
University of Huddersfield Repository

Amendola, Giovanni, Dodaro, Carmine, Faber, Wolfgang and Ricca, Francesco

Externally Supported Models for Efficient Computation of Paracoherent Answer Sets

Original Citation

Amendola, Giovanni, Dodaro, Carmine, Faber, Wolfgang and Ricca, Francesco (2018) Externally
Supported Models for Efficient Computation of Paracoherent Answer Sets. In: Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence. AAAI Press.

This version is available at http://eprints.hud.ac.uk/id/eprint/33982/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Externally Supported Models for Efficient Computation
of Paracoherent Answer Sets

Giovanni Amendola1 and Carmine Dodaro2 and Wolfgang Faber3 and Francesco Ricca1
1DEMACS, University of Calabria, Italy

2DIBRIS, University of Genova, Italy
3University of Huddersfield, UK

{amendola,ricca}@mat.unical.it, dodaro@dibris.unige.it, wf@wfaber.com

Abstract

Answer Set Programming (ASP) is a well-established for-
malism for nonmonotonic reasoning. While incoherence, the
non-existence of answer sets for some programs, is an im-
portant feature of ASP, it has frequently been criticised and
indeed has some disadvantages, especially for query answer-
ing. Paracoherent semantics have been suggested as a rem-
edy, which extend the classical notion of answer sets to draw
meaningful conclusions also from incoherent programs. In
this paper we present an alternative characterization of the
two major paracoherent semantics in terms of (extended) ex-
ternally supported models. This definition uses a transforma-
tion of ASP programs that is more parsimonious than the clas-
sic epistemic transformation used in recent implementations.
A performance comparison carried out on benchmarks from
ASP competitions shows that the usage of the new transfor-
mation brings about performance improvements that are in-
dependent of the underlying algorithms.

1 Introduction
Knowledge Representation and Reasoning are a core topic
in Artificial Intelligence and in the past decades, major
progress has been achieved. In the subarea of nonmono-
tonic reasoning, Answer Set Programming (ASP) has be-
come the primarily used formalism (cf. (Brewka, Eiter,
and Truszczynski 2011; Gebser et al. 2012)). ASP offers a
declarative language and allows for solving difficult, usu-
ally NP-hard, problems by encoding them as a logic pro-
gram and computing its answer sets, which encode the prob-
lem solutions. The availability of efficient solvers has lever-
aged a large variety of applications (Gaggl et al. 2015;
Manna, Ricca, and Terracina 2015; Amendola et al. 2016a;
Dodaro et al. 2016; Amendola et al. 2016c), including in-
dustrial ones (Grasso et al. 2011).

One important, but in some circumstances peculiar, fea-
ture is that some logic programs have no answer sets. While
this is sometimes desired for encoding problems that ad-
mit no solutions, it is sometimes perceived as detrimental,
especially when dealing with query answering. Addressing
this issue, paracoherent semantics based on answer sets have
been proposed to draw meaningful conclusions also from in-
coherent programs (Amendola et al. 2016b). The term para-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

coherent has been chosen to highlight both similarities and
differences to paraconsistent semantics: their goal is simi-
lar, but the latter addresses classical logical contradictions,
while the former addresses contradictions due to unstratified
(“cyclic”) negation.

Practical applications of these paracoherent semantics
hinge on the availability of efficient algorithms and im-
plementations. There is a vast potential of applications,
the most immediate ones being debugging of ASP and
incoherence-tolerant query answering. But also applications
in diagnosis, planning, and reasoning about actions are con-
ceivable (Amendola et al. 2016b).

So far, we are aware of only one very recent attempt on
providing efficient reasoning support for paracoherent se-
mantics. The work presented in (Amendola et al. 2017) re-
lies on the epistemic transformation of ASP programs under-
lying the theoretical foundations of the semantics (Amen-
dola et al. 2016b), and constructs a few algorithms around
it that build upon existing ASP solvers. The fact that this
method relies on the epistemic transformation introduces
considerable overhead, though. Indeed, it creates so many
auxiliary atoms and additional rules that the system de-
scribed in (Amendola et al. 2017) often does not terminate
or even runs out of memory.

In this paper we present an alternative characterization of
paracoherent answer sets in terms of (extended) externally
supported models. The definition is based on a new transfor-
mation of the program that is more parsimonious than the
classical one in terms of the number of additional atoms and
the number of new rules. This transformation can be used in
place of the epistemic transformation in existing solving al-
gorithms without requiring any other modification. An em-
pirical performance comparison on benchmarks from ASP
competitions shows that significant performance improve-
ments can be obtained by using the new transformation, and
the advantages are independent of the used algorithms and
underlying ASP solvers.

2 Preliminaries
We start with recalling the basic notions of answer set
semantics, and then present the semi-stable and semi-
equilibrium paracoherent semantics.

We concentrate on programs over a propositional signa-
ture Σ. A rule r is of the form

a1∨ . . .∨al ← b1, . . . ,bm,not c1, . . . ,not cn (1)
where all ai, b j and ck are atoms (from Σ); l,m,n ≥ 0,
and l +m+ n > 0; not represents negation-as-failure. The
set H(r) = {a1, ...,al} is the head of r, while B+(r) =
{b1, ...,bm} and B−(r) = {c1, . . . ,cn} are the positive body
and the negative body of r, respectively; the body of r is
B(r) = B+(r)∪B−(r). If B(r) = /0, we then omit←; and if
B−(r) = /0, then r is positive. A program P is a finite set of
rules. P is called positive if each r ∈ P is positive.

