type of generated surface is briefly recalled the construction and a sampling method is proposed.

The reconstruction results are finally compared with the surface based sampling.

3.2.1. Prism surface

A prism surface is a generalisation of the cylinder, a curve r1(u) on the x-y plane is swept to a distance

d. The surface can be represented as

r(u, v) = r(u) + v 0 6 v 6 d. (19)

Since a prism surface is generated extruding a curve along an axis, the proposed sampling method

along the curves is:

• a sampling based on the mixed curve parametrisation along the swept curve;

• a uniform sampling along the extrusion direction.

The surface sampling is then computed as the cross product of the two curves’ samplings.

An example of an extruded surface is show in Figure 15a with the curves based sampling of 30 × 3

points.

3.2.2. Ruled surface

Let r1(u) and r2(u) be two B-splines curves, the surface representing the linear interpolation between

the two curves is called ruled surface.

Let nu and nv be the samples along u and v directions, the sampling is computed as:

• sampling along the generatrices curves nu samples with the mixed sampling method;

• for each pair of the samples along the u direction compute nv samples through linear interpola-

tion.

A ruled surface with the two generating curves is show in Figure 15b. In this Figure there is the

sampling of 30× 3 points with the curves sampling method.

3.2.3. Surface of revolution

A surface of revolution, see Figure 15c, is a surface that is build through the rotation of a curve, called

generatrix, along an axis. The proposed sampling is:

• compute nu, uniformly spaced, samples along a circle;

• compute nv sample along the generatrix with the mixed sampling method;

• compute the samples on the surface as the cross product of the samples along the curves.
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3.2.4. Swung surface

A swung surface is a generalisation of the surface of revolution. Let r1(u) be a curve defined on the

x-z plane, called profile curve

r1(u) =

∑n
i=1Bi(u)w1

i p
1
i∑n

i=1Bi(u)w1
i

(20)

and r2(v) a curve on the x-y plane, called trajectory

r2(v) =

∑m
j=1Bj(v)w2

j p
2
i∑m

j=1Bj(v)w2
j

. (21)

The swung surface is a surface defined as

r(u, v) =

∑n
i=1

∑m
j=1Bi(u)Bj(v)wij Qi,j∑n

i=1

∑m
j=1Bi(u)Bj(v)wij

(22)

where

Qi,j =
(
αp1i,1 p

2
j,1, α p

1
i,2 p

2
j,2, p

2
i,3

)T
wij = w1

i w
2
j .

and α is a scaling parameter. The sampling strategy can be defined similarly to the surface of

revolution case:

• compute nu samples along the profile curve with the mixed sampling method;

• compute nv samples along the trajectory curve with the mixed sampling method;

• compute the samples on the surface as the cross product of the samples along the curves.

Figure 15d shows an example of a swung surface and the point generated from the proposed sampling.

3.2.5. Skinned surface

Let {rk(u)} be a set of curves, called section curves. These curves represent the cross section of the

surface along the u direction, the curves along the v direction are defined through an interpolation

with a desired continuity. The sampling strategy can be defined similarly to the ruled surface one:

• sampling along the section curves nu samples with the mixed sampling method;

• for each tuple of the samples along the u direction perform an interpolation with the same

continuity of the skinned surface in v direction;

• for each interpolated curve compute nv sampling through the arc length based sampling method.

In the last step the sampling method based on the arc length is preferred because it leads to a better

reconstruction result. An example of a skinned surface build from four profile curves is shown in

Figure 15e, the surface is of class C2 along the v direction. The sample size used for the reconstruction

is equal to n× 5.
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3.2.6. Swept surface

A swept is a surface that is generated sweeping a section curve along an arbitrary trajectory. A general

swept surface is defined as

r(u, v) = r2(u) + M(v) r1(v) (23)

where r1(u) is the section curve, r2(v) is the trajectory and M(v) ∈ R3×3 is a rotation and scaling

matrix. If M(v) is the identity matrix, the swept surface can be computed as

r(u, v) =

∑n
i=1

∑m
j=1Bi(u)Bj(v)wij pi,j∑n

i=1

∑m
j=1Bi(u)Bj(v)wij

(24)

where

pij = p1
i + p2

j (25)

wij = w1
i w

2
j . (26)

The sampling strategy can be defined as:

• compute nu samples along the section curve with the mixed sampling method;

• compute nv samples along the trajectory curve with the mixed sampling method;

• compute the samples on the surface as the cross product of the samples along the curves.

An example of a swept surface with the profile and the trajectory and its samplings are shown in

Figure 15f.

A general swept surface can also be built through a additional rotation of the section curve in order

to follow the behaviour of the trajectory curve [12]. Applying these transformations to the section

and trajectory above the resulting swept surface is shown in Figure 15g.

