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Abstract. Double-sided high-sloped structured surfaces such as V-groove surfaces and Fresnel lenses 

are widely used in optical fibre positioning, retro-reflection, grating, light guiding and light 

concentration for solar power installation. Both the surface finish as well as the dimensions of the 

structured surfaces play important roles in the quality of the final products. Numerous efforts have 

been put into the study of characterisation of these types of surfaces. However, only part of the 

parameters can be acquired and analyzed. It is still impossible to measure and generate the whole 

topography of these types of structured surfaces. This results in the manufacturing process suffering 

from high scrap rates. In this paper, an orthogonally placed dual probing system based on Wavelength 

Scanning Interferometry (WSI) aiming to measure the whole topography of the double-sided 

high-sloped structured surfaces simultaneously is presented. Each of the probes form an 

interferometer, and measures the facets of the double-sided high-sloped surfaces in one direction and 

acquires part of the topography. The whole topography is then stitched together using the two datasets 

based on the relationship between the coordinate systems of the two probes. The relationship between 

the two probes is acquired through the calibration of a specially designed 3D artefact. The artefact 

contains geometric features on each of the facets and is calibrated by a combination of several 

measurement methods to establish the space coordinates of the features. By matching the 

corresponding features on the measurement results acquired with each of the probes of the new setup 

to the reference topography using a 3D registration algorithm such as ICP (Iterative Closest Points) 

and its variants, the relationship between the coordinate system of each probe and the coordinate 

system of the reference topography can be calculated. Then the relationship between the coordinate 

systems of 2 probes can be determined, which can then be used to stitch the whole topography. The 

setup and the math model has been built and some initial results have been acquired. 

1. Introduction 

The micro-fabricated structured surfaces with multi-side high sloped facets, such as 

micropyramidal arrays, V-grooves or lenslet arrays have found wide applications in optical industries 

such as optical communication, retro-reflection and light guiding applications [1-6]. The 

manufactured items are reported to suffer from high scrap rates as high as 50-70% since the 

fabrication depends heavily on the experience of processing engineers adopting an expensive 

trial-and-error approach currently [7] meaning conquering this issue becomes increasingly 

meaningful. 

Currently, it is a big challenge to measure the structured surfaces with multi-side high sloped facets 

to get a high-precision topography, no matter contact or non-contact method. The stylus profilometry, 

for instance, can provide nanometer-scale resolution profile, but regarding areal measurement, the 

resolution decreases because of the jump between different profiles. Furthermore, the stylus might 



 

cause damage to the sample being inspected. Optical scanning techniques such as confocal 

microscopes and interferometers, are also restricted in this area, either the maximum measurement 

angle is too limited [8], or the resolution too low when measuring structured surfaces with multi-side 

high sloped facets. A Scanning Electron Microscope (SEM) is capable of observing a variety of 

structures with high lateral resolution. However, SEMs are not able to acquire the height information 

[9]. Even with the powerful Scanning Probe Microscope (SPM) family instrument, including Atomic 

Force Microscope (AFM) and Scanning Tunnel Microscope (STM), the axial range (normally just 

several microns) is still a bottleneck to restrict its application in this area [10]. Li et al developed a 

compact and fast Autostereoscopy-based Three-Dimensional On-machine Measuring (ATDOM) 

system to achieve efficient on-machine measurement [2, 3]. However, the result shows that the 

system can only measure the dimensions of the microstructures such as the depth, width and length 

instead of acquiring the topography. 

Wavelength Scanning Interferometry (WSI) has many distinct features [11]. Firstly, compared to 

Vertical Scanning Interferometry (VSI), WSI requires no mechanical scanning, which means the 

probe is fixed during measurement and the scanning process could be very fast, with the potential of 

on-line measurement. Also the resolution is very high, which has been proved to reach nanometer 

axial accuracy in the previous research. Consequently, WSI is adopted in this research to acquire the 

topography of double-sided near-right-angle structured surfaces. 