Any set I ⊆ Σ is an interpretation; it is a model of a pro-
gram P (denoted I |= P) iff for each rule r ∈ P, I∩H(r) 6= /0
whenever B+(r) ⊆ I and B−(r)∩ I = /0 (denoted I |= r). A
model M of P is minimal iff no model M′ ⊂M of P exists.
Given an interpretation I, we denote by PI the well-known
Gelfond-Lifschitz reduct (Gelfond and Lifschitz 1991) of P
w.r.t. I, that is the set of rules a1 ∨ ...∨ al ← b1, ...,bm, ob-
tained from rules r ∈ P of form (1), such that B−(r)∩ I = /0.
A model M of P is called answer set (or stable model) of
P, if M is a minimal model of PM . We denote by AS(P) the
set of all answer sets of P. We say that P is consistent, if
it admits some model, otherwise it is inconsistent; whereas
it is coherent, if it admits some answer set, otherwise, it is
incoherent.

In the following, we will also use choice rules (Simons,
Niemelä, and Soininen 2002) of the form {a}, where a ∈
Σ. A choice rule {a} can be viewed as a syntactic shortcut
for for the rule a∨ aF , where aF is a fresh new atom not
appearing elsewhere in the program, meaning that the atom
a can be chosen as true. Note that ASP solvers do normally
not create any auxiliary symbols for choice rules.

Next, we introduce two paracoherent semantics. The first
one is known as semi-stable model semantics and was in-
troduced by (Sakama and Inoue 1995). We consider an ex-
tended signature Σκ = Σ∪{Ka | a ∈ Σ}. Intuitively, Ka can
be read as a is believed to hold. The semi-stable models of a
program P are obtained from its epistemic κ-transformation.
Definition 1 (Epistemic κ-transformation Pκ). Let P be a
program. Then its epistemic κ-transformation is defined as
the program Pκ obtained from P by replacing each rule r of
the form (1) in P, such that B−(r) 6= /0, with:

λr,1∨ . . .∨λr,l ∨Kc1∨ . . .∨Kcn← b1, . . . ,bm; (2)
ai← λr,i; (3)
← λr,i,c j; (4)

λr,i← ai,λr,k; (5)

for 1≤ i,k≤ l and 1≤ j ≤ n, where the λr,i are fresh atoms.
Given an interpretation Iκ over Σ′ ⊇ Σκ , let G (Iκ) =

{Ka ∈ Iκ | a 6∈ Iκ} denote the atoms believed true but not
assigned true, also referred to as the gap of Iκ . Given a set F
of interpretations over Σ′, an interpretation Iκ ∈F is maxi-
mal canonical in F , if no Jκ ∈F exists such that G (Iκ)⊃
G (Jκ). By mc(F) we denote the set of maximal canonical
interpretations in F . Semi-stable models are then defined as
maximal canonical interpretations among the answer sets of
Pκ , and the set of all semi-stable models of P is denoted by
SST (P), i.e., SST (P) = {S∩Σκ | S ∈ mc(AS(Pκ))}.

The second one is called semi-equilibrium model seman-
tics and was introduced by (Amendola et al. 2016b) to
amend anomalies in semi-stable model semantics. Semi-
equilibrium models may be computed as maximal canon-
ical answer sets of an extension of the epistemic κ-
transformation.
Definition 2 (Epistemic HT -transformation PHT). Let P be
a program over Σ. Then its epistemic HT -transformation
PHT is defined as the union of Pκ with the set of rules:

Ka← a, (6)
Ka1∨ . . .∨Kal ∨Kc1∨ . . .∨Kcn← Kb1, . . . ,Kbm, (7)

for a ∈ Σ, respectively for every rule r ∈ P of the form (1).
Then, the set of all semi-equilibrium models is given by

{M ∩Σκ | M ∈ mc(AS(PHT))} and is denoted by SEQ(P).
In the following, we refer to semi-stable models or semi-
equilibrium models as paracoherent answer sets.

3 Minimal Externally Supported Models
In this section, we introduce an alternative view on the pre-
vious paracoherent answer set semantics, that will have a
strong impact on the computation of paracoherent answer
sets. To this end, we will focus our attention on the concept
of supported atom, and we will show that both semi-stable
and semi-equilibrium semantics can be expressed in terms
of external supports.

Let P be a program over Σ. We consider an extended sig-
nature Σs = Σ∪{sa : a ∈ Σ}, where each sa is a new atom,
called support atom. For each rule r ∈ P of the form (1), we
build a new rule rs as follows:

a1∨ . . .∨al ← b1, . . . ,bm,not c1, . . . ,not cn,
not sc1, . . . ,not scn; (8)

Moreover, for each support atom sc, corresponding to a
negated body atom c, we build the choice rule

{sc}. (9)

Intuitively, these two kinds of rules mean that we consider
each possible external support for each negated atom of the
original program. Note that, as the support atoms in rule (8)
appear only in the negated body (under the default negation),
if no support atom is chosen from the set of rules of the
form (9), then we obtain the original rule. We refer to the
resulting program as the externally supported program with
respect to P, denoted by Ps.

Finally, we also consider a program Pes obtained by ex-
tending Ps with the support distribution rules, defined as
follows. For each rule r ∈ P of the form (1), we consider
a new rule rd as

sa1∨ . . .∨ sal ∨ sc1∨ . . .∨ scn← sb1, . . . ,sbm,
not a1, . . . ,not al ,
not c1, . . . ,not cn;

(10)

We call Pes = Ps∪{rd : r ∈ P} the extended externally sup-
ported program with respect to P.

Intuitively, the supported distribution rules allow to give
a support to an atom of the original program starting from

an external support atom, only if that atom has not a support
in the original program. E.g., consider the trivial program
P1 = {a}, stating that a has a support in P1. The extended ex-
ternally supported program is Pes

1 = {a; sa← not a}. Since
a has a support in Pes

1 , there is no reason to give an external
support to a, so that sa is not derived.