3.2.7. Coons surface

A coons surface is defined through four boundary curves. Let r1,u(u) and r2,u(u) the two boundaries

curve on the u parameter space and r1,v(v) and r2,v(v) the two boundaries curve on the u parameter

space, the bilinearly blender coons surface is defined by:

r(u, v) = r1(u, v) + r2(u, v)− r3(u, v) (27)

where r1(u, v) and r2(u, v) are the ruled surfaces between, respectively, the curves r1,u(u) and r2,u(u)

and the curves r1,v(v) and r2,v(v) and r3(u, v) is a bilinear tensor product surface (plane) defined as

r3(u, v) =
(

1 u
) p0,0 p0,1

p1,0 p1,1

 1

v

 (28)
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and

p0,0 = r1,u(0) = r1,v(0)

p1,0 = r1,u(1) = r2,v(0)

p0,1 = r2,u(0) = r1,v(1)

p1,1 = r2,u(1) = r2,v(1)

Since a coons surface surface is a sum of three surface that are linear in at least one direction, possible

sampling strategy is:

• compute nu samples along the two generatrices curves in u direction with the mixed sampling

method;

• for each couple of nu samples perform an interpolation in the u-v space;

• compute nv samples along the two generatrices curves in v direction with the mixed sampling

method;

• for each couple of nv samples perform an interpolation in the u-v space.

An example of a coons surface is shown in Figure 15h.

(a) Prism surface and sampling (30× 3 points) (b) Ruled surface and sampling (30× 3 points)
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(c) Surface of revolution and sampling (30× 30 points) (d) Swung surface and sampling (30× 30 points)

(e) Skinned surface and sampling (15× 5 points) (f) Swept surface and sampling (20× 20 points)

(g) General swept surface and sampling (20×20 points) (h) Coons surface and sampling (20× 20 points)

Figure 15: Example of generated surfaces and sampling
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3.3. Discussion of results

In this Section reconstruction performance of the proposed sampling methods are compared.

Figure 16 shows the RMSEs of the analysed surfaces. Although some sampling have different sizes

along the u and v directions, on the abscissa is reported the square root of the total number of samples

to maintain the scale linear. The samples based on LHS, Halton, Hammersley and the triangular patch

sampling are not shown for prism, ruled and skinned surfaces because the RMSE values are too high.

From the figures is possible to conclude that the curve based and area_curv methods achieve, com-

pared to the analysed sampling methods, equal or better reconstruction performance in most of the

analysed cases. The reconstruction of the skinned surface with the curve based method is not as good

as the reconstruction with the area and mixed sampling (see Figure 16e). The sampling based on the

mixed parametrisation has some problem in the reconstruction of the revolution surface, this is due

to the effect of the small radius on the flat part of the surface. The area based sampling achieves

good prediction results. The uniform sampling has lower performance compared to the previous men-

tioned methods. Performance of LHS, Halton and Hammersley samplings, since the information of

the surface shape is not included in the model, are lower compared to other sampling procedures. The

method based on the triangular patches achieves oscillating performances: if the number of samples

is small the reconstruction is not good as the proposed methods.

(a) Prism surface (b) Ruled surface

(c) Surface of revolution (d) Swung surface
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(e) Skinned surface (f) Swept surface

(g) General swept surface (h) Coons surface

Figure 16: RMSEs of generated surfaces

4. Conclusion

In this paper a curve sampling method based on a mixed parametrisation between the arc length and

the curvature has been proposed. If the analysed shape is a surface a simple sampling method based

on the marginal cumulative integrals along a NURBS surface has been proposed. The reconstruction

with the proposed methods have been compared with other common sampling strategies. It has been

shown that the proposed methods achieve comparable or better reconstruction performance if the

surface to be reconstructed has a freeform shape. The proposed sampling plan based on the mixed

parametrisation attains the best performances except in the reconstruction of the surface of revolution.

The sampling of freeform surfaces generated from two or more curves has been investigated. A

sampling method that take into account the generatrices curves has been developed. In all the tested

scenario the reconstruction with the sampling based on the curves can achieve good results. In almost

all the cases it has the smallest RMSE values, this means that with the generating curves it is possible

to “understand” the behaviour of the surface.

In this paper a real equal sampling on the area or on the mixed parametrisation has not been computed.

It can be performed through an optimisation algorithm, but the samples of the proposed methods can
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be used as a starting point in order to improve the convergence of the algorithm. The critical points

of the curve or surface has not been analysed, these points can be added to the resulting samples or

the closet point to each critical point can be moved to achieve better reconstruction results.
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