2. Methodology 

Setup. The Dual Probe Wavelength Scanning Interferometer (DPWSI) system, as illustrated in Fig. 1, 

mainly consists of a halogen lamp, an acousto- optical tunable filter (AOTF) and 2 WSI probes or 

interference objectives based on Michelson which are orthogonally placed for micro and nano-scale 

areal surface measurement. The AOTF filters the white light from the halogen lamp into 

single-wavelength which is fed into the interferometers for illumination, by changing the frequency of 

the driving RF signal, the wavelength scanning is achieved [11]. The 2 probes are identical and with a 

large working distance of 30 mm, enables the measurement of large objects. Each of the probes forms 

an interferometer, which simultaneously measures the structured surface in two orthogonal directions. 

During the wavelength scanning process, 256 interferogram frames from each of the probes are 

captured by the corresponding cameras, which are then analyzed to acquire the measurement volume 

information of each probe respectively. In order to build up the whole topography information of the 

measured sample the two measurement data sets should be combined together based on the  space 

coordinate calibration using a specially designed calibration sample and 3D registration algorithm. 

Calibration principle. The interference microscope objectives we used adopts a Michelson 

interferometer setup. The light beam reflected from the reference mirror interferes with the light beam 

reflected from the sample being measured, as illustrated in Fig. 2. The light reflected from the 

reference mirror REF1 and REF2 interfere with the light beam reflected from the sample respectively. 

The measurement result acquired from each interferometer is the optical path difference between the 

sample surfaces to the corresponding virtual image of the reference plane, in other words, the 

measurement results have a fixed relationship with respect to the locations of the two virtual images 

of the reference mirrors, namely VREF1 and VREF2. Since there is no mechanical movement during 

the measurement process, the reference mirrors REF1, REF2 and the beam-splitters BS1, BS2 are 

fixed to each other all the time. Thus the relationship between the two probes can be established 

through the space coordinate calibration, then the whole topography of the sample can be obtained. 

 



 

 
Fig. 1. Block diagram of the setup. 

 

      

                                             Fig. 2                                                    Fig. 3 

Fig. 2. The coordinate system of the probes. 

Fig. 3. The relative location of the 2 faces of the artefact. 

 

Since there is almost no overlapping measurement area between the 2 probes. The calibration is 

based on a specially designed calibration artefact with some features which are an array of 3 by 3 50 

µm squares with 100 um distance between each columns and rows as shown in Fig. 3. The idea is by 

matching the measurement results by the 2 probes of DPWSI of the areas including the features as 

shown in the 2 rectangles in Fig. 3 to the reference whole topography of the artefact respectively to 

establish the relationship between the coordinate systems of the 2 probes and the coordinate system of 

the reference topography with 3D registration algorithm. Then the relative location of the coordinate 

systems of the 2 probes can be determined by calculation. The 3D registration algorithm requires the 

features in order to achieve reasonable resolution of the matching.  

If nP , '

nP  represent the quaternions of the feature points such as corners or centers of the features 

in the reference topography, and 
nQ , '

nQ  represent the quaternions of the corresponding feature points 

in the measurement results by the 2 probes respectively. The following equations must be satisfied: 
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Where R1, R2 refer to the rotation matrices from the coordinate systems of the 2 probes to the 

reference topography, while t1, t2 represent the translation matrices from the coordinate systems of the 

2 probes to the reference topography, αn, βn, γn represent the rotation angles between the coordinate 

systems around the x, y, z axes, tnx, tny, tnz refer to translation components along the x, y, z axes. So 

there are 12 unknown variables in total. Theoretically if there are enough pairs of feature points, i.e. 

more than 4 pairs (since 3 equations can be acquired with each pair of feature points), the matrices 

will be able to be determined. The feature points can be extracted with image processing algorithm 

from the CCI and SEM results combination and the DPWSI results respectively with an edge 

extraction method such as Sobel operator and Watershed [12,13]. The spike errors such as batwing 

effect might be a problem so a cluster filter is used to remove the outliers before the extraction. These 

equations can be theoretically solved with Procrustes analysis. However, since the feature points have 

errors when extracted, a 3D registration algorithm such as Iterative Closest Points (ICP) needs to be 

used to improve the matching accuracy. By solving these equations, the coordinate system of the two 

interference probes is established. After that, the two data sets acquired from the 2 probes can be 

bound together to form the whole topography of the structured surface as: 
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Where X refers to the result measured with probe 1, while Y represents the result acquired with probe 

2. To reduce the computational time, the result can be rotated and translated in the same coordinate 

system as shown above without changing the result. 