Similarly to the epistemic κ-transformation and the epis-
temic HT -transformation, the existence of a classical model
of the original program implies the existence of an answer
set in the (extended) externally supported program.
Theorem 1. Let P be a consistent program. Then, Ps and
Pes are coherent programs.

Given an interpretation I over Σs and an interpretation J
over Σκ , we denote by s(I) the set {sa : sa∈ I} of all support
atoms in I, and by κ(J) the set {Ka : Ka ∈ J} of all believed
true atoms in J, respectively.
Definition 3 (Minimal Externally Supported Models).
Let P be a consistent program, and let M be an answer set of
Ps [resp., Pes]. We say that M is a minimal externally sup-
ported model [resp., minimal extended externally supported
model] of P, if there is no answer set M′ of Ps [resp., Pes] s.t.
s(M′)⊂ s(M). We denote by MES(P) [resp., MEES(P)] the
set of all minimal externally supported models [resp., mini-
mal extended externally supported models] of P.
Theorem 2. Let P be a coherent program. Then, AS(P) =
MES(P) = MEES(P).

Proof. Let A ∈ AS(P) be an answer set of P, since s(A) = /0
it holds that A |= r for all r ∈ Ps (resp. r ∈ Pes) (note that any
additional rule of the form (9) and (10) is trivially satisfied
since all support atoms are false in A), thus A∈AS(Ps) (resp.
A ∈ AS(Pes)). Consequently (by Definition 3) we have that
A ∈ MES(P) (resp. A ∈ MEES(P)), i.e. AS(P) ⊆ MES(P)
(resp. AS(P) ⊆MEES(P)). On the other hand, since for all
A ∈ AS(P) it holds that s(A) = /0, there is no A′ ∈ AS(Ps)
(resp. A′ ∈ AS(Pes)) such that A′ /∈ AS(P) and s(M′)⊂ s(M),
i.e. MES(P)⊆ AS(P) (resp. MEES(P)⊆ AS(P)).

However, in general, the three semantics are very differ-
ent, as shown by the following example.
Example 1. Consider the following incoherent program
P = {a ← not b; b ← a,not c; c ← b; d ← c}. The ex-
ternally supported program with respect to P is Ps =
{a ← not b,not sb; b ← a,not c,not sc; c ← b; d ←
c;{sb}; {sc}}. The answer sets of Ps are M1 = {sb},
M2 = {a,sc} and M3 = {sb,sc}. However, M3 is not
a minimal externally supported model of P as, for in-
stance, s(M3) = M3 strictly contains s(M1) = M1. Therefore,
MES(P) = {M1,M2}. Instead, the extended externally sup-
ported program with respect to P is Pes = Ps ∪{sa∨ sb←
not a,not b; sb∨ sc← sa,not b,not c; sc← sb,not c; sd←
sc,not d}. The answer sets of Pes are M4 = {a,sc,sd}
and M5 = {sb,sc,sd}. Note that M5 is not a minimal ex-
tended externally supported model of P, because s(M4) =
{sc,sd} ⊂ s(M5) = M5. Therefore, MEES(P) = {M4}.

The MES-semantics is similar to the semi-stable one. In-
deed, informally, each minimal externally supported model
corresponds to a semi-stable model that has the same true

atoms and the same false atoms (once supporting atoms are
ignored). The next theorems provide a formal result.
Theorem 3. Let P be a program, and let M ∈ MES(P).
Then, there exists M′ ∈ SST (P), such that (i) M \ s(M) =
M′ \κ(M′), (ii) if sa∈M, then Ka∈M′; and (iii) if Ka∈M′
and sa 6∈M, then a ∈M′.

Proof. Let M be a minimal externally supported model of
P. Starting from M, we build an M′ that is a semi-stable
model of P. First of all, we consider an interpretation I sat-
isfying the first two conditions, (i) and (ii), of the theorem.
We show that I is a model of the epistemic transformation
Pκ . Note that each positive rule of Ps is also a positive rule
of Pκ . Hence, I satisfies it, because I \κ(I) = M \ s(M) and
M \ s(M), by assumption, satisfies it. Now, if I satisfies all
rules of Pκ , then we are done. Otherwise, suppose that I does
not satisfy a rule of the form (2). (Note that by construction
of I, no λr,i belongs to I, hence all bodies of the rules of
the form (3)-(5) are false.) Therefore, there exists r ∈ P such
that b1, . . . ,bm ∈ I and λr,1, . . . ,λr,l ,Kc1, . . . ,Kcn 6∈ I. Hence,
as M |= rs, either (a) there exists c j ∈ M, for some j ∈
{1, . . . ,n}, or (b) there exists ai ∈M, for some i∈ {1, . . . , l}.
In the case (a), we add Kc j in I, so I ∪{Kc j} satisfies all
rules in the epistemic transformation of r. In the case (b),
we add λr,i in I, so I ∪{λr,i} satisfies the first two rules and
the last rule in the epistemic transformation of r.

Suppose, by contradiction, that I ∪{λr,i} does not satisfy
the rule of the form (4), that is, there exists j ∈ {1, . . . ,n}
such that c j ∈ I. Therefore, by construction, c j ∈M. Hence,
we are with case (a) really, covered earlier. Now, the model
M′ so constructed (up to now called I) satisfies the third con-
dition of the theorem and is also minimal. Indeed, during
the construction of M′, we have added atoms of the form Kc
(only if c was in M) or λ , only when necessary. Hence, if
a is such a atom, then M′ \ {a} is not a model. Concerning
the other atoms, they are also in M, so if we delete one of
these from M′, we could delete the same atom from M, con-
tradicting the minimality of M. Moreover, if an atom Kc has
been added in M′, and sc was not in M, then c is in M′, as
c was in M. Hence, the third condition is satisfied, and M′
is a minimal model of Pκ . Finally, it is easy to see that the
minimization of the atoms of the form sc in M induces the
corresponding minimization of the gap atoms in M′. There-
fore, M′ is a maximal canonical interpretation among the
minimal models of Pκ , that is a semi-stable model of P.

Theorem 4. Let P be a program, and let M ∈ SST (P). Then,
there exists M′ ∈ MES(P), such that (i) M′ \ s(M′) = M \
κ(M), and (ii) Ka ∈ G (M) if, and only if, sa ∈M′.

Proof. Let M ∈ SST (P). Then, we consider the follow-
ing interpretation over Σs: M′ = (M \ κ(M))∪ {sa : Ka ∈
G (M)}. Clearly, by construction, M′ satisfies condition
(i). Indeed, M′ \ s(M′) = M \ κ(M). And, moreover, M′
satisfies condition (ii). Indeed, {sa : Ka ∈ G (M)} is the
set of all support atoms in M′. Therefore, it remains to
prove that M′ is a minimal extended supported model
of P. First, we show that M′ is a model of Ps. Clearly,
M′ satisfies all rules of the form {sc}. Now, assume by
contradiction that there is a rule in Ps of the form (8)

that is not satisfied by M′. That is, b1, . . . ,bm ∈ M′ and
c1, . . . ,cn,sc1, . . . ,scn,a1, . . . ,al 6∈M′. Let S be an answer set
of Pκ such that M = S∩Σκ . Then, by construction of M′, we
have that b1, . . . ,bm ∈ S and c1, . . . ,cn,a1, . . . ,al 6∈ S (by con-
dition (i)); and Kc1, . . . ,Kcn 6∈ S (by condition (ii)). There-
fore, consider the corresponding rule of the form (2). As S
satisfies it, then some λr,i ∈ S, but ai 6∈ S. So S does not sat-
isfy the rule of the form (3), in conflict with S being a model
of Pκ . Therefore, M′ is a model of Ps.

To show that M′ is an answer set of Ps, we assume by
contradiction that there is a model I′ of the reduct of Ps

with respect to M′, PsM′ , such that I′ is strictly contained
in M′. Note that s(I′) must be equal to s(M′), as it satis-
fies the choice rules. Now, assume that for some rule of
the form (8) {a1, . . . ,al}∩ I′ ⊂ {a1, . . . ,al}∩M′. Then, we
consider the corresponding interpretation over Σκ , that is
I = S\ (M′ \ I′), and then we consider J = I∪{λr,i : ai ∈ I},
so that J is strictly contained in S, and J by construction
satisfies rules of the form (3) and (5). Moreover, J cannot
be a model of Pκ , as S is a minimal model of Pκ . There-
fore J does not satisfy some rule of the form (2) or of the
form (4). First, suppose that a rule of the form (4) is not sat-
isfied by J. Hence, λr,i,c j ∈ J. Then, λr,i,c j ∈ S, thus S would
not be a model. Now suppose that a rule of the form (2)
is not satisfied by J. This means that b1, . . . ,bm ∈ J, but
λr,1, . . . ,λr,l ,Kc1, . . . ,Kcn 6∈ J. Hence, also a1, . . . ,al 6∈ J, and
further b1, . . . ,bm ∈ I′, sc1, . . . ,scn 6∈ I′, and a1, . . . ,al 6∈ I′.
Therefore, there exists some c j ∈ I′ to satisfy the correspond-
ing rule of the form (8). Therefore, c j ∈M′, thus this rule is
not in PsM′ . Hence, {a1, . . . ,al}∩ I′ = {a1, . . . ,al}∩M′, for
each rule of the form (8). Therefore, I′ 6⊂ M′, that is, M′ is
an answer set of Ps.

Finally, by the gap minimality of M, it follows that the
number of support atoms is also minimal in M′, that is, M′
is a minimal externally supported model of Ps.

Note that a minimal externally supported model can cor-
respond to more than one semi-stable model.
Example 2. Consider the program P = {a; b; c ←
not a,not b; d ← not a,not b; c← not c}. It is incoherent,
with a single minimal externally supported model {a,b,sc}
of P, while SST (P) = {{a,b,Kc,Ka},{a,b,Kc, Kb}}. Note
that both {a,b,Kc,Ka} and {a,b,Kc,Kb} can be obtained
starting from {a,b,sc}, as expected by Theorem 4.

The MEES-semantics is very close to the semi-
equilibrium semantics. Informally, each minimal ex-
tended externally supported model corresponds to a semi-
equilibrium model that has the same true atoms and the same
false atoms, and vice versa. Indeed, with a slight modifica-
tion of the proof strategy used to prove Theorems 3 and 4,
it can be shown that there is a one-to-one correspondence
between minimal extended externally supported models and
semi-equilibrium models, as stated in the following theorem.
Theorem 5. Let P be a program. Then, M ∈ MEES(P) if,
and only if, M′ ∈ SEQ(P), where M \ s(M) = M′ \ κ(M′),
and sa ∈M if, and only if, Ka ∈ G (M′).
Example 3. Consider again the program P of Exam-
ple 2. It has a single minimal extended externally supported

model equal to the minimal externally supported model,
i.e., MEES(P) = {{a,b,sc}}. Moreover, it also has a single
semi-equilibrium model: SEQ(P) = {{a,b,Ka,Kb,Kc}}.