The artefact is a certified calibration standard cube, with 2 adjoining faces perpendicular to each 

other within 2 seconds of arc (the real deviation is 1.2 arc-seconds measured with autocollimator). 

The roughness and flatness of the 2 faces are both very high (Sa better than 30nm, flatness better than 

50nm) and the edge between the 2 faces is very sharp. The features were milled with a Focused Ion 

Beam (FIB) with the depth of the features between 200-300nm. To our knowledge from both the 

literature and experiment, none of the existing instruments is able to acquire the topography of the 

structured surface of the artefact with sufficient resolution to detect the whole features. The reference 

topography is reconstructed by combining the results acquired with Taylor Hobson CCI 3000 and FEI 

Quanta 200 3D FIB/SEM workstation as illustrated in Fig. 3. The areas including the features on both 

facets (illustrated as the 2 rectangles in Fig. 3) can be measured with Taylor Hobson CCI with 

nanometer scale vertical resolution. The relative location between the 2 faces can be measured with 

SEM with submicron resolution, acquiring the distances d1, d2 and d3 in 3 different directions as 

shown in Fig. 3. With the angle between the 2 planes, the topography can be reconstructed by stitching 

the data together based on the coordinate system shown in Fig. 3 with the following restrictions: 
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Where nP  refers to the fitted plane of face n=1 or 2, ,m pnf  represents the selected feature on plane nP , 
m=1 or 2. The stitching can be accomplished by keeping the data of 1 face still, rotate and translate the 

other face to satisfy these restrictions with only rigid transformations. 



 

3. Experimental results and discussion 

Both probes of DPWSI have been calibrated with the step-height standard specimens with depths 

of 178 nm, 500 nm, 1.2 µm and 2.1 µm. The result shows each probe has achieved nanometer scale 

vertical resolution. Fig. 4 is the measurement result of a 178 nm step height sample, the deviation is 

only 5 nm. 

 

 

Fig. 4. The areal step height measured by one of the DPWSI probes. 

                    

                                          (a)                                                                          (b) 

Fig. 5. (a) The reference topography measured with Taylor Hobson CCI 3000 and FEI Quanta 200 3D 

FIB/SEM workstation.            (b) The same sample measured with DPWSI.  

 

The reference topography has been stitched as shown in Fig. 5 (a). The system has been calibrated. 

The stitched result with DPWSI is shown in Fig. 5 (b). The experiment shows it is very difficult to 

align the datasets directly with ICP algorithm. The best way to make the alignment is to extract the 

features in the datasets first, and then make alignment with the corresponding features. The 3D 

registration result between CCI and both DPWSI probes shows the average deviation between the 

matched areas is micrometer scale in lateral direction and submicron level in axial direction. There are 

many reasons for the deviation. The spike errors like batwing are an important error source, but can be 

eliminated by the cluster filter and outlier removal algorithm. The imperfect surface finish of the 

bottom of the features is another error source, which causes difference between the instruments 

because the numerical aperture (NA) of the objectives are different. However, the error can be 

reduced if more features are manufactured and adopted. Despite all of these error sources, the average 

deviation of the registration is micrometer level. It is similar to the lateral resolution of the setup 



 

(about 4 µm). Since only rigid transformations are adopted in the registration, the shape of the 2 faces 

are not changed, thus the vertical resolution of the 2 faces remains the same in nanometer scale after 

the stitching. 

The experimental result shows the proposed measurement system has demonstrated a novel 

approach to measure structured surfaces with double high-sloped facets and output the topography 

with nanometer scale vertical resolution on each face and micrometer scale lateral resolution between 

the 2 faces.  
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