Theorems 3-4 and Theorem 5, basically, say that comput-
ing minimal externally supported models and minimal ex-
tended externally supported models corresponds to comput-
ing semi-stable and semi-equilibrium models, respectively.

4 Computation of Paracoherent Answer Sets
We now discuss how to effectively compute one paraco-
herent answer set for a program, by using the (extended)
externally supported semantics. We first discuss some al-
gorithms of (Amendola et al. 2017), because it is possible
to re-use them. These algorithms take as input a program
Π = Pχ ∪Pgap, where Pχ is a generic epistemic transforma-
tion of the ASP program P and Pgap is the following set of
rules capturing the notion of the gap:

gap(Ka)← Ka, not a; ∀a ∈ Σ (11)

Let gap(I) = {gap(Ka) | gap(Ka)∈ I}, for a set I of atoms.
An answer set M of Π is a paracoherent answer set of P if,
and only if, there exists no answer set M1 of Π such that
gap(M1) ⊂ gap(M). Based on this, a set of algorithms for
computing a subset minimal (with respect to the gap atoms)
answer set was proposed in (Amendola et al. 2017). We
briefly recall the three algorithms obtaining the best perfor-
mance, namely MINIM, SPLIT, and WEAK.

The idea of MINIM is to compute an answer set M of
Π and then to search for another answer set Mw such that
gap(Mw) ⊂ gap(M). This property is enforced by a set of
rules added to Π. If Π admits an answer set, say Mw, then M
is replaced by Mw and the algorithm iterates minimizing M.
Otherwise, if Π admits no answer set, M is a paracoherent
answer set and the algorithm terminates returning M.

Concerning SPLIT, the algorithm first computes an answer
set M of Π and creates a set C of gap atoms that are included
in M. The program Π is then modified by adding the con-
straint ← p for all gap atoms that are not included in M.
Subsequently, one of the atoms in C is randomly selected,
say a, and an answer set of Π∪{← a} is searched. If such
an answer set does not exist then a must be included in the
paracoherent answer set. Thus, Π is modified by adding the
constraint← not a and a is removed from the set C. Other-
wise, if Π∪{← a} admits an answer set, say Mw, then M is
replaced by Mw and the set C is replaced by the gap atoms
that are true in Mw. The algorithm iterates until C is empty,
returning M corresponding to the paracoherent answer set.

Algorithm WEAK is based on the observation that modern
ASP solvers are able to compute cardinality minimal answer
set w.r.t. a set of atoms using the so-called weak constraints.
Therefore, a cardinality minimal answer set with respect to
the gap atoms is also subset minimal with respect to the gap
atoms, and so, it is a paracoherent answer set of P.

As observed in the previous section, given a program P,
a paracoherent answer set of P is an answer set of Ps (resp.
Pes) that is subset minimal with respect to the atoms of the
form sc (for c ∈ Σ). Thus, algorithms proposed in (Amen-
dola et al. 2017) can be used also in our setting. In particular,

the algorithms take as input the transformation Ps (resp. Pes)
and produce as output an answer set that is subset minimal
with respect to the atoms of the form sc. It is worth mention-
ing that Ps (resp. Pes) can be more compact than Pκ (resp.
PHT). Let rules(P) and atoms(P) be the set of rules of the
form (1) and the set of atoms occurring in P, respectively.
Proposition 1. Given a program P, |rules(Pκ)| ≥
|rules(Ps)| and |atoms(Pκ)| ≥ |atoms(Ps)|.

Proof. |rules(Pκ)| = |rules(P)| + ∑r∈P |H(r)| +

∑r∈P |B−(r)| + ∑r∈P |H(r)|2 while |rules(Ps)| =
|rules(P)| + |

⋃
r∈P B−(r)|. Thus, |rules(Pκ)| ≥

|rules(Ps)| because ∑r∈P |B−(r)| ≥ |
⋃

r∈P B−(r)|.
|atoms(Pκ)| = |atoms(P)| + ∑r∈P |H(r)| + |

⋃
r∈P B−(r)|

while |atoms(Ps)| = |atoms(P)| + |
⋃

r∈P B−(r)|. Thus,
|atoms(Pκ)| ≥ |atoms(Ps)|.

Proposition 2. Given a program P, |rules(PHT)| ≥
|rules(Pes)| and |atoms(PHT)| ≥ |atoms(Pes)|.

Proof. |rules(PHT)| = |rules(Pκ)| + |atoms(P)| +
|rules(P)| while |rules(Pes)| = |rules(Ps)| + |rules(P)|.
Thus, |rules(PHT)| ≥ |rules(Pes)| because |rules(Pκ)| ≥
|rules(Ps)|. |atoms(PHT)| = 2× |atoms(P)|+ ∑r∈P |H(r)|
while |atoms(Pes)| = 2 × |atoms(P)|, whence
|atoms(PHT)| ≥ |atoms(Pes)|.

5 Implementation and Experiments
In this section, we present an experimental analysis con-
ducted to study the impact of the new strategy for computing
a paracoherent answer set based on minimal (extended) ex-
ternally supported models.

Implementation. Algorithms described in the previous
section were implemented using the state of the art ASP
solver WASP (Alviano et al. 2015). In particular, we reused
the variant of WASP presented in (Amendola et al. 2017).
The implementation is parametric w.r.t. the transformations,
and makes use of precisely the same rewriter tools to pro-
duce either the epistemic transformation or the (extended)
externally supported program.

Benchmark Settings. Experiments were run on a system
with 2.30GHz Intel Xeon E5-4610 v2 CPUs. Execution time
and memory were limited to 1200 seconds and 8 GB, respec-
tively. We used exactly the same benchmark from (Amen-
dola et al. 2017). That benchmark addresses debugging, one
of the main motivations of paracoherent ASP. In particular,
the problem to be solved is the computation of an expla-
nation for the non-existence of answer sets. The instances
are from the latest ASP competition (Gebser, Maratea, and
Ricca 2015), which implies that they are challenging for
ASP solvers. The selected benchmarks are Knight Tour with
Holes, Minimal Diagnosis, Qualitative Spatial Reasoning,
Stable Marriage, and Visit All. Basically, the selection in-
cludes all the incoherent instances in the competition suite
that feature neither aggregates, nor choice rules, nor weak

constraints, since such features are not currently supported
by the paracoherent semantics (Amendola et al. 2016b).

Results. The experiments show a clear advantage of using
the novel translations, in the vast majority of considered in-
stances the improvements are significant, as seen from the
cactus plots in Figures 1(a) and 1(b) and the scatter plots
in Figures 1(c) and 1(d). The major factor for the improve-
ments appears to be the smaller size of the resulting pro-
grams, which lead to decreased memory usage, as seen in
the scatter plots in Figures 1(e) and 1(f).

In more detail, Figure 1(a) shows that WASP executed on
the program Ps outperformed WASP executed on Pκ , for all
considered algorithms (ALG(P) means WASP running the al-
gorithm ALG on the program P). Also for Pes and PHT , we
observed an advantage when WASP is executed on the for-
mer, seen in Figure 1(b). Indeed, MINIM (Pes) and SPLIT
(Pes) solve 5 and 2 more instances than their counterparts
executed on PHT . A huge improvement of the performance
is instead observed when the algorithm WEAK is considered.
Indeed, WEAK (Pes) solves 60 more instances than WEAK
(PHT). There is a somewhat peculiar characteristic for the
algorithm WEAK. Indeed, WEAK (Pes) by far outperforms
both MINIMPes and SPLITPes, while the opposite happens
when the program Ps is considered. Upon closer look, this
advantage is mostly due to the benchmark Minimal Diagno-
sis, where the default core-based strategy of WASP (Alviano
and Dodaro 2016) (used by algorithm WEAK) terminates af-
ter one call to the solver.

Figures 1(c) and 1(d) show instance-by-instance compar-
isons for systems using the old and new translations. If for
an instance the two systems take x and y execution time, then
a point (x,y) is plotted. Therefore, points below the diago-
nals represent instances where the system reported on the
x-axis was slower than the system reported on the y-axis.
The graphs confirm the better performance of WASP exe-
cuted on Ps (resp. Pes) than its counterparts executed on Pκ

(resp. PHT), independently of the used algorithm. Indeed,
only few instances are on the left of the diagonals, mean-
ing that are only few instances where WASP executed on Ps

(resp. Pes) is slower than WASP executed on Pκ (resp. PHT).
The main reason for this advantage appears to be due to

the different sizes of programs processed by WASP. Looking
at Table 1, we observe that the average numbers of atoms
and of rules for each benchmark are much lower for Ps (resp.
Pes) than for Pκ (resp. PHT) (cf. also Propositions 1 and 2).
The smaller programs impact the memory usage of WASP as
the instance-wise comparison in Figures 1(e) and 1(f) clearly
shows: WASP uses consistently less memory with Ps (resp.
Pes) than with Pκ (resp. PHT).

6 Related Work
In this paper we focus on the computation of the semi-
stable (Sakama and Inoue 1995) and the semi-equilibrium
semantics (Amendola et al. 2016b). These semantics are
considered the two major paracoherent semantics for ASP
programs, that emerged over several alternative propos-
als (Przymusinski 1991; van Gelder, Ross, and Schlipf 1991;

0 50 100 150 200
0

200

400

600

800

1000

1200

Solved instances

E
xe

cu
tio

n
tim

e
(s

)

MINIM (Pκ)
MINIM (Ps)
SPLIT (Pκ)
SPLIT (Ps)
WEAK (Pκ)
WEAK (Ps)

(a) Comparison of all algorithms on Pκ and Ps.

0 20 40 60 80
0

200

400

600

800

1000

1200

Solved instances

E
xe

cu
tio

n
tim

e
(s

)

MINIM (PHT)
MINIM (Pes)
SPLIT (PHT)
SPLIT (Pes)
WEAK (PHT)
WEAK (Pes)

(b) Comparison of all algorithms on PHT and Pes.

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

WASP (Pκ)

W
A

S
P

(P
s)

MINIM
SPLIT
WEAK

(c) Instance-wise comparison of all algorithms imple-
mented in WASP and executed on Pκ and Ps.

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

WASP (PHT)

W
A

S
P

(P
es

)

MINIM
SPLIT
WEAK

(d) Instance-wise comparison of all algorithms imple-
mented in WASP and executed on PHT and Pes.

0 1024 2048 3072 4096 5120 6144 7168 8192
0

1024

2048

3072

4096

5120

6144

7168

8192

WASP (Pκ)

W
A

S
P

(P
s)

MINIM
SPLIT
WEAK

(e) Instance-wise comparison of memory usage of al-
gorithms implemented in WASP and executed on Pκ

and Ps.

0 1024 2048 3072 4096 5120 6144 7168 8192
0

1024

2048

3072

4096

5120

6144

7168

8192

WASP (PHT)

W
A

S
P

(P
es

)

MINIM
SPLIT
WEAK

(f) Instance-wise comparison of memory usage of al-
gorithms implemented in WASP and executed on PHT

and Pes.

Figure 1: Comparison of the performance of WASP executed on the programs Pκ , Ps, PHT , and Pes produced by the different
rewriting techniques.

Pκ Ps PHT Pes

Benchmarks # Atoms Rules Atoms Rules Atoms Rules Atoms Rules
KnightTour 26 358 035 655 709 141 054 474 852 358 035 1 238 936 167 067 906 915
MinDiagn 64 1 214 042 1 579 409 450 265 654 412 1 214 042 2 549 729 466 578 1 216 487
QualSpatReas 76 68 793 789 642 27 620 735 317 68 793 1 542 607 28 035 1 469 246
StableMarr 1 - - - - - - - -
VisitAll 5 13 926 72 776 4 650 64 234 13 926 140 881 7 567 128 342

Table 1: Impact of transformations Pκ , Ps, PHT , and Pes.

Eiter, Leone, and Saccà 1997; Seipel 1997; Balduccini and
Gelfond 2003; Pereira and Pinto 2005; Alcântara, Damásio,
and Pereira 2005; Galindo, Ramı́rez, and Carballido 2008),
because they satisfy all the following five highly desirable
–from the knowledge representation point of view– theoret-
ical properties (Amendola et al. 2016b): answer set cover-
age, congruence, classical coherence, minimal undefined-
ness and justifiability. The first two properties ensure that the
notions of answer sets and paracoherent answer sets should
coincide for coherent programs; the third states that paraco-
herent answer set should exist whenever the programs ad-
mits a (classical) model; the last two state that the number
of undefined atoms should be minimized (such a property
has been recently enforced in Fuzzy ASP (Alviano, Amen-
dola, and Peñaloza 2017)), and every true atom should be
derived from the program, respectively. The partial eviden-
tial stable models of (Seipel 1997) are known to be equiva-
lent to semi-equilibrium ones (Amendola et al. 2016b), thus
our characterization can be used for implementing this se-
mantics. Moreover, in (Amendola, Eiter, and Leone 2014),
to refine the semi-equilibrium semantics for theoretical rea-
sons a splitting technique has been proposed. This technique
could have some potential to be used to improve the perfor-
mance, as it could reduce the size of a subcomponent passed
to a solver. However, it could not find any semi-equilibrium
model. Finally, we mention that the notion of support used in
this work has a long history, from the application to general
logic programs (Fages 1991) up to the recent use in ontolog-
ical reasoning (Amendola, Leone, and Manna 2017).

The efficient computation of paracoherent semantics for
ASP programs has been tackled only recently in (Amen-
dola et al. 2017). There, a number of algorithms relying
on the epistemic transformation of programs have been pro-
posed. We build upon that work, and present a transforma-
tion that can replace the epistemic transformation in the eval-
uation pipeline. As discussed in Section 4, the new trans-
formation introduces fewer atoms and fewer rules. More-
over, our approach significantly improve the performance of
solvers based on the algorithms presented in (Amendola et
al. 2017) as shown in Section 5. The algorithms used for
computing paracoherent answer sets are strictly related to
the computation of minimal models of propositional theo-
ries. The first approaches to that problem (Niemelä 1996;
Hasegawa, Fujita, and Koshimura 2000; Bry and Yahya
2000) were not able to take profit of modern learning-based
algorithms (Koshimura et al. 2009). Later the first algorithm
able to overcome that technological limit for the computa-
tion of minimal models of SAT formulae was introduced

in (Koshimura et al. 2009) that is similar in principle to
the MINIM algorithm; whereas the SPLIT algorithm is simi-
lar to the algorithms employed for computing cautious con-
sequences of ASP programs (Alviano, Dodaro, and Ricca
2014) and backbones of SAT formulas (Janota, Lynce, and
Marques-Silva 2015). General approaches such as the algo-
rithms for computing a Minimal Set over a Monotone Pred-
icate (MSMP) (Janota and Marques-Silva 2016) could be
adapted for computing paracoherent answer sets; whereas
the algorithms for positive CNF theories of (Angiulli et al.
2014) cannot be applied, since the minimization of the ex-
tension of a specific predicate is not supported.

7 Discussion and Conclusion
The computation of a paracoherent answer set is a difficult
problem that has been addressed only recently (Amendola
et al. 2017). Existing implementations of this task work ac-
cording to the definition of paracoherent answer sets, calling
an answer set solver repeatedly for finding a maximal canon-
ical answer set of the epistemic transformation.

In this paper we presented an alternative characterization
of the two major paracoherent semantics in terms of (ex-
tended) externally supported models. The new definition is
based on a transformation of the program that can replace
the epistemic transformation in existing strategies for com-
puting semi-stable and semi-equilibrium models. We devel-
oped concrete implementations that use the new transforma-
tion associated with algorithms of (Amendola et al. 2017).
An experimental analysis carried out on benchmarks from
ASP competitions shows that the new transformation brings
huge performance improvements that are independent of the
underlying algorithms. The improvements can be explained
by observing that the new transformation is more parsimo-
nious than the epistemic transformation in the sense that
it introduces fewer auxiliary propositional atoms and rules.
The ideas presented in this paper represent a significant step
towards in the state of the art of methods for computing para-
coherent answer sets, which opens new possibilities for im-
plementing concrete applications of paracoherent semantics.

Acknowledgements
This work has been partially supported by the EU Horizon
2020 Marie Skłodowska-Curie grant agreement No. 690974
for the project “MIREL”, and by the Italian ministry for
economic development (MISE) under project “PIUCultura”
(n. F/020016/01-02/X27) and under project “S2BDW” (n.
F/050389/01-03/X32).

References
Alcântara, J.; Damásio, C. V.; and Pereira, L. M. 2005. An
encompassing framework for paraconsistent logic programs.
J. Applied Logic 3(1):67–95.
Alviano, M.; Amendola, G.; and Peñaloza, R. 2017. Min-
imal undefinedness for fuzzy answer sets. In AAAI 2017,
3694–3700.
Alviano, M., and Dodaro, C. 2016. Anytime answer set
optimization via unsatisfiable core shrinking. TPLP 16(5-
6):533–551.
Alviano, M.; Dodaro, C.; Leone, N.; and Ricca, F. 2015.
Advances in WASP. In LPNMR 2015, 40–54.
Alviano, M.; Dodaro, C.; and Ricca, F. 2014. Anytime com-
putation of cautious consequences in answer set program-
ming. TPLP 14(4-5):755–770.
Amendola, G.; Dodaro, C.; Leone, N.; and Ricca, F. 2016a.
On the application of answer set programming to the confer-
ence paper assignment problem. In AI*IA 2016, 164–178.
Amendola, G.; Eiter, T.; Fink, M.; Leone, N.; and Moura, J.
2016b. Semi-equilibrium models for paracoherent answer
set programs. Artif. Intell. 234:219–271.
Amendola, G.; Greco, G.; Leone, N.; and Veltri, P. 2016c.
Modeling and reasoning about NTU games via answer set
programming. In IJCAI 2016, 38–45.
Amendola, G.; Dodaro, C.; Faber, W.; Leone, N.; and Ricca,
F. 2017. On the computation of paracoherent answer sets.
In AAAI 2017, 879–885.
Amendola, G.; Eiter, T.; and Leone, N. 2014. Modular para-
coherent answer sets. In JELIA 2014, 457–471.
Amendola, G.; Leone, N.; and Manna, M. 2017. Finite
model reasoning over existential rules. TPLP 17(5-6):726–
743.
Angiulli, F.; Ben-Eliyahu, R.; Fassetti, F.; and Palopoli, L.
2014. On the tractability of minimal model computation for
some CNF theories. Artif. Intell. 210:56–77.
Balduccini, M., and Gelfond, M. 2003. Logic programs with
consistency-restoring rules. In ISLFCR, AAAI 2003 Spring
Symposium Series, 9–18.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Com. ACM 54(12):92–103.
Bry, F., and Yahya, A. H. 2000. Positive unit hyperresolution
tableaux and their application to minimal model generation.
J. Autom. Reasoning 25(1):35–82.
Dodaro, C.; Gasteiger, P.; Leone, N.; Musitsch, B.; Ricca, F.;
and Shchekotykhin, K. 2016. Combining Answer Set Pro-
gramming and domain heuristics for solving hard industrial
problems (Application Paper). TPLP 16(5-6):653–669.
Eiter, T.; Leone, N.; and Saccà, D. 1997. On the partial
semantics for disjunctive deductive databases. Ann. Math.
Artif. Intell. 19(1-2):59–96.
Fages, F. 1991. A new fixpoint semantics for general logic
programs compared with the well-founded and the stable
model semantics. New Generation Comput. 9(3/4):425–444.

Gaggl, S. A.; Manthey, N.; Ronca, A.; Wallner, J. P.; and
Woltran, S. 2015. Improved answer-set programming en-
codings for abstract argumentation. TPLP 15(4-5):434–448.
Galindo, M. J. O.; Ramı́rez, J. R. A.; and Carballido, J. L.
2008. Logical weak completions of paraconsistent logics. J.
Log. Comput. 18(6):913–940.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Morgan & Claypool
Publishers.
Gebser, M.; Maratea, M.; and Ricca, F. 2015. The design of
the sixth answer set programming competition - report -. In
LPNMR 2015, 531–544.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Comput. 9(3/4):365–386.
Grasso, G.; Leone, N.; Manna, M.; and Ricca, F. 2011. ASP
at work: Spin-off and applications of the DLV system. In
Logic Programming, Knowledge Representation, and Non-
monotonic Reasoning, LNCS 6565, 432–451.
Hasegawa, R.; Fujita, H.; and Koshimura, M. 2000. Ef-
ficient minimal model generation using branching lemmas.
In CADE-17, 2000, 184–199.
Janota, M., and Marques-Silva, J. 2016. On the query com-
plexity of selecting minimal sets for monotone predicates.
Artif. Intell. 233:73–83.
Janota, M.; Lynce, I.; and Marques-Silva, J. 2015. Algo-
rithms for computing backbones of propositional formulae.
AI Commun. 28(2):161–177.
Koshimura, M.; Nabeshima, H.; Fujita, H.; and Hasegawa,
R. 2009. Minimal model generation with respect to an atom
set. In FTP 2009, CEUR 556.
Manna, M.; Ricca, F.; and Terracina, G. 2015. Taming pri-
mary key violations to query large inconsistent data via ASP.
TPLP 15(4-5):696–710.
Niemelä, I. 1996. A tableau calculus for minimal model
reasoning. In TABLEAUX 1996, 278–294.
Pereira, L. M., and Pinto, A. M. 2005. Revised stable models
- a semantics for logic programs. In EPIA, 29–42.
Przymusinski, T. C. 1991. Stable semantics for disjunctive
programs. New Generation Comput. 9(3/4):401–424.
Sakama, C., and Inoue, K. 1995. Paraconsistent stable se-
mantics for extended disjunctive programs. J. Log. Comput.
5(3):265–285.
Seipel, D. 1997. Partial evidential stable models for dis-
junctive deductive databases. In Dix, J.; Pereira, L. M.; and
Przymusinski, T. C., eds., LPKR, volume 1471 of LNCS, 66–
84. Springer.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics. Artif. Intell.
138(1-2):181–234.
van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs. Journal
of the ACM 38(3):620–650